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Extracting Multi-mode ERP Features Using Fifth-order
Nonnegative Tensor Decomposition

Deqing Wanga,b, Yongjie Zhua,b, Tapani Ristaniemib, Fengyu Conga,b,∗

aSchool of Biomedical Engineering, Faculty of Electronic Information and Electrical
Engineering, Dalian University of Technology, Dalian, China

bFaculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

Abstract

Background: Preprocessed Event-related potential (ERP) data are usually or-

ganized in multi-way tensor, in which tensor decomposition serves as a power-

ful tool for data processing. Due to the limitation of computation burden for

multi-way data and the low algorithm performance of stability and efficiency,

multi-way ERP data are conventionally reorganized into low-order tensor or

matrix before further analysis. However, the reorganization may hamper mode

specification and spoil the interaction information among different modes.

New Method: In this study, we applied a fifth-order tensor decomposition to

a set of fifth-order ERP data collected by exerting proprioceptive stimulus on

left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC

(NCP) decomposition methods implemented by alternating proximal gradient

(APG) was employed. We also proposed an improved DIFFIT method to select

the optimal component number for the fifth-order tensor decomposition.

Results: By the fifth-order NCP model with a proper component number, the

ERP data were fully decomposed into spatial, spectral, temporal, subject and

condition factors in each component. The results showed more pairs of compo-

nents with symmetric activation region in left and right hemisphere elicited by
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contralateral stimuli on hand.

Comparison with Existing Method(s): In our experiment, more interesting com-

ponents and coherent brain activities were extracted, compared with previous

studies.

Conclusions: The discovered activities elicited by proprioceptive stimulus are

in line with those in relevant cognitive neuroscience studies. Our proposed

method has proved to be appropriate and viable for processing high-order EEG

data with well-preserved interaction information among all modes.

Keywords: nonnegative tensor decomposition, CANDECOMP/PARAFAC,

event-related potential, multi-mode features, component number selection

1. Introduction

Tensor decomposition, as a versatile tool for signal processing and machine

learning (Cichocki et al., 2015; Sidiropoulos et al., 2017), has become more and

more popular for EEG data processing and cognitive neuroscience in recent

years (Cong et al., 2015; Zhou et al., 2016; Mahyari et al., 2017; Idaji et al.,5

2017; Wang et al., 2018). Event-related potential (ERP) is a time-locked EEG

activity measuring brain response elicited by perceptual, cognitive or motor

events (Handy, 2005). ERP can be represented naturally in tensor form. In

these studies (Zhang et al., 2013; Idaji et al., 2017; Vanderperren et al., 2012;

Niknazar et al., 2014), ERP data are arranged in channel Ö time Ö trial tensor.10

If ERP data are transformed into time-frequency representation (by Continuous

Wavelet Transform), a new frequency mode will be introduced. Consequently,

the ERP data of single-trial or the average of trials can be represented by channel

Ö frequency Ö time tensor (Mørup et al., 2006a; Weis et al., 2009; Zhao et al.,

2011; Cong et al., 2012, 2013). In an experiment, ERP data can be represented15

by high-order tensor including modes such as space, frequency, time, trial, sub-

ject, condition and group (Cong et al., 2015). Afterwards, tensor decomposition

can be performed for the multi-way ERP data.

CANDECOMP/PARAFAC (CP), as a basic tensor decomposition method

2
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(Sidiropoulos et al., 2017), has remarkable advantage in processing high-order20

EEG data, in which a group of related feature factors can be extracted from

each mode (a feature factor refers to a column of the matrix in some mode

after tensor decomposition). When time-frequency representation is applied on

EEG time series, the transformed data are nonnegative, and nonnegative CAN-

DECOMP/PARAFAC (NCP) is preferred with nonnegative constraints in each25

mode (Cichocki et al., 2009). The rationale for using NCP in time-frequency

transformed EEG tensor is that: after decomposition, (1) the temporal factor

representing temporal envelope is nonnegative; (2) the spectral factor represent-

ing spectrum is nonnegative; and (3) the spatial factor representing topography

can also be nonnegative. Specifically, for a brain activity, the temporal enve-30

lope exhibits the temporal evolution; the spectrum reveals the most prominent

frequency band; and the topography indicates the location on the scalp. The

meaning of NCP for third-order EEG tensor (channel Ö frequency Ö time) is

illustrated in Fig. 1. When higher-order (> 3) EEG tensor is decomposed by

NCP, more feature factors from different modes (e.g. subject, condition) will35

be extracted simultaneously, with the degree of strength given by score vectors

being nonnegative.

In general, the processing of high-order EEG tensor data is time-consuming,

in which the stability and convergence of tensor decomposition algorithms can-

not be guaranteed. Hence high-order EEG data are often reshaped into low-40

order tensor by merging several modes together, or unfolded into two-order

matrix. In a study of wavelet transformed ERP (Mørup et al., 2006b), the

fifth-order ERP data (channel Ö frequency Ö time Ö subject Ö condition)

were reorganized into a third-order tensor (channel Ö time-frequency Ö subject-

condition). In (Cong et al., 2012), a fourth-order ERP tensor (channel Ö fre-45

quency Ö time Ö subject-condition) was generated with subject and condition

modes being merged. However, the merging or unfolding of modes can po-

tentially hamper data interpretation, dismiss mode specification, and spoil the

interaction information among these modes (Cong et al., 2015; Mørup et al.,

2006b).50

3
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Mørup et al. applied fifth-order NCP to decompose another fifth-order ERP

data, the condition mode size of which is two (Mørup et al., 2006a). However,

there existed an unreasonable assumption that the data could only entail a

two-component CP model (Mørup et al., 2006a). The rationale behind this

assumption might be that the component number was no more than the minimal55

mode size of two. In fact, the selection of component number for CP model is

related to the rank of tensor. Since the rank of tensor can be larger than the

maximal mode size (Sidiropoulos et al., 2017), a larger component number can

be selected.

In this study, we analyze a set of fifth-order ERP data (channel Ö frequency60

Ö time Ö subject Ö condition) elicited by proprioceptive stimulus. Fifth-order

NCP is applied with a large component number. The data are fully decom-

posed in each mode, and the interaction information among these five modes is

retained. One of the latest NCP models implemented by alternating proximal

gradient (APG) method is employed, which has been proved to be mathemati-65

cally convergent and stable (Xu & Yin, 2013).

It is nontrivial to determine the component number by the tensor rank di-

rectly. Some studies have focused on the selection of component number for

multi-way models, such as core consistency diagnostic (CORCONDIA) (Bro &

Kiers, 2003) and automatic relevance determination (ARD) (Mørup & Hansen,70

2009). Nevertheless, these methods often indicate very few components, which

are not adequate to reveal the physiological properties of EEG signals (Cong

et al., 2015). Conventional DIFFIT (Timmerman & Kiers, 2000) is a preferred

method for component number selection in EEG data processing (Cong et al.,

2015), but it usually fails to provide useful information due to fluctuations on75

DIFFIT curve. Therefore, we propose an improved smooth DIFFIT method

that can select a proper number of components to make sure that the most

important components are included.

The assumption of the fifth-order analysis is that the underlying spatial,

spectral, and temporal factors are the same among all subjects, however, with a80

subject-dependent strength given by the subject score vector and with a variable

4
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strength in all conditions (Mørup et al., 2006a). Our method satisfies the above

assumption and meanwhile reveals more interesting components and coherent

activities compared with previous study (Mørup et al., 2006b). Our findings are

also in line with related cognitive neuroscience explanations of proprioceptive85

stimulus (Herrmann et al., 2004b; Arnfred et al., 2011).

2. Nonnegative CANDECOMP/PARAFAC Decomposition

2.1. Notation

In this paper, we denote a vector by boldface lowercase letter, such as x;

a matrix by boldface uppercase letter, such as X; and a high order tensor by90

boldface Euler script letter, such as X. Operator ◦ represents outer product

of vectors, 〈 〉 represents inner product, J K represents Kruskal operator, and

‖ ‖F means Frobenius norm. Nonnegative CANDECOMP/PARAFAC decom-

position is abbreviated as NCP for convenience in following contents.

2.2. Mathematical Model95

Given a nonnegative Nth-order tensor X ∈ RI1×I2×···×IN , NCP is to solve

the following minimization problem:

min
A(1),...,A(N)

1

2

∥∥∥X− JA(1), . . . ,A(N)K
∥∥∥2
F

s.t. A(n) > 0 for n = 1, . . . , N,

(1)

where A(n) ∈ RIn×R for n = 1, . . . , N are the estimated factor matrices in differ-

ent modes, In is the size in mode-n, and R is the selected rank-1 tensor number

(component number). The estimated factor matrices in Kruskal operator can

be represented by the sum of R rank-1 tensors in outer product form:

JA(1), . . . ,A(N)K =

R∑
r=1

X̃r =

R∑
r=1

a(1)
r ◦ · · · ◦ a(N)

r , (2)

where a
(n)
r represents the rth column of A(n).

5
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2.3. Optimization Scheme

Conventionally, there are many optimization methods that can be applied

to solve NCP problem, such as multiplicative updating (MU), alternating least

squares (ALS), hierarchical alternating least squares (HALS) (Cichocki et al.,100

2009). Recently, Xu et al. (Xu & Yin, 2013) have proposed the alternating

proximal gradient (APG) method to solve nonnegative matrix and tensor de-

composition problems in block coordinate descend (BCD) framework. APG

outperforms many conventional methods both in accuracy and efficiency. More

importantly, it has better convergence properties. Therefore, APG method is105

employed to solve NCP in our study. We don’t make a comparison among

different optimization methods in this study, which might be done in future.

Supposing that Â(n) is an extrapolated point, Ĝ(n) is the block-partial gradi-

ent at Â(n) and L(n) is a Lipschitz constant, factor matrix A(n) can be updated

alternatively by

A(n) ← arg min
A(n)>0

〈
Ĝ(n),A(n) − Â(n)

〉
+
L(n)

2

∥∥∥A(n) − Â(n)
∥∥∥2
F
. (3)

Furthermore, (3) can be rewritten in the closed form

A(n) ← max
(

0, Â(n) − Ĝ(n)/L(n)
)
. (4)

The detailed solution of NCP model (1) using APG and its convergence analysis

can be found in (Xu & Yin, 2013).

3. Component Number Estimation110

Before applying tensor decomposition to EEG data, it is required to deter-

mine a proper component number, which is the rank-1 tensor number R in (2).

The component number is closely related to the rank of tensor. For a two-

way matrix X ∈ RI×J , it follows rank(X) 6 min(I, J), but for a multi-way

tensor X ∈ RI1×I2×···×IN , rank(X) can be even larger than max(I1, I2, . . . , IN )115

(Sidiropoulos et al., 2017). Therefore, the component number for tensor decom-

position can be selected with a large number, which is not restricted by the size

6
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in each mode. However, it is nontrivial to determine R by tensor rank. DIFFIT

is a conventional method to determine component number, and has been used

in ERP tensor data decomposition (Cong et al., 2012).120

3.1. DIFFIT Method

DIFFIT refers to the difference in data fitting, and is calculated based on

relative error/residual and the explained variance (or the explained sum of

squares) (Timmerman & Kiers, 2000; Mørup & Hansen, 2009). The relative

error/residual of NCP is defined as

RelErr =

∥∥∥X− JA(1), . . . ,A(N)K
∥∥∥
F

‖X‖F
. (5)

Let component number R ∈ [1,R], where R is the empirically maximal compo-

nent number. When R is selected, the explained variance of the estimated R

components from NCP is

ExpVar(R) = 1−

∥∥∥X− JA(1), . . . ,A(N)K
∥∥∥2
F

‖X‖2F
. (6)

In order to obtain a more precise value, NCP model is usually run many times

(e.g. T times) for each R and the average explained variance is calculated

yielding an averaged sequence

e =
[
ExpVar(1), . . . ,ExpVar(R), . . . ,ExpVar(R)

]
. (7)

Then, calculate the DIF (difference of explained variance) and DIFFIT as fol-

lows:

DIF(R) = ExpVar(R)− ExpVar(R− 1), (8)

DIFFIT(R) =
DIF(R)

DIF(R+ 1)
. (9)

Sometimes, NCP model is run tens or hundreds of times for each R, which

is very time-consuming and even worse for big data or higher-order tensor.

Meanwhile, since the discrete sequence of averaged explained variances has only

7
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R values (usually several tens), there probably exist serious fluctuations and125

fake spikes on the final DIFFIT curve. Then, we propose an improved method

named “smoothed DIFFIT”.

3.2. Smoothed DIFFIT

Run NCP fewer times (T = 10, 20, or other values according to the com-

puter’s computation ability) for each R, and obtain vector e based on (7). From

vector e, a smooth curve is generated by polynomial curve fitting (PCF) using

a mth-order equation

p(x) = p1x
m + p2x

m−1+, . . . ,+pmx
1 + pm+1. (10)

After polynomial curve fitting, the new sequence is

ePCF =
[
ExpVarPCF(1), . . . ,ExpVarPCF(R)

]
. (11)

We recompute the DIF and DIFFIT as follows:

DIFPCF(R) = ExpVarPCF(R)− ExpVarPCF(R− 1), (12)

DIFFITPCF(R) =
DIFPCF(R)

DIFPCF(R+ 1)
. (13)

4. Experiments and Results

4.1. Data Description130

The ERP data in our experiment come from an open preprocessed dataset

associated with ERPWAVELAB toolbox (Mørup et al., 2007), which can be

downloaded from www.erpwavelab.org. The data were collected from a proprio-

ceptive experiment, in which two conditions (left and right hand) were manipu-

lated with the increment of handhold load. An important part of the stimuli is135

the change of applied force on a static muscle contraction, which is conceived as

proprioceptive stimulus (Mørup et al., 2006b). Fourteen subjects participated

in the experiment and 64 scalp electrodes were used to record EEG data. A

8
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total of 360 trials (epochs) were obtained from each subject under each con-

dition. All epochs were transformed into time-frequency representation (TFR)140

by complex Morlet wavelet. In the wavelet transform, only the frequency band

from 15 Hz to 75 Hz were analyzed with linear interval of 1Hz. Then, inter-trial

phase coherence (ITPC) (Delorme & Makeig, 2004) was computed as an average

spectral estimate across all trials. Since the TFR was first applied to each trial

and then the average was calculated across trials, ITPC can be seen as induced145

oscillations of brain (David et al., 2006). Meanwhile, ITPC only takes values

between 0 and 1 (Delorme & Makeig, 2004; Cohen, 2014). Finally, a fifth-order

nonnegative tensor (channel Ö frequency Ö time Ö subject Ö condition = 64

Ö 61 Ö 72 Ö 14 Ö 2) was generated. The structure of the fifth-order tensor is

shown in Fig. 2. The 61 frequency points represent 15−75 Hz, and the 72 time150

points represent 0− 346.68 ms.

The detailed EEG data collection and preprocessing procedures are described

in (Mørup et al., 2006b).

4.2. Component Number Selection

Both the original DIFFIT and our proposed smoothed DIFFIT methods155

were tested. The results are shown in Fig. 3.

We tested NCP on the fifth-order tensor data by increasing R from 1 to 50

(R = 50). With each selected component number R, NCP was run 20 times.

The averaged explained variance vector e, DIF and DIFFIT curves are shown

in Fig. 3 (a)-(c). Obviously, many fluctuations appear on the DIF and DIFFIT160

curves. From Fig. 3 (b) we can find that the DIF values at R = 31 and R = 44

are very close to 0. According to (9), this will cause large DIFFIT values with

two long fake spikes in Fig. 3 (c) at R = 30 and R = 43. The DIFFIT curve in

Fig. 3 (c) entails very limited useful information.

We fit e by a 7th-order polynomial, and the obtained polynomial is

p(x) =2.0486−11x7 − 3.9518−9x6 + 3.0904−7x5

− 1.2586−5x4 + 2.8604−4x3 − 3.6465−3x2

+ 2.6685−2x+ 7.3496−1.

9
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The fitted curve ePCF is shown in Fig. 3 (d). By visual inspection, the results165

of 5th and 6th-order polynomials were under-fitting, while 8th and 9th-order

were over-fitting. 7th-order polynomial has the best fitting for the data in our

experiment.

Subsequently, DIFPCF and DIFFITPCF were calculated, as shown in Fig.

3 (e) and (f). In Fig. 3 (f), when the DIFFIT value is larger than 1, DIF170

curve decreases; when it is smaller than 1, DIF curve increases; and when it

equals to 1, DIF curve doesn’t change. The two local maximums on DIFFIT

curve at R = 4 and R = 24 indicate two positions on DIF curve that have

fast dropping rate. The values after R = 45 can be ignored due to the poor

fitting at the end of the curve. From Fig. 3 (e) and (f) we find that at R = 20175

the DIF value decreases rapidly again approaching to a rather low value, which

indicates that, after R = 20, the explained variance doesn’t increase that much.

Based on above analysis, we assume that, at R = 20, the estimated factors of

tensor decomposition contain the most important EEG components. Therefore,

R = 20 is selected as the optimal component number in NCP model for this180

fifth-order tensor data. In fact, our smoothed DIFFIT method can estimate a

narrow range of proper component numbers. For example, in case of R = 19

or 21, similar results can be obtained as R = 20. However, if R = 30, more

unimportant components, such as weak signals or noise, might be included in

the results.185

4.3. Tensor Decomposition Implementation

4.3.1. Factor Initialization

All factors of the five modes were initialized using normally distributed ran-

dom numbers as in (Xu & Yin, 2013).

4.3.2. Stop Criteria190

Based on (5), the relative error/residual of NCP at the kth iteration was de-

fined as RelErrk =

∥∥∥X−JA(1)
k ,...,A

(N)
k K

∥∥∥
F

‖X‖F
. We terminated the NCP decomposition

process when the following condition between two iterations k and k + 1 was

10
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satisfied:

Tstop = |RelErrk − RelErrk+1| ≤ ε,

where ε = 10−6 in this study.

4.4. Components Analysis

In this section, we name the rth rank-1 tensor X̃r after decomposition as

the rth component. A component further contains spatial, temporal, temporal,

subject, and condition factor, which can be represented by X̃r = a
(spatial)
r ◦195

a
(spectral)
r ◦ a(temporal)

r ◦ a(subject)
r ◦ a(condition)

r according to (2).

After NCP decomposition, a total of 20 components were obtained. The

assumption of the fifth-order analysis is that the underlying spatial, spectral,

and temporal factors are the same among all subjects only with differences in

subject-dependent and condition-dependent strength. In the results, we discov-200

ered five pairs of components (10 components) with symmetric responses on

topographies, which are shown in Fig. 4. and Fig. 5. It is clear that left-hand

stimuli elicit activities in the right hemisphere, and right-hand stimuli elicit

activities in the left hemisphere. We also calculated time-frequency representa-

tion (TFR) for each component, which is the outer product of the spectral and205

temporal factor. The frequency of TFR is presented in logarithm scale.

Fig. 4 shows the components with frequency oscillations in beta-band (15-

30Hz). Fig. 4 (a) displays a pair of components with symmetric activities in

right and left frontal lobe elicited by contralateral hand stimuli. Both compo-

nents appear within 15-20Hz at 75ms. This pair of components was also found210

in (Mørup et al., 2006b). Fig. 4 (b) shows symmetric activities in right and

left temporal lobe within 15-20Hz at 75ms. Activities in Fig. 4 (c) appear in

right and left frontal lobe within 25-30Hz at 60ms. These beta-band activi-

ties emerge before 100ms after stimulus onset, which is consistent with previous

study about beta-frequency oscillations of proprioceptive information processing215

(Arnfred et al., 2011).

Fig. 5 demonstrates the components with frequency oscillations in gamma-

band (30-75Hz). Fig. 5 (a) shows symmetric activities in right and left temporal

11
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lobe, and they occur within 30-40Hz at 60ms. This pair of components was also

found in (Mørup et al., 2006b). In Fig. 5 (b), the other two components with the220

frequency of 40-75Hz in the region between parietal and temporal lobe appear

respectively at 75ms and 45ms. It has been reported in (Mørup et al., 2006b;

Arnfred et al., 2011) that proprioceptive stimulus could elicit gamma-band

activities (GBA, 30-80Hz). Our fifth-order tensor decomposition can extract

more gamma-band components compared with previous study (Mørup et al.,225

2006b). These gamma-band activities, occurring before 100ms after stimulus

onset in parietal and temporal region, are in accordance with the match step of

match-and-utilization model (MUM) in cognitive neuroscience (Herrmann et al.,

2004a,b). It is assumed in MUM that the ‘early’ gamma-band response reflects

the matching of stimulus-related information with memory contents that occur230

rapidly (before 150 ms) after stimulus onset (Herrmann et al., 2004b). We infer

that, when a weight increment is exerted on subjects’ hand repeatedly dur-

ing the experiment, there will be a matching and comparison process between

the new proprioceptive-stimulus-related signals and existing memory contents.

These gamma-band activities in Fig. 5 can be regarded as the results of the235

matching and comparison process.

In addition, we also discovered two extra components of high strength in

both left-hand and right-hand conditions. One of the components occurs in

occipital lobe with the frequency of 22Hz at 80ms, while another occurs at the

center of parietal lobe with the frequency of 28Hz at 130ms. Perhaps, these two240

components were elicited by non-proprioceptive stimulus.

5. Conclusion

In this study, we applied fifth-order NCP model to decompose a set of fifth-

order ERP tensor data collected by exerting proprioceptive stimulus on left and

right hand. The data were fully decomposed in all modes (space, frequency,245

time, subject, condition), and the interaction information among these modes

was well retained. We also proposed an improved smoothed DIFFIT method to

12
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select a proper component number for NCP with the most important compo-

nents being well-preserved after decomposition. Compared with previous study,

we discovered more interesting components with symmetric and coherent activ-250

ities elicited by left-hand and right-hand stimuli. Our findings are consistent

with the explanations in related cognitive neuroscience studies. In future stud-

ies, some aspects still need further consideration. From the perspective of signal

processing algorithm, it would be interesting to compare the performance and

stability of NCP tensor decomposition in fifth-order ERP data implemented255

by different optimization methods, such as APG, MU, ALS, and HALS. From

the perspective of cognitive neuroscience methodology, it is worth analyzing ex-

periments results using diverse data forms, such as fifth-order tensor analysis,

reshaped third-order tensor analysis, subject-based analysis and group-based

analysis.260
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Figure 5: Components of gamma-band oscillations. These components have contralateral

brain activities on topographies elicited by left-hand and right-hand stimuli respectively. Ac-

tivities in (a) appear in frontal lobe within 30-40Hz at 60ms. Activity of the first component

in (b) occurs between right parietal and temporal lobes at 40Hz and 75ms. Activity of the

second component in (b) occurs between left parietal and temporal lobes within 40-75Hz at

45ms.
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Highlights:  

 

 Fifth-order nonnegative CANDECOMP/PARAFAC model was applied to fifth-order 

ERP tensor with full decomposition in all modes. 

 A smoothed DIFFIT method was proposed to select optimal component number.  

 More interesting components and coherent activities were extracted than previous 

study. 
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