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Employing the Argonne Fragment Mass Analyzer and the implantation-decay-decay correlation technique,
a weak 0.50(21)% proton decay branch was identified in 1981 for the first time. The '] proton-decay
width is consistent with a hindered | = 2 emission, suggesting a ds;, origin. Using the extracted 1081
proton-decay Q value of 597(13) keV, and the Q, values of the 1%8] and '97Te isotopes, a proton-
decay Q value of 510(20) keV for 194Sb was deduced. Similarly to the 12:113Cs proton-emitter pair,
the Qp(1%1) value is lower than that for the less-exotic neighbor 9], possibly due to enhanced proton-
neutron interactions in N &~ Z nuclei. In contrast, the present Q,,(1°4Sb) is higher than that of 195Sb,
suggesting a weaker interaction energy. For the present Q, (194sb) value, network calculations with the
one-zone X-ray burst model Mazzocchi et al. (2007) [18] predict no significant branching into the Sn-Sb-
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1. Introduction

Nuclear structure and binding energies of exotic, neutron-
deficient nuclei can be extracted from their @- and proton-decay
properties. Far from the valley of B stability, where experiments
are particularly challenging, due to low production cross sections,
this is often the only method available. The region in the vicin-
ity of the N = Z line, close to 1%0Sn [1], is a prime example of
such nuclei, which are of special interest as they are close to the
N = Z =50 double shell closure. They are known to exhibit exotic
nuclear phenomena, such as the largest Gamow-Teller S-decay
strength [2], superallowed o decay [3-8], as well as possible clus-
ter [9-11] and two-proton emission [12-14]. Some of the nuclei
“northeast” of 190Sn spontaneously emit protons. In fact, 19°I and
13¢5 were the first two proton emitters where inclusion of de-
formation was needed to calculate their proton-decay half-lives
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Fig. 1. The nuclear chart in the proximity of '99Sn. A nucleus is marked as an «
emitter, if it has an «-decay branch greater than 5%. The proton and « decays rel-
evant for this work are indicated with black and green arrows, respectively. Decays
observed in earlier experiments are indicated with solid lines, whereas those stud-
ied in this work are marked with dashed lines.

[15,16]. Recently, state-of-the-art nonadiabatic quasiparticle model
of proton decay [17] required addition of triaxiality to reproduce
the measured %I proton-decay rate [18]. Interestingly, the pro-
tons in the odd-odd '2Cs are more bound than in 13Cs, resulting
in longer half-life for the more exotic nucleus [19]. Similar half-life
anomaly was recently reported for the lighter N ~ Z nuclei 7>73Rb
[20]. In addition, odd-odd proton emitters shed light on the role of
the odd neutron, which does not participate in the proton decay,
but it determines the spin of the proton-decaying state and thus
influences the proton-decay rate [21].

Antimony isotopes act as a gate for the astrophysical rp-process
flow towards the region of « activity, starting with the tellurium
isotopes. Proton separation energies (S, = —Qp) of antimony iso-
topes determine the breakout path. It has been suggested that
the rp-process terminates in a Sn-Sb-Te cycle, proceeding through
1065h [22]. Later, based on precise mass measurements [23], it was
concluded that only 3% of the total flow proceeds through 1%6Sb,
and that a stronger branch of 13% can be expected to proceed via
1075k, In terms of proton separation energy, °8Sb is an even bet-
ter candidate as a potential gateway nucleus, but this branch is
suppressed by the long, 115 s [24], B-decay half-life of 1%6Sn. Fur-
thermore, in another «-decay study [18], it was shown that the
Sn-Sb-Te cycle cannot proceed through '9°Sb. However, it has been
speculated [18,19] that it is possible for the cycle to flow via 194Sb,
if this nucleus is more proton-bound than expected due to en-
hanced proton-neutron interactions [25], similarly to '2Cs.

To date, it is not certain whether the Sn-Sb-Te cycle proceeds
through 194Sb. To address this question, the proton separation
energy of 194Sb needs to be determined. Due to low produc-
tion cross sections, precise mass measurements, as well as di-
rect reaction rate studies, are beyond the reach of current ex-
perimental techniques. In addition, the expected proton decay
branch of 1%4Sb is below 1% [26], which makes the direct ob-
servation of this proton decay difficult. However, as the Q val-
ues of 18] and '97Te are known, this can be done indirectly by
measuring the Qp value of %], and using energy conservation
[Qp(194Sb) = Qo (197Te) + Q, (1%81) — Qo (1%®1)], see Fig. 1 for vi-
sualization. Multiple attempts to identify a proton emission branch
in 1981 have been undertaken [27-29], but without success. Here,
we report the first observation of proton emission from %8, From
the measured Q,(1%1) value, Q,(194Sb) is deduced. The implica-
tions for the termination of the rp-process are addressed. In ad-
dition, more precise properties of the 1981, 197Te, and '2Cs nuclei
are reported.

2. Experimental details

The neutron-deficient nuclei of interest were produced us-
ing the >*Fe(°®Ni,p3n)'8] fusion-evaporation reaction. The fusion-
evaporation residues (referred to as recoils hereafter) were sepa-
rated from the primary beam with the Fragment Mass Analyzer
(FMA) [30]. The *8Ni beam, delivered by the ATLAS facility of Ar-
gonne National Laboratory, had an average intensity of 30 pnA
and an energy of 254 MeV. The total irradiation time of the self-
supporting, 450-rg/cm? thick >*Fe targets was approximately 155
hours. The high beam intensity was accommodated by mounting
the targets on a rotating wheel. A 20-rg/cm? thick stationary car-
bon charge-state reset foil was placed downstream from the target
wheel. The FMA was set to collect recoils with A =108 and +26
and +27 charge states. Some 97Te and 191 recoils were collected
as a side product due to partially overlapping mass-to-charge-
state ratios, which were measured at the FMA focal plane with
a position-sensitive parallel-grid avalanche counter (PGAC). After
passing through PGAC, the recoils were implanted into a 64 mm x
64 mm, 100-um thick, 160 x 160 strip double-sided silicon strip
detector (DSSD). The gain parameter of a linear energy calibration
was obtained for the DSSD by using an «-calibration source con-
taining the 24°Pu and 244Cm isotopes. The offset parameter was
obtained separately for protons and « particles from the observed
activities of 191 (Q, = 820(4) keV [31]) and 1%8Te (E, = 3314(4)
keV [32]). The data from all channels were recorded independently,
and each event was time-stamped with a 100 MHz clock. An ap-
proximately 4-ps long waveform was collected for each DSSD event
in order to analyze pile-up events.

The identification of the decay events of interest was based on
the search for consecutive recoil implantation-decay (R-d1) or re-
coil implantation-decay-decay (R-d1-d2) event chains in the same
pixel of the DSSD. An event was considered as a recoil implan-
tation if the PGAC yielded a horizontal position corresponding to
mass number 108, the energy registered in the DSSD was greater
than 15 MeV, and a time-of-flight condition between the PGAC
and the DSSD was satisfied. An event without a PGAC signal was
considered as a decay event, which may correspond to a proton
decay, an a-particle emission, or a B+ decay. Because the DSSD
was rather thin, B particles were likely to punch through, result-
ing in a low-energy background.

3. Results

The energy spectrum of decay events for all observed R-d1
chains is displayed in Fig. 2. The energy deposited in the DSSD
by o decay of 11 and 197Te, once corrected for the c-decay re-
coil effect [33,34], yielded respective Q values of 4097(10) and
4007(10) keV. In Figs. 3(a) and 3(b), the time difference between
the recoil and the decay event of R-d1 chains is shown for the
o decay of 198 and 197Te, respectively. The half-lives of 26.4(8)
ms and 3.6(2) ms for %] and '97Te, were obtained with the
logarithmic-time scale method of Ref. [35], modified for two or
three components. The long-lived component, labeled as “Bgr” in
Fig. 3, is a result of decay-like events, randomly correlated with
a recoil event. The third component in Fig. 3(b) is needed to ac-
count for partially overlapping «-particle energies of the nuclei of
interest.

Fig. 4 contains the energy-energy matrix for the two consec-
utive decay events in the observed R-d1-d2 event chains, where
d1 and d2 decay times were limited to 130 ms and 18 ms, i.e., ap-
proximately 5 times the half-lives of 198 and 197Te, respectively. In
Fig. 4, a group of eight events are temporally and spatially (same
pixel of the DSSD) correlated with the known o-decay of 197Te,
implying proton emission from 1%, The time distribution of these
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Fig. 2. Energy spectrum for all decay events observed as a member of a R-d1 event
chain. The previously known activities are labeled. The discontinuity at the energy
of 1100 keV is due to the different energy calibration for proton- and «-decay
events.
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Fig. 3. Time difference between a recoil implantation and a subsequent decay event
observed in the same pixel of the DSSD, when the decay is (a) '%I(c), (b) 197 Te(cx)
or (c) '981(p) followed by the o decay of '9’Te. In panel (d), the time difference
between two subsequent decay events of '9I(p) and 97Te(«) is presented. The
quoted half-lives were obtained with the logarithmic time-scale method [35] (pan-
els (a) and (b)) or maximum likelihood method [36] (panels (c) and (d)). The solid
lines in (a) and (b) are fits to the data, and the dashed lines in (c) and (d) are the
probability density distributions [35] corresponding to the half-lives obtained from
these fits. The peak labeled “Bgr” corresponds to random correlations, see text for
details.

eight proton-decay events is presented in Fig. 3(c), and for the
subsequent o decays, in Fig. 3(d). The half-lives of these decay
chains, extracted with the maximum likelihood method [36], are
similar to those obtained in Figs. 3(a) and 3(b), indicating proton
and «-particle emission from the same state of 181, The energy
peak corresponding to the 9] proton-decay events, seen in the
inset of Fig. 4, corresponds to a proton-decay Q value of 597(13)
keV. A proton-decay branch of b, = 0.50(21)% was deduced from
the number of observed 1981 proton and « decays. The beta decay
branch was also accounted for by comparing the present half-
life of 193] and the theoretical partial f-decay half-life of 402 ms
[37].
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Fig. 4. Energy-energy correlation matrix for two subsequent decay events in R-d1-d2
chains, when the R-d1 and d1-d2 time differences are less than 130 ms and 18 ms,
respectively. The inset provides the energy spectrum of the newly observed 03]
proton decay events, which are highlighted with a dashed circle in the main panel.
Due to a high count rate in the DSSD and the long half-life, 1°8Te «-decay events
self-correlate randomly. The dashed lines mark the energies of selected, previously
identified, charged-particle decay activities in this region.

Table 1
Q values, half-lives T15, and mass excesses A obtained in the present study com-
pared to the literature values.

Quantity This work AME2016 Other studies
[31,38,39]
Qp(1981) (keV) 597(13) 600(110) >240 [19]
<600 [26]
Qp(194sb) (keV) 510(20) 510(100) >150 [19]
<520 [19]
<550 [26]
Qq (198]) (keV) 4097(10) 4100(50) 4099(5) [26]
Qo (197Te) (keV) 4007(10) 4008(5) 3982(16) [40]
4012(10) [32]
Qo (M12Cs) (keV) 3940(20) 3930(120) >3830 [19]
<4210 [19]
<3940 [29]
Ty, (17Te) (ms) 3.6(2) 3.1(1) 36106 [40]
3.1(1) [29]
T1,(1%81) (ms) 26.4(8) 36(6) 36(6) [29]
A(1%4sb) (MeV) -59.17(8) -59.17(12)
A(198]) (MeV) -52.65(8) -52.65(13)

4. Discussion

The results obtained in this study are summarized in Table 1
and compared to those reported in the literature. These results are
discussed in detail below.

4.1. Proton emission from 193]

The presently obtained Q, value of 597(13) keV for '%] is in
good agreement with the value of 600(110) keV reported in the
recent mass evaluation of Ref. [31], as well as with an upper and
lower limits of 600 [26] and 240 keV [19] set in earlier studies
of 1981, Given the calculated deformation, 8, = 0.15 [41], and the
odd-odd character of 98], it is difficult to propose a firm config-
uration assignment for the proton decaying state. In the spherical
shell model, the 1ds, and 2g7, orbitals are close to the Fermi sur-
face for both protons and neutrons, indicating a high level density
at low excitation energies. A WKB integral predicts partial proton-
decay half-lives of approximately 150 ms or 70 s for a Qp = 597
keV proton emitted with an orbital angular momentum of [ =2
or | = 4, respectively. A measured partial proton-decay half-life
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Fig. 5. Proton-emission Q-values of selected (a) Sb, (b) I, and (c) Cs isotopes. The
data points marked with solid symbols are experimental values (this work and
Refs. [18,23,31,39]), whereas interpolations from Ref. [31] are indicated with open
symbols. The solid lines are predictions of different mass models (Liran-Zeldes [43],
FRDM [41], and KTUYO05 [44]), and the respective differences are shown in Panels
(d)-(f).

of 5.3(22) s was deduced for 98] from the present half-life and
branching ratio. The fact that the experimental value is between
the two theoretical values, suggests that the proton is emitted with
I =2 from a state which is a strong admixture of 1ds;, and 2g7;
orbitals. For comparison, the WKB integral predicts a proton-decay
half-live of approximately 10 ps (I = 2) for %91, whereas an ex-
perimental half-life of 93.5(3) ps [18] has been reported for this
predominant proton emitter with a minuscule «-decay branch.

The proton-decay half-life of neighboring '9°I was calculated
recently using the nonadiabatic quasiparticle approach as a func-
tion of deformation [17]. It was concluded that the experimental
half-life is consistent with a deformation of 8, ~ 0.15 and asym-
metry of y &~ 15°, and that the emission proceeds from a 3/2%
state. This level was suggested to originate from a mixing of the
Q7 =1/2% 3/2* Nilsson states, which are of 2g75 and 1ds;, spher-
ical parentage, respectively. It is expected that the deformation in
1081 js similar to that of '9°] [41]. However, in 198], the odd pro-
ton has to be coupled to the odd neutron, similarly to the case of
130Ey [21]. The Gallagher-Moszkowski rule [42], applied to a pro-
ton and neutron occupying any combination of the 1/2%[431] or
3/2% [411] Nilsson orbitals, suggests a preferred coupling to a spin
and parity of 11 or 3%. Since the 17Te ground state is expected
to have a spin of 5/2%, the | =2 proton emission from these or-
bitals is allowed, and would dominate over the | =4 component.
In order to quantitatively interpret proton emission from 1081, cal-
culations using an approach similar to that of Ref. [17], but with
the inclusion of the odd neutron [21], need to be performed.

4.2. Proton-decay properties of 1°4Sb, and their effect on the
astrophysical rp-process

Using the newly measured Q ,(1%1) =597(13) keV and Q, ('%1)
= 4097(10) keV values, together with the adopted Qq(1%Te) =
4008(5) keV [31], one can deduce a value of Q,(1%4Sb) =510(20)
keV. This is to be compared with the Q,(1%4Sb) =510(100) keV,
reported in the recent mass evaluation of Ref. [31], and a range
of 150-520 keV estimated in Ref. [19]. A more precise value of
-59.17(8) MeV for the mass excess A of 194Sb can be obtained by
using the present Q,('94Sb) value and A(*%Sn) from Ref. [31].
In Fig. 5, the Q, values obtained in this study are compared to

those of the nearby odd-Z nuclei, as well as to the predictions of
selected nuclear-mass models (Liran-Zeldes [43], FRDM [41], and
KTUYO5 [44]). Similarly to the 12113Cs pair, the odd-odd %8I has
a lower Qp value than the less exotic, odd-even neighbor 191
This is most likely due to the residual proton-neutron interac-
tions between the odd proton and neutron [25]. In contrast, Qp
for odd-odd 194Sb is higher than that of 195Sb, possibly due to
fewer proton-neutron pairs than in the iodine and cesium nuclei.
It is noteworthy that none of the mass models predicts this Q,
decrease for the 112:113Cs and 198:109] pairs. Only the semiem-
pirical shell-model formula of Liran and Zeldes [43] anticipates
such a behavior, but not until at the N = Z line. All nuclear mass
models appear to systematically overestimate the Q, of antimony
isotopes, but perform better for iodine and cesium nuclei. Liran-
Zeldes model fits the data best on average, but it deviates for 108]
and ''2Cs. The KTUY05 model [44] performs the best for nuclei
beyond the proton dripline. A pico-second scale (I = 2) or nano-
second scale (I =4) half-life is expected due to high Q, value for
the thus far unknown proton emitting isotopes of 193Sb, 1971 and
11¢s, Given that a typical time-of-flight through a recoil separator
is 1 ps, the observation of these isotopes will be very difficult.

The Sn-Sb-Te cycle branching (see Fig. 4 in Ref. [18]), obtained
using network calculations with a one-zone X-ray burst model
[22], indicate clearly that, with the present Qp(ASb) value, there
is no significant branching into the cycle via 1%4Sb. Hence, the dis-
cussion in Ref. [23] about the termination and final composition
of the burst ashes of the astrophysical rp-process remains intact.
However, these conclusions rely on the assumption that excited
states do not play a role in the extraction of Q,(1%4Sb). Based
on the present half-life analysis (see Fig. 3) protons and « par-
ticles are emitted from the same state of 1981 Furthermore, the
107Te o-decay fine structure was characterized in Ref. [45], and
the Qq(1%Te) = 4008(5) keV corresponds to a ground state-to-
ground state o decay. Therefore, the only scenario that cannot be
excluded here, and that would decrease the present Q ,(194Sb), is if
the 198 ¢ decay leads to an excited state of 1%4Sb. Such an excited
state should have an energy greater than 1 MeV in order to allow
a considerable branching into the Sn-Sb-Te cycle, which is un-
likely. On the other hand, even a small change in Q ,(1%4Sb) would
have an impact on the proton-decay branch of 1%4Sb. Assuming a
proton emission from the spherical 1ds, orbital and the present
Qp(1%4sb) value, a WKB approximation predicts a partial proton-
decay half-life of approximately 4 s for '94Sb. By comparing this to
the measured half-life of 194Sb (4407133 ms [46]), a proton-decay
branch of approximately 10% can be expected. However, proton de-
cay events following the o decay of 1981 were not observed in the
present experiment, limiting the proton-decay branch to <0.3% for
1045h in fair agreement with the limit of <1% reported in Ref. [26].
This could occur if the 2g7, proton orbital dominates the wave
function of the '%4Sb ground state, or if the spin of the ground
state is greater than 5h, which would result in forbidden [ =2
proton emission. The predicted deformation of 194Sb is relatively
small, B2 = 0.075 [41], but it might also slow down the proton
emission from 194Sb.

4.3. Properties of 197Te, 198, and 112 Cs nuclei

The present Q. values for '%’Te and %81 are in good agree-
ment with those adopted in Ref. [31] and, together with the
above improved mass excess of 194Sb, yield an improved value of
A(198]) = —52.65(8) MeV, see Table 1 for comparison with the
recommended values. The present half-life of T1/,(1%"Te) = 3.6(2)
ms is slightly longer compared to the value of 3.1(1) ms, adopted
in the recent nuclear data evaluation [38]. The latter value is iden-
tical to that given in Ref. [29], but an earlier study [40] reported
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a half-life of 3.6J_r8:2 ms, in better agreement with the present

data. The previously reported half-life of 36(6) ms [29] for 108] is
marginally longer than that of 26.4(8) ms obtained here, but the
total number of observed 1981 o decays in the present study is ap-
proximately 30 times larger.

Similarly to the Qp(1%4Sb), also the Qq(!'?Cs) can be calcu-
lated via energy conservation as shown in Fig. 1. With the present
Qp(1%1) value, and with Qq(1'"Xe) = 3723.5(100) keV [32,39]
and Q,(112Cs) = 816(4) keV [39], one calculates Qg (12Cs) =
3940(20) keV, which is at the upper limit of 3940 keV obtained
in Ref. [29]. It is more precise than the adopted value of 3930(120)
keV [31], and the range of 3830-4210 keV proposed in Ref. [19].
In the latter study, an upper limit of 0.26% was obtained for the
12¢s g-decay branch. The present Qg (''2Cs) value suggests a
smaller -decay branch of 0.071399% (I=0) or 0.03%35% (1=2),
and this possibly explains why the o decay of ''2Cs was not
observed in Ref. [19]. These branches were calculated with the
method of Rasmussen [47], using the reduced «-decay width of
14cs (82 = 72738 keV [19,40]), and a half-life of 506(55) ps [19]
for 112Cs.

5. Summary

A weak proton emission branch in 181 was observed with a
proton-decay width consistent with that of hindered | = 2 emis-
sion. In order to assign a specific configuration for the proton
emitting state, nonadiabatic quasiparticle calculations, similar to
those presented in Refs. [17,21], are needed. Using the measured
Qp(1%1) value, the proton-decay Q value for 194Sb was extracted
indirectly. With this value, the network calculations with a one-
zone X-ray burst model [18] predict no significant branching to the
Sn-Sb-Te cycle via 194Sh. Because of the enhanced residual proton-
neutron interactions in N ~ Z nuclei, the odd-odd 98] and 112Cs
have a lower Qj values than their less-exotic odd-even neighbors
1091 and 113Cs, respectively. In contrast, the present Qp('%4Sb) is
higher than that of 1%°Sb, possibly due to fewer proton-neutron
pairs in the antimony isotopes.
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