

Heidi Puttonen

REQUIREMENTS RISK MANAGEMENT IN AGILE
SOFTWARE DEVELOPMENT PROJECTS

JYVÄSKYLÄN YLIOPISTO

TIETOJENKÄSITTELYTIETEIDEN LAITOS

2018

TIIVISTELMÄ

Puttonen, Heidi Annika
Järjestelmävaatimuksien riskien hallinta ketterissä järjestelmäkehitys projek-
teissa
Jyväskylä: Jyväskylän yliopisto, 2018, 95 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja(t): Tuunanen, Tuure

Erilaisten ketterien järjestelmäkehitys menetelmien kasvanut suosio on vaikutta-
nut perinteiseen tapaan ymmärtää järjestelmävaatimusten hallintaa. Ketterissä
järjestelmäkehitys projekteissa vaatimusmäärittely prosessin täytyy mukautua
kehitysympäristöön, jossa keskitytään pienempiin osakokonaisuuksiin valmii-
den tuotteiden asemesta, joissa muutos on jatkuvaa ja missä asiakkaan odotetaan
olevan vahvasti osallisena. Tämä vaikuttaa luonnollisesti myös järjestelmävaati-
muksiin liittyviin riskeihin. Tämä pro gradu tutkielma selvittää kuinka järjestel-
mävaatimusten riskejä hallitaan ketterissä järjestelmäkehitysprojekteissa, sekä
miten ketterän järjestelmäkehitys filosofian valinta vaikuttaa projektin järjestel-
mävaatimusten riskikenttään.

Tutkielman teoreettinen osuus tarkastelee järjestelmäkehitys alan ajankoh-
taista kirjallisuutta. Yhdistämällä tietoa järjestelmäkehityksen yleisestä riskien
hallinnasta, vaatimusten riskien hallinnasta ja ketterästä järjestelmäkehityksestä,
kirjallisuuskatsaus muodostaa kuvan järjestelmävaatimusten riskien hallinnan
keskeisitä ominaisuuksista ketterissä kehitysprojekteissa: Näissä projekteissa
myös itse vaatimusten riskien hallinnan täytyy sopeutua iteroivaan toimintata-
paan ja jatkuviin muutoksiin. Tämä lisää myös riskien muutosalttiutta ja samalla
tarvetta muokata riskianalyysin laajuutta sopimaan kulloiseenkin kehitys iteraa-
tioon. Samoin kirjallisuuskatsaus paljastaa kuinka järjestelmävaatimusten ris-
kien hallinnan pitää olla läpinäkyvää ja mahdollisuuksien mukaan ottaa mukaan
myös projektin muita sidosryhmiä varsinaisen kehitystiimin lisäksi.

Empiirisessä osuudessa kirjallisuuskatsauksen tuloksia rikastetaan tapaus-
tutkimuksella. Siinä Requirements Risk Prioritization -metodia käytetään vaati-
musten riskien hallintaan ketterässä järjestelmäkehitysprojektissa. Tapaustutki-
mus paljastaa kuinka ylätasolla myös ketterät projektit kohtaavat saman tyyppi-
siä haasteita kuin perinteisempiä kehitysmenetelmiä käyttävät projektit. Tapaus-
tutkimuksesta kuitenkin selviää neljä riskiryhmää, jotka tulosten mukaan ovat
keskeisessä roolissa ketterissä projekteissa. Nämä riskiryhmät liittyvät asiakkaan
rooliin ja käyttäjäkokemukseen, ketterän järjestelmäkehityksen prosesseihin, jär-
jestelmävaatimusten laajuuteen ja projektitiimiin. Tapaustutkimus myös koros-
taa kuinka tärkeää ketterissä projekteissa on pystyä kommunikoimaan järjestel-
mävaatimusten riskeistä siten, että kaikki sidosryhmät pystyvät niitä ymmärtä-
mään – erityisesti asiakas, jonka odotetaan olevan aktiivinen osallistuja projek-
tissa. Tässä kommunikaatiossa ketterät projektit voivat hyötyä erilaisten työka-
lujen käytöstä, kuten Requirements Risk Prioritization menetelmä, jota tässä ta-
paustutkimuksessa testattiin

Yleisesti tämän tutkimuksen tulokset korostavat kuinka järjestelmävaati-
musten riskien arviointi on haastavaa ketterissä projekteissa erityisesti koska sen
tekeminen vaatii laajaa tietoa projektista itsestään sekä sitä ympäröivästä organi-
saatiosta. Henkilön tai henkilöiden, jotka kyseistä analyysiä tekevät täytyy päästä
käsiksi tähän tietoon. Samaan aikaan ketterä prosessi pakottaa analysoijan kes-
kittymään riskeihin pienemmässä laajuudessa kerrallaan kuitenkaan unohta-
matta niiden riippuvuuksia projektin kokonaisriskiympäristöön. Vaikka järjes-
telmävaatimusten riskit ovat erittäin tärkeitä, niitä ei kuitenkaan koskaan voida
arvioida ja hallita irrallisena projektin muusta riskikentästä.

Asiasanat: järjestelmävaatimusten riskit, vaatimusmäärittely, järjestelmäkehityk-
sen riskien hallinta

ABSTRACT

Puttonen, Heidi Annika
Requirements risk management in agile software development projects
Jyväskylä: University of Jyväskylä, 2018, 95 p.
Information Systems, Master’s Thesis
Supervisor(s): Tuunanen, Tuure

The grown popularity of agile development methods has affected the traditional
understanding of requirement management. In these kinds of projects, require-
ment engineering process needs to adapt to an agile environment where the focus
on development is in smaller iterations instead of ready products, changes hap-
pen often, and a customer is expected to be highly involved in the process. This
naturally effects on requirement related risks that agile projects may face. This
Master’s thesis investigates how the requirements risk management is done in
agile projects and how selecting an agile development method affects require-
ment risks.

The theoretical part of this study reviews contemporary research literature
from the IS field. By combining knowledge from IS development risk manage-
ment, requirement risk management, and agile development it was possible to
summarize some key attributes of requirement risk management in agile projects.
In these projects also, requirement risks management needs to adapt to the itera-
tive development cycles and constant changes. This increases the volatility of the
requirement risks as well as the need to adjust the scope of the risks assessment
to fit the size of the development scope of any given time. Similarly, the
prominent role of the customer in agile IS projects emphasize how also the
requirements risk management should be transparent and involve, not only the
project team but also different project stakeholders.

The empirical part of this study further enriches these finding by testing the
Requirements Risk Prioritization method in a case study, in an agile project
where it was used as a tool to identify and prioritize requirement related risks.
The case study revealed how in higher level agile projects face similar risks as
projects where more structured methods are used. However, this study identified
four other types of risks that seem to play an increasingly important role in the
agile projects. These types related to customer’s role or user experience of the
system, agile development process itself, requirements scope as well as projects
team. The case study also highlights the importance of communication about re-
quirement related risks in a way that it is understandable for all the stakeholder
– especially when the customer is expected to be involved. Lastly, it showcases
how agile projects could benefit from having a tool to support this kind of com-
munication.

Results of this study also show how assessing requirements risks is chal-
lenging in agile projects since the people doing that needs to have a wide range
of knowledge from the project as well as the organization where it exists. This

individual or individuals should have also an access to that information. At the
same time the agile process forces them to be able to do a similar assessment for
risks on a smaller scale while not still forgetting to consider requirement risks as
a part of project’s overall risk environment: No matter how important require-
ments risks are, those never exist in a vacuum and should not be managed as
such.

Keywords: requirement risks, agile development, requirement engineering, ISD
risk management

FIGURES

FIGURE 1 Four values of Agile Software ... 14

FIGURE 2 Generic Agile process ... 19

FIGURE 3 Coarse-grain activity model of the requirements engineering process
 .. 22

FIGURE 4 Risk management process and its inputs and outputs 34

FIGURE 5 Risks environment and requirement risk management process
(extended version) ... 41

FIGURE 6 Requirements Risk Prioritization method ... 44

FIGURE 7 ISD risk management and the RRP method ... 45

TABLES

TABLE 1 Agile principles ... 14

TABLE 2 Traditional and agile development method comparison 17

TABLE 3 Requirements development techniques .. 25

TABLE 4 Traditional and agile approach to requirements engineering 27

TABLE 5 Example of risk items and resolution techniques 36

TABLE 6 Requirement risks ... 38

TABLE 7 Requirements risk categorizations and resolving techniques 42

TABLE 8 Risk profile summary ... 53

TABLE 9 Risk missing from the original checklists .. 55

TABLE 10 Risks with 100% validity for the research case 58

TABLE 11 Risk items with more high impact ratings than other ratings 60

TABLE OF CONTENTS

TIIVISTELMÄ ... 2

ABSTRACT .. 4

FIGURES .. 6

TABLES .. 6

TABLE OF CONTENTS ... 7

1 INTRODUCTION ... 9

2 REQUIREMENTS ENGINEERING IN AGILE SOFTWARE
DEVELOPMENT .. 12

2.1 Agile software development .. 12

2.1.1 Agile values and principles .. 13

2.1.2 The generic agile development model .. 18

2.2 Requirements engineering.. 20

2.2.1 Requirement engineering process ... 21

2.2.2 Requirements development techniques .. 24

2.3 Requirements engineering in agile software development 26

2.3.1 Differences in requirement engineering in agile and traditional
development projects ... 26

2.3.2 Common agile techniques which support requirements
engineering process ... 29

3 REQUIREMENT RISK MANAGEMENT IN AGILE PROJECT 32

3.1 The concept of risk in ISD ... 32

3.2 ISD risk management process .. 33

3.2.1 ISD risk assessment .. 34

3.2.2 ISD risk handling .. 35

3.3 Requirements risks and their handling .. 37

3.3.1 Requirement risks .. 37

3.3.2 Requirement risk management .. 40

3.3.3 Requirements risk management in Agile development and
Requirements Risk Prioritization method 42

4 RESEARCH METHODOLOGY .. 46

4.1 Case study as a research strategy and case description 46

4.1.1 Case description ... 47

4.1.2 Agile development in the case project .. 48

4.2 Data collection .. 49

4.2.1 Conducting a semi-structured interview 50

4.3 Data analysis ... 53

4.3.1 Analysis of risk profile summary... 53

4.3.2 Thematic analysis of the interview questions 56

5 STUDY FINDINGS ... 57

5.1 Evaluation of the risks in the checklists.. 57

5.1.1 Risks validity for the research case .. 57

5.1.2 Identifying risks with or without the checklists 58

5.1.3 Risk impact evaluations .. 59

5.1.4 Risks missing from the checklists .. 60

5.2 Evaluation of the data the method produced .. 61

5.3 Perceived usefulness of the method for the agile software project 64

6 DISCUSSION ... 68

6.1 Managing requirements risks in agile IS development project 68

6.2 Requirements risks environment in the agile project 70

6.3 Using the Requirements Risk Prioritization method in an agile
project .. 73

6.4 Implications for the practice ... 75

7 CONCLUSIONS .. 77

7.1 Limitations .. 80

7.2 Topics for future research ... 81

LÄHTEET .. 83

APPENDIX 1 INTERVIEW STRUCTURE ... 90

APPENDIX 2 INTERVIEW QUESTIONS ... 91

APPENDIX 3 GLOSSARY OF TERMS .. 93

APPENDIX 4: RISK CHECK LISTS.. 94

APPENDIX 5: THEMATIC ANALYSIS, THEME MAP .. 95

1 INTRODUCTION

Requirements engineering is an important part of information system (IS) devel-
opment. It is the phase when customers', users' and different stakeholder groups'
goals and ambitions toward the system are captured. This information is com-
bined into system requirements which describe what is needed from the system
to fulfill the needs of the end-users. One could say that requirements serve as a
blueprint for the IS implementation, ensuring that the final solution will success-
fully fulfill the purpose it was created for. Naturally, having flaws in this kind of
plan can significantly hamper the quality of the end result.

It is unfortunately relatively common knowledge in the IS field that devel-
opment projects tend to struggle in to achieve their goals. Many IS development
projects have challenges with keeping their budgets and schedules or delivering
a satisfying product to the end user. Some studies argue that almost half of the IS
projects are considered to be some level of failures. One culprit for this has been
found from the requirements engineering process: Both research literature and
practical experiences have revealed that shortcomings in the requirement engi-
neering process play often a notable role in IS project failure. This is why study-
ing common pitfalls in the requirement engineering process is important. It will
enable IS practitioners to understand how requirements should be managed so
that we are moving towards more successful IS development projects.

Avoiding common pitfalls, in other words, risk management is a critical
part of IS development project management and well-studied topic in IS research.
Requirement engineering as part of the IS development presents its own set of
risks that are often caused by challenges in collecting, analyzing, designing and
finally implementing IS requirements appropriately. These so-called require-
ment risks can be a result of a wide range of reasons and they can appear at any
time throughout the project’s lifecycle. In addition, requirements risks are not
just caused by internal issues inside the project team but those can appear also
because of external, organization-wide topics. Examples of such risks are changes
in organizational structures, strategic direction as well as turnover of the key pro-
ject team members. Varying nature of these risks and impact they can have for

10

the projects means that managing requirements risks is by no means a simple
task for the project team.

Current research literature represents a relatively good understanding of
the IS risks in general. There are plenty of studies which offer tools and best prac-
tices for the IS risk management, for instance (Boehm, 1991; Barki, Rivard & Tal-
bot, 1993; Keil, Cule, Lyytinen & Schmidt, 1998; Kontio, 2001; Lyytinen, Mathi-
assen & Ropponen, 1996). Surprisingly, the same cannot be said for the require-
ment risks management. Those studies which identify requirements related risks
as a separate topic from other IS project risks, mainly focus only on identifying
typical requirement risks. There are very few papers that share insights into how
to manage requirements risks in practice or provide tools for project managers to
do that in real life projects.

One exception is by Tuunanen, Vartiainen and Mehdi (2018) who defined a
method that helps the project team to prioritize requirements related risks. This
method is called Requirements Risk Prioritization method (RRP method). It of-
fers lists of typical requirement risks for different requirement engineering pro-
cess phases. These checklists can help project teams to identify risks as well as
avoid overlooking topics they would have missed otherwise. Writers claim that
by evaluating the impact of identified requirements risks, the project teams can
recognize the most important ones and prioritize them accordingly. The method
also provides risk resolution techniques for different risk types. Writers argue
that even though the method has not been created only a specific development
philosophy in mind, it could be used in all kinds of IS development projects.

After the emerge of agile methods, the traditional way of seeing software devel-
opment has been challenged by short development cycles, iterative development
mentality, and quick releases. The selected development method has naturally
impact on how requirements are managed. Differences in requirement engineer-
ing process in agile and more traditional development methods is covered rela-
tively well in the current research literature. These differences can affect, for ex-
ample, how requirements are gathered, when those are collected and how much
the end user or customer is involved in the process. All these differences affect
naturally also the risks the project may or is likely to face.

As different kinds of agile adaptations have grown in popularity in IS in-
dustry so has the need to understand how such methods affect IS project risk
environment and through that also requirement risks. Fundamentals of agile de-
velopment, such as high customer involvement, emphasizing teamwork, less fo-
cus on documentation and embracing the change create their own twist for the
already easily overlooked requirement risks. This can mean, for example, that as
requirement engineering process needs to adopt iterative development cycles,
requirements are not gathered fully at once and changes can appear at any point
in the process. This, in turn, can increase the ambiguity of requirements or the
likelihood of missing critical requirements. Similarly, as collaboration is highly
valued in agile projects, the risk of not sharing the correct level of knowledge

11

inside the development team can significantly complicate the effective commu-
nication of requirements among stakeholder groups.

Understanding what requirement related risks in the agile development pro-
jects are and how to manage them is important for the IS projects today: Accurate
identification and correct prioritization of requirement risk could positively im-
pact project general risk management and success. However, a limited amount
of information is available to support agile projects teams to accomplish this. To
fill in this knowledge gap, the goal of this master's thesis is to shed light on this
topic. This master’s thesis aims to understand what requirement related risks are
in agile IS development projects and how those should be managed. Secondly,
this thesis investigates a real-life case project where RRP method is tested as a
tool to assess requirement related risks hence giving more visibility how this pro-
cess could be supported by the method provided by IS research. The research
topic is divided into the following research questions:

• How requirement risks management is done in agile software develop-
ment projects?

Furthermore, this main research question is divided into the following sub-
questions:

• Does the selected development method affect ISD projects risk environ-
ment?

• Does Requirements Risk Prioritization method help requirements risks
management in an agile project?

• Are there typical requirement risks in agile projects?

This master’s thesis first forms the theoretical background for the research topic
by reviewing contemporary IS research literature on the research topic. The goal
of the literature review is to form an understanding of requirement risks man-
agement in agile development projects. This is done by combining knowledge
about how risks management is done in IS development projects in general, how
requirement risks are considered in relation to that and how both topics can be
considered from the agile development point of view.

The empirical part of this study is conducted as a single case study. There
RRP method is tested in practice as a tool for requirement risk assessment. Re-
search case gives a glance to the practicalities of a real-life requirement risks man-
agement process in the agile project environment. This further enriches and
deepens the understanding of this process which combined with literature re-
view findings can help to answer research questions.

12

2 REQUIREMENTS ENGINEERING IN AGILE
SOFTWARE DEVELOPMENT

"Evolution favors those that operate with maximum exposure to environmental
change and have optimized for flexible adaptation to change. Evolution deselects those
who have insulated themselves from environmental change and have minimized
chaos and complexity in their environment" (Schwaber, 1997)

Software development is never done in a vacuum. It is a complicated process,
which is affected by the organizational environment, time and available re-
sources as well as different stakeholders. The question of how software develop-
ment should be organized in order to deliver better, faster and more cost-effective
solutions has been a hot topic in the ISD field for decades. The fast development
of the field itself and the way information systems are now involved in almost all
aspects of our lives, mean that developing such systems requires the ability to
respond to this dynamic environment. The idea of coping with constant changes
is a key principle in most of the agile software development methods. Quickly
evolving requirements, rapid change of market environment, changing technol-
ogies and time constraints are just a few examples of the reality of software de-
velopment today and at the same time the development environment where agile
methods usually perform well (Highsmith & Cockburn, 2001).

Requirements engineering is one of the key processes that guide the direc-
tion of a system development project. It is naturally highly affected by the devel-
opment environment and the development method in use. Some agile principles
such as high customer involvement, frequent feedback from stakeholders and
flexible attitude towards documentation have challenged the traditional view of
requirements engineering (Cao & Ramesh, 2008; Kassab, 2014). This chapter
gives an overview and background of agile software development and how re-
quirements the engineering process has evolved as part of it.

2.1 Agile software development

In traditional, often referred as plan-based or heavy-weight view of software de-
velopment, the development process is considered to be linear and predefined.
This "engineering-approach" claims that problems can be fully specified and op-
timal solutions for them exist. It also assumes that all sources of variations are
identifiable and possible to be eliminated by refining the process itself. The tra-
ditional methods commonly rely on upfront requirement definitions, detailed
planning, and heavy documentation. (Dybå & Dingsøyr, 2008; Jiang & Eberlein,
2009; Nerur, Mahapatra & Mangalaraj, 2005). Software development methods,
which are based on these concepts usually struggle when they face unexpected
changes or outputs from any of the intermediate process phases (Schwaber, 1997).

13

Two prominent examples of traditional methods are the Waterfall model that is
based on Winston W. Royce's (1970) article and the Spiral model which was first
described in the paper by Barry Boehm (1986) (Jiang & Eberlein, 2009).

To improve software development methods to better answer to the constant
changes of both development environment and system requirements, experts
and experienced practitioners have come up with methods labeled as agile (Dybå
& Dingsøyr, 2008). Agile software development includes a wide range of differ-
ent methods, which typically promote similar concepts such as suppleness, nim-
bleness, dexterity and responding to changes (Beck et al., 2001; Cohen, Lindvall
& Costa, 2003; Erickson, Lyytinen & Siau, 2005). One of the first known agile
methods is the Dynamic System Development Method (DSDM), followed by Ex-
treme programming (XP) (Larman & Basili, 2003). Other well-established agile
methods are for example Crystal methodologies, Feature-driven development,
Lean software development, and Scrum. (Dybå & Dingsøyr, 2008).

The term "Agile Method" is not a new one. It has been around for more than
a decade and many of its key principles even longer. (Cohen et al., 2003; Dybå &
Dingsøyr, 2008). In the literature roots of the term agile can be traced back to the
1990s manufacturing industry's lean development or lean manufacturing (Jiang
& Eberlein, 2009). Although agility has a relatively long history, there is no full
agreement on what it really is (Qumer & Henderson-Sellers, 2006). According to
Wong and Whitman (1999), to be agile means the ability to effectively respond to
unexpected and rapid changes with flexibility. Hendersson and Sellers (2005), in
turn, argue that an agile entity gains knowledge and experience from its external
and internal environment and improves. Qumer and Hendersson-Sellers (2006)
propose in their article the following definition:

"Agility is a persistent behavior or ability of a sensitive entity that exhibits flexibility
to accommodate expected or unexpected changes rapidly, follows the shortest time
span, uses economical, simple and quality instruments in a dynamic environment and
applies update prior knowledge and experience to learn from the internal and external
environment."

All these different definitions approach agility from slightly different angles.
They all still seem to share similar core ideas or values. These agile values and
principles have been summarized in the Agile Manifesto. It and its content are
discussed more in detail in the following chapter.

2.1.1 Agile values and principles

The starting point for agile software development "movement" is usually said to
be Manifesto for Agile software development. This declaration was a result of a
summit where 17 software development gurus got together in Utah, Snowbird in
2001. They shared a common goal to address known issues that troubled tradi-
tional software development such as lengthy and stiff development projects,
which ended up exceeding their budgets and didn’t satisfy the end users. (Agile

14

foundations: Principles, practices and frameworks, 2015). The resulted manifesto
consists of four key values (figure 1) and twelve supporting principles (table 1).

FIGURE 1 Four values of Agile Software (Beck et al., 2001)

TABLE 1 Agile principles (Agile Foundation: Principles, practices and frameworks, 2015)

Principle 1 Our highest priority is to satisfy the customer through the early and continuous delivery
of valuable software.

Principle 2 Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

Principle 3 Deliver working software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale.

Principle 4 Business people and developers must work together daily throughout the project.

Principle 5 Build projects around motivated individuals. Give them the environment and support
they need and trust them to get the job done.

Principle 6 The most efficient and effective method of conveying information to and within a devel-
opment team is a face-to-face conversation.

Principle 7 Working software is the primary measure of progress.

Principle 8 Agile processes promote sustainable development. The sponsors, developers, and us-
ers should be able to maintain a constant pace indefinitely.

Principle 9 Continuous attention to technical excellence and good design enhances agility.

Principle 10 Simplicity--the art of maximizing the amount of work not done--is essential.

Principle 11 The best architectures, requirements, and designs emerge from self-organizing teams

Principle 12 At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

15

The first value, focusing more on individuals and interactions over the tools and
processes, means emphasizing the relationship and communality of the people
working on the software project instead of institutionalized processes and devel-
opment tools. (Abrahamsson, Salo, Ronkainen & Warsta, 2002). This means that
in place of standardizing people to the processes, agile methods aim to adapt
processes to the people by capitalizing on the strengths of each team and indi-
vidual. This is achieved by promoting interactions and communication among
the project team members and having the customer in the core focus. An agile
project team is typically self-organized and collaborates intensively within and
across organizational boundaries. (Cockburn & Highsmith 2001). The impact of
this is visible as different collaborative practices included in different methods
like pair programming, co-location etc.

The second value highlights another common practice in most of the agile
methods, which is the continuous delivery of working software (Abrahamsson
et al., 2002; Beck et al., 2001; Jiang & Eberlein, 2009). This means producing new
releases in frequent intervals. Usually, this is achieved by building a software in
several iterations. Each iteration is an independent "mini-project" that includes a
set of activities such as requirement analysis, design, development, and testing.
After each iteration follows an iteration release where a stable system, or a part
of the system, is released. Several releases may be needed to finalize new features
or a finished product. In agile the working software is typically considered to be
the best measurement for overall project progress (Beck et al., 2001; Larman,
2004).

Over documentation has been one of the detrimental problems in tradi-
tional software development. Extensive documentation is challenging to keep up
to date and both generating as well as maintaining the documentation takes a lot
of time. Some even argue that the only documentation one can trust is the code.
(Paulk, 2002). The documentation burden in agile methods is kept to the mini-
mum by making sure that code itself is simple, straightforward and technically
as advanced as possible (Abrahamsson et al., 2002; Nerur et al., 2005). Overall,
agile methodologies favor more tacit than explicit knowledge and the knowledge
is transferred by human interactions rather than by formally documenting it
(Paulk, 2002).

Customer collaboration and focus are in a central role in agile software de-
velopment methods. As Highsmith and Cockburn (2001) state: "Delivering cus-
tomer value (however the customer defines it) measures the success of the agile
project". This means for example that co-operation between the customer and the
developer is preferred over strict contract negotiation (Abrahamsson et al., 2002).
In some methods such as XP, the customer (if not already internal one) is pre-
ferred on site (Manzo, 2002). When the customer is involved in the development
project, they can follow up the progress more closely and have a clearer under-
standing of what is coming out from the pipeline and when. This mitigates the
time spent on reporting and documentation of the project progress (Cockburn,
2002). The customer is also able to provide feedback, answer questions and react

16

faster if the project is, for some reason, starting to stray from the correct path.
Paulk (2002) even uses the phrase "agile relationship" to describe the collaboration
between a customer and a development team. He also mentions the inability to
establish such a relationship as one of the significant barriers to adopt agile meth-
odologies.

The fourth value means that all the participants in an agile development
project are prepared to make changes and react to changed situations during the
entire life cycle of the project. In traditional, plan-driven development any
change from the original plan triggers heavy alterations in project management
processes. Because of this, changes are very hard and expensive to make. In agile
methods, the incremental approach to the process allows changes during the
whole project. It also means an individual change can be handled more flexibly.
Continuous feedback from the customer and constant re-prioritization of the de-
velopment tasks ensure that any needs for change are spotted early on and the
effects they have on the project resources are more manageable. (Abrahamsson
et al. 2002; Nerur et al. 2005; Higsmith 2002).

Nerur, Mahapatra and Mangalaraj (2005) summarize in their article topics
which usually separate traditional and agile software development. This sum-
mary can be found from table 2. In addition to the previously mentioned agile
values, they also emphasize differences in organizational factors. Agile methods
benefit from a management style that supports collaboration and lacks heavy
control. The agile organization itself is usually very organic, less bureaucratic and
inclusive. Again, an ideal agile team encourages flexible roles and changes in re-
sponsibilities compared to more traditional approaches where individual spe-
cialization is valued high.

There is naturally some criticism against agile methods. Firstly, some argu-
ments state that agile methods don't fit for all types of development projects -
especially when the developed system is in life-critical or high-reliability context.
(Paulk, 2002). Similarly, as it is critically different to manage a battlefield and
managing warehouse logistics, the agile methods seem to shine on projects that
involve exploratory actions (volatile requirements, experimental technology etc.)
whereas traditional methods are more suitable for projects involving repeatable
processes and high predictability (Highsmith, 2002). Previous literature has also
suggested that agile methods are more suitable for small teams than larger pro-
jects in complex organizations (Dybå & Dingsøyr, 2008; Poole, Murphy, Huisman
& Higgins, 2001).

17

TABLE 2 Traditional and agile development method comparison (Nerur et al., 2005)

 Traditional Agile

Fundamental as-
sumptions

Systems are fully specifiable,
predictable, and can be built
through meticulous and exten-
sive planning.

High-quality, adaptive software
can be developed by small
teams using the principles of
continuous design improvement
and testing based on rapid feed-
back and change.

Control
Process-centric

People-centric

Management Style
Command-and-control

Leadership-and-collabora-
tion

Knowledge man-
agement

Explicit

Tacit

Role Assignment
Individual-favors speciali-
zation

Self-organizing teams -en-
courages role interchangea-
bility

Communication
Formal

Informal

Customer's role
Important

Critical

Project Cycle
Guided by tasks or activi-
ties

Guided by product features

Desired Organiza-
tional Form/Struc-
ture

Mechanistic (bureaucratic
with high formalization)

Organic (flexible and partici-
pative encouraging coopera-
tive social action)

Secondly, researchers have noticed some issues with the common agile practices:
In reality, customer availability for development projects, especially on site, is
not always possible. Lack of written documentation and focus on tacit knowledge
may lead to problems when new people join the project team. Agile methods may
also lead to a situation where developers should be more generalists than spe-
cialists. These people are not easy to find when at the same time, agile methods
encourage the use of new, cutting-edge technologies. (Paulk, 2002). As in every-
thing, finding a middle ground is important. Selecting what best suits the devel-
opment project and organizational culture seem to be the key to the ISD project's
success. This has led to a situation where many organizations decide to adopt a
development method that is a mixture of the plan based and agile (Tuunanen et
al., 2018).

18

To summarize, the “agile family” includes different development methods
that all share the same key values. They are characterized by a collaborative and
communication driven development environment where the value is delivered
in small increments fast and cost-effectively without losing time on extensive
documentation and unnecessary following of predefined plans. It is important to
note that all the agile values are enabling other ones. Paulk (2002) summarizes
this accurately in the following way: "An agile method that ignores customer col-
laboration and incremental development would almost certainly fail. Agile prac-
tices are synergic, and the success of agile methodologies depend on the emer-
gent properties of the set of practices as a whole."

2.1.2 The generic agile development model

Each of the agile development methods has their own take on how to deliver
information technology products. Selecting which agile framework should be
used depends a lot on the project and the environment where it is developed.
Measey (2015, 38-42) offers a simplified description of a generic agile model that
helps to showcase how agile processes aim to reach their goals.

Figure 2 illustrates this generic agile process. In this model, everything re-
volves around product backlog and development cycles. Customer, as one of the
key actors in the process, continually evolves the product backlog. The backlog
is a collection of requirements for the developed system, for example, new fea-
tures or functionalities. Backlog management is supported by the development
team which may consist of developers, ISD project manager, product owner etc.
Backlog content is prioritized and organized to the development iterations
(sprints). Which in practice means deciding what is developed in which devel-
opment cycle. The team then delivers product increments according to the sched-
ule. After one development iteration, the next one starts, and the cycle begins
again. (Measey, 2015, 38-42).

19

FIGURE 2 Generic Agile process (Measey, 2015, 38)

The planning activities happen in all layers. First, backlog content is planned with
the customer according to the requirements derived from their needs and goals.
Secondly, each sprint/iteration content is planned by prioritizing the content of
the backlog and selecting features to be delivered. Lastly, each release is planned,
and a suitable amount of iterations are included in the released version of the
product. Agile methods encourage frequent releases and one release can include
content from one or more sprints. Sometimes if the agile process is scaled, plan-
ning actions spread across the projects, for example, when several projects share
a similar release schedule. (Measey, 2015, 38-42)

Daily meetings or stand-ups are held within the sprint. These are used to
keep everyone involved up to date and to guide the day-to-day activities in the
project. The current work and status of the releases or iterations are visualized in
different visual boards. These boards can be digital or, for example, made from
post-it notes. Their purpose is to offer transparency of the current development
status to everyone involved. RAID logs are used to track things which may affect
later development cycles (risks, assumptions, issues, and decisions).

20

The agile process is fueled by feedback loops. These loops are included in
the process in form of reviews. ‘Show and tell’ sessions are organized to review
deliverables of different process phases. Examples of such reviews are release
and sprint reviews. The feedback from these meetings is used to improve the
solution, to recognize possible challenges and provide the basis for the next iter-
ations. Another form of feedback is gathered from retrospectives (discussed more
detail in chapter 2.3.2), which are also performed in selected times of a process.
Information from retrospectives is used to improve the current way the team
works. (Measey, 2015, 38-42).

Figure 2 showcases also four key actors in an agile process: customer, the
team, stakeholders and agile lead. ‘Customers’ are the ones who “own” the prod-
uct. They make the final call of what will be done and what is the priority of those
deliverables. They hold and know the vision of the product and should be able
to answer the question ‘Why are we doing this?’. Customer role is not a simple
one and in an agile process the customer ideally is willing to be involved, actively
participating in the decision making, is knowledgeable enough to make correct
decisions and is available for the project team. (Measey, 2015, 38-42) Customer
involvement is also emphasized in the agile values and principles (Figure 1, table
1) (Fowler & Highsmith, 2001).

The team is the actor that keeps the process rolling. It has a responsibility of
deciding how to work to best achieve the current goals. The team works in close
collaboration with the customer to refine requirements and typically divide big-
ger entities into smaller tasks. The team is responsible also for estimating how
much efforts are needed for each iteration and who is focusing on which tasks.
An agile team is usually self-organized. This means that the team has often the
freedom to choose their ways of working. The teamwork is supported by the ag-
ile lead who is responsible for enabling the team's way of working. Agile lead
facilitates and enables different agile processes. A person holding this role
coaches teams to continuously improve their performance and spot inefficiencies.
(Measey, 2015, 38-42)

Stakeholders are those parties in the organization who have an interest in
the developed solution and are actively involved in the ISD project. Their respon-
sibility in the agile process is to ensure that the needs and interests of the group
they advocate are accurately represented. Even though stakeholders do not nec-
essarily possess the same kind of decision-making power as the customer does,
they can still positively or negatively impact the ISD project. Identifying correct
stakeholder groups is important for the project success (Measey, 2015, 38-42).

2.2 Requirements engineering

The success of a software system depends on how well it meets the purpose for
which it was intended. In other words, how well real-life needs, or goals are sup-
ported by different functionalities of the designed system. Requirements engi-
neering (RE) is a branch of software engineering that is focused on this aspect of

21

development processes. RE processes include all the activities involved in iden-
tifying stakeholders, discovering their needs, documenting and maintaining
them and, at the same time, understanding the constraints of the software system
and architecture. (Kotonya & Sommerville, 1998; Nuseibeh & Easterbrook, 2000;
Zave, 1997) RE is a human-centered and multidisciplinary process including
tools and techniques not just from the computer science, but also, for example,
cognitive psychology, sociology and linguistics (Nuseibeh & Easterbrook, 2000).

In order to understand RE as a process, one needs to answer the question:
What is a requirement? Requirements describe how the system should behave,
what the constraints on the system's operation are or they specify the system's
attributes or property. Requirements are derived from the different stakeholders
of the developed system. These stakeholder groups are for example end users,
business management and development team. (Wiegers & Beatty, 2013, 5-9; Ko-
tonya & Sommerville, 1998). According to IEEE (1990) standard, a requirement
in system development means:

"(1) A condition or capability needed by a user to solve a problem or achieve an objec-
tive. (2) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification or other formally imposed doc-
uments. (3) A documented presentation of condition or capability as in (1) or (2)."

In short, requirements are base for understanding what the system should
do hence being a guide for what should be implemented to the system.

In many occasions, the requirements are divided into functional and non-
functional requirements (Glinz, 2007). Functional requirements describe actions
that system or end-product must be able to perform (IEEE standard glossary of
software engineering terminology 1990; Kotonya & Sommerville, 1998). It also
explains inputs to the system (stimuli) and outputs from the system (responses)
and how the system behaves between them (Davis, 1993).

The definitions for non-functional requirements vary in the related litera-
ture. Glinz (2007) summarizes in his article:

"A constraint is a requirement that contains the solution space beyond what is neces-
sary for meeting the given functional, performance and specific quality requirements.
An attribute is a performance requirement or a specific quality requirement (…) A non-
functional requirement is an attribute of a or a constraint on a system."

This means that these non-functional requirements don't focus on functionalities
of the system but define the overall qualities or attributes of the resulting system.
Non-functional requirements can be related to for example security, safety, usa-
bility and reliability of the system. (Kotonya & Sommerville, 1998).

2.2.1 Requirement engineering process

Requirements engineering or requirements management is traditionally re-
garded as a front-end activity that happens in the early stages of the development

22

process, but it may also play a role in the implementation phases and even in
maintenance (Kotonya & Sommerville, 1998; Nuseibeh & Easterbrook, 2000). Re-
quirement engineering as a process can be structured in different ways and dif-
ferent organizations tackle it in radically varying ways. Kotonya and Sommer-
ville (1998) divide the process into the following activities: requirement elicita-
tion, requirement analysis, and negotiation and requirement validation. In figure
3 these activities are displayed in coarse-grain activity model in relation to an-
other. Writers have chosen the coarse-grain activity model because it shows the
major activities in a particular process and their approximate sequencing. In re-
ality requirement activities rarely follow a simple sequential pattern but are more
likely to overlap each other in different phases of the software development.

FIGURE 3 Coarse-grain activity model of the requirements engineering process (Kotonya &
Sommerville, 1998)

Eliciting requirements happens in the first phase of requirement engineering pro-
cess in which the needs and goals of the different stakeholders (clients, develop-
ers, users etc.) are collected or captured. Typically, this means finding the prob-
lems that need to be solved. This forms the boundaries that define the context of
the developed system. (Nuseibeh & Easterbrook, 2000; Paetsch, Eberlein &
Maurer, 2003). Although other strategies are possible, requirements elicitation is
often done either with a product-centric or usage-centric approach. The product-
centric strategy aims at defining features that focus on reaching the business suc-
cess. The usage centric approach derives necessary system functionalities from
user goals. (Wiegers & Beatty, 2013, 48-49)

Different methods can be used for requirement elicitation like interviews,
use cases /scenarios, observations, focus groups and prototyping. The goal of the
different techniques and tools is to improve the clarity and reduce the ambiguity
of the requirements. (Chua, Bernardo & Verner, 2010). Eliciting requirements re-

23

quires knowledge of the organization, the application domain and business pro-
cesses - an overall understanding of the environment where the system will be
used. Other terms used to describe this phase are requirement discovery and re-
quirement acquisition. (Kotonya & Sommerville, 1998).

When requirements are collected from different stakeholder groups it is al-
most inevitable that some conflicts will arise. Requirements analysis and negoti-
ation are activities during which elicited requirements are elaborated further to
establish agreed set of requirements that are consistent and complete. During this
phase, requirements are checked for their necessity, completeness, feasibility,
and consistency. This means that requirements are actually presenting necessary
functionality, they don't contradict each other, no constraints are missing, and
requirements are feasible to be implemented when considering the budget and
schedule of the development project. The goal of this phase is to reach a rich and
precise understanding of each requirement. (Wiegers & Beatty, 20131 121;
Paetsch et al., 2003).

Requirements analysis and negotiation phase is very closely related to re-
quirements elicitation. It is also the phase when possible problems are discovered.
This means trying to recognize missing, overlapping, conflicting, ambiguous and
unrealistic requirements. In this phase problems in the initial requirements are
discussed and compromises are formed to achieve a solution that will cater to all
project stakeholders. (Kotonya & Sommerville, 1998; Ahmad, 2008). During ne-
gotiations, additional requirements may arise. This may result in updating pre-
vious requirements and re-entering the requirement elicitation phase. (Wiegers
& Beatty, 2013, 139; Ratchev, Urwin, Muller, Pawar & Moulek, 2003).

The purpose of requirements documentation is to provide a way to com-
municate system requirements between different stakeholder groups (customer,
management, developers etc.). In this phase, the goal is to store the collected re-
quirements knowledge in well-organized fashion. Usually, requirements are doc-
umented in a formal way, but there is no standard name or format for the docu-
ment and practices may vary from one organization to another. Some commonly
used terms for the document are requirements document, functional specifica-
tion and requirements specification. (Paetsch et al., 2003).

Requirements themselves are usually written in a natural language accom-
panied by diagrams, equations, and models. (Kotonya & Sommerville, 1998;
Zhang et al., 2010) According to Paetsch et al. (2003), qualities of a good require-
ments document are: unambiguous, complete, understandable, consistent, cor-
rect and feasible. The level of detail in which the requirements are documented
varies. High-level requirements are used for communication with the customer
and they focus more on describing user's actual need. Later these descriptions
can be refined and adjusted into more detailed and technical specification.
(Zhang et al., 2010). The most important quality of the selected documentation
format is that it is suitable for the use, review, and comprehension of the intended
audience. (Wiegers & Beatty, 2013, 181-186).

24

The requirements document can be structured in many ways. The structure
varies depending on the organizational practices, the type of system which is be-
ing developed and the level of detail needed. According to Kotonya and Som-
merville (1998) the requirements document usually describes at least the follow-
ing:

• The service and functions which the system should provide

• The constraints under which the system must operate

• Overall properties of the system

• Definitions of other systems which the system must integrate
with

• Information about the application domain of the system

• Constraints on the process used to develop the system

Some large organizations like IEEE and US Department of Defense have created
standards for requirements document (Kotonya & Sommerville, 1998).

The last activity in the requirements engineering process, requirements val-
idation, is a phase when requirements are certified. This means answering the
question: Do requirements really represent an acceptable and valid description
of the developed system? The activity of requirements analysis has a lot in com-
mon with the validation phase. Both involve analyzing requirements, judging
their representation of the real stakeholder need and recognizing possible prob-
lems and conflicts. The key difference between the two phases is the complete-
ness of the requirements that are evaluated. When in analyzing phase, require-
ments are usually incomplete and unstructured as the goal of the analysis is to
answer to the question: Do we have the right requirements? Requirements vali-
dation is focused on fine-tuning the requirements document from where all the
known inconsistencies and incompleteness have already been removed. The fo-
cus question of the requirements validation is: Do we have the requirements right?
The output of the requirements validation process is a list of system requirements
that are then used to implement the desired solution. Ideally, requirements vali-
dation process produces also a list of problems affecting the current requirements
setup and agreed on actions how to deal with them. (Kotonya & Sommerville,
1998; Paetsch et al., 2003)

2.2.2 Requirements development techniques

Collecting requirements from the correct stakeholder groups and transforming
them eventually to system features is anything but a simple task. There are sev-
eral examples in the literature about the common pitfalls in the requirements en-
gineering process. For instance, Kauppinen, Savolainen, Lehtola, Tohonen, and
Davis (2009) identified in their article challenges that plague IS development
which could be addressed with the requirements engineering process. Pitfalls
they mention are generalizing users to too few separate user groups, not support-
ing customer’s processes well enough, releasing deficient features due to the

25

schedule pressure, adding too many features or fine-tuning individual feature
too much or general lack of overall picture in the development.

To avoid these pitfalls several different requirement development tech-
niques have been generated. Requirements development technique means those
methods which can be used in all the phases of the RE process. Those are used to
achieve a goal of that specific RE process phase. Mathiassen, Saarinen, Tuunanen
and Rossi (2007) identified from the previous literature in their article four dif-
ferent trends in requirements development techniques: Requirements discovery,
requirements prioritization, requirements experimentation and requirements
specification. These techniques are listed in table 3. Writers note that not all the
techniques can be identified to belong to only one technique family but can utilize
principles from several of them.

TABLE 3 Requirements development techniques (Mathiassen, Saarinen, Tuunanen & Rossi,
2007)

Technique Definition

Requirements discovery Customer-centric and based on iden-
tification or prediction of customer
needs

Requirements prioritization Resource-centric and based on analy-
sis of and the choice between identi-
fied requirements

Requirements experimentation Software-centric and based on itera-
tive processes involving end users

Requirements specification Documentation-centric and based on
abstraction and textual or graphic
representation

With discovery techniques, the focus is on user or would-be users. These tech-
niques facilitate identifying and explication of requirements without having a
rigid approach to documentation. In these techniques communication is usually
less about software artifacts but instead, these techniques rely on having a per-
sonal contact between user and developers. Discovery techniques emphasize un-
derstanding and predicting the needs and beliefs of different user groups. These
techniques borrow ideas from approaches used in marketing (Delphi, laddering
etc.) and take advance of group dynamics like focus group interviews, where re-
quirements are discovered through stakeholder group interactions. (Mathiassen
et al., 2007).

Prioritization techniques are based on the fact that software development
has limited resources like time, costs, technologies etc. These techniques apply
various types of decisions, support, and analysis to help to focus the require-
ments development towards the right goal. One example is the critical factor
technique that guides the project to focus on the most important requirements
from the top management's point of view. (Mathiassen et al., 2007).

26

On the opposite for discovery techniques, experimentation techniques use
design and software artifacts as a key tool to communicate with users. These
software-centric approaches differ in the level of user involvement, but in order
to be used, there has to be some representation of the software available. This
may mean using prototypes or preliminary versions of the software components
and then using user feedback to guide further requirements development. Exam-
ple of experimental technique can be workshops where developers and users
jointly discuss and debate about requirements and solve problems. This kind of
practices has been widely used in the software development world. (Mathiassen
et al., 2007).

The last technique family in Mathiassen at al. (2007) categorization is spec-
ification techniques. With them, the focus is on documentation. These techniques
are distinguished from others by focusing on providing an agreed upon and an
explicit basis for the future development. Some of these techniques rely on de-
cidedly formal concepts and precise notation schemes. One example is Box struc-
tures that offer a representation of requirements with execution semantics. Not
all specification techniques are formal tough, and those that are not, usually uti-
lize a natural language that can be still augmented with more formalized nota-
tions and concepts. With specification techniques, requirements are acquired
from the users, by studying the existing software or developing a graphical
presentation of requirements. Entity-relationship modelling is one example of
the specification techniques. (Mathiassen et al., 2007).

2.3 Requirements engineering in agile software development

There has been a debate about what kind of role RE plays in agile software de-
velopment. Ramesh, Cao and Baskerville (2010) even state that the term 'require-
ments engineering' is avoided in the agile community because it is often taken to
imply heavy documentation with significant overhead. They also mention that
many agile methods advocate moving into coding without centralized require-
ments engineering in the design phases of the software project. Instead, agile
methods such as Extreme programming support RE processes throughout the
development lifecycle in small stages (Cao & Ramesh, 2008; Paetsch et al., 2003).

2.3.1 Differences in requirement engineering in agile and traditional devel-
opment projects

One of the biggest differences that agile methods bring to traditional RE is the
iterative nature of the development process itself. Even though the traditional RE
also includes the idea of not following the sequential process (Kotonya & Som-
merville, 1998) and going back to previous phases, this is even more prominent
when considering RE with agile methods. In agile RE all the traditional RE phases
blend together and clear distinction between them is hard to make. RE activities

27

may follow each other in the same order as in traditional approaches, but those
activities are repeated in each iteration: Requirements are elicited, analyzed and
negotiated, documented and validated continuously. This means that efforts put
to the requirement engineering are frequent, but less extensive at the same time.
(Wiegers & Beatty, 2013, 383; Paetsch et al., 2003).

Cao and Ramesh (2008) summarize the differences between the RE process
phases in traditional and agile system development (Table 4). In the following
table 4 it is concluded how the requirement elicitation, analysis, and negotiation,
documentation and validation are affected by agile principles like incremental
development philosophy, high customer involvement and less focus on docu-
mentation.

TABLE 4 Traditional and agile approach to requirements engineering (Cao & Ramesh 2008;
Dybå & Dingsøyr 2008)

Phase

Agile requirements
engineering

Traditional
requirements
engineering

Elicitation Requirements evolve during
the project lifecycle and new
requirements are discovered
throughout the development
process

Discovering requirements is
usually done in the early
stages of the project.

All requirements are discov-
ered upfront

Analysis and negotia-
tion

Focus on refining, changing
and prioritizing require-
ments iteratively

Focus on resolving conflicts

Documentation No formal documentation Formal documentation that
contains detailed require-
ments

Validation Face-to-face communication The consistency and com-
pleteness of requirements
document

Typically, in an agile project, detailed requirements are rarely pre-defined. As
requirement tend to emerge during the development process, RE processes are
forced to be flexible and adaptive. High level of elicitation activities does usually
take place at the project's beginning similarly to traditional methods, but those
only provide a general level of information about the critical software features.
(Cao & Ramesh, 2008; Zhang at al., 2010) Frequent interaction among stakehold-
ers is used to ensure that requirements can evolve with a lesser investment of
time. The traditional RE, in turn, aims at recognizing all the requirements before
the development starts. (Elghariani & Kama, 2016)

Heavy customer involvement in agile project affects all the RE phases. From
the Cao's and Ramesh's (2008) summary (table 4), it is visible how this agile value
has its effects in every step of RE process: Face-to-face communication with the

28

customer is preferred over extensive documentation and constant planning and
extreme prioritization is done together with the customer. (Cao & Ramesh, 2008;
Zhang et al., 2010)

A customer plays a significant role also in negotiation and analysis of re-
quirements; particularly as new requirements emerge. In traditional RE require-
ments are typically prioritized once as the customer involvement is high only in
the early phases of the project (Paetsch et al., 2003). With agile methods, prioriti-
zation happens constantly. The goal is to focus on those features first which bring
the most value to the customer. In traditional development methods, completely
new requirement, that appears in the later stages of the development projects,
must usually go through change-management processes and then through all the
traditional phases of the RE (Overhage, Schlauderer, Birkmeier & Miller, 2011).
In agile methods requirements prioritization is done in planning meetings, usu-
ally before each new development cycle or iteration (Cao & Ramesh, 2008).

As mentioned earlier the documentation of requirements in agile methods
is usually kept to the bare minimum. In many agile methods creating complete
and extensive documentation is not seen as cost-effective or feasible. In many
cases, the possible long-term problems caused by the lack of documentation is
compensated with focusing on to the clean and compact code. Most of the agile
methods have some kind of documentation recommendations, including the use
of a requirements document. (Paetsch et al., 2003) Instead of a formal require-
ments document, in agile RE requirements are usually documented informally to
lists of features or stories. The need for formal documentation is replaced with
intense collaboration and communication between the customer and the devel-
opment team. (Cao & Ramesh, 2008). The formal documentation that exists has
a scope that is limited and focuses on the core aspects of the project. This also
reduces the time spent on keeping the formal documentation up to date. (Paetsch
et al., 2003).

The requirement validation in agile RE is usually done during different
kinds of review meetings after the latest development cycle. For example, in
Scrum process, after each sprint, developers and business stakeholders come to-
gether to sprint review where developers demonstrate new features and other
participants can provide feedback and ask questions. In agile RE validation ac-
tivities focus confirming if requirements reflect current user needs. The complete-
ness and consistency are not in focus since formal requirements document is sel-
dom available. (Cao & Ramesh, 2008; Paetsch et al., 2003). During review
meetings, customers are usually able to use or test the software, experience how
functionalities support their needs and what parts are already implemented.
These moments are also an opportunity to discuss the implementation with de-
velopers and ask changes in design. (Paetsch et al., 2003).

One of the key values in agile development is to build a software in small
working increments. The real working software can serve as an actual represen-
tation of the requirements for the customers. The project team and the customer
should then together evaluate and refine the solution and plan the next develop-

29

ment iterations. The current solution can be regarded as a starting point for re-
quirement elicitation rather than the end of the RE process. This combined with
frequent releases makes it easier for the customer to understand the overall stage
of the project and provide timely feedback to the development team. (Zhang et
al., 2010).

Agility is not without its challenges when considered from the RE point of
view. Project budget and time estimations are hard to make due to unstable, ever-
changing requirements and constant planning and design actions. (Elghariani &
Kama, 2016). This is the reason why instead of fixed price/fixed scope contracts,
agile software development projects often use time and expense as a base for the
contract (Paetsch et al., 2003).

Another common hardship in agile RE process is the customer's role. In re-
ality, the customer may not always be available to give feedback and comment
on the ever-changing requirements. (Elghariani & Kama, 2016). This is especially
the case when two or more customer groups are involved, the developed system
is very complex or customers are involved in different areas of the system. (Cao
& Ramesh, 2008) Customers role is not an easy one and the challenge is that agile
methods often assume that the customer representative is competent enough to
answer to all the developers' questions and can make right and binding decisions.
The image of the stakeholders is less idealized in traditional RE processes. Dif-
ferent elicitation techniques are used which aims to get all the necessary infor-
mation from the stakeholders which in turn, enables resolving all the inconsist-
encies. In addition, traditional RE uses reviews and externalization to make sure
that all the requirements are known, and all the possible conflicts are found.
(Paetsch et al., 2003).

Traditional RE focuses on spending much time to define how to do things
right. Finding out and knowing what the right in the early stages of the project is
often very challenging. Agile RE focuses on postponing the efforts spent on detail
defining of requirements to the last possible moment. As the requirements are
likely to change often before actual implementation, this approach offers a chance
to save time and resources in changing the already collected requirements. This,
of course, puts a higher emphasis on skilled developers and efficient communi-
cation with the customer to develop what is needed. (Paetsch et al., 2003).

2.3.2 Common agile techniques which support requirements engineering pro-
cess

Agile development offers some common techniques which support the
requirements engineering process. These same practices can be used in tradi-
tional development methods. Many agile methods (such as Scrum and XP) intro-
duce these as part of the development process. These are commonly associated
as part of the agile development toolbox. The following section describes exam-
ples of such practices.

30

The first example of such a practice is a user story. User stories, or just sto-
ries, are used to communicate system requirements. They describe what is ex-
pected or needed from the system - and do it from the perspective of a user. A
User, in this context, is usually an end-user for a system, but sometimes this user
persona can be also another system. User stories are usually short and simple,
written in the natural language and answer to the questions: whose needs are
described, what is the expected feature and why it is needed. Typically, user sto-
ries are not meant to describe a system in detail but serve more as a way to com-
municate a general understanding of what the system should be able to do. User
stories can also be refined as the development continues. User stories are col-
lected to the backlog and then prioritized for the development iterations. Because
user stories are written in a way that it is easy to understand, those are a good
basis for communication with different stakeholders. User stories can support
collaboration when system requirements are analyzed, negotiated and discussed
with stakeholder: The discussion with different stakeholders are easier when a
complex system specification is left to another forum. (Chopade & Dhavase, 2017;
Measey, 2015, 54-56; Bik, Lucassen & Brinkkemper, 2017).

The second example of an agile technique which relates to requirements is
retrospectives. Those are meetings where learnings from previous phases are dis-
cussed in order to improve the current processes and ways of working. In
retrospectives, typical questions are: What went well? What didn’t go well? What
we are going to do differently next time? The time for retrospectives is usually
at the end of a development cycle, but one should be organized whenever it is
needed. There can be several different types of retrospectives - depending on
which topics the team wants to focus on. Common examples are sprint retrospec-
tive - where the previous sprint is analyzed or bug retrospectives - where some
critical system error is revisited and learnings from it are used to prevent similar
cases in the future. Retrospectives provide plenty of information which can be
used in the requirements management process: Those can point out different
problems in the defined requirements set up and reveal new requirement related
risks. New requirements can be elicited based on the discussion, ambiguities can
be clarified, and new requirement dependencies revealed especially if other
stakeholder groups are present. (Measey, 2015, 77-81).

Prototyping is commonly used in the elicitation phase of the requirements
to help the process of gathering all the customer needs. A prototype is an early
version of the developed product which is launched for the customer. With a
prototype, the customer can test the existing version and better recognize addi-
tional requirements for the further iterations. It helps to recognize different re-
quirements related challenges such as missing features or misunderstood re-
quirements. Prototypes become extremely useful when defining non-functional
requirements which relate to the user experience and usability. (Rehman, Khan
& Riaz, 2013).

The downside of prototyping is usually the time needed to prepare suffi-
cient prototype. Even though the prototype can be done also in non-digital for-
mat, nevertheless creating one usually requires a lot of time. Also, more complex

31

the developed feature, more complex the prototype. A poorly made prototype
can also lead the discussion to inessential topics: For example, when the focus
should be on functional requirements, unpleasant visualization can distract the
discussion to focus on the non-functional requirements. (Rehman et al., 2013).

Heavy prioritization is important when using an agile process to ensure that
the focus is always on the most important topics. Prioritizing can be done outside
the development cycle to arrange upcoming requirements (usually written as
user stories) to future iterations, inside the development time-box (for example
sprint) or when refining the content of the backlog. Several different techniques
are introduced in agile methods such as ‘MSCV’ or ‘YAGNI’ (Measey, 2015, 58-
60)

‘MSCV’ refers to Must have, Should have, Could have and Won’t have this
time. The technique is aimed to help prioritization task inside an individual time
frame (sprint/iteration). Must have is often called also a minimum viable prod-
uct (MVP). This priority is given to the stories that must be completed during the
corresponding iteration. Should haves too, are important and will cause signifi-
cant issues if not included in the intended development cycle. ‘Could have’ has
less effect on the customer's satisfaction, but is still important and. ‘Won’t have
this time’ is a priority that is used when something is agreed to be left out from
the iteration in question. ‘YAGNI’ on the other hand, is an acronym for ‘You Ain’t
Gonna Need It’ and it is used as a reminder when the content of the backlog is
considered. It can be applied when it is decided if the user story should be in-
cluded in the backlog or not. For example, when the developed solution’s life
cycle is relatively short, the technical quality does not need to be remarkably ro-
bust. (Measey, 2015, 58-60).

32

3 REQUIREMENT RISK MANAGEMENT IN AGILE
PROJECT

Risk management in information systems development has been a widely dis-
cussed topic in the literature. Especially because ISD projects have a reputation
to fail more often than succeed to be finished in a fully satisfactory manner.
(Cerpa & Verner, 2009; Glass, 2006). In fact, software projects that exceed their
budgets, the end product which does not fully serve the purpose it was created
or IS projects that are cancelled, are well-known struggles in the software indus-
try (Schmidt, Lyytinen & Keil, 2001). Many post-mortems of such projects have
indicated that problems they faced could have been avoided or greatly reduced
with early identification and timely resolution of the projects' high-risk elements.
On the other hand, when project managers of successful ISD projects have been
investigated, they seem to have one thing in common: their skills in risk manage-
ment. (Boehm, 1991).

Requirement engineering, as an important part of the development process,
plays a significant role in forming the project’s risk environment. It has been even
stated that deficient requirements are the single biggest reason for an ISD project
failure. (Hofmann & Lehner, 2001). For example, requirements, however, ex-
pressed, can fail to accurately represent user's need and consequently lead the
development completely to a wrong direction. (Lawrence, Wiegers & Ebert, 2001).
This chapter gives an overview of a risk management in ISD projects. It investi-
gates what types of risks are associated with system requirements and how these
two topics are considered in the agile software development context.

3.1 The concept of risk in ISD

There are several definitions of the concept of risk in information systems. Ac-
cording to Rowe (Rowe, 1975), the risk is "the potential for realization of un-
wanted, negative consequence of an event". In U.S National Institute of Stand-
ards and Technology's Risk Management Guide for Information Technology sys-
tems (NIST, Goguen & Fringa, 2002), the concept of risk is defined as "The net
negative impact of the exercise of a vulnerability, considering both the probabil-
ity and the impact of occurrence". To summarizes, a risk consists of probability
or possibility and consequences of something negative.

Few other related key concepts can be found in IS risk management litera-
ture. These are a risk factor or risk item, risk event, risk outcome, risk exposure, and
risk impact. The factor that causes the risk situation is called a risk factor or risk
item. For instance, poor communication inside the project team can be a risk item.
Risk event, in turn, is a situation where the risk happens. For example, when a
design flaw causes the system to break down in the critical moment, we are talk-

33

ing about risk event. In ISD world risk items can be both project-specific or ge-
neric. General risk items are common to all kinds of projects, for example, poor
communication or insufficient planning. Project-specific risk items reflect certain
aspects of a given project. These can be for instance unrealistic schedules or per-
sonnel shortfalls. Risk outcome is a result after a risk event occurs. (Boehm & Ross,
1989; Kontio, 2001).

Boehm (1991) approach to the risk management relies on the quantification
of a risk. He introduces risk exposure as one of the key concepts of risk manage-
ment. He states: "For each source of problems causing a potential loss to the pro-
ject, the exposure is identified as a product of the probability of the potential loss,
probability (loss) multiplied by the size of the loss":

Risk exposure = Probability(Loss) × Size(Loss)

Lastly, risk impact describes the utility loss of project stakeholders when a risk
event and the resulted outcome (usually negative) has occurred. (Kontio, 2001).

It is important to understand the difference between a risk and other similar
concepts such as problem and constraint. Risks are something that cannot be fully
predicted, but usually after recognizing it, there is a possibility to affect it - in
other words, change the project's risk exposure. Typically, the level of control
over risk items varies. Risk item exists as long as the risk event doesn’t occur.
When it does, risk turns into a problem. Where a problem is a risk outcome and
is harmful to a project, a constraint is something in the project’s environment that
affects (usually limits) projects success. Constraints are usually known, but not
controllable. Problems and constraints can form new risk items when the situa-
tion in these elements change. (Mursu, 2002).

3.2 ISD risk management process

Risk management in ISD field is an activity that focuses on identifying, address-
ing and controlling risks (Boehm 1989). It is not a one-time activity. Instead, it is
an ongoing process that continues throughout the project’s lifecycle. Risk man-
agement allows the balancing of economic and operational costs of protective
measures as well as protecting information systems and data which are support-
ing the organization’s mission. (NIST et al., 2002). Risks of an ISD project can
affect it from different levels. Lyytinen, Ropponen and Mathiassen (1996) have
separated these levels as three different environments: 1) system environment
which is the one where the software system operates 2) development environ-
ment where the development process takes place and 3) management environ-
ment which holds all the software management activities.

The risk management process has inputs and outputs. Inputs consist of pro-
ject’s knowledge, context, project goals, and planning. The outputs are under-
standing of risks and actions to control them. (Kontio, 2001). Between inputs and

34

outputs lays the risk management process. It is supported by different risk man-
agement tools and methods. The process itself is no-way unique to IT context and
the same kind of decision-making is present in all areas of our daily lives. The
risk management is typically divided into the two primary steps: Risk assessment
and Risk Handling or Risk Control. Boehm & Ross, 1989; Boehm, 1991; NIST et al.,
2002). The ISD risk management process, its inputs and outputs, and all its steps
are summarized in Figure 4. From the figure, it is visible how the risk manage-
ment process takes inputs such as project status information, moves through risk
assessment to risk handling or monitoring. Risk handling aims at limiting pro-
jects risk exposure where monitoring actions ensure the preservation of the pro-
jects status quo. Finally, the output of the process is understanding of risks and
well as an action plan for future risk management actions. Both of the risk man-
agement process phases are discussed more in the following chapters.

FIGURE 4 Risk management process and its inputs and outputs (Boehm & Ross, 1989; Boehm,
1991; Kontio, 2001; NIST et al., 2002).

3.2.1 ISD risk assessment

The goal of risk assessment is to determine the extent of the potential threats and
to unravel risks related to ISD project. Boehm and Ross (1989) divide the risk
assessment into three subsidiary steps: risk identification, risk analysis, and risk
prioritization. Risk assessment is the key element for the risk management pro-
cess. When it is done poorly, the whole risk management process is not effective.
(Schmidt et al., 2001). There are several approaches to how the risk assessment
should be done. Keil, Cule, Lyytinen & Schmidt (1998) offer one approach for the
risk assessment. Their framework views risk items through two dimensions: per-
ceived level of control and perceived level of importance. The first dimension
focuses on how much project managers perceive that their actions can prevent
the risk event from occurring. The second dimension evaluates the relative im-
portance of a specific risk in relation to other risk items. The Importance in this
context is a combination of risk items frequency and impact or outcome. (Keil,
Cule, Lyytinen & Schmidt, 1998; NIST et al., 2002).

35

To start any type of risk assessment, one must first try to understand what
the possible risks could be. Identifying risk means recognizing those risk items
that may compromise the ISD project’s success. Different checklists, studying the
past or analogous situations, decomposition and examination of drivers for deci-
sions are all typical risk identification techniques. (Boehm & Ross, 1989; Boehm,
1991; Schmidt et al., 2001). Checklists, as one of them, help ISD project managers
not to overlook some risk items but also to identify sources for them and catego-
rize them. Several of these checklists exist in literature and these checklists use
different categorizations for risk items. (Boehm, 1991; Schmidt et al., 2001). One
example of such categorization is done by Keil et al. (1998) in their article. In his
categorization, risk items are divided into four categories: Customer mandate,
Scope, and requirements, Environment, Execution.

Analyzing known risk items is the second step in risk assessment. During
this step loss-probability and loss magnitude, associated with identified risk
items, are evaluated. To accomplish this, it is important to understand what pro-
cesses the system is performing, what is the system's value and importance to the
organization and how sensitive data the system is using. Losses assessed in this
step can be tangible or intangible. Typical techniques for risk analysis are net-
work analysis, cost models and performance models. (Boehm & Ross, 1989; NIST
et al., 2002).

Eliminating all the risk items from the software project is usually impracti-
cal or close to impossible. Risk prioritization step’s goal is to direct the focus to-
wards the important risk items which in turn, reduces project’s overall risk expo-
sure to the acceptable level (NIST et al., 2002). The output from risk prioritization
produces a prioritized ordering of known risk items. This step helps project man-
agers to determine which risk items are the most important to address. Typical
techniques involve cost-benefit analysis, risk-exposure analysis, and group con-
sensus or Delphi techniques. (Boehm & Ross, 1989; Boehm, 1991).

3.2.2 ISD risk handling

The second primary step in the risk management process is risk handling or risk
control. In this phase, the focus is on planning the risk management, risk resolu-
tion, and risk monitoring. In other words, dealing with the risk items which were
recognized in the previous step, preventing them from turning to risk events and
monitoring possible changes in the risk environment.

Risk planning, as the first step, produces a plan for addressing known risk
items. This means coordinating the effects that this plan has on the overall project
plan in terms of time and resources. One of the common tools for this step is risk
resolution checklist. In Table 5 there is an example of such a list. In the table is
listed the top 10 common sources of software risks based on Boehm (1991) and
resolution technique for resolving them. Generally, risk management planning
should focus on answering questions: why, what, when, where, who, how and
how much.

36

TABLE 5 Example of risk items and resolution techniques (Boehm 1991)

Risk Item Resolution technique

Personnel shortfall Staffing with top talent, job matching, team
building, key personnel agreements, cross
training, prescheduling key people

Unrealistic budgets Detailed multisource cost & schedule estima-
tion, design to cost, incremental develop-
ment, software reuse, requirements scrub-
bing

Developing wrong software functions Organization analysis, mission analysis, ops-
concept formulation, user surveys, prototyp-
ing, early users' manuals

Developing a wrong user interface Prototyping, scenarios, task analysis, user
characterization

Gold plating Requirements scrubbing, prototyping, cost-
benefit analysis, design to cost

Continuing stream of requirements change High change threshold, information hiding

Shortfalls in externally furnished components Benchmarking, inspections, reference check-
ing, compatibility analysis

Shortfalls in externally performed tasks Reference checking, pre-award audits,
award-free contracts, competitive design or
prototyping, team building

Real-time performance shortfalls Simulation, benchmarking, modelling, proto-
typing, instrumentation, tuning

Straining computer science capabilities Technical analysis, cost-benefit analysis, pro-
totyping, reference checking

After risk management planning follows the resolution step, where actions for
solving different risk items are put to the action. Planning or resolving risks is
rarely a straightforward process. The level of control for the risk items may vary
depending on the circumstances. For example, in their research Keil et al. (1998)

37

interviewed 40 software project managers about risk management and their re-
sults show how the most important and impactful risks were the ones that appear
outside the direct control of the project manager.

Lastly, different monitoring actions are needed to complete the risk man-
agement process. In this final step, the progress towards resolving risk items is
tracked and corrective action should be done when needed. In this step changes
in the overall risk exposure are analyzed based on the findings from the previous
process steps. (Boehm & Ross 1989, Boehm 1991).

3.3 Requirements risks and their handling

Requirements engineering process involves a wide range of actions from identi-
fying correct stakeholders to understanding the constraints of the developed sys-
tem. This means that also risks associated with it, range widely across the whole
spectrum of the system development. The current literature does not offer a clear
distinction between requirements related risks and other ISD development risks.
Furthermore, requirement risks are rarely discussed and analyzed from the risk
mitigation point of view. (Tuunanen et al., 2018). True, in some instances such a
differentiation might feel even artificial. Yet, because of the important role in soft-
ware development, the requirement management process should include a con-
scious risk management actions. For this research purposes, the requirements
risks are considered be the following: 1) risk items that can directly or indirectly
affect the success of a requirement management process and 2) risk items which
can be controlled by requirement management process.

3.3.1 Requirement risks

Existing literature has mostly focused on answering, what are the most common
requirements related risks and how those can be resolved. Several different,
sometimes overlapping, set of risks have been presented in the previous litera-
ture: Already in the 80's Davis (1982) had in his article Strategies for information
requirements determination relatively one-dimensional view of a risk - uncer-
tainty. He proposes that the uncertainty level is evaluated for the collected sys-
tem requirements and defines different resolving techniques to be used depend-
ing on the level of this uncertainty. In his article Davis (1982) identified three
different uncertainties in respect of requirements: uncertainty of requirements
stability and existence, the uncertainty of users being able to specify the require-
ments and uncertainty in their ability to elicit and evaluate requirements. In more
recent years DeMarco and Lister (2003) list five core risks in ISD projects of which

38

three are related to requirement engineering: intrinsic schedule flaws, specifica-
tion breakdown, and scope creep. Lawrence, Wiegers and Ebert (2001) describe
in their article the following top risks:

• Overlooking crucial requirements

• Inadequate customer representation

• Modeling only functional requirements

• Not inspecting requirements

• Attempting perfect requirements before beginning construction

• Representing requirements in the form of design

It is clear that every project will face some risks which are utterly unique, but
many of the writers mentioned above, have noticed similar themes that are typi-
cal for requirements risks.

To help the risk assessment for requirement related risks, Mathiassen, Saa-
rinen, Tuunanen and Rossi (2007) have summarized and categorized different
risks recognized in the previous literature into different risk types. In their article,
they present three risk types, which are: requirements identity risks, requirements
volatility risks and requirements complexity risks. Later Tuunanen et al. (2018) ex-
panded the categorization with one more risk type: Requirement integrity risks.
All the of these risk types are listed in the table below (Table 6). This research
uses this categorization as presented in the work of Tuunanen et al. (2007) for
depicting requirement related risks a project can face.

TABLE 6 Requirement risks (Mathiassen et al., 2007; Tuunanen et al., 2018)

Risk Definition

Requirements identity risk The availability of requirements, high
identity risk indicates requirements
are unknown or indistinguishable

Requirements volatility risk The stability of requirements, high
volatility risk indicates requirements
easily change as a result of environ-
mental dynamics or individual learn-
ing

Requirement complexity risk The understandability of require-
ments, high complexity risk indicates
requirements are difficult to under-
stand, specify and communicate.

39

Requirements integrity risk The completeness and accuracy of re-
quirements elicited from the end us-
ers, high integrity risk means indi-
cates requirements were only partly
captured and their origin is not trace-
able.

Requirement identity risk type includes all those risks that are related to the
availability of the requirements. This means that there is a communication gap
between the developers and end users due to a conceptual, cultural or physical
distance. This can happen for example when the system is developed to mass
markets, or when the project stakeholders have challenges agreeing on the re-
quirements. (Mathiassen et al., 2007). In addition, the category includes those
risks where all requirements are not recognized. This means overlooking a cer-
tain user class or missing critical quality or performance attribute. One other type
of example is when the team is focusing only on functional requirements. In this
scenario system quality attributes such as performance, security, reliability, and
usability are easily neglected. (Lawrence, Wiegers & Ebert, 2001; Mathiassen et
al., 2007; Wiegers & Beatty., 2013, 542 - 546). Lawrence et al. (2001) named over-
looking crucial requirements as one of the most critical risks in requirement en-
gineering. This is also supported by Tuunanen et al., (2018):

"Having clearly defined requirements would not only lay a solid foundation for sub-
sequent development efforts but would also ensure that the proposed system matched
clients' expectations, thus a higher level of customer satisfaction could be achieved".

Risks related to requirements volatility mean challenges with requirements
stability. Requirements are not stable when changes happen in the development
project’s external or internal conditions or environment. These changes can ap-
pear, for instance, because of market impacts such as emerge of competitive
products or company impacts such as business strategy and direction changes.
An additional source of volatility is a situation when stakeholders learn more
about the system as the development progresses. Also, especially in agile projects,
the software itself evolves continuously and therefore requirements will evolve
with it. (Curtis, Kellner & Over, 1992; Mathiassen et al., 2007; Mills, 1999). Law-
rence et al. (2001) argue that trying to avoid volatility type of risks by perfecting
requirements before starting the implementation is a risk on its own:

"Today we live in the emergent world - some information simply isn't available early
in our project - and only emerges later. We can't possibly know everything we'd like
to know before we start development. It's safer to assume that our requirements are
going to change than that they won't."

40

Requirements complexity refers to how hard or easy it is to understand require-
ments. As software is inherently complex, also requirements tend to be so. Re-
quirements need to be communicated effectively to project stakeholders. Stake-
holders, on the other hand, are likely to have different, varying, and contradicting
view of the developed system. This means that challenges arise in understanding,
describing, communicating and specifying system requirements. (Mathiassen at
al., 2007). DeMarko and Lister (2003) also pointed out that systems are hardly
ever developed with only one user group's requirements in mind. Today's IS sys-
tems affects several stakeholder groups. On the other hand, sometimes even the
different user groups don’t share a common agreement on the desired outcome.
Requirement complexity risks arise when different stakeholder groups fail to
concur on project goals resulting in struggles in the later parts of the develop-
ments. (Wiegers & Beatty, 2013, 543)

The fourth risk categorization, requirement integrity risks, according to Tu-
unanen et al., (2018), refers to the level of accuracy and completeness of require-
ments elicited from the end users or stakeholders. Issues related to these risks
emerge because of the lack of requirements review and inability to trace the
origin of the requirement. Furthermore, writers argue that setting a fixed budget
and deadlines for the overall project might limit the time spent on eliciting the
requirements. This may result in a situation where requirements are not being
fully captured. This is a very typical situation when tight development schedule
forces a project team to limit time spent on analysis and negotiation phases. This,
in turn, may lead to development being pushed forward even though open issues
still exist. (Wiegers & Beatty, 2013, 545).

3.3.2 Requirement risk management

Requirement risk management should not be done in isolation from other ISD
project risk management activities. Because requirement related risks play such
a significant role in projects overall success, managing them consciously is im-
portant. For instance, if requirements are initially defined poorly, clarifying them
later often increases the efforts needed to complete the project. This, on the other
hand, requires more resources (time and money) and easily escalates to other
problems. This situation is commonly known as a scope creep. In short, it is a phe-
nomenon when project content is extended with new requirements or demands,
but the project resources (time, money, people) are not increased accordingly.
Identity and volatility types of risks are a common culprit for this situation, for
example when all the stakeholder groups do not share the same understanding
what the end-product is supposed to be. (Wiegers & Beatty, 2013, 472-473).

Risk environments defined by Lyytinen, Ropponen and Mathiassen (1996),
which were mentioned in chapter 3.2 apply naturally to requirements risks. Due
to their business implications, requirements risks are also affected by another
level: business environment. This means that requirements are often affected
heavily by changes in business processes, business direction and end customers

41

using it. The relationship between risk environments and requirements risk man-
agement is illustrated in Figure 5. It shows an extended version from Lyytinen,
Ropponen and Mathiassen (1996) approach to environments which affect risk
ISD risk management and in this case, requirement risk management. From the
figure, it is visible how requirement risk management is affected by four different
environments.

FIGURE 5 Risks environment and requirement risk management process (extended version).
(Lyytinen, Mathiassen & Ropponen, 1996)

Controlling requirement related risks should be done with close collaboration
between the project stakeholders and the development team or at least doing that
seems to increase the project success rate. (Wiegers & Beatty, 2013, 546-547). For
example, there is evidence that having a collaborative requirement elicitation
with extensive user involvement, can reduce the requirements creep by half
(Jones, 1996).

The process of managing requirements risks can be described with the same
process as general ISD risk management one, discussed in chapter 3.2. Current
literature offers some options for risk handling process for requirement related
risks. Matthiassen et al. (2007) have in their article a set of different requirements
development techniques which were discussed in chapter 2.2.2. In the same
article, writers summarize how those techniques can be applied as risk resolution
techniques supporting risk handling process. Writers combined the earlier risk
categorization (shown in table 6) with the recommended technique to be used for
resolving them. The risk types combined with their recommended resolution
technique can be found in the previous table 7.

42

TABLE 7 Requirements risk categorizations and resolving techniques (Mathiassen at al., 2007)

Requirements risk type Resolution technique

Identity discovery techniques

Integrity prioritization techniques

volatility prioritization and experimentation techniques

complexity prioritization and specification techniques

Matthiassen et al. (2007) claim that based on the literature they covered, tech-
niques applied for requirement identity risks should focus on identifying and
connecting users and possibly involving them in the development efforts - using
discovery techniques. This approach would reduce the communication gap be-
tween the users and developers. It could also enable defining requirements using
the real voice of the user and stakeholders. Wiegers and Beatty (2013, 543) also
emphasize the importance of recognizing correct stakeholder groups early in the
project and determining which of them serves as a literal voice of a user. These
stakeholder groups should review the requirements as well as define their own
acceptance criteria for them.

For requirements volatility risks writers suggest using a combination of pri-
oritization and experimentation techniques. This helps in to stabilize the elicited
requirements and make it easier to put the focus to correct topics. New require-
ments’ priority should always be evaluated against the work remaining to be
done (backlog). This helps to identify those tradeoffs that addition of these re-
quirements will cause, hence limiting the likelihood of scope creep to appear.
Tuunanen et al., (2018) propose the use of prioritization techniques also to the
requirements integrity risks.

When requirements stability risks are probable, Matthiassen et al. (2007)
suggest increasing the focus on detailing and specifying. This means that require-
ments complexity risks would benefit from prioritization and specification tech-
niques. The specification can be done in different kinds of reviews where the cor-
rectness and quality of the requirements are refined with the stakeholders. (Wieg-
ers & Beatty, 2013, 51).

3.3.3 Requirements risk management in Agile development and Requirements
Risk Prioritization method

Requirements related risks mentioned in previous chapters are not only substan-
tial when using traditional development methods. Characteristics of agile devel-
opment methods bring their own twist to the ISD project’s risk environment. This
does not mean that the risks themselves are completely different, but some risks
might be more common depending on which development approach is used. For

43

example, requirements integrity and complexity risks may appear when new re-
quirements emerge during short development cycles. Requirement identity risks
that are caused by the communication gap have an important role when devel-
opment depends on human communication without extensive documentation.
Close customer collaboration may also generate its own layer of requirements
identity risks when people from business and development environment try to
understand each other. The fundamental principle of agile development: the
ability to adapt to constant changes could increase the likelihood of volatility
risks.

Continuous risk management is part of both traditional and agile develop-
ment methods. When agile methods are used, it seems to be compulsory. (Wieg-
ers & Beatty, 2013; Lyytinen, Mathiassen & Ropponen, 1996). Risks that have not
been correctly identified and handled in a timely manner can have serious con-
sequences for the project in the future. Tuunanen et al. (2018) argue: "if risk item
was not addressed at a particular phase, any other phase of the project could be
affected".

Current literature provides a relatively small amount of methods for re-
quirements risk management that focuses on requirements engineering process
in agile software development. There exist some general-purpose requirements
risks risk management methods like earlier mentioned A contingency model for
requirement development (Mathiassen et al., 2007) and A Unified Model of Re-
quirements Elicitation (Hickey & Davis, 2004). However, those methods are not
specifically developed for agile requirement engineering process. Tuunanen et al.
(2018) have developed a Requirements Risk Prioritization method (RRP method)
which they argued to be suitable for continuous requirement risk management
and hence would be suitable to be used with all kinds of development methods
- including agile.

RRP method (Figure 6) was developed with experienced practitioners from
the ISD development industry who manage their projects in cooperation with the
New Zealand Project Management Institute. The method uses Mathiassen et al.
(2007) model and Keil et al. (1998) A Framework for Identifying Software Project
Risks as theoretical background and inspiration. The research behind the method
was a qualitative research that used focus group interviews and a Delphi survey.

First Tuunanen et al. (2018) used both research methods to identify set of
requirements related risks that focus group identified and categorized them us-
ing the categorization from Mathiassen et al. (2007) extending it with one new
type dimension: requirements integrity risks (discussed in chapter 3.3.1). After
that, they asked the focus group to indicate the level of risk each risk item pos-
sessed and the development phase that it was likely to affect the most.

44

FIGURE 6 Requirements Risk Prioritization method (Tuunanen et al., 2018)

In their research, the ISD Development process was divided into three
phases: requirement phase, design phase, and implementation phase. Based on
their finding writers composed requirements checklists for all the previously
mentioned development phases. The method doesn't assume that ISD includes
only previously mentioned phases, instead, the development process may in-
clude many cycles that individually include those three phases. In the method
the requirement risk management process includes three steps as well: Identify-
ing risks, assessing the risk profile and intervening with techniques. As figure 6
show, all these three steps are targeted at each development phase.

Below, Figure 7 illustrates how the RRP method relates to ISD risk manage-
ment process presented in chapter 3.2. As it is visible from the Figure 7 Tuunanen
et al. (2018) approach vary slightly by dividing risk assessment into two separate
steps: From these two the first one focuses on identifying risks. Risk analysis and
prioritization of risk in traditional ISD risk management process are part of the
Assess Project risk profile step in the RRP method. The last step, intervene with
techniques, lands more on the risk handling phase of the traditional ISD risk
management process. Another risk handling topic of the traditional risk manage-
ment process, risk management planning and risk monitoring are not as clearly
part of the RRP method. Figure 7 showcases this relation between the two risk
management processes.

45

FIGURE 7 ISD risk management and the RRP method

The process in the RRP method starts by 1) utilizing the checklists to identify
correct risk items. Checklists offer a set of potential risks commonly associated
with the corresponding requirement management phase. A similar approach is
used for example by Persson et al. (2009) in their article. After risks are identified,
2) the project risk profile is assessed by recognizing individual requirement risks.
The profile is finalized with impact evaluation (high, medium, low) for each risk
item. This information is used to prioritize the requirements risks correctly. In
the last phase intervention is done by 3) utilizing risk resolution techniques (pre-
sented earlier in Table 7) in the following order:

• If identity risks are high, put a high emphasis on discovery techniques.

• If integrity risks are high, put a high emphasis on prioritization techniques.

• If volatility risks are high, put a high emphasis on experimentation tech-
niques.

• If complexity risks are high, put a high emphasis on specification tech-
niques.

• If three or more risk items are high, follow the above sequence of applying
techniques (from 1 to 4).

46

4 RESEARCH METHODOLOGY

To further understand the specifics of requirement risk management in an agile
development environment empirical part of this study focuses on using the RRP
method in a real agile project environment. This was achieved with a case study
where the method is used for requirements risk assessment. As each ISD project
possesses its own characteristics despite the development method used, a case
study approach was selected because it allows studying the phenomenon flexibly
inside its own boundaries. A case study is a widely used research method - it
offers good opportunities to investigate the phenomenon within its real-life con-
text and aims at understanding the dynamics of a single setting (Eisenhardt, 1989;
Yin, 2013). The research data was collected through semi-structured interviews
and thematic analysis was used to analyze the research data. This chapter defines
the research strategy and explains how data collection and analysis were done. It
also introduces the research case as well as describes how the empirical part of
this research was executed.

4.1 Case study as a research strategy and case description

A case study is a commonly used method in qualitative IS research. As the goal
of this study is to investigate a phenomenon in its real-life context, the case study
offered the best tools to understand the dynamics of its ‘natural environment’.
Qualitative research, in general, relies primarily on human understanding and
perception. It is descriptive, and common sources of qualitative data are obser-
vations, interviews, documents, and the researcher’s own perception. Contrary
to quantitative research, qualitative research aims to understand people and the
cultural context surrounding them. (Klein & Myers, 1999; Myers, 1997; Stake,
2014).

Qualitative research can be positivist, interpretive or critical. This study fol-
lows an interpretive stance. The interpretive approach assumes that reality can
be accessed only through social constructs such as shared meanings and lan-
guage. When compared to positivist research, where reality is assumed to be de-
scribable by measurable properties which exist independently from the observer,
interpretive studies aim to understand the phenomena through the meanings
people give them. It does not consider independent or dependent variables but
explores the full complexity of human reasoning. (Klein & Myers, 1999; Myers,
1997)

According to Yin (2013) case study approach can be used when 1) the study
aims at answering questions "how" and "why" 2) the phenomenon and context
don't have clear boundaries 3) it is not possible to manipulate the behavior of
people involved in a study; and or 4) covering contextual conditions is relevant
for the phenomenon that is studied. The design for a case study can consist of a

47

single case or multiple cases. A case should be something that represents the topic
of the study empirically and is interesting and relevant to the studied phenome-
non. The unit of analysis is the source of data itself; for example, the interviewed
individual. (Yin, 2013).

The case study was a natural selection as a research method for this research.
The performance of RRP method in an agile project cannot be considered without
the context of the agile project itself. Since each agile project is different in terms
of practices used and even the "level of agility", it would be impossible to have a
true picture of the person's perceived usefulness of the method without consid-
ering the context in which it was used. Also, the ISD project where the require-
ments risk management actions were done, cannot be considered without its or-
ganizational and social settings.

Another benefit of using a case study is that it enables capturing multiple
different perspectives (Yin, 2013). This was found especially beneficial for this
study since the experts chosen for the case represented different business func-
tions as well as varied in their experience in agile software development. Taking
this diversity into account made it possible to draw a more thorough picture of
the research case and finally about the research topic in general.

4.1.1 Case description

This research was conducted as a single case study. The case of interest is an agile
software project in a company that operates in B2B conference business. The case
company is based in Finland but brings together IT solution providers and inves-
tors from all around the world. The organization is focusing mainly on markets
in Europe and South-East Asia. Although not a software development company,
the case organization has a long history of developing software in-house from
design to implementation to support its unique business requirements and sup-
port their customers more flexibly.

One project from the IS development portfolio of the company was selected
for the focus of this study. At the time of writing this study, the case project is
still ongoing in the active development stage. The project's goal is to develop a
product which provides customers of the company an interface to manage their
conference participation both before and at the event. The end-product offers cus-
tomers a self-service channel to provide necessary info about their participation
which enables better customer service. On the other side, the platform provides
customers with all the information they need to get the best return for their in-
vestments at the conference itself. The product is also used for managing custom-
ers’ schedules during the event, and for providing feedback about the conference.

The project started two years prior to this research. The product first
launched at pilot conferences and at the time of the study, it is already being
launched to the whole case organization. After the initial launch, the project has
continued focusing on further improving the current implementation and adding
new features based on customer feedback.

48

As the project follows agile development, it is developed iteratively. To en-
sure representativeness of the research results and to focus research's scope, one
feature development was selected to the scope of the study. This made it possible
to evaluate all the phases of the development with the RRP method without one
being already completed.

The focus feature is a possibility for solution provider customers to ap-
proach the investors in the service and express their interest in having a face-to-
face meeting during the conference. This consists of a personalized message that
the user can send to another party inside the platform. This feature was not a part
of the first iteration of the product. After customer feedback, it was decided to be
added to the next development round. At the time of the study, this feature was
in its early design stage.

4.1.2 Agile development in the case project

The case organization follows the agile approach in their software development.
The development process uses practices mainly from Scrum. The base of the
Scrum process is a sprint, a time frame in which the selected features are devel-
oped. One sprint usually lasts 2-4 weeks. Requirements are collected to a backlog
from which they are selected to the development sprints to be implemented. At
the beginning of each sprint, there is a sprint planning meeting where selected
requirements are introduced to the development team and discussed. The sprint
ends at the sprint review where the completed features are introduced and re-
viewed.

Other typical Scrum "ceremonies" are different retrospectives and daily
scrum meetings. Retrospectives aim at evaluating the work done so far and im-
prove the current process further. One example of retrospectives is a bug retro-
spective. A daily meeting takes around 15 minutes where each team member fo-
cuses on the following three questions: What I accomplished yesterday, what I
shall do today and what prevents me from doing that.

In the case organization, most of the Scrum ceremonies are in use. One
sprint is 2 weeks long and sprint planning is done before each development
sprint starts. Requirements are collected in backlog from which each sprint's con-
tent is selected based on the current business priorities. The requirements are col-
lected and defined by a product owner who is also participating in the daily man-
agement of the development team with the development team lead. Product
owners of the different software projects also gather each morning for their own
daily meeting, to align with the current situation in each project.

Product owners are responsible for collecting business requirements for
their own products in close collaboration with different business functions and
other project stakeholders. They also "own" the development priorities and man-
age the order of tasks - or user stories - in the backlog. Their prioritization deci-
sions, in turn, are done after the high-level direction is decided by the top man-
agement and heads of different involved functions. The development priorities

49

are monitored and evaluated on a monthly basis by top management and other
key stakeholders.

In case organization retrospectives are used but those are not scheduled for
every sprint. They are organized when an extra focus for a certain situation is
needed. For example, bug retrospectives are used when technical challenges ap-
pear, to avoid similar situations in the future. Sprint retrospectives are used to
evaluate the success of the previous sprint. Project teams organize also feature
retrospectives for those feature developments that are important to share across
teams.

Risk management for the development is mainly a responsibility of both
management and product owners. Product owners manage risks that affect their
projects on a daily basis, but there is no agreed risk management process in place
and the risk management is mostly done as a part of other activities such as plan-
ning and prioritizing. Before this research, the organization has not made exer-
cises which focus precisely on requirement level risks.

4.2 Data collection

A case study can accommodate a wide range of data sources such as archival data,
interviews, observations, and survey data. For this study, an interview was se-
lected as the main method of data collection since it is an efficient way to collect
rich empirical data and has a focus on the individual perception of the research
topic. As the research questions focus on people’s perception on the requirement
risk management and the use of the RRP method, it is important to be able to see
connections between a person’s position in the case project and organization, as
well as their opinion on the exercise done within the case study. Because a
person’s position might affect a lot how he or she sees the software project itself,
it is also important to be able to read between the lines and find possible contra-
dicting views.

There are several types of interviews, which are commonly used in qualita-
tive research. These types are an open interview, a structured interview, and a
semi-structured interview. An open interview is a conversational situation,
where participants discuss preset research topic. An open interview has open
questions and the response choices are not limited. This way the open interview
is the most informal of the three types of interview. On the opposite side, in a
structured interview, all the participants answer the same questions. Answer op-
tions are also often defined before the interview starts. (Galletta, 2012)

The type of interview used in this research is called a semi-structured inter-
view, which is a combination of the two mentioned above. It can include both
open and closed questions. This means it is structured enough to address the re-
search topic, while it still leaves space for flexibility. According to Galletta (2012):
“A key benefit of semi-structured interviews is its attention to lived experience
while also addressing theoretically driven variables of interest.” Most of the par-
ticipants in this study are representing different business functions and working

50

with the project from different angles. In this situation, the interviewer needs to
have room to probe a participant's answer for clarification, critical reflection and
meaning-making. This flexibility is the main reason for choosing semi-structured
interview for this study.

4.2.1 Conducting a semi-structured interview

The case company was contacted about the interview in January 2017. And the
interviews took place May 2017 - August 2017. All the interview participants
were confirmed that all the interview answers are treated sensitively and case
company or the participants cannot be identified within the study. Study results
were shared with the organization's’ management, but none of the individual
answers were distinguishable.

Selection of interviewees was done based on the following three criteria: 1)
person must be closely working with the case company’s software development
projects either as part of the development team or as a business requirements
owner 2) person’s position in the company must be specialist or mid to top man-
agement. 3) A person must be familiar with the agile software development pro-
cess in the case company.

Since the case company is not a software company, all the employees are
not familiar or involved in the software development projects the case company
has. The first criteria ensure that only those people who have sufficient involve-
ment in the software development projects were selected for the interview. The
sufficient involvement in this context means that the person is either working
directly in a software project as an architect, developer or product owner or the
person is a direct stakeholder from the business side. The second and the third
criteria aim at focusing on having only interviewees who have enough
knowledge and such a position in the organization, that they can in their work
directly affect how development projects are run. This way it was possible to
make sure that interviewees can evaluate requirement related risks at a proper
level and the results are comparable, despite the different business functions they
represented. These criteria meant, for example, that only lead developers were
selected to this study and more emphasis was put on the product owner and ar-
chitect level personnel.

The following list shows the selected interviewees and their function title:

2 Software architects
3 Product owners
1 Lead software developer
1 Business manager
1 Customer experience manager

51

Because the project team is relatively small and heterogeneous, it would be
very easy to identify individual interviewees from more detailed background in-
formation (age, gender, education etc.) This could have affected interview an-
swers and lowered the reliability of the interview results. To protect the anonym-
ity of interview participants, more detailed demographics were not published.

The interview was divided into three phases. The first phase focused on
using the RRP method in case context. This meant that participants were asked
to use the RRP method to generate a risk profile for the focus feature. In phase
two the participants were asked to evaluate data they had produced with the
help of the method. The evaluation was done by commenting on the risk profile
they had created for the focus feature. Lastly, interviewees were asked to assess
the method's usage in their own projects. This included evaluating the usefulness
of the method and how they see that the method could or could not support their
requirement risk management work.

Time reserved for each interview was 60 minutes. The interview time was
extended when needed, to make sure that all the same elements were covered
with all the participants. All the interviews were done individually, and partici-
pants answered the same predefined interview questions. The interviewer asked
additional questions in case some clarification was needed. All the interviews
were recorded, and answers were littered later for the data analysis. The full
structure of the interview and interview questions are presented in APPENDIX
1 and APPENDIX 2.

All the interviewees received a glossary of terms before the actual interview.
That helped to reduce the confusion that might have appeared because of the IT
jargon that was not familiar to all the participants. This glossary of terms can be
found from APPENDIX 3. Extra attention was paid for making a clear difference
between terms customer and user in research case’s context. In the case company
customer means an internal business owner and user is mainly the end customer
of the case company. Half of the interviewees spoke Finnish and the rest other
languages. For Finnish speakers, the interview was conducted in Finnish and for
the rest in English. All the materials were provided in English to avoid different
interpretations of the terms used.

All the participants had different levels of knowledge about the focus fea-
ture that was selected for this study. The interview started with a focus feature
introduction, to make sure all the participants shared the same level of under-
standing about it. After the feature was introduced, general introduction for the
RRP method followed.

From all three requirement risk management steps, the method includes,
the third, using recommended techniques to handle identified requirements risks,
was excluded from the scope of this study. Introducing risk solving techniques
to the research would have required teaching them to the interviewees since none
of the interviewees were familiar with these specific techniques the method uti-
lizes. Understanding those techniques well enough was not possible within the
time resources allocated for this study. This means that any results related to the

52

risk solving techniques would not have been representative enough for the pur-
pose of this study.

After introductions, the first interview phase started. It included the crea-
tion of the requirement risk profile for the focus feature. Each requirement man-
agement step was analyzed separately (requirements step, design step, and im-
plementation step). Analysis started from a requirements step. At first, the inter-
viewee was asked to write down risks that he/she felt might be related to each
step to a separate paper. This was done without seeing the risk checklists of the
RRP method. After this, the method's checklist for the corresponding require-
ments management phase was presented. Then a participant was asked to read
through the checklist and mark those risks 1) which correspond to the ones the
interviewee had written down before seeing the list 2) which the interviewee
didn’t consider before, but which are still relevant for the project and focus fea-
ture 3) which are not relevant at all for the project and the focus feature.

Those risks that participant wrote down before seeing a checklist, but which
did not correspond to any risk item in the method's checklist were underlined
and included in the final list of relevant risks for each phase. An identical process
was repeated for all the design and implementation steps. In case the interviewee
didn't understand an item on the checklist, the interviewer provided an explana-
tion.

After analyzing relevant requirement risks, interviewees were asked to as-
sess the risk impact for each risk item they considered valid for the project and
focus feature. The impact evaluation was done for risk items by marking “+” for
high impact risk and “-“ for low impact risk. A risk with normal impact was left
without a symbol. For risks which interviewees considered irrelevant for the case,
interviewees did not have to give an impact evaluation.

The result from the first interview phase was a risk profile for the focus fea-
ture development. This included a list of valid risks for each requirements man-
agement step (either from checklists or identified by the interviewee) with risk
impact evaluation. Interviewees could make changes to their risk profile before
moving to the second interview phase. The risk profile for the focus feature de-
velopment was visible for the participant for the rest of the interview.

In the second interview phase, the participants were asked questions that
evaluated how well the risk profile they have created actually represent focus
feature developments requirement risk situation. Interviewees were able to com-
ment if they think the checklists really included enough relevant risks for them
to be able to evaluate reliably focus features requirements risks. They were also
asked to elaborate risks that they felt were missing from the original checklists,
and if the risk profile they created would help them prioritize risks for the focus
feature.

In the last interview phase questions focused on how likely the participants
would be to use the RRP method in their current or future agile projects. Partici-
pants were asked to assess what benefits and limitations this method would have
in their own project work. Interviewees were asked if using the method makes

53

requirement risk management for their own projects easier compared to their
current way of managing requirement related risks.

4.3 Data analysis

Data analysis started after all the interviews were held. First, all the data from the
risk profiles the interviewees created was combined into one table. Then a the-
matic analysis was conducted for the rest of the interview data. Combined data
from the interview participants' risk profiles are summarized in Table 8. Results
of the thematic analysis of the interview questions are showcased in APPENDIX
5.

4.3.1 Analysis of risk profile summary

For each risk item in the RRP method's checklists it was calculated how many of
the interviewees thought:

1. The risk corresponds to the one the interviewee had written down before

seeing the checklist
2. The risk interviewee didn’t consider before, but it is still relevant for the

case
3. The risk is not valid for the case

The risk impact evaluations were also added to the table for each risk item. This
means the number of participants who evaluated the risk item to have a low, high
or medium impact was added to the table.

TABLE 8 Risk profile summary

 Risks validity Risk Impact

Requirements phase Risk type

Valid
a participant
identified as
a risk without

a checklist

Valid
a participant
identified as
a risk from a

checklist

Not
valid

High Low Neutral

Absence of project Sponsor Identity 2 5 1 5 2

Access to Clients (Proximity to Source) Complexity 2 4 2 2 1 3

Ambiguous Requirements Identity 6 2 7 1

Change in Business Strategy and Direc-
tion Volatility 4 3 1 3 1 3

Change in External Regulations Volatility 3 5 1 2

Client Commitment Identity 3 4 1 6 1

Constrained User's Knowledge Complexity 3 4 1 2 5

Fixed Budget and Timelines Integrity 3 2 3 3 2

Incorrect Stakeholders Identity 4 3 1 3 1 3

Misunderstood Business Needs Identity 5 2 1 5 2

54

Underestimation of Change Magnitude Volatility 4 4 3 5

Unrated Requirements Volatility 4 3 1 3 4

Design phase Risk type

Ambiguous Requirements Identity 5 3 3 1 4

Change in External Regulations Volatility 4 4 2 1 1

Client Commitment Identity 3 5 4 4

Compliance with External Regulations Identity 4 4 2 2

Conflicting requirements Integrity 2 6 3 2 3

Missing Requirements Identity 5 3 3 5

Delivering What the Client Requires Identity 6 2 4 4

Emerging Requirements Dependency Volatility 3 4 1 3 1 3

Fixed Budget and Timelines Integrity 4 3 1 5 2

Knowledge Gap between Coworkers Complexity 4 3 1 2 5

Lack of Collaboration Complexity 7 1 5 3

Technology Changes Volatility 1 6 1 1 1 5

Underestimation of Change Magnitude Volatility 2 6 3 1 4

Unrated Requirements Volatility 3 4 1 2 5

Implementation phase Risk type

Ambiguous Requirements Identity 6 2 6 2

Change in External Regulations Volatility 1 2 5 3 0

Client Commitment Identity 4 1 3 4 1

Fixed Budget and Timelines Integrity 3 3 2 4 2

Hostile Users Identity 5 3 2 2 1

Project Team Member Turnover Volatility 1 7 4 2 2

Unrated requirements Volatility 5 2 1 2 5

Underestimation of change magnitude Volatility 5 3 4 1 3

Risks profile summary was used to evaluate how well risks items in the RRP
method's checklists were matching participant's perception of the research case's
risk situation and if checklists were able to highlight risks the participant didn't
think of without the checklist. It was also possible to analyze what kind of a risk
impact the participants were assigned for both types of risks.

To evaluate the agreement between the participants, the following scale was
applied: If the risk item had six or more participants answering the same way,
that was considered to be a significant agreement between participants. When
the number of participants varied from 3 to 5 that was considered to be a moder-
ate agreement and if less than 3 participants answered the same way, participants
were not agreeing about that risk item.

Risks that the interviewees recognized but were not included in any of the
original checklists of the RRP method, were collected into their own table. These
risks can be found below (Table 9) as well as the development phase an inter-
viewee considered it be likely to affect the focus feature. All the interviewees
wrote down at least one of this type of a risk. The table 9 has also the number of
interview participants who mentioned a risk with the same content.

In total there were 9 additional risks for the requirements phase, 10 for the
design phase and 6 for the implementation phase. Interviewees were not asked

55

to define a risk type nor an impact level for these risks. During the analysis, com-
mon themes for these risks were found. These common themes are project team
related, customer & user experience related, requirement scope related, and agile devel-
opment related. These themes are also visible in table 9 but are described more in
detail in the next chapter.

TABLE 9 Risk missing from the original checklists

Requirements phase
Number of participants

mentioned the risk

Theme

Undefined / Unclear responsibilities in the project team 1

Project team related

Challenges in adding the new feature as a part of the existing system 1

Agile development related

Difficulties in defining a scope for a feature 2

Requirement Scope re-

lated

Not considering all / correct user/customer groups 2

Customer & User experi-
ence related / Require-

ments scope related

Overview and ownership from the client side 3

Lack of iterating/missing proof of concept 2

Agile development related

Requirements are rated incorrectly in relation to other developments 1

Agile development related

Challenges in evaluating and measuring the benefit new feature would
bring 1

Rapid changed in business needs 1

Design phase
Number of participants

mentioned the risk

Lack of clear UI design processes 1

Customer & User experi-

ence related

Challenges with UI design 4
Customer & User experi-

ence related

Not considering user experience enough 1
Customer & User experi-

ence related

Communication between projects stakeholders 1

Project team related

Splitting/structuring requirements to small enough pieces for agile de-
velopment 1

Agile development related

Collaboration with external / multicultural teams 1

Project team related

Lack of human resources 2

Project team related

Lack of technical understanding of the project team 1

Project team related

Challenges in adding the new feature as a part of the existing system 2

Agile development related

Unclear work estimations 1

Implementation phase
Number of participants

mentioned the risk

Understanding the business need 2

Requirements dependencies 1

Requirements scope re-

lated

56

Communication between project stakeholders 3

Limitations in technical skills inside the project team 1

Project team related

Collaboration external / multicultural teams 2

Project team related

Challenges in adding the new feature as a part of the existing system 3

Agile development related

4.3.2 Thematic analysis of the interview questions

Data analysis continued with a thematic analysis of the answers from the second
and third phases of the interview. It is a commonly used method for analyzing
qualitative data. It emphasizes examining patterns or themes across the data set.
A theme captures something important about the collected data in relation to the
research question. A thematic analysis can be associated with two modalities: in-
ductive and deductive. In this study, an inductive approach was selected because
it is generally considered the best solution for the phenomenon when there are
no earlier studies. (Braun & Clarke, 2006; Hsieh & Shannon, 2005; Vaismoradi,
Turunen & Bondas, 2013).

The thematic analysis process started with getting familiar with the data.
The data transcripts were read and reread several times. At first, ideas were writ-
ten down as notes and those were later used as a base for data coding. From these
notes, the finalized code set was established and the whole data set was coded.
Once this was done for all the material, potential themes were selected from the
coded data. After all the initial themes were set, their relation to the coded ex-
tracts and the entire data set were reviewed. This process produced a thematic
map. Lastly definitions and names for each theme where selected. This was an
iterative process, which included continuous refining the specifics of each theme.
From this analyzed data, research conclusions were drawn. The thematic map is
produced from analysis of interview questions (phase 2 and 3) is visible in AP-
PENDIX 5. It shows all the themes and their definitions, which were produced
by this thematic analysis.

57

5 STUDY FINDINGS

In this chapter, study findings are presented in detail. At first, results from the
analysis of the risk profile are summarized accompanied by any related com-
ments or questions, which appeared during the later interview phases. After that,
results from the second and third interview phases are combined. Findings are
presented with authentic citations, which support the propositions made from
these topics and increase the trustworthiness of this research.

5.1 Evaluation of the risks in the checklists

Several findings could be derived from the risk profile summary (Table 8). First,
it was used to evaluate, which of the risks interviewees considered to be relevant
to the study case. Next, it was used to estimate if using the checklists helped the
participant find risks he or she would not have considered without using them.
Thirdly, it was possible to estimate how important all the valid risks were for the
research case based on the impact level the participant chose for them. This chap-
ter also introduces more in detail common themes of the risks, which participants
felt were not covered by the original checklists.

Few general observations could be made from the first interview phase.
While creating their risk profiles, most of the interviewees struggled to under-
stand what specific risk item means and what kinds of issues it covers. The most
questions arose regarding risks: unrated requirements and hostile users. The latter
required clarification in each of the interview sessions. Additionally, the differ-
entiation between the customer and the end user was not always clear to the in-
terviewees. Even though the differentiation was clarified before the interview,
people with different roles in the project had slightly different understandings of
these concepts and their roles in relation to the requirements management. Even
though specific for this research case, this setup is not a unique one and hence
worth mentioning.

5.1.1 Risks validity for the research case

The relevance of the risks for the research case was estimated based on how many
participants marked the risk as valid for the research case. In risk profile summary
(table 8) the number in the "Not valid" column shows the number of participants
who considered the risk to be invalid. From this column, out of the total 34 risks,
none of them were marked invalid for the research case by a significant number
of participants. Around one-fifth of all the risks (7 = 20,5%) were marked as in-
valid so that the number of similar answers reached the moderate level of agree-
ment between the interviewees. In total 27 out of all the risks (=79%) received less
than 3 answers to "not valid" column. Yet, more than half of the risks, 22 (= 65%)

58

received at least one answer where it was not considered valid for the study case.
Risks Change in external regulations and Compliance with external regulations re-
ceived most "not valid" answers despite the development phase they were re-
lated to. This is natural since the focus feature did not have any known relation
for any external regulation. These results indicate at least a moderate level of
agreement among the interviewees, that the risks presented in the checklists are
valid for the research case. In other words, checklists do not highlight risks which
would be unnecessary or completely irrelevant.

Risks that received zero answers for "not valid" column were confirmed to
be valid by all the interviewees for the research case. These risks and the devel-
opment phase they relate to are listed below in table 10. From there it is visible
that the number of these 100% valid risks differs slightly between different de-
velopment phases. The design phase had most of these risks (7 out of 14 risk items
= 50%). The requirement phase had the least of these type of risks (2 out of 12 risk
items = ~17%) and for the implementation phase, the result was 3 out of 8 risk
items (~38%). Ambiguous requirements and Underestimation of change magnitude
were risks that are present in the checklist for each development phase. Interest-
ingly, the result in table 10 shows that those risks were also considered as valid
risks in all the development phases by all the interviewees. The same table shows
that most of the risks with 100% validity for the research case are either identity
or volatility type with only two exceptions: Conflicting requirements (Integrity)
and Lack of collaboration (Complexity).

TABLE 10 Risks with 100% validity for the research case

Risk item Phase Risk type
Ambiguous requirements Requirements phase Identity

Underestimation of change magnitude Requirements phase Volatility

Ambiguous requirements Design phase Identity

Client Commitment Design phase Identity

Conflicting requirements Design phase Integrity

Missing requirements Design phase Identity

Delivering what the client needs Design phase Identity

Lack of collaboration Design phase Complexity

Underestimation of change magnitude Design phase Volatility

Ambiguous requirements Implementation phase Identity

Project member turnover Implementation phase Volatility

Underestimation of change magnitude Implementation phase Volatility

5.1.2 Identifying risks with or without the checklists

To evaluate if the risk profile produced new information for the interviewees, the
analysis focused on understanding whether participants considered risk item as
a valid risk before seeing the checklists or only after seeing them. This infor-
mation is also shown in Risk profile summary, table 8, in first two sub-columns
of the Risk validity column. From all the risks in the checklists, only ones related

59

to external regulations and the one about hostile users were not recognized by any-
one before seeing the checklists. Worth pointing out is that Hostile users was also
a risk which 7 out of 8 interviewees asked clarification about its meaning - which
might have affected why any of the interviewees did not consider it before seeing
the checklists.

Risk profile summary (table 8) reveals four risk items which most of the
participants (6 or more) marked as covered by the idea of a risk that they had
written down before seeing the any of the method's checklist. These risks are:
Ambiguous requirements (requirements phase), Delivering what the client needs (De-
sign phase), Lack of collaboration (design phase) and Ambiguous requirements (im-
plementation phase). On the opposite side, the risk profile summary (table 8)
showcases a same number of risks that most of the participant (6 or more) didn't
think on their own but considered as valid risk for the study case. These risks are
Conflicting requirements (design phase), Underestimation of Change magnitude (de-
sign phase), Technology changes (design phase) and Project Team Member Turnover
(implementation phase).

When purely comparing a number of cases when more participants recog-
nized the risk before seeing the checklists to the ones where the risk was recog-
nized with the checklist, the results were equal (16 risks items). In two cases the
number of answers was equal for both options. These results suggest that the
method indeed would help its user to focus on topics that might have otherwise
been ignored or forgotten. On the other hand, results indicate that the content of
the checklists highlight topics that interviewees seem to focus intuitively.

5.1.3 Risk impact evaluations

For evaluations of risk impact, the distribution of answers was quite high. In gen-
eral, it appears that participants were less likely to rate the risk impact level to be
low compared to high or neutral. Only 12 of a total of 34 risk items had low im-
pact rating from at least 1 interviewee. In addition, two participants specifically
mentioned during the interview that they had a hard time to evaluate any of the
risks to have a low impact. From the risks profile summary, it can be seen that
none of the risks which have a low impact evaluation have that with a significant
or even moderate agreement between the participants. The maximum number of
interviewees agreeing on a low-risk impact was two.

For high impact risks, participants pointed out few risks that they seemed
to consider important. Results show 3 risks where high impact level evaluation
was selected by most of the participants (6 or more similar answers). These risks
were: Ambiguous requirements (requirements phase), Client commitment (require-
ments phase) and Ambiguous requirements (implementation phase). Worth noting
is that Ambiguous requirements was also considered to be a valid risk by all the
interviewees for all the development phases. Risks that got the least high impact
level ratings were: Change in external regulations (requirements phase) and Tech-
nology changes (design phase). In both cases, only one participant rated them with
high impact level. Change in external regulations (requirements phase) received

60

also the most "not valid" answer in the risk profiles. Technology changes (design
phase) on the other hand was mostly considered to be a valid risk for the research
case.

Another comparison can be seen in Table 11 below. It lists all the risks which
were rated as high more often than any other impact level. This resulted in a total
of 14 risks. When comparing different development phases, implementation
phase had the highest number of these risks (6 out of total 8 risk items). It is im-
portant to point out that only one of these cases had the significant number of
answers with high impact rating. The sheer number of high impact ratings in
relations to the number of risk items in the checklist for each development phase
didn't have noticeable difference. Both of these results suggest that participants
didn't consider risks in the certain development phase remarkably important
than in the other one.

TABLE 11 Risk items with more high impact ratings than other ratings

Risk item Phase Risk type
Absence of project sponsor Requirement phase Identity

Ambiguous requirements Requirements phase Identity

Client commitment Requirements phase Identity

Fixed budget and timeline Requirement phase Integrity

Misunderstood business need Requirement phase Identity

Change in external Regulations Design phase Volatility

Fixed budget and timeline Design phase Integrity

Lack of collaboration Design phase Complexity

Ambiguous requirements Implementation phase Identity

Change in external regulations Implementation phase Volatility

Client commitment Implementation phase Identity

Fixed budget and timeline Implementation phase Integrity

Hostile user Implementation phase Identity

Underestimation of change magnitude Implementation phase Volatility

If interviewee had considered the risk before seeing the checklists does not seem
to affect significantly the impact level user is likely to assign for the risk item. Out
of all the risks where most of the participants identified the risk item without the
checklist (16 out of 34 risks) for 9 risks more participants evaluated the risk im-
pact to be high instead of neutral or low. On the other hand, it seems that the risk
which was recognized only after seeing the checklist was also more likely to re-
ceive a neutral or low impact rating. Only three of these risks received more high
ratings. These risks are Absence of project sponsor (requirements phase), Client com-
mitment (requirements phase) and Project team member turnover (implementation
phase).

5.1.4 Risks missing from the checklists

During the interview, all the interviewees wrote down some risks that they felt
were not covered by any of the checklists. These are presented in table 9. During

61

analysis, most of these risks were combined under similar themes. From the Ta-
ble 9 it visible that the most common of these themes are related to the project
team. This includes for example risks of not having clear responsibilities inside
the project teams, having challenges with the communication and project team
not having enough or sufficient skills to be successful. Several interviewees men-
tioned also risks related to working in the multicultural environment and with
external teams. These topics were also put under project team category.

The second and the third common themes were related to user and cus-
tomer experience and not having a correct scope for requirements. The user and
customer experience in this context cover everything from not considering
all/correct user or customer groups to possible challenges in designing the visual
look and feel for the solution. The requirements scope means difficulties with
identifying what features or parts of a feature the requirements should be de-
scribing and challenges in defining the border between other features. Even
though several of the existing risks in the checklists touch the topic of require-
ments scope, some interviewees felt that having incorrect scope for the require-
ments can be a wider topic that should be addressed as a separate risk item.

The last common risk theme is agile development related. This includes is-
sues that may arise when using an iterative development approach. Examples
mentioned in the interviews were challenges including the new feature or system
as part of the existing solution or architecture and the challenge of focusing on
small enough increments in the development cycle so that agile approach is effi-
cient.

5.2 Evaluation of the data the method produced

The second part of the interview focused on evaluating the data the RRP method
produced when it was used for requirement risk assessment. Interviewees were
asked to review the risk profile they had created and comment if it accurately
represented the requirement risk environment of the research case. In general,
the interviewees agreed that the method produced valid information for the re-
search case. This is also supported by the results from the first interview phase
where the number of risks marked as not valid was relatively small. None of the
interviewees pointed out anything that would indicate that risk profile they cre-
ated would have been incorrect or completely irrelevant. True, some of the risks
in the checklists were not valid for the case in question, but the participants
shared a general agreement that those might be relevant in some other cases or
different projects.

"I think it considers relatively well all the relevant topics for this case…"

"Hits the main points for sure"

62

When it came to the question if the method helps to recognize risks, participants
were not as unanimous. When some interviewees stated that method helped
them to spot relevant risks and even to notice issues they would not have thought
without it, others didn't feel the method extended their current knowledge of the
project's risk situation. This dichotomy was similarly visible in the risk profile
summary analysis. Interestingly, those interviewees who were not directly work-
ing with requirement management process (they are not working as a product
owner or architect) were more positive about the method's ability to recognize
relevant risks. For the people who have their background in the requirements
engineering, the method seemed to focus on risks in slightly too general level.
They felt that the risk profile they produced didn't bring that much new and they
described the content to be rather obvious.

"I had a hard time to find a correct mindset for this (identifying risks). It was hard to
decide if a risk should be marked as important or not because all the risks are quite
generic. I find it hard to think of any project where these risks would not have any
impact. If I would think of any other project, the result would be almost the same."

"I have not spent a day in a school about these things and I thought all of these (risks)
by myself just by imagining doing a project from A to B".

The general nature of the risks was not considered only as a negative thing. For
others not diving into detailed topics ensures that the tool they use doesn't bring
up contrived risks and helps to avoid unnecessary problem-seeking mindset. For
these participants, The RRP method performs as a guide to correct direction - not
as a strict plan of action. These interviewees saw the method more as a starting
point for a risk analysis than a strict guideline to follow to get direct answers.
Using it still requires brainwork from the one who does the analysis.

"…These topics are high level enough so that they don't force me in a certain direction
and on the other hand it doesn't bring up made-up risks…"

"I'm not sure if I can assume that this method alone helps me to recognize all the risks,
but it might push me to the correct direction and point out things I would have not
thought otherwise. I don't fully trust the idea that just by going through all the
checklists would be enough"

"I feel that these are very general level topics from which the one who does the risk
analysis has to recognize the ones that are relevant for this project. If you are not able
to do that or you miss something, this method doesn't provide any answers. It guides
you to the correct direction, but at the end, the work is left for the risks analyzer."

Other comments about the nature of the risks in the checklists related to their
interconnectivity. The client commitment and communication gap between co-workers
were given as an example of this. Clients are considered as an important project
stakeholder in the case project and also the agile project’s in general. The inter-
viewees commented that it is a risk itself to focus on things separately when they
actually are just an implication on the same problem - in this case, the lack of

63

sufficient communication. This kind of causal relation was found between differ-
ent risks. Other examples mentioned in the interviews were: misunderstood busi-
ness needs, missing requirements and delivering what client needs.

The fact that risks in the checklists focus more on the business-related issues
rather than requirements' relation to the technical implementation, received
praise. This focus was generally perceived positively as it supports the focus on
the importance of the requirement management process and enforces stake-
holder collaboration:

"I feel this (method) covers our project risks pretty well. It doesn’t consider too much
the implementation though and all the related issues from the technical side. I'm not
even sure if it should be in a scope of this method…I actually think it is better that they
are not included"

"The method showcases well the importance of the business-related challenges. As
long as you have a clear picture of what you need (from the system) the technical side
will be doable one way or another."

All the interviewees agreed that some of the risks have been recognized already
in the earlier stages of the case project - some even stated that almost all of them.
The fact that risks have appeared in the project's history further support the
method's risk selection's representativeness of real-life development environ-
ment.

During the interview, several interviewees struggled with evaluating the
impact of the risks. As also apparent from the risk profile summary (Table 8), it
seemed to be more natural to give a high or medium impact to a risk than a low
one. One interviewee asked if she could mark all the risks with high priority.
Without a big difference in impacts, the interviewees didn't feel that the method
helped them to prioritize risks.

"Majority of those impacts I added were either high or medium. Based on that, how
should I be able to prioritize them (risks)? I don't feel that the method brings additional
help for that".

When asked why low impact rating was hard to give, one common answer was
that user felt that all the risks have a chance to escalate. At one moment, the risk
might be low, but then when the next iteration comes, the situation might change
drastically. Impact evaluation, in general, didn't seem to be a natural way to cre-
ate an understanding of the risks severity for the case project. Participants were
perplexed when they were only asked to focus on the risk impact instead of risk
probability. As one interviewee stated, the risk likelihood is as important when
assessing to which risks to focus on first:

"All risks are big (have a high impact) when building something complex. It is like in
a brain surgery: Even if you cut just one wrong vein, it screws up tons of stuff…The
likelihood of something happening is much more useful for evaluating the priority
than the possible impact."

64

This relation between the risk impact and the risk probability was one of the big-
gest challenges when using the method for the risk prioritization.

5.3 Perceived usefulness of the method for the agile software pro-
ject

The last phase of the interview focused on the RRP method's usage in the agile
software project. The topic of the method's representation of requirements risks
in high level was also present in the interview answers for this last interview
phase. When looked from the perspective of the whole project and project work,
this scope for viewing risks was considered to be a positive thing. Majority of the
interviewees mentioned that the risk profile they created for the case feature,
could easily be from any of the other development projects the case company is
currently working on. In this regard, they felt that the method doesn’t have such
limitations that it would not fit for the company's current development environ-
ment.

When asked if the interviewee felt that using this model would be useful
for the whole project the answers were divided. One of the most evident chal-
lenges seems to be the scope in which the RRP method should be used in the agile
development project. When the end-product is developed in several iterations -
some bigger and some smaller - there is no clear point when the method is best
to be used. Interviewees also concluded that finding a proper time to do such an
analysis might be hard. In the case company, the duration of one iteration might
vary significantly and several iterations can be in development at the same time.
Doing the risk analysis, the way method suggests, might become quickly over-
whelming if the scope is not clearly defined.

"In agile development, there is no clear point when this kind of analysis should be
done"

"If we think our agile development, we have a focus on features which might be small.
I think this model might be too heavy".

"For one feature development, where there is a clear start and finish doing this might
be possible. Then there is a clear life cycle to follow. But if we think about our project,
then it is more difficult to define when this should be done."

Some participants even questioned the need for the whole idea of incorporating
additional risk management steps to the agile development process. Their argu-
ment was that agile development in principle already includes risk management
for example in form of retrospectives. They felt that the method might prove to
be too comprehensive for the agile needs and add an unnecessary step for the
development process. Because efficiency and getting rid of everything redundant
are the corners stones in the agile development, time and effort put to this kind
of analysis were seen as unnecessary.

65

"I would say this model is not useful for us. This iterative way of ours...of doing the
development...it is continuous. We are all the time trying to spot problems in our pro-
cesses and ways of working on the fly. I think we should not try to put it to any heavier
model."

Time resource and scope challenges lead the majority of interviewees to the con-
clusion that the way they would use the method would be for predefined, bigger
entities that require specific risk management actions due to their complexity or
business criticality:

"I think this could be done for bigger sets of things. Instead of one feature iteration, I
would see this as a tool for bigger projects or parts of a project"

"Doing this for every feature might be good, but would we be able to - I doubt that. I
think we could do it for high-level issues, at the beginning of a project and to any other
entity that we recognize is big enough that requires a deeper focus on the possible
risks"

Interview answers suggested that one way to use the RRP method in agile devel-
opment is to utilize it as a communication tool. The level of information the
method presents could help sharing information between the project stakehold-
ers, especially when people share a different level of understanding the software
development. According to the interviewees it could be used to communicate the
project's challenges (or likely challenges) to help decision makers to know to
what issues should be addressed. The method could also help to emphasize the
connection between different issues:

"If I would have to explain to a decision maker what is wrong, this could be an eye-
opener that which issues are related. For example, that it is not the implementation
that is the problem, but actually we had challenges already in the requirements phase.
This is not really recognizing risks, but more communicating them through a known
model to someone who is not familiar with the whole development process."

"At the beginning of a project, this could be used to showcase which things need to be
in order for all the different parties"

"This could be a good way to communicate about challenges in our processes. I would
not do this to all of our projects, but an individual example and that way bring up
those issues that we should remember to address."

In the interview, participants were asked when they would use the RRP method.
The common agreement between the participants was that the method would be
most beneficial at the beginning of the project or development iteration. One ar-
gument supporting this was that the majority of the risks will follow through the
whole development process. If those are not addressed in a timely manner at the
beginning, that will cause problems throughout the development process. Inter-
viewees also felt that if the risk is skipped in the previous phase, its effect is mul-
tiplied in the following phases.

66

"In my opinion, many of these risks affect through the development process. If we, for
example, don't have ownership from the client side at the beginning, it will have re-
percussions even in the implementation phase"

"Well if the requirements have been misunderstood at the beginning, the problem will
reappear in each and every process phase."

"Now that I read this list (checklist for the design phase), I would say that all the risks
from the previous section would be here also and their effect is multiplied. If we would
design and implement something with a poor understanding of the actual business
need, it doesn't change any better later on"

Following the method's approach and doing the analysis for each development
phase individually could, on the other hand, increase the likelihood of spotting
issues that were skipped. Few interviewees pointed out that since all the different
phases include different tasks and different people, the risks analysis should be
also done again - even though the majority of the risks would have been recog-
nized and even addressed earlier. The phases would also help the development
team to track which of the issues are under control and which might need addi-
tional action.

During the interview, another interesting topic arose which is not only re-
lated to the agile development: who could be competent to use the model? While
doing the interview, the differences in a person's focus and how they perceived
each risk was remarkably different depending on their role in the case project.
This naturally affected the way the interviewee understood each risk and how he
or she evaluated their impact. In the case company, different phases of the agile
development have been appointed to different people and several individuals
affect the requirements during their life cycle. This means also that the
knowledge and overall picture is divided among multiple people. Interviewees
pointed out that using the RRP method requires a quite deep understanding of
the IS projects, system development, and the company’s organizational environ-
ment. The user of the method should be able to reflect different business areas
and should not be limited by the method but also be able to evaluate risks outside
the lists.

Lack of proper requirement risk management process seems to be a chal-
lenge also in the case company. Interviewees coincided that the some of the risks
in the checklists have realized one way or another in earlier developments. As
seen from the comments below one participant mentioned that even though al-
most all the risks in the checklists have been acknowledged, the project team has-
n't made actions based on that information. Another participant felt that even
though risks have been recognized, the team doesn't have a possibility to influ-
ence them enough.

"I felt it hard to get help from this (method) that I would have not known before. Still,
by using this, I think we could be able to make such an observation that we normally
ignore although we shouldn't".

67

"We have recognized most of these already and also tried to do something about them.
Still, because of reasons we cannot affect, we have not been able to fix them. This is
why I didn't feel that this method brought any value to me. I can imagine if someone
who had never thought why our process is not working, he could use this and get
something out of this."

If the RRP method would be a good option for the case company as a tool to
manage requirements risks, participants were not sure. Having a general ap-
proach and slightly unclear scope seemed to be the main reasons why not. As the
method don't propose direct answers, even though the resolution techniques
would be involved, participants felt that the method lacks concrete actions to take.
When compared to any other risk management method, choosing this one didn't
seem to be an obvious option for anyone. In turn, the method was praised of its
ability to present risks in a way that in the skilled hands the method could serve
as a communication tool between different stakeholder groups and really help to
address the requirement related risks.

68

6 DISCUSSION

By combining results from both contemporary research literature and this case
study it is possible to identify topics that help draw a picture of how require-
ments risk management is done in agile IS development projects. This research
also manages to highlight common themes which are important to focus on in
agile IS development projects showcasing at the same time how selected devel-
opment method indeed can affect the requirements risk environment. This chap-
ter describes in detail these specifics of requirement risk management in the agile
project by comparing findings from this study case to the current literature.

6.1 Managing requirements risks in agile IS development project

Reviewed research literature and findings from the case study highlighted one
key attribute of the requirements engineering process in agile projects: its itera-
tive nature. It is very clear that when IS development project is using agile devel-
opment methodology, requirements management process simply cannot be stiff
and heavily structured. This is the most evident when requirement elicitation is
considered: Even in agile IS projects, a heavier focus on requirements elicitation
is often put at the beginning of the project. However, in agile projects, this is just
a mere starting point. Original set of collected system requirements are refined
as the development process continues and the focus moves to smaller iterations.
System requirements in agile projects are typically highly volatile and evolve
throughout the development lifecycle.

This has a lot of implications for the requirements risk management: Risk
profiles or evaluations done at any given moment might be old tomorrow. This
means that requirement risks understanding needs to evolve along with the
changes for the requirements set up. All kinds of ISD projects will benefit from
continuous risk management actions, but current literature strongly emphasizes
it in relation to agile development. (Wiegers & Beatty, 2013; Lyytinen, Mathiassen
& Ropponen, 1996).

As responding to constantly changing environment is one of the four values
of the agile development (Agile foundations: Principles, practices, and frame-
works, 2015), agile philosophy has some inbuilt mechanisms that help continu-
ous risk management process which, in turn, helps management of requirement
related risks too. The whole agile process is based on the idea of constant feed-
back loop which guides future development iterations. Measey (2015, 38) show-
cases in his generic agile process framework this loop and how the previous de-
velopment iterations provide new knowledge to guide the future development.
Doing things iteratively means that for example one feature may be built in few
smaller increments - one iteration improving the previous one. For bigger
features, this might mean that several development iterations are needed before

69

it is considered to be ready. New information gathered from the previous itera-
tions may affect the requirements of the new iteration and changes are required.

Different agile methods offer a variety of practices to gather information
from the prior development iterations. In the case company, for example, this
was achieved with different types of retrospectives. These serve as an instrument
of self-correcting both the development process as well as the development plan.
In agile projects, these moments are natural points where changes to the project’s
requirement risks appear. Those are then also natural checkpoints where require-
ments risks can be reanalyzed accordingly. In the research case, some interview-
ees even felt that this agile feedback loop is so effective that specific risk manage-
ment actions toward the requirements risks are not even needed.

As mentioned earlier, also agile projects have a heavier focus on the require-
ments elicitation at the beginning of the project. At that time requirements are
higher level and so are risks relating to them. From the more practical point of
view, this research concludes that agile projects will benefit from having a higher-
level risk management discussion at the beginning of the project or bigger devel-
opment cycle. This was visible in the case study results where many interviewees
were seeing communicational challenges as a high impact risk and contributor
behind other topics which were mentioned in the RRP method. Having this kind
of discussion would increase the information sharing and understandability of
the projects risk environment and create a baseline for the future discussions.
Case study interviewees were also positive that they could use a tool such as the
RRP method to support this kind of discussion.

In addition, both research literature and case study results showcased that
requirement risks management should involve not just the project team but other
stakeholders' groups too. This creates an environment which enables transpar-
ency needed for agile projects where customer and other stakeholders are ex-
pected to be active contributors for the project. Collaboration between stake-
holder groups (especially customer) in the moments of change is important be-
cause requirements are highly affected by topics which are not obviously related
to the development itself. For instance, organizational decision making, external
regulations or even personnel changes are topics which are often not in direct
control of any development project team members but can have a significant ef-
fect on requirement related risks.

After higher level understanding about requirement risk environment is
formed for the agile project, the scope of the requirement risk management needs
be focused to the correct level when proceeding to a cyclic development flow.
Results from this study indicate that this is the point when requirement risk man-
agement starts to become harder. At this stage, more is required from the people
who do the requirement risk management. They need to understand inputs from
the previous iterations and apply the new knowledge at the same time under-
standing how it will affect the requirements risks in the iteration level but also if
those affect the big picture too.

70

It also more challenging to find tools which support this process. As the
scope and the level of risks can vary depending on the development cycle, a sim-
ple readymade list of risk, for example, is not able to support all the variations
for the risk assessment. Even though different checklists are a common way to
support project risk assessment (Boehm & Ross, 1989; Boehm, 1991; Schmidt et
al., 2001), in agile development these can serve only as a mere starting point and
should be always adjusted to fit the current development scope. The level of risks
presented in the RRP model support discussion about relatively big entities or
even whole projects. In the case study, several interviewees stated that the scope
selected for the research case (focus feature iteration) did not feel appropriate.
Their comments about risk content in the checklists being too high level or gen-
eral to be useful highlight how at the feature level requirement risks need to be
already quite focused.

This was also visible in other interview results: the high-level focus of the
risks in the RRP method's checklists seemed to affect how useful study partici-
pants perceived the method to be. Several of them commented on how it did not
bring anything "new" for them or was too general to support their risk manage-
ment work in feature level. This can also be supported by the observation, that
people working directly with the feature development were less confident with
the method's checklist content than the ones having more distance to the devel-
opment process in the study case. This might be because the latter group does
not have to deal with the scope changes of requirements risks similarly as the
people working directly with the development process do and hence they are
happier with the high-level focus of the risk discussion.

6.2 Requirements risks environment in the agile project

Requirement management revolves strongly around the needs of a customer and
transferring those at the end to a working software. Current literature has several
lists of common requirements related risks and most of them seem to focus on
the nature or quality of the requirements themselves, for example, their volatility,
completeness, and ability to represent clients need accurately. (DeMarco & Lister,
2003; Lawrence et al., 2001) For example, Mathiassen et al. (2007) have character-
ized requirements related risks based on these characteristics. However, require-
ments are affected by topics in the environment where they exist. Agile method-
ologies promote a certain kind of development environment which naturally in-
fluences what kind of risks requirement engineering process faces.

To investigate what are typical requirement related risks, risk checklists
from the RRP method were used as a starting point. The method was not devel-
oped especially with some development philosophy in mind (Tuunanen et al.,
2018) and so the risks in the method's checklists offered a good reference point to
start the investigation from. When these checklists were analyzed during the case
study, there was a strong agreement with the participants that the majority of the
risks were relevant to the study case. This has two major implications for this

71

study: firstly, risk checklists of the RRP method seem to represent true require-
ment risks which are also valid in agile development. Secondly, selecting an agile
development method does not save a project from some type of risks. Overall,
these research results suggest that requirements management process is plagued
by similar risks when agile development methods are used compared to more
structured methods. Using agile development methods does not seem to make
any of the topics mentioned in the checklists completely irrelevant. The differ-
ence lays more in emphasis of risk types and in which scope those should be
analyzed.

When checklists from the RRP method were used as a reference, this study
revealed some themes which seem to be especially important in the agile project.
Several interviewees also felt that these themes were not addressed enough by
the RRP method’s checklists. This does not mean that these topics are only agile
development specific, but based on this case study, those might have a more
prominent role in agile development. These themes were: Project team, Customer
and user experience, Requirements scope and Agile development.

The first of these themes, Project team, has its roots in people and communi-
cation. In the core of agile thinking is the focus on collaboration. This is especially
true in requirement management where even the whole process could be consid-
ered as a flow of communication - communication of the client's needs. Likewise,
as Wiegers and Beatty (2003, 546) state, managing requirement related risks is a
collaborative action between all the stakeholder groups. While creating risk pro-
files for the focus feature, several interviewees felt that stakeholder
communication-related topics should have been in prominent focus. It was also
possible to see from the results that challenges in communication and collabora-
tion could be a reason for several risks in the checklist. Addressing these issues
could actually prevent certain risks from happening. Misunderstood business needs
or delivering what the client requires are good examples where collaboration issues
may have played a role. Since the communication and collaboration have so im-
portant a role in agile development, not focusing on these topics seems to be a
high-risk item on its own.

Communication challenges may be a result from different issues, but one
very typical one in the project such as the case company has, comes from the
physical distance. It is not uncommon that the ISD project’s stakeholder groups
are in different locations - even different countries and time zones. The actual
programming can also be done from multiple locations. The case company of-
fered a good example of this kind of scenario with is multicultural development
teams which are spread across the globe. This scenario is not, by all means, agile
specific, but when combined with a high emphasis on small self-organizing
teams, it is clear that agile projects demand caution in this area and requirements
risks related to that may play a bigger role in agile projects.

From the people side, this theme points out the risks which can arise from
not having clear responsibilities or enough skills among the team members. Even
though agile methodologies promote self-organizing teams and flexible leader-

72

ship structures, this does not mean that agile projects perform without any struc-
tures, quite the opposite. Project environment where changes are constant and
fast, the responsibilities need to be clear in order to be able to achieve project’s
goals. On the other hand, flexibility is born when individuals have a wide range
of skills and knowledge. When the agile project team lack clarity on responsibil-
ities and sufficient skills and knowledge, this will create risks which have a direct
effect on requirements too.

The second agile specific theme which was brought up during the inter-
views related to customer’s or user's role in the agile project. How a client is often
seen as an active contributor to an agile development project is widely discussed
in the current literature. (Agile foundations: Principles, practices, and frame-
works, 2015; Cockburn & Highsmith, 2001; Highsmith, 2002; Paulk, 2002) This
means that in requirement engineering process the customer is not expected to
give finalized "order" at the beginning of a project but act more as a direction
giver. In this role, the customer guides the process and ensures the business
needs are met with the team - not from the outside. Being a customer of an agile
project can also be demanding. The customer is expected to be available to par-
ticipate in the development process and like Paetsch (2003) mentions, agile meth-
ods often assume that customers are competent enough to make good decisions.

When doing a risk assessment for the focus feature, some interviews felt
that customer’s role was not considered enough by the RRP method’s checklists.
They found several risks which they would have included in the checklist to sup-
port this customer-centric view agile project requires. These risks varied from the
lack of ownership and overview from the client side to not considering the user
experience enough in the end-product from the look and feel point of view. These
results highlight the high expectations for the customer in the agile project and
how client's relationship can generate risks both sides: customers relation to the
project and the project’s ability to answer to the customer’s needs.

The importance of these topics can be also seen in the risk profile summary
and which risks interview participants felt to have the highest impact on the re-
search case. Risk Ambiguous requirements and client commitment were rated as high
impact risk by most of the interviewees. Both of these can have heavy relation to
customer's or user's relation to the development project. When combined with
the case study result that identity types of risks received the most high impact
ratings out of all the other risk types, it seems clear that this theme seems to be
especially critical in agile projects. Identity type of risks relate to the availability
of the risks such as communication challenges and overlooking a certain user
group.

Based on the interview results, the RRP methods seem to have a slightly
more buyer-supplier view of requirement management process: Interviewees felt
that the responsibility of understanding the business need is more on the supplier
side and the risks arise mainly when requirements management process fails to
capture these needs correctly. Based on the literature, agile methods try to break
this setup and customer’s role is expected to be an active contributor to the ISD
project. (Abrahamsson et al., 2002; Cao & Ramesh, 2008; Manzo, 2002) In an ideal

73

agile project customer relationship is not just one -way line. Instead, understand-
ing of the developed solution is built together with the customer and develop-
ment team. Assuming that the customer is able to fill this role creates its own set
of risks. When those are not correctly addressed, the development project might
face unexpected challenges.

The RRP method does mention risks such as client commitment and con-
strained user knowledge, which in a way, address this topic. However, those are
assigned to the requirements phase of the development process. In agile projects,
customer involvement continues ideally throughout the project lifecycle. Having
focused on customer-related topics during the requirements elicitation only
might cause problems in the later stages of the development. Results from this
case also support the argument that focusing on customer relationship related
risks is important during the whole development. Using a tool such as the RRP
method, in turn, could offer required transparency so the requirement risk man-
agement can be done with the customer and so risks related to customer’s own
role can be minimized.

The third and fourth risk theme considered requirements scope and issues
that arise from the agile development process itself: How continuing develop-
ment will make it challenging to draw the line between features when developing
software in iterations and how to make sure individual iterations fit as part of the
bigger whole. These two topics a lot to do with each other. Agile methods under-
line how doing small increments and adding them to the bigger whole ensures
that building working software is more manageable. (Agile foundations: Princi-
ples, practices and frameworks, 2015; Abrahamsson et al., 2002). Case study in-
terviews revealed how this thinking can bring some challenges. In bigger projects,
an individual feature may have dependencies from technical as well as require-
ment point of view to other requirements, features or event other projects. What
is selected to be achieved within one development iteration, in turn, is not always
aligned with all these dependencies. This means that understanding how these
dependencies effect on requirements risks can be really challenging.

6.3 Using the Requirements Risk Prioritization method in an agile
project

In this case study assessment of requirement related risks was done by using the
RRP method. Developers of the method argue, that the method could be used in
all kinds of development projects. In a way, it would be easy to assume that the
method covers the aspect of continuous risk evaluation agile projects benefit
from by assigning risks to different development phases with the checklists.
When requirements change, the analysis could be repeated, and new, updated
risk profile created based on the new information. However, this study highlights
some of the challenges in assessing requirement related risks in agile ISD project
and how using a tool such as the RRP method could be challenging. On the hand,

74

this study highlights how this kind of method could, in turn, help requirements
risks management in agile projects.

Working in the highly collaborative environment requires people to share
at least somewhat same level of an understanding of any given topic. Interviews
revealed that discussing requirements risks with different stakeholder groups
can be challenging due to different perspectives and level knowledge they share.
Several interviewees stated that having a tool that supports the communication
of different requirements related challenges with different stakeholder groups,
could help the agile project to be successful. Because the scope of the RRP method
is relatively general, risks that it directs project stakeholders to focus on are more
likely to be understandable and relevant for all the stakeholder groups. This case
study offered a good example of how a tool such as the RRP method can help
people from different functions to discuss the same topics and point out common
challenges. Several interviewees concluded that even though as it is, the method
would not support their risk management activities in daily work, it would be a
good tool to support communication with the other stakeholders about case pro-
ject’s requirements risks.

Agile methods promote flexibility both in roles and responsibilities as well
as avoiding bureaucratic organization structures and controlling management
styles. This means that agile project team members are often preferred to be gen-
eralists instead of specialists. Typically, an agile method also discourages doing
heavy documentation. (Agile foundations: Principles, practices and frameworks,
2015) In this kind of environment key information and knowledge is often dis-
tributed to several individuals and is not centrally documented. Having all that
in mind, one relevant question is: Who would be able to analyze requirements
risk reliably in an agile project? There are some recommendations in the literature
about how the person should have deep enough understanding of the actual
business/client needs, organizational environment as well as the development
processes. (Konya & Sommerville, 1998). This case study revealed how it is also
important that a person’s position in the organization allows access to the re-
quired information. One person rarely poses all these qualities. This means that,
like every other aspect of agile development, also requirements risks assessment
must be a collaborative effort.

During the interview, one of the biggest criticisms towards the RRP method
was about using the risk impact as a measurement of risks importance to the pro-
ject. Typically, ISD project risk management does not only rely on the risk’s pos-
sible impact but includes also risks probability to the analysis. For example,
Boehm’s (1991) calculation of risk exposure includes both the probability of a loss
as well as the size of a loss. The same combination is present in U.S National
Institute of Standards and Technology's Risk Management Guide for Information
Technology systems, where writers state that risks should be considered by both
probability and the impact of occurrence (NIST, Goguen & Fringa, 2002).

The RRP method as a tool directs user’s focus to only evaluate risk impact.
This result rather one-dimensional visibility to a situation that in real life is more
complex. When the risks prioritization is done based on only the impact, it is

75

possible that risk management efforts are directed to prevent something very un-
likely. On the other hand, focusing only on the risk probability, limited resources
could be wasted on minor issues. It is true that the model's checklists consist of
risks that are proven to be common in requirement management and in that sense
their probability is already high. However, as the checklists will never represent
the full spectrum of the requirement risks of the project, the model should better
encourage to two-sided risk evaluation to avoid incorrect risk prioritization.

Managing requirements related risks cannot be done successfully if it is iso-
lated from the overall ISD risk management (Wiegers & Beatty, 2013, 542-546).
Talking about requirements risks separately might even feel artificial - after all,
the requirement management process is an integral part of the overall develop-
ment. Interviewees in this study seem to have a hard time to orientate just to
focus on the requirements level and talking about requirement risks felt unnatu-
ral. This is most likely due to the fact that requirements are affected by a wide
range of topics surrounding the development project. Similarly, on the other side,
requirement related risks rarely have only effects on requirements but can hinder
the success of the whole development project. The RRP method seemed to make
it easier for case study participants to understand these relationships in their own
project.

6.4 Implications for the practice

This research reveals some topics which could help managing requirement re-
lated risks in the real-life agile projects. One of the research questions of this
study focused on identifying typical requirements related risks in agile ISD pro-
jects. This research used a risk checklist from the RRP method as a reference point
for risks evaluation in the case study. These requirement risks were considered
in this research context not to be dependent on any specific development method.
As stated earlier is relatively safe to say that agile projects face a lot of the same
challenges as do projects where more structured methods are in use. However,
while analysis risk profiles created during the case study it was possible to high-
light themes which seem to be especially important for the agile projects: user and
customer experience, project team, agile development, and requirements scope. These
risk themes are discussed more in detail in chapter 6.2.

One of these themes is specifically about the agile development process and
the other three have also a strong relation to the agile principles and values (Fig-
ure 1 and Table 1). This can indicate that these themes are common for all kinds
of agile projects, not just the one presented in this case study. However, to con-
firm this, more research is needed. Even more so, although there is no possibility
to conclude exactly what are typical agile project’s requirements risks it is im-
portant to know for agile project practitioners that there can be some. Based on
this research, selecting an agile method for the development project can affect the
project's risk environment. Even more importantly: The selected development

76

method can affect the project risk environment whether it is an agile or more
structured method or anything in between.

From the more practical point of view, people and collaboration - agile val-
ues should be extended also to the requirements risks management. One person
in the agile project cannot have all the required information to evaluate require-
ments risks accurately. Involving the project team and stakeholders is crucial to
draw a reliable picture of the requirements risks the project might face. Based on
this research requirements risk management in an agile project should be trans-
parent, cross-team and cross-functional and preferably involve customer as
much as possible. Using a tool such as the RRP method can help in this collabo-
ration. When the focus of the development moves to a more detailed level, also
the scope of the requirements risks analysis should do so. At that point when the
overall understanding has been formed earlier, changing the scope of the analysis
to smaller entities can be easier.

Lastly, managing requirement risks should never be done in isolation from
other risk management activities. This is true for all kinds of projects. Having a
tool that only addresses certain types of risks can lead to a situation where other
issues are overlooked. This case study showcased how project team members
who did not have requirement risk management process established per se, felt
that they had addressed or at least recognized most of the topics presented by
the RRP methods checklists without a specific focus on the requirements risks.
Yet recognizing requirements risk as a key risk type as well as understanding
how different issues affect the requirements engineering process brings im-
portant insights into the overall risk management and increase projects success
rate.

77

7 Conclusions

System requirements play a significant role in guiding IS development project
from initial idea or need to the implementation of desired functionalities to a
working software. Over the years, researchers have concluded that shortcomings
in the requirement management process contribute heavily to the IS develop-
ment projects success. After the emerge of agile methods the IS field has been
introduced with development methods which focus on smaller increments, flex-
ibility, and success through constant adjustments of the plan. The goal of this
master's thesis is to uncover if agile development method affects requirements
risks in projects where such methods are in use. It also aims at understanding
how requirements risk management is done in agile IS development projects and
showcases some topics which are more likely to affect more requirements risks
in agile projects than projects where traditional development methods are in use.
Lastly, this research showcases practical example of requirement risk manage-
ment in an agile project with the help of RRP method.

This research consists of a review of related research literature and a case
study where the RRP method is used in a real-life agile project. The literature
review includes articles about requirement engineering in agile projects as well
as requirement risk management as part of overall IS project risk management
process. In addition, it introduces the RRP method which is later used in the em-
pirical part of this research. Combining all these topics creates a theoretical
framework for the case study to uncover answers to all research questions.

The empirical part of this research was conducted as a single case study.
The study subject was an on-going agile software development project and the
scope of interest was one system feature development. Case study participants
were all part of the project team or close stakeholders with sufficient position to
affect projects requirements risk environment. The case study was conducted as
a semi-structured interview where interviewees used RRP methods to create a
risk profile for the feature development. After risk profile creation, the interview
continued with pre-defined questions which aimed at evaluating the data inter-
viewees generated with the RRP method and evaluation of the usefulness of the
method for the agile project work. Interview results were analyzed by combining
the data of the risk profiles created by interview participants and conducting a
thematic analysis for the interview question answers.

Results from this research conclude that agile IS projects also requirements
management process is iterative which has a direct effect on the requirements
risk management. From the simple process step point of view, requirements risk
management does not seem to differ in agile and more structured development
methods. In the end, it will always come down to identifying risks, analyzing
them and finally resolving them in one way or another. However, in agile
projects, the scope of risk analysis, as well as timing, should be aligned with the
current development phase. When software is developed in smaller increments,

78

the requirement risks relating to them may also vary in size, criticality, and like-
lihood. The risk profile of any given moment can be old in the next after some
changes have been done. For successful requirement risk management, this
means that the analysis of risks should be continuous.

Despite these continuous efforts of managing requirement risks, agile pro-
jects can still benefit from the higher level scope of requirement risk analysis at
the beginning of the project and bigger development iterations. Forming this
kind of overview level understanding of the project requirements risk environ-
ment can help later more detailed risk management actions. Overall, the risk
analysis should preferably involve different project stakeholder and even cus-
tomer. This ensures that requirements risks, which are not only affected by issues
in a development project, will be analyzed sufficiently and accurately. This also
increases transparency among the project stakeholders, helps to recognize rela-
tions between different topics and reveals how changes can affect development
project.

After a high-level vision for the requirement risk environment is formed
this information should be used to support more detailed risk management. Ag-
ile processes support this idea with the constant feedback loop. This means that
feedback from the previous iteration is used to fix any possible issues in the fu-
ture ones. The knowledge of requirement risk environment of a whole agile
project is created by combining both high-level understanding and feedback
from smaller scope development. Depending on the agile method, this feedback
is analyzed in different agile ceremonies (for example retrospectives) which are
typically happening after each development iteration before the start of a next
one. These moments are also good points to revisit higher level requirement risks
and adjust the plan for managing them.

When considering the individual risks, agile projects seem to suffer similar
risks than projects which use more structured development approaches. From
the results of this case study, it is not possible to conclude if there are any specific
requirements risks which project team in agile projects should always focus on.
However, case study results pinpointed four themes which can be more promi-
nent in agile projects compared to the ones not using agile methods. These
themes where Project team, Customer experience, Requirements scope, and agile
process. Project team theme relates to issues such as challenges in communication
(internal and external), unclear responsibilities and insufficient skill set inside the
project team. Customer experience, for example, means not being able to recog-
nize all the correct user groups or not paying enough attention to the user expe-
rience in the end-product. Requirements scope included risks such as not being
able to draw clear enough border between features or increments. Lastly, the
agile process relates to for instance not focusing on small enough increments or
problems with integrating selected feature as a part of existing architecture.

These risk themes and their close relation to the agile development, agile
principles and values suggest that these can be present in different kinds of agile
method. Even more so results indicate that the selected development method can
affect the project requirement risk environment. This, in turn, means that while

79

forming the overall understanding of the requirements risks the project might
face, the project team should be aware of how the selected development methods
may affect them. The project team should also select such tools and processes for
the risk management that best support requirements risk management in their
type of development project.

Current literature does not offer many tools to manage requirements risk in
agile IS projects. The RRP method by Tuunanen et al. (2018) is a tool that was
used for requirement risk management within this case study. Developers of the
method state that it can support requirement risks management in all kinds of
projects - including agile. This research results both support and do not support
that argument.

According to this study, RRP method can support agile projects at the mo-
ment when the higher-level understanding of the requirements risk environment
needs to be formed. At this stage, it can help stakeholders to focus on correct
things and not overlook any important topics. Based on the result from this case
study, the method can help collaboration and communication about requirement
risks at the level that it is understandable for all the projects stakeholders. Typi-
cally, in agile projects key information is often spread among several individuals.
Having a list of risks where issues are discussed in the language that everybody
can understand can increase the likelihood of managing those related risks suc-
cessfully.

The RRP method includes three different checklists for different develop-
ment phases: requirements, design, and implementation. With these lists the
method can in theory support a cyclic development process. It would mean that
these phases are repeated for each development cycle. However, in agile devel-
opment, as the scope of each iteration can vary, using static checklists for the risk
management is not the most effective option. Based on the interviews, already
for individual feature development, a big part of the risks presented in the check-
lists felt too high-level and could not accurately guide the risk analysis work to
the correct scope. This means that as the method works well for the high-level
discussion when used to support requirements risk management work for a more
detailed level, it can only be used as a starting point.

The last point about the usage of the RRP method for managing require-
ment risks in an agile project was about actual prioritization. Interviewees felt
that the method could not help them to prioritize requirements risk mainly due
to its unilateral way of evaluating risks severity. The method guides its users only
to evaluate risks impact on the project and not include the likelihood to the anal-
ysis. This approach can lead methods users to direct risk management resources
toward preventing very unlikely risks. On the other hand, it can lead to overlook-
ing small impact risks which do not harm the project drastically but are still un-
wanted.

As an important part of IS development, requirements and risks relating to
them should not be overlooked. As shortcoming in the requirement engineering
process has been proven to be one of the key contributors on statistically high

80

number of IS project failures, limiting risks in the requirement engineering pro-
cess should increase the IS projects success rate in the future. Managing require-
ment risks in an agile project is not too different compared to a more structured
project. However, understanding the effect that the agile process does have on
the requirements and their life cycle is crucial for successful requirement risk
management. It starts by understanding agile values and principles which are at
the core of every agile methodology. It continues continuously and consciously
managing requirements risks in the scope of each development phase and utiliz-
ing correct for tools – at the same time understanding the limitations those tools
can have when agile development is in question.

7.1 Limitations

This research has some limitations that should be considered. Firstly, in the
theoretical part of this study, limitations relate to this study’s ability to cover
enough research literature and to have wide enough scope for the literature
review. Current research literature offered only a few sources that would have
addressed requirements risks specifically and many previous studies discuss
them in a scope of overall ISD risk management instead of a separate focus point.
This means that in this study the way requirements risks are considered relies
heavily on those few available research papers, especially Tuunanen et al., (2018)
view of requirement related risks. Including other sources, for example from ISD
risks management or different key standards of requirements engineering, could
have increased the representativeness of the literature review.

In addition, this study interprets and describes different agile methods at a
very general level. The Measey’s (2015, 38) framework for generic agile develop-
ment is used as a baseline to understand key concepts of the agile development
and what agile methods are. Specific techniques or ways of working in different
agile projects are mainly discussed from the research case’s point of view. This
means that the results of this study do not cover all the techniques from different
agile methods which could in practice positively or negatively affect the require-
ments risk management process. In addition, the case company does not provide
a pure representation of any specific agile method. Therefore study results are
not fully representative for any specific agile method (e.g Scrum).

Secondly how case study was conducted brings up some additional limita-
tions. Naturally, one case is not descriptive enough to form a conclusive over-
view of the research topic. This case study offered a real-life example of how re-
quirements risks are managed in the organization that uses agile development
method in a very interesting collaborative environment but having more case ex-
amples to compare would increase the accuracy of the results. Comparing differ-
ent cases could also help to limit project related circumstances which may have
affected the results of this study and which were not identified in this study.

81

The selection of the case itself limited the number of interview participants
who could participate in the study. This was due to both a relatively small num-
ber of project team members and other stakeholders who shared the level of
knowledge about the project that was required to be able to participate. This also
limited how much background information could be collected from the interview
participants without compromising their anonymity. Having a bigger sampling
and wider demography of interviewees would have increased the generalizabil-
ity of the study results. This would have also increased comparability of the re-
sults to other similar studies. However, case company offered a good oppor-
tunity to have participants from the different business units who still work
closely with the development project. Yet the representation of different business
units was not big enough to make a strong conclusion about their effect on dif-
ferent aspects of requirement risk management. This research offers some insight
into the topic and indicates that one’s role in the project affects how an individual
reflects requirements related risks.

Other limitations come from the case scope. At the time of the study, the
case project was ongoing, and the case scope was one focus feature development
of that project. In a project that has been in development few years, the under-
standing of the projects requirements and related risks are in a different level
compared to the project that is only about to start. This means that the results of
this study are not fully comparable to the studies where the project is in a
significantly different development phase. Similarly, analyzing bigger develop-
ment entity, for example, several development iterations, could have increased
the validity of the study results.

A semi-structured interview was a suitable data collection method for this
study because it gave enough flexibility to the interview situation to form a real-
istic understanding of the research topic. However, there could have been inter-
esting opportunities to enrich the study results with quantitative data, especially
if the case scope would have been wider than one focus feature. Examples of such
data are development cycle times, a number of generated bugs, working hours
and work estimations. These pieces of data could give interesting insights into
the effects of the requirement related risks and indicated which risks have caused
the most challenges for the project team’s productivity. In this study, these kinds
of data could not be used mainly due to time restrictions.

7.2 Topics for future research

Both the study results and limitations of this study revealed some opportunities
for future research which could help to increase the understanding of require-
ment risks management in general and in an agile project environment. Firstly,
investigating different agile practices and techniques affect project’s requirement
related risks could offer fruitful information about how individual agile methods
differ in this aspect. This could also reveal if some agile practices can potentially

82

help to avoid certain types of requirements relates risks or if some agile ap-
proaches can increase the likelihood of certain types of requirements risks ap-
pearing. This could offer practical tools and recommendations for the agile prac-
titioners to improve their own processes. Similarly, comparing in a case study
both agile and more structured projects could further highlight similar topics that
a study such as this one may have overlooked.

Equally interesting would be to study the evolvement of requirements re-
lated risks when projects maturity increases or if there is a difference in the risk
environment depending on the maturity of the project. This study focused on a
project that is ongoing but still quite far in its development life cycle. Studying
how requirements risk environment changes during the project lifecycle from the
beginning until the maintenance, could again guide development projects to fo-
cus on correct risks at the correct time.

Requirement related risks can be born from a wide range of sources which
are not always directly related to the project or project team itself. This study
highlights the important role of communication about requirement risks. Study-
ing the communicational aspects of requirement risk management would be an-
other interesting topic for the future research, especially if it is done from a cus-
tomer or business point of view. Current research seems to address requirements
risks usually from the development projects side which ignores completely the
fifty percent of the possibilities to affect on the requirement risk environment. In
this study, this was considered by including participants to the interview people
from different business units. Unfortunately, due to a small number of represent-
atives from those units, results are not fully generalizable. However, this study
shows some evidence that there can be a difference in how a person perceives
requirement related risks depending on his or her background and role in a pro-
ject. Having a stronger focus on the customer, other stakeholders and collabora-
tion between different interest groups in this aspect could be an especially bene-
ficial research topic for agile projects but could surely help all kinds of ISD pro-
jects.

From the RRP method point of view, to further investigation is needed to
conclude how well the method could serve agile projects. The same kind of ob-
servations from the earlier apply also for testing the RRP method: testing the
method in agile projects that use different agile methods or in a project with dif-
ferent levels of maturity. Also comparing its usage in agile versus a more struc-
tured method in form of case study could reveal further details that can improve
the method. Lastly, RRP method’s risk resolution techniques were excluded from
the scope of this study. However, these techniques are an important part of how
the method is intended to be used. Without including them in the process it is
not possible to fully evaluate how well method supports requirement risk prior-
itization in agile ISD projects hence more research is needed.

83

LÄHTEET

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002). Agile Software

Development Methods: Review and Analysis.VTT publication 478, Espoo,
Finland, 107.

Agile foundations: Principles, practices and frameworks (2015). Swindon, GB:

BCS, The Chartered Institute for IT. ProQuest Ebook Central,
http://site.ebrary.com/lib/jyvaskyla/docDetail.action?docID=11022409&
ppg=20

Ahmad, S. (2008). Negotiation in the requirements elicitation and analysis process. In

Software Engineering, 2008. ASWEC 2008. 19th Australian Conference on
(pp. 683-689). IEEE.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham,W., Fowler,

M., . . .& Kern J. (2001). Manifesto for agile software development.

Boehm, B. W. (1991). Software risk management: Principles and practices. IEEE

Software, 8(1), 32-41.

Boehm, B. W. & Ross, R. (1989). Theory-W software project management principles
and examples. IEEE Transactions on Software Engineering, 15(7), 902-916.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative

Research in Psychology, 3(2), 77-101.

Cao, L. & Ramesh, B. (2008). Agile requirements engineering practices: An empirical

study. IEEE Software, 25(1), 60-67.

Cerpa, N. & Verner, J. M. (2009). Why did your project fail? Communications of the
ACM, 52(12), 130-134.

Chopade, M. R. M. & Dhavase, N. S. (2017). Agile software development: Positive and

negative user stories. In Convergence in Technology (I2CT), 2017 2nd
International Conference for (pp. 297-299). IEEE.

Chua, B.B., Bernardo, D. V. & Verner, J. (2010). Understanding the use of elicitation

approaches for effective requirements gathering. (ICSEA), 2010 Fifth
International Conference on (pp. 325-330). IEEE.

Cockburn, A. (2002). Learning from agile software development–part one. CrossTalk
Oct, , 10-14.

84

Cockburn, A. & Highsmith, J. (2001). Agile software development, the people factor.

Computer, 34(11), 131-133.

Cohen, D., Lindvall, M. & Costa, P. (2003). Agile software development. DACS

SOAR Report, 11

Curtis, B., Kellner, M. I. & Over, J. (1992). Process modeling. Communications of
the ACM, 35(9), 75-90.

Davis, A. M. (1993). Software requirements: Objects, functions, and states Prentice-

Hall, Inc. Upper Saddle River, NJ, USA

Davis, G. B. (1982). Strategies for information requirements determination. IBM

Systems Journal, 21(1), 4-30.

DeMarco, T. & Lister, T. (2003). Risk management during requirements. IEEE

Software, 20(5), 99-101.

Dybå, T. & Dingsøyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and Software Technology, 50(9), 833-859.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of

Management Review, 14(4), 532-550.

Elghariani & N. Kama. (2016). Review on Agile requirements engineering challenges.

In Computer and Information Sciences (ICCOINS), 2016 3rd International
Conference on (pp. 507-512) IEEE.

Erickson, J., Lyytinen, K. & Siau, K. (2005). Agile modeling, agile software develop-

ment, and extreme programming: The state of research. Journal of Database Man-
agement, 16(4), 88.

Fowler, M. & Highsmith, J. (2001). The agile manifesto. Software Development, 9(8),

28-35.

Galletta, A. (2012). Mastering the semi-structured interview and beyond : From
research design to analysis and publication. New York: NYU Press.
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=575
563&site=ehost-live

Glass, R. L. (2006). The standish report: Does it really describe a software crisis?

Communications of the ACM, 49(8), 15-16.

85

Glinz, M. (2007). On non-functional requirements. In Requirements Engineering
Conference, 2007. RE'07. 15th IEEE International (pp. 21-26). IEEE.

Henderson-Sellers, B. & Serour, M. K. (2005). Creating a dual-agility method: The
value of method engineering. Journal of Database Management, 16(4), 1.

Hickey, A. M. & Davis, A. M. (2004). A unified model of requirements elicitation.
Journal of Management Information Systems, 20(4), 65-84.

Highsmith, J. (2002). What is agile software development? Agile software

development. Crosstalk the Journal of Defense Software Engineering, , 4-9.

Highsmith, J. & Cockburn, A. (2001). Agile software development: The business of

innovation. Computer, 34(9), 120-127.

Hofmann, H. F. & Lehner, F. (2001). Requirements engineering as a success factor in

software projects. IEEE Software, 18(4), 58-66.

Hsieh, H. & Shannon, S. E. (2005). Three approaches to qualitative content analysis.

Qualitative Health Research, 15(9), 1277-1288.

IEEE standard glossary of software engineering terminology (1990).

Jiang, L. & Eberlein, A. (2009). An analysis of the history of classical software

development and agile development. In Systems, Man and Cybernetics. IEEE
International Conference on (pp. 3733-3738). IEEE

Jones, C. (1996). Strategies for managing requirements creep. Computer, 29(6), 92-94.

Kassab, M. (2014). An empirical study on the requirements engineering practices for

agile software development. In 2014 40th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA) (pp. 254-261).
IEEE.

Kauppinen, M., Savolainen, J., Lehtola L., Komssi, M., Tohonen, H. & Davis, A.
(2009). From feature development to customer value creation. In 2009 17th IEEE
International Requirements Engineering Conference (pp. 275-280). IEEE.

Keil, M., Cule, P. E., Lyytinen, K. & Schmidt, R. C. (1998). A framework for

identifying software project risks. Communications of the ACM, 41(11), 76-83.

Klein, H. K. & Myers, M. D. (1999). A set of principles for conducting and evaluating

interpretive field studies in information systems. MIS Quarterly, 67-93.

86

Kontio, J. (2001). Software engineering risk management: A method, improvement
framework, and empirical evaluation. Helsinki University of Technology.

Kotonya, G. & Sommerville, I. (1998). Requirements engineering: Processes and
techniques. Wiley Publishing.

Larman, C., & Basili, V. R. (2003). Iterative and incremental developments. a brief

history. Computer, 36(6), 47-56.

Larman, C. (2004). Agile and iterative development: A manager's guide. Addison-

Wesley Professional.

Lawrence, B., Wiegers, K. & Ebert, C. (2001). The top risk of requirements engineering.
IEEE Software, 18(6), 62-63.

Lucassen, N. B. G. & Brinkkemper, S. (2017). A reference method for user story

requirements in agile systems development. In 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW) (pp. 292-298).
IEEE.

Lyytinen, K., Mathiassen, L. & Ropponen, J. (1996). A framework for software risk

management. Journal of Information Technology, 11(4), 275-285.

Manzo, J. (2002). Odyssey and other code science success stories. CrossTalk, 19-21.

Mathiassen, L., Saarinen, T., Tuunanen, T. & Rossi, M. (2007). A contigency model

for requirements development. Journal of the Association for Information
Systems, 8(11), 569.

Measey, P. (2015). Agile Foundations: Principles, practices and frameworks. BCS
Learning & Development Limited, 2015. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/jyvaskyla-
ebooks/detail.action?do-cID=1759633.

Mills, H. D. (1999). The management of software engineering, part I: Principles of

software engineering. IBM Systems Journal, 38(2.3), 289-295.

Mursu, A. (2002). Information systems development in developing countries: Risk

management and sustainability analysis in nigerian software companies

University of Jyväskylä.

Myers, M. D. (1997). Qualitative research in information systems. Management
Information Systems Quarterly, 21(2), 241-242.

87

Nerur, S., Mahapatra, R. & Mangalaraj, G. (2005). Challenges of migrating to agile
methodologies. Communications of the ACM, 48(5), 72-78.

NIST, Goguen, A. & Fringa, A. (2002). Risk management guide for information

technology systems. Recommendations of the National Institute of Standards
and Technology,

Nuseibeh, B. & Easterbrook, S. (2000). Requirements engineering: A roadmap. In
Proceedings of the Conference on the Future of Software Engineering (pp.
35-46). ACM.

Overhage, S., Schlauderer S., Birkmeier D., & Miller, J. (2011). What makes IT

personnel adopt scrum? A framework of drivers and inhibitors to developer
acceptance. In 2011 44th Hawaii International Conference on System Sciences
(pp. 1-10). IEEE.

Paetsch, F., Eberlein, A. & Maurer, F. (2003). Requirements engineering and agile

software development. In Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE
International Workshops on (pp. 308-313). IEEE.

Paulk, M. C. (2002). Agile methodologies and process discipline. Institute for Software
Research. Paper 3. http://repository.cmu.edu/isr/3

Persson, J. S., Mathiassen, L., Boeg, J., Madsen, T. S. & Steinson, F. (2009).
Managing risks in distributed software projects: An integrative framework. IEEE
Transactions on Engineering Management, 56(3), 508-532.

Poole, C. J., Murphy, T., Huisman, J. W. & Higgins, A. (2001). Extreme maintenance.
In Proceedings of the IEEE International Conference on Software
Maintenance (ICSM'01) (p. 301-309). IEEE Computer Society.

Qumer, A. & Henderson-Sellers, B. (2006). Measuring agility and adoptability of agile

methods: A 4-dimensional analytical tool. In The IADIS international
conference on applied computing 2006. IADIS Press. 503-507.

Ramesh, B., Cao, L. & Baskerville, R. (2010). Agile requirements engineering practices
and challenges: An empirical study. Information Systems Journal, 20(5), 449-
480.

Ratchev, S., Urwin, E., Muller, D., Pawar, K. S. & Moulek, I. (2003). Knowledge
based requirement engineering for one-of-a-kind complex systems. Knowledge-
Based Systems, 16(1), 1-5.

88

Rehman, T., Khan, M. N. A. & Riaz, N. (2013). Analysis of requirement engineering
processes, tools/techniques and methodologies. International Journal of
Information Technology and Computer Science (IJITCS), 5(3), 40.

Rowe, W. D. (1975). An" anatomy" of risk Environmental Protection Agency.

Environmental Protection Agency, Washington D.C.

Royce, W. W. (1970). Managing the development of large software systems. (s. 328-338)
Los Angeles.

Schmidt, R., Lyytinen, K. & Mark Keil, P. C. (2001). Identifying software project risks:
An international delphi study. Journal of Management Information Systems,
17(4), 5-36.

Schwaber, K. (1997). Scrum development process. Business object design and
implementation. In 10th Annual Conference on Object Oriented
Programming Systems, Languages, and Applications Addendum to the
Proceedings. ACM/SIGPLAN October. (s. 117-134) Springer.

Stake, R. E. (2014). Qualitative research : Studying how things work. New York:
Guilford Publications. ProQuest Ebook Central,
http://ebookcentral.proquest.com/lib/jyvaskyla-
ebooks/detail.action?docID=479606

Tuunanen, T, Vartiainen, T and Ebrahim M. (2018) Development of Requirements
Risk Prioritization Method, working paper, University of Jyväskylä.

Vaismoradi, M., Turunen, H. & Bondas, T. (2013). Content analysis and thematic

analysis: Implications for conducting a qualitative descriptive study. Nursing &
Health Sciences, 15(3), 398-405.

Wong, S. & Whitman, L. (1999). Attaining agility at the enterprise level. In
Proceedings of The 4th Annual International Conference on Industrial
Engineering Theory, Applications and Practice, San Antonio, TX.

Wiegers, K & Beatty, J. 2013. Software requirements 3 (Third edition.). US:
Pearson Education M.U.A.

Yin, R. K. (2013). Case study research: Design and methods. Second edition.
Thousand Oaks: Sage publications.

Zave, P. (1997). Classification of research efforts in requirements engineering. ACM

Computing Surveys (CSUR), 29(4), 315-321.

89

Zhang, Z., Arvela, M., Berki, E., Muhonen, M., Nummenmaa, J. & Poranen, T.
(2010). Towards lightweight requirements documentation. Journal of Software
Engineering and Applications, 3(9), 882.

90

APPENDIX 1 INTERVIEW STRUCTURE

Introduction (3 min)

• research topic and researcher

• Interview structure

Background information (12 min)

• Introduction of the Requirements Risk Prioritization method

• Introduction of the focus feature

• Feature description and business goal

• Overview of current development status (if needed)
Interview Phase 1 (15min): Creating a risk profile

• Identifying and evaluating requirement risks of the focus feature by using
the Requirements Risk Prioritization method (checklists).

o Requirements phase
o Design phase
o Implementation phase

• Impact evaluation for each identified risk
Interview Phase 2 (15 min): Evaluating validity, coverage, relevance and
accuracy of the risk profile.
Interview Phase 3 (10 min): Evaluating the use of the method in the agile project
work
Closing words (5 min)

91

APPENDIX 2 INTERVIEW QUESTIONS

English:

Interview Phase 1: Creating a risk profile

o Following steps are repeated to each requirement management process
steps (requirements, design, implementation):

o Write down risks that affect requirement management process step
(separate piece of paper)

o Mark with X to the checklist those risks that match risks you iden-
tified earlier

o Mark with O to the checklist those risks that you didn’t identify,
but are still valid for the focus feature

o Strikethrough those risks from the checklist which are not valid for
the focus feature

Interview Phase 2: Evaluating validity, coverage, relevance and accuracy of the
risk profile.

o Evaluate how well the risk profile you created describes the risk environ-
ment of the focus feature development.

o Have some of the risks been recognized earlier?
o Did the risk profile bring up risks which has not been identified before?
o Are the risks in the risk profile meaningful for the overall success of the

project?
o Has any of the risks negatively impacted the project earlier in the devel-

opment?

Interview Phase 3: Evaluating the use of the method in the agile IS project work

o Does the method produce information that can help decision making re-
garding the project? Why?

o Would it be useful for the project to use the method? Why?
o Would you imagine yourself using the method in your project / projects

in the future?
o At which stage you would be most likely using the method?

Finnish:

Haastattelu Vaihe 1: Riskiprofiilin luonti

o Seuraavat tehtävät toistetaan kaikille vaatimustenhallintaprosessin
vaiheille (vaatimusten keräys, suunnittelu, toteutus)

92

o Kirjaa ylös erilliselle paperille ominaisuuden vaatimusmää-
rittelyvaiheeseen liittyviä riskejä

o Merkitse muistilistasta X:llä ne riskit, jotka vastaavat tunnis-
tamiasi riskejä.

o Merkitse O:lla check listasta ne riskit, joita et itse kirjannut,
mutta, jotka mielestäsi silti koskevat esiteltyä ominaisuutta.

o Yliviivaa ne riskit check listasta, jotka eivät mielestäsi koske
lainkaan esitellyn ominaisuuden vaatimusmäärittelyvaihetta

Haastattelu Vaihe 2: Luodun riskiprofiilin oikeellisuuden, kattavuuden,
merkityksellisyyden ja tarkkuuden arviointi

o Arvioi kuinka hyvin muodostamasi riskiprofiili mielestäsi kuvaa
järjestelmäominaisuuden riskitilannetta.

o Onko jotkut riskeistä tunnistettu joskus aikaisemmin?
o Toiko riskiprofiili esiin riskejä, joita ei ole aikaisemmin tunnistettu?
o Ovatko tunnistetut riskit merkityksellisiä projektin kokonaisonnis-

tumisen kannalta?
o Onko tunnistetut riskit toteutuneet joskus aikaisemmassa järjestel-

män kehitysvaiheessa?

Haastattelu Vaihe 3: Menetelmän käyttö ketterässä järjestelmä kehitys
projektityössä

o Tuottaako menetelmä tietoa, joka auttaa projektin päätöksentekoa?
Miksi?

o Onko menetelmän käyttö hyödyllistä projektillesi? Miksi?
o Voisitko kuvitella käyttäväsi menetelmää rojektissasi/projekteissasi

tulevaisuudessa?
o Missä vaiheessa projektia hyödyntäisit menetelmää kaikkein toden-

näköisimmin?

93

APPENDIX 3 GLOSSARY OF TERMS

94

APPENDIX 4: RISK CHECK LISTS

Requirements phase

Risk name Risk type

Absence of Project Sponsor Identity

Access to Clients (Proximity to Source Complexity

Ambiguous Requirements Identity

Change in in Business Strategy and Direction Volatility

Change in External Regulations Volatility

Client Commitment Identity

Constrained Users' Knowledge Complexity

Fixed Budget and Timelines Integrity

Incorrect Stakeholder Identity

Misunderstood Business Needs Identity

Underestimation of Change Magnitude Volatility

Unrated Requirements Volatility

Design phase
Ambiguous Requirements Identity

Change in External Regulations Volatility

Client Commitment Identity

Compliance with External Regulations Identity

Conflicting Requirements Integrity

Missing Requirements Identity

Delivering what the Client Requires Identity

Emerging Requirements Dependency Volatility

Fixed Budget and Timelines Integrity

Knowledge Gab between Coworkers Complexity

Lack of Collaboration Complexity

Technology Changes Volatility

Underestimation of Change Magnitude Volatility

Unrated Requirements Volatility

Implementation phase
Ambiguous Requirements Identity

Change in External Regulations Volatility

Client Commitment Identity

Fixed Budget and Timelines Integrity

Hostile Users Identity

Project Team Member Turnover Volatility

Unrated Requirements Volatility

Underestimation of Change Magnitude Volatility

95

APPENDIX 5: THEMATIC ANALYSIS, THEME MAP

 Theme:

Description:

Understandability of the risk items in the
checklists

Interviewees had a question of a certain risk item in any of the methods
checklist or had a hard time understanding a scope of the risk item.

Using the RRP method checklist to recognize
risks

Interviewees indicated that the RRP method could help him/her to recog-
nize new risks.

OR

Interview indicated that check lists didn't bring any new risks

risk items are not artificial Interviewees mentioned that most of the risk items have been recognized
in the project earlier or that risk have created challenges earlier in the
project.

OR

Interviewees mentioned that risk item check lists do not include con-
trived risks.

risk profile's representativeness Interviewee commented how well or poorly the method described pro-
ject's true requirements risk situation

OR

Interviewees mentioned that method didn't bring any new information
to him/her.

risk profile's generalizability Interviewees mentioned that same risk profile could be from any of the
company's projects

Communication tool Interviewees stated that method could help communication between dif-
ferent stakeholders

High level risk items Interviewee concluded that the RRP method present high-level risks or
too high-level risks.

OR

Interviewees felt that risk items are too high-level for them to be able to
manage them.

risk impact evaluation Interviewees wanted to evaluate risk probability

OR

Interviewees were not able to prioritize risks by focusing only to their
impact.

OR

Evaluating low impact for a risk was difficult.

Who is qualified to evaluate risks accurately Interviewees doubted their ability to evaluate risks in the level method
suggested due to their role in the project or position in the organization.

Risk item scope challenges Risk items were too interconnected

Timing of the risk analysis Interviewees felt that the method would most useful at the beginning of
the project

Time needed for the analysis

Interviewees commented how much time the risk assessment with the
RRP method would take.

Agile process corrects itself Interviewees commented how agile process already has many points
where requirement risks are managed without specific focus on them.

Check lists as a tool Interviewees though that check lists are either good or bad tool to evalu-
ate risks. Some though those limit their thinking, others thought it helps
them to focus on correct things.

