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1 Introduction

The topic of this thesis is discrete exterior calculus and higher order Whitney forms as ap-

proximations for differential forms. Many problems in different scientific disciplines lead to

partial differential equations for which the solutions cannot be found analytically. Such prob-

lems are discretised and solved numerically using a numerical partial differential equation

solving method. Well-known examples of these methods are finite element method and finite

volume method. The method considered in this thesis is discrete exterior calculus. It suits

particularly well for solving wave propagation problems and has applications in different

fields of physics, such as electromagnetism, sound propagation, elastic waves, and quantum

mechanics (Räbinä et al. 2018).

In discrete exterior calculus, the partial differential equations are represented using differ-

ential forms. The problem is discretised by partitioning the domain into small cells which

form a mesh. Since differential forms can be integrated over mesh elements of respective di-

mension, they can be discretised by considering the array of all such integrals as the discrete

version of the differential form.

The solution obtained using discrete exterior calculus is a discrete version described above,

i.e. we know the integrals over mesh elements. The question arises how to interpolate to

get the solution in the usual form. This is where Whitney forms come into play. These

geometrical objects are finite elements for differential forms on simplicial meshes (Bossavit

1988). To each mesh element corresponds a Whitney form, and discretising differential

forms by integrating over all mesh elements can actually be seen as approximating them in

a finite-dimensional space of Whitney forms. Interpolating with these lowest order Whitney

forms is simple: the interpolant is a linear combination of all such forms, with the values of

the integrals as coefficients.

To increase the accuracy of the solution, one must use a finer mesh, i.e. divide the domain

into smaller cells. Another approach is to increase the polynomial degree of the Whitney

forms used in approximating differential forms. Whilst using lowest order Whitney forms

gives something elementwise linear, with second order Whitney forms we get piecewise
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quadratic approximations.

Lowest order Whitney forms as finite elements have been known for a long time (Bossavit

1988). Higher order Whitney forms have been discussed in the literature as well, and their

use has been studied with numerical experiments (Rapetti 2007; Bonazzoli and Rapetti 2017;

Bonazzoli, Rapetti, and Venturini 2018). However, they have not been used in discrete exte-

rior calculus, and thus it makes sense to ask how this could be done. This is the first research

problem of the thesis.

Using higher order finite elements generally leads to more expensive computations, and with

lowest order elements a finer mesh could be used at the same computational costs. Therefore,

it’s logical to study whether higher order Whitney forms are worth using or would it be more

efficient to keep using lowest order forms and further refine the mesh instead. This is the

second research problem.

Based on the method we developed, Whitney forms are implemented on a DEC-based wave

simulation software. Although higher order Whitney forms are discussed in the general case,

we only consider the implementation of second order forms. The results given by second

order forms are compared with those given by lowest order forms.

Chapter 2 briefly presents some mathematical background needed in building discrete exte-

rior calculus. In Chapter 3 we represent the definition of Whitney forms and show how they

can be used to approximate differential forms. In Chapter 4 we give an overview of discrete

exterior calculus and discuss a numerical solution of Maxwell’s equations as an example.

Chapter 5 is the practical part of the thesis; it considers the implementation of the approxi-

mations with second order Whitney forms and their application in discrete exterior calculus.

The evaluation of the results is also contained in Chapter 5. Chapter 6 concludes the main

points of the thesis.
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2 Mathematical background

The workspace in discrete exterior calculus is given by the mathematical concept of man-

ifold. Manifolds come with a topological structure by definition, but there are additional

structures that enable more things to be done on them. Smooth manifolds admit a smooth

structure, which allows one to do calculus on them. Orientable manifolds can be oriented,

and Riemannian manifolds come with a metric. These additional structures provide us with

the tools needed to do discrete exterior calculus. These tools are presented in this chapter,

when we go through some preliminary mathematical concepts.

We define metric tensor and differential forms in Sections 2.1 and 2.2. Then, in Sections

2.3 and 2.4, we present two important operators on differential forms: the exterior derivative

and the Hodge star operator. The coverage is brief, and the reader is assumed to have prior

knowledge of differential geometry. For more detailed discussion, proofs, and reference,

see any textbook about the subject, e.g. Lee (2012), Bishop and Goldberg (1980), Munkres

(1991), Abraham, Marsden, and Ratiu (2012), Boothby (1986), or Spivak (1999).

2.1 Metric tensor

Recall that the space of covariant k-tensors on a finite-dimensional vector space V is the

space of k-multilinear maps from V onto R denoted by T k(V ). The tensor product of a

covariant k-tensor T and a covariant l-tensor S is a covariant (k+ l)-tensor denoted by T ⊗S

and defined by

(T ⊗S)(v1, . . . ,vk,vk+1, . . . ,vk+l) = T (v1, . . . ,vk)S(vk+1, . . . ,vk+l).

Let M be a smooth manifold of dimension n. For each p ∈M, the tangent space TpM is an

n-dimensional vector space, so we can consider T k(TpM), the space of covariant k-tensors

on TpM. The bundle of covariant k-tensors, denoted by T kT M, is the disjoint union of these

spaces for each p ∈M:

T kT M =
a

p∈M

T k(TpM).
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A covariant k-tensor field on M is then a map from M onto T kT M whose value at each point

p ∈ M is a covariant k-tensor on TpM. We denote the space of smooth covariant k-tensor

fields on M by T k(M). In this thesis, by tensors and tensor fields we always mean covariant

tensors and covariant tensor fields, omitting the word ”covariant”. The tensor product is

extended for tensor fields pointwise.

A Riemannian metric on a smooth manifold M is a symmetric smooth 2-tensor field g ∈

T 2(M) whose value gp at each point p ∈M is a symmetric positive definite 2-tensor on the

tangent space TpM. A Riemannian manifold (M,g) is a smooth manifold M equipped with a

Riemannian metric g.

The requirement of positive definiteness of the metric can be relaxed. A pseudo-Riemannian

metric is a symmetric smooth 2-tensor field whose value is nondegenerate at each point: for

all p ∈M and all nonzero X ∈ TpM, there exists Y ∈ TpM such that gp(X ,Y ) 6= 0. Discrete

exterior calculus could be built using this more general pseudo-Riemannian metric, but for

our purposes it suffices to consider Riemannian metrics. Thus, in this thesis by metric or

metric tensor we refer to a Riemannian metric on a smooth manifold.

A simple example of a Riemannian manifold is the Euclidean space, i.e. Rn with the Eu-

clidean metric. The metric tensor can be written in standard Cartesian coordinates as

g =
n

∑
i=1

dxi⊗dxi.

In Cartesian coordinates, this metric corresponds to the usual inner product of vectors:

g(X ,Y ) =
n

∑
i=1

XiYi.

2.2 Differential forms

Recall that a k-tensor ω on a finite-dimensional vector space V is alternating if it changes

sign whenever two of its arguments are interchanged: for all v1, . . . ,vk ∈ V and i 6= j,

ω(v1, . . . ,vi, . . . ,v j, . . . ,vk) = −ω(v1, . . . ,v j, . . . ,vi, . . . ,vk). The vector space of alternating

k-tensors on V is denoted by Λk(V ), and it’s a subspace of the space of all k-tensors T k(V ).

The alternation operator Alt : T k(V )→Λk(V ) is a projection onto the subspace of alternating
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k-tensors, defined by

Altω(v1, . . . ,vk) =
1
k! ∑

σ∈Sk

(sgnσ)ω(vσ(1), . . . ,vσ(k)),

where Sk is the group of all permutations of {1, . . . ,k}. The alternation is a linear operator,

and Altω = ω if and only if ω is alternating.

The tensor product of alternating tensors is in general not alternating, but there is an operation

called wedge product that takes two alternating tensors ω ∈ Λk(V ) and η ∈ Λl(V ) and gives

an alternating (k+ l)-tensor, denoted by ω ∧η . Their wedge product is defined as

ω ∧η =
(k+ l)!

k!l!
Alt(ω⊗η).

The wedge product is bilinear and associative, and when ω ∈ Λk(V ) and η ∈ Λl(V ), it satis-

fies ω ∧η = (−1)klη ∧ω .

When v1, . . . ,vn is a basis of V and ε1, . . . ,εn is the dual basis for V ∗, the set

{εi1 ∧ . . .∧ εik |1≤ i1 < .. . < ik ≤ n}

forms a basis for Λk(V ). Any element ω ∈ Λk(V ) can be written in this basis as

ω = ∑
i1<...<ik

ω(vi1, . . . ,vik)εi1 ∧ . . .∧ εik .

What was explained above can be extended to alternating tensor fields. When M is an n-

dimensional smooth manifold, an alternating k-tensor field on M is a tensor field whose

value at each point p is an alternating k-tensor on TpM. Alternating k-tensor fields are called

differential k-forms, or simply k-forms, and the vector space of smooth k-forms is denoted by

Ωk(M). The alternation and the wedge product operations for k-forms are defined pointwise,

and any element ω ∈Ωk(M) can be written in local coordinates as

ω = ∑
i1<...<ik

ωi1...ikdxi1 ∧ . . .∧dxik , (2.1)

where ωi1...ik = ω( ∂

∂xi1
, . . . , ∂

∂xik
) is a smooth function in the coordinate neighbourhood.

Note that Ω0(M) equals the space of smooth functions on M and Ω1(M) equals the space of

smooth covector fields on M. If k > n, then Ωk(M) is the zero-dimensional space.
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2.3 Exterior derivative and Stokes’ theorem

An important operator for differential forms is the exterior derivative, which extends the

differential of functions to forms. For each k, the exterior derivative d is the unique R-linear

operator d : Ωk(M)→Ωk+1(M) satisfying the following properties:

i For f ∈Ω0(M), d f = d f , the usual differential of a smooth function on M.

ii For ω ∈Ωk(M) and η ∈Ωl(M), d(ω ∧η) = dω ∧η +(−1)kω ∧dη .

iii d◦d = 0.

The exterior derivative of a k-form ω can be computed in local coordinates using linearity

and (2.1) with the formula

d(ωi1...ik dxi1 ∧ . . .∧dxik) = dωi1...ik ∧dxi1 ∧ . . .∧dxik .

Differential n-forms can be integrated over oriented n-dimensional smooth manifolds. Al-

though we don’t show how integration on manifolds is done, we state the following important

result, Stokes’ theorem, which holds for the exterior derivative.

Theorem 1 (Stokes’ theorem) Let M be an oriented smooth manifold of dimension n and

ω ∈Ωn−1(M) compactly supported. Then∫
M

dω =
∫

∂M
ω.

Stokes’ theorem generalises the fundamental theorem of calculus and is the basis of discrete

exterior calculus.

2.4 Hodge star operator

The goal of this section is to define the Hodge star operator, a canonical isomorphism that

takes k-forms to (n− k)-forms. For this we use the Riemannian volume form on an oriented

Riemannian manifold. For background information of orientations and for more detail about

the Riemannian volume form, see Chapter 15 in Lee (2012).

We start by defining flat and sharp operators. Let (M,g) be an oriented Riemannian manifold

of positive dimension n. The metric g induces an isomorphism [ between tangent vectors and
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covectors by setting

([X)(Y ) = gp(X ,Y )

for X ,Y ∈ TpM. This operator is called flat and denoted by [. Its inverse is called sharp and

denoted by ].

Since M is oriented, there is a unique smooth nonvanishing n-form dVg ∈Ωn(M) that satisfies

dVg(E1, . . . ,En) = 1 for any local positively oriented orthonormal frame E1, . . . ,En. dVg is

called the Riemannian volume form, and in local positively oriented coordinates it can be

written as

dVg =
√

detGdx1∧ . . .∧dxn,

where G is the matrix consisting of elements gi j = g( ∂

∂xi
, ∂

∂x j
). For k = 0, the Hodge star of

f ∈Ω0(M) is defined as ? f = f dVg.

To define the Hodge star for k ∈ {1, . . . ,n}, we point out that for each p∈M, the metric g de-

termines a unique inner product 〈· , ·〉 on Λk(TpM) such that whenever ω1, . . . ,ωk,η1, . . . ,ηk

are covectors at p,

〈ω1∧ . . .∧ωk,η1∧ . . .∧ηk〉= detA,

where A is the matrix consisting of elements Ai j = gp(]ωi, ]η j). Using this inner product,

we define the Hodge star operator ? : Ωk(M)→ Ωn−k(M) as the unique linear isomorphism

satisfying

ω ∧?η = 〈ω,η〉dVg ∀ω,η ∈Ω
k(M).

When η is the operand of the Hodge star, the image ?η is called the Hodge dual of η ,

sometimes simply the dual of η .

The exterior derivative and the Hodge star operator are of most importance when building

discrete exterior calculus because with flat and sharp they enable us to express partial differ-

ential operators from vector calculus using differential forms. We end this chapter with an

example illustrating this and some of the other things presented thus far.

7



Example Let M = R3 with Euclidean metric and standard orientation. Recall that 0-forms

are smooth functions. Applying (2.1) in standard Cartesian coordinates, 1-form ω , 2-form

η , and 3-form σ can be written as

ω = ω1dx1 +ω2dx2 +ω3dx3,

η = η12dx1∧dx2 +η13dx1∧dx3 +η23dx2∧dx3,

σ = σ123dx1∧dx2∧dx3.

The Hodge duals are given by

?dx1 = dx2∧dx3, ?(dx1∧dx2) = dx3, ?(dx1∧dx2∧dx3) = 1,

?dx2 =−dx1∧dx3, ?(dx1∧dx3) =−dx2, ?1 = dx1∧dx2∧dx3.

?dx3 = dx1∧dx2, ?(dx2∧dx3) = dx1,

In three dimensions ??= id, so the Hodge star operator enables us to identify 0-forms with 3-

forms and 1-forms with 2-forms. This actually means that differential forms can be identified

with scalar and vector fields. These are called proxy fields and given as follows. A 0-

form is already a scalar field, and with the 3-form f we identify the scalar field ? f . The

corresponding vector field to the 1-form ω is ]ω , so with the 2-form η we can identify the

vector field ] ?η .

Using the correspondence between differential forms and their proxies, we can now present

the vector calculus operators gradient, curl, divergence, and laplacian in terms of differential

forms. When f is a smooth function and F = (F1,F2,F3) is a smooth vector field, we have:

i ∇ f = ]d f ,

ii ∇×F = ] ?d[F ,

iii ∇ ·F = ?d?[F ,

iv ∆ f = ?d?d f .

Proof. i: For 0-forms the exterior derivative is just the usual differential of a smooth function,

and thus ]d f = ]d f = ]( ∂ f
∂x1

dx1 +
∂ f
∂x2

dx2 +
∂ f
∂x3

dx3) = ( ∂ f
∂x1

, ∂ f
∂x2

, ∂ f
∂x3

) = ∇ f .
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ii:

] ?d[F = ] ?d(F1dx1 +F2dx2 +F3dx3) = ] ? (dF1∧dx1 +dF2∧dx2 +dF3∧dx3)

= ] ?

[(
∂F1

∂x1
dx1 +

∂F1

∂x2
dx2 +

∂F1

∂x3
dx3

)
∧dx1 +

(
∂F2

∂x1
dx1 +

∂F2

∂x2
dx2 +

∂F2

∂x3
dx3

)
∧dx2

+

(
∂F3

∂x1
dx1 +

∂F3

∂x2
dx2 +

∂F3

∂x3
dx3

)
∧dx3

]

= ] ?

[
∂F1

∂x2
dx2∧dx1 +

∂F1

∂x3
dx3∧dx1 +

∂F2

∂x1
dx1∧dx2 +

∂F2

∂x3
dx3∧dx2

+
∂F3

∂x1
dx1∧dx3 +

∂F3

∂x2
dx2∧dx3

]

= ] ?

[(
∂F2

∂x1
− ∂F1

∂x2

)
dx1∧dx2 +

(
∂F3

∂x1
− ∂F1

∂x3

)
dx1∧dx3 +

(
∂F3

∂x2
− ∂F2

∂x3

)
dx2∧dx3

]

= ]

[(
∂F2

∂x1
− ∂F1

∂x2

)
dx3−

(
∂F3

∂x1
− ∂F1

∂x3

)
dx2 +

(
∂F3

∂x2
− ∂F2

∂x3

)
dx1

]

=

(
∂F3

∂x2
− ∂F2

∂x3
,

∂F1

∂x3
− ∂F3

∂x1
,

∂F2

∂x1
− ∂F1

∂x2

)
= ∇×F.

iii:

?d?[F = ?d?(F1dx1 +F2dx2 +F3dx3) = ?d(F1dx2∧dx3−F2dx1∧dx3 +F3dx1∧dx2)

= ?(dF1∧dx2∧dx3−dF2∧dx1∧dx3 +dF3∧dx1∧dx2)

= ?

[(
∂F1

∂x1
dx1 +

∂F1

∂x2
dx2 +

∂F1

∂x3
dx3

)
∧dx2∧dx3−

(
∂F2

∂x1
dx1 +

∂F2

∂x2
dx2 +

∂F2

∂x3
dx3

)
∧dx1∧dx3

+

(
∂F3

∂x1
dx1 +

∂F3

∂x2
dx2 +

∂F3

∂x3
dx3

)
∧dx1∧dx2

]
= ?

[(
∂F1

∂x1
+

∂F2

∂x2
+

∂F3

∂x3

)
dx1∧dx2∧dx3

]

=
∂F1

∂x1
+

∂F2

∂x2
+

∂F3

∂x3
= ∇ ·F.

iv: ?d?d f = (?d?[)(]d f ) = (?d?[)(∇ f ) = ∇ · (∇ f ) = ∆ f . �
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3 Whitney forms

Whenever numerical methods are used, the problem must be converted to a discrete form

solvable with a computer. This includes replacing infinite-dimensional function spaces with

finite-dimensional ones, whose functions can be represented in a finite basis and thus pro-

cessed by computer. Since in discrete exterior calculus the problem is presented using differ-

ential forms, we are interested in finite-dimensional spaces that allow us to discretise them.

The spaces we are looking for are called Whitney spaces and spanned by Whitney forms,

and they are the topic of this chapter.

Lowest order Whitney forms were introduced by Whitney (1957), who called them elemen-

tary forms. These correspond to cochains on a simplicial complex. Therefore, we begin by

defining a simplicial mesh, chains, and cochains in Sections 3.1 and 3.2. This enables us

to present lowest order Whitney forms in Section 3.3. In Section 3.4 we introduce a new

set of simplices called small simplices and use them to define higher order Whitney forms.

Section 3.5 concludes how Whitney forms can be used to approximate differential forms in

the finite-dimensional Whitney space. Section 3.1 follows Appendix II of Whitney (1957),

and the rest of the chapter is based on the work of Rapetti and Bossavit (2009).

3.1 Simplicial mesh

A convex polyhedral cell in Rd , or simply a cell for short, is a nonempty bounded subset that

can be expressed as the intersection of finitely many closed half-spaces. The dimension of

a cell is the dimension of its plane, i.e. the smallest affine subspace containing it, and cells

of dimension p are called p-cells. When p > 0, the boundary of a p-cell σ is a union of

(p− 1)-cells. These (p− 1)-cells are the (p− 1)-faces of σ . Each of them may possibly

have (p− 2)-faces, each of which may have (p− 3)-faces, and so on. All these cells are

called the faces of σ . The vertices of σ are its faces of dimension 0; they are points in Rd ,

and σ is the convex hull of these points.

Simplices are a special case of cells. A p-simplex s in Rd , 0 ≤ p ≤ n, is the nondegenerate

convex hull of p+ 1 distinct points n0, . . . ,np ∈ Rd . s is a p-cell, and these points are its
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vertices. Each point in s can be expressed as a sum λ0n0 + . . .+λpnp for some nonnegative

coefficients λi that sum to one; the λi are the barycentric coordinates of the point. When

p≥ r > 0, the convex hull of r of the vertices of s is an (r−1)-face of s and also an (r−1)-

subsimplex of s.

Figure 1 has examples of simplices in the three-dimensional case. 0-simplices are just points,

1-simplices are line segments between points, 2-simplices are triangles, and 3-simplices are

tetrahedra. 0-simplices are also called nodes, 1-simplices edges, 2-simplices facets, and 3-

simplices volumes. This explains the labelling ni for vertices, and labels e, f , and v are used

for edges, facets, and volumes in a similar manner.

Figure 1. p-simplices with p ∈ {0,1,2,3}.

Suppose p > 0. A p-cell is oriented by orienting its plane. For p-simplices, this can be

done by ordering the vertices. The notation s = n0 . . .np is used for the oriented simplex

whose plane is oriented by the set of vectors (n1−n0, . . . ,np−n0). If s′ = nσ(0) . . .nσ(p) for

a permutation σ of {0, . . . , p}, i.e. s′ is the same simplex with different order of the vertices,

the orientation of s′ agrees with that of s if σ is even. If σ is odd, the orientations differ.

Orientations that agree are considered the same, so there are two possible orientations for a

p-simplex with p > 0. 0-simplices have two possible orientations as well, +1 and -1, and the

orientation +1 is set as default.

The orientation of a p-cell induces an orientation called the induced orientation on any of

its (p− 1)-faces. When s = n0 . . .np is a p-simplex with p > 0, the induced orientation is

determined as follows. Any (p− 1)-subsimplex s′ has as vertices p of the vertices of s, i.e.

s′ is the convex hull of n0, . . . , n̂i, . . . ,np for some i ∈ {0, . . . , p}, where the hat indicates that

ni is omitted. If i is even, s′ = n0 . . . n̂i, . . . ,np with the induced orientation; if i is odd, the
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opposite orientation is induced instead. If s′ is equipped with the induced orientation, we say

that the orientation of s′ agrees with that of s.

For example, consider an edge e = n0n1. An edge is oriented by choosing a direction along

it; here e is the line segment from n0 to n1. The induced orientation is -1 on n0 and +1 on

n1. The orientation of a facet is a choice of a rotational direction. The edges of the facet

f = n0n1n2 with induced orientations are n0n1, n1n2, and n2n0. Note how each of the edges

points in the same direction as the rotational direction given by the order of the vertices.

Thus, it makes sense to say that their orientations agree with that of the facet.

A cell complex K is a finite set of cells such that the following conditions are fulfilled:

• Each face of any cell is also a cell in K.

• Two cells may intersect along a common face, but in no other way.

The dimension of K is the maximum of the dimensions of its cells. If all the cells in K are

simplices, K is a simplicial complex. The set of points contained in at least one of the cells is

called the polyhedron of K and denoted by |K|. We say that K is oriented if each of its cells

is oriented.

Now we are ready to define a simplicial mesh. Let D ⊂ Rd be a bounded and oriented d-

dimensional Riemannian manifold with piecewise smooth boundary. We define a mesh as

an oriented cell complex K such that |K| is a manifold. If |K|= D̄, we say that K is a mesh

in D. A simplicial mesh is a mesh whose cells are simplices. We use the notation C p for the

set of p-cells of the mesh.

Note that since we refer as cells to polyhedral cells, it may not be possible to find a mesh

K such that |K| = D̄. More general cell complices called CW complices could be used

by attaching cells onto D through certain mappings, and a simplicial mesh in D could be

defined as a triangulation of D, which exists for any smooth manifold. These are concepts of

algebraic topology; see e.g. Maunder (1996) or Hatcher (2002) for more information. Instead

of doing this, we relax the requirement that |K|= D̄, assuming that |K| is an approximation

of D.

The adjacency relations of p-cells and (p− 1)-cells of the mesh determine a matrix D of
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dimension |C p|× |C p−1| as follows. For σi ∈ C p and τ j ∈ C p−1, the element Di j is given as:

• Di j =+1 if τ j is a face of σi and their orientations agree,

• Di j =−1 if τ j is a face of σi and their orientations differ,

• Di j = 0 if τ j is not a face of σi.

The matrix D is called the incidence matrix, and we denote its element linking σ ∈ C p to τ ∈

C p−1 by Dσ
τ . A mesh of dimension n has n incidence matrices, one for each p ∈ {1, . . . ,n},

linking p-cells to (p− 1)-cells. The incidence matrix is a discrete version of the exterior

derivative, as we will later see.

Whitney forms are defined on a simplicial mesh, and for this chapter it would have been

sufficient to consider only simplicial meshes. But, in discrete exterior calculus meshes con-

taining nonsimplicial cells are used as well, so to avoid repeating similar things in Chapter 4

we discussed both options here. In the rest of this chapter, we consider a d-dimensional sim-

plicial mesh K that approximates D such that |K| ⊃D. By simplices we refer to simplices of

the mesh, and the notation S p is used for the set of p-simplices.

When n1, . . . ,nM are the nodes of the mesh, the barycentric coordinates are extended to

the whole mesh as follows. Each point p ∈ D can be expressed uniquely as a sum p =

λ1n1 + . . .+λMnM such that whenever s is an n-simplex containing p, the λi corresponding

to the nodes of s match the barycentric coordinates of p in s and all the other λi are zero. The

coefficients λ1, . . . ,λM are the barycentric coordinates of p. When p is considered as a vari-

able, they determine barycentric functions whose values at p are the barycentric coordinates

of p. These are continuous and piecewise affine functions that sum to one at each point, and

λi is one at the node ni and zero at all the other nodes.

3.2 Chains and cochains

Chains are formal linear combinations of simplices. In more detail, when 0 ≤ p ≤ n, a p-

chain c assigns a value cs ∈R for each p-simplex s such that c = ∑s∈S p css. Simplices whose

coefficients are negative are interpreted with the opposite orientation. If s is a p-simplex,

the chain c = s involving only the simplex s with coefficient one is an elementary chain

13



corresponding to the simplex s. We use the same symbol s to denote the simplex as well as

the corresponding elementary chain.

p-cochains are the dual space to the space of p-chains, i.e. linear maps that take p-chains

to R. Since linear maps are determined by their action on the basis elements, a p-cochain b

corresponds to one value bs ∈R per p-simplex s, and its action on the chain c = ∑s∈S p css is

given by b(c) = ∑s∈S p bscs. Both chains and cochains can be stored as vectors containing a

value for each simplex. The vectors are denoted by boldface letters.

Cochains are discrete versions of differential forms. A p-form w can be integrated over

p-simplices, and its integral over a p-chain is defined using linearity:∫
∑s∈Sp css

w = ∑
s∈S p

cs
∫

s
w.

This yields a cochain whose value on a p-chain is simply the integral of w over that chain.

The vector corresponding to this cochain consists of integrals of w over all p-simplices. The

map that takes differential forms to cochains in this way is called the de Rham map and

denoted byR.

The boundary operator ∂ takes p-chains to (p− 1)-chains as follows. For an elementary

p-chain s, ∂ s is a linear combination of the (p−1)-faces of s. The faces whose orientations

agree with that of s are given the coefficient +1, and the faces with the opposite orientation

come with the coefficient -1. For a p-chain c = ∑s∈S p css the boundary operator is then

extended linearly:

∂c = ∂ ( ∑
s∈S p

css) = ∑
s∈S p

cs
∂ s.

Note that Stokes’ theorem now extends to chains as
∫

c dw =
∫

∂c w. Indeed, since
∫

s dw =∫
∂ s w for any p-simplex s and (p−1)-form w, we have that∫
c
dw =

∫
∑s∈Sp css

dw = ∑
s∈S p

cs
∫

s
dw = ∑

s∈S p
cs
∫

∂ s
w =

∫
∑s∈Sp cs∂ s

w =
∫

∂ (∑s∈Sp css)
w =

∫
∂c

w.

As the exterior derivative takes (p− 1)-forms to p-forms and cochains are discrete differ-

ential forms, there is a discrete version of the exterior derivative, taking (p−1)-cochains to

p-cochains. When p > 0 and b is a (p−1)-cochain, db is the p-cochain acting on a p-chain
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c by db(c) = b(∂c). In other words, the discrete exterior derivative is the dual of the bound-

ary operator. Note that the condition satisfied by the discrete exterior derivative is a discrete

version of Stokes’ theorem: integration of forms is replaced by evaluation of cochains.

As (p− 1)-chains and p-chains can be represented as vectors of dimension |S p−1| and

|S p|, the boundary operator can be represented as a matrix ∂∂∂ of dimension |S p−1| × |S p|.

Similarly, the discrete exterior derivative can be represented as a matrix D of dimension

|S p|×|S p−1|. Note that it follows from the definitions that the matrix D is the incidence ma-

trix defined in Section 3.1. Since the discrete exterior derivative is the dual of the boundary

operator, their matrices are transposes of each other: ∂∂∂ = DT .

Example Consider the mesh in Figure 2. Its simplices are listed in Table 1.

n1 n2

n3 n4

n5

e1

e2 e3 e4

e6

e5

e7

f1

f2

f3

Figure 2. A two-dimensional simplicial mesh. The orientations of the simplices are illus-

trated with arrows.
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Nodes n1,n2,n3,n4,n5

Edges e1 = n1n2,e2 = n1n3,e3 = n2n3,e4 = n2n4,e5 = n3n4,e6 = n3n5,e7 = n4n5

Facets f1 = n1n2n3, f2 = n2n4n3, f3 = n3n4n5

Table 1. The simplices of the mesh in Figure 2.

The incidence matrices D0 and D1 linking nodes to edges and edges to facets are

D0 =



−1 1 0 0 0

−1 0 1 0 0

0 −1 1 0 0

0 −1 0 1 0

0 0 −1 1 0

0 0 −1 0 1

0 0 0 −1 1


, D1 =


1 −1 1 0 0 0 0

0 0 −1 1 −1 0 0

0 0 0 0 1 −1 1

 .

The chain c= f1+ f2+ f3 can be stored as the vector c=(1,1,1)T . The vector corresponding

to the boundary of c is D1
T c = (1,−1,0,1,0−1,1)T , i.e. ∂c = e1− e2 + e4− e6 + e7. The

boundary of ∂c corresponds to the vector D0
T D1

T c = (0,0,0,0,0)T , so ∂ (∂c) = 0.

The property ∂ ◦∂ = 0 can be shown to hold in general (see Lemma 2.1. in Hatcher 2002).

Since the discrete version of the exterior derivative is the dual of the boundary operator, it

follows that d◦d = 0 holds for the discrete exterior derivative as well.

3.3 Lowest order Whitney forms

As we saw in Section 3.2, cochains are discrete versions of differential forms, given by the

de Rham mapR. The Whitney map goes the other way: cochains are mapped to differential

forms in the finite-dimensional space of Whitney forms. To each p-simplex s corresponds a

p-form ws, and the Whitney map, denoted by P , maps the cochain vector b to the p-form

∑s∈S p bsws. An explicit formula for the p-form ws is given in the following definition.

Definition 1 (Lowest order Whitney forms) The differential Whitney p-form of polynomial
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degree one associated with the p-simplex s = n0 . . .np is

ws = p!
p

∑
i=0

(−1)i
λni dλn0 ∧ . . .∧ d̂λni ∧ . . .∧dλnp, (3.1)

where the hat indicates that dλni is omitted from the wedge product. For the node n, this is

interpreted as wn = λn. The Whitney space of p-forms is W p = span{wσ |σ ∈ S p}.

Since in practice we will be working in a three-dimensional domain, let’s see how Whitney

forms look like in the case d = 3. The Whitney 0-form corresponding to the node n is λn. For

the edge e = mn we have that we = λm dλn−λn dλm. To the facet f = lmn corresponds the

Whitney 2-form w f = 2(λl dλm∧dλn−λm dλl ∧dλn +λn dλl ∧dλm). Lastly, the Whitney

3-form associated with the volume v = klmn is

wv = 6(λk dλl ∧dλm∧dλn−λl dλk∧dλm∧dλn +λm dλk∧dλl ∧dλn−λn dλk∧dλl ∧dλm).

These Whitney forms can be identified with their proxy fields. The 0-form wn is the piece-

wise affine function that is one at the node n and zero at all other nodes. To the 1-form

we corresponds the vector field ]we = λm∇λn−λn∇λm, the 2-form w f is identified with the

vector field

] ?w f = 2(λl∇λm×∇λn +λm∇λn×∇λl +λn∇λl×∇λm),

and with the 3-form wv we associate the function ?wv = 1/|v|. Note that for this we need a

metric, since ]we, ] ?w f , and ?wv are all metric dependent.

The proxy fields have appeared in the literature as finite elements with different names, often

without a reference to differential forms at all. For example, the fields corresponding to

edges are also known as Nédélec elements (Nédélec 1980, 1986). For more information, see

Bossavit (1998, page 161) or Kirby et al. (2012, Section 3.9).

Although we required smoothness when defining differential forms in Chapter 2, here we

have relaxed this requirement a little bit. We require the forms be smooth in the interior of

d-simplices. In addition, p-forms should be continuous along the direction of p-simplices

accross inter-element faces. Then integration on mesh elements that belong to multiple d-

simplices makes sense, while the form only needs be defined almost everywhere. For more
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information, see e.g. Bossavit (2005). In three dimensions 0-forms should be continuous, 1-

forms tangentially continuous, and 2-forms normally continuous accross inter-element faces.

Whitney forms fulfill these requirements, which is desired in application areas such as elec-

tromagnetism, elasticity, and fluid mechanics (Ainsworth and Coyle 2003).

Whitney (1957) showed that Whitney forms were defined such that the following properties

hold:

• P d = dP ,

•
∫

s ws = 1 ∀s ∈ S p and
∫

s′w
s = 0 for any other s′ ∈ S p,

• RP = id.

They are also linearly independent: if ∑s∈S p αsws = 0, then αs′ =
∫

s′∑s∈S p αsws =
∫

s′ 0 = 0

for any αs′ .

Thanks to these properties, Whitney forms are particularly handy for approximating differ-

ential forms; we return to this in Section 3.5. Although our goal is to approximate differential

forms, we mention another approach to Whitney forms, which widens our understanding of

them. Namely, they can be seen as tools to approximate manifolds, and approximation of

differential forms is then given as a byproduct. This is discussed in the work of Bossavit

(2002), which proposes a rationale for Whitney forms.

As a result, an equivalent, recursive formula for Whitney forms is given (Bossavit 2002,

Proposition 1). For this we adopt the following notation: when σ ∈ S p and τ ∈ S p−1 is a

(p−1)-face of σ , the node that is in σ but not in τ is denoted by σ − τ . The corresponding

barycentric function can then be denoted by λσ−τ . When the 0-form wn corresponding to the

node n is defined as λn, the p-form associated with the p-simplex σ is given by the recursive

formula

wσ = ∑
τ∈S p−1

Dσ
τ λσ−τ dwτ , 1≤ p≤ d. (3.2)

With this formula more properties of Whitney forms can be shown, as is done in the work

of Rapetti and Bossavit (2009), where it’s used as the definition. It’s good to be aware of

both possible definitions and their equivalence to avoid confusion, since both are used in the

literature.
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3.4 Higher order Whitney forms

Higher order Whitney forms are differential forms whose proxy fields are higher order poly-

nomials. They can be presented in different ways (see e.g. Hiptmair 2001; Arnold, Falk,

and Winther 2006; Christiansen and Rapetti 2016, and references therein). We follow the

presentation of Rapetti and Bossavit (2009) based on the so-called small simplices, which

are images of the mesh simplices through homothetic transformations. It turns out that with

this approach we obtain higher order approximations in discrete exterior calculus with very

small adaptations in the method.

For the higher order case, we consider a d-simplex σ and introduce multi-index notations.

Let k be the array (k0, . . . ,kd) of d +1 nonnegative integers, and set k = ∑
d
i=0 ki. Then k is a

multi-index, and k is its weight. The set of multi-indices of weight k with d +1 components

is denoted by I(d +1,k). When k ∈ I(d +1,k) and λ0, . . . ,λd are the barycentric functions

in σ , we set λ k = ∏
d
i=0 λ

ki
i .

For each multi-index k we have a map from σ onto itself, denoted by k̃ and defined as

follows. When x ∈ σ and λi, 0 ≤ i ≤ d, are its barycentric coordinates, k̃(x) is the point

whose barycentric coordinates λ̃i are given as

λ̃i =
λi + ki

k+1
.

Now we can define the small p-simplices of σ : they are the images of the p-subsimplices of

σ through the map k̃. The small p-simplex s = k̃(S) given as the image of a p-subsimplex S

through the map corresponding to the multi-index k is denoted by s = {k,S}.

The map k̃ is a homothety: it contracts distances by a factor of k+1 with respect to the point

whose barycentric coordinates are λi = ki/k. The small simplex s = {k,S} is similar and

parallel to the subsimplex S. Note that when d > 1, the small d-simplices don’t cover σ , and

the holes left are not necessarily similar to σ . See Figures 3 and 4 for examples in two and

three dimensions.

Like each p-simplex was associated with a Whitney p-form of polynomial degree one, to

each small p-simplex given by a multi-index of weight k corresponds a Whitney p-form of

polynomial degree k+1, as stated in the following definition.
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Figure 3. The small triangles {k, f} of a triangle f for all k in I(3,1), I(3,2), and I(3,3).

Figure 4. The small tetrahedra {k,v} of a tetrahedron v for all k in I(4,1) and I(4,2).
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Definition 2 (Higher order Whitney forms) Let k= (k0, . . . ,kd)∈ I(d+1,k), S∈S p, and

let {k,S} be a small p-simplex of σ ∈ Sd . The differential Whitney p-form of polynomial

degree k+1 associated with {k,S} (with respect to σ ) is

w{k,S} =
( d

∏
i=0

λ
ki
i
)
wS = λ

kwS,

where the λi are the barycentric functions with respect to σ and wS is given by (3.1). The

Whitney space of p-forms of polynomial degree k+1, denoted W p
k+1, is the span of the ws for

all small p-simplices s of the mesh that are given by multi-indices k ∈ I(d +1,k).

When discussing the space W p
k+1, by small simplices we refer to those small simplices that

are given from p-simplices by multi-indices k ∈ I(d + 1,k) without specifying, since it’s

implied from context. Note that W p
1 = W p: if k = 0, the components of k are all zero and

w{k,S} = wS. Since the forms spanning W p
k+1 are products between an element in W p and

the continuous function λ k, the elements in W p
k+1 possess the same conformity properties as

those in W p.

Example Consider the three-dimensional case d = 3 and the tetrahedron v = klmn. Then

w{(0,1,0,0),k} = λlwk = λlλk is a second order Whitney 0-form,

w{(1,0,0,1),lmn} = λkλnwlmn = 2λkλn(λl dλm∧dλn−λm dλl ∧dλn +λn dλl ∧dλm)

is a third order Whitney 2-form, and w{(1,0,2,0),kl} = λkλ 2
mwkl = λkλ 2

m(λk dλl −λl dλk) is a

fourth order Whitney 1-form.

Although they span W p
k+1, the p-forms of order k+1 given in Definition 2 don’t constitute a

basis since they are not linearly independent. This follows from the following proposition.

Proposition 1 Let 1≤ p≤ d. For any p-simplex σ ∈ S p we have that

∑
τ∈S p−1

Dσ
τ λσ−τwτ = 0. (3.3)

Proof. The case p = 1 is obvious: for the edge kl we have

∑
n∈S0

De
nλe−nwn = λkλl−λlλk = 0.
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For p > 1, using the recursive formula (3.2) we get

∑
τ∈S p−1

Dσ
τ λσ−τwτ = ∑

τ∈S p−1

Dσ
τ λσ−τ ∑

υ∈S p−2

Dτ
υλτ−υ dwυ = ∑

υ∈S p−2
∑

τ∈S p−1

λσ−τλτ−υDσ
τ Dτ

υ dwυ .

Fix υ ∈ S p−2. Dσ
τ Dτ

υ 6= 0 only if υ ⊂ τ ⊂ σ , which is possible only if υ is a subsimplex of

σ . In this case, let m and n be the two nodes of σ that are not in υ . Then σ − τ must be one

of them and τ−υ the other, so λσ−τλτ−υ = λmλn. Since Dp−1Dp−2 = 0, we have

∑
τ∈S p−1

λσ−τλτ−υDσ
τ Dτ

υ = ∑
τ∈S p−1

λmλnDσ
τ Dτ

υ = 0,

and the claim follows. �

The linear dependency of second order forms follows immediately from (3.3), and for forms

of order k > 2 it is seen by multiplying the equation by λ k for any k ∈ I(d +1,k−2). For

example, multiplying the equation by λn gives

∑
τ∈S p−1

Dσ
τ λnλσ−τwτ = 0

when n is any node of σ , and this shows the linear dependency of third order forms.

Which forms are linearly dependent can be seen from (3.3), and some of those can be dis-

carded to obtain a basis for W p
k+1. This will be illustrated with examples in Chapter 5 when

we consider the implementation of second order approximations.

3.5 Whitney forms as approximations for differential forms

Now we have the tools to approximate differential forms: a simplicial mesh, the Whitney

spaces it induces, and the mapsR and P . In this chapter we conclude how approximating is

done, starting with the lowest order case, and observe how things have to be adapted when

higher order forms are used.

Suppose that we wish to approximate a p-form ω in the Whitney space W p. Since lowest

order Whitney p-forms constitute a basis for W p, any element w in this space can be written

uniquely as a sum w = ∑s∈S p αsws for some coefficients αs. The coefficients are called

degrees of freedom, and w can be identified with the cochain b =Rw or the corresponding

cochain vector b whose components are the αs.
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As mentioned in the introduction, we can integrate ω over all p-simplices of the mesh and

consider the vector of the integrals as a discrete version of ω . The vector given this way is

exactly the cochain vector corresponding to the cochain Rω . It can be identified with the

Whitney form PRω = ∑s∈S p(
∫

s ω)ws = ∑s∈S p αsws, where αs =
∫

s ω . Thus, the approx-

imation is PRω , and the degrees of freedom are the integrals over all p-simplices of the

mesh.

Recall that RP = id, so if we start with an element in the finite-dimensional space of

cochains, we don’t lose information when it’s mapped to W p and back. Similarly, if w =

∑s∈S p αsws ∈W p, then

PRw = ∑
s′∈S p

(∫
s′

∑
s∈S p

αsws
)

ws′ = ∑
s′∈S p

αs′w
s′ = w,

so the approximation is exact, but in general PR is not the identity. This is the price we have

to pay when the infinite-dimensional space Ωp(D) is replaced with W p. However, when the

mesh grain tends to zero, the accuracy of the approximations increases, and it can be shown

that PR→ id when the mesh is refined in a suitable way (Bossavit 1998; Dodziuk 1976).

Another property mentioned earlier is P d = dP , which can also be written as PD = dP

when cochains are identified with cochain vectors. This implies that

dwτ = ∑
σ∈S p+1

Dσ
τ wσ ∀τ ∈ S p,

so in particular dW p ⊂W p+1. Moreover, Rd = dR, i.e. Rd = DR, which follows im-

mediately from ∂∂∂ = DT and Stokes’ theorem. Therefore, the exterior derivative is exact in

that we can first approximate ω and then apply the incidence matrix to the cochain vector or

approximate dω with the same result.

So, approximating and discretising differential forms with lowest order Whitney forms and

the corresponding cochains is simple, but with higher order forms things get more compli-

cated. First of all, any element in W p
k can be written as a sum ∑s αsws, where the sum is over

all small simplices of the mesh, but this expression is not unique, since the kth order p-forms

are not linearly independent. Secondly, it is not true that
∫

s ws = 1 and
∫

s ws′ = 0 for all small

simplices s′ 6= s, so we don’t haveRP = id for cochains over small simplices.
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To deal with this, first consider a mesh with a single d-simplex σ . We can integrate the forms

spanning W p
k over all small simplices and form a matrix A, indexed over small simplices,

such that As
s′ , the element in the s-row and the s′-column, is the integral

∫
s ws′ . Note that for

cochains over small simplices we have A =RP . The matrix A is singular since the forms are

linearly dependent, but if we pick some of them to obtain a basis for W p
k and only consider

the small simplices corresponding to these, A becomes invertible. This is because of the

unisolvence property stated by Rapetti and Bossavit (2007, 2009).

Then, for cochains over these small simplices, we have RPA−1 = A−1RP = id, and for

w = ∑s αsws ∈W p
k we have PA−1Rw = w, since the s-component of the cochain vector

A−1Rw is αs:

(A−1Rw)s = ∑
s′
(A−1)s

s′

∫
s′

w = ∑
s′
(A−1)s

s′

∫
s′
∑
s′′

αs′′w
s′′ = ∑

s′′
αs′′∑

s′
(A−1)s

s′A
s′
s′′ = ∑

s′′
αs′′δ

s
s′′ = αs.

Therefore, we can approximate a p-form ω with PA−1Rω , and for elements in W p
k the

approximation is exact. The degrees of freedom are now integrals over linear combinations

of small simplices: PA−1Rω = ∑s αsws, where αs = ∑s′(A−1)s
s′
∫

s′ω .

It turns out that the same strategy can be used for meshes with multiple d-simplices. Any

small simplex is contained in some d-simplex σ , and to preserve the properties stated above

we wish to define the coefficient αs as αs = ∑s′(A−1)s
s′
∫

s′ω , where the sum is over small

simplices of σ . A potential issue here is that when p < d, some small p-simplices are

contained in multiple d-simplices, and αs could depend on the choice of σ . It is not obvious

that αs is well-defined.

To see that this indeed is the case, we must show that if s is a small simplex contained in

two d-simplices σ and σ ′, then (A−1)s
s′ = 0 for those small simplices s′ of σ that are not

contained in σ ′ as well. Then it’s easy to see that αs = ∑s′(A−1)s
s′
∫

s′ω is the same, whether

the sum is taken over small simplices of σ or σ ′.

So suppose that s and s′ are small simplices of the d-simplex σ and σ ′ is another d-simplex

containing s but not s′. Then σ and σ ′ intersect along a common face τ =σ ∩σ ′ that contains

s but not s′. If s′ = {k,S} and S is a subsimplex of σ contained in τ , then ws′ has as a factor

at least one of the barycentric functions corresponding to nodes that are in σ but not in τ .
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Since these are all zero in τ , so is ws′ , and thus
∫

s ws′ = 0. If S is not in τ , then ws′ = 0 in the

interior of σ ′, and
∫

s ws′ = 0 follows from the inter-element continuity along the direction of

s.

Let {s,s1, . . . ,sN} be the set of small simplices of σ that are also in σ ′, and let P be a

permutation matrix such that these are indexed last in the matrix PAP. Since As′′
s′ =

∫
s′′w

s′ = 0

whenever s′′ ∈ {s,s1, . . . ,sN} and s′ is a small simplex of σ not in σ ′, the matrix PAP is block

upper triangular. Its inverse (PAP)−1 = PA−1P has the same upper triangular block structure,

so we see that (A−1)s
s′ = 0, as desired.

The above described construction for higher order approximations may seem technical at first

glance, but we stress its naturality by comparing to the lowest order case: with lowest order

Whitney forms, the integrals of the approximation match with those of the initial function

over the mesh simplices. In the higher order case, we cannot find an element that has the

same integrals as the initial function over all of the small simplices, but after we omit some

of them to deal with the linear dependency of the forms, we obtain an approximation whose

integrals coincide with those of the initial function over the rest of the small simplices.

One more thing to consider is how the exterior derivative behaves with these approxima-

tions. The boundary of small (p+1)-simplices consists of small p-simplices, so we have the

boundary operator ∂ , the discrete exterior derivative d, and the respective matrices ∂∂∂ and D

for chains and cochains over small simplices. But, while previously only some of the small

simplices were considered to obtain linear independency, we now have to include them all

for ∂ and d to make sense.

Then Rd = DR follows again from ∂∂∂ = DT and Stokes’ theorem, and for a p-form ω we

havePA−1Rdω =PA−1DRω if we drop the redundant small simplices before applying the

matrix A−1. This will be our strategy in discrete exterior calculus: to preserve the necessary

structures we keep track of all small simplices, but when we wish to write the solution in the

chosen basis, the redundant small simplices are discarded.
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4 Discrete exterior calculus

As mentioned in the introduction, discrete exterior calculus is the numerical partial differen-

tial equation solving method that we consider in this thesis. It can be seen as a generalisation

of Yee’s FDTD method (1966) in computational electromagnetism (Bossavit and Kettunen

1999). Its applications include wave propagation problems not only in electromagnetism,

but also related to sound propagation, elastic waves, and quantum mechanics (Räbinä et al.

2018).

Discrete exterior calculus is a wide topic, and for this thesis we have to harshly limit the

scope of discussion. The goal of this chapter is to give an idea how discrete exterior calculus

works with the help of an example. For this we consider a numerical solution of Maxwell’s

equations in the three-dimensional Euclidean space, following the work of Räbinä (2014),

which can be consulted for more details. For a more general and theoretical viewpoint of

discrete exterior calculus, see Desbrun et al. (2005), Grady and Polimeni (2010), and the

references therein.

The model problem we consider is given by Maxwell’s equations

∇×~E =−∂~B
∂ t

,

∇× ~H =
∂~D
∂ t

+ ~J,

~D = ε~E,

~B = µ~H,

~J = σ~E.

The vector fields ~E, ~H, ~D, and ~B represent electric and magnetic fields and electric and

magnetic flux densities, and the scalar fields ε and µ represent permittivity and permeability

of the medium. ~J is a vector field representing electric current density, and the scalar field σ

represents electric conductivity of the medium.

In discrete exterior calculus, partial differential equations are formulated in terms of differ-

ential forms. Recall that the example of Section 2.4 showed how this can be done. In this
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case we replace the vector fields ~E and ~H with the 1-forms e = [~E and h = [~H, and ~D, ~B,

and ~J with the 2-forms d = ?[~D, b = ?[~B, and j = ?[~J. The problem then reads

de =−∂tb, (4.1)

dh = ∂td + j, (4.2)

d = ε ? e, (4.3)

b = µ ?h, (4.4)

j = σ ? e. (4.5)

Equation (4.1) is known as Faraday’s law and (4.2) as Ampere’s law. The relations (4.3),

(4.4), and (4.5) are called the constitutive relations.

4.1 Spatial discretisation

Next, the problem represented with differential forms is discretised. The spatial discretisa-

tion is done using two 3-dimensional meshes, primal and dual mesh. The definition of mesh

here is the same as in Section 3.1, so it consists of convex polyhedral cells. For now, the mesh

doesn’t necessarily have to be simplicial, but since a simplicial primal mesh is assumed later

so that Whitney forms are defined, it is used in examples here as well.

To each p-cell c corresponds a dual cell ∗c, which is a (3− p)-cell. The dual mesh is a

mesh consisting of the dual cells of the cells in the primal mesh K. The dual cells fulfill the

following condition: if cp−1 is a (p−1)-face of cp, then ∗cp is a (3− p)-face of ∗cp−1. We

point out that if c is on the boundary of |K|, the dual cell of c is not a cell by definition because

its boundary is not complete. In this case we take its intersection with |K| to complete the

boundary.

Each node, edge, facet, and volume in the dual mesh is a dual cell of a volume, facet, edge,

and node (respectively) in the primal mesh. The orientations for dual cells can be chosen

such that the incidence matrices ∗D of the dual mesh are the transposes of those of the

primal mesh: ∗D0 = D2
T , ∗D1 = D1

T , and ∗D2 = D0
T .

In Figure 5 we have an example of how primal and dual mesh elements may look like. The

primal volume is a tetrahedron. In the left we have highlighted one primal node and its dual
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cell, which is a truncated octahedron. In the middle, two primal edges and their dual facets

are highlighted, and in the right we have highlighted a primal facet and its dual edge.

Figure 5. Examples of primal and dual cells.

The dual mesh is needed for discretising the Hodge star operator. The forms e and b are

discretised on the primal mesh and the forms h, d, and j on the dual mesh. Operating with

the Hodge star can then be seen as moving from one mesh to another. This will be explained

in Section 4.2.

The forms are discretised as follows. e is integrated over primal edges, which yields an

array e indexed over the edges. Each component of the array is the integral of e over the

corresponding edge. Similarly, we integrate b over primal facets, h over dual edges, and d

and j over dual facets to yield arrays b, h, d, and j.

Note that if the meshes were simplicial, the arrays would be the cochain vectors correspond-

ing to lowest order Whitney forms. The discretisation would be done as we explained in

Section 3.5. In the general case the arrays don’t correspond to Whitney forms, but even then

they can be seen as cochain vectors if we define the chains and cochains on the space of more

general cells. For this reason, we call the arrays cochain vectors and use the same boldface

notation as before.
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4.2 Discrete Hodge star

We have already seen that the incidence matrix is the discrete version of the exterior deriva-

tive. In this section, we introduce a discrete version of the Hodge star operator. Like the

incidence matrix, it will be a matrix that operates on cochain vectors.

Recall that the Hodge star maps p-forms to (3− p)-forms. The discrete Hodge star should

therefore map p-cochain vectors to (3− p)-cochain vectors. In other words, when we know

the integrals of ω over p-cells, the discrete Hodge should give us the integrals of ?ω over

(3− p)-cells.

This is achieved with the help of the dual mesh. If ω is discretised on the primal mesh, ?ω is

discretised on the dual mesh. The dual cell of a p-cell is a (3− p)-cell, so when we know the

integrals of ω over p-cells, the discrete Hodge star should give us the integrals of ?ω over

their dual cells. They can be determined approximately as follows.

Let’s consider the relation d = ε ? e, which originated from ~D = ε~E. The integral of e over

the primal edge c is ∫
c
e =

∫
c
~E · tc,

where by tc we denote the unit tangent vector of c. The integral of ?e over the dual facet ∗c

on the other hand is ∫
∗c
?e =

∫
∗c
~E ·n∗c,

where n∗c is now the unit normal vector of ∗c. If we assume tc = n∗c and approximate the

field locally as constant, we have∫
∗c
?e =

∫
∗c
~E ·n∗c = | ∗ c|~E ·n∗c = | ∗ c|~E · tc =

| ∗ c|
|c|

∫
c
~E · tc =

| ∗ c|
|c|

∫
c
e,

which leads to a diagonal discrete Hodge matrix with diagonal elements ?ii =
|∗ci|
|ci| .

When 0≤ p≤ 3, we denote by ?p the discrete Hodge star matrix mapping p-cochain vectors

on the primal mesh to (3− p)-cochain vectors on the dual mesh. The matrices ?0, ?2, and ?3

are determined similarly as ?1 above. Note that in three dimensions ??ω = ω for a p-form

ω with any p ∈ {0,1,2,3}, so the Hodge operator mapping (3− p)-forms to p-forms is the
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inverse of the Hodge operator mapping p-forms to (3− p)-forms. Therefore, the inverse of

the matrix ?p is the right discrete Hodge operator for a (3− p)-form that is discretised on the

dual mesh.

Diagonal Hodge matrices are particularly convenient since their inverses are trivial to com-

pute and the matrix-vector multiplication is computationally cheap as well. However, this

approximation requires two properties from the dual cells: orthogonality and good relative

alignment. Orthogonality means that each vector of the dual cell ∗c is orthogonal to each

vector of c. This is needed because we assumed tc = n∗c. In addition, the centres of the cells

should be close to each other so that approximating the forms locally as constants makes

sense. These requirements are illustrated in Figure 6. How to build the two meshes such that

these properties are satisfied is not discussed here, but we emphasise that mesh generation is

an important part of discrete exterior calculus and significantly affects the efficiency of the

solution method.

Figure 6. The primal and dual cell in the left fulfill the requirements of orthogonality and

good relative alignment. In the middle they are not orthogonal, while in the right their centres

are poorly positioned relative to each other.

By assuming ε and µ locally constant as well, the discrete versions of the constitutive re-

lations (4.3) and (4.4) can be written as d = ε ?1 e and b = µ ?−1
2 h, where ε and µ are

now diagonal matrices whose elements εii and µ j j represent the values of ε and µ around

the corresponding cells i and j. These can be coupled with the Hodge matrices by writing
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?ε = ε?1 and ?µ = µ−1?2. Similarly, by approximating σ locally as constant, the equation

(4.5) is written as j = σ ?1 e = ?σ e, where σ is a diagonal matrix and ?σ = σ?1. The discrete

version of the problem can now be written as

D1e =−∂tb,

D1
T h = ∂td+ j,

d = ?εe,

b = ?−1
µ h,

j = ?σ e,

where D1 is the incidence matrix linking primal edges to primal facets. We can also eliminate

d, h, and j from the equations: since d = ?εe, h = ?µb, and j = ?σ e, the problem can be

written with just e and b as

D1e =−∂tb,

D1
T ?µ b = ∂t ?ε e+?σ e.

(4.6)

4.3 Time integration

Time integration is a term used for solving the equations by tracking wave propagation for-

ward in time. This is done by approximating the time derivatives with finite difference ap-

proximations. Let ∆t denote the time step length, t0 the initial time, and tk the time instance

t0 + k∆t. We evaluate the values of e at time instances tk + ∆t
2 and the values of b at time

instances tk. Then the equations (4.6) can be discretised in time as

D1e
(

tk +
∆t
2

)
=−b(tk+1)−b(tk)

∆t
,

D1
T ?µ b(tk) =

?εe
(
tk + ∆t

2

)
−?εe

(
tk− ∆t

2

)
∆t

+?σ e(tk).

Since e is defined at time instances tk + ∆t
2 , we approximate its value at tk with

e(tk) =
e
(
tk− ∆t

2

)
+ e
(
tk + ∆t

2

)
2

.
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When this is substituted into the second equation, we get the value update equations for e

and b:

b(tk+1) = b(tk)−∆tD1e
(

tk +
∆t
2

)
, (4.7)

e
(

tk +
∆t
2

)
= e
(

tk−
∆t
2

)
+

(
?ε

∆t
+

?σ

2

)−1
(

D1
T ?µ b(tk)−?σ e

(
tk−

∆t
2

))
. (4.8)

The initial values e(t0− ∆t
2 ) and b(t0) are assumed to be known, so we can use (4.8) to

determine e(t0 + ∆t
2 ). With this we can update the value of b using (4.7), and the new value

of b can then be used to update e with (4.8). This process is then repeated: the values of b and

e are updated in turn using the value update equations (4.7) and (4.8), and wave propagation

can be tracked forward in time. This method to solve the equations in time is called the

leapfrog time stepping scheme.

The time step length ∆t has to be short enough for the stability of the time stepping scheme.

If it’s too long, the values of e and b start bouncing between positive and negative values

and the absolute values grow without bound. The limit for the time step length is known as

the CFL condition. To obtain stability for the time stepping scheme, the step length must be

chosen such that

∆t <
2
√

χ
,

where χ is the largest eigenvalue of the matrix ?−1
ε D1

T ?µ D1.

The CFL limit depends on the speed of the wave and the mesh grain. When the mesh grain

decreases or the wave speed increases, the maximum time step length allowed becomes

shorter. The time step length must satisfy the CFL condition but should not be chosen too

short, or the iteration process becomes inefficient due to unnecessary consumption of time.

The solution obtained at each time instance is a cochain vector; we know the integrals of

e over primal edges and the integrals of b over primal facets. The forms e and b have to

be constructed from these with some kind of interpolation. When we restrict to simplicial

meshes, the solution corresponds to a lowest order Whitney form and the interpolation is

done with the Whitney map, as already discussed. To interpolate with higher order Whitney
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forms we would need the integrals over small simplices. The idea is to form a simplicial

mesh, divide it into small simplices, and solve the problem on the refined mesh. This will be

covered in more detail in Section 5.4, where we show how second order Whitney forms are

used in discrete exterior calculus.
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5 Second order approximations

Now we have sufficiently covered the theory of Whitney forms and discrete exterior calculus,

and it’s time for the practical part of the thesis. In this chapter we consider the implemen-

tation of second order Whitney forms on a DEC-based wave simulation software. We first

use them to approximate differential forms in one-, two-, and three-dimensional spaces. This

illustrates the discussion of Section 3.5, since we see how the approximations are done in

practice. Then, in Section 5.4, we show how to use second order Whitney forms in discrete

exterior calculus and solve the model problem of Chapter 4.

In the second order case we can simplify our notation as follows. Since multi-indices have

now weight 1, one of their component is 1 and the others are 0. Therefore, we can identify

them with the corresponding nodes. For example, the small edge s = {(0,1,0,0), lk} of the

volume mnlk can be expressed more succinctly as s = {n, lk}.

5.1 One-dimensional case

In one dimension, the mesh has only edges and nodes. The edge e = mn has 4 small nodes

and 2 small edges (see Figure 7). The forms w{m,n} = λmλn and w{n,m} = λnλm are linearly

dependent; in fact, the forms and the corresponding small nodes are exactly the same. We can

simply drop the small node {n,m} so that the two small nodes at the midedge are considered

the same.

m n

{m,m} {n,n}{m,n}={n,m}{m,e} {n,e}

Figure 7. The small simplices of the edge e = mn. There are two small nodes at the midedge,

but these will be considered the same.

The small simplices and the corresponding forms are given the indexing shown in Table 2.

The indexing is interpreted such that si is the small simplex whose index is i and w j is the
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the form corresponding to the small simplex whose index is j. An orientation for the small

edges is implied: for example, {m,e} points in the same direction as e.

Small nodes

{m,m}← 1 ����{n,m}

{m,n}← 2 {n,n}← 3

Small edges

{m,e}← 1 {n,e}← 2

Table 2. Indexing of the small simplices of the edge e = mn.

Next, we compute the matrices A whose elements Ai j are given as Ai j =
∫

si
w j. Let’s denote

by An the matrix A for small nodes and by Ae for small edges. Note that in one dimension

the proxy field of the lowest order Whitney 1-form corresponding to the edge e = mn is

]we = λm∇λn−λn∇λm, which is 1
|e| in e and zero outside e. With this in mind, the matrices

are easy to compute and they read

An =
1
4


4 0 0

1 1 1

0 0 4

 , Ae =
1
8

 3 1

1 3

 .
Their inverses are

A−1
n =


1 0 0

−1 4 −1

0 0 1

 , A−1
e =

 3 −1

−1 3

 .
As discussed in Section 3.5, a p-form can be approximated as ∑s αsws, where the sum is

over small p-simplices. Now p ∈ {0,1} and each small simplex s is contained in some edge,

say e. The coefficient αs depends on the integrals over the small simplices of e: if x is the

vector of these integrals with the chosen indexing, αs is the dot product of x and the ith row

of A−1, where i is the index of s in e. Notice that the coefficients of those small nodes that

are contained in two edges only depend on the value at the node itself; see rows 1 and 3 of

A−1
n . This ensures that the coefficients are well-defined, as was predicted in Section 3.5.

At any point q, most of the functions in the sum ∑s αsws are zero; in fact, only those ws whose

small simplex s is contained in the same edge as q can be nonzero at q. In practice we wish

to evaluate the approximation at point q, and for this the expression ∑s αsws is not needed.
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It’s more practical to consider only those forms that matter. This strategy to approximate a

0-form ω at a point q is formulated in following algorithm:

Algorithm 1 Approximating 0-forms in one dimension.

1. Find the edge e containing q.

2. Compute the coefficient vector a = (a1,a2,a3)
T = A−1

n x, where x = (x1,x2,x3)
T con-

tains the values of ω at the small nodes of e, with the chosen indexing.

3. The approximation is a1w1(q)+a2w2(q)+a3w3(q), where the forms wi correspond to

the small nodes of e with the chosen indexing.

The algorithm for 1-forms is similar, but we list it for the sake of completeness. If ω is a

1-form, it can be approximated at q as follows:

Algorithm 2 Approximating 1-forms in one dimension.

1. Find the edge e containing q.

2. Compute the coefficient vector a = (a1,a2)
T = A−1

e x, where x = (x1,x2)
T contains the

integrals of ω over the small edges of e, with the chosen indexing.

3. The approximation is a1w1(q)+a2w2(q), where the forms wi correspond to the small

edges of e with the chosen indexing.

The idea of the higher order approximations is very easy to see in the one-dimensional case.

To illustrate this, we consider the 0-form ω(x) = sin(x)cos(x) in the interval [0,3] and a

mesh with five evenly spaced nodes x1, . . . ,x5. This means that there are four edges of length

0.75. Approximating ω with lowest order Whitney forms is simply connecting the points

(xi,ω(xi)) with straight line segments (see Figure 8).

In other words, for each edge [xi,xi+1], the approximation is the linear function that coin-

cides with ω at the endpoints. Suppose now that the nodes x2 and x4 are considered small

simplices. Then we have two edges, [x1,x3] and [x3,x5], both of length 1.5, and a small

node at each midedge. On both edges, we can approximate ω with the quadratic function

that coincides with ω at the endpoints and the midpoint (see Figure 9). This is exactly the

approximation obtained with second order Whitney forms using Algorithm 1.
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Figure 8. Approximating the 0-form ω(x) = sin(x)cos(x) in the interval [0,3] using lowest

order Whitney forms and a mesh with five evenly spaced nodes. The function ω is in black

and the resulting approximation in blue.
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Figure 9. Approximating ω using second order Whitney forms. The function ω is in black

and the resulting approximation in red. Compare to Figure 8: the two nodes at x = 0.75 and

x = 2.25 are now considered small nodes, so we get quadratic approximations on the two

edges [0,1.5] and [1.5,3].
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This shows the idea: two adjacent edges are considered as one big edge, and then we auto-

matically have the small simplices needed to use second order Whitney forms. To generalise

this to higher dimensions we have to build the mesh such that the small simplices are a part

of it, but the basic idea is still the same.

5.2 Two-dimensional case

In two dimensions we have facets, edges, and nodes. Consider the small simplices of the

facet f = mnl. There are 9 small nodes, 9 small edges, and 3 small facets (recall Figure 3,

left). We will again indentify the two small nodes at each midedge that are exactly the same,

which leaves us with 6 small nodes. For small edges, (3.3) shows that the forms λlwmn,

λmwnl , and λnwlm are linearly dependent. We drop λmwnl and choose the following indexing

and orientations for the small simplices (Table 3):

Small nodes

{m,m}← 1 ����{n,m} �
���{l,m}

{m,n}← 2 {n,n}← 4 �
��{l,n}

{m, l}← 3 {n, l}← 5 {l, l}← 6

Small edges

{m,mn}← 1 {n,mn}← 3 {l,mn}← 6

����{m,nl} {n,nl}← 4 {l,nl}← 7

{m, lm}← 2 {n, lm}← 5 {l, lm}← 8

Small facets

{m, f}← 1 {n, f}← 2 {l, f}← 3

Table 3. Indexing of the small simplices of the facet f = mnl.

Next we compute the matrices A whose elements Ai j are given as Ai j =
∫

si
w j. Now there

are three of them: An for small nodes, Ae for small edges, and A f for small facets. An and its

inverse are easily computed:
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An =
1
4



4 0 0 0 0 0

1 1 0 1 0 0

1 0 1 0 0 1

0 0 0 4 0 0

0 0 0 1 1 1

0 0 0 0 0 4


, A−1

n =



1 0 0 0 0 0

−1 4 0 −1 0 0

−1 0 4 0 0 −1

0 0 0 1 0 0

0 0 0 −1 4 −1

0 0 0 0 0 1


.

For Ae we need to compute the integrals over small edges. First notice that the tangential

component of ∇λi on the edge e = jk is 1/|e| if i = k, −1/|e| if i = j, and 0 if i /∈ jk (see

Figure 10). Consequently, since the small edges are parallel to the big edges, the tangential

components of the lowest order Whitney 1-forms are actually constant on each small edge.

This is because λ f−e and λ j +λk are constant on small edges parallel to the big edge e = jk.

α

α

m n

l

Figure 10. ∇λl is the vector parallel to the altitude through the node l and has length 1
hl

, where

hl is the height with respect to l. Its tangential component on the edge ml is cos(α)‖∇λl‖=
hl
|ml| ·

1
hl
= 1
|ml| .
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Therefore, the integral of the form w{i,e} over the small edge s can be written as the product∫
s λiwe = 1

|s|(
∫

s λi)(
∫

s we), and Ae can now be constructed easily: we only need to integrate the

lowest order Whitney forms and the barycentric functions over the small edges. To illustrate

the discussion above, let’s compute some of the integrals as an example.

Example Let’s determine (Ae)
5
4 =

∫
s5

w4 =
∫

s5
w{n,nl}=

∫
s5

λn(λn∇λl−λl∇λn) ·t5, where by

t5 we denote the unit tangent vector of the small edge s5. s5 is parallel to lm, so the tangential

components of ∇λl and ∇λn are ∇λl · t5 = −1/|lm| = −1/(2|s5|) and ∇λn · t5 = 0 on s5. In

addition, λn = 1/2 on s5. We get∫
s5

λn(λn∇λl−λl∇λn) · t5 =
∫

s5

λn

(
− 1

2
· 1

2|s5|

)
=− 1

4|s5|

∫
s5

λn =−
1

4|s5|
· |s5|

2
=−1

8
.

(Ae)
5
2 and (Ae)

5
7 are computed similarly:

(Ae)
5
2 =

∫
s5

λm(λn∇λl−λl∇λn) · t5 =−
1

4|s5|

∫
s5

λm =− 1
4|s5|

· |s5|
4

=− 1
16

,

(Ae)
5
7 =

∫
s5

λl(λn∇λl−λl∇λn) · t5 =−
1

4|s5|

∫
s5

λl =−
1

4|s5|
· |s5|

4
=− 1

16
.

The matrix A f is easily computed: the proxy field of the lowest order Whitney 2-form w f is

?w f = 1/| f |, and we only have to integrate barycentric functions over the small facets. The

matrices Ae and A f and their inverses read

Ae =
1

16



6 0 2 0 0 0 0 0

0 6 0 0 0 0 0 2

2 0 6 0 0 0 0 0

0 0 0 6 0 0 2 0

−1 1 −2 −2 2 −1 −1 1

1 −1 1 −1 −1 2 −2 −2

0 0 0 2 0 0 6 0

0 2 0 0 0 0 0 6



, A f =
1

24


4 1 1

1 4 1

1 1 4

 ,
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A−1
e =

1
3



9 0 −3 0 0 0 0 0

0 9 0 0 0 0 0 −3

−3 0 9 0 0 0 0 0

0 0 0 9 0 0 −3 0

0 −3 8 11 32 16 7 1

−3 0 1 7 16 32 11 8

0 0 0 −3 0 0 9 0

0 −3 0 0 0 0 0 9



, A−1
f =

4
3


5 −1 −1

−1 5 −1

−1 −1 5

 .

The procedure for approximating p-forms is similar as in the one-dimensional case. Again,

the matrices A−1
n and A−1

e illustrate why the coefficients are well-defined. The coefficients

of small nodes at midedges depend only on the small nodes of that edge, and the coefficients

of small nodes that match with big nodes depend only on the node itself. The coefficients of

small edges that are part of a big edge depend only on the two small edges of that big edge.

As before, at any point most of the basis functions are zero, and in practice we don’t write

the approximation in terms of the basis functions. The following algorithms for p ∈ {0,1,2}

show how the approximation of a p-form ω is evaluated at any point q.

Algorithm 3 Approximating 0-forms in two dimensions.

1. Find the facet f containing q.

2. Compute the coefficient vector a = (a1, . . . ,a6)
T = A−1

n x, where x = (x1, . . . ,x6)
T con-

tains the values of ω at the small nodes of f .

3. The approximation is a1w1(q)+ . . .+ a6w6(q), where the forms wi correspond to the

small nodes of f .

Algorithm 4 Approximating 1-forms in two dimensions.

1. Find the facet f containing q.

2. Compute the coefficient vector a = (a1, . . . ,a8)
T = A−1

e x, where x = (x1, . . . ,x8)
T con-

tains the integrals of ω over the small edges of f .

3. The approximation is a1w1(q)+ . . .+ a8w8(q), where the forms wi correspond to the

small edges of f .
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Algorithm 5 Approximating 2-forms in two dimensions.

1. Find the facet f containing q.

2. Compute the coefficient vector a = (a1,a2,a3)
T = A−1

f x, where x = (x1,x2,x3)
T con-

tains the integrals of ω over the small facets of f .

3. The approximation is a1w1(q)+a2w2(q)+a3w3(q), where the forms wi correspond to

the small facets of f .

In the two-dimensional case it’s possible to provide illustrating examples with pictures. Vec-

tor fields can be visualised by converting the value (x,y) to RGB colour (128+128x,128+

128y,128) and then making sure that the colour values are between 0 and 255. In the follow-

ing example we consider the domain D = [−1,1]× [−1,1] and a mesh consisting of triangles

that cover D. We refine the mesh and integrate a test function over the small edges. In this

case the refined mesh is simplicial, so we can approximate the test function with either low-

est order Whitney forms in the refined mesh or second order Whitney forms using the small

simplices. These two approximations are compared with the initial function.

In Figure 11 we have a picture of the vector field g(x,y) = (sin(5x),sin(5y)cos(5x)). Recall

that g can be identified with the 1-form [g whose proxy field g is. To approximate g, we

start with a two-dimensional simplicial mesh whose triangles are then divided into small

simplices. The integration of g over the small edges is performed numerically. The mesh

grain h in this example means that the initial mesh consists of isosceles triangles with base

and height h. Recall that with lowest order Whitney forms we use the refined mesh, whose

grain actually is h
2 , since the displayed values for h are always with respect to the initial

mesh. The approximations given by h = 1.0 are shown in Figure 12.

We estimated numerically the L2 norm ‖·‖2 of the error ga−g, where ga denotes the approx-

imation of g. This was done using a quadrature rule with four points per triangle (Dunavant

1985). In the case h = 1.0, with lowest order Whitney forms we have ‖ga−g‖2 ≈ 1.13797

and with second order approximations ‖ga−g‖2 ≈ 1.07132. This mesh was rather coarse

so the approximations are inaccurate, but the accuracy of the approximations increases when

the mesh grain h decreases. For comparison, see Figures 13 and 14, which display the ap-

proximations given by h = 0.25 and h = 0.125.
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Figure 11. The vector field g(x,y) = (sin(5x),sin(5y)cos(5x)) in the domain D = [−1,1]2.

Figure 12. Approximating g with lowest order Whitney forms (left) and second order Whit-

ney forms (right) when h = 1.0.
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Figure 13. Approximating g with lowest order Whitney forms (left) and second order Whit-

ney forms (right) when h = 0.25.

Figure 14. Approximating g with lowest order Whitney forms (left) and second order Whit-

ney forms (right) when h = 0.125.
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To study the convergence we have computed the error norm for different values of h. The

results are shown in Table 4.

Mesh grain h 0.125 0.25 0.50 1.0

Error norm, lowest order Whitney 1-forms 0.152457 0.303902 0.58955 1.13797

Error norm, second order Whitney 1-forms 0.022847 0.090019 0.31886 1.07132

Table 4. L2 norm of the error and its dependence on the mesh grain h when approximating g

with lowest and second order Whitney forms.

The results indicate that to halve the error we have to halve the mesh grain when using lowest

order Whitney forms, but with second order forms a better convergence rate is achieved. We

have also plotted the results in Figure 15. The error norm is plotted against log2
(1

h

)
, which

in our case gets the values 0, 1, 2, and 3. Using a logarithmic scale for the error norm, the

data points are aligned in straight lines.
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Figure 15. Visualisation of the results displayed in Table 4.

5.3 Three-dimensional case

Consider a three-dimensional mesh and the small simplices of a volume v = mnlk. There are

16 small nodes, 24 small edges, 16 small facets, and 4 small volumes (recall Figure 4, left).
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Identifying the two small nodes at each midedge as before leaves us with 10 small nodes. By

(3.3), we have three linearly dependent forms for each of the four facets of v. The following

sets are linearly dependent:

{λmwnl,λnwlm,λlwmn},{λmwnk,λnwmk,λkwmn},{λnwlk,λlwnk,λkwnl},{λlwmk,λmwlk,λkwlm}.

We drop the small simplices {m,nl}, {n,mk}, {l,nk}, and {k, lm}, which leaves us with

20 small edges. (3.3) also shows that the 2-forms λmwnlk, λnwlmk, λlwmnk, and λkwmnl are

linearly dependent. We drop λmwnlk and choose the following indexing and orientations for

the small simplices (Table 5):

Small nodes

{m,m}← 1 ����{n,m} �
���{l,m} ����{k,m}

{m,n}← 2 {n,n}← 4 �
��{l,n} ����{k,n}

{m, l}← 3 {n, l}← 5 {l, l}← 6 ���{k, l}

{m,k}← 7 {n,k}← 8 {l,k}← 9 {k,k}← 10

Small edges

{m,mn}← 1 {n,mn}← 6 {l,mn}← 11 {k,mn}← 16

����{m,nl} {n,nl}← 7 {l,nl}← 12 {k,nl}← 17

{m, lm}← 2 {n, lm}← 8 {l, lm}← 13 ����{k, lm}

{m,mk}← 3 ����{n,mk} {l,mk}← 14 {k,mk}← 18

{m,nk}← 4 {n,nk}← 9 ����{l,nk} {k,nk}← 19

{m, lk}← 5 {n, lk}← 10 {l, lk}← 15 {k, lk}← 20

Small facets

{m,mnl}← 1 {n,mnl}← 4 {l,mnl}← 8 {k,mnl}← 12

{m,mnk}← 2 {n,mnk}← 5 {l,mnk}← 9 {k,mnk}← 13

�����{m,nlk} {n,nlk}← 6 {l,nlk}← 10 {k,nlk}← 14

{m, lmk}← 3 {n, lmk}← 7 {l, lmk}← 11 {k, lmk}← 15

Small volumes

{m,v}← 1 {n,v}← 2 {l,v}← 3 {k,v}← 4

Table 5. Indexing of the small simplices of the volume v = mnlk.

The algorithms for approximating p-forms are similar as in lower dimensions. For these we
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again need the matrices A whose elements Ai j are given as Ai j =
∫

si
w j. Let’s denote these

by An for small nodes, Ae for small edges, A f for small facets, and Av for small volumes, and

consider how they are computed.

The matrix An and its inverse are easily computed and they read

An =
1
4



4 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0

0 0 0 4 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 4 0 0 0 0

1 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 1 0 1

0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 4



, A−1
n =



1 0 0 0 0 0 0 0 0 0

−1 4 0 −1 0 0 0 0 0 0

−1 0 4 0 0 −1 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 −1 4 −1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

−1 0 0 0 0 0 4 0 0 −1

0 0 0 −1 0 0 0 4 0 −1

0 0 0 0 0 −1 0 0 4 −1

0 0 0 0 0 0 0 0 0 1



.

For Ae we must compute the integrals over small edges. This is possible when we make

similar observations as in two dimensions. First, the tangential component of ∇λi on the

edge e = jk is 1/|e| if i = k, −1/|e| if i = j, and 0 if i /∈ jk (see Figure 16). Consequently,

since the small edges are parallel to the big edges, the tangential components of the lowest

order Whitney 1-forms are constant on each small edge. This is because λ j +λk is constant

on small edges parallel to the big edge jk and λ j is constant on small edges parallel to big

edges that don’t contain j.

Therefore, we can again write the integral of the form w{i,e} over the small edge s as the

product
∫

s λiwe = 1
|s|(
∫

s λi)(
∫

s we), so once we know the integrals of the lowest order Whitney

forms and the barycentric functions over the small edges, Ae can be constructed from these.
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Figure 16. ∇λk is the vector normal to the facet mnl and has length 1
hk

, where hk is the height

with respect to the node k. Its tangential component on the edge mk is cos(α)‖∇λk‖ =
hk
|mk| ·

1
hk

= 1
|mk| .

With our choice of indexing, the matrix Ae and its inverse are

Ae =
1

16



6 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
−2 0 2 2 0 −1 0 0 1 0 0 0 0 0 0 −1 0 1 1 0
0 2 2 0 2 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1
2 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 6 0 0 0 0 2 0 0 0 0 0 0 0 0
−1 1 0 0 0 −2 −2 2 0 0 −1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 −2 0 2 2 0 −1 0 0 1 0 −1 0 1 1
1 −1 0 0 0 1 −1 −1 0 0 2 −2 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 6 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0
0 −1 1 0 1 0 0 0 0 0 0 0 −2 2 2 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 2
1 0 1 −1 0 1 0 0 −1 0 0 0 0 0 0 2 0 2 −2 0
0 0 0 0 0 0 1 0 1 −1 0 1 0 0 −1 0 2 0 2 −2
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 6



,
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A−1
e =

1
3



9 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0
0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0
8 0 −11 32 0 0 0 0 −3 0 0 0 0 0 0 16 0 −7 1 0
0 −11 −8 0 32 0 0 0 0 0 0 0 −7 −16 1 0 0 0 0 −3
−3 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 9 0 0 0 0 −3 0 0 0 0 0 0 0 0
0 −3 0 0 0 8 11 32 0 0 16 7 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 −3 0
0 0 0 0 0 0 8 0 −11 32 0 0 0 0 −3 0 16 0 −7 1
−3 0 0 0 0 1 7 16 0 0 32 11 8 0 0 0 0 0 0 0
0 0 0 0 0 0 −3 0 0 0 0 9 0 0 0 0 0 0 0 0
0 −3 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0
0 7 1 0 −16 0 0 0 0 0 0 0 11 32 −8 0 0 −3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 −3
1 0 −7 16 0 −3 0 0 0 0 0 0 0 0 0 32 0 −11 8 0
0 0 0 0 0 0 1 0 −7 16 0 −3 0 0 0 0 32 0 −11 8
0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0
0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 9 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 9



.

Next, consider the computation of A f , i.e. the integrals over the small facets of a tetrahedron

v = mnlk. Recall that the proxy field of the Whitney 2-form w f corresponding to the facet

f = lmn is

] ?w f = 2(λl∇λm×∇λn +λm∇λn×∇λl +λn∇λl×∇λm).

∇λi×∇λ j is orthogonal to both ∇λi and ∇λ j, so it is parallel to the edge e that is opposite

to the edge i j. It can be shown that its length is |e|6|v| . The normal component of ∇λi×∇λ j

is zero on the facets that don’t contain i j. On a facet f that contains i j, it is ± h
6|v| , where h

is the height of the tetrahedron v with respect to the facet f and the sign depends on whether

the orientations of i j and f agree or not. Note that this doesn’t depend on the ambient

orientation: if it is changed, cross products change sign, but so do normal vectors, and the

two changes of sign cancel each other.

Since the small facets are parallel to the big facets, these observations imply that the normal

components of the lowest order Whitney 2-forms are actually constant on each small facet.

This is because λl +λm +λn is constant on small faces parallel to lmn and λi is constant on

small facets parallel to the facet opposite to i. Therefore, the integral of the form w{i, f} over
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the small facet s can be written as the product
∫

s λiw f = 1
|s|(
∫

s λi)(
∫

s w f ), and to construct A f

it suffices to integrate the lowest order Whitney forms and the barycentric functions over the

small facets. The computation of the integrals is illustrated in the following example.

Example Let’s determine (A f )
7
2, i.e. the integral∫

s7

w2 =
∫

s7

w{m,mnk} =
∫

s7

λm2(λm∇λn×∇λk +λn∇λk×∇λm +λk∇λm×∇λn) ·n7,

where by n7 we denote the unit normal vector of the small facet s7. s7 is parallel to the facet

lmk, so the normal components of ∇λn×∇λk, ∇λk×∇λm, and ∇λm×∇λn are

∇λn×∇λk ·n7 = 0, ∇λk×∇λm ·n7 =−
h

6|v|
, ∇λm×∇λn ·n7 = 0,

where h is the height of the tetrahedron with respect to the facet lmk. Thus,

(A f )
7
2 =

∫
s7

λm2(λm∇λn×∇λk +λn∇λk×∇λm +λk∇λm×∇λn) ·n7 =
∫

s7

2λm

(
−λn

h
6|v|

)
=
∫

s7

2λm

(
− 1

2
h

6|v|

)
=− h

6|v|

∫
s7

λm =− h
6|v|
· 1

6
|s7|=−

h
6|v|
· 1

6
· 3|v|

4h
=− 1

48
,

since the area of the facet lmk is 4|s7| (so |v|= 4|s7|h
3 ) and λn = 1/2 on s7. Similarly,

(A f )
7
5 =−

h
6|v|

∫
s7

λn =−
h

6|v|
· 1

2
|s7|=−

h
6|v|
· 1

2
· 3|v|

4h
=− 3

48
,

(A f )
7
9 =−

h
6|v|

∫
s7

λl =−
h

6|v|
· 1

6
|s7|=−

h
6|v|
· 1

6
· 3|v|

4h
=− 1

48
,

(A f )
7
13 =−

h
6|v|

∫
s7

λk =−
h

6|v|
· 1

6
|s7|=−

h
6|v|
· 1

6
· 3|v|

4h
=− 1

48
.
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The matrix A f and its inverse read

A f =
1

48



8 0 0 2 0 0 0 2 0 0 0 0 0 0 0
0 8 0 0 2 0 0 0 0 0 0 0 2 0 0
0 0 8 0 0 0 0 0 0 0 2 0 0 0 2
2 0 0 8 0 0 0 2 0 0 0 0 0 0 0
0 2 0 0 8 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 8 0 0 0 2 0 0 0 2 0
1 −1 1 3 −3 −3 3 1 −1 −1 1 1 −1 −1 1
2 0 0 2 0 0 0 8 0 0 0 0 0 0 0
1 1 −1 1 1 −1 −1 3 3 −3 −3 1 1 −1 −1
0 0 0 0 0 2 0 0 0 8 0 0 0 2 0
0 0 2 0 0 0 0 0 0 0 8 0 0 0 2
1 1 1 1 1 1 1 1 1 1 1 3 3 3 3
0 2 0 0 2 0 0 0 0 0 0 0 8 0 0
0 0 0 0 0 2 0 0 0 2 0 0 0 8 0
0 0 2 0 0 0 0 0 0 0 2 0 0 0 8



,

A−1
f =

1
3



20 0 0 −4 0 0 0 −4 0 0 0 0 0 0 0
0 20 0 0 −4 0 0 0 0 0 0 0 −4 0 0
0 0 20 0 0 0 0 0 0 0 −4 0 0 0 −4
−4 0 0 20 0 0 0 −4 0 0 0 0 0 0 0
0 −4 0 0 20 0 0 0 0 0 0 0 −4 0 0
0 0 0 0 0 20 0 0 0 −4 0 0 0 −4 0
0 0 −4 −24 24 28 72 −12 36 16 8 −36 12 16 8
−4 0 0 −4 0 0 0 20 0 0 0 0 0 0 0
0 −4 0 −12 8 16 36 −24 72 28 24 −36 8 16 12
0 0 0 0 0 −4 0 0 0 20 0 0 0 −4 0
0 0 −4 0 0 0 0 0 0 0 20 0 0 0 −4
−4 0 0 8 −12 −16 −36 8 −36 −16 −12 72 −24 −28 −24
0 −4 0 0 −4 0 0 0 0 0 0 0 20 0 0
0 0 0 0 0 −4 0 0 0 −4 0 0 0 20 0
0 0 −4 0 0 0 0 0 0 0 −4 0 0 0 20



.

Finally, the matrix Av is easily computed when we recall that the proxy field of the lowest

order Whitney 3-form wv is ?wv = 1/|v|, so we only have to integrate barycentric functions
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over the small tetrahedra. Av and its inverse are

Av =
1

64


5 1 1 1

1 5 1 1

1 1 5 1

1 1 1 5

 , A−1
v =


14 −2 −2 −2

−2 14 −2 −2

−2 −2 14 −2

−2 −2 −2 14

 .

Approximating a p-form ω is similar as in lower dimensions. The approximation can be

expressed as ∑s αsws, where the sum is over small p-simplices and the coefficients αs are

determined as follows. Let v be any volume containing s and x the vector consisting of the

integrals of ω over the small simplices of v. Then αs is the dot product of x and the ith row

of A−1, where i is the index of s in v. The well-definedness of αs is again seen from the

matrices A−1 that we computed above: αs does not depend on the choice of v.

Like before, at any point q, the only basis functions ws that can be nonzero are those whose

small simplex s is contained in a volume containing q. In practice the approximation of a

p-form ω is not expressed in terms of the basis functions but can be evaluated at q using the

following algorithms.

Algorithm 6 Approximating 0-forms in three dimensions.

1. Find the volume v containing q.

2. Compute the coefficient vector a = (a1, . . . ,a10)
T = A−1

n x, where x = (x1, . . . ,x10)
T

contains the values of ω at the small nodes of v.

3. The approximation is a1w1(q)+ . . .+a10w10(q), where the forms wi correspond to the

small nodes of v.

Algorithm 7 Approximating 1-forms in three dimensions.

1. Find the volume v containing q.

2. Compute the coefficient vector a = (a1, . . . ,a20)
T = A−1

e x, where x = (x1, . . . ,x20)
T

contains the integrals of ω over the small edges of v.

3. The approximation is a1w1(q)+ . . .+a20w20(q), where the forms wi correspond to the

small edges of v.
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Algorithm 8 Approximating 2-forms in three dimensions.

1. Find the volume v containing q.

2. Compute the coefficient vector a = (a1, . . . ,a15)
T = A−1

f x, where x = (x1, . . . ,x15)
T

contains the integrals of ω over the small facets of v.

3. The approximation is a1w1(q)+ . . .+a15w15(q), where the forms wi correspond to the

small facets of v.

Algorithm 9 Approximating 3-forms in three dimensions.

1. Find the volume v containing q.

2. Compute the coefficient vector a = (a1, . . . ,a4)
T = A−1

v x, where x = (x1, . . . ,x4)
T con-

tains the integrals of ω over the small volumes of v.

3. The approximation is a1w1(q)+ . . .+ a4w4(q), where the forms wi correspond to the

small volumes of v.

As one may have noticed, the coefficient vector a in the preceding algorithms only depends

on the volume v containing q but not directly on the point q. The approximation ∑i aiwi can

actually be written as a sum of products of two barycentric functions and vectors that only

depend on the volume of q. For example, in the case of 1-forms we have that

a1w1 + . . .+a20w20 = a1λm(λm∇λn−λn∇λm)+ . . .+a20λk(λl∇λk−λk∇λl)

= λmλmX1 +λmλnX2 +λmλlX3 +λmλkX4 +λnλnX5

+λnλlX6 +λnλkX7 +λlλlX8 +λlλkX9 +λkλkX10,

for some vectors Xi, where for example X1 = a1∇λn− a2∇λl + a3∇λk. The vectors Xi stay

the same in each volume, not depending on the point within that volume, and only need be

computed once. This leads to significant computational savings when we wish to evaluate

the approximation multiple times per volume. The same idea can also be used in the two-

dimensional case with 1-forms.

For simplicity, we have thus far assumed that the small simplices that are discarded have

the same indices in each tetrahedron. It’s important to note that this is not necessary, and

with small edges it actually can not be achieved. When we omit one small edge per facet in
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each tetrahedron, we should ensure that the choice is consistent and doesn’t depend on which

side of the facet we are looking. In other words, the small edges that are dropped cannot be

chosen in each tetrahedron independently of others.

But, this is not a problem, just something that we have to take into account. For each facet,

there are three small edges to choose from — one of them must be omitted. Different choices

lead to different matrices A, but the coefficients of other small edges than these three are not

affected. In code, we check which of the three small edges is omitted, and compute the

coefficients of the other two accordingly.

We don’t provide examples similar to those in Sections 5.1 and 5.2 here, since the forms are

more difficult to visualise in three dimensions and the idea should already be clear. How-

ever, we will continue with the three-dimensional case in the next section, where the model

problem of Chapter 4 is solved using discrete exterior calculus with second order Whitney

forms.

5.4 Second order approximations in discrete exterior calculus

Now we have practical algorithms for approximating differential p-forms in W p
2 , the space

of second order Whitney forms. Next we show how second order Whitney forms are used

in discrete exterior calculus. This is done by considering the model problem of Chapter 4.

Recall that if a simplicial mesh is used, the solution method we gave in Chapter 4 corresponds

to approximating the forms e and b with lowest order Whitney forms, i.e. in the spaces W 1

and W 2. We wish to modify the solution method so that the forms would be approximated

in W 1
2 and W 2

2 .

The idea is simple: we start with a simplicial mesh, refine the mesh such that the refined

mesh contains all the small simplices, and solve the problem on the refined mesh, using the

same method as in Chapter 4. The solution obtained is a cochain vector consisting of the

integrals over the cells of the refined mesh. Since every small simplex is contained in the

refined mesh, we know the integrals over the small simplices, and the solution can thus be

expressed in W p
2 .
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We must keep track of the small simplices of each tetrahedron in the old mesh. The linear

dependency of the forms is dealt with as explained in Section 5.3: when the solution is

evaluated, we omit one small edge and one small facet for each facet and tetrahedron in the

old mesh (respectively). Note that this only affects the interpolation procedure; the solution

method presented in Chapter 4 can be applied without any modifications. We just have to

use it on the mesh that contains the small simplices.

The mesh may be refined in different ways, as long as the small simplices are contained in the

refined mesh. Since the small tetrahedra of a tetrahedron v don’t pave v, there will inevitably

be other cells as well, and some of those might not even be simplices (recall Figure 4, left).

This does not matter: as long as we know the integrals over the small simplices, they de-

termine the corresponding element in W p
2 . The hole in Figure 4 can even be divided into

smaller cells, and if it’s divided into four tetrahedra, the refined mesh becomes simplicial as

well.

Our solutions e∈W 1
2 and b∈W 2

2 can be evaluated at any point using the algorithms presented

in Section 5.3, and the same ideas can be used to increase the efficiency of the evaluations

when they are done multiple times in the same tetrahedron. Although it is not practical

to write the solution in terms of the basis functions, from a theoretical point of view it is

important that we could do so. This is because now the continuity properties of the solution

are attained: tangential continuity for e ∈W 1
2 and normal continuity for b ∈W 2

2 . The forms

h, d, and j that are discretised on the dual mesh are not Whitney forms but can be expressed

using the constitutive relations (4.3), (4.4), and (4.5) as d = ε ? e, h = 1
µ
?b, and j = σ ? e.

To test the method explained above, we consider the model problem of Chapter 4 with con-

stant material parameters ε = 2, µ = 1, and σ = 1. The domain D is a rhombic dodecahedron

whose vertices contain (±1,0,0)T , (0,±1,0)T , and (0,0,±1)T (see Figure 17). This domain

suits well for testing second order Whitney forms since it’s simple to build and refine a sim-

plicial mesh in D. The boundary condition is given by

~E(x,y,z, t) = (0,Re(eiwt−ikx),Re(−ieiwt−ikx))T = (0,cos(wt− kx),sin(wt− kx))T ,

with k = w = 2π . The initial values inside the domain are zero. Wave propagation is tracked

forward in time by updating the values of e and b as explained in Chapter 4, but the values
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of e on the boundary are given by the boundary condition.

Figure 17. The domain used is a rhombic dodecahedron. The bounding box in the figure is

the cube [−1,1]3.

This problem is time-harmonic, and the steady-state solution has a time-harmonic expression

as complex numbers. We express the real-valued field ~E(x,y,z, t) using a complex-valued

field ~̂E(x,y,z) without the time variable. The value of ~E at time instance t is then given by

~E(t) = Re(~̂Eeiwt). (5.1)

We also have the complex-valued cochain vector ê which represents the integrals of ~̂E over

the edges of the mesh. Similarly, ~B and b are expressed without the time variable as ~̂B and b̂.
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Time integration is continued forward in time until a steady state has been reached and the

solution is approximately time-harmonic. The resulting complex-valued cochain vectors can

then be interpolated using complex-valued Whitney forms. This is done by simply inter-

polating real and imaginary parts separately. The value of the interpolated solution at time

instance t is then given as in (5.1).

The simulation is done on six simplicial meshes with grains 2− j for j = 1, . . . ,6. This corre-

sponds to refining the initial mesh five times, mesh j containing the small simplices of mesh

j−1. The meshes have regular BCC structures; see Räbinä (2014) for the definition. When

the mesh is refined, the hole in the left of Figure 4 is divided into four tetrahedra, so the

number of tetrahedra is multiplied by eight. The initial mesh ( j = 1) has 192 tetrahedra, and

the mesh grain 2− j here means the length of the longest edge of the tetrahedra.

To study the convergence, we examined the difference of the solutions ~̂E j+1 and ~̂E j (and ~̂B j+1

and ~̂B j) yielded when interpolating the complex-valued cochain vectors on meshes j+1 and

j. We estimated the L2 norm of the difference numerically using a quadrature rule with five

points per tetrahedron (Yu 1984; Keast 1986). For comparison this was done first with lowest

order Whitney forms and then with second order Whitney forms. The results are displayed

in Table 6.

L2 norm of the difference ~̂E j+1− ~̂E j

j 2 3 4 5

Lowest order Whitney 1-forms 2.09902 0.84525 0.39412 0.19369

Second order Whitney 1-forms 1.91274 0.48106 0.12333 0.032869

L2 norm of the difference ~̂B j+1− ~̂B j

j 2 3 4 5

Lowest order Whitney 2-forms 3.67633 1.48184 0.66862 0.31981

Second order Whitney 2-forms 3.58869 1.14689 0.41462 0.17194

Table 6. L2 norm of the difference of the interpolated solutions on consecutive meshes.

The results indicate faster convergence with second order Whitney forms, especially in the

case of electric fields (see also Figure 18). With magnetic fluxes the advantage is not so
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Figure 18. Visualisation of the results for electric fields displayed in Table 6.

clear, and the difference is considerable even between the last two meshes. This suggests

that the error made when approximating the Hodge star operator during time integration

is dominantly affecting the results. To verify this, we computed the average difference of

the cochain vectors ê j+1 and ê j over the edges of mesh j. The values of ê j+1 are obtained

by summing the values on corresponding small edges of mesh j + 1. The modulus of the

difference on each edge was normalised by dividing by the edge length, and then we took

the average over all edges. Similar computations were done for b̂ j+1 and b̂ j on the facets of

mesh j. The results are shown in Table 7.

j 2 3 4 5

Average difference between ê j+1 and ê j 0.42703 0.11598 0.030000 0.0076605

Average difference between b̂ j+1 and b̂ j 0.97487 0.33809 0.13011 0.055829

Table 7. The average difference of the discrete solutions on consecutive meshes.
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The results confirm that the magnetic fluxes already contain error before the interpolation

stage. The total error consists of the Hodge approximation error made during time integra-

tion and the interpolation error. The Hodge approximation error cannot be affected in the

interpolation stage, but the results suggest that the interpolation error can be reduced signifi-

cantly with the use of second order Whitney forms. It is a topic for future research whether

higher order Whitney forms could also be used to improve the Hodge approximation; this

would of course require changes in the time integration procedure.

In addition to the convergence properties, we must also consider computational costs when

assessing whether second order Whitney forms are worth using. Time integration is done

using the same method but on the refined mesh. We used lowest order Whitney forms of

the refined mesh when the results were compared, so the computational costs during time

integration were unchanged.

One might expect that interpolating with second order Whitney forms would be computa-

tionally more expensive than with lowest order Whitney forms, since the degrees of freedom

must be computed as linear combinations of values on small simplices. However, the matri-

ces A−1 which determine the coefficients are rather sparse, and with second order Whitney

forms we can take advantage of the parts of the solution that stay the same in each volume,

as explained earlier. When the solution is evaluated multiple times per big tetrahedron, these

parts only need be computed once. The same strategy can be used with lowest order Whit-

ney forms, but then the unchanged parts only stay the same in each small tetrahedron, so the

advantage is not equally great.

Based on our observations, it seems that interpolating with lowest order Whitney forms is

somewhat faster when the number of evaluations is low, and interpolating with second order

Whitney forms is slightly faster when the solution is evaluated multiple times per tetrahe-

dron. The difference is not significant though, and in any case, the computation time used

during interpolation is unimportant in comparison to that used in time integration.

Hence, the use of second order Whitney forms seems worthwhile, as long as we have a

simplicial mesh and its refinement to begin with. However, the requirement that the initial

mesh be simplicial is restrictive in discrete exterior calculus, and it would be desirable to
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have differential forms that correspond to cochains defined on the space of more general

cells, i.e. counterparts of Whitney forms on nonsimplicial meshes. This subject has been

discussed in the literature e.g. by Gradinaru and Hiptmair (1999) and Bossavit (2005, 2010),

and it seems to be a fitting topic for future research, especially in the higher order case.
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6 Conclusions

Whitney forms are finite elements for differential forms on simplicial meshes. In this thesis,

we have defined higher order Whitney forms and shown how they can be used to approximate

differential forms in a finite basis. The construction of higher order Whitney spaces is based

on the so-called small simplices, which are images of the mesh simplices through homothetic

transformations. The initial mesh is refined such that the small simplices are contained in the

refined mesh.

Like each p-simplex of the initial mesh is associated with a lowest order Whitney p-form, to

each small p-simplex corresponds a higher order Whitney p-form. These are not linearly in-

dependent, but some of them can be discarded to obtain a basis for the higher order Whitney

space W p
k . The forms spanning W p

k are products between a Whitney p-form of lowest order

and continuous barycentric functions, so the elements in W p
k possess the same conformity

properties as lowest order Whitney p-forms.

When differential forms are approximated with lowest order Whitney forms, the degrees of

freedom are the integrals over the mesh simplices. The approximation is the Whitney form

whose integrals match with those of the initial form over the mesh simplices. In the higher

order case, the degrees of freedom are linear combinations of the integrals over small sim-

plices. For this we omit the small simplices whose corresponding forms were discarded when

choosing a basis. The degrees of freedom are then determined such that the approximation

has the same integrals as the initial form over the rest of the small simplices. When the basis

is fixed, this can be done in a consistent way, and the degrees of freedom corresponding to

small simplices that belong to multiple mesh elements do not depend on which side of the

inter-element face we are looking.

In the practical part of the thesis we considered the implementation of second order Whitney

forms. We computed the matrices which determine the degrees of freedom and provided

algorithms for approximating differential forms in one-, two-, and three-dimensional cases.

The algorithms were demonstrated with illustrating examples, and the convergence proper-

ties were studied by comparing the L2 norm of the approximation error to the lowest order
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case with different mesh grains. The results indicate a significantly better convergence rate

with second order forms.

The main research problem of the thesis was how higher order Whitney forms can be used

in discrete exterior calculus when solving partial differential equations expressed in terms of

differential forms. With our construction of the higher order Whitney spaces, this can be done

with very small adaptations to the method. We refine a simplicial mesh such that the small

simplices are contained in the refined mesh, and then the same time integration procedure

can be used on the refined mesh without any modifications. The resulting discrete solution

includes the integrals over the small simplices, and the solution can thus be expressed in the

chosen basis of the higher order Whitney space.

The method we developed was tested by solving a model problem based on Maxwell’s equa-

tions. We compared the convergence in L2 norm with the lowest order case. The results

indicate that the interpolation error can be reduced significantly by using second order Whit-

ney forms, while the computational costs stay unchanged. This requires a simplicial mesh

and its refinement that contains the small simplices. The requirement that the initial mesh be

simplicial is restrictive in discrete exterior calculus, and in future research we aim to study

what kind of finite elements for differential forms can be associated with more general cells,

i.e. what are the counterparts of Whitney forms on nonsimplicial meshes.
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