
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

IRA-EMO : Interactive Method Using Reservation and Aspiration Levels for Evolutionary
Multiobjective Optimization

© Springer Nature Switzerland AG 2019.

Accepted version (Final draft)

Saborido, Rubén; Ruiz, Ana B.; Luque, Mariano; Miettinen, Kaisa

Saborido, R., Ruiz, A. B., Luque, M., & Miettinen, K. (2019). IRA-EMO : Interactive Method Using
Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization.  In K. Deb, E.
Goodman, C. A. C. Coello, K. Klamroth, K. Miettinen, S. Mostaghim, & P. Reed (Eds.),
Evolutionary Multi-Criterion Optimization : 10th International Conference, EMO 2019, East
Lansing, MI, USA, March 10-13, 2019, Proceedings (pp. 618-630). Springer International
Publishing. Lecture Notes in Computer Science, 11411. https://doi.org/10.1007/978-3-030-
12598-1_49

2019



IRA-EMO: Interactive Method using
Reservation and Aspiration Levels for

Evolutionary Multiobjective Optimization

Rubén Saborido1, Ana B. Ruiz2, Mariano Luque2, and Kaisa Miettinen3

1 Department of Computer Science & Software Engineering, Concordia University,
1455 De Maisonneuve Blvd West, H3G 1M8, Montréal (Canada)
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Abstract. We propose a new interactive evolutionary multiobjective
optimization method, IRA-EMO. At each iteration, the decision maker
(DM) expresses her/his preferences as an interesting interval for objec-
tive function values. The DM also specifies the number of representative
Pareto optimal solutions in these intervals referred to as regions of in-
terest one wants to study. Finally, a real-life engineering three-objective
optimization problem is used to demonstrate how IRA-EMO works in
practice for finding the most preferred solution.

Keywords: Evolutionary multi-objective optimization · Reference point
· Region of interest · Interactive methods · Preferences.

1 Introduction

Many real-world problems involve dealing with several conflicting criteria, which
must be optimized simultaneously. These problems, called multiobjective opti-
mization problems, are defined by objective functions which model the criteria,
and by constraints and bounds for variables which define the feasible set. In
order to solve multiobjective optimization problems and to decide which solu-
tion is the final one, a person, called decision maker (DM), is usually involved
in the solution process in order to choose the solution which best suits her/his
preferences (the most preferred solution).

Recently, Evolutionary Multiobjective Optimization (EMO) methods that in-
clude preferences and interactive EMO algorithms have received attention due
to the reduction of the computational load and applicability [1]. Within inter-
active algorithms, the elicitation of preferences can be done in different ways
[12]. Many methods use a so-called reference point, which is formed by desirable
aspiration levels for the objective functions that the DM would like to reach. A
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key feature in interactive methods is that only one or few solutions are shown
at each iteration in order not to overwhelm the DM with too much information.

We have earlier proposed an interactive version of the preference-based EMO
algorithm WASF-GA [15], called Interactive WASF-GA [13], where the DM ex-
presses preferences as aspiration levels (i.e. a reference point) and the number
of solutions one wants to see. Then, the algorithm generates exactly the num-
ber of nondominated solutions the DM desires, reflecting the preferences in the
reference point given.

In this paper, we propose a new interactive EMO algorithm called Interactive
Reservation and Aspiration points-based EMO (IRA-EMO) method, which uses
two kinds of reference points to generate nondominated solutions. In addition
to aspiration levels, also reservation levels given by the DM are used. For a
minimization problem, reservation levels are values above which the objective
function values are not admissible. Thus, we consider preferences expressed as
lower and upper bounds for the objective functions defining a region of interest
in the Pareto optimal front and generate solutions within it. It is important to
properly represent all the possible trade-offs among the objectives in the region
of interest to let the DM have an idea of which nondominated solutions can
be achieved based on preferences. To this aim, a variant of WASF-GA called
Modified WASF-GA is proposed to be used within IRA-EMO to approximate
the region of interest.

The rest of the paper is organized as follows. In Section 2, we introduce
the main concepts and notations used, including a brief overview of interactive
EMO algorithms. In Section 3, the IRA-EMO method and Modified WASF-GA
are described. The usefulness of IRA-EMO in practice is demonstrated in Section
4, with a real-world problem. Finally, conclusions are drawn in Section 5.

2 Background

We consider multiobjective optimization problems of the form:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S, (1)

where fi : S → R, for i = 1, . . . , k (k ≥ 2), are objective functions to be
minimized simultaneously over the feasible set S in the decision space Rn, which
is formed by solutions or decision vectors x = (x1, . . . , xn)T . In the objective
space Rk, the solutions are objective vectors f(x) = (f1(x), . . . , fk(x))T , for
x ∈ S, belonging to the feasible objective region Z = f(S).

Because of the degree of conflict among the objective functions, it is very
unlikely to find a single solution where all of them can reach their individual
optima. Therefore, we consider so-called Pareto optimal solutions, at which no
objective function can be improved without deteriorating, at least, one of the
others. A solution x ∈ S (and its objective vector f(x)) is said to be Pareto
optimal if there is no other x′ ∈ S such that fi(x

′) ≤ fi(x) for all i = 1, . . . , k
and fj(x

′) < fj(x) for, at least, one index j. The set of all Pareto optimal
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solutions is called the Pareto optimal set E, and its image in the objective
space is referred to as the Pareto optimal front f(E). The nadir objective vector
znad = (znad

1 , . . . , znad
k )T and the ideal objective vector z? = (z?1 , . . . , z

?
k)T provide

upper and lower bounds for the objective functions in E, respectively. Their com-
ponents are znad

i = maxx∈E fi(x) and z?i = minx∈E fi(x) (i = 1, . . . , k). While
z? can be easily obtained, znad can usually only be approximated [3].

Many preference-based EMO algorithms and interactive methods are based
on the use of reference points [18]. A reference point is a vector q = (q1, . . . , qk)T

consisting of desirable objective function values qi for the DM (aspiration levels).
We say that q is achievable if q ∈ Z+Rk

+ (where Rk
+ = {y ∈ Rk | yi ≥ 0 for i =

1, . . . , k}), that is, if either q ∈ Z or if q is dominated by a Pareto optimal
objective vector; otherwise, q is said to be unachievable. Using a reference point,
an achievement scalarizing function (ASF) can be built and minimized over
the feasible set to find the Pareto optimal solution that best satisfies the DM’s
expectations. For a reference point q and a vector of weights µµµ = (µ1, . . . , µk)T ,
with µi > 0 (i = 1, . . . , k), we consider the following ASF proposed in [18]:

s(q, f(x),µµµ) = max
i=1,...,k

{µi(fi(x)− qi) }+ ρ

k∑
i=1

µi(fi(x)− qi). (2)

The parameter ρ has a real positive value which ensures that the solution which
minimizes (2) over S is a Pareto optimal solution to the original problem (1).
Actually, any Pareto optimal solution of (1) can be obtained by minimizing (2)
over S and varying the reference point and/or the weight vector [12].

We use two types of reference points: in addition to those consisting of aspi-
ration levels, we also use reference points formed by reservation levels acceptable
for the DM, i.e. values above which the objective functions are not admissible.

As explained later, our proposal borrows some ideas from (a) the preference-
based EMO algorithm WASF-GA [15], which approximates a region of interest
of the Pareto optimal front defined by a reference point q as defined in [15], and
from (b) the EMO algorithm Global WASF-GA [16], which approximates the
whole Pareto optimal front by using both a utopian (a vector slightly better
than the ideal objective vector) and a nadir objective vector as reference points.

In the literature, many preference-based and interactive EMO methods have
been proposed. In R-NSGA-II [5], the DM gives one or several reference points
and the crowding distance used in NSGA-II [4] is replaced by a preference dis-
tance. PBEA [17] considers a reference point to modify the binary quality indi-
cator of IBEA [20]. In [8], an interactive version of MOEA/D [19] is suggested,
where a DM selects one among a set of solutions shown at intermediate genera-
tions. The algorithm with a controllable accuracy proposed in [10] is also based
on reference points. Regarding the use of both aspiration and reservation levels
in the EMO field, to the best of our knowledge, few references can be found.
In [7], a preference-based EMO method is proposed for the selection of direct
load control actions in electrical distribution networks, in which preferences are
elicited in a similar way. The nondominated solutions violating some reserva-
tion level are penalized and those closer to the aspiration levels according to



4 R. Saborido et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

qr 

 
 

 

Z=f (S) 

qa 

z* 

znad 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

qr 

 
 

 

Z=f (S) 

qa 

z* 

znad 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

qr 

 
 

 

Z=f (S) 

qa 

znad 

z* 

Fig. 1. Region of interest R when qa is unachievable and qr is achievable.

the Euclidean distance are rewarded. Furthermore, [9] suggests an interactive
EMO method based on RVEA [2], where the DM can specify, if desired, pre-
ferred ranges for the objectives (i.e. aspiration and reservation levels), which are
used to adjust the set of reference vectors in RVEA. These two methods follow
a solution process which is different from our proposal, as described next.

3 IRA-EMO for decision making

In this section, we describe the Interactive Reservation and Aspiration points-
based EMO (IRA-EMO) method. At each iteration it of IRA-EMO, the DM in-
dicates her/his preferences by specifying desirable bounds for the objective func-
tions in the form of aspiration and reservation levels, denoted by qa,iti and qr,iti ,

respectively, with z?i ≤ qa,iti < qr,iti ≤ znad
i , for i = 1, . . . , k. Thus, an aspiration

point qa,it = (qa,it1 , . . . , qa,itk )T and a reservation point qr,it = (qr,it1 , . . . , qr,itk )T

can be formed. The DM also sets the number of solutions (s)he wants to analyze
at each iteration, denoted by N it

S . Then, N it
S nondominated solutions are shown

to the DM, whose objective values are between the levels.
For an aspiration and a reservation points, qa and qr, respectively, with z?i ≤

qai < qri ≤ znad
i for i = 1, . . . , k, we denote by Ra and Rr the regions of interest

they define, respectively. For this preference information, the DM is interested in
Pareto optimal solutions which are in R = Ra∩Rr. Figure 1 represents examples
of different situations for a biobjective minimization problem, where the subset
R is highlighted in bold. We have assumed that qa is unachievable and qr is
achievable, which is the most logical situation when the DM gives both points.
In case qa and qr are both unachievable, R = Ra ∩Rr = Rr, and if both are
achievable, R = Ra ∩Rr = Ra.

The ideal and the nadir objective vectors can be estimated if needed, and the
aspiration and the reservation levels are supposed to satisfy z?i ≤ qai < qri ≤ znad

i

for i = 1, . . . , k. It may occur that z? does not dominate qa and/or znad is not
dominated by qr. If qa dominates z? and qr dominates znad, we have R = Rr.
In case znad dominates qr and z? dominates qa, then R = Ra. If qa dominates
z? and znad dominates qr, then R is the whole Pareto optimal front. When qa
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and z? do not dominate each other, and also qr and znad do not dominate each
other, R is constituted by a part of the Pareto optimal front.

We want to emphasize that IRA-EMO does not depend on the availability
of estimations for z? and znad. If no estimations are known, in practice, the DM
may need to take a few iterations of IRA-EMO at the beginning of the solution
process just to gain an idea of the possible objective function ranges and to
fine-tune her/his preferences. Also, z? and znad may be used for normalizing the
objective function values in (2) if they are in different scales. In case they are
not available, any other normalization approach can be used.

To generate nondominated solutions in the subset R defined by the aspiration
and the reservation points at each iteration it, we propose Modified WASF-GA
as an internal part of IRA-EMO. It is based on the working procedure of Global
WASF-GA for using two reference points, instead of only one as in WASF-GA.

3.1 Modified WASF-GA

Let us consider an aspiration and a reservation points, qa and qr, and Nµ vectors
of weights representing the weight vector space (0, 1)k. Let us denote by N
the population size, P final the final set of nondominated solutions generated
by Modified WASF-GA and h the generation counter. At each generation h,
Ph is the population of individuals, Qh is the offspring population, Zh is the
population of parents and offspring, and Fhn is the n-th front. The number of
elements in a set A is denoted by #(A).

At each generation h, Modified WASF-GA selects solutions which best match
with qa and qr. The population of parents and offspring Zh is divided into several
fronts according to the values they take on the ASF (2) for both qa and qr at
the same time. The lower the values of (2) reached by a solution for one of these
two reference points, the more this solution is highlighted. To be more precise,
once Zh is formed (of size 2N), the division of the individuals into different
fronts is performed as follows. The first front is formed by the solutions in Zh

with the lowest values of (2) for qa taking into account a half of the Nµ weight
vectors (the odd order ones), and by the solutions in Zh with the lowest values
of (2) for qr using the other half of the Nµ weight vectors (the even order ones).
These solutions are removed from Zh. Similarly, the second front is formed by
the solutions in Zh with the next lowest values of (2) for qa and a half of the
Nµ weight vectors, and by the solutions in Zh with the next lowest values of (2)
for qr and the other half of the Nµ weight vectors. This process continues until
every individual in Zh has been classified. The set of nondominated solutions
generated by Modified WASF-GA, Pfinal, consists of the Nµ solutions in the
first front of the last generation. So far, these solutions are the best ones with
respect to the weight vectors and the aspiration and the reservation points used.
Note that Pfinal approximates the regions of interest defined by qa and qr, that
is, Ra∪Rr. Since the DM wants to see solutions in R = Ra ∩Rr at each iteration
of IRA-EMO, Pfinal is later filtered to select the solutions belonging to this set.

Modified WASF-GA minimizes, at each generation, the ASF (2) for both the
aspiration and the reservation points. Therefore, in practice, Modified WASF-GA
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projects the aspiration and the reservation points onto the Pareto optimal front
simultaneously, using the set of projection directions defined by the weight vec-
tors. Thus, it is important that the Nµ weight vectors used define a well-spread
set of projection directions in order to preserve diversity.

3.2 Algorithm of IRA-EMO

At each iteration it with the DM, we denote by µµµit,j the weight vectors used in
Modified WASF-GA (j = 1, . . . , Nµ), P̄ it the outcome of Modified WASF-GA,
and P it the subset of solutions of P̄ it whose objective function values are within
the given aspiration and reservation levels. The main steps of IRA-EMO are:

Step 1. Initialization. Set it = 1. Show znad and z? to the DM (if available). Ask the DM

how many solutions (s)he would like to see, denoted by NitS .
Step 2. Preference information I. If it = 1, ask the DM to specify aspiration and reservation

levels for the objective functions, which define qa,it and qr,it, respectively. If it > 1, qa,it

and qr,it are set according to the preference information the DM wants to give as follows:

– The DM is asked if the current reservation point is to be updated. If so, the DM specifies
a new reservation point, qr,it. If not, let qr,it = qr,it−1.

– The DM is asked if the current aspiration point is to be updated. If so, the DM specifies
a new aspiration point, qa,it. If not, let qa,it = qa,it−1.

Step 3. Preference information II. Ask if the DM wants to change the number of solutions
to be obtained, update NitS accordingly. Next, define Nµ = 2NitS . If it > 1 and NitS = Nit−1

S ,

set µµµit,j = µµµit−1,j for all j = 1, . . . , Nµ and go to Step 5. Otherwise, continue.
Step 4. Generation of the weight vectors. Following the procedure described in [15], gen-

erate Nµ weight vectors µµµit,j , with j = 1, . . . , Nµ.
Step 5. Generation of solutions. Generate Nµ nondominated solutions by applying Modified

WASF-GA using qa,it, qr,it, and the set of weight vectors µµµit,j , with j = 1, . . . , Nµ. Let

P̄ it be the set formed by these Nµ solutions.

Step 6. Set P it = {x ∈ P̄ it|qa,iti ≤ fi(x) ≤ qr,iti for all i = 1, . . . , k}. If #(P it) > NitS , show

NitS representative solutions in P it to the DM. If #(P it) = NitS , then show all the solutions

in P it to the DM. Otherwise, if #(P it) < NitS , complete P it with individuals x ∈ P̄ it\P it

which satisfy fi(x) ≤ qr,iti for every i = 1, . . . , k and whose objective vectors are closer to

qa,it regarding the Euclidean distance, until #(P it) = NitS . Then, show all the solutions in

P it to the DM. Let {x̄it1 , . . . , x̄
it

Nit
S
} be the set of solutions shown to the DM.

Step 7. Solutions closer to the aspiration point (or to the reservation point). Ask the
DM if (s)he desires to see solutions with objective function values closer to their aspiration
levels (respectively, to their reservation levels). If no, go to Step 8. If yes, ask which of the

NitS solutions (s)he would like to replace. Let {x̄it1 , . . . , x̄
it
t } (with t < NitS ) be the set of

solutions to replace and {x̄itt+1, . . . , x̄
it

Nit
S
} the set of solutions to maintain. Remove from

P̄ it the solutions {x̄it1 , . . . , x̄
it

Nit
S
}. Set P it = {x ∈ P̄ it|qa,iti ≤ fi(x) for all i = 1, . . . , k}

(respectively, P it = {x ∈ P̄ it|fi(x) ≤ qr,iti for all i = 1, . . . , k}) and find t solutions in

P it whose objective vectors are the closest ones to qa,it (respectively, the furthest ones

to qr,it) regarding the Euclidean distance. Let us denote these solutions by {x̄it1 , . . . , x̄
it
t }.

Show {x̄it1 , . . . , x̄
it
t } ∪ {x̄

it
t+1, . . . , x̄

it

Nit
S
} to the DM.

Step 8. Optional ordering. Ask if the DM wants to order the solutions:

– According to some of the objective functions fr, with r ∈ {1, . . . , k}: in this case, show

the solutions {x̄it1 , . . . , x̄
it

Nit
S
} in a descending order with respect to their values for fr.

– According to their ASF values for the aspiration point qa,it: in this case, show the solu-
tions {x̄it1 , . . . , x̄

it

Nit
S
} in an ascending order based on their values for s(qa,it, f(x),wit),

where wit =

(
1

fmax1 −fmin1

, . . . , 1

fmax
k

−fmin
k

)
, with fminj = min

l=1,...,Nit
S

fj(x̄
it
l ) and

fmaxj = max
l=1,...,Nit

S

fj(x̄
it
l ).
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Step 9. Termination rule. Ask the DM to select the most preferred solution from the set
{x̄it1 , . . . , x̄

it

Nit
S
} and denote it by xit. If the DM is satisfied enough with this solution and

(s)he wishes to Stop, the solution process concludes with xit as the final solution and f(xit)
as the final objective vector. Otherwise, set it = it+ 1 and go to Step 2.

In Step 1, estimations of z? and znad are shown to the DM to give her/him
an idea of the objective function ranges for giving the reservation and aspiration
levels. If they are not available, (s)he sets the levels based on her/his intuition.

In Steps 2 and 3, the DM expresses her/his initial preferences. Then, a set
of solutions is generated and filtered in Steps 4-6. In Step 5, new Nµ = 2N it

S

solutions are generated using Modified WASF-GA and, in Step 6, N it
S solutions

are selected from its outcome and shown to the DM. Once the first solutions
have been generated, the interaction with the DM starts from Step 7 onwards.
Step 7 allows the DM to fine-tune the solutions shown by replacing some of them
by others with objective function values closer to either aspiration or reservation
levels. The idea is to let her/him freely explore different trade-offs among the
objectives given the current preferences. With Step 8, the main aim is to support
the DM in analyzing the solutions, but note that it can be skipped if desired.

In Step 6, if needed, we complete P it with solutions not worsening the reser-
vation levels and violating the aspiration ones as little as possible. It is very un-
likely, but there may be no solutions that meet the reservation levels. In this case,
the DM must be informed, so that (s)he can decide whether to give new reser-
vation levels, analyze just the available solutions satisfying qa,iti ≤ fi(x) ≤ qr,iti

(i = 1, . . . , k), or even just solutions with qa,iti ≤ fi(x) (i = 1, . . . , k).

Internally, to accelerate the speed of the solution process, the final population
P it generated by Modified WASF-GA at an iteration it can be used as its initial
population at the next iteration it+1. Also, if desired, the local Pareto optimality
of the final solution can be assured by minimizing (2) using its objective function
values as a reference point with some local optimization method.

4 Numerical example

Next, we illustrate the performance of IRA-EMO with the three-objective opti-
mization problem proposed in [14]. The aim is to identify the most convenient
combination of improvements in the auxiliary services of a 1100 MW thermal
power plant, to maximize the energy saving (denoted by f1, in MWh), to min-
imize the economic investment required (denoted by f2, in e million) and to
maximize the Internal Rate of Return (IRR) of the investment (denoted by f3,
in %). The problem has 13 continuous and 20 binary decision variables and is
modelled using a black-box simulator. We present objective values in their orig-
inal form (and not using a minimization formulation) to make the interaction
with the DM more understandable. The Pareto optimal front of this problem is
discontinuous and formed by several disconnected subsets of solutions [14]. We
have approximated z? = (47526.37, 0.0, 100.0) and znad = (0.0, 9.28, 0.0).
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IRA-EMO and Modified WASF-GA have been implemented using jMetal [6],
a Java-based framework for multiobjective optimization.4 The parameter setting
used in Modified WASF-GA is the same used in [14]. We use the simulated binary
crossover (SBX) operator and a polynomial distribution mutation operator for
continuous variables and the binary crossover and the binary mutation for integer
variables. The crossover and mutation distribution indices used are 2 and 25,
respectively. For all variables, the crossover and the mutation probabilities are 0.9
and 1/n, respectively, where n is the number of binary or continuous variables.
We have used a population size of 50 individuals and 100 generations.

Next, we describe the interactive solution process, i.e. how the DM used
IRA-EMO to identify his most preferred solution. At the first iteration, the DM
decided to generate five solutions (N1

S = 5) using qa,1 = (47526.37, 0.0, 60.0) and
qr,1 = (0.0, 5.0, 0.0). Initially, he wished to study which type of trade-offs were
possible by setting the aspiration and the reservation levels as their ideal and
nadir objective values, except the aspiration level for f3 (having a 60% IRR was
profitable enough for him) and the reservation level for f2 (the nadir value for
f2 was too much money for him and, although his budget limit was e2 million,
initially he wanted to see solutions needing more expensive investments, such
as e5 million, at most, to study the “price” to pay for a lower investment). In
Figure 2 (a), the solutions generated by IRA-EMO are plotted using a value path
and a table shows the objective vectors. This representation enables the DM to
analyze the objective values reached within the aspiration and the reservation
levels, and to see how wide the given ranges are in comparison to their maximum
ranges (i.e., from the ideal to the nadir values), helping him to broaden or to
shrink them if he wants to relax or to further limit the objective values.

All the solutions generated at the first iteration reached objective values
within the specified ranges. Overall, limiting the investment to e5 million en-
abled very high energy savings to be obtained, but still far from the desired
aspiration level. However, all the solutions achieved IRR values near to 60%
(the aspiration level), reflecting their high profitability. Next, the DM wanted
to know if it was possible to get the same profitability but limiting the invest-
ment to e2 million. At a new iteration, five solutions (N2

S = 5) were obtained
with qa,2 = (33000.0, 0.0, 60.0) and qr,2 = (0.0, 2.0, 0.0), shown in Figure 2 (b).
Here he also relaxed the aspiration level for f1 until a value near the highest
energy saving obtained at the first iteration. The solutions found required an
investment bellow e2 million, but the energy savings were not as high as at the
first iteration. This highlights the conflict among the two objectives. Solution S2
needed the highest investment (still far from the budget limit), but reached the
best energy saving value, and the second best IRR value. Observe that nearly
all the solutions attained IRR values close to the aspiration level. Furthermore,
solution S4 reached a 59.99% IRR, having the second best value for the energy
saving. Based on this, the DM mainly liked solutions S2 and S4.

Although his budget was limited by e2 million, he wished to check what
happened when relaxing the reservation level for f2 a bit, with the condition of

4 The source code is freely available at https://github.com/rsain/IRA-EMO
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Sol. Ener.Sav.(f1) Invest.(f2) IRR(f3)
MWh e million %

S1 32376.55 3.38 46.81
S2 3876.01 0.35 54.63
S3 22830.01 1.91 59.05
S4 15786.72 1.7 45.2
S5 14832.78 1.23 59.54

Range 28500.54 3.03 14.34

(a) Iteration 1.

Sol. Ener.Sav.(f1) Invest.(f2) IRR(f3)
MWh e million %

S1 4194.06 0.42 49.54
S2 15223.33 1.35 55.73
S3 5223.41 0.93 25.22
S4 11965.11 0.99 59.99
S5 4211.79 0.42 48.96

Range 11029.27 0.93 34.77

(b) Iteration 2.

Fig. 2. Solution process of IRA-EMO.

having a 20-70% IRR and energy savings up to 10000 MWh. A new iteration
was carried out, with qa,3 = (40000.0, 0.0, 70.0), qr,3 = (10000.0, 3.0, 20.0), and
N3
S = 5. Figure 3 depicts the five new solutions. Most of them improved the

energy saving and the IRR values achieved in the second iteration, requiring to
invest less than e2 million. Finally, the DM selected S2 as his most preferred
solution. Although it needed the highest investment, it was bellow his budget
limit and it reached the highest energy saving, with a satisfactory IRR.

To evaluate the performance of IRA-EMO, we compare it with R-NSGA-II
[5], which can also use more than one reference point. In R-NSGA-II, a pa-
rameter ε controls the extent of the distribution of solutions. We set ε = 0.001
(the same value used in [5] for two engineering design problems). To perform a
fair comparison, we executed R-NSGA-II with the parameter setting used for
IRA-EMO and performed three iterations with the same aspiration and reserva-
tion points. Thus, for t = 1, 2, 3, we generated nondominated solutions with qa,t

and qr,t. From the final population generated at each iteration, we first selected
the solutions in the region of interest. Then, we applied the k-means clustering
[11] to select the five most representative solutions. They are shown in Table 1.

Let us then analyze the dominance relations among the five solutions pro-
vided to the DM by each algorithm at each iteration. In other words, we compare
objective vectors in the tables of Figures 2 and 3 (solutions of IRA-EMO) with
the ones in Table 1 (solutions of R-NSGA-II). We can see that, at any itera-
tion, no solution of R-NSGA-II dominates any solution IRA-EMO. However, at
the first iteration, solution S1 of IRA-EMO dominates solutions S3 and S5 of
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Sol. Ener.Sav.(f1) Invest.(f2) IRR(f3)
MWh e million %

S1 11883.99 0.97 60.48
S2 22358.39 1.89 58.69
S3 14712.55 1.14 64.30
S4 16020.19 1.83 42.54
S5 13066.12 1.03 62.73

Range 10474.40 0.92 21.76

Fig. 3. Solution process of IRA-EMO (iteration 3).

Table 1. Solutions generated by R-NSGA-II.

Sol. f1 f2 f3 f1 f2 f3 f1 f2 f3
MWh e million % MWh e million % MWh e million %

Iteration 1 Iteration 2 Iteration 3
S1 5601.56 1.07 22.85 5407.63 0.99 24.15 16330.36 1.99 39.62
S2 25101.18 2.11 58.87 15439.39 1.54 49.11 24979.27 2.04 60.71
S3 29555.99 3.41 42.08 4167.04 0.59 33.49 24670.84 2.01 60.74
S4 16123.46 1.93 40.47 4828.34 0.76 29.15 16136.67 1.89 41.37
S5 28021.10 3.40 39.70 15136.85 1.44 51.85 24844.48 2.03 60.76

Range 23954.44 2.34 36.02 11272.34 0.96 27.70 8842.60 0.15 21.14

R-NSGA-II, and S3 of IRA-EMO dominates S4 of R-NSGA-II. Furthermore, at
the second iteration, both S1 and S5 of IRA-EMO dominate S3 of R-NSGA-II,
S2 of IRA-EMO dominates S5 of R-NSGA-II, and S4 of IRA-EMO dominates
S1 of R-NSGA-II. Finally, at the third iteration, S2 of IRA-EMO dominates both
S1 and S4 of R-NSGA-II. This demonstrates that IRA-EMO was able to pro-
duce higher quality solutions (regarding the Pareto dominance) than R-NSGA-II.
Thus, IRA-EMO generated sets of solutions which better represent the trade-offs
existing among the objectives in the region of interest.

Comparing interactive EMO algorithms from a decision-making point of view
is a research topic of its own and deserves further research. Because we have
a real-world problem, we reported results for a single run, since this is what
usually happens when interacting with real DMs. Actually, this constitutes the
main difference between using EMO methods to solve real-world applications
instead of testing with benchmark problems designed to study performance in
general.

5 Conclusions

In this paper, we have proposed the IRA-EMO method for solving multiobjective
optimization problems. At each iteration of IRA-EMO, very easy to understand
preference information is asked from the DM: (a) aspiration and reservation
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levels for the objective functions and (b) the number of solutions (s)he wishes
to analyze. According to this, the desired number of solutions is generated to
represent the part of the Pareto optimal front bounded by the aspiration and the
reservation levels given. Such solutions are internally generated at each iteration
with the DM by means of Modified WASF-GA. The applicability of IRA-EMO
has been described with a real three-objective optimization problem. The DM
could analyze the solutions obtained with objective values within the aspiration
and the reservation levels given at each iteration until finding a suitable final
solution.

The region of interest could be approximated by methods such as R-NSGA-II
using appropriate preference information. However, the interactive solution pro-
cess of our method is different, including specific steps for decision making pur-
poses. In addition, IRA-EMO assures that the region of interest bounded by the
aspiration and the reservation points is approximated in just one run, generat-
ing the number of solutions the DM desires to see. These two features are not
so easily controllable by other methods. We found that IRO-EMO was able to
produce better solutions than R-NSGA-II for a real three-objective optimiza-
tion problem. Actually, IRA-EMO generated solutions that better represent the
trade-off existing among the objectives in the region of interest.

In the future, we plan to investigate how to configure IRA-EMO to explore,
in the same iteration, solutions with objective function values within several
regions of interest. We would also like to define and develop a way to compare the
performance of interactive EMO methods from a decision-making perspective.
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