
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Using affinity perturbations to detect web traffic anomalies

© 2013 EURASIP. First published in the proceedings of SampTA 2013 by EURASIP.

Shmueli, Yaniv; Sipola, Tuomo; Shabat, Gil; Averbuch, Amir

Shmueli, Y., Sipola, T., Shabat, G., & Averbuch, A. (2013). Using affinity perturbations to detect
web traffic anomalies. In W. Henkel (Ed.), Proceedings of the 10th International Conference on
Sampling Theory and Applications (SampTA 2013) (pp. 444-447). EURASIP.
http://www.eurasip.org/Proceedings/Ext/SampTA2013/proceedings.html

2013

c© 2013 EURASIP. First published in the proceedings of SampTA 2013 by EURASIP. This is the authors’ version of the article. The original article appeared
as Yaniv Shmueli, Tuomo Sipola, Gil Shabat, and Amir Averbuch. Using affinity perturbations to detect web traffic anomalies. In Proceedings of the 10th
International Conference on Sampling Theory and Applications (SampTA), pages 444–447. EURASIP, 2013.

Using Affinity Perturbations to Detect

Web Traffic Anomalies

Yaniv Shmueli

School of

Computer Science

Tel Aviv University

yaniv.shmueli@cs.tau.ac.il

Tuomo Sipola

Department of

Mathematical Information Technology

University of Jyväskylä

tuomo.sipola@jyu.fi

Gil Shabat

School of

Electrical Engineering

Tel Aviv University

gil@eng.tau.ac.il

Amir Averbuch

School of

Computer Science

Tel Aviv University

amir@math.tau.ac.il

Abstract—The initial training phase of machine learning al-
gorithms is usually computationally expensive as it involves the
processing of huge matrices. Evolving datasets are challenging
from this point of view because changing behavior requires
updating the training. We propose a method for updating the
training profile efficiently and a sliding window algorithm for
online processing of the data in smaller fractions. This assumes
the data is modeled by a kernel method that includes spectral
decomposition. We demonstrate the algorithm with a web server
request log where an actual intrusion attack is known to
happen. Updating the kernel dynamically using a sliding window
technique, prevents the problem of single initial training and can
process evolving datasets more efficiently.

Index Terms—perturbation theory, eigenvalue problem, dif-
fusion maps, dimensionality reduction, anomaly detection, web
traffic

I. INTRODUCTION

Evolving data that requires frequent updates to the training

is a challenging target when extracting constructive infor-

mation. The computational complexity of the training phase

increases with such datasets because an earlier profile may

not accurately represent the behavior of current data. There-

fore, the extracted profile has to be updated frequently. A

straightforward approach for updating the training profile is

to repeat the entire computational process that generated

the original profile. This paper summarizes a method for

efficiently updating the evolving profile.

A common practice in kernel methods is to extract features

from a high dimensional dataset, and to form a similarity graph

between the features in the dataset. In this research we apply

the Diffusion Maps (DM) methodology [1] to a web traffic

log. DM finds the embedded coordinates for a low-dimensional

representation of the data. This embedding is accomplished by

eigenvectors computation of the graph affinity matrix. Changes

in the affinity matrix will result in changes in the eigenvectors,

and thus will force us to compute them frequently. We use

a solution based on the Recursive Power Iteration algorithm

combined with the first-order approximation of the perturbed

eigenvectors and eigenvalues (eigenpairs) [2]. This enables us

to update the dataset profile by considering only the changes

in the original dataset, which also requires less computational

effort.

Since network data is dynamic and evolving, the embedded

low-dimensional space has to be updated as the training data

does not adequately represent the incoming data that did not

participate in the initial training phase. Even if most of the

network log lines in our interest window are unchanged, we

will still need to perform the entire computation since we

cannot determine the effect of such a change on the embedded

space. Therefore, the goal of the paper is to provide an efficient

method for updating the embedding coordinates without the

need to re-compute the entire SVD again and again over time.

We treat the log line feature changes as perturbations from

the original network log profile of the feature affinity matrix.

By applying a sliding window technique to the incoming

network data, we are able to process the data online, and

keep embedding it in the low-dimensional space. We test this

method on real web traffic data and compare our results to the

true classification.

II. RELATED WORK

Traditional computational methods such as the power it-

eration, inverse iteration and Lanczos methods operate in

the same way and compute the eigenpairs of each update

of the perturbed matrix. Here, the computation is performed

with a random guess as the initial input without taking the

unperturbed matrix and its eigenpairs into consideration.

Incremental versions of low-dimensional embedding al-

gorithms have been tailored specifically to fit local linear

embeddings (LLE) [3] and ISOMAP [4]. These algorithms

use modified manifold learning methods to process the data

iteratively. When a new data point arrives, these algorithms

add it to the embedding and then efficiently update all the

existing data points in the low-dimensional space.

Network security has been one focus among the machine

learning community. Kruegel and Vigna studied the parameters

of HTTP queries using a training step with unlabeled data with

various methods. Their character distribution analysis uses

similar feature extraction as our current study [5]. Hubballi

et al. described an n-gram approach to detect intrusions

from network packets [6]. Ringberg et al. studied IP packets

using principal component analysis-based dimensionality re-

duction [7]. Callegari et al. analyzed similar low-level packet

data [8].

Diffusion maps have been also used for network security

problems. David studied the use of diffusion map methodology

for detecting intrusions in network traffic [9]. Network server

logs have also been studied with diffusion maps with an offline

approach using n-gram features and spectral clustering [10]. In

these works, data analysis was performed in a batch fashion,

processing all recordings as a single, offline dataset.

III. FINDING A LOW-DIMENSIONAL EMBEDDED SPACE

A. Diffusion Maps

Finding a low-dimensional embedded space is an important

step in understanding high-dimensional data more profoundly.

To better understand the proposed algorithm, we review the

DM methodology [1] that performs non-linear dimensionality

reduction. Given our web log feature matrix X , we define a

weighted graph over the log lines, where the weight between

lines i and j is given by the kernel k(i, j) , e−
‖xi−xj‖

ε .

The degree of a log line (vertex) i in this graph is d(i) ,
∑

j

k(i, j). Normalizing the kernel with this degree produces an

n×n row stochastic transition matrix whose cells are [P]ij =
p(i, j) = k(i, j)/d(i) for log lines i and j. This defines a

Markov process over the network log features.

The dimensionality reduction achieved by this diffusion

process is a result of the spectral analysis of the kernel. Thus,

it is preferable to work with a symmetric conjugate to P that

we denote by A and its cells are denoted by

[A]ij = a(i, j) =
k(i, j)

√

d(i)
√

d(j)
=

√

d(i)p(i, j)
1

√

d(j)
. (1)

The eigenvalues 1 = λ1 ≥ λ2 ≥ . . . of P and their

corresponding eigenvectors vk (k = 1, 2, . . .) are derived from

the eigenvectors uk of A. The vk are used to obtain the desired

dimensionality reduction by mapping each i onto the data point

Ψ(i) = (λ2v2(i), λ3v3(i), ..., λδvδ(i)) for a sufficiently small

δ, which depends on the decay of the spectrum of A [1].

In matrix notation, the operator A is defined as A =
D− 1

2KD− 1

2 = D
1

2PD− 1

2 where D is the diagonal matrix

containing the d(i) value in cell Dii. To retrieve the eigenvec-

tors in columns V of P from the eigenvactors of A, we use

the transformation V = D− 1

2U where U is the eigenvector

column matrix of A. The eigenvectors V obtained for P are

scaled by dividing each one by the first value of the first

eigenvector.

B. Updating the Embedding

Once we have the DM embedding of the initial matrix A,

we need to keep updating the embedding for the next arriving

samples. By replacing the oldest samples with the newly

arriving ones, we can model such a change as a perturbation

matrix Ã of the matrix A. We assume that the perturbations are

sufficiently small, that is, ‖Ã−A‖ < ε for some small ε. Note

that Ã is symmetric since it represents the operator defined

in 1. We wish to update the eigenpairs of Ã based on A and

its eigenpairs. We now present the problem in mathematical

terms.

Given a symmetric n × n matrix A where its k dominant

eigenvalues are λ1 ≥ λ2 ≥ ... ≥ λk and its eigenvectors are

φ1, φ2, ..., φk, respectively, and a perturbed matrix Ã such that

‖Ã−A‖ < ε, find the perturbed eigenvalues λ̃1 ≥ λ̃2 ≥ ... ≥
λ̃k and its eigenvectors φ̃1, φ̃2, ..., φ̃k of Ã in the most efficient

way [2].

In the next section, we explain how such processing can be

done using the recursive power iteration (RPI) algorithm.

IV. THE RECURSIVE POWER ITERATION (RPI)

ALGORITHM

A. Eigenpair First-Order Approximation

To efficiently update each eigenpair of the perturbed matrix

Ã, we first compute the first-order approximation of each

eigenpair. Later, it will be used in our algorithm as the initial

guess for the RPI algorithm.

Given an eigenpair (φi, λi) of a symmetric matrix A where

Aφi = λiφi, we compute the first-order approximation of the

eigenpair of the perturbed matrix Ã = A + ∆A. We assume

that the change ∆A is sufficiently small, which results in a

small perturbation in φi and λi. We look for ∆λi and ∆φi

that satisfy the equation

(A+∆A)(φi +∆φi) = (λi +∆λi)(φi +∆φi). (2)

Using the methods described by Shmueli et al. [2], we can

obtain the following first-order approximations for the eigen-

values and eigenvectors of Ã

λ̃i = λi + φT
i [∆A]φi (3)

and

φ̃i = φi +
∑

j 6=i

φT
j [∆A]φi

λi − λj

φj . (4)

B. The Recursive Power Iteration Method

The power iteration method has proved to be effective

when calculating the principal eigenvector of a matrix [11].

However, this method cannot find the other eigenvectors of the

matrix. In general, an initial guess of the eigenvector is also

important to guarantee fast convergence of the algorithm. In

Algorithm IV.1, which we call recursive power iteration (RPI),

the first-order approximations of the perturbed eigenvectors

of Ã are the initial guess for each power iteration. Once the

eigenvector φ̃i is obtained in step i, we transform Ã into a

matrix that has φ̃i+1 as its principal eigenvector. We iterate

this step until we recover the k dominant eigenvectors of Ã.

The correctness of the RPI algorithm and its complexity

analysis are given in the original article [2].

The justification for this approach is that the first-order

approximation of the perturbed eigenvector is inexpensive, and

each RPI step guarantees that this approximation converges

to the actual eigenvector of Ã. The first-order approximation

should be close to the actual solution we seek and therefore

requires fewer iteration steps to converge.

Algorithm IV.1: Recursive Power Iteration Algorithm

Input: Perturbed symmetric matrix Ãn×n, number of

eigenvectors to calculate k, initial eigenvectors

guesses {vi}
k
i=1

, admissible error err

Output: Approximated eigenvectors
{

φ̃i

}k

i=1

,

approximated eigenvalues
{

λ̃i

}k

i=1

1: for i = 1→ k do

2: φ← vi
3: repeat

4: φnext ←
Ãφ

‖Ãφ‖

5: errφ ← ‖φ− φnext‖
6: φ← φnext

7: until errφ ≤ err

8: φ̃i ← φ

9: λ̃i ←
φ̃T
i Ãφ̃i

φ̃T
i
φ̃i

10: Ã← Ã− φ̃iλ̃iφ̃
T
i

11: end for

V. SLIDING WINDOW DIFFUSION MAP

Using DM to embed high volumes of data can be compu-

tationally intensive. It is even more challenging when the data

is generated online and needs to be processed continuously.

Therefore, we try to process the incoming data with iterative

methodology by using the sliding window model. A sliding

window X takes into account the n latest measurements. In

practice, it is an n ×m matrix with features on the columns

and samples on the rows. The samples are high-dimensional,

so the dimensionality of the sliding window is reduced from

m to d using DM. This n × d matrix Xr now contains the

low-dimensional representation of the data. This reduction

is done each time a new sample appears and the window

moves. However, the consecutive update of the DM is a time-

consuming process that requires singular value decomposition

during each window.

When updating the window, we can replace the oldest

measurement with a new one in the matrix X , therefore

changing a single row in X . This means that one line and

one column of the K matrix in the DM algorithm change.

This change can be interpreted as a perturbation to the matrix

K, and furthermore to the matrix A, which is defined using the

K matrix. The RPI algorithm with first-order approximation

solves the eigenvectors for perturbed matrices. This leads us

to use the RPI algorithm instead of time-consuming SVD.

Algorithm V.1 outlines the sliding window DM method.

First, it solves the eigenvectors for the initial window using

SVD. Then the algorithm iteratively process the following

windows until no new samples are available.

There are, some practical problems with this approach. First,

the RPI algorithm might not be able to solve the eigenvectors

for some low-rank matrices. It is possible to prevent this

with standard SVD when a low-rank (or otherwise unsuitable)

matrix is encountered. Second, the window size itself has to be

Algorithm V.1: Sliding Window Diffusion Map with RPI

Input: Dataset X , window width n, embedded dimension k,

admissible error err.

Output: Anomaly score for points in X .

ǫ← estimate kernel parameter for first window of size n.

[K]ij ← exp
(

−
||xi−xj ||

2

ǫ

)

, where i, j = 1 . . . n

D ← diag(
∑n

i=1
[K]ij)

A← D− 1

2KD− 1

2

U,Λ, UT ← SVD(A)
while new sample xt available, where t > n do

l← t mod n
Replace the row l in X with the new sample xt.

Update both row l and column l of the affinity matrix

K.

D ← diag(
∑n

i=1
[K]ij)

Ã← D− 1

2KD− 1

2

U,Λ← RPI with first-order approximation

(Ã, A, k, U,Λ, err)
V ← D− 1

2U
V ← V

V1,1

Ψ← V Λ
Find anomalies in Ψ and rate all samples in X .

A← Ã
end while

Return aggregated anomaly scores for each sample in X .

decided. The changing scales of the data over time introduce a

challenge to the sliding window algorithm. The initial window

still determines the profile and scale for the beginning of the

analysis. Big windows cover a larger representation of the

data and thus include a more varied overview of the normal

behavior. With smaller windows, the percentage of anomalies

within the data might get too big, and detecting the normal

state becomes more difficult. Small windows, however, require

less computational time since they induce smaller matrices.

Optimal window size would therefore be the smallest possible

that contains a small enough percentage of anomalies within

the data, enabling it to capture the normal samples correctly.

Detecting the anomalies in the low-dimensional representa-

tion can be done in various ways. A straightforward approach

is to calculate distances between the embedded samples and

find the ones that deviate too far from the center of the dataset.

This and other spectral clustering methods give good results

for datasets that contain clear separation [12], [10]. Similarly,

k-means or any other clustering algorithm can find possible

normal as well as anomalous behavior in the data. The density

of points in the low-dimensional space tells how far they are

from the more clustered areas. These methods calculate the

distances to neighboring points [9]. All these methods usually

need a threshold value for the anomalous region.

In each iteration, we evaluate the anomaly level of the

samples within the window. Each sample gets a score if it

is classified as an anomaly according to the selected anomaly

