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aFaculty of Information Technology, University of Jyväskylä, Mattilanniemi 2, Jyväskylä,
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ABSTRACT

Skin cancers are world wide deathly health problem, where significant life and cost savings could be achieved if
detection of cancer can be done in early phase. Hypespectral imaging is prominent tool for non-invasive screening.
In this study we compare how use of both spectral and spatial domain increase classification performance of
convolutional neural networks. We compare five different neural network architectures for real patient data. Our
models gain same or slightly better positive predictive value as clinicians. Towards more general and reliable
model more data is needed and collection of training data should be systematic.
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1. INTRODUCTION

Skin cancers are constantly increasing problem world wide. Traditionally this has been concern of people whose
skin is relatively lightly coloured and annual portion of sunlight is high. Because of increased traveling and
ageing of the population, melanoma is increasing problem also in the Nordic countries. For example in Sweden,1

50 % of all the annual skin cancer related costs are caused by melanomas.

There is a need for tools, which are able to detect early stage skin cancers and delineate them properly from
healthy tissue. With proper detection it is possible to reduce amount of re-surgeries, when part of the malignant
tissue has been left to the patient in original tumor removal. This is highlighted by the fact that overall positive
predictive value of clinical melanoma diagnosis is 33 %.2 In non-specialised clinics this is even lower. For every
melanoma removal there will be 9 to 30 non-melanoma lesions removed depending on how specialised clinic is.3

Thus, early detection will lower the treatment costs and will ensure higher survival rate.

Hypersepctral imaging is method where hundreds narrow wavebands of light are imaged simultaneously. This
method will provide almost continuous spectrum for each pixel of the image as figure 1 is showing. Hyperspectral
imaging is non-invasive imaging modality, because it is using only visible and near infra-red illumination to
capture images. Previously we have used it in delineation of tumor border and distinguish in-situ melanoma
from malignant melanoma.4,5

If you look at closely two spectra in the figure 1 , it is quite easy to see that in clear cases melanoma and
healthy skin have characteristic spectra. Unfortunately this is not so in all the cases. In figure 2 we have spectral
distributions of malignant melanoma, lentigo-maligna, dysplastic nevus and benign nevus. We can see that these
distributions are overlapping. This means that if the melanoma is hard to recognise in clinical study, it will be
hard distinguish using just spectral information. Thus, it seems natural that we also utilize spatial domain in
the classification task.
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Figure 1. Hyperspectral image consist of intensity images, which are narrow wavebands from visible and near-infra red
region of the electromagnetic spectrum. Each pixel in the image is spectrum through spectral domain.

Convolutional neural networks have shown great success in different kind of pattern recognition tasks.6–8 They
have also been recently used in classifying melanomas and other skin cancers from dermatoscope and regular color
images.9 In these cases, results are given for the whole images. Because of such binary classification we don’t
actually have an opportunity to determinate lesion’s borders from analysis or what kind of other irregularities
there are in the tumor.

There are multiple strategies to utilize convolutional neural networks. We are introducing efficient strategy,
which contains utilization of both spectral and spatial domain. With hyperspectral data containing wavebands
from visible to infra-red region, we are able to gather more information from each pixel than using regular imaging
systems.4,5 Using sliding window method over captured spectral image, we will have spectral and spatial domain
for further analysis. In this study we describe some incremental steps, which are taking us closer to automatic
skin cancer detection, identification and delineation.

2. MATERIAL AND METHODS

In this study we have small data set (n=61) of hyperspectral images covering narrow wavebands from 450 to
850 nm. Data set consist of several lesions, which were imaged and diagnosed by histopathology. Lesions consist
of malignant melanomas, melanoma in-situs, dysplastic nevi and bening nevi. All patients have volunteered to
participate in the study. The study protocol has followed the Declaration of Helsinki and it was approved by the
local Ethics committee. Patient were recruited and imaged by the Department of Dermatology and Allergology
of Helsinki University Hospital, Helsinki, Finland and by the Päijät-Häme Central Hospital, Lahti, Finland,
between June 2016 and October 2017.

All hyperspectral images were collected with two identical hyperspectral imagers (Revenio Prototype 2016).
Spectral separation of the imager is based on Fabry-Pérot interferometer (FPI). Use of FPI enables fast scanning
in the spectral domain. The imager works on wavebands from 450 nm to 850 nm. The imager captures 120
wavebands within few seconds. Full width of each waveband’s half maximum (FWHM) vary from 5 to 15 nm.
Variation in FWMH comes as a function of wavelength. Another source of the variation comes from which
multiple of FPI’s is used. Imaging system contains a broadband halogen light source, which produces diffuse
illumination to the imaged region of the interest (ROI). At the imager there is covering tube, which blocks
illumination from other sources. Image acquisition is done with color cmos machine vision camera, which is
integrated to the imager. The used machine vision camera is capable to take images in 1920 × 1200 pixel
resolution. This corresponds approximately to 15 µm/pixel spatial resolution.

The spectral imager produces a raw data cube, which is calibrated to the radiance by following method of
Saari et. al (2013).10 There was some indeterminated fluctuation at the end of recorded spectra. Thus, twenty
last wavebands were left outside from further analysis. For each data cube there was captured white reference
target. This was used to convert imaged radiance to reflectance R = I/I0 , where I is imaged region of interest
and I0 is data cube from white reference. To improve quality of the data in spectral domain and reduce memory
consumption in further processing, the data is downsampled. This was done by averaging nearest pixels of every
fifth pixel. Also, only every second waveband was used in further analysis. By these operations data cubes size
reduced to 384 × 240 × 50 pixels.



Training of the classifier needs labelled data. For each image there were annotated areas, which indicated
either healthy skin, lesion or used marker. From each image’s annotated areas 1000 data sets (or less if annotated
area contained less than 1000 pixels) were selected for training purposes. These data sets contained annotated
pixel and its 10 × 10 neighborhood. Figure 2 shows distribution of spectra of melanoma, lentigo maligna,
dysplastic nevus and benign nevus. As we can see that there are overlapping in the distributions and some of the
spectra has deviation. To reduce these effects and some problems from the vignetting and lightning irregularities,
each imaged spectrum was subtracted by its average in spectral domain.

Figure 2. The distributions of spectra of melanoma, lentigo maligna, dysplastic nevus and benign nevus.

During recent years, deep neural networks have made new records in pattern recognition.6 Our aim was to
use both spatial and spectral domain simultaneously. Convolutional neural networks have been used to classify
melanomas and other skin cancers from dermatoscope and regular color images.9 Spectral data cube has three-
dimensional nature, thus, standard 2D convolutional neural network might not be enough to utilize spectral
data.

In deep learning and especially with convolutional neural networks classification task has two parts. In
the feature learning we are calculating features using convolution operations with different weights. By tuning
weights during back-propagation we will eventually achieve optimized feature space for our classification task.
The actual classification model is just a deep regular multi-layer perceptron network. This structure is illustrated
in the figure 3.

In this study we tested three different kind of feature learning structures - 1D, 2D and 3D convolutions. We
will also have basically two different types of inputs. Single spectra and small window surrounding this spectra.
As figure 3 shows, a 1D convolution input takes a single spectra. For 2D and 3D convolution input will be a
subset’s of spectral cube. Difference between 2D and 3D convolution is that 2D case doesn’t operate over spectral
domain while 3D does.

Used deep neural networks consist from two parts. First part executes feature learning by using the convo-
lutional operator by the Conv layers. The Maxpooling layers reduces data’s dimensionality. Machine learning
part and actual classification is done with deep feed-forward neural network, which consist of six Dense layers.
Convolutional and dense layers use rectified linear unit activation (ReLU) function. The single Dropout layer
is added to avoid overfitting of the model. Last dense layer does final classification using Softmax activation
function. Parameters of each layer are shown in the figure 3.

By variating the described architecture we tested five different kind of networks - 1D, 2D and 3D convolutional
neural networks and two combinations where feature learning was executed by using 3D+1D convolutions and
3D+2D+1D convolutions.

The actual training data was sampled randomly from annotated points, so that there were 10000 data points
from each class. An annotation was based on its histopathological results. Whole lesions were marked the same
way. Annotation was done by a non-expert.

For annotated points, data augmentations was utilized so, that each training cube was mirrored and flipped
horizontally and vertically. These operations fourfold the number of the inputs in the training phase. Training
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Figure 3. Schematic structure of used convolutional neural networks. Best results were gained using all inputs and all
three different convolutional feature learning parts simultaneously.

set consisted of approximately 240 000 data points. For the optimization we used Adam, which is a first-
order gradient-based optimization method of stochastic objective functions. The used hyperparameters for the
optimization was the learning rate of 0.001, β1 = 0.9 and β2 = 0.999, while the learning rate decay over each
update stayed at 0. The used cost function was categorical cross-entropy.

Our implementation used Keras with Tensorflow backend and Python 3.6 . All calculations were executed
using IBM PowerAI platform, which includes two Nvidia Tesla V100-SXM2 16 GB GPU units.

There were only 61 imaged lesions (15 malignant melanoma, 6 lentigo maligna, 26 dysplastic nevus and 14
benign nevus). Thus, leave-one-out cross-validation was used. In this procedure classifier is trained 61 times for
each image separately. This will guarantee that training set does not include data points from the image which
is currently under classification.

3. RESULTS

Our ground truth consist of the results of histopathology. This meant that whole lesion was labelled based on
most dangerous diagnosis. Because our approach gives us pixel wise information we ended situations where one
lesion had several differently classified pixels. This actually might be quite realistic situation. Malignant lesions
can have non-malignant parts. Thus, final classification for each lesion was made based on most dangerous pixel,
which was found from lesion. If there was even a single pixel, which was classified as melanoma, whole lesion
was classified to melanoma. In melanoma detection with this approach we will gain relatively high sensitivity,
but low specificity which is seen in table 1 and in figure 8. And as opposite for benign nevus will have high
specificity and low sensitivity.

Table 1. Sensitivity, specificity and positive predictive value of different classifiers for the melanoma classification

CNN 1D CNN 2D CNN 3D CNN 3D+1D CNN 3D+2D+1D

Sensitivity 1 1 0.93 0.93 0.93

Specificity 0.15 0.12 0.14 0.14 0.21

Positive predictive value 0.34 0.35 0.32 0.32 0.34



When we are looking at sensitivities of different classifiers, we can see, that all 15 melanoma cases actually were
classified correctly using only 1D and 2D convolution networks. 14 of 15 melanoma cases were classified correctly
when 3D convolution was utilised. These metrics are actually misleading. If we look at actual classification
results as shown in figures 4, 5, 6 and 7, we can see that actually classification results based on single spectra
are often noisy. Figure 4 was confirmed to be dysplastic nevus in histopathology. All single source convolutional
neural networks fail to classify it correctly. On lesion boundaries there is quite typical error, where trained model
for some reason mis-classify lesion to melanoma. Here best result is achieved using multiple inputs and three
different kind on CNN’s.

In general level it seems that spatial features give more reliable looking results. When we combine those with
spectral domain, results get better, because specificity increases. If we take closer look one false positive case in
the figure 7 we can see that majority of the pixels in the lesion is actually classified correctly. This is promising
result because with more training cases we might have chance to train better models.

Figure 4. Classification results of five different classifiers for dysplastic nevus.

Figure 5. Classification results of five different classifiers for malignant melanoma.



Figure 6. Classification results of five different classifiers for lentigo maligna.

Figure 7. Classification results of five different classifiers for dysplatic nevus. Here all classifiers give false positive as a
result. Even though majority of pixels are classified correctly, the end result will be false positive for whole lesion.

4. DISCUSSION

Shown results are promising. With all classifiers we achieved same positive prediction value (PPV) as clinicians.
It is shown that utilisation of the spectral and spatial domain increases classification performance.

There is work to be done to gain higher specificity and PPV. We could play around with detection proba-
bilities provided by the softmax layer and take some threshold probabilities, which would be concerned during
classification (for example only classification results over 90% confident would be recognised). Or we could cal-
culate which class has majority of pixels on lesion area. Unfortunately both of these approaches would actually
decrease the sensitivity and the number of false negatives would rise.

Our study’s first limitation comes from the small data set. Even thought we had over hundred million pixels
at our disposal, we eventually had only 61 different lesions. This is a quite limited data set and more data is



needed to develop and calculate a more robust and accurate neural network model. This would mean that we
will need multi center studies, where patient data is gathered in several countries simultaneously. For example
Finnish population is too small to produce enough patients to train enough general models.

Another limitation is that the ground truth labeling is based on histopathological diagnosis of whole lesion.
There is a great possibility that a lesion can include several classes. Thus, our ground truth contains bias and
this bias is also transferred to our training data. What we actually should do is that we should have several
biopsied training points from each lesion so that we could use those spots in our training data. This would
decrease bias in the training data, but it would also lead to reduced training data size.

Process of validating results and gathering training data should be similarly iterative as training of the neural
network itself. When a hyperspectral imager and a classification model is used in a clinical study, we should
take biopsies based on results. The spatial locations of these biopsies should be saved and the model should be
updated using histopathological results of these studies afterwards.

The approach to use spectral and spatial domains seems feasible. Our next ideas are to add more features to
the data. By modifying the illumination source we can take photogrammetric stereo images. From these images
it is possible to calculate surface normals, a digital elevation model and skin’s albedo as a function of wavelength.
Each of these can be used as new features in cancer classification and delineation.

5. CONCLUSION

We have shown that use of spectral and spatial domain will increase classification performance of convolutional
neural network. Our results show that with a relative small data set we are able to get same or slightly better
positive prediction values as clinicians. This information was achieved by using a novel hyperspectral imager
prototype in a clinical setup and train five different neural network models based on histopathological diagnoses.
Because of the climate change proportion direct of sun radiation seems to grow, thus non-invasive automatic skin
cancer detection and delineation systems will be needed even more in the future. These results are incremental
steps towards this goal.
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Figure 8. Confusion matrices for the different convolutional neural network models.
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