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Chapter 1

DESDEO: An Open Framework for Interactive
Multiobjective Optimization

Vesa Ojalehto and Kaisa Miettinen

Abstract We introduce a framework for interactive multiobjective optimization
methods called DESDEO released under an open source license. With the frame-
work, we want to make interactive methods easily accessible to be applied in solv-
ing real-world problems. The framework follows an object-oriented software design
paradigm, where functionalities have been divided to modular, self-contained com-
ponents. The framework contains implementations of some interactive methods, but
also components which can be utilized to implement more interactive methods and,
thus, increase the applicability of the framework. To demonstrate how the frame-
work can be used, we consider an example problem where the pollution of a river
is controlled. To solve this problem with four objectives, we apply two interac-
tive methods called NAUTILUS and NIMBUS and show how the method can be
switched during the solution process.

1.1 Introduction

We describe an open source framework DESDEO devoted to interactive methods for
solving multiobjective optimization problems. The main aim of the framework is to
make interactive methods closer to researchers and practitioners by making their
implementations readily available to be applied in solving optimization problems
involving multiple (even nonlinear) conflicting objectives. The problem formula-
tions may use different simulation and modelling tools. The framework is not only a
source of implementations to be applied but one can also add new implementations
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there. For this, the framework includes reusable components that can be utilized.
The framework is open and released under a permissive open source license. The
source code is in Python and more information about the framework is available at
https://desdeo.it. jyu.fi.

Real-world problems typically contain several, conflicting objectives that should
be simultaneously optimized. When we consider functions of variables, we call such
problems multiobjective optimization problems. Because of the conflicting nature
of the objectives, these problems usually have several solutions with different trade-
offs among the objectives. These so-called Pareto optimal solutions cannot be com-
pared and ordered without some additional information. Eventually, a single solu-
tion (or few of them) is (are) to be found to be realized. Additional information can
be obtained in the form of preference information from a human decision maker
(DM). Our aim is to support the DM in finding a solution that best corresponds to
his/her preferences in the presence of different trade-offs between the conflicting
objectives.

In the literature, there exists a wide array of methods based on different ap-
proaches for considering multiobjective optimization problems and taking the DM’s
preferences into account (see, e.g., [5, 16, 27] and references therein). Multiobjec-
tive optimization methods can be classified according to the role of the DM in the
solution process [10, 16]. If there is no DM available, some no-preference method
is to be used to find some neutral compromise among the objectives. In a priori
methods, the DM is asked to first express hopes and desires and then a Pareto op-
timal solution best corresponding to them is found. Alternatively, a representative
set of Pareto optimal solutions can first be generated and then the DM is expected
to select the most preferred of them. Such methods are called a posteriori methods.
In a priori methods, the DM may have too optimistic or pessimistic expectations
and, thus, may not be satisfied with the solution found. On the other hand, it may be
computationally expensive to generate a good representation of different Pareto op-
timal solutions and cognitively demanding for the DM to compare many solutions.
Interactive methods aim at avoiding the above-mentioned shortcomings.

We concentrate on interactive methods, where the DM is asked to provide prefer-
ence information in an iterative manner. As said, one of the concerns when solving
multiobjective optimization problems is the cognitive load set on a DM in forming
an understanding of the characteristics of the objective functions considered, espe-
cially, when dealing with a higher number of them. With interactive methods, the
solution process is based on consecutive steps and a limited amount of information
is exchanged at a time (i.e. per iteration). In each step, the DM specifies preference
information, based on which new solutions are generated and shown to the DM. In
this way, the DM can concentrate on a small set of solutions at a time and only solu-
tions reflecting the DM’s interests need to be generated. What is important, the DM
can learn about the inter-dependencies among the objectives and the shape of the
set of Pareto optimal solutions besides learning about the feasibility of one’s prefer-
ences. In all, the DM can modify his/her preferences and gradually gain confidence
on the suitability of the Pareto optimal solutions and iterate until the most preferred
solution is found and selected as the final one at the end of the solution process.
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Interactive methods have been utilized for solving multiobjective optimization
problems in a wide variety of application areas, such as reservoir management [1],
wastewater treatment management [9], optimal control in steel casting [18, 24],
chemical engineering [20], construction of bridges [28] and analysing air pollu-
tion [38], etc. Even though there exist many different interactive methods, their im-
plementations are scarce or not generally available, and typically application spe-
cific. To facilitate implementation related issues, it has been suggested to separate
methodological aspects from technical ones [12] and, furthermore, separate the ap-
plication, i.e., the multiobjective optimization problem formulation from the method
[31].

Except the field of evolutionary algorithms (see, e.g., [7]), where releasing source
codes is a common practice, openly accessible frameworks are rare in the field of
multiobjective optimization. Even though methods considering preference informa-
tion from a decision maker have been implemented in the evolutionary field (see,
e.g., [14] and references therein), to our knowledge, there does not exist any openly
accessible framework suitable for developing interactive multiobjective optimiza-
tion methods. Furthermore, even proprietary implementations of interactive multi-
objective optimizations methods are rare. With DESDEO, we want to fill a gap by
making interactive methods more widely and easily available.

The DESDEO framework concentrates on interactive methods with the main fo-
cus on the structures and components needed in implementing them. With the DES-
DEO framework, we want to bring interactive algorithms available for a wider audi-
ence as well as facilitate their development. The framework proposed here follows
an object-oriented architecture design and has been divided into several modules de-
signed to be independently usable to fulfil different functionalities needed by meth-
ods implemented. Among the design goals have been simplicity and ease of use,
as well as flexibility and extensibility. The framework has been implemented with
the Python programming language [35] and its source code is publicly available at
https://desdeo.it.jyu.fi/ by following the “source code” link on top of
the page.

Besides implementations of interactive methods, the DESDEO framework in-
cludes connections to different tools for modelling optimization problems as well
as to other types of optimization methods (typically, single objective optimization
methods) employed by the interactive methods. Currently, the framework does not
include any graphical user interface as it closely follows the structure suggested in
[31], where the model of the problem, the algorithm and the user interface are sepa-
rated. It is obvious that interactive methods do require user interfaces for preference
elicitation and communicating information to the DM. To this end, we have a web
application as a supporting software for the framework, which is used to demon-
strate the interactive methods. This accompanying web application is available at
the same web address. However, as said, we focus on the algorithmic aspects of
the methods and do not go into details of user interface design. In addition to the
web application, it is possible to use the framework with previously developed user
interfaces, such as IND-NIMBUS [17, 31]. It should be noted that the methods im-
plemented in the framework are aimed for solving nonlinear problems. Naturally,
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extending the framework to handle different types of problems is possible and de-
sirable. At the moment, the DESDEO framework contains implementations of the
synchronous NIMBUS method [23] and methods of the NAUTILUS family [26].

The rest of this chapter is structured as follows. In Section 1.2 we describe the ba-
sic concepts of interactive methods as well as briefly describe the methods discussed
and applied in this chapter. Next, in Section 1.3, we introduce the actual DESDEO
framework. As the framework is being continuously developed, we do not include a
detailed description of the framework but concentrate on a general level description
of the structure and components of the framework. To demonstrate how the frame-
work can be used, in Section 1.4, we utilize the web application with the DESDEO
framework to solve a multiobjective optimization problem, i.e., a use case. Finally,
in Section 1.5 we draw conclusions and discuss some future developments for the
DESDEO framework.

1.2 Background

In what follows, we briefly discuss the background material used in this chapter.
First, we introduce the main concepts and notation and a general structure of inter-
active methods considered. We then continue with brief summaries of the methods
applied to solve the use case in Section 1.4, that is, the interactive methods NIMBUS
and NAUTILUS.

1.2.1 Some Basics of Interactive Multiobjective Optimization

We consider multiobjective optimization problems of the general form

minimize (or maximize) {fi(x), f2(x),..., fr(x)}

subject to X€ES, (.1

where f; : S — R are k (> 2) (conflicting) objective functions and x = (x1,x2,...,
x,)T is the decision (variable) vector bounded by constraints that form a feasible
set S C R”. Objective vectors f(x) = (f1(x), f2(x),. .., fi(x))T consist of objective
(function) values calculated at any feasible x.

A multiobjective optimization problem with conflicting objectives has so-called
Pareto optimal solutions with different trade-offs. A decision vector X and the corre-
sponding objective vector f(X) are called Pareto optimal if there does not exist any
other feasible x so that f;(x) < fj(X) foralli=1, ...,k and f;(x) < fj(X) for least one
Jj =1,...,k. Pareto optimal solutions and the corresponding objective vectors form
a Pareto optimal set to problem (1.1) in the decision space R” and in the objective
space R¥, respectively.



Our aim is to find the most preferred Pareto optimal solutions using a DM’s pref-
erences, i.e., for example, information on desired changes to previously obtained so-
lutions in order to find more preferred solutions for the problem. This means finding
trade-offs between objectives which are acceptable for the DM or desirable values
for the objective functions. For simplicity, in what follows, we assume all objective
functions to be minimized, even though the framework can handle both objective
functions to be maximized and minimized.

When using interactive methods, the ranges of objective function values in the
Pareto optimal set can be shown to the DM to give an understanding of the attainable
solutions. The ideal objective vector z* consists of the best possible objective func-
tion values whereas the worst objective function values over the Pareto optimal set
form a nadir objective vector 2%, A utopian objective vector z* is commonly used
instead of the ideal objective vector. The components of the ideal objective vector
can be obtained by minimizing each of the objective functions individually subject
to S. The utopian vector is then created by subtracting a small, positive epsilon from
each of the components of the ideal objective vector. Thus, the components of the
utopian objective vector are strictly better than those of the ideal objective vector.

The nadir objective vector is typically estimated by using a pay-off table (see,
e.g., [3, 13, 16]), as accurate information would require knowing the whole Pareto
optimal set. Further estimation ideas are given, e.g., in [2, 6, 40]). When forming
a pay-off table, the decision vectors obtained when finding the components of the
ideal objective vector are stored and all objective functions are evaluated at these
points. Thus, in a pay-off table, components of the ideal objective vector lie on the
diagonal of the table. The estimate for the nadir objective value of the ith objective
can be found by finding the maximum value of the ith column.

As said, interactive methods consist of a series of steps called iterations, where
in each step, new solutions reflecting the preference information obtained are gen-
erated. This is typically done by solving subproblems involving a single objective
function, see, e.g., [16, 27], which is often called a scalarizing function. Subprob-
lems contain elements of the original multiobjective optimization problem and pref-
erence information. It should be noted that a single objective optimization method
which is suitable for the characteristics of the problem concerned is needed. By se-
lecting the subproblems in an appropriate way, we get Pareto optimal solutions to
the original problem. In general, many interactive methods follow a core structure
[31], which can be described as follows:

1. Initialize the solution process by e.g., calculating ideal and nadir objective vec-
tors as well as other method specific information.

2. Solve a method-specific subproblem to generate an initial solution or solutions
to be used as a starting solution(s) and denote as current solution(s).

3. Ask the DM to specify preference information regarding the current solution(s).
The type of the preference information depends on the method.

4. Generate new solution(s) by solving appropriate subproblem(s) involving the
preference information.

5. Ask the DM to select the most preferred solution or a set of solutions from the
set of previously generated solutions and denote it as the new current solution(s).



6. If the selected solution is satisfactory to the DM, stop. Otherwise continue from
step 3.

Next, we briefly describe the NIMBUS and NAUTILUS methods used in Section
1.4 for demonstrating how the DESDEO framework can be used.

1.2.2 The Synchronous NIMBUS Method

The type of preference information used in the NIMBUS method [16, 21, 23] is
the classification of the objective functions. This means that at each iteration, the
DM considers the objective function values of a current Pareto optimal solution and
is asked to classify each objective function into one of five different classes. These
classes indicate what kind of changes in the objective function values would provide
a more preferred solution. The classes are for functions f; whose values

should be improved (i € I<),

should be improved to some aspiration level 2; < f;(x¢) (i € I),
are satisfactory at the moment (i € I7),

are allowed to impair up to some bound & > f;(x%) (i € IZ),

are allowed to change freely (i € I°).

A classification is feasible if at least one objective function should be improved
and at least one is allowed to be impaired from the current values. In the synchronous
NIMBUS method [23], up to four subproblems are formed based on the classifi-
cation information provided by the DM. Each subproblem follows the preference
information in a slightly different way, thus, providing up to four different Pareto
optimal solutions [22]. The DM decides how many solutions (s)he wants to see and
compare. As per the core structure, the solutions are shown to the DM who selects
one of them or one of the previously generated Pareto optimal solutions as a current
solution to be classified or as the most preferred solution. The DM can also ask for
intermediate solutions to be generated between any two solutions generated so far.

Next, we describe two subproblems of the four ones used by the synchronous
NIMBUS method. See [23] for the formulations of the other two subproblems. The
so-called standard NIMBUS subproblem is of the form

lﬁ@%ﬂ?ﬁ@%iﬂ+pi £i(x)
i=1

minimize max

[ A ) Pz

subjectto  fi(x) < fi(x°) forall iel< UISUI=, (1.2)
fi(x) < g forall i€ =,
xeS,

where x¢ represents the decision vector of the current solution. The formulation uses
an augmentation term guaranteeing Pareto optimality of the obtained solutions (see,
e.g., [16, 23]). The term p > 0 is a so-called augmentation coefficient with a small



positive value. The aspiration levels and bounds Z; and g;, respectively, are obtained
from the classification information.

The classification information and ranges of the objective functions in the Pareto
optimal set can be easily used for generating a corresponding reference point Z.
This is done by setting z; =z fori € I<, z; = 2; for i € IS, Z; = f;(x°) fori € I,
Zi=¢ forielZ and z; = z;‘ad for i € I°. The following subproblem uses such
a reference point information in an achievement scalarizing function which also
generates Pareto optimal solutions [42]

fi0=5]  y filX)
minimize irrllf'.)ik[m +P;ZMT (1.3)

Kk 2,33
LTy i i

subjectto x € S.

One should note that any point in the objective space R¥ can be projected to the
Pareto optimal set by setting it as a reference point to problem (1.3). This is how
the NIMBUS method generates the initial Pareto optimal solution and intermediate
solutions as per the core structure described in Subsection 1.2.1. For more details of
the NIMBUS method, see [21, 23, 31].

1.2.3 NAUTILUS Method

As discussed so far, typically, solving multiobjective optimization problems involve
considering Pareto optimal solutions only. Thus, the DM must study different trade-
offs between conflicting objectives and accept losses in at least objective function
to gain in some other objective function. However, according to the prospect the-
ory [11], humans do not react symmetrically to gains and losses and it has been
suggested that making explicit trade-offs can hinder the decision-making process of
finding the most preferred solutions. It was shown, e.g., in [34] that trade-offs im-
plied negative reactions in DMs. Furthermore, it has been discussed in [4, 11] that
our past experiences may limit our future expectations, causing the DMs to anchor
near some particular solution, such as the initial solution. To avoid these shortcom-
ings, a new approach called the NAUTILUS method was introduced in [19] and
further variations and extensions of it in [25, 36].

What is common in all members of the NAUTILUS method family is that the
solution process begins from the worst possible, i.e., a nadir objective vector, or from
any point from where all objective function values can be simultaneously improved.
From this point, the DM is iteratively progressing towards the Pareto optimal set
in order to eventually find the most preferred solution for him/her. This is achieved
by showing to the DM the current objective function values forming an iteration
point and bounds indicating objective values which can be reached from that point
without trade-offs.

In our use case, we apply the original NAUTILUS method [19]. For example, if
the first iteration point is the nadir objective vector, from that point, the reachable set



of solutions is limited by the ideal objective vector. The DM is then asked to give the
number of steps to be taken and specify preferences in which direction (s)he wants to
move from the current iteration point. With this information, a new iteration point
is generated by taking a step towards a Pareto optimal solution found by solving
problem (1.3). As this point is closer to the Pareto optimal set than the previous
point, the reachable set of solutions shrinks. Information about ranges of reachable
objective values is updated (by solving an €-constraint problem [19]) and shown to
the DM. The process is continued until the specified number of steps has been taken
and, thus, a Pareto optimal solution reached. At any iteration of the process, the
DM can change his/her preferences for the next iteration or return to any previous
iteration and provide new preference information there. The DM is also shown the
distance from the current iteration point to the closest Pareto optimal solution. For
more details about the NAUTILUS family of methods, see [26]).

1.3 DESDEO Framework

The motivation behind the DESDEO framework has been to provide a tool set for
researchers and practitioners, which can be utilized for applying and developing
interactive multiobjective optimization methods. To this end, we next introduce the
main components of the DESDEO framework, that is, the structures needed when
implementing interactive multiobjective optimization methods. To be more specific,
we describe the general design and architecture of the framework to give the reader
an insight of how the framework can be extended. Then, we describe in Section 1.4
how the already implemented methods can be used in practice.

1.3.1 Structure of the DESDEOQO Framework

The main design of the DESDEO framework consists of different components
which can be utilized for implementing interactive multiobjective methods. The aim
of the structure is to facilitate both developing new methods as well as implement-
ing previously published methods. To this end, we consider the underlying struc-
tures of interactive algorithms, described in Subsection 1.2.1 as a core structure (see
also [31]). As mentioned earlier, we do not discuss user interfaces, but algorithms.
Instead, the DESDEO framework is intended to be connected to an external user
interface, such as the web based DESDEOQO application (or IND-NIMBUS [17, 31]).
For an example of a user interface development see, e.g., [41]. As the framework
is under constant development, no detailed descriptions on the use and class struc-
tures are given here, but they are available at the DESDEO web site with quick
instructions how to use the framework with accompanying README -file.

The structure underlying the DESDEO framework is visualized in Figure 1.1.
In essence, the framework consists of four different layers, each of which is com-
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Fig. 1.1 The DESDEO framework overview

municating using predefined communication channels to allow reusability between
the components on different layers. The layers are called problem, optimization,
method, and elicitation, which follow closely the module structure of the DESDEO
framework. In practice, the structure used means that the layers are separated from
each other and can be changed as needed. As mentioned earlier, applying any inter-
active method requires a user interface as a fifth layer but the DESDEO framework
does not consider the elicitation of preference information beyond storing different
types of preferences.

In the DESDEO framework, the elicitation layer is the layer that the DM is di-
rectly interacting with, typically using an interface. It is used to obtain preference
information from the DM and to convert this information into a format required by



the interactive method in question. Furthermore, it collects the information gener-
ated during the interactive solution process and presents it in the format required
by the user interface to be shown to the DM. In the method layer, the interactive
method utilizes the preference information to construct an appropriate subproblem
or subproblems to be solved in the optimization layer. As mentioned earlier, the
subproblems are solved with a suitable single objective optimization method. The
top-most layer in the figure, the problem layer, contains the problem model which
defines the multiobjective optimization problem to be solved, such as the formula-
tions of the objective functions and constraints.

The key point of the structure presented in Figure 1.1 is generality, that is, avoid-
ing details of any particular method. Indeed, the framework is general and different
components can be replaced as needed. For example, different interactive meth-
ods should be able to be applied for solving the same multiobjective optimization
problem without changes to the method implementations. Naturally, there are some
meaningful limitations to this and, for example, linear multiobjective optimization
problems should not be solved with methods aimed at solving black-box problems,
but methods appropriate to the characteristics of the problem in question should be
applied.

InteractiveMethod ResultFactory

Utilizes Construct

Preference

Resultinformation
Information esultinformatio

Elicit Show

Decision maker

Fig. 1.2 The DESDEO base class structure

In practice, the separation of the layers is realized by using an object-oriented
structure, where all functionalities are implemented within subclasses derived from
abstract base classes. The four main base classes of the DESDEO framework are il-



lustrated in Figure 1.2 using a pseudo Unified Modeling Language (UML) diagram
(see [8] for further information about UML). The classes illustrated are abstract
base classes, that is, they are never instantiated as class objects. Instead, they de-
fine the base functionality, which their subclasses, i.e., classes derived from them
should implement. These subclasses offer the user of the DESDEO framework a
concrete functionality needed when implementing different interactive methods. In
other words, a DESDEO implementation of an interactive method consists of sub-
classes derived from the base classes shown in Figure 1.2. In what follows, we give
examples of subclasses of the Preferencelnformation class for handling different
types of preference information (obtained from the DM). We also show how the In-
teractiveMethod class can be extended when implementing the NIMBUS method.

1.3.2 Preference Handling in the DESDEO Framework

Preference
Information

+weights()
+reference_point()
A
Direction ReferencePoint NIMBUS
Classification
[ [ [ |
RelativeRanking ImprovementRate DirectSpecification Pairwise

Comparison

Fig. 1.3 DESDEO preference handling class structure

As mentioned previously, the separation of the layers is realized by using an
object-oriented structure, where all functionalities are implemented within sub-
classes derived from abstract base classes. As an example, Figure 1.3 demonstrates
how the framework handles preference information elicited from the DM. In the fig-
ure, the main abstract class Preferencelnformation defines and enforces the interface



that allows the user interface to get the DM’s preferences as well as the interactive
method to gain access to the DM’s preferences in a format required by the method.
As an example of the latter, the Preferencelnformation class provides two abstract
methods to access preferences, that is, a weights method which return a vector of
weights if such preference information is required and a reference_point method
which return the preference information as a reference point consisting of aspira-
tion levels. These two methods are the main interface for accessing the preference
information, and as abstract methods, they should be implemented in every subclass
of the Preferencelnformation base class.

The classes defined in the DESDEO framework are self-contained, that is, af-
ter the initialization, they are assumed to contain or to have access to all necessary
information to perform their functionalities. For example, when providing the Clas-
sification class with new preferences elicited from the DM, it is assumed that the
class has access to information related to the problem being solved and can verify
that the preference information is suitable for it, e.g., the number of objective func-
tions is correct. Similarly, it is the responsibility of the subclasses of the Preferen-
celnformation class to implement the methods such as weights and reference_point
and present the elicited preference information in the requested format. If such pre-
sentation is not possible, an exception should be raised and the interactive method
requesting the preference information should either ask for another presentation of
the preferences if possible or handle the situation as an error which is passed back
to the user interface and to the DM. In this way, the implementation of the interac-
tive method does not need to mind how preferences are given in the user interface
and the responsibility that the preference information is suitable for the method in
question lies within the user interface implementation.

In the DESDEO framework, we have three different examples on how prefer-
ences can be elicited and handled within the framework. Preference information
can be provided as a desired direction of simultaneous improvements (used, e.g.,
by NAUTILUS [26]), classification of objective functions (used, e.g., by NIMBUS
[23]), or specifying a reference point of aspiration levels (see, e.g., [43]).

Different ways of specifying the direction of simultaneous improvement are dis-
cussed e.g., [26]). For eliciting the direction of simultaneous improvement, we have
a Direction base class, from which four subclasses are derived. That is, the direc-
tion can be specified by ranking each objective function based on the importance of
being improved (RelativeRanking), providing an improvement rate as a percentage
how much the DM would like to improve each objective (ImprovementRate), by
direct specification (DirectSpecification) or by pairwise considerations of the objec-
tive functions to define improvement ratios between them (Pairwise Comparison).

Other options to provide preference information can similarly be modified or ex-
tended, if needed. For example, in addition to classifying objectives into five classes
using the NIMBUSClassification class described in Subsection 1.2.2, they could be
classified as per the STOM or Step methods to three or two classes, see [3, 29],
respectively. In this case, there would be a need to introduce a new Classification
abstract class, from which a new STOM Classification class would be derived (along
with the current Classification class named as NIMBUSClassification).



1.3.3 Extending the DESDEOQO Framework
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Fig. 1.4 Class structure of the NIMBUS method implementation

In Figure 1.4, we present the class structure of the NIMBUS method imple-
mented within the DESDEO framework. The NIMBUS class, which is a subclass of
InteractiveMethod, is where the algorithm of the NIMBUS method is implemented.
That is, it defines what kind of preference information should be elicited from the
DM and how that information is used to obtain new solutions. The preference infor-
mation must be provided as a subclass of the Preferencelnformation class (shown
in Figure 1.2), which in the case of the NIMBUS method is the NIMBUSClassifi-
cation class. The NIMBUSClassification class stores the classification information
described in Subsection 1.2.2 and is passed to a SolutionFactory class, which uses
it to create new Pareto optimal solutions. For generating new solutions, Solution-
Factory has an access to subproblems to be solved and appropriate single objective
optimization methods. These are encapsulated in an OptimizationMethod class.

As an example of the four possible subproblems of the NIMBUS method, in
Figure 1.4 we have the NIMBUSSubroblem corresponding to problem (1.2) and
AchievementSubroblem corresponding to problem (1.3). Finally, these subproblems
are associated with the multiobjective optimization problem (MultiObjectiveProb-



lem) being solved. (For further information about NIMBUS subproblems, see Sub-
section 1.2.2 and [23].)

Of the classes mentioned, only NIMBUS and SolutionFactory are directly specific
to the NIMBUS method implementation and all other classes can be utilized when
implementing another method. For example, when implementing the NAUTILUS
method, the same AchievementProblem class can be used when generating new in-
termediate points with the same OptimizationMethod and MultiObjectiveProblem
classes. Similarly, as mentioned earlier, even though the preference information is
given as NIMBUS Classification, the NIMBUS classification information can be eas-
ily converted to a reference point and it could be given as a ReferencePoint as they
both implement the same interface for preference handling. On the other hand, as de-
scribed in Subsection 1.2.3, in the NAUTILUS method only the final solution shown
to the DM is Pareto optimal and, thus, the SolutionFactory could not be utilized but
the method requires its own subclass (i.e. IterationPointFactory class, which is not
discussed here but is available in the DESDEO framework).

We do not go into details of the OptimizationMethod class. Naturally, when solv-
ing the subproblems to find new solutions, the selected single objective optimization
method should be suitable for solving the scalarized subproblems, which consist of
the objective functions and constraints of the underlying multiobjective optimiza-
tion problem (described by the OptimizationMethod class). The subproblems (1.2)
and (1.3) presented here are nondifferentiable as they involve min-max functions
and, therefore, the single objective optimization methods applied should be suitable
for such problems. If the multiobjective optimization problem in question is differ-
entiable, these subproblems can be reformulated to their differentiable equivalents
by adding a new decision variable and converting the min-max functions as con-
straints (see, e.g., [16]). Then, the interactive method implementation can be used
as is, by changing the SolutionFactory to use the new differentiable subproblems
and a suitable subclass of OptimizationMethod.

In the next section, we will consider the DESDEOQO framework from another an-
gle. We give an example of how a multiobjective optimization problem can be for-
mulated and solved with the framework.

1.4 Use Case: River Pollution Problem

In this section, we demonstrate how the DESDEO framework can be applied for
solving a four-objective river pollution problem formulated in [30]. We first apply
the NAUTILUS method to find a single Pareto optimal solution and then use it
as the starting point of the NIMBUS method to refine that solution. As said, both
of these methods have been implemented in the framework. The single objective
subproblems related to the interactive methods are solved with differential evolution
[39] available from the SciPy module [33]. Differential evolution is using the default
values of the module.



The problem considers a river being polluted by a fishery and a city. The pollu-
tion is controlled by two treatment plants, one managed by the fishery and another
managed by the city. The aim is to improve the quality of water in both the city and
the fishery and also minimize the costs incurred.

To be more specific, there exist two treatment plants, one in the fishery and one
in the city. The pollution is described in pounds of biochemical oxygen demand-
ing material (BOD) and the two decision variables considered, x; and x;, represent
the proportional amounts of BOD removed from water in the two treatment plants,
respectively. The first two objective functions are to be maximized and involve wa-
ter quality: fi represents water quality of the fishery and objective f> of the city as
pounds of BOD.

The third objective f3 represents return on investment (ROI) at the fishery as a
percentage to be maximized and the fourth objective function f4 to be minimized
is the increase of the tax rate in the city due to operating the treatment plant. The
objective functions are formulated as follows

maximize fi(x) =4.07+2.27x,

. 0.01 0.30
maximize f»(x) =2.60+40.03x; +0.02x, + 139 —x% + 139 —x%
0.71
imi =821 — ——
maximize f3(x) 1.09— 2
0.96
inimi =-096+ ——
minimize  f4(x) + 1.09— 2

subjectto 0.3 <x,x < 1.0.

The DESDEO model of the problem is given in Appendix 1.5 with some further
information.

1.4.1 DESDEO Model of the Problem

The problem class structure of the DESDEO framework is shown in Figure 1.5.
As can be seen, all problems solved with the DESDEO framework must be derived
from the MultiObjectiveProblem base class. The MultiObjectiveProblem class is in
the problem layer, as seen in Figure 1.1. This means that it offers an interface for
how the other components of the DESDEO framework can have an access to a model
of a multiobjective optimization problem. As other layers, MultiObjectiveProblem
is an abstract base class, and concrete functionalities must be implemented with
its subclasses. It should be noted that the DESDEO framework assumes that all
objectives are to be minimized, i.e., if an objective is maximized, its values should
be negated when shown to the DM (so that the values are understandable to the
DM).



MultiObjetive
Problem

PythonProblem APosteriori ThriftProblem
Problem

Fig. 1.5 DESDEO problem formulation class structure

Currently, MultiObjectiveProblem has three subclasses. Firstly, objective func-
tions and constraints of the problem in question are formulated in PythonProblem
with the Python language. Secondly, APosterioriProblem contains the previously
generated set of Pareto optimal solutions approximating the Pareto optimal set.
APosterioriProblem can access this information without any calculations. Finally,
with ThriftProblem, the multiobjective optimization problem is formulated with an
external modelling or simulation tool and accessed via an Apache Thrift protocol
[37]. The problems modelled using the ThriftProblem class are typically referred
to as black-box problems, where there may not exist analytical formulations of
the objective functions and constraints, but their values are evaluated by calling a
simulator. Alternatively, the ThriftProblem can also be modelled with a modelling
tool like MATLAB or GAMS, where there can exist function formulations and the
ThriftProblem problem gives access to DESDEO to the problem.

As with other classes of the framework, the base class defines a common inter-
face for obtaining the information specific to a particular problem, allowing different
problems to be solved with any interactive method implemented with the frame-
work, provided that the underlying subproblems and single objective optimization
methods are suitable for the problem. For example, if an interactive method is suit-
able for solving only linear problems, it should not be utilized for solving black-
box problems. At the moment, all problem classes are for black-box problems, and
extending the framework to e.g., linear problems would require adding additional
classes derived from the MultiObjectiveProblem class, such as BlackBoxProblem
and LinearProblem.

The river pollution problem is implemented as a subclass of the PythonProblem
class and is available in the example directory of the DESDEO website as Naru-
laWeistroffer.py. There exists similar examples for other types of problems, and
using the provided examples, building models for other multiobjective problems
should be a straightforward task.



1.4.2 Interactive Solution Process

In what follows, we solve the river pollution problem using first the NAUTILUS
method and then the NIMBUS method to find a single Pareto optimal solution as
the final solution. As the user interface, we utilize the web-based application.

Among the advantages of the NAUTILUS method are that it allows finding a
Pareto optimal solution corresponding to the DM’s preferences while avoiding an
anchoring bias as well as avoiding the need of trading off between objectives (see
[19] and references within). On the other hand, when the DM has learned the main
characteristics of the problem and wishes to explore some specific areas of the
Pareto optimal set, it can be more intuitive to specify preferences in the form of
a classification of objectives as in the NIMBUS method. With the classification, de-
sired levels and bounds for the objectives can be directly specified and a new Pareto
optimal solution is found without generating intermediate iteration points. As men-
tioned in [23], the starting point for the NIMBUS method can be any Pareto optimal
solution given by the DM. Therefore, we first utilize the NAUTILUS method to find
a Pareto optimal solution and then continue by further refining it with the NIMBUS
method.

In NAUTILUS, the DM decided to use relative ranking of the objectives to ex-
press preferences. The DM specified ranks for each objective to indicate how im-
portant their improvement from the current iteration point was. This means that in
each iteration, the method was expected to improve most the highest ranked objec-
tive functions. Several objectives could have the same rank. These ranks were then
used to formulate the scalarized subproblem used for finding a new iteration point
(for details, see e.g., [19]).

The solution process with the NAUTILUS method is summarized in Table 1.1.
The first column of the table shows the iteration number and the second column
indicates what information the row contains. The following columns contains values
for the objective functions, that is, water quality at the fishery (WQ fishery), water
quality at the city (WQ city), return on investment at the fishery (Fishery ROI) and
the increase of the tax rate at the city (Tax increase), respectively. Information shown
to the DM includes the iteration point (It. point) which indicates the current (not
Pareto optimal) point from where the solution process is continued and bounds give
information to the DM about the ranges of the objective function values in the set of
Pareto optimal solutions that can be reached from the current iteration point without
trading off (the range for each objective function is between the current iteration
point and the bound values). Finally, the rows called Ranking contain ranks that the
DM specified as preference information.

One should remember that the first three objective functions are to be maximized,
i.e., for them the components of the ideal objective vector are the biggest values and
for the nadir the smallest values. Naturally, the opposite is true for the fourth objec-
tive to be minimized. Therefore, the ideal and the estimated nadir objective vectors
are z* = (6.34,3.44,7.50,0.0)” and 2" = (4.07,2.89,0.32,9.71)7, respectively.
As mentioned in Subsection 1.2.3, the NAUTILUS method is initialized with the
nadir objective vector as the initial iteration point. Then, the ideal objective vec-



Iter Issue WQ fishery WQ city Fishery ROI Tax increase

1 It point 4.07 2.87 0.32 9.71
Bound 6.34 3.44 7.50 0.00
Ranking 2 2 1 1

2 It point 4.60 297 1.58 8.70
Bound 6.34 3.44 7.50 0.00
Ranking 2 2 1 1

2 It. point 4.60 297 1.58 8.70
Bound 6.34 3.44 7.50 0.00
Ranking 2 2 1 1

3 It. point 5.10 3.10 2.88 7.67
Bound 6.32 342 7.50 0.45
Ranking 2 3 1 4

4 It point 5.59 3.15 4.40 5.30
Bound 6.30 3.40 7.40 1.42
Ranking 1 1 2 2
PO Solution 6.03 3.23 6.15 3.21

Table 1.1 Solving river pollution problem with the NAUTILUS method

tor gives the bounds, i.e., solutions that can be reached from the initial iteration
point without trading-off. (The DM could also specify some other point as the ini-
tial iteration point, from which the reachable region would then be calculated by the
method.)

In the beginning, the DM decided to take four steps to find a desired Pareto op-
timal solution. The DM was shown the nadir values of objectives and he decided to
prioritize the environmental aspects over the economical issues by giving both ob-
jectives related to the water quality a higher importance of 2 and a lower importance
of 1 to the return on investment at the fishery and the increase of the city taxes. As
the best reachable objective values were still the ideal values, the DM concluded
that each objective should still be improved in this direction. Therefore, the DM de-
cided to continue with the same preferences, i.e., take one more step in the current
direction.

In the second iteration, the DM obtained the iteration point (5.1,3.1,2.88,7.67)"
with the best reachable values (6.32,3.42,7.5,0.45)7. So far, the DM had set two
objectives on the same rank of priorities but now he decided to concentrate on the
water quality in the city in the third iteration by increasing its importance rank to
3. The DM also noticed that a significantly lower increase in the tax could still
be gained and increased the importance rank of the corresponding objective to
4. Now each objective had a different rank and the obtained iteration point was
(5.59,3.15,4.4,5.3)T with reachable best values as (6.3,3.4,7.4,1.42)7. The DM
decided that there is no need to improve the water quality further and gave an im-
portance rank of 1 to the corresponding objectives. On the other hand, both return
on investment at the fishery as well as city tax increase could still be improved. As
the DM had regarded decreasing the tax increase significantly more importance in
the previous iteration, he now decided to give the same importance rank of 2 to both
objectives. Because this was the final iteration, this led to a Pareto optimal solution



(6.03,3.23,6.15,3.21)7. It should be noted that at any iteration the DM could have
returned to any of the previous iteration points, change the number of intermediate
iteration points generated or how the preferences are expressed, but in this solution
process these options were not used. As mentioned earlier, NAUTILUS also gives
information about the distance of the iteration points to the Pareto optimal set but in
this case, the DM was not willing to use this information.

The DM was rather happy with the obtained Pareto optimal solution as he had
been able to find it without trading off. However, he was still hoping for a somewhat
smaller increase in the city taxes and a bit better return on investment for the fishery.
The DM could now have returned, for example, to iteration 4 of NAUTILUS and
give a higher importance rank to the fourth objective. On the other hand, he consid-
ered water quality to be satisfactory in the fourth iteration, which might mean that
the DM should change also the importance ranks of those objectives. Therefore, in-
stead of continuing with NAUTILUS, he decided to switch the method and proceed
by refining the obtained Pareto optimal solution with the NIMBUS method starting
from the final solution of NAUTILUS.

The solution process with the NIMBUS method is summarized in Table 1.2. The
main difference to the solution process with the NAUTILUS method shown in Table
1.1 is that in the NIMBUS method, all solutions shown are Pareto optimal, whereas
only the final solution of NAUTILUS is Pareto optimal. During the NIMBUS solu-
tion process, the DM is shown the ranges of the objective functions, i.e. ideal and
nadir values, here depicted in the first two rows of Table 1.2. The ranges stay the
same for duration of the solution process, unless some Pareto optimal solution found
has better or worse objective values than found with the pay-off table (in which case
they are updated accordingly). Because we are solving the same problem, the ideal
and nadir values are the same as when using the NAUTILUS method.

Iter Issue WQ fishery WQ city Fishery ROI Tax increase
Ideal 6.34 3.44 7.50 0.00
Nadir 4.07 2.89 0.32 9.71

1 NAUTILUS sol. 6.03 3.23 6.15 3.21
Classif 12:5.5 ]2:3.0 [§:6.5 [§:2,0

5.63 3.05 7.07 1.20
5.84 3.09 6.74 1.57
5.58 3.05 7.12 1.23

2 Cur. Sol. 5.84 3.09 6.74 1.57

Classif I§:6.0 I§:3,l 1226.5 12:2.0
6.33 3.34 0.9 5.35
5.97 3.15 6.4 2.09
5.97 3.15 6.37 2.16

Final Sol. 5.97 3.15 6.40 2.09

Table 1.2 Refining the Pareto optimal solution found by the NAUTILUS method with the NIM-
BUS method

Typically, the NIMBUS method generates an initial solution to be shown for the
DM, but in this case the DM wished to continue the solution process from the Pareto



optimal solution found with NAUTILUS. Therefore, the solution process started
from the Pareto optimal solution (6.03,3.23,6.15,3.21)7 (denoted by NAUTILUS
sol. in the table). The classification information provided by the DM is shown on
the row names as “Classif”. The notation corresponds to the one given in Subsection
1.2.2 and the aspiration level or bound specified by the DM in connection with the
class is given after the symbol of the class. For example, in the first iteration, the
DM decided to allow the water quality at the fishery to decrease till the bound 5.5
indicated by [ 2=5.5 The main aim of the DM was to improve, that is, to decrease
the tax increase in the city, but at the same time to maintain satisfactory values for
the other objectives. Therefore, in the first NIMBUS iteration, the DM wanted to
improve the tax increase till an aspiration level of 2.0 as well get a relatively smaller
improvement on the return on investment by giving it an aspiration level of 6.5.
At the same time, the DM did not wish to impair the water quality too much and,
therefore, gave bounds of 5.5 and 3.0. As mentioned earlier, the synchronous NIM-
BUS method uses four different single objective subproblems and it is possible to
generate up to four new solutions in each iteration, but on both of the NIMBUS iter-
ations, the method was able to provided only three different Pareto optimal solutions
to be shown to the DM as two of the solutions were too similar to each other. All of
them were able to achieve the aspiration level that the DM desired and of these, the
DM decided to select the one with the tax increase closest to his preferences, i.e.,
(5.84,3.09,6.74,1.57)7.

For the second NIMBUS iteration, he wanted to see whether it would be possible
to obtain satisfactory levels of water quality while maintaining good values for the
economic aspects. Therefore, he gave the previously given aspiration level of 2.0 as
a boundary for the impairment of the city tax increase and 6.5 as a lower bound of
the impairment at the fishery’s return on investment. Based on the previous results,
he thought that it could be possible to find Pareto optimal solutions with better water
quality than the bounds he specified in the first iteration and gave aspiration levels
of 6.0 to the water quality in the fishery and 3.1 to the water quality in the city.
Again, the NIMBUS method generated three different Pareto optimal solutions (and
the bounds could not be strictly obeyed). The DM selected (5.97,3.15,6.40,2.09)"
since the desired water quality for the fishery was achieved and the water quality
in the city was also close to the desired level. Even though both the fishery’s re-
turn on investment and the city tax increase were somewhat worse than the given
bounds, the obtained values were satisfactory for the DM. Based on the results ob-
tained so far and the learning that had taken place, the DM decided that it would be
unlikely to obtain solutions with significantly better objective function values, and
selected (5.97,3.15,6.40,2.09)7 the final, most preferred Pareto optimal solution
for the problem.



1.5 Conclusions

We have introduced the DESDEO framework that is aimed at providing openly
available implementations of different interactive methods for multiobjective op-
timization. The framework is published under a permissive open source license and
is freely available at https://desdeo.it. jyu. fi. By utilizing the methods
implemented in the framework with the accompanying user interface, interactive
multiobjective optimization methods can be used without having a strong technical
background. The framework has a modular structure of self-contained components.
The framework contains implementations of several methods as well as components
that can be used when implementing new methods. By following the information
provided at the DESDEO web site, one can extend the methods already implemented
and implement other methods in the framework. The framework documentation also
provides examples on how to use different single objective optimization methods
and how to model multiobjective optimization problems in the framework. A user
with some experience on programming should be able to extend them for his/her
own needs.

To demonstrate the applicability of the framework, we have applied two methods,
namely the original NAUTILUS and the synchronous NIMBUS methods to solve a
multiobjective river pollution problem with four objectives. This example demon-
strates the benefits of having several methods implemented in the same framework
as the DM could conveniently switch the method during the solution process with-
out any additional effort. Naturally, methods can also be utilized separately, i.e., one
can apply different methods to solve the same problem and, for example, compare
the results if so desired.

The development of the DESDEO framework is ongoing work. At the moment,
the framework is best suited for solving nonlinear problems with continuous vari-
ables (because of the single objective optimization methods available), but we plan
to extend it with options for solving e.g. linear problems and problems with mixed
integer variables. We did not here discuss graphical components related to interac-
tive methods, but naturally the work with the DESDEO web application will con-
tinue. Currently, there exist several research lines on comparing different interactive
methods (see, e.g., [15, 32]) and our aim is to include such methods in the DESDEO
framework in order to build a corresponding tool set for interactive multiobjective
optimization as already exist for evolutionary multiobjective optimization methods,
such as JMetal [7]. Furthermore, implementation of the ThriftProblem class used
for black-box optimization should be restructured, as it has potential security issues
and it is not suitable to be used over public network.

Acknowledgements This work was supported on the part of Vesa Ojalehto by Academy of Fin-
land (grant number 287496).
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Appendix

In what follows, we give source listings of the river pollution problem solved in
Subsection 1.4.2. As mentioned earlier, we consider a river that is polluted by a city
and a fishery. The aim of the DM is to improve the quality of water and to minimize
the costs incurred. The problem has four objectives and two variables, three of the
objectives to be maximized and the fourth one to be minimized.

To understand how the problem can be solved, we provide the source code list-
ing in the examples directory of the DESDEO framework as a file named Naru-
laWeistroffer.py. Note that the framework is under an active development.

The initialization of the River Pollution problem can be seen in Listing 1.1. As
mentioned earlier, all concrete problems must be derived from some base class. As
the problem is formulated with Python, we import the PythonProblem class from the
problem module, from which a RiverPollution subclass is derived. In the RiverPollu-
tion class, we first provide a description of the problem (with the relevant reference
as a documentation string). We then proceed with the problem formulation.

Problem dimensions, variables and other characteristics are defined in the __init
method of the problem class. Of those, only the number of objective functions and
the box constraints of the decision variables are required, other parameters are op-
tional. For the river pollution problem, the number of objective (nobj) is four, and
it does not have other constraints (nconst) besides box constraints. As the ideal and
nadir objective vectors are known they can be provided, but if they are not known,
the method calculates them if needed. Even though the DESDEO framework as-
sumes that all objective functions are to be minimized, it is possible to provide a
value for the parameter maximized in order the DESDEO framework to convert ob-
jective function values whenever communicating from and to the user interface. If
this value is not set, such conversions cannot be made, and they must be handled by
the user interface. The value True of the parameter indicates that the objective is to
be maximized and with False, it is to be minimized. It is also possible to give names
to objective functions as well as a name for the problem as shown in the listing.

Finally, the problem requires decision variables provided with the add_variable
method of the class with an instance of the Variable class. The Variable class is ini-
tialized with three parameters, namely box constraints giving upper and lower bound
value for the decision variables, starting point to be used when solving the problem
and name of the variable. Of these, only the first, box constraints, is required and
the others are optional. If the starting point is not given but the single objective op-
timization method used requires a starting point, the lower bounds of the variables
are used as the starting point. It should be noted that when the DESDEO framework
is extended to handle problems with discontinuous variables, the variable handling
must be changed.

In Listing 1.2, we show how objective functions are given by overloading the
evaluate method of the PythonProblem class. As an input parameter, the evaluate
method takes a population, which is a set of decision variable vectors each repre-
senting a new objective vector to be calculated. This means that when called, the
evaluate method evaluates objective function values for each decision variable vec-
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Listing 1.1 Problem initialization

import math
from pyDESDEO.problem import PythonProblem, Variable

class RiverPollution(PythonProblem):

River pollution problem by Narula and Weistroffer [1]
The problem has four objectives and two variables

The problem describes a (hypothetical) pollution problem
of a river, where a fishery and a city are polluting
water. The decision variables represent the proportional
amounts of biochemical oxygen demanding material removed
from water in two treatment plants located after the
fishery and after the city.

The first and second objective functions describe the
quality of water after the fishery and after the city,
respectively, while objective functions three and four
represent the percent return on investment at the fishery
and the addition to the tax rate in the

city. respectively.

References

[1] Narula, S. & Weistroffer, H. A flexible method for
nonlinear multicriteria decision—making problems
Systems, IEEE Transactions on Man and Cybernetics,
1989, 19, 883-887.

def __init__(self):
super (RiverPollution, self).__init__(
nobj=4,
nconst=0, # Optional

ideal=[-6.34, —-3.44, -7.5, 0.1], # Optional
nadir=[-4.07, -2.87, —-0.32, 9.71], # Optional
maximized=[True, True, True, False], # Optional
objectives=['Water Quality Fishery’, # Optional
"Water Quality City’,
"Fishery ROI’,
"City Tax Increase’],
name='River pollution problem’, # Optional

)

self.add_variables(Variable([0.0, 1.0],
starting_point=0.5, # Optional
name=’BOD City’)) # Optional

self.add_variables(Variable([0.0, 1.0],
starting_point=0.5, # Optional
name='BOD City’)) # Optional
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Listing 1.2 Problem initialization

def evaluate(self, population):
objectives = []

for values in population:
res = []
x0_2 math.pow(values[0], 2)
x1_2 math.pow(values[1], 2)

res.append(—-1.0 x (4.07 + 2.27 x values[0]))

res.append(—1.0 x (2.6 + 0.03 * values[0] + 0.02 x
values[1] + 0.01 / (1.39 — x1_2)
+ 0.3 / (1.39 — x1_2)))

res.append(—-1.0 x (8.21 — 0.71 / (1.09 — x0_2)))

res.append(—-1.0 x (0.96 — 0.96 / (1.09 — x1_2)))

objectives.append(res)

return objectives

Listing 1.3 Solving the problem with NAUTILUS

from pyDESDEO.utils import tui

from pyDESDEO.method import NAUTILUSv1

from pyDESDEO.optimization import SciPyDE
method = NAUTILUSv1(RiverPollution(), SciPyDE)
NAUTILUS_solution = tui.iter_nautilus(method)[0]

print (method.problem. to_ui (NAUTILUS_solution))

tor in the population. If objective function values of a single decision vector are to be
evaluated, the population should have only this single decision variable vector. As
a return value, the evaluate method gives the objective vector as a list of objective
function values.

As mentioned, the DESDEO framework does not include a graphical user in-
terface for solving problems. It does include a text-based framework for building
iterative solution processes called fui. In Listing 1.3, we give an example on how
the framework can be used with the fui module to solve a problem via a text-based
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interface using the first variant of the NAUTILUS method family (which was the
first method used in the interactive solution process reported in Subsection 1.4.2).

In the first three lines of the Listing 1.3, we import additional classes and mod-
ules needed. That is, the fui module containing the text-based user interface, the
class NAUTILUSvI corresponding to the method and finally SciPyDE as the single
objective optimization method to be used when solving the scalarized subproblems.

On the last three lines, we first initialize the method class by providing it
with an instance of a multiobjective optimization problem formulated earlier and
with the single objective optimization method SciPyDE to be used. The call to
tui.iter_nautilus function in the line 7 starts the interactive solution process ask-
ing the DM to specify the preference information and returning the final solution
obtained. On the last line, we print out the obtained solution which are converted
from the minimized values to maximized using method problem.to_ui.

Listing 1.4 Interactive solution process with the NIMBUS method

from pyDESDEO.method import NIMBUS
from pyDESDEO.preference import NIMBUSClassification

method = NIMBUS(RiverPollution(), SciPyDE)

method.selected_solution = NAUTILUS_solution

classl = NIMBUSClassification(method.problem,

[(">=", —=5.5),
(">=", =3.0),
("<=", —6.5),
("<=", =2.00D

iterl = method.nextIteration(preference = classl)
print (method.problem.to_ui(iterl))

In Listing 1.4, we give more details on how an interactive solution process can
be implemented using the NIMBUS method as an example. The basic idea is same
for all interactive methods currently implemented in the framework. As with the
NAUTILUS example, we first import new classes needed when using the NIMBUS
method, namely the NIMBUS class itself, and the NIMBUSClassification class to
store the preference information obtained from the DM. We use the same RiverPol-
lution and SciPyDE classes to initialize the method used on line 4. In contrast to the
NAUTILUS example, here we do not use the fui module to get the DM’s preferences
and to show solutions. Instead, they are given directly to show how the interactive
solutions process is constructed.

On line 6, we set the previously obtained NAUTILUS solution as the current,
selected solution. On lines 8 to 12 new preference information is given as a NIM-



BUS classification and initialized as the classI object of NIMBUSClassification.
The preference information is the same as the information given be the DM in Table
1.2. New solutions are generated on line 13 with the nextlteration method of the
NIMBUS object and printed out in line 14. This can then be continued until the final
solution is found.

References

10.

11.

13.

14.

15.

16.
17.

. Agrell, PJ., Lence, B.J., Stam, A.: An interactive multicriteria decision model for multipur-

pose reservoir management: The Shellmouth Reservoir. Journal of Multi-Criteria Decision
Analysis 7(2), 61-86 (1998)

Bechikh, S., Ben Said, L., Ghedira, K.: Estimating nadir point in multi-objective optimization
using mobile reference points. In: IEEE Congress on Evolutionary Computation (CEC), pp.
1-9 (2010)

. Benayoun, R., de Montgolfier, J., Tergny, J., Laritchev, O.: Linear programming with multiple

objective functions: Step method (STEM). Mathematical Programming 1, 366-375 (1971)
Buchanan, J.T., Corner, J.: The effects of anchoring in interactive MCDM solution methods.
Computers & Operations Research 24(10), 907-918 (1997)

Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Methodology.
North-Holland, New York (1983)

Deb, K., Miettinen, K., Chaudhuri, S.: Towards an estimation of nadir objective vector using
a hybrid of evolutionary and local search approaches. IEEE Transactions on Evolutionary
Computation 14(6), 821-841 (2010)

. Durillo, J.J., Nebro, A.J.: jmetal: A java framework for multi-objective optimization. Ad-

vances in Engineering Software 42, 760-771 (2011)

Fowler, M.: UML distilled: a brief guide to the standard object modeling language. Addison-
Wesley Professional (2004)

Hakanen, J., Sahlstedt, K., Miettinen, K.: Wastewater treatment plant design and operation
under multiple conflicting objective functions. Environmental Modelling & Software 46(1),
240-249 (2013)

Hwang, C.L., Masud, A.S.M.: Multiple Objective Decision Making, Methods and Applica-
tions: A State-of-the-art Survey. Springer, Berlin, Heidelberg (1979)

Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Econometrica
pp- 263-291 (1979)

Kaliszewski, I.: Out of the mist-towards decision-maker-friendly multiple criteria decision
making support. European Journal of Operational Research 158(2), 293-307 (2004)
Korhonen, P,, Salo, S., Steuer, R.E.: A heuristic for estimating nadir criterion values in multiple
objective linear programming. Operations Research 45(5), 751-757 (1997)

Li, L., Yevseyeva, 1., Basto-Fernandes, V., Trautmann, H., Jing, N., Emmerich, M.: Build-
ing and using an ontology of preference-based multiobjective evolutionary algorithms. In:
H. Trautmann, G. Rudolph, K. Klamroth, O. Schiitze, M. Wiecek, Y. Jin, C. Grimme (eds.)
Proceedings of the 9th International Conference on Evolutionary Multi-Criterion Optimiza-
tion, pp. 406-421. Springer (2017)

Lépez-Ibaiiez, M., Knowles, J.: Machine decision makers as a laboratory for interactive EMO.
In: A. Gaspar-Cunha, C. Henggeler Antunes, C.C. Coello (eds.) Evolutionary Multi-Criterion
Optimization, Lecture Notes in Computer Science, pp. 295-309. Springer International Pub-
lishing (2015)

Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers (1999)
Miettinen, K.: IND-NIMBUS for demanding interactive multiobjective optimization. In:
T. Trzaskalik (ed.) Multiple Criteria Decision Making ’05, pp. 137-150. The Karol Adamiecki
University of Economics in Katowice, Katowice (2006)



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Miettinen, K.: Using interactive multiobjective optimization in continuous casting of steel.
Materials and Manufacturing Processes 22(5), 585-593 (2007)

Miettinen, K., Eskelinen, P., Ruiz, F.,, Luque, M.: NAUTILUS method: An interactive tech-
nique in multiobjective optimization based on the nadir point. European Journal of Opera-
tional Research 206(2), 426-434 (2010)

Miettinen, K., Hakanen, J.: Why use interactive multi-objective optimization in chemical pro-
cess design. In: G.P. Rangaiah (ed.) Multi-objective Optimization: Techniques and Applica-
tions in Chemical Engineering, pp. 153-188. World Scientific (2008)

Miettinen, K., Mikeld, M.M.: Interactive multiobjective optimization system WWW-
NIMBUS on the Internet. Computers & Operations Research 27(7-8), 709-723 (2000)
Miettinen, K., Mikeld, M.M.: On scalarizing functions in multiobjective optimization. OR
Spectrum 24(2), 193-213 (2002)

Miettinen, K., Mikeld, M.M.: Synchronous approach in interactive multiobjective optimiza-
tion. European Journal of Operational Research 170(3), 909-922 (2006)

Miettinen, K., Mikeld, M.M., Minnikko, T.: Optimal control of continuous casting by non-
differentiable multiobjective optimization. Computational Optimization and Applications 11,
177-194 (1998)

Miettinen, K., Podkopaev, D., Ruiz, F., Luque, M.: A new preference handling technique for
interactive multiobjective optimization without trading-off. Journal of Global Optimization
63(4), 633-652 (2015)

Miettinen, K., Ruiz, F.: NAUTILUS framework: towards trade-off-free interaction in multiob-
jective optimization. Journal of Business Economics 86(1), 5-21 (2016)

Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimization: Inter-
active approaches. In: J. Branke, K. Deb, K. Miettinen, R. Slowinski (eds.) Multiobjective
Optimization: Interactive and Evolutionary Approaches, pp. 27-57. Springer-Verlag (2008)
Nakayama, H., Kaneshige, K., Takemoto, S., Watada, Y.: Application of a multi-objective
programming technique to construction accuracy control of cable-stayed bridges. European
Journal of Operational Research 87(3), 731-738 (1995)

Nakayama, H., Sawaragi, Y.: Satisficing trade-off method for multiobjective programming.
In: M. Grauer, A.P. Wierzbicki (eds.) Interactive Decision Analysis, pp. 113-122. Springer,
Berlin (1984)

Narula, S., Weistroffer, H.: A flexible method for nonlinear multicriteria decision-making
problems. IEEE Transactions on Systems, Man and Cybernetics 19(4), 883-887 (1989)
Ojalehto, V., Miettinen, K., Laukkanen, T.: Implementation aspects of interactive multiobjec-
tive optimization for modeling environments: The case of GAMS-NIMBUS. Computational
Optimization and Applications 58(3), 757-779 (2014)

Ojalehto, V., Podkopaev, D., Miettinen, K.: Towards automatic testing of reference point based
interactive methods. In: J. Handl, E. Hart, R.P. Lewis, M. Lopez-Ibaiiez, G. Ochoa, B. Paechter
(eds.) Proceedings of the 14th International Conference on Parallel Problem Solving from
Nature, pp. 483—-492. Springer (2016)

Oliphant, T.E.: SciPy: Open source scientific tools for Python. Computing in Science and
Engineering 9, 10-20 (2007)

Ravaja, N., Korhonen, P., Koksalan, M., Lipsanen, J., Salminen, M., Somervuori, O., Wal-
lenius, J.: Emotional-motivational responses predicting choices: The role of asymmetrical
frontal cortical activity. Journal of Economic Psychology 52, 56-70 (2016)

van Rossum, G.: Python tutorial. Tech. rep., Centrum voor Wiskunde en Informatica (CWI)
(1995)

Ruiz, A.B., Sindhya, K., Miettinen, K., Ruiz, F., Luque, M.: E-NAUTILUS: a decision support
system for complex multiobjective optimization problems based on the NAUTILUS method.
European Journal of Operational Research 246(1), 218-231 (2015)

Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable cross-language services implemen-
tation. Facebook White Paper 5(8) (2007)

Stam, A., Kuula, M., Cesar, H.: Transboundary air pollution in Europe: An interactive multi-
criteria tradeoff analysis. European Journal of Operational Research 56(2), 263-277 (1992)



39.

40.

41.

42.

43.

Storn, R., Price, K.: Differential evolution — a simple and efficient heuristic for global opti-
mization over continuous spaces. Journal of Global Optimization 11(4), 341-359 (1997)
Szczepartiski, M., Wierzbicki, A.: Application of multiple criteria evolutionary algorithms to
vector optimisation, decision support and reference point approaches. Journal of Telecommu-
nications and Information Technology pp. 16-33 (2003)

Tarkkanen, S., Miettinen, K., Hakanen, J., Isomiki, H.: Incremental user-interface develop-
ment for interactive multiobjective optimization. Expert Systems with Applications 40, 3220—
3232 (2013)

Wierzbicki, A.: A mathematical basis for satisficing decision making. Mathematical Mod-
elling 3, 391405 (1982)

Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: G. Fan-
del, T. Gal (eds.) Multiple Criteria Decision Making Theory and Application, pp. 468—486.
Springer (1980)



	DESDEO: An Open Framework for Interactive Multiobjective Optimization
	Vesa Ojalehto and Kaisa Miettinen
	Introduction
	Background
	Some Basics of Interactive Multiobjective Optimization
	The Synchronous NIMBUS Method
	NAUTILUS Method

	DESDEO Framework
	Structure of the DESDEO Framework
	Preference Handling in the DESDEO Framework
	Extending the DESDEO Framework

	Use Case: River Pollution Problem
	DESDEO Model of the Problem
	Interactive Solution Process

	Conclusions
	Appendix
	References



