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In this study, we analyze mixed-mode oscillation-incrementing bifurcations (MMOIBs) gener-
ated in the nonautonomous, constrained Bonhoeffer–van der Pol oscillator proposed by Kousaka
et al. [Physica D 353–354, 48 (2017)]. Specifically, we investigate MMOIBs occurring in the
14–15 and 11–12 regions. These two kinds of MMOIBs exhibit qualitatively different MMO-
bifurcation structures. The former MMOIBs successively occur many times, while the latter
exhibit finite MMOIBs. In the latter case, standard MMOIBs occur only five times, and are then
followed by another type of MMOIB. However, the following MMOIBs are also only generated
seven times and the solution finally settles down into a 20 attractor. We clarify the exact rea-
son for these phenomena by analyzing 1D Poincaré return maps derived from the constrained
dynamics. By focusing on the initial successive MMOIBs, we create asymmetric Farey trees that
occur between 14 and 15 by analyzing the 1D Poincaré return map. We find that there exist two
sets of successive MMOIBs between 14 and 15. In particular, we rigorously define the MMO
increment-terminating tangent bifurcations, toward which the MMOIBs accumulate and termi-
nate. Furthermore, we uncover a nested bifurcation structure caused by MMOIBs. This occurs
inside a short interval in the 14–15 region and accumulates toward another MMO increment-
terminating tangent bifurcation point. These three types of successively generated MMOIBs
accumulate in different ways toward the MMO increment-terminating tangent bifurcation points.
We also analyze the behavior of the “firing number,” which varies with the MMOIBs. In par-
ticular, we theoretically explain why a firing number that exhibits a devil’s staircase has higher
values in chaos-generating regions than in MMO-generating regions.
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1. Introduction

Mixed-mode oscillations (MMOs) are a phenomenon first discovered in chemical experiments [1,6–
8]. They comprise L large excursions and s small peaks, and such waveforms are symbolized by
the notation “Ls.” At an earlier stage, MMOs were also seen as “alternating periodic and chaotic
sequences” [3].At first, the definition of an MMO appears to be ambiguous. However, ever since it has
been accepted that interesting MMO behaviors can be observed in extended slow/fast dynamics that
can generate canards [1,10,12,16], MMOs of this type have generated intense research interest [2–
5,12–26,29–35].

Kawczýnski et al. [15] found MMO-adding sequences that are generated by a simple, three-
variable, slow/fast, autonomous ordinary differential equation (ODE). Shimizu et al. found similar
bifurcations in a forced Bonhoeffer–van der Pol (BVP) circuit and termed the resulting bifurca-
tion phenomena “mixed-mode oscillation-incrementing bifurcations” (MMOIBs) [17]. The simplest
MMOIBs generate the MMO sequence 1s(1s+1)n for successive n. For example, the MMO sequence
12(13)3 represents 12131313. MMOIBs are well known to occur in autonomous [5,15] and nonau-
tonomous [22,23] chemical oscillators. Kawczýnski et al. [15], Shimizu et al. [19], and Kousaka et
al. [20] found that MMOIBs occur in a manner similar to that of the period-adding bifurcations gener-
ated by a circle map. MMOIBs have been experimentally observed since the late 20th century, notably
in chemical processes, such as the Belouzov–Zhabotinskii (BZ) [6,8] and the chlorite–thiosulfate
reactions [7], as well as in electrochemical systems [9]. MMOIBs are known to be governed by Farey
arithmetic [5,6,8,9,12].

However, rigorous analysis of MMOs and MMOIBs in real physical systems is usually extremely
difficult because the smallest systems that exhibit MMOs and chaos are two-variable nonautonomous
or three-variable autonomous ODEs. The bifurcations and chaos in such flows are conventionally
analyzed using a mapping method, which converts the task of analyzing continuous dynamics into
that of studying discrete mappings [11]. Such mappings are called Poincaré return maps. How-
ever, to generate chaos, such return maps must be at least 2D. Furthermore, analyzing discrete
dynamical systems with two or more dimensions is known to be extremely difficult, even when
the continuous chaos and MMO-generating dynamics to be analyzed are represented by extremely
simple ODEs [10,11,48]. In contrast, 1D maps have been studied rigorously [55–60]. The mech-
anism responsible for generating chaos and tori in ODEs is considered to be quite simple, so
similar bifurcation phenomena have been observed in 1D maps, such as the logistic [54,55] and
circle [56,57] maps. With 1D maps, we can analyze various phenomena theoretically. With regard
to MMOIB-related phenomena, period-adding and incrementing bifurcations have been analyzed
using piecewise-linear and piecewise-smooth maps [64]. Moreover, recent research has focused on
the gapping and overlapping of devil’s staircase plateaus [61,62,64]. In addition, the structure of
nested period-incrementing bifurcations has been analyzed using a three-segment piecewise-linear
map [63].

Kousaka et al. [20] analyzed MMOIBs more rigorously using a nonautonomous constrained BVP
oscillator that is defined when one of the parameters diverges. A 1D Poincaré return map can be
derived from this constrained ODE. Such maps contain two convex downward branches in the
invariant interval, which explain the successive MMOIBs. Their analysis may effectively fill the
gap between experimental MMOIB observations and the results obtained for piecewise-smooth 1D
maps [61,62,64]. Moreover, to investigate how many MMOIBs occur, Kousaka et al. attempted to
derive a universal constant at which each MMOIB emerges. The constant appeared to converge to
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unity, because the MMOIBs terminate by a saddle-node bifurcation [20], suggesting that MMOIBs
can occur as many times as desired.

In this study, we investigate several MMOIBs using the constrained BVP oscillator proposed by
Kousaka et al. [20]. We use the notation [1s, 1s+1 × n]m to represent the MMO sequence instead
of 1s(1s+1)n, where the subscript m represents the number of periods of the forcing term, because
the dynamics is nonautonomous and the value of m must be specified. In simple MMOs, such as
[1s, 1s+1 ×n]m, m is usually m = n+1. We find two sets of successive MMOIBs between 15 and 14,
and we illustrate the Farey trees that describe how the two sets of MMOIBs emerge. We assert that
MMOIBs generate asymmetric Farey trees because the Poincaré return map contains two downward-
convex branches. We believe that this is the first paper to clearly illustrate asymmetrical Farey
trees based on a rigorous analysis of the 1D Poincaré return map. We define the MMO increment-
terminating tangent bifurcations toward which the MMOIBs accumulate. It is noteworthy that the two
sets of MMOIBs generated between 14 and 15 accumulate toward the MMO increment-terminating
tangent bifurcation points in different manners. These results suggest that several different types of
MMOIBs could exist. In addition, we uncover a nested MMOIB structure inside a short interval
of the 14–15 region where the MMOs [14, 15, [14, 15 × 2] × n]3n+2 emerge for successive n, and
find another MMO increment-terminating tangent bifurcation point toward which the corresponding
MMOIBs accumulate. We believe that this is one of the most significant results presented in this
paper.

In addition, we investigate the bifurcation structure between 11 and 12, finding that the MMOIBs in
this region are generated only a finite number of times. MMO bifurcations have been found to occur
symmetrically in a surprising and unexpected way in both a three-variable BZ reaction model and
an autocatalator model [26], forming Stern–Brocot trees, so we believe that finding a finite number
of MMOIBs generated in a real physical system (which we show exactly) could be a significant
result. Only five MMOIBs can occur when varying the bifurcation parameter between the branches
generating 11 and 12, and they do not appear many times in succession. The flow must pass through
the third branch of the 1D Poincaré return map generating 13, in addition to the branches generating
11 and 12, and the sequences [11, 13, 11, 12×n]n+3 appear for n up to 12. Finally, when the bifurcation
parameter is decreased further, the invariant interval that was present near the branches generating
11, 12, and 13 disappears, and the attractor transitions to [20]2.

We also investigate the “firing number” F defined by F = LN /(LN +sN ) where LN and sN represent
the integer numbers of large excursions and small peaks, respectively, in one period of the MMO.
It is known that—depending upon the value of the bifurcation parameter—the firing number can
represent a devil’s staircase [5,12,23,26]. Such devil’s staircases are believed to represent stepwise
functions [12]. They may appear because two separate neighboring MMOs generated by MMOIBs
often overlap in parameter space due to hysteresis, and chaos rarely emerges between two neighboring
MMOs in one-parameter bifurcation diagrams when n is large [12,15]. This phenomenon might be
related to non-chaos-mediated MMOs, which have been recently discussed [27,28]. In contrast, in
the nonautonomous BVP oscillator, chaos definitely emerges between two neighboring MMOs and
the numerical results indicate that the firing number does not generate a stepwise function. Moreover,
according to these results, the firing number F takes higher values than it does for periodic MMOs
when the chosen bifurcation parameter values are in a chaos-generating region. We define 1n to
be shorter than 1m if n < m. We theoretically explain the higher values of F in chaos-generating
regions using a 1D Poincaré return map because the chaotic trajectories pass more often through the
branches that generate shorter MMO sequences.
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(a) (b)

Fig. 1. (a) BVP oscillator under a weak periodic perturbation. (b) v − i characteristic G(x) of N.C.

2. Preliminary study

In this section, we recall the constrained, nonautonomous BVP oscillator discussed by Kousaka
et al. [20]. The circuit diagram of the oscillator is presented in Fig. 1(a). In the figure, x and y are
normalized variables corresponding to the voltage across the capacitor C = ε and the current through
the inductor L, respectively, where ε is assumed to be small. The value of L can be normalized to unity
via rescaling. Figure 1(b) represents the v−i characteristic G(x) of the nonlinear conductance (N.C.).
In the absence of perturbation, the BVP oscillator’s bifurcation structure is richer than that of a van
der Pol oscillator, even though it only consists of a linear resistor and an inductor in series. The van der
Pol oscillator only exhibits a supercritical Hopf bifurcation, whereas the BVP oscillator can generate
a subcritical Hopf bifurcation [65,66]. In the neighborhood of a subcritical Hopf bifurcation point, the
BVP oscillator generates a bistability consisting of a stable focus and a stable relaxation oscillation,
coexisting in close proximity in the x–y plane. Under a nonautonomous weak periodic perturbation,
the BVP oscillator can exhibit extremely complex bifurcations, such as chaos disappearance [47]
and MMOIBs [17,20], because the solution now alternates in a complex way between the focus
and relaxation oscillation. Here, we consider a case wherein N.C. is completely saturated, with
the threshold x = α. A circuit element with such an idealized v − i characteristic can easily be
realized using bidirectionally connected diode arrays and a piecewise linear diode created using an
operational amplifier [20]. The governing equation for the circuit can be expressed as the following
nonautonomous, nonsmooth ODE:

1.

{
εẋ = y − G(x)
ẏ = −x − k1y + B0 + B1 sin(ωτ)

, for piecewise linear diode OFF (x < α) (1)

2.

{
x = α

ẏ = −α − k1y + B0 + B1 sin(ωτ)
, for piecewise linear diode ON (x = α). (2)

Note that x is constrained to take the value of x = α when the piecewise linear diode is ON, and the
circuit equation (2) then reduces to a first-order equation because x = α(=const.).

The solutions of these two equations are connected to each other if the following transition con-
ditions hold: if x < α (OFF), the piecewise linear diode turns on when x increases to α. In contrast,
if x = α (ON), the piecewise linear diode turns off when the current through the N.C. decreases to
−α + α3. In other words, the transition conditions are as follows:

1. diode OFF (1) → 2. diode ON (2) : x = α, (3)

2. diode ON (2) → 2. diode OFF (1) : y = −α + α3. (4)
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Fig. 2. Time series waveform of the MMO sequence [14, 15 × 5]6 after five MMOIBs for ε = 0.1, k1 =
0.9, B0 = 0.207, B1 = 0.01, α = 0.8, and ω = 0.4155.

The solutions of Eqs. (1) and (2) are connected only for positive times based on Eqs. (3) and (4).
Hence, the resulting Poincaré return map can become noninvertible and is 1D. Previous research [20]
has shown that piecewise smooth dynamics that includes a piecewise linear diode captures the
underlying mechanism that causes MMOs and MMOIBs. We consider this noninvertible dynamics
here because real-world phenomena always proceed forward in time. Furthermore, the 1D Poincaré
return map can well explain the phenomena observed in the real physical circuit [20]. We can justify
analyzing simple 1D maps in such detail because the logistic and circle maps have played impor-
tant roles in explaining the mechanisms behind period-doubling bifurcations [54,55,60] and torus
breakdown [57].

Throughout this discussion, we set α = 0.8. Figure 2 shows the waveform of an MMO after five
MMOIBs. Here, the constant parameters were fixed as ε = 0.1, k1 = 0.9, B0 = 0.207, B1 = 0.01,
and α = 0.8, and ω will be used as a bifurcation parameter in this study. The phenomena are extremely
sensitive to the choice of fixed parameters because the stable focus and relaxation oscillation that
coexist in the absence of perturbation only arise in a narrow parameter region. For example, if we
instead select B0 = 0.21, chaos disappearance occurs, but the bistability remains [47,48]. Here,
chaos disappearance refers to the fact that the relaxation oscillation disappears under a very weak
perturbation. Under such a perturbation, e.g., B = 0.001–0.03, the solution transitions to stay in close
proximity to the stable focus that is present in the absence of perturbation. This phenomenon is so
named because the relaxation oscillation is always chaotic immediately before it breaks down into an
extremely weak periodic solution near the stable focus [47]. It is more prominent for smaller values
of ε, and our numerical results reveal that it does not occur at B0 = 0.207 for such a small B value.
However, it is worth noting that MMOIBs have been observed in actual circuit experiments [18,20],
although the phenomena are sensitive to the parameter values used.

As discussed in previous research [20], we define the following two objects:

�r = {(τ , x, y)|x − α = 0},
�1 = {

(τ , x, y)|x − α = 0, y = −α + α3
}
,

(5)

where �r is the plane in which the diode is ON and �1 represents the transition condition 2. ON (2)
→ 1. OFF (1), which is located on plane �r. Figure 3 shows the geometric structure of the vector
fields. Let us consider solutions that are initially located on �1. Any solution leaving a point on �1

eventually strikes �1 again. Therefore, a 1D Poincaré return map that transforms an initial point
(τ = τ0) on �1 to a point of �1 (τ = τ1) to which the solution leaving an initial point at τ = τ0

returns is expressed as follows:

T : �1 → �1,
θ0 �→ θ1,

(6)
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Fig. 3. Geometric structure of the vector fields.

Fig. 4. 1D Poincaré return map for ε = 0.1, k1 = 0.9, B0 = 0.207, B1 = 0.01, α = 0.8, and ω = 0.434.

where

θ0 = ωτ0

2π
, θ1 = ωτ1

2π
mod 1. (7)

Figure 4 shows an example of the 1D Poincaré return map that lies between the 14-generating region
and the 15-generating region. In the figure, the pieces labeled by 10, 11, 12, . . . , and 15 are branches
that generate the MMO waveforms 10, 11, 12, . . . , and 15, respectively.

3. One-parameter bifurcation diagrams and MMOIBs

Throughout this discussion, we fix the constant parameters at ε = 0.1, k1 = 0.9, B0 = 0.207,
and B1 = 0.01, as mentioned in the previous section, and we choose the angular frequency ω of
the forcing term as the bifurcation parameter. Figure 5 shows a global view of the one-parameter
bifurcation diagram for varying ω, where we have adopted a stroboscopic Poincaré section and
the corresponding y values are plotted for large k . In the figure, the label 1s indicates the region
where the MMO sequence 1s is generated. In this study, we concentrate on the regions that generate
complex MMOs and MMOIBs between 15 and 14 and between 12 and 11. These two regions generate
qualitatively different MMOIBs. When an MMOIB is generated, an invariant interval appears at the
bottom left of the θk–θk+1 plane of the 1D Poincaré return map, as shown in Fig. 4. While the former
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Fig. 5. Global view of the one-parameter bifurcation diagram for ε = 0.1, k1 = 0.9, B0 = 0.207, B1 = 0.01,
and α = 0.8.

(a)

(b)

Fig. 6. (a) Magnified view of the one-parameter bifurcation diagram between 15 and 14. (b) Highly magnified
view of (a) for the region labeled “successive B.”

MMOIBs (between 15 and 14) are successively generated many times, the latter ones (between 12

and 11) only occur a few times.
First, we investigate the MMOs and MMOIBs generated between 15 and 14. A magnified view

of the one-parameter bifurcation diagram is shown in Fig. 6(a). It shows two sets of MMOs and
MMOIBs, in the areas marked “successive A” and “successive B,” respectively. The concatenation
of 14 and 15 yields a daughter [14, 15]2, and the concatenation of [14, 15]2 and 14 yields a daughter
[14 × 2, 15]3. The two sets of MMOIBs begin with [14, 15]2 and [14 × 2, 15]3, respectively.
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(a) (b) (c)

Fig. 7. Magnified views of the Poincaré return maps (a) for ω = 0.434, (b) for ω = 0.4155, and (c) for the
MMO increment-terminating tangent bifurcation point with ω = 0.408 505.

We focus on the MMOIBs that begin with [14, 15]2, which occurs in the region marked “successive
B.” A highly magnified view of the region marked “successive B” in Fig. 6(a) is shown in Fig. 6(b).
The trigger sequence for the MMOIBs is [14, 15]2, as shown in Fig. 7(a). The successive MMOIBs
generate the MMO sequences [14, 15 × n]n+1. Figure 7(b) shows the trajectory for the case n = 5.
The MMO trajectory strikes the 14 branch once and the 15 branch five times, and it generates
[14, 15 × 5]6 corresponding to the MMO time series shown in Fig. 2. The appearance of successive
MMOIB-generated MMOs can be clearly seen in Fig. 6(b).

Here, we explain how the successive MMOIBs terminate. We first define an MMO increment-
terminating tangent bifurcation at which the MMOIBs accumulate. The MMOIBs can be successively
generated many times until they are terminated by an MMO increment-terminating tangent bifur-
cation, as shown in Fig. 7(c). The MMO increment-terminating tangent bifurcation toward which
[14, 15 × n] accumulates can be obtained as ω = 0.408 505. Remember that the branch generating
15 is tangent to θk+1 = θk at a single point r. The shape of the map in the invariant interval that
emerges at the bottom left of the θk–θk+1 plane suggests that MMOIBs can occur as many times as
desired.

Second, we discuss the MMOIBs generated in the region marked “successive A,” which begins
with the MMO sequence [14 × 2, 15]3. In this case, the MMOIBs generate the MMO sequence
[15, 14 × 2, [15, 14] × n]2n+3 for successive n. The MMO trajectories [15, 14 × 2, [15, 14] × 0]3,
[15, 14 × 2, [15, 14] × 1]5, [15, 14 × 2, [15, 14] × 2]7, and [15, 14 × 2, [15, 14] × 6]15 projected
on the θk–θk+1 plane are shown in Figs. 8(a)–(d), respectively. Note that the MMOIB-generated
MMOs in this region converge to [14, 15]2, at which the two-times composite of the Poincaré map
is doubly tangent to θk+2 = θk at the two points r1 and r2, as shown in Fig. 9. Note that this
is different from the manner in which MMOIBs are generated in the region marked “successive
B,” and the MMO increment-terminating bifurcation point parameter value is ω = 0.438 340. The
shape of the two-times composite of the Poincaré return map suggests that this type of MMOIB
can also occur as many times as desired. Because the 1D Poincaré return map contains two
downward-convex branches, the MMOIBs generate asymmetric Farey trees between 15 and 14, as
illustrated in Fig. 10.

Moreover, we have discovered a nested MMOIB bifurcation structure in a short ω interval inside the
“successive B” region. Figure 11 shows a one-parameter bifurcation diagram between [14, 15 × 1]2

and [14, 15 × 2]3. A self-similar structure can be observed in this figure. In this interval, we find that
[14, 15, [14, 15 × 2] × n]3n+2 occurs for successive n. This result is significant because MMOIBs
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(a) (b)

(d)

(c)

Fig. 8. Magnified views of the Poincaré return maps and complex MMO trajectories for (a) [15, 14×2, [15, 14]×
0]3 for ω = 0.446 711, (b) [15, 14 × 2, [15, 14] × 1]5 for ω = 0.442 917, (c) [15, 14 × 2, [15, 14] × 2]7 for
ω = 0.441 363, and (d) [15, 14 × 2, [15, 14] × 6]15 for ω = 0.439 412.

Fig. 9. MMO increment-terminating tangent bifurcation for [15, 14 × 2, [15, 14] × n]2n+3 with n → ∞ (ω =
0.438 340), for which the two-times composite of the 1D Poincaré map is doubly tangent to the line θk+2 = θk

at r1 and r2.

can be nested. Figure 12 shows the [14, 15, [14, 15 × 2] × 3]11 trajectory in the θk–θk+1 plane for
ω = 0.4281. This type of MMOIB accumulates toward an MMO increment-terminating tangent
bifurcation in which T (applied three times) is tangent to the diagonal line θk+3 = θk at the three
points, as shown in Fig. 13 for ω = 0.426 9778. Such nested MMO bifurcation structures are yet to
be reported in the literature on forced MMOIB-generating dynamics [22,23].
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Fig. 10. Asymmetric Farey trees observed between the 15 and 14 generating regions.

Fig. 11. Nested one-parameter bifurcation diagram obtained between the [14, 15 × 1]2 and [14, 15 × 2]3

generating regions where [14, 15, [14, 15 × 2] × n]3n+2 occurs successively.

Fig. 12. Trajectories of the MMOs [14, 15, [14, 15 × 2] × 3]11 at ω = 0.4281.

Next, we discuss some cases wherein successive MMOIBs do not occur. A finite number of
MMOIBs can be observed between the 12 and 11 regions, as shown in the one-parameter bifurcation
diagrams in Figs. 14(a)–(c). Here, we concentrate on the “FINITE SUCCESSIVE” area in Fig. 14(a),
magnified views of which are shown in Figs. 14(b) and (c), respectively. The [11, 12×n]n+1 sequence
only occurs a few times up to n = 5, as shown in Fig. 14(b). Figures 15(a) and (b) show the 1D
Poincaré return maps obtained at points Q1 and Q2 in Fig. 14(b), respectively. When we decrease the
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Fig. 13. MMO increment-terminating tangent bifurcation for [14, 15, [14, 15 × 2] × n]3n+2 with n → ∞ (ω =
0.426 9778), for which the three-times composite of T is tangent to the diagonal line θk+3 = θk at three points.

bifurcation parameter ω further, the branch generating 13 abruptly enters the invariant interval, as
shown in Fig. 16(a); this occurs at point Q3 in Fig. 14(c), where the MMO sequence [11, 13, 11, 12×6]9

emerges. As we decrease ω further, the MMO sequences [11, 13, 11, 12 ×n]n+3 appear for n = 6–12,
as shown in Fig. 14(c). Figure 16(b) shows the 1D Poincaré return map for [11, 13, 11, 12 × 12]15,
obtained at point Q4 in Fig. 14(c), which is an MMO generated by the final MMOIB. MMOIBs
cannot continue to emerge for still smaller values of ω. Instead, the invariant interval of the 1D
Poincaré return map in the bottom left disappears, as shown in Fig. 16(c.1), (obtained at point Q5 in
Fig. 14(c)), before the branch generating 12 touches the line θk+1 = θk (see Fig. 16(c.2), which is a
magnified view of Fig. 16(c.1)). In Fig. 16(c.2), we can clearly see that the map T has a slight gap
between the branch generating 12 and the line θk+1 = θk . While passing through this slight gap, the
solution leaves the bottom left of the Poincaré return map without hitting the branch generating 11

and transitions to become a [20]2 attractor, which appears in the top right of the map.

4. Firing number, devil’s staircase, and chaos

In this section, we introduce the “firing number” F , following past research [5,12]. F is defined as

F = LN

LN + sN
, (8)

where LN and sN are the number of large excursions and small peaks, respectively, that are included
in one period of the MMO sequence. For example, F = 1

1+3 = 1
4 for 13, and F = 1

1+4 = 1
5 for 14.

Therefore, F becomes larger if the MMOs include shorter MMO sequences. The firing number for
[14, 15 × n]n+1 is F = n+1

6n+5 . Therefore, the value of F for [14, 15 × n]n+1 decreases monotonically
with n and asymptotically approaches 1/6. It is known that when the bifurcation parameter is varied, F
represents a devil’s staircase-like structure [5,12,26]. Devil’s staircases of nonautonomous oscillators
have previously been reported using the rotation number [23]. In this study, we study the firing number
versus ω in MMOs and chaos-generating regions in detail using the 1D Poincaré return map.

Figure 17 shows the one-parameter bifurcation diagram obtained between 15 and 14 and the
corresponding graph of the firing number F . The value of F has been calculated over 70 000 forcing
periods for each value of ω. In the one-parameter bifurcation diagram and the graph of the firing
number, light blue denotes regions where MMOIB-generated MMOs occur. As mentioned above,
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(b)

(a)

(c)

Fig. 14. (a) One-parameter bifurcation diagram between 12 and 11. (b) Magnified view of (a), where MMOIBs
generate the MMOs [11, 12 × n]n+1 up to n = 5. (c) Magnified view of (a) in which the MMOIB-generated
MMO sequences include 13 as well as 11 and 12.

F increases monotonically in the light blue regions, and the graph of the firing number represents a
devil’s staircase-like structure [5,12]. There are cases in which each MMO-generating region caused
by an MMOIB overlaps with the hysteresis in the parameter space after several MMOIBs [12].
Therefore, the devil’s staircase obtained in such dynamics represents a stepwise function [12,15].
In contrast, each MMO-generating region in this nonautonomous BVP oscillator is sandwiched by
chaos.

From Fig. 17, we observed that the firing numbers have higher values in chaos-generating regions
in comparison with those in MMO-generating regions marked in light blue. Figure 18(a) shows a
magnified view of Fig. 17(b); the corresponding one-parameter bifurcation diagram was previously
shown in Fig. 11. The devil’s staircase plateaus that can be seen here (regions not marked in light blue
in this figure) reveal nested MMO-generating regions represented by [14, 15, [14, 15 ×2]×n]3n+2 for
each n, as discussed in the previous section. We can theoretically explain why F takes higher values
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(a) (b)

Fig. 15. Poincaré return maps that transition between branches generating 12 and 11. (a) [11, 12]2 for ω = 0.795,
which is obtained at point Q1 in Fig. 14(b). (b) The sequence [11, 12 × 5]6 for ω = 0.7282, which is obtained
at point Q2 in Fig. 14(b).

(a) (b)

(c1) (c2)

Fig. 16. Poincaré return maps and their trajectories, including the branch generating 13. (a) Trajectory
[11, 13, 11, 12 × 6]9 in the θk–θk+1 plane for ω = 0.7196, which is obtained at point Q3 in Fig. 14(c). (b) Tra-
jectory [11, 13, 11, 12 × 12]15 in the θk–θk+1 plane for ω = 0.7137, which is obtained at point Q4 in Fig. 14(c).
(c.1) Sequence [20]2 obtained after transitioning from [11, 13, 11, 12 × 12]15 for ω = 0.712, which is obtained
at point Q5 in Fig. 14(c). (c.2) Magnified view of (c.1) near the branch 12.

in chaos-generating regions. On the left-hand side of Fig. 18(a) (the periodic solution-generating
region marked in light blue), the MMO [14, 15 × 2]3 is generated and the value of F = 0.1765 for
[14, 15 × 2]3. On the right-hand side of the figure (other periodic solution-generating region marked
in light blue), the MMO [14, 15]2 emerges and the value of F = 0.1818 for [14, 15 × 1]2. The firing
number F takes on lower values in these regions because the waveforms of these MMOs represent
longer MMOs, such as 14 and 15, as shown in Fig. 18(b). In contrast, in the chaos-generating regions,
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(a)

(b)

Fig. 17. (a) Magnified view of the one-parameter bifurcation diagram. (b) Firing number F versus ω

corresponding to (a), which represents a devil’s staircase.

(a)

(b) (c) (d)

Fig. 18. (a) Magnified view of Fig. 17(b), which corresponds to the nested one-parameter bifurcation diagram
shown in Fig. 11. (b) MMO trajectory in the θk–θk+1 plane corresponding to point P1 in (a). (c) Chaotic
trajectory in the θk–θk+1 plane corresponding to point P3 in (a). (d) Chaotic trajectory in the θk–θk+1 plane
corresponding to point P2 in (a), which repeats the alternating sequence 10 → 12 → 10 → 13 → 10.
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F can become larger because the flow strikes the branches that generate shorter MMOs, such as 10,
12, and 13, as shown in Figs. 18(c) and (d). In particular, although the trajectory in Fig. 18(d) is
chaotic, it repeats the alternating sequences [10, 12, 10, 13]4. The larger values of the firing number
F in chaos-generating regions are thus explained theoretically.

5. Conclusion

We investigated MMO bifurcations called MMOIBs generated in a constrained nonautonomous
BVP oscillator with a diode, finding two distinct MMOIB types. The MMOIBs observed in the
14–15 region were successively generated many times, whereas those in the 11–12 region occurred
only a finite number of times. These bifurcation structures were well explained by a 1D Poincaré
return map derived from a constrained dynamical oscillator. In particular, we rigorously defined the
MMO increment-terminating tangent bifurcations toward which successively generated MMOIBs
accumulate and numerically derived these bifurcation points. We also discovered nested MMOIB-
generated MMOs in a short interval in the 14–15 region. In addition, we created a graph of the
firing number, which represents a devil’s staircase. We observed the chaotic windows between the
neighboring MMOIB-generated MMOs and found that in the chaos-generating region, the value of
the firing number was higher compared to that in the MMO-generating regions, which we explained
using 1D Poincaré return maps. In future research, we plan to comprehensively investigate the nested
bifurcation structures of the MMOIBs generated by this BVP oscillator.
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