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Abstract. In this article, on the example of the known low-order dynamical models, namely
Lorenz, R�ossler and Vallis systems, the di�culties of reliable numerical analysis of chaotic
dynamical systems are discussed. For the Lorenz system, the problems of existence of hidden
chaotic attractors and hidden transient chaotic sets and their numerical investigation are
considered. The problems of the numerical characterization of a chaotic attractor by calculating
�nite-time time Lyapunov exponents and �nite-time Lyapunov dimension along one trajectory
are demonstrated using the example of computing unstable periodic orbits in the R�ossler
system. Using the example of the Vallis system describing the El Nin�o-Southern Oscillation
it is demonstrated an analytical approach for localization of self-excited and hidden attractors,
which allows to obtain the exact formulas or estimates of their Lyapunov dimensions.

1. Introduction

History of the turbulence phenomena study is associated with the consideration of various models,
which include the Navier-Stokes equations, their Galerkin approximations, and the development
of the theory of chaos [1, 2, 3, 4]. Here let us note the signi�cant results by D. Ruelle, F. Takens
[3], and S. Smale [4], who proposed a chaotic attractor as a mathematical prototype describing the
onset of turbulence, and by O. Ladyzhenskaya, who studied the case when the two-dimensional
Navier-Stokes equation generates a dynamical system and proved the �nite dimensionality of its
attractor [5]. The �rst vivid example of chaotic attractor in a hydrodynamic system was obtained
by E. Lorenz [6]. Using the Galerkin method he derived a crude three-dimensional mathematical
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model for Rayleigh-B�enard convective �ow, which has the following form:
ẋ = −σ(x− y),
ẏ = rx− y − xz,
ż = −bz + xy,

(1)

where r, σ, b are positive parameters. For 0 < r < 1, there is one globally asymptotically
stable equilibrium S0 = (0, 0, 0). For r > 1, equilibrium S0 is a saddle, and a pair of symmetric
equilibria S± = (±

√
b(r − 1),±

√
b(r − 1), r − 1) appears.

For the parameters r = 28, σ = 10, b = 8/3 in system (1) E. Lorenz numerically found a
chaotic attractor in the model. In general, for numerical localization of attractor, it is necessary
to explore its basin of attraction and choose an initial point in it. If for a particular attractor
its basin of attraction is connected with the unstable manifold of unstable equilibrium, then
the localization procedure is quite simple. From this perspective, the following classi�cation of
attractors is suggested [7, 8, 9, 10]: an attractor is called a self-excited attractor if its basin
of attraction intersects an arbitrarily small open neighborhood of an equilibrium; otherwise,
it is called a hidden attractor. Numerical localization of hidden attractors is much more
challenging and requires the development of special methods. The classical Lorenz attractor
is a self-excited one with respect to all equilibria S0, S±, and it is an open question [10, p. 14]
whether for some parameters there exists a hidden Lorenz attractor. This question is related
to the �chaotic� generalization [11] of the second part of Hilbert's 16th problem on the number

and mutual disposition of attractors and repellers in the chaotic multidimensional dynamical

systems and, in particular, their dependence on the degree of polynomials in the model ; see
corresponding discussion, e.g. in [12, 13]. There are a number of physical dynamical models
which possess hidden chaotic attractors, e.g, the Rabinovich system (describes the interaction of
plasma waves) [14, 15], the Glukhovsky-Dolghansky system (describes convective �uid motion
in a rotating cavity) [16, 9] and others [17, 18, 19, 20].

We note that the Lorenz system (1) with parameters r = 28, σ = 10, b = 8/3 is dissipative in
the sense of Levinson, and for any initial data (except for equilibria) the trajectory tends to the
attractor. Thus, system (1) generates a dynamical system

(
{ϕt}t≥0, (U ⊆ R3, || · ||)

)
.

2. Hidden transient chaotic sets in Lorenz system

In numerical computation of a trajectory over a �nite-time interval it is di�cult to distinguish
a sustained chaos from a transient chaos (a transient chaotic set in the phase space, which can
nevertheless persist for a long time) [21, 22], thus it is reasonable to give a similar classi�cation
for transient chaotic sets [23, 15]: a transient chaotic set is called a hidden transient chaotic set if
it does not involve and attract trajectories from a small neighborhood of equilibria; otherwise, it
is called self-excited. In order to distinguish an attracting chaotic set (attractor) from a transient
chaotic set in numerical experiments, one can consider a grid of points in a small neighborhood
of the set and check the attraction of corresponding trajectories towards the set. There one can
reveal a subset of points for which the trajectories leave the transient set.

For the Lorenz system (1), suppose that σ = 10, b = 8
3 are �xed and r varies. If r = 28, then

all three equilibria S0, S± are unstable and in the phase space there exists a self-excited attractor
with respect to these equilibria. For r < σ(σ+b+3

σ−b−1) ≈ 24.7368, the equilibria S± become stable,
and for 24.06 < r < 24.7368, there exists a self-excited attractor with respect to equilibrium S0.
Near the point r ≈ 24.06 it is possible to observe a long living transient chaotic set, which is
hidden since it's basin of attraction does not intersect with the small vicinities of equilibrium S0.
For example, for r = 24 a hidden transient chaotic set can be visualized1 [24] from the initial

1 In this work, we use MATLAB's standard procedure ode45 with default parameters.
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point (2, 2, 2) (see Fig. 1). In [25], hidden transient chaotic set was obtained in system (1) with
r = 29, σ = 4, b = 2.

x y
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(a) u0=(2, 2, 2), t ∈ [0, 1000]

x y

z

S0

S− S+

(b) u0=(2, 2, 2), t ∈ [0, 2.3 · 105]

0

5

-20

10

30

15

20

25

20-10

30

35

40

10

45

0 0
-1010 -20

20 -30x y

z

S0

S− S+

(c) u0 in vicinity of S0

Figure 1: Visualization of the hidden transient chaotic set in system (1), r = 24, σ = 10, b = 8
3 .

The time of the transient process in this case depends strongly on the choice of the initial data,
which complicates the task of distinguishing an attracting chaotic set (attractor) from a transient
chaotic set in numerical experiments. E.g., for system (1) with parameters r = 24, σ = 10,
b = 8/3 and for initial point u0 = (20, 20, 20) a transient chaotic behavior is observed2 on the time
interval [0, 1.8·104], for initial point u0 = (−7, 8, 22) � on the time interval [0, 7.2·104], for initial
point u0 = (2, 2, 2) � on the time interval [0, 2.26·105], and for initial point u0 = (0,−0.5, 0.5)
a transient chaotic behavior continues over a time interval of more than [0, 1·107]. In order to
distinguish an attracting chaotic set from a transient chaotic set by computing trajectories on
a reasonable time interval, one can consider a grid of points in a small neighborhood of the set
and check the attraction of corresponding trajectories towards the set. There one can reveal a
subset of points for which the trajectories leave the transient set.

Next, on the example of the Lorenz system (1) we will demonstrate di�culties in the
reliable numerical computation of the �nite-time Lyapunov exponents and �nite-time Lyapunov
dimension.

3. Finite-time Lyapunov dimension of a transient chaotic set

Consider system (1) with parameters r = 24, σ = 10, b = 8/3 and integrate numerically
the trajectory with initial data u0 = (20, 20, 20). We numerically approximate the �nite-
time Lyapunov exponents and �nite-time Lyapunov dimension (see corresponding de�nitions,
e.g. in [26, 14]). Integration with t > T1 ≈ 1.8 ·104 leads to the collapse of the �attractor �,
i.e. the �attractor � turns out to be a transient chaotic set. However, on the time interval
t ∈ [0, T3 ≈ 507883] we have LE1(t, uinit) > 0 and, thus, may conclude that the behavior is
chaotic, and for the time interval t ∈ [0, T2 ≈ 262954] we have dKY

L ({LEi(t, uinit)}3i=1) > 2.
This e�ect is due to the fact that the �nite-time Lyapunov exponents and �nite-time Lyapunov
dimension are the values averaged over the considered time interval. Since the lifetime of
transient chaotic process can be extremely long and taking into account the limitations of reliable
integration of chaotic ODEs, even long-time computation of the �nite-time Lyapunov exponents
and the �nite-time Lyapunov dimension does not necessary lead to a relevant approximation of
the Lyapunov exponents and the Lyapunov dimension.

On the one hand, computational errors (caused by a �nite precision arithmetic and numerical
integration of di�erential equations) and sensitivity to initial data allow one to get a more

2 The time of transient chaotic behavior is often estimated approximately by analyzing the sign of the largest
Lyapunov exponent. For simplicity, here we approximate the transient behavior time by the time of entering a
small ball with the center at the points S±.
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complete visualization of chaotic attractor (pseudo-attractor) by one pseudo-trajectory computed
for a su�ciently large time interval. On the other hand, there arises a question of the reliability
of calculating the trajectory itself and its various characteristics, such as �nite-time Lyapunov
exponents (FTLEs) and �nite-time Lyapunov dimension (FTLD), over a long time interval.
In [27] for the Lorenz system (1) the time interval for reliable computation with 16 signi�cant
digits and error 10−4 is estimated as [0, 36], with error 10−8 is estimated as [0, 26], and reliable
computation for a longer time interval, e.g. [0, 10000] in [28], is a challenging task.

For two di�erent long-time pseudo-trajectories ũ(t, u10) and ũ(t, u20) visualizing the same
attractor, the corresponding FTLEs can be, within the speci�ed accuracy, similar due to
averaging over time and similar sets of points {ũ(t, u10)}t≥0 and {ũ(t, u20)}t≥0. At the same

time, one of the corresponding real trajectories u(t, u1,20 ) may correspond to an unstable periodic
orbit (UPO) which is embedded in the attractor and does not allow one to visualize it. The
limitations of the possibilities of numerical integration procedures demonstrates [29] an example
of the R�ossler system [30]: 

ẋ = −y − z,
ẏ = x+ 0.2y,

ż = 0.2− 5.7z + xz.

(2)

For system (2) it is possible to stabilize an unstable periodic orbit (UPO) uupo1 with period
τ ≈ 5.8811 embedded into attractor. The corresponding computations by the standard MATLAB
numerical integration procedure with and without application of the Pyragas' correction control
[31] (see also [32]) of the largest FTLE, LE1(t, u

upo1
0 ), and FTLD dimL(t, u

upo1
0 ) along a trajectory

with initial data uupo10 ∈ uupo1 over the time interval [0, 500] give us the following results. On the
initial part of the time interval, one can indicate the coincidence of these values with a su�ciently
high accuracy. For the UPO and for the unstabilized trajectory LE1(t, u

upo1
0 ) coincide up to the

5th decimal place inclusive on the interval [0, 30.4], up to the 4th decimal place inclusive on the
interval [0, 53.8], up to the 3rd decimal place inclusive on the interval [0, 71.5]. After t > 71.5
the di�erence in values becomes signi�cant and the corresponding graphics diverge in such a way
that the part of the graph corresponding to the unstabilized trajectory is lower than the part
of the graph corresponding to the UPO (see Fig. 2b). Thus, the application of the Pyragas'
procedure makes it possible to compensate round-o� errors and to trace the UPO numerically3.
Note that other UPOs could be revealed, e.g., by various evolutionary algorithms [34].

4. Analytical localization of attractors via Lyapunov functions

In order to simplify the numerical search for attractors, one can apply an analytical localization
approach related to the dissipativity in the sense of Levinson [9]. Also this approach may help
to obtain an exact formula or to estimate Lyapunov dimension in the entire phase space. As
an example of the e�ectiveness of such approach, we consider the localization of attractors in
the Vallis system describing the El Ni�no-Southern Oscillation (ENSO) phenomenon of irregular,
anomalous, Christmas time warming of the coastal waters of Peru and Ecuador about every 3�6
years that a�ected weather on a global scale. A low-order model for the ENSO phenomenon was
suggested by G.K. Vallis [35] and has the following form:

ẋ = By − C(x+ p),

ẏ = xz − y,
ż = −xy − z + 1,

(3)

3 There are well-known cases when the accumulation of errors in the computer representation of real data led
to catastrophes (see, e.g. [33])
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Figure 2: Numerical computations of trajectory (a), largest �nite-time Lyapunov exponent
LE1(t, u

upo1
0 ) (b), and �nite-time local Lyapunov dimension dimL(t, u

upo1
0 ) (c) with (red) and

without (blue) application of Pyragas' correction control on the time interval t ∈ [0, 500]. Initial
point uupo10 = (6.491,−7.0078, 0.1155) (dark red) is chosen at the computed UPO uupo1 .

with parameters B,C > 0, and real p. If p = 0, then system (3) can be transformed to the Lorenz
system (1). The number of equilibria in system (1) depends on the sign of the discriminant

D = Q2

4 + P 3

27 , Q = p
3

(
2p2

9 + B
C + 2

)
, P = −

(
p2

3 + B
C − 1

)
of the cubic equation

x3 + p x2 +
(
1− B

C

)
x+ p = 0. (4)

If B < C, then for any real p system (3) has only one equilibrium, Otherwise, if B > C, and

also p ∈ (−p∗, p∗), p∗ =

√(
B2

8C2 − 5B
2C − 1

)
+ 1

8

√
B
C

(
B
C + 8

)3
we get D < 0 and system (3) has

three equilibria Oj = (xj , yj , zj), j = 1, 2, 3, where xj are the solutions of (4), and yj =
C(xj+p)

B ,

zj =
C(xj+p)
Bxj

. One can express xj as follows

xj = −
p

3
+ ξj−1

3

√
−Q

2 +
√
D + ξ2(j−1)

3

√
−Q

2 −
√
D, j = 1, 2, 3, where ξ = −1

2 +
√
3
2 i. (5)

Using the direct Lyapunov method, we can prove the dissipativity of system (1) for C ≥ 1
2

and obtain the following ellipsoidal absorbing set:

B=
{
(x, y, z)∈R3

∣∣ 1
Bx

2+y2+(z+1)2≤4+ (Cp)2

(2C−1)B

}
. (6)

Let u = (x, y, z) ∈ U = R3, and the dynamical system {ϕtV}t≥0, is generated by the Vallis
system (3) with positive parameters B, C and real parameter p, and AV ⊂ R3 is a nonempty
closed bounded set, which is invariant with respect to the dynamical system {ϕtV}t≥0. i.e.
ϕtV(AV) = AV for all t ≥ 0. Using an e�ective analytical approach, proposed by Leonov [36, 26],
which is based on a combination of the Douady-Oesterl�e approach with the direct Lyapunov
method we obtain the upper estimate of the Lyapunov dimension for the global attractor in
system (3).

Theorem 1. For the Vallis dynamical system {ϕtV}t≥0, generated by system (3) with B,C > 0,
and real p we have the following estimate for the Lyapunov dimension of it global B-attractor

dimLAV ≤ 3− 2(C+2)

C+1+

√
(C−1)2+25

4 B
. (7)
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Let us compare the obtained estimate (7) with the values of local Lyapunov dimension at the
equilibria O1, O2, O3. E.g., for B = 102, C = 3, p = 0.83 we get the following local Lyapunov
dimensions

dimLO1 = 2.58834, dimLO2 = 2.00368, dimLO3 = 2.07175.

and the corresponding estimate (7) is in accordance with the values of local Lyapunov dimensions

dimLO2 < dimLO3 < dimLO1 ≤ dimLA ≤ 2.65903.
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