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One-loop corrections to light cone wave functions: the dipole picture DIS cross section
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We develop methods needed to perform loop calculations in light cone perturbation theory using
a helicity basis, refining the method introduced in our earlier work. In particular this includes
implementing a consistent way to contract the four-dimensional tensor structures from the helicity
vectors with d-dimensional tensors arising from loop integrals, in a way that can be fully automatized.
We demonstrate this explicitly by calculating the one-loop correction to the virtual photon to quark-
antiquark dipole light cone wave function. This allows us to calculate the deep inelastic scattering
cross section in the dipole formalism to next-to-leading order accuracy. Our results, obtained using
the four dimensional helicity scheme, agree with the recent calculation by Beuf using conventional
dimensional regularization, confirming the regularization scheme independence of this cross section.

PACS numbers: 24.85.4p,25.75.-q,12.38.Mh

I. INTRODUCTION

Light cone perturbation theory (LCPT), the Hamiltonian formulation of field theory on the light front [1-4] is
a widely used calculational tool in particle and hadronic physics. Its added calculational complexity compared to
covariant perturbation theory is balanced by several advantages in the description of bound states or other multiparton
systems. The light cone wave functions (LCWEF’s) and operators have a simpler behavior under transverse Lorentz
boosts than covariant ones. The perturbative expansion is organized in terms of a Fock state expansions involving only
physical degrees of freedom with definite helicities. This gives a natural physical interpretation for the factorization
of scattering processes into the properties of the incoming and outgoing hadronic states on one hand, and the short
distance partonic scatterings between elementary constituents on the other.

Modern hadronic and nuclear scattering experiments probe QCD with increasing accuracy in the high energy or
small-x regime. Here the large available phase space for gluon radiation enables the generation of a dense system
of gluons with nonperturbatively large gluon fields. One the other hand, balancing the complication arising from
the nonlinear dynamics of the gluons, the high collision energy simplifies the treatment of the scattering by allowing
an eikonal approximation for the interactions of individual partons with the color field. Typically this situation is
described using the effective theory of QCD known as the Color Glass Condensate (CGC) [5]. In this picture, the
scattering of a dilute probe off the dense color field is factorized into the partonic structure of the “simple” probe
(virtual photon, or an individual quark or gluon in the case of forward rapidities in proton-nucleus collisions), and
the eikonal scattering of the partons of the probe with the target color field. This allows for a treatment that includes
nonlinear interactions in the dense target color field to all orders, while the simple probe can be treated exactly. This
picture is advantageous in particular for understanding exclusive processes. Light cone perturbation theory is the
method of choice for understanding the structure of the probe.

In order to develop a more quantitative description of several scattering processes in the high energy limit, CGC
calculations have recently been advancing to next-to-leading order (NLO) accuracy for several different processes. The
NLO corrections to the small-z evolution equations (in particular the Balitsky-Kovchegov (BK) equation [6-8]) have
been derived and the required resummations of collinear logarithms studied in several papers [9-19]. There have been
several caluclations of single [20-25] and double [26] inclusive parton production at forward rapidity in high energy
proton-nucleus collisions. In the context of deep inelastic scattering, both inclusive [27-31] and exclusive [32-34]
processes have been studied at the NLO order.

Our present paper is a follow-up of our recent work [35], where we introduced the idea of performing loop calculations
in LCPT using a helicity basis for the elementary vertices. In this paper we will present a better formulation of
the calculational scheme introduced in [35], correcting a partially incorrect formulation used in that paper. As a
demonstration, we will calculate the one-loop correction to the virtual photon to quark-antiquark dipole light cone
wave function. We will then use this to derive the NLO cross section for inclusive DIS in the dipole factorization
picture. We perform the calculation using the four-dimensional helicity (FDH) scheme, where polarization sums are
calculated in four dimensions, and ultraviolet divergences are regularized by performing momentum integrals in d
dimensions. Our results recover the ones obtained in [29, 30] after a lengthy manual calculation, in what we would
argue to be a more systematical and economical way. Also, although intermediate results are different in the FDH
scheme used here and the conventional dimensional regularization (CDR) used in [29, 30], we see that these scheme



dependent terms cancel in the final result. As a separate small difference to the calculation in [29, 30], we implement the
cancellation between UV divergences in the real and virtual corrections to the cross section by adding and subtracting
a slightly different subtraction term, leading to a numerically smoother expression for the cross section. We verify
both analytically and numerically that our results are equivalent to those in [29, 30].

The rest of the paper is structured as follows. We will first discuss the technical aspects of the calculation in
Sec. II, concentrating on the differences compared to our earlier work [35]. We then recall how one calculates cross
sections by combining eikonal interactions with a color field target with light cone wave functions in Sec. III. After
briefly rederiving the leading order virtual photon wave functions in Sec. IV we calculate the corresponding one-loop
corrections in Sec. V. After calculating also the real corrections, i.e. the wave functions for gluon emission from the
dipole, in Sec. VI we combine our results into the NLO DIS cross sextion in Sec. VII, before concluding in Sec. VIII.
Technical details of the calculation have been spelled out in the Appendices.

II. HIGHER ORDER LCPT COMPUTATIONS

The purpose of this paper is to develop and demonstrate techniques for the perturbative calculation of light cone wave
functions. These are formed from interaction vertices, where spatial momentum (5 = (p*, p)) is conserved but light
cone energy p_ is not, and energy denominators which depend on the energy differences between intermediate states.
In loop diagrams, the spatial momentum circulating in the loop must be integrated over. In these momentum integrals
we encounter pt — 0 divergences, p — 0 divergences and ultraviolet (UV) divergences (p — oo). Combinations of
the first two divergences encode soft, collinear and spurious gauge divergences. All of these divergences have very
different physical interpretations, and it makes therefore sense to reguralize them all by different means. In particular
we will regularize, if needed, the soft divergence with a cutoff, and regulate the UV divergences by integrating over
the transverse momenta in 2 — 2¢ dimensions. The basic normalizations, notations etc are explained in much more
detail in Ref. [35], and we will here concentrate only on the differences with respect to the formulation used there.
We first discuss the different flavors of dimensional regularization in Sec. IT A, and the required modifications to the
formulation of the elementary vertices compared to the explicitly 2-dimensional one used in [35] in Sec. I1B. We will
then, as an explicit demostration, calculate two helicity sums appearing in the calculation of the NLO DIS impact
factor in Sec. II C, and briefly write down the instantaneous vertices needed in our calculation in Sec. ITD.

A. Dimensional regularization schemes in gauge field theories

In the evaluation of loop and phase space momentum integrals one encounters divergences which have to be properly
regularized. In gauge field theories a satisfactory regulator has to respect gauge invariance and unitarity which requires
that one treats the momenta and helicities equally. For practical computations, the only choice is a form of dimensional
regularization.

For the discussion of different versions of dimensional regularization schemes it is useful to define unobserved and
observed particles. Unobserved particles are either virtual ones which circulate in internal loops or particles which are
external but soft or collinear with other external particles. All the rest are observed particles. The common feature
in all dimensional regularization schemes is the continuation of the momenta of the unobserved particles into d # 4.
Once this is done, there is still some freedom regarding the dimensionality of the momenta of the observed particles
as well as the treatment of polarization vectors (or helicities) of the unobserved and observed particles. Thus, one
can define a set of different versions of dimensional regularization schemes:

e The conventional dimensional regularization (CDR) scheme [36], in which both observed and unobserved polar-
ization vectors and momenta are continued to d dimension (i.e. all gluons have d — 2 helicity states).

o The ’t Hooft-Veltman (HV) scheme [37], in which the unobserved particle momenta and polarization vectors are
continued to d dimensions (i.e. unobserved gluons have d — 2 helicity states), but the momenta and polarization
vectors of observed particles are kept in four dimensions (i.e. observed gluons have 2 helicity states)

o The dimensional reduction (DR) scheme [38], in which the momenta of unobserved particles are continued to
d < 4 dimensions, but polarization vectors of unobserved and observed particles are kept in four dimensions (i.e.
all gluons have 2 helicity states).

o The four dimensional helicity (FDH) scheme [39, 40], in which the momenta of unobserved particles is continued
to d > 4 dimensions, and all observed particles are kept in four dimensions (i.e. observed gluons have 2 helicity
states). All unobserved internal states are treated as d,-dimensional, where d, > d in all intermediate steps.
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FIG. 1: Left: Gluon emission vertex from a quark yeiba (q,2) Eq. (6), where «, 8 are quark colors, h, 1’ the quark helicities

hih' A
before and after the emission, a the gluon color and A the gluon helicity. Right: Gluon absorption vertex into quark Vﬁ’ii(q, 2)

Eq. (8).

Any factor of dimension arising from the numerator Lorentz and Dirac algebra should be labeled as d,, and
should be distinct from the dimension d. Once the spin and tensor algebra is done one analytically continues
the result to d < 4 and takes the limit d, — 4 for the spins of the internal particles.

Typically the dimensionality is parametrized as d = 4 — 2e. We will also use the notation d;, =d —2 = 2 — 2¢ for
the number of transverse dimensions in light cone coordinates. Within the DR and FDH schemes one can still choose
the momentum of observed particles to be either d-dimensional or 4-dimensional. At one-loop order, however, these
choices lead to difference of O(g) and thus one can set the observed particles momenta to be 4-dimensional.

The question of which regularization scheme is most efficient for a given calculation is of course very subjective. We
would like to argue in this paper that for one-loop LCPT calculations the helicity basis supplemented with the FDH
regularization scheme is in fact the most efficient one. However, as we will show below, the helicity basis approach can
also be combined with other dimensional regularization scheme choices, and in particular with the CDR, scheme. Our
overall motivation for using the FDH scheme is the following. The one-loop results for physical observables arise from
a product of a one-loop tensorial loop integral and another tensor from the spin/helicity structure of the vertices. The
resulting contributions can be classified into three kinds of terms. The most divergent part is obtained by taking the
divergent 1/e-term from the integral, and evaluating the helicity structure in 4 spacetime dimensions. This part has
no scheme dependence. The scheme dependent finite part comes from taking a ~ ¢ term from the helicity structure
and multiplying it by the 1/e-term from the loop integral. The scheme independent finite part, on the other hand,
involves the finite part of the integral and a helicity structure which can, at one-loop accuracy, be evaluated in d, = 4
dimensions. Out of these three, the scheme independent finite part is by far the most complicated one, because in
many cases the tensorial structure in the finite part of the loop integral is much more complicated than in the pole
part. Thus being able to calculate the finite scheme independent part as efficiently as possible is a priority.

Our strategy is to write the elementary vertices of the theory in a way which, in 4 dimensions, has a very practical
structure in terms of the helicities of the particles. These structures are, when the helicities are evaluated in 4
dimensions, written in terms of Levi-Civita tensors in 2 transverse dimensions. This leads to a very easy way to
calculate the most complicated scheme independent finite part. The price to pay, however, is that calculating the
scheme dependent e/e-part becomes more complicated, because to evaluate the helicity sums accurately up to order e
the Levi-Civita structure cannot be used any more. In stead, one must carefully evaluate contractions involving both
dg-dimensional structures from the spin sums and d-dimensional ones from the loop integrals. Here, however, one is
dealing with the simpler tensorial structure of the 1/e-part of the loop integral, and this represents a relatively small
part of the calculation.

B. Decomposition of quark vertices

Let us first consider the simplest light cone vertex shown in Fig. 1 (left), where a gluon with momentum k and
helicity h is emitted from a quark with momentum p and helicity h. For simplicity of notation we denote the two
quark spin states with spin £1/2 by h = +1, i.e. the actual helicity of the quark is h/2. As discussed in [35], we
denote this vertex' as

Vet = gt | (0 R)un(p) | M

L our sign convention for the covariant derivative is D,, = 9,, —igA,,, which is the opposite to that of Refs. [29, 30].



FIG. 2: Left: Gluon splitting vertex into quark-antiquark pair, A';i ’Z,(q, z) Eq. (14). Right: Quark-antiquark annihilation

vertex into gluon Ai}afk(q, 2) Eq. (16).

Using the Dirac equation satisfied by the spinors, 3-momentum conservation p = p’ "+ k and some Dirac algebra (see
Appendix A for the details), the tensoral structure of matrix element in Eq. (1) can be decomposed to the symmetric
and antisymmetric parts as

; —9l5a 2\ sij At Z_o g i § i xj

Vveila(q ) = — 2P (1—7)(5”11/ U — =y t oy u ‘eY. 2

o' (@ 2) A 5 w )y un(p) = gy ()1 7 lun(p) | a'ey (2)

Here we have expressed the vertex in terms of the momentum fraction z = Et / p+7 0 < z <1 and the center-of-mass
transverse momentum q = k — zp. The first matrix element is simple

Uy (pl)'YJruh (p) = 2p" \/ﬁ(sh’h/. (3)

The antisymmetric matrix element ()7 7", 7 Jup, (p), on the other hand, can only be calculated simply in exactly

four dimensions by relating it to the helicity operator. For the loop computations we also encounter it in situations

where the indices 7, j have to be contracted with d | -dimensional Kronecker deltas arising from d | -dimensional tensorial

transverse momentum integrals. For performing the numerator algebra in these cases we introduce for it a more general

notation

vii = @)D YT () @)
h',h 2p+ 1 — 2 ’

In exactly d; = 2 transverse dimensions this simplifies (see Appendix A) to

ij . ij
Vh,’h dﬁﬂ —2ihd), e’ (5)

However, when the helicity sums (numerators of loop diagrams) are needed to order € we need to remember the full
definition (4). A similar procedure can be carried out for the gluon absorption vertex, for antiquarks and for quark-
antiquark pair creation and annihilation vertices. Let us simply collect the results here, in every case parametrizing
the longitudinal momentum with a splitting momentum fraction 0 < z < 1:

e Gluon emission from quark Fig. 1 (left), with momentum conservation p= p’ + K, z= k*/pT and q = k — zp:

—2gt5 g g o
B, _ ~ 1N g* _ 9lpa z Z N
Ve 3@ 2) = =95 |y (p )ﬁ(k)uh(l))} Y [(1 - 5) 698y 1, — ZV"ih q'ey, (6)
with
_ N A1 i g
i _ a,, (p)y [ v Jun(p) %S,
Vh',h - 2p+ 1—2 dﬁ)Z lhah ,he . (7)

e Gluon absorbtion by quark Fig. 1 (right), with momentum conservation = p’ + E, z=Fk"/p" and q = k — zp:

4 _ —2gtg z .. Ry .
Vin(a,2) = —gtas| @ (pm(muh«p’)} = [(1 = 3) 0+ V'S, (8)
with
. = +rt 7 ! 3
Vzg _ uh(p)’y ['Y s Y ]uh (p) N _2Z'h5h’h'6”. (9)

;) =
hh 2 V1= 2z d, -2
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e Gluon emission from antiquark with momentum 5, with momentum conservation § = p’ + k, z = Kkt /p+ and
q=k—zp:

FosBia a _ * 29t 2\ cij Z55ij i _xj
Vi) = otk | -m AR 0] = A (1= )%, + 2V Jae o)
with
- = it AT /
i _ o)y [ Ty (P)
Vi = i T, 2 € (11)

e Gluon absorption into antiquark, with momentum conservation p=p’ + E, 2=kt / p+ and q =k — zp:

Vﬁzﬁj‘h(q, 2) = —gthe —Eh/(p/)ﬁ/\(k)wh(p)] = zf/g% {(1 _ %) 598, — Zvjj}’h q'el. (12)
with
i _ 0 @)Y Jon(p)
Vin = VI d; 2ihd,,: he (13)

e Gluon with momentum § splitting into quark with momentum k and antiquark, Fig. 2, with momentum con-
servation f=7 +k, z=k" /p* and q = k — 2p:

—2gt% 1 . o

a;a, B - a |- n| af ij ij z ]

A/\ h/ (q7 Z) - _gtaﬁ uh(k)¢)\(p)vh/(p ):| - Z(l — Z) |:<Z - 5) 6 éh, n + 4Ah/ (14)
with

g i (K~ TV~ 100 (0 g
A = W oy @) —~2ihé, e, (15)

Rt 2t \/2(1 - 2) d,—2

e Quark with momentum k and antiquark annihilating to gluon with momentum p, Fig. 2, with momentum
conservation p=p’ +k, z = k+/p+ and q =k — zp:

—o,Ba a 4 29taa 1 1J 1— i _*
A5 5) = gtk |0 OB @) = 25| (5= ) a5, = A JaeR, o)

with

—ii O )T, Tun (k)

A = —
Bl 2w \/2(1 - 2) d,—2

—2ih6,: €. (17)

C. Evaluating helicity sums

The value of a diagram in the perturbative expansion of light cone wave functions is obtained by multiplying

the factors for the vertices, integrating over internal momenta in loops and summing over the helicities of internal

particles. Let us demonstrate how this procedure works in terms of the quark vertices introduced above with two

concrete examples that will be needed in the calculation of the virtual photon wave function.

First, let us look at a quark propagator correction diagram such as the one shown in Fig. 8. The loop part involves
the product of the gluon emission vertex (6) and the absorption of the same gluon (8), summed over the helicities of

the quark and gluon inside the loop

a3, a [3,{1,04
ZVM A2V 2). (18)
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The integrand in the transverse momentum integral is proportional to qiqj7.fchus the value of the dimensionally
regulated integral is proportional to a (d — 2)-dimensional Kronecker delta (52;). The vertices are proportional to

(d, — 2)-dimensional gluon polarization vectors, and summing over the helicity states of the gluon yields
k_l kl
> exel =6, (19)
A
We are then tasked with evaluating the expression

o, = 32 [(1-5) 80 9] [(1- 5) 0+ ] T 8

’

Now in principle, to correctly evaluate this for arbitrary dy > d > 4, we need to use the definitions (7) and (9) and
carefully perform the Dirac matrix algebra. This we will do in detail for the more complicated case of Eq. (26) below.
However, let us here evaluate the sum (20) with a simple, but less general trick that yields the same result.

In this case the most complicated structure appearing is the product of two antisymmetric tensors, not more. In
fact, in such a case we can formally express the antisymmetric vertex structure in terms of a “(d, — 2)-dimensional”

two-index Levi-Civita tensor 6@ ) In general such an object does of course not exist, but here it can be given an

explicit meaning in terms of perfectly well-defined (d, — 2)-dimensional Kronecker deltas using the Fierz identity

1] kl 1k il il ik
€h)€(d) = 0(d)00q.) — 0(a,)0(q.)- (21)

When there are more than two Levi-Civita tensors, there would be several inequivalent ways to get rid of them using
the Fierz identity. Thus the trick we are now describing cannot be used in these more complicated cases.

To now evaluate the helicity sum (20) we first use the fact that for massless quarks helicity is conserved at the
emission vertex and thus the sum over the intermediate quark helicity h’ is trivial. This gives, promoting the 4-
dimensional expressions for the antisymmetric tensors in Eqs. (7) and (9) into d,-dimensional ones,

mumy = [ (1= 2) 6" +inzel )| [(1-2) 0" —inzell )| 0ot (22)

We then get rid of the Levi-Civita-tensors using the Fierz identity (21) to get

z2\ 2 z\2
numy = (1-2) (@=2)+ (5) (@-2)(d, - 3), (23)
where one must remember that d, > d, i.e.
ijoosid g ij stj o _ g ij o gij g
00 = ds =2 da0ay =d =2, g0 =d=2 (24)

and that h? = 1 in our convention. This yields the correct result for both the FDH (taking d, = 4,d = 4 — 2¢) and
for the CDR schemes (taking d, = d = 4 — 2¢). The result (23) appears in perfectly conventional QCD calculations of
the ¢ — qg splitting function in dimensional regularization. One could speculate about a physical interpretation for
the two terms, independent of d, and proportional to d, — 3. The first one results from the part of the vertex that is
independent of helicity, and therefore does not depend on the number of helicity states. The second term comes from
the antisymmetric part of the vertex where the gluon and quark are constrained to have a different helicity, thus it is
proportional not to the total number of gluon helicities d, — 2, but to the number of helicities orthogonal to that of
the quark, namely d, — 3.

A more complicated example is provided by vertex correction diagrams, such as the one in Fig. 10. Here (with a
trivial simplification of the color structure of the gluon splitting vertex (14) to a virtual photon splitting), one has a
structure like

&,a; —a;6,a
Z Vhof,z;z(% Zl)A)\;h’,h”(ka Z2)Vh”;h”',g(Paz3)- (25)
nn o

Writing this out in terms of the decompositions (8), (14) and (10) of the vertices into symmetric and antisymmetric
parts, one encounters a product of three antisymmetic vertex factors. This structure is then multiplied with a (d, —2)-
dimensional Kronecker delta from the sum over the internal gluon helicity o, but also (d — 2)-dimensional ones from
the loop integrals. Now there would be three inequivalent ways to use the Fierz identity (21) to remove two of the



three Levi-Civita tensors, and thus we cannot get an unambigous result in the same way as above. Thus we need use
the definitions of the antisymmetric vertex factors, (9), (15) and (11).

In stead of working out the full expression here, let us concentrate on the most difficult part involving a product
of three ansisymmetric structures in the vertices. We take as an example one of the kind of terms that arise when
evaluating the structure (25), and calculate

nums” Z V” ,Ah hth” h'”5(d)5(d ) (26)
h 7h//

where we have already performed the sum over the helicity o, yielding a (d; — 2)-dimensional 5{;1‘), and taken one

particular term of the (d — 2)-dimensional tensor integral with indices ¢km. Writing this out in terms of the full
definitions of the antisymmetric vertex factors (9), (15) and (11) we have

3 @ (P 1 7 Ty (p2) @y (p2)7 " 10" 1 Ty (05) B (s )y 10 ™ 2 "o (Pa) ol 571 (27)

nums — _ )%(d,)"
n'n"’ 2\/P1 P2 24/p2 p3 2 P3 P4

In a massless theory helicity is conserved at the vertex, therefore we know that h = ' = —h” = —h"”. However, in
order to evaluate this expression we do not use this, but revert to the usual procedure from covariant perturbation
theory calculations and transform the sums over intermediate fermion helicities to Dirac matrices. Thus we substitute

> un(p)an(p) = p (28)
h

to write
_ +r.i 7 +r_k l +rm _n
u ’ ) ) Uy
= BP0 ]fQZ el j}fsv [Z j [0, (Pa) i ko (29)
2\/171 P2 2\/172 D3 2\/1173 P4
Now we note that ’y = 0 and ’y and v commute with [’yi,’yj ]. Thus the only nonzero contribution to the

matrix element comes from the terms where one takes from every p; the term p;" ~~ in order to kill the corresponding
’y+. Using ’y+77’y+ = 2’y+ it is easy to see that effectively every factor ]éﬂ+ is just replaced by 2pi+, canceling the
corresponding factor in the denominator. We are then left with

U + @ ] k ! 1"
puml = @@l I Ty, (p4)5(d)5g;) (30)

2¢/pi pt

Now remembering that the external momenta and polarization vectors are 2-dimensional, and d, > d > 4 at this
stage, it is a straightforward task to evaluate either manually or, most importantly, using a symbolic calculation
program:

B AN AT A 6y 8 = 8(d — 3)(d, — 4)6™ — 4(19 — 3d, — 6d + dd,)[r',7"]. (31)

Here we have identified terms of the type (3" [*yl, *ym/] with [y',~7™] and written both 5&2) and 5(3;71/5%5:/) simply as

sim knowing that both indices [ and m are to be contracted with external vectors. Using this result we can write the
result in terms of the symmetric and antisymmetric parts of the leading order vertex structure as

numy” = 4(d — 3)(d, — 4)6"™ — 4(19 — 3d, — 6d + dd,) A" (32)

Setting d = d, here one would obtain the CDR result. It is interesting to note that in the FDH scheme d, = 4
the symmetric 5™ term vanishes; this is an additional simplification that one gains at the expense of evaluating the
algebra in d, d, dimensions. As a consistency check we can go to the limit d = d, = 4:

numy” = —8ihd), _me™ = AA . (33)

d=d,—4

The same result can be obtained directly by taking the terms in (26) in d = d, = 4 dimensions

muml™ = [<2ihd, | | <2008 ] 200780 ™| 5O = ~8ihd, ™ = AT (34)
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FIG. 3: Left: Gluon splitting vertex Fiﬁf\%&(q, z) Eq. (35), where a,b, ¢ are the gluon colors and A;, Az, A3 gluon helicities.
Right: Gluon merging vertex Fbxi,ax\g;kl (a, z) Eq. (36).

Note that as a calculational operation, the introduction and subsequent removal of the p happens in the same way in
all combinations of emission vertices from fermions. In practice one can keep track of the terms of the calculation by
writing out the vertices in terms of the d = 4 notation involving 2-dimensional Levi-Civita tensors. Then, whenever
an ambiguity arises as to the meaning of products of the Levi-Civita-tensors, one replaces €’ by [v*,7’], orders
the vertices following the fermion line, performs contractions of the «-matrices with d- and d,-dimensional external
tensors, expresses the result in terms of [y*,+’] and 6" and identifies these in terms of the vertex structure of the
leading order diagram. This procedure greatly simplifies the appearence of a factorized form for the loop corrections,
which appear as multiplicative corrections to the corresponding leading order wave functions.

Note on [35]

Let us briefly note the difference between the formulation introduced here and the one used in our earlier work [35].
There we first calculated the (d — 2)-dimensional loop tensorial integrals, which result in a structure that contains
(d—2)-dimensional Kronecker deltas. These were then contracted with the (d, —2 = 2)-dimensional gluon polarization
vectors as 5%5& — €3. The error in this calculation comes when the resulting polarization vectors were then treated

again as (d, — 2)-dimensional ones in order to perform the polarization sums. In fact, contracting with a lower
dimensional Kronecker delta projects the polarization vector into a lower dimensional subspace; this was not taken
into account in the calculation of [35]. We have checked that with the correct treatment presented in this paper, the
power divergences in the longitudinal cutoff a, present in the final result of [35], cancel.

Let us finally point out an essential technical aspect that enables the correct way to calculate the polarization sums.
One has to write all 3-particle vertices in a form where the only dependence on the gluon polarization is in the linear
dependence on the polarization vector of each gluon, see e.g. Eq. (6) or Eq. (35). Then the expression for a given
diagram becomes quadratic in the internal gluon polarization vectors, and the polarization sum can be evaluated using
Eq. (19). The resulting (d, — 2)-dimensional Kronecker delta can then be correctly contracted with both (d, — 2)- and
(d—2)-dimensional objects. In contrast, writing the elementary vertex (1) in a form like §,, (6xn+ (1 =2)0y 1) exa
as in Ref. [35], while correct, has an additional dependence on the polarization A. This results in expressions where
summing over the internal polarizations correctly is difficult.

D. Other vertices

In addition, we also have two different type of LC elementary vertices with 3-gluon self interaction: The elementary
vertex for 1 — 2 gluon splitting shown in Fig. 3 is given by

E*jE:*kel e*je*kel
asb,c _ . pabe | TApEA3EA Az T A5 A 7 xk _xl ij okl i
L\, (@5 2) = —2igf { T —€),Ex,E0, (0707 q". (35)
Similarly, the 2 — 1 gluon merging vertex is given by
Elj €k E*l E:j Ek E*l
b,c;a o . pabe | SAEA3EA Az S A5 A xj k1 ij okl i
Lo, (@, 2) = +2igf { = . — ey exEN[0707q". (36)

As we will discuss in more detail below, the instantaneous interaction diagrams contribute to the one-loop wave
functions and to the 3-particle final states. We will not present here the full set of instantaneous vertices (see [4]) but
merely the ones needed here, and for the combinations of helicities needed for our calculation. Similarly as above,



k' h, & P h,a

k", ~h,pB P, —hp

FIG. 4: Time ordered (momenta flows from left to right) instantaneous vertex contributing to the gg-component of the
longitudinal virtual photon wave function at NLO.

q, A

FIG. 5: Time ordered (momenta flows from left to right) instantaneous diagram contributing to the ggg-component of the
transverse virtual photon wave function at NLO.

one can easily derive more general expressions as discussed above, here we present only the ones in d, = 4 dimensions
that are needed for our present calculation.
The instantaneous gluon exchange diagram Fig. 4 is given by the following matrix element

W = g’ Lt {ﬂh(p)fuh(k')}

W [@-h(k")fv_h(p')} (37)

which simplifies in d, to

34 —

/p+p/+k/+ k//+
(38)

2,0 ,a
—4g9 taatpp (k/+ — p+)2 )
where the momenta are labeled as in Fig. 4.
The matrix element for v — ggg via the exchange of an instantaneous quark, diagram Fig. 5, is given by

+

B (D) (@) £ (k) () (39)

—eesgtas 4
(P +E")

(5)
J 2

which, in dy = 4, can be expressed in the helicity basis as

[+ 0+
p'p - - o
[6” - ihe”}efe&. (40)

506) _
(P +E")

—eesgtags

Similarly, the matrix element for the other instantaneous quark v — ¢gg diagram Fig. (6) is given by
. +eergtas . o ,
30 = T Tl g k) ————#\ (v n (D), 41
2 n(P)Eo( )(p+ n k+)¢,\(q) n(P) (41)

which in the helicity basis and d, = 4 reduces to

7® = +eepgtas

+, 1+
\Vp'p . 1 i
L {5” + ihe”] exiel. (42)

(" +k")
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FIG. 6: Time ordered (momenta flows from left to right) instantaneous diagram contributing to the ggg-component of the
transverse virtual photon wave function at NLO.

III. CALCULATING THE DIS CROSS SECTION FROM LIGHT CONE WAVE FUNCTIONS

We consider a setup where a relativistic projectile moving in the light-cone 21 direction scatters on a very dense
and highly boosted target moving in the light-cone 2~ direction. At high energy the target consists of a gluon field,
and the scattering can be evaluated using the eikonal approximation in terms of Wilson lines in this field [2, 41]. The
total cross section for a virtual photon scattering from a classical gluon field can be obtained by the optical theorem
as twice the forward inelastic scattering amplitude. With the appropriate normalization [2] this results in:

. 2
o’ [A] =
20" (2m)8(¢" — ¢

+)Re [iw*(iﬂczz,xnl =Sl (d, QQ,A»i} (43)

The full perturbative Fock state decomposition for the virtual photon in the momentum space with momentum ¢,
virtuality @, and helicity A is given by

V(7 Q% ) = Zf<q+>{|w<w>>b+ / dpdp' (27)°6®) (7 — 5 — 7)o" 7Y q(F, h, 2)q(F', 1, B))
(44)

+/a‘éa‘ﬁ/a‘l’€(2w)35(3)((j_ﬁ_ﬁ/_E),Lz)w*—»q@m(p’h a)g (ﬁ/ h,/@) (k:,J,a)>+-~-:|,

where |7 (q, Q% A)); is the physical one particle state in the interaction picture and |y(q, A))y, the corresponding free
bare state. Note that the free bare states are defined by creation operators, depending only on the spatial momentum
q, operating on the vacuum. Thus the bare state |y(q, \))}, is independent of Q2 and on shell, as are all LCPT free
states. The full interacting theory state |y (g, Q3 A))i, on the other hand, “knows” that it has a virtuality —Q?. This
is reflected in the wave functions )7 % etc. via the energy denominators that depend on the light cone energy of
the initial state®. We have ignored electromagnetic contributions (i.e. ¥ — £ and v* — ££v, etc) since we are only
interested in the order O(w, . o) NLO correction to the order O(ay 1, ) leading order cross section. The Fock states
are defined as

la(B, h, )G, 1, B)) = b' (5, h, e)d' (57, 1, B)[0)
\q(F, b, )q(@", 1, B)g(K, ,a)) = bl (5, h,)d" (7', 1, B)a’ (K, o,a)|0) (45)

where the operators b' (d) create quark ¢ (anti-quark g) with momentum 7 (5”) and helicity  (h’) and the fundamental
color index a (B), and similarly a' create gluon ¢ with momentum k: helicity ¢ and adjoint color index a. The
normalization of the operators b, d and a is chosen such that commutation and anti-commutation rules in momentum
space satisfy

{b(@,h, 0),01(d. 5, B)} = {d(7 b, ), d"(@ 5, 8)} = 20" 2m)*0™ (7= D)0, 00 (46)
[a(k, 0 0),a" (7. 5,b)] = 2k" (2m)*6® (K — 0)3,,40,,p-
The renormalization constant . /2.~ can be determined from the normalization requirement
e (@, Q% N (@ Q% W) )i = 247 (21)°87 (7" — Dy . (47)

2 We thank G. Beuf for pointing this out to us.
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However, since all the corrections to the photon wave function are proportional to the electromagnetic coupling,
Z =1+ O(ag.)- Thus working at lowest order in « ,, we can drop the photon wave function renormalization.

The Fock state representation in momentum space (k+, k) is switched to the mixed space representation (k+, x) by
the transverse Fourier transform of all the creation operators present in the state, with

a'(k,0,a) :/eik'xaT(k+,x,a,a)

bT (ﬁa h, a) = / eip-be (p+: x, h, Oé) (48)

X

d' (7, hy ) = / Pl (ot x, b a),

X

/ = / d’x. (49)
The mixed space operators satisfy

(b(p",x,h,a),b (¢, y,5,8)} = {dpT,x,h,a),d (¢",y,5,8)} = 20T 2m)6(p" — ¢T)0P (x — )84 4005
la(k*,x,0,a),a'(¢",y,5,b)] = 2k* (2m)6 (k™ — ¢7)6® (x — ¥)35 40, 4-

where

(50)

Since the high energy scattering of the projectile partons off the gluon target is eikonal, the scattering operator S B
acts on Fock states by only color rotating each partons by a Wilson line defined along the partons trajectory through
the target:

Seb' (0" x, h,a)d (0, y, 1, 8)|0) = Y [UIA(0)]aaUT[AI(9)] 55 (07 %, o @)d (0, y, B, B)I0)  (51)
a,fB
and
S"Eb]L (p+7 X, h7 a)dT (pl+7 Y, hlv /B)GT(k+v z,0, a)|0> = Z [U[A] (X)]@a [UT[A} (Y)]/BB [V[A] (Z)}ba
a,B,b (52)

x b (p*,x,h,a)d (p' "y, W, B)a’ (kT ,2,0,0)[0),

where the fundamental and adjoint Wilson line are respectively defined as the path ordered exponential for a classical
gluon target A:

U[A)(x) = Pexp [zg/ dz Tt A, (=T, 0, X):| 5
53
V]A](x) = Pexp [zg/ de T A, (7, O,x)} .

Applying Eq. (48), we can define the amplitudes corresponding to the gg-component and ¢gg-component of the
Fock state decomposition in the mixed space:

V(6" Q% N)eg = PSG) / O (ot x, by a)a(p Ly, 1L B)) (54)
Xy

(@, Q%N gy = 7’5?&)/ 7 7 g(pt %, hya)a(p' v, W B)g (kT 2, 0,a)), (55)

y
where the two and three particle longitudinal phase space factors ’PS?'Q) and PSES), respectively, are defined as

o dp+ o dp/+ ,
PSSy = / / om)o(qt —pT —p't
(2) ) 2p+(27'r) o 2p/+(27'r)( m)d(q p p)

[} dp+ o dp”r o dk+ ,
PS :/ / / o2m)8(qt —pt —p' T — k).
@7 o 2wten) Jo 272 o 2k+(27r)( molaT —p" = )
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ﬁ/7h/7ﬁ

FIG. 7: Time ordered (momenta flows from left to right) diagram contributing to the gg-component of the transverse and
longitudinal virtual photon wave function at leading order with energy denominators and kinematics. Momentum conservation:
7= p+p’. The longitudinal momentum fractions for quark and anti-quark are parametrized as p+ = qur and p/Jr =(1- z)q+.

The mixed space wave functions ¢ are transverse Fourier transforms of the LCWEF’s:

~* g d2 d2 ! * G ip-x _ip -
5 (xop "y ") =/ L / Lm0 (@—p—p)" 7 (pp" 0 ) PP (57)

(2m)* J (2m)?
and
~ % _ d2 d2 / d2k
1/}7 a9 (Xap+7Y7p/+7Z7k+) = / (27_[_1))2 / (27:;2 / (27{_)2 (271-)25(2)((] —P—- pl - k)

wv*—ﬂzég (p7p+7 plap/+7 k7 k'+) eip~x6ip/~y€ik~z' (58)
Using the shorthand notation for the different Fock state components the virtual photon state (44) is

(g™ Q%N = (@, M) + 17 (a7 Q% A gg + IV (@ Q% N ) g + - - (59)

with the two last terms on the right-hand side given in mixed space by Eqgs. (54) and (55). In this decomposition the
photon cross section at NLO accuracy can be written as

. 2 .
U.y Al = Ak lJr7 2’)\l 1-§ * +’ 27)\ .
)= S Ll @ @Vl = Sy (6. @7 ) "

+ q(jg<’y*(q/+7 Q27 )‘,)Il - SElry* (q+7 Q27 >\)>q§9}'

Here the gg-component contains the leading order (LO) contribution and the NLO contribution coming from the
the one-loop virtual diagrams, and the ggg-component contains the NLO contribution coming from the radiative
correction diagrams.

We shall now set out to calculate the wave function ¥” 97 to one- loop accuracy and ¥ ~%% at tree level, and
using these results return to the cross section (60) in Sec. VIL.

IV. LEADING ORDER WAVE FUNCTION

The leading order v* — ¢q wave functions shown in Fig. 7 are well known, but we will briefly write them down
here to set the normalization in our conventions. Following the diagrammatic rules listed in [35] the light cone wave
function contributing to the transverse or longitudinal virtual photon splitting into a quark anti-quark dipole is given
by

:E . _ —ee 504 -
ﬁo/ 9 _ "7 |:uh(p)¢>\7T/L(q)Uh, (pl)]’ "

where the LC energy denominator can be cast in the following form
- - - - Q? p2 p?
Ag = — —+ / = | — 4+ —
01 q (p p ) 2q+ 2p+ 2p/+

“Ea
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1 A2 . . .
with Q" = z(1— Z)QQ. Note that we are working in a frame where the transverse momentum of the photon is zero and
! .
thus p = —p’'; otherwise the transverse momentum argument p would be replaced by the center of mass momentum

P —2q.
A. Transversely polarized virtual photon
In the q = 0 frame the polarization vector for a transversely polarized virtual photon in the LC gauge is given by

q-€
E&L,T(q) = (07 qT)\aE:)\) = (0707 €>\)' (63)

Using Eq. (63) the light cone wave function for the transversely polarized virtual photon in Eq. (61) can be expressed
in the explicit helicity basis as

. 50
PrET Y (p, 2) = A—(;Ath,h,(p, z) (64)
with A;”_?h , defined as for the gluon vertex in (14):
* —2ee 1 . 1 .. o
f 7 % i
A;Y\F;Fh,h’(pv Z) = m [(Z - 5) 0 ]5h77h’ + Z'Ahj,h' p 6&. (65)

Here we have kept the helicity notation as general as possible. However, for a massless quarks the helicity is conserved
in the light cone vertices. This implies that for the vygg-vertex h = —h'.

B. Longitudinally polarized virtual photon

Strictly speaking there is no such thing as a longitudinal photon in the spectrum of physical states in the theory.
In stead, a longitudinal photon in DIS is a part of an instantaneous interaction vertex with the lepton. However, for
calculational purposes we will here leave out the lepton and simply define a longitudinal virtual photon polarization
vector, treating the longitudinal photon analogously to the transverse one. The polarization vector for a longitudinally
polarized virtual photon in the LC gauge can be expressed as

2 2
P B A S S S A (66)
q 1/QQ_q2 q

Thus the light cone wave function for the longitudinally polarized virtual photon in Eq. (61) can be cast in the
following form

.« S0 .
Uil "(@2) = T AT, (Q.2), (67)

where

Ath,h/(Q’z) = —eefqg+ [ﬂ,L(p)'y+vh/ (p')] = —2eefq%\/p+p/+6h7_hr = —2ee;Q\/2(1 = 2)8;, - (68)

V. VIRTUAL PHOTON LCWEF’S
A. Quark self-energy diagrams

The quark self energy diagrams are explicitly proportional to the leading order v* — ¢ vertex, so one does not need
to calculate them separately for the different virtual photon polarizations. There are two diagrams that contribute,
the ones shown in Figs. 8 and 9.
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FIG. 8: Quark self-energy diagram (a) contributing to the gg-component of the transverse virtual photon wave function at NLO
with energy denominators and kinematics. Momentum conservation: §= g+75", p’' = B +kand k' +k= p. The longitudinal
momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p’+ =(1- z)q+. The momentum fraction
of the virtual photon splitting into a ¢g dipole is p+/q+ = z and the natural momentum is p — zq = p (note q = 0). The

momentum fraction of the gluon emission and absorption is k+/p+ = z’/z, and the natural momentum in the gluon loop is
m =k — (2'/2)p.

FIG. 9: Antiquark self-energy diagram (b) contributing to the gg-component of the transverse virtual photon wave function
at NLO with energy denominators and kinematics. Momentum conservation: ¢ = p+p', 5 = ' +kand k' +k = 7.
The longitudinal momentum fractions for quark and anti-quark are parametrized as p+ = Zq+ and p/+ =(1- z)q+. The
momentum fraction of the virtual photon splitting vertex is p+/qJr = z and the natural momentum p — zq = p (note q = 0).
The momentum fraction of the gluon emission and absorption is kT / p“r =2 /(1 — z), and the natural momentum in the gluon
loop is m =k — (2 /(1 — 2))p.

The LCWF for quark self-energy diagram (a) shown in Fig. 8 is given by

* _ e B _ N N _ - N N 1
Yot = / dkdE'dp” (2m) 16V (" — k' — k)(2m)? eV + & - P (69)
01202203 (a)
where the Lorentz invariant measure in d dimensions is defined as dk = %, and the numerator for the
transversersally polarized virtual photon becomes
o S e (m, 2 [2) V70 (m, 2 [ 2) AT, (P, 2)- (70)

Correspondingly, the numerator for longitudinally polarized virtual photon in Eq. (69) is obtained by the trivial
replacement

AKTh,,h(p,Z) - Al?h,,h(Q,Z) (71)

In Eq. (70) the vertex for the virtual photon splitting into a ¢¢ dipole is given in Eq. (65) or Eq. (68) depending
on the polarization and the gluon emission and absorption vertices Vh[f}g’a(m, 2'/z) and V% (m, 2’ /) are given by
Egs. (6) and (8). The LC energy denominators in Eq. (69) are

- - _ 1 2 -2
Agp = Ags —(72q+)z(1 s [P +@Q } (72)

and

z

Doz = ——F 77—
2 (—2N) (2 -2

2 (a) . (a) _ Z/(Z - Z/) 2 | A2
[m v M } with M _m(p +Q°). (73)
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The phase space measure simplifies to

~—, ~— N 5 . 1 dz/ dd72
dkdk dp(2m)? 16V (E — p+ B)2em) T -k - k) = / / 74
/ p( 7T) ( p )( 7T) (p ) 167T(q+)2 ZZ/(Z—Z/) (QW)d,Q ( )

where kT > 0 and &7 > 0, so that 0 < 2’ < 2.

Performing the helicity sums as described in Sec. IT1 C, and integrating over the loop transverse momentum (with di-
mensionally regularized integrals given in Appendix B) and the longitudinal momentum, regulating the soft divergence
with o < 2’ < z, we obtain

2
0 = 7w, (58 ) {2 4 2108 (2) | €10y~ 10 (2) = = 3} 4 000 (75)
8 2 z 3
where
1 2 2, A2
Clq) = — +log Ly log % + log(1 — 2), (76)
Vi) Q Q
with eyg = 1/€ — g + In(47). Similarly for the longitudinally polarized virtual photon,
2
LT _ L ad 9-Cr 102 (& T
W9 = (Q,z)(SWQ){{Q—&-QIOg( )}CW og® (£) - % +3}+(’)(5). (77)

The LCWF for diagram (b) shown in Fig. 9 can be now easily obtained by using the symmetry between the diagrams
(a) and (b) (i.e. by making the substitution z +»+ 1 — z and p — —p simultaneously) as

. . ‘o ’
,[ZJ’(YI;I; 97 _ QZJ'YT qq( z) <987T2F) { {2 + 2log <1 @ ﬂ C(b) - log <&> - % + 3} (78)
U = 0l @) | ) 12 100 (2 Yoy —tog? (0 ) - T 45 (79)

(b) ’ 87T 2 g ]_ (®) g 1—z 3

1 p p’+Q
(b) EMS 08 <Q2> 0g ( @2 ) 0g(2) (80)

and

with

B. Transverse photons

Next we calculate the LCWFs for diagrams (c¢) and (d) shown in Figs. 10 and 11. Since there is a lot of symmetry
between these it makes sense to present the result for the sum of the two.
For diagram (c), with kinematical variables as in Fig. 10, the LCWF can be cast in the following form

MTW / dkdk'dk” (2m) 16V (K — g+ k) (em) sV — k= 5
a,a;a z ’ NTFYB.a 2 (81)
Va,h';h( ’ ?)A’)Y\TI "n" (k 12T Z )Vh/l§*h;<7(h’ (17z+z'))
A1 Ag2Ags ’

where the gluon emission and absorption vertices are given by Eqgs. (8) and (10) and the photon vertex by Eq. (65).
The phase space measure simplifies to

R . . - 1 : 4z’ A" ?m

dkdk'dk” (2m) 4t Yk — g+ B 2m) YR — k) = / /
/ (27) ('~ 5+ B ( )= o b e ) e
(82)
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FIG. 10: Vertex diagram (c) contributing to the gg-component of the transverse virtual photon wave function at NLO with
energy denominators and kinematics. Momentum conservation: § = E+k" = P+, k= p— Fand k" =k + p’. The
longitudinal momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p/+ =(1- z)q'*—7 and for the
gluon in the loop k™ = 2'¢" with £'" = (z — z')q+ and k' = 1-z+ z')q+. The longitudinal momentum fraction of the
virtual photon splitting into a ¢g dipole is k/+/q+ = z — 2’ and the natural momentum is k’. The momentum fraction of the
gluon emission is k™ /"t = 2'/(1 — 2+ 2") and gluon absorption k¥ /p™ = 2’/z. The natural momentum for the gluon emission
ish=k—(z/(1 -2+ 2"))k” and for the gluon absorption m =k — (z'/2)p. In order to use m as the integration variable we
need to know that k' = —m + ((z — 2')/2)p and h = (1 — 2)/(1 — z + 2'))(m + (2’ /(2(1 — 2))p).

|
o ! D, h, o
k/,h/,@ p

' ];”7 h,l, ‘d
0 1 2 3

FIG. 11: Diagram (d) contributing to the gg-component of the transverse virtual photon wave function at NLO with energy
denominators and kinematics. Momentum conservation: ¢ = E +k" 7+, k' =k + p and k"= 7 - k. The longitudinal
momentum fractions for quark and anti-quark are parametrized as p* = zq+ and ;o”r =(1- z)q+, and for the gluon in
the loop kT = 2/¢" with K" = (2 + 2')¢" and K" = (1 — z — 2')¢". The longitudinal momentum fraction of the virtual
photon splitting into a ¢g dipole is KT / q+ = z+ 2z’ and the natural momentum is k’. The momentum fraction of the gluon
emission is kT /k'" = 2'/(z 4+ 2') and gluon absorption kt /p't = 2’/(1 — z). The natural momentum for the gluon emission is
h =k — (2'/(z + 2))k” and for the gluon absorption m =k + (z'/(1 — 2z))p. In order to use m as the integration variable we
need to know that k' =m + (1 —z—2')/(1 — 2z))p and h = (z/(z + 2'))(m — (2’ /(2(1 — 2))p).

+

The LC energy denominators are given by

Bor = oG zl’)(1 a4 Km - (ZzZl)p> ’ MQ(C)]

(83)
_ z 2 (c)
Ap=——"FT—"—"F"/m"+M
P2 (- { : }
and
ISR S A3 o
TR
where the coefficients Ml(C> and MQ(C) are given by
/ ! ! /
(o) z(z—z)<2 fz) o (=2)1—-2z4+2)=2
M"Y = 5= + and M, = . 85
! 21— 2) P e 2 z2(1-2) @ (85)
For diagram (d), with kinematical variables as in Fig. 11, the LCWF is
w(w(;’;)—mq _ /azjd“];/aén(%)dqé(dﬂ)(%/ B e L L
i, PR Taais 2 (86)
V;;S,Z(h, z+z/ )Az;Th’,h”(k/, z + Z’)th?a;_h(m, (1—z))

>< p— — —
Ap1AgaAgs
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FIG. 12: Instantaneous diagrams for the gg-component of the virtual photon wave function at NLO, yielding zero in dimensional
regularization.

The phase space measure simplifies to

—— - - - - 1 14 dz’ d?m
dkdk'dk” (2m) 6D (K — p—B)en) T S IR — 5+ F) = 7/ /
/ N E g Bm T E R = s [ et [ O
(87)
and the LC energy denominators are given by
2
_ 1 (14~ z 92y ) (,1)}
Ay = m+-—" " p| +M°
o1 (=2¢D)(z4+ 21— 2—2) {( 1z, P 2 (88)
_ 1—2 2 (d):|
Agy = m”+ M
P ()2 -2 { Y
and
A —— Lo { 2+©2} (89)
®T Cei-0) P ’
where the coefficients Ml(d) and M2(d> are given by
!/ ! ! !
@ Z2(Q—z—2)7 9 —2 @ (+2)1—-—z—2)x2
MY = —— d My"” = .
O (@) EIEE o

Now one first performs the transverse momentum integrals using the results in Appendix B, then performs the
numerator helicity sums as described in Sec. IIC and finally integrates over the longitudinal momentum fraction
regulating the soft divergences by a cutoff . The result for the sum of the diagrams (c) and (d) simlifies to

2
* g * vqq 9,.Ck 3 e} e} T T
7/’?:):(?1% — 75 (p, ) ( gﬂz ) { {—5 —log (;) — log (—1 — z)} Cioyr@ +7T } + O(e), (91)
where the coefficients C' and I' are given by
1 2 2 _'_*2 2 _'_*2
Clyria = = +1og ( 27 ) + (252 ) 10g (1L (92
NS Q p Q
and
21 27°
rf=_2 427 §10g(1 —z) — §1og(z) + 4log(1 — z)log(z) + log” (2) + log? _*
6 6 2 2 z 1-=2 93)

— 2log(1 — z)log(a) — 2log(z) log(a) — Li, (-%) — Li, <— ! - Z) .

The sum of two dilogarithm functions above can be simplified by applying the identity

2
1 T 1
Liy (—z) + Liy (== | = —— — Zlog*(z), x> 0. (94)
T 6 2
In principle one also has to compute the instantaneous vertex correction diagrams shown in Fig. 12. These however
vanish in dimensional regularization. This is easiest to see by taking as the integration variable the natural momentum
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FIG. 13: Vertex diagram (e) contributing to the gg-component of the longitudinal virtual photon wave function. Momentum
conservation: ¢ = E+ k" = 7+ 5, = p— Eand £” = k + 7', The longitudinal momentum fractions for quark and
anti-quark are parametrized as pt = z¢ and p’* = (1 — 2)¢™, and for the gluon in the loop kT = 2'¢" with k'™ = (2 — 2')¢"
and k""" = (1 —z—i—z')qf The longitudinal momentum fraction of the virtual photon splitting into a ¢g dipole is k:/+/q+ =z—z.
The momentum fraction of the gluon emission is k™ /k”+ = 2’ /(1 — z + 2’) and gluon absorption k*/pt = 2’/z. The natural
momentum for the gluon emission is h = k — (2'/(1 — z + 2"))k” and for the gluon absorption m = k — (z'/z)p. In order to
use m as the integration variable we need to know that h = ((1 — 2)/(1 — z + 2'))(m + ('/(2(1 — 2))p).

of the only non-instantantaneous vertex in the diagram, in which case this vertex and consequently the whole transvere
momentum integrand are linear in the integration variable [35].

Adding the one-loop quark self-energy corrections in Eqs. (75) and (78) together with Eq. (91), we get expression
for the full one-loop corrected LCWF for v — ¢G computed in the FDH scheme

2 2
. . 20, 3 1
G| =l ) [ F { {’ +log () 4 Log <L)}Cf(5l) Fale ( : > 5
FDH S 2 z 1—2z 2 1—2 6
(95)
5
+ f} + O(e),
2
where
—=2 2 2 —=2
1 ? -
Cgl):——klog ﬁ—Q + @ 2p log pi—2Q . (96)
NS Q P Q
For comparison the full result computed in the CDR scheme [29] and [34] is
Y1 —qq Y1 —qd 97 Cr 3 @ @ m 1, 2 Z m
¥NLO =¢ro (P 2) 2 5 T 1log (*) +1og | ——— ) |Crai + 5 log e
CDR 87 2 z 1—=z 2 1—z 6
(97)
5 1
+ 5 + 5} + 0(6),
where the additional factor 1/2 is scheme dependent part of the CDR scheme calculation.
C. Longitudinal photons
For diagram (e), with kinematical variables as in Fig. 13, the LCWF can be cast in the following form
¢(~gaqq _ /&&xglgu(%)m%(dq)(kw O (L e
a,a;a 2 T, NV 2 (98)
Vg’h,;h(m7 ?)AA,Lh’,h” (Q,z— =z )th;_h’g( , 17”2,)
TAVSPAVS YAV 7

where the gluon emission and absorption vertices are given by Eqs. (8), (10) and the longitudinal photon splitting
vertex by (68). The LC energy denominators are the same as in Eq. (83) for diagram (c), as is the phase space
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FIG. 14: Vertex correction diagram (f) contributing to the gg-component of the longitudinal virtual photon wave function at
NLO with energy denominators and kinematics. Momentum conservation: § = E+k" = 7+p’, E' = E—l—ﬁand E" = ﬁ’—E.The
longitudinal momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p/+ =(1- z)q'*—7 and for the
gluon in the loop k1 = 2'¢" with k't = (z—l—z')q+ and k't = (1-= —z')qf The longitudinal momentum fraction of the virtual
photon splitting into a ¢ dipole is k' /¢™ = z + 2. The momentum fraction of the gluon emission is k*/k'" = 2'/(z + 2)
and gluon absorption kT /p'" = 2’/(1 — 2). The natural momentum for the gluon emission is h = k — (2’/(z + 2'))k’ and
for the gluon absorption m = k + (2'/(1 — 2))p. In order to use m as the integration variable we need to know that

K =m+ ((1-2z-2)/(1-2)pand h = (z/(z +2))(m — (='/(z(1 — 2))p).

measure (82). Adding everything together and summing over the colors we get

w(wT)—»qq dﬂL—qu(Q 2) (92CF) /2 d'(z =21 -2+ 2) / d*’m m (m + Z(ffz)p)
e ) T 2 d—2 . s 2 ¢
0 () (2) {m2+M1< )} {(m_ =) >]

)

(e)

x num(z, z')

(99)

with the mass scales M\“ and M{” from Eq. (85). Beause of the simple structure of the longitudinal photon splitting
vertex, we can directly evaluate the numerator of (99) in d, dimensions in terms of Levi-Civita tensors:

! 1 2 1 2 ,
_ 77 iJ nm nm jm
[0 ) () =)o () o

For diagram (f), with kinematical variables as in Fig. 14, the LCWF is

num(z, z')

w(”;ﬁqq / dkdk'dk” (2m) 1 — p— k) (2m) T sk — 5+ k)
a;ana a,aﬁ S (101)
% V O'h( 7Z+Z )A’)\yh h//(Q,Z+Z)V g,—h(m? l—z)
A01A02A03 7

where the phase space measure is the same as in Eq. (87) for diagram (d), as are the energy denominators in Eq. (88).
Putting everything together and summing over the colors gives

it _ sy o (=9°Ce ) [ A2+ —2—2) [ d*Pm m' (m — <i0)
d}(f) =g (@, 2) y 7 N2 d—2
0 (=) (2m) {m2 M@ {(m +Mp) Mzgcw]

x num(z, z')
()
(102)

with M l(d) and Mz(d> from Eq. (90). Again we can directly use the d,-dimensional expression for the numerator

/ / / ’
— _ o 7] Z ¥ 1 ? nm 1 z nm jm
o= L0 mr) oo (7)) | () o oo ()

(103)

num(z, 2')
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FIG. 15: Instantaneous gluon diagram (g) contributing to the gg-component of the longitudinal virtual photon wave function

at NLO with energy denominators and kinematics. Momentum conservation: ¢ = k' +k” and 7= p+p'. The longitudinal
momentum fractions for quark and anti-quark are parametrized as p+ = zq+ and p’+ =(1- z)q+7 and kT = z’q+ and

't = (1 —2")g". The longitudinal momentum fraction of the virtual photon splitting into a ¢g dipole is k/+/q+ =z

For the longitudinal photon there is only one instantaneous diagram, (g) shown in Fig. 15, contributing to the
1. = q@ LCWF at one-loop level. It is given by

(75>—>qq _ /37{/&%//(2@(1—15((1—1)(@_ i

Algh,gh(Q, Zl)3(4)

k") Ag A
01402

, (104)

where the instantaneous vertex 3 is given by Eq. (37). The phase space measure simplifies to

e - dk'" 4%k 1 Y P 4K
Ak dk” (2m) e (g -k — K :/ / = / / 105
/ (2m) (@ ) 2k"* (2n) (27r)d72 26" 8mqt Jo ZF(1-2) (27r)d*2 (105)

and the LC energy denominators are

Ay : {k'Q + M] i = 20 )g?
01= T W1 =
—2 1-— z(1—2z
(=2¢")7'(1-2) 2 (1=2) (106)
R B )
(—2¢")z(1-2)
The instantaneous vertex 3% simplifies to
PRV 2)2' (1 -2
W = —4g®tl (107)

(2 — z)2

Now adding the results from diagrams (e), (f) and (g) together, we get for the full vertex correction

N B . B 2 2
T = Q) (ij) {5 o <g>} (=5 1o (%) ~1ox (1)) + 1"} + 00) (108)

ENiS

where the coefficient T has the same expression as in Eq. (93). Finally, adding the one-loop quark self energy
corrections Egs. (77) and (79) to (108) we get the full expression for one-loop corrected LCWF for 41, — ¢@ in the

FDH scheme
1, —4qq YL —qq 9:Cr 3 @ - w L. 2 o m?
UNLO =i Q%) 3 5 log (*) +log | —— || Crun + 5 log e
FDH 8 z 1—=z 2 1—=2 6
(109)
5
+5}+ 00,
2
where

1 2 2, A2
Ciil = — +log | £5 | —210g P~ LQ . (110)
eMs Q Q

M
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0 1 2
FIG. 16: Diagram (h) contributing to the ggg-component of the longitudinal virtual photon wave function at NLO with
energy denominators and kinematics. Momentum conservation: § = k' +p’, k' = p+k and § = p+ 7 + k. Momentum
fractions are defined by p+ = z1q+, kT = z2q+, pH— = z3q+ and k¥ = (z1 + 22)q+. The momentum fraction of the transverse
virtual photon splitting into a quark anti-quark dipole is &'* / ¢" = 2 + 25, and the natural momentum is k' = —p’. The

momentum fraction of the gluon emission is k¥ /'t = 2,/(2; + 2,), and the natural momenta for the gluon emission vertex
ism =k — (20/(21 + 22))k’ = k + (25/(21 + 25))p’. Note that the momentum fractions are related to each other via relation
21+ 29 + 23 = 1.

FIG. 17: Diagram (i) contributing to the ggg-component of the longitudinal virtual photon wave function at NLO with
energy denominators and kinematics. Momentum conservation: ¢ = p+ E', k' =k+ p and §=p+p + k. Momentum
fractions are defined by p™ = z1¢7, kT = z2¢", p'T = 23¢T and KT = (20 + Z3)q+. The natural momentum fraction of
the transverse virtual photon splitting into a quark anti-quark dipole is p* / ¢" = 2, and the momentum fraction is p. The
momentum fraction of the gluon emission is k™ / KT = 2 /(22 + 23), and the natural momenta for the gluon emission vertex
is 1=k — (22/(22 + 23))k" = k + (25/(22 + 23))p. Note that the momentum fractions are related to each other via relation
21+ 20 +23=1.

Again for comparison the full result computed in CDR scheme [29] and [34] is

2 2
L—4d _ r—ad 9-Cr 3 «a «@ w L, 2f 2 o
Unio”| T Yo (Q’Z)<87r2 ){[2+log(z)+10g<1—z)}cfu“+2log 1-2) 6

5 1
+§+§}+O(€),

(111)

where the only difference is the term 1/2, which was identified as a scheme dependent part in the CDR calculation.

VI. WAVE FUNCTIONS FOR GLUON EMISSION

‘We then move to the wave functions for quark-antiquark-gluon contributions, needed for real emission contributions
to the cross section. Here all the vertices can be, in the FDH scheme, evaluated directly in d, = 4 dimensions.

A. Transverse photon

For transverse photons, we need to calculate the diagrams (h)-(k) shown in Figs. 16, 17, 18 and 19. The LCWF for
diagram (h) in Fig. 16 can be written as

AT (K 2+ 2) Vit (m, 20/ (21 + 22))
AgiApy

PIEI99 /&'(2@(1—15“—1)(1‘5' —p—k) (112)

(h)
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FIG. 18: Diagram (j) contributing to the ggg-component of the transverse virtual photon wave function at NLO with energy
denominators and kinematics. Momentum conservation: § = 5+ k + p’. Momentum fractions are defined by p+ = zqur7
kT = ,2'2qJr and p/+ = z3q+.
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FIG. 19: Diagram (k) contributing to the ggg-component of the transverse virtual photon wave function at NLO with energy
denominators and kinematics. Momentum conservation: § = § + k + p’. Momentum fractions are defined by p+ = z1q+7
kKt = z2qJr and p/+ = z3q+.

where the vertex Azz}hﬁh(k/,zl + z5) for a transverse photon splitting into a quark antiquark dipole is defined in
Eq. (65) and the gluon emission vertex V}fi‘,’la(m, 2o/(#1 + 27)) from a quark is given by Eq. (6). The phase space
measure simplifies to

—~ \ - 1
k' @) (R —p - k) = ————— 113
J e N F R = (113)

and the LC energy denominators are given by

_ 1 2 =2
Apg = [P +Qn ]
A 21+ 2 2 12, =2
A02:7{110 T we (P +Qh):|a
(_2q+)2122 (h) (h)
where
—=2 2 Z1%9
Qi = 23(21 + 29)Q7, Wy = —————. (115)
" s " z3(z1 + 22)2
Using Egs. (113) and (114) as well as the expression for the vertices, we find
Yr—qdg _ + a 1/2 1 5ij hl ij
Yiny = +8q¢" ee(gtas)(2123) B 9 ) %y T "5,
(O3 ()t eng (5 ) b P e
1 2 1 2 {p/ + Q(h,):| {mz + (p/ + Q(h,))]
Similarly, the LCWF for diagram (i) is given by
- 7ob.a
qpv_%—nzqg _ /EE/(QW)d—lé(d—l)(E/ i pq/)AX;Th,fh(E 2V hio—n(l 22/ (2 + 23)) (117)
v AgiAg
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where the gluon emission vertex V_ ;[3 w.—h(L, 22/(29 + 23)) from an anti-quark is given by Eq. (10). The phase space

measure simplifies to

~ =, - 1
R 0 R L Sy M ) . — 118
[ eyt )= s (118)
and the LC energy denominators are given by
— 1 2 =2
Aj - b0
_ Z9 +23 2 2 —=2
A02:7[l +wp (P2 + Q) ]
(72q+)z223 (1) ( ())
with
~2 2 2273
Qi = 2z1(29 + 23)Q7, Wiy = 120
() = #1(22 + 23) W=7 ( 2) (120)

Putting everything together we obtain

a * L
¢’YT"QQ9 — _8q+eef(gta5)(2123)1/2 [(Zl ) 5(2 ) ZhQE(d ):|

1 1 el ert 121
(-2 (5 i -g () i) e S
2o + 25 29 + 23 [ 9 =2 5 2

p +Q(i):| {1 + W) (P +Q(i)):|

The LCWF for the instantaneous diagram (j) shown in Fig. 18 is given by

er'el

m” + w;) (Plz + @?ﬁ)}

Z1%

2 > (212'3)1/2 |:5zilq) + ’Lhezziq):| |:

Yr—q39 _ — 929 eer(at®
U7 q eep(y aﬁ)(21+z2) (122)

where the matrix element for the instantaneous interaction is defined in Eq. (41), and the LC energy denominator is
given by Eq. (114) with m = k 4 (25/(2; 4+ 22))p’ and

2 2 2 %)

Q) = #3(21 + 22)Q () 2a(o1 + 22)° (123)
Similarly, the LCWF for (k) shown in Fig. (19) is given by

es'el

1’ + W (p2 + Q%k))]

where the matrix element for the instantaneous interaction is defined in Eq. (39), and the LC energy denominator is
given by Eq. (119) with 1 = k + (25/(25 + 23))p and

"/Tﬁqqg
= 4+2¢Vee (gt
w q f(g a,@) (22 + 23) (124)

ZaZ P
N 2’(21123)1/2 {522\) ’he(d )] {

Z9Z3

Q%k) =2(2 + 2’3)Q27 W(k) = (125)

21 (29 + 23)2‘

Finally, adding the results in Egs. (116), (121), (122) and (124) together, we obtain the full tree level contribution
to qgg-component of the transverse virtual photon wave function

k_j3 *l
zﬁ’YT%CI@g _ 8q+e€f(gt2ﬁ)(2123) /2 { Ezjhl;l — p m 6/\6 —
FDH / /

{P + Q(h):| [m +wn) (P + Q(h))}

_ Elgkl p lke)\e*l

(i) 2 _2 2 _9 (126)

P +Qp 1’ + we) (P +Q(i))

_ Em Ezieﬁ Sy €Zi€§

7) 2 —92 (k)
{mQ + W) (P' + Qm)} [12 + Wiy (P2 + Q%k))}
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FIG. 20: Diagram (1) contributing to the ggg-component of the longitudinal virtual photon wave function at NLO with energy
denominators and kinematics. Momentum conservation: §= '+ 7, E = P+ E and J=p+p + k. Momentum fractions are
defined by p+ = zlq+, kT = z2q+, pH— = 23q+ and k' = (21 + 22)q+. The momentum fraction of the virtual photon splitting
into a quark anti-quark dipole is k”r/q+ = z; + 25 and the momentum fraction of the gluon emission is k:Jr/lc'+ = 25/(21 + 22)-
The natural momenta for the gluon emission vertex is m = k— (25/ (2, +22))k’ = k4(22/(2, +22))p’. Note that the momentum
fractions are related to each other via relation z; + 2o + 23 = 1.

FIG. 21: Diagram (m) contributing to the ggg-component of the longitudinal virtual photon wave function at NLO with energy
denominators and kinematics. Momentum conservation: § = p' + E', B =k+ p and §=p+p + k. Momentum fractions are
defined by pJr = z1q+, Kt = quJr7 p'+ = zqur and k' = (20 + zg)q+. The momentum fraction of the virtual photon splitting
into a quark anti-quark dipole is pt /¢ = z; and the momentum fraction of the gluon emission is k' /k'" = 2, /(23 + 23). The
natural momenta for the gluon emission vertex is 1 = k — (25/(25 + 23))k’ = k 4 (23/(22 + 23))p. Note that the momentum
fractions are related to each other via relation z; + 2o + 23 = 1.

where we have introduced the following notation:

- 1 - 1 . 1 z 1 z
igkl __ L ij syt i L 2 kl R kl
Xiny = Kzl t 2 2) O, Zhge(ds)] Kl 3 (21 +22>) 3(a,) + ihsg (21 +22) 6(%)} (127)
- 1 - N 1 z 1 z
ijkl ot ij  _ sp T i A k. o+ [ <2 kl
o = [<Zl 2) %a,) Zh?ﬁ(d“)} {(1 2 (22 + 23)) o) Zh? (22 + Zs) E(d‘g)} (128)
9 1 22 -
DI AN e T {5” + ihe!? } (129)
(1~ 4 (2, + 22)2 (ds) (ds)

ij 1 232 ij 2 ij
nid 17)2 {5(315) - zhe(fis)] . (130)

B. Longitudinal photon

For gluon emission from a longitudinal photon state, we calculate the diagrams (1) and (m) shown in Figs. (20) and
(21) contributing to the ggg-component of the longitudinal virtual photon wave function at NLO. There are no instan-
taneous diagrams to consider, because strictly speaking the longitudinal photon itself is a part of an instantaneous
interaction with the emitting electron.

The LCWF for diagram (1) is given by

AT (@2 + 2) Vit (m, 20/ (21 + 22))
Ag1Ags

(131)

w'(y[fi—)q(jg _ /&/(%)dqé(dﬂ)(é/ iR
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where the vertex Azl_th _n(@, 2) for a longitudinal photon splitting into an quark anti-quark dipole is defined in Eq. (68)

and the gluon emission vertex fo;’f in Eq. (6). The phase space measure and LC energy denominators are the same

as in Egs. (113) and (114), and thus we get

1/2
—adg _ + a Z3 1 Zg ij L1 2o i
Yy = +8¢" ee;Q(gtop)z123(21 + 22) (z1> [ (1 5 <7Z1 n 22)) 0@, t+ zh2 <Z1 T zg) 6(azs)]

m'e’ (132)

X )
2 =2 2 =2
[p, + Q(z)} {mz + Wy (P/ + Q(z))}
where
—=2 2 Z1%9
Quy = z3(z1 + 2)Q°, Wy =T 3 - (133)
(l) ' v (21 + 22)°23
Similarly, the LCWF for diagram (m) can be written as
o — I AA”.t (@, z Vﬁﬁj_ 1, z5/(29 + 2
G /dk/@ﬂ_)dfld(dfl)(k/ikiﬁ/) xih,—n (@5 21) hi ,_h( 2/ (22 3)), (134)
Ag1Ap2

where the phase space measure and LC energy denominators are given in Eqs. (118) and (119). Putting everything
together we obtain

1/2
YL—9q9 _ + a A1 1 2 ij a1 %2 ij
Yim = ~80"eesQlglap)erslza + 2) (ZS> [ (1 2 <Z2 + Z3>> @) ZhQ <Z2 + Z3> e(dS)]
I'e}/ (135)
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X

I

where
2 2 Z2723
Qi) = 21(29 + 23)Q°, Wiy = ————5—. (136)
() o (22 + 23)°2
Finally, summing the contributions in Egs. (132) and (135) together we get
i
L9 = 8q+eefQ(gtiﬁ)z1 23 [E% m
2 —2 2 —2
FDH {P/ + Q(z)} [m2 +way (P/ + Q(z))}
. (137)

_w r }e*j
m ) _ 9 ag )
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where we have defined

1/2
ij ) 1 TR ij
X = (1 + =) (zl) [(1 5 <Zl+z2>)6(ds)+zh2 <z1+z2>e(ds)} (138)

1/2
. 1 z 1 z .
ijo 21 N R it 2 ij
B = (22 + 2) <23> Kl 2 (Zz + Zs)) %) lh? (Zz + Zs) e(dS)} (139)

VII. NLO DIS CROSS SECTION

As explained in Sec. III, in order to calculate the DIS cross section we first need to Fourier transform the final
momentum space expressions of the transverse and longitudinal virtual photon LCWFs to mixed space. Because of
the simple algebraic structure, we will first consider the longitudinal virtual photon case.
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A. Longitudinal photon

According to Eq. (54), the mixed space expression for the gg-component of the longitudinal virtual photon amplitude
computed in the FDH scheme at NLO accuracy can be written as

(g™, Q% N) ZZPS(Q)/ ( Eﬁf‘”

h color

'YL —qq
+¥xLo
FDH

) |q(p+,X, h'7 a)é(p/Jra}I?_hw ﬂ)>7 (140)
FDH

where the two particle plus momentum phase space factor, PS ?'2), defined in Eq. (56) is given by

1 ! dz
PSh, = / . 141
(2 = 87rq+ o 2(1—2) (141)

The transverse Fourier transformed LO and NLO light cone wave functions for longitudinal virtual photon in the

mixed space are given by
_/ d p (wVL—NI@
= LO/NL
H (2m)? O/NLOl

with r,, = x —y. Using Eq. (68) together with Eq. (C4) we get

w"/L—NIq
LO/NLO
FD

) P Tay (142)
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eip-rmy

2 —=2
47 (143
46€f Q(SCYB

:‘EH*MLwW@Q@MM-

~ % q d2p
161 =4qtee;Qiaplz(1 - Z>]3/2/ (2m)

FDH

Correspondingly, using Eqgs. (109), (C4) and (C5) gives

_AgTee;Q0,5 (930F

T, —qq
NLO

’
FDH

FDH B (2m) 8n’ (1449

> [2(1 = )2 Ko (Qlrsy|) K7
where the NLO kernel for longitudinal virtual photon written in the mixed space reads

K:’YL

* 3 « « 1 riy/f 1 9 z 7 5
o [a7108 (2) i (25 ) [ { 5 e (4 -2 f+g1or’ (725) -+ § 00 (149

Note again that in the CDR scheme (see [30]) there is an extra factor of 1/2 in the expression of NLO kernel defined
in Eq. (145), which is the scheme dependent part of the one-loop computation of longitudinal virtual photon LCWEF.

Next, operating on the amplitude in Eq. (140) with the eikonal scattering operator (1 — S r) and finally squaring
the expression and simplifying the color algebra as in Eq. (D4) we find

* 0 I+ 2 ! & ko + 2 _ + I+ 4 8NCOéem€§Q2
aal(@ ™, QN1 = Sehi(a™, Q7 N)eq = 24" (2m)0(¢ " —q )W

X /xy /01 dzz*(1 - 2)?[K, (|rzy|§)}2|:1+ (aTCF> et

where we have summed over the helicity and color, introduced the fine structure constants o, = gz /47 and ay,, =

(146)

:| (1 - Sry) + O(ae'mai)7
FDH

¢® /4 and the notation

1

Sy = T (VAU A]) ) - (147)

C

Similarly, using Eqs. (55), (56), and (137) the mixed space expression for the ¢gg-component of the longitudinal
virtual photon amplitude computed in the FDH scheme at NLO accuracy simplifies to

(g™, Q% N) Vadg ZZPS(3)/ (Jvfj%qzjg

h,o color

)|q<p+,x,h,a>qu/+,y,—h,ﬁnxk+yz,a,a», (148)

FDH
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/[z] = / A4 %z (149)

the integral over the gluon phase space, which must be done in d dimensional spacetime. The quark and antiquark
are “observed” particles in the FDH scheme, and thus the integrals over x,y can be kept in 2 dimensions, simplifying
the final state phase space integrations. The three particle plus momentum phase space factor, PSzrg), is given by

PS(3) / dzl/ dzg/ dzg P 0(z1 + 29+ 23 — 1), (150)

where we have denoted by

and

~ e a i —2 —2 j
w’YLﬁqqg = 8q+eengrt(xﬁzlz3 {E(;)I (rywz7 Loz Q(1)7 w(l)) E(m)f( zyzr Lzys Q(rn)? w('m)) }EJJ . (151)
FDH

Here we have defined the function Z° (b, r,@Q,w) as

2 d—2 i iP-b _iK-r
; —2 _d d°pP d" K K'e™ Ve
7 (b7r7 Q 7w) = NZ 2 / 9 2 / d—2 _9 _o (152)
(2m)" / (2m) [P2+QHK2+W(P2+Q)}
and introduced the notation
22 22
_ _ . — . 153
ryzz ryz <21 + 22) Toxs rzyz rzy (22 ¥ 23> rzy ( )
The evaluation of the integral defined in Eq. (152) is outlined in Appendix C, leading to
R _4i a2 i, 21 du _ v (d ?
Ti(bor. 0% w) = 1 géw 4/243 (21 d/z/o uu wQ’ S (2 _ 17“:12) _ (154)

Unfortunately, the remaining u-integral in Eq. (154) can not be done analytically for arbitrary dimension d. In order
to proceed further, we first square the amplitude in Eq. (148) with the operator (1 — Sg),
* a * —+ ~ % _ ~ % _ *
azg (@ Q1N L = Sphi(ah, Q% N)ggg = Y 27)5(3)773,(3)/ o (Wﬁqqg ) (Wﬁqqg )
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(155)

The color algebra is written out in detail in Appendix D. Using the result Eq. (D6) from the appendix we obtain

. " 16(27)° Notere3Q* [ a,C
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where the function © is given by
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6= ZZ)IZ( yrzr Lzas Q(l)?w(l)) - erjm,)zl (rwyzv oy Q(m)7 w(m)):|
i i . (157)
kl ~k - kl k - *7 1
X l:z(l)z (ryzzv L) Q(I) ) w(l)) - E(m)z (rzyz7 oy Q(m) y W(m) ):| Z EO'JEO'
and S, . is defined as
N 1
Spyz = C18,.S., — —5Su |- 158
TYyz QCFNC |: 2Czy Nc2 :Ey:| ( )
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It is important that S,, . must satisfy the condition S,,. — S,,, when z — x or z — y. This guarantees that the
UV divergence in the real and virtual corrections has the same color structure from the target side, and can thus
cancel between the contributions. Performing the sum over the d,-dimensional gluon transverse polarization vectors

and making some algebra Eq. (157) simplifies to

(N2)27d/2 23 Zg 2 \3-d 72/ 2 2 =2
0= d { <7) 21(21 + 22) + = (rzz) j (ryzzvrzz7 Q(l)vw(l))

8% 21 2
z 25 —2
+ <i) (ZB(ZZ + 23) + 22> (riy)S_dJZ(riyzvriya Q(fm)vw(m)) (159)
(rop T2y) —=2 —2
- ((Zl + 22)23 + (22 + ZB)ZI) R %Z_xl (r;y)%—l j(rimm rizv Q(l)vw(l))j(riyzv riya Q(m)v w(m)) ’
2T 2y
where we have taken the limit d; — 4 and defined the function J as
— Cdu _,o? _p2_(d wr?
b2, %, Q° :/—“Q tp(s-1,22). 160
g Q= [ e @t (o1 (160)
Now equation (156) can be expressed in a more compact form by introducing the notation
©=03)+00m) +Ou)m) (161)
where
9., = (uz)z—d/z 23 Zg 2 37d‘72 2 2 A2 1-8
W= "gza |3 z1(21 + 22) + Y (rZz) (Tyazs Teows Q> w(1y) ( - xyz)
8*m 1 2] (162)
o _ (N2)2_d/2 21 Z% 2 \3—d 72,2 2 A2 1-8
(m) — 2 a \ 2’3(2’2 + Z3) + ? (rzy) J (rxyzv ey, Q(m)vw(m)) ( - myz)
8w Z3 2]
and
raY ( 2y (rzz : rzy)
Owym) = — ((z1 + 29)25 + (22 + 23)21)
g'n W (12,)8 (2,8 (163)
—2 —2
X j(rizw I‘iz» Q(l)w(l))j(riyzvriyv Q(m)vw('m)) (1 - Szyz) .
Thus we obtain the following expression
5/ 1+ A2 N\ & ¥, 4+ 2 + I+ + 16(2”)3Ncaemef‘Q2 a,Cp
0ag{L(d T, Q7 N)ISEL(aT, Q7 N))gqe = 247 (2m)0(¢ " —q7) 5
(27) i (164)

X / / dz; / ng/ dz30(zy + 29 + 23 — 1)@ {é(l) Jr@(m) Jr@(l)(m)] .
xy J0 0 0 )

In Eq. (164), the first and second term are UV-divergent when z — x and z — y, respectively. The third (cross) term
is UV-finite and thus one can immediately take the limit d — 4. In order to make the UV subtraction between the
real ggg-component and the virtual ¢g-term (which has an explicit 1/¢) we must add and subtract a term to make
this cancellation manifest. Ideally we would subtract from Eq. (164) an the same expression with the Wilson line
structure (1 — Szyz) replaced by its UV limit (1 — Szy). This is, however not possible analytically since we have not
been able to find an analytical expression for the required integral (160). However, there is no unique choice for the
subtraction term. Indeed, since the only requirement for the subtraction is that the UV divergence needs to cancel,

it is sufficient for the subtraction to approximate J (b2, r27 ", w) by any function that has the same value in the UV
limit r* — 0 (for any d). Here we find it convenient to use the UV approximation
2 .2 72
j(b , Q L] UJ)

= / du__ug? -2, <§ - 1) ¢ % = 2K, (@) T (‘f - 1) e w, EeR, (165)
uv 0 u 2 2
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for which

J(b%1% Q% w) = J®%4 % Q%w)| . (166)

UV,r—0 r—0

A natural way to think of this expression is that in the u-integral (160) the exponential sets u ~ b%. Our approximation
2
replaces T" (g -1, “i—f) by T (g — 1) e 2v°¢ which (a) is independent of u, allowing for an analytical calculation of
the u-integral, (b) has the same value in the UV limit r — 0 and (c) is also good and smooth approximation for
large r”. The choice of the constant ¢ is somewhat arbitrary, here we adopt the value £ = ¢”® that leads to simpler
expressions in the following. Our choice is slightly different than that of [30] concerning point (c) above; this difference
is discussed in Appendix E.
Using our choice of J|yy we now define the UV-subtraction terms as

a (M2)2_d/2 23 Z§ 2 \3-d +2,.2 2 A2
6(1) = 2 d - 21 (21 + 22) + ? (rzw) J (rmya LD Q(l)aw([)) (1 - Smy)
UViz—x 8T 21 [2] uv (167)
ey (Nz)%d/z “1 Z% 2 \3-d 2,2 .2 72
G(m) =—7a |- 23(252 + 23) + ? (rzy) j (rzy7 rzy7 Q<m),w(m>) (1 — Szy) .
UV;z—y 8 23 (2] uv

Performing the subtraction

* A * 16(27T)3Nc055m62Q2 aec
0ag (@ Q7N = Spvi (a7, Q% M) gag = 2¢ 2m)0(¢"T — ¢T) 2n)? d ( = F)

X / / le/ dZ2/ ng(S(Zl + 2o + 23 — 1)%{ @(1) — @(l) + @(m) - @(m)
xy J0 0 0 22 UViz—x UViz—y
+ @(l)(m) + @u) + é(m) ] )
Viz—x UViz—y
(168)
we can split the result into UV-finite terms and a divergent one as
qég<7ﬁ(ql+a QQa /\/)|1 - S’E|’7E(q+7 Qza )‘)>q¢79 = qég(’YE(q/+a Q27 )‘/)‘1 - SE|7It(q+a Q27 /\)>qu
UV —fin
(169)
+ q(?g<7]t(q/+7 Q27 >\/)|1 - SE"YE(quv Q27 A))q(ig
UV —div
The UV-finite part simplifies to
. A w 8N ., e2Q? a,C
L QN = S @ W] =2l - ) eI () |
UV—fin (2m) & xyz
1 1—2
X / le / %{
0 0 22
1 — - —r2 /(x2 B
4 (22121 + 22) +28) o (IKo@ R (1 = S1e) = [Ko(@ey ey e/ 1 = 5,,)) (170)
1 - - —r2 /(x2 &'E
+ Z% (223(22 + 23) + Z%) I‘T ([KO(Q(M)lR(m)|)]2(1 - Szyz) - [KO(Q(m)‘rznye zy/( oy )(1 - Szy))
zy

r - — —
-2 ((21 + 2)2125 + (20 + zg)zng) ﬁKo(Q(MRa)DKo(Q(m)|R(m)\)(1 - Szyz)}
zz)\Lzy

with 23 =1 — 27 — 29 and

R%l) = r?;acz + w(l)riza R%m) = ri’yz + w(m)riy' (171)
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Here the coefficients for the Q’s and w’s are given by Eqgs. (133) and (136). The arguments of the Bessel functions in
Eq. (170) can be expressed in a more compact form by noting that

—2 —2
QuR{) = QumRin) = Q°R?, (172)

2 2 2 2 .
where R™ = 22315, + 21297, + 292377y, leading to

qqg <7E(q/+7 Q27 )‘l)‘l - SEl’YE(q_: QQa )‘)>q§g

1—2
/dzl/ dz?{

+ 23 (221(7«'1 +25) + 2’2)

8N ;@ [ a,C,
=2¢"(2m)6(¢"" — ¢") . < F)/
XyZzZ

UV—fin (2m) ™

‘ —

(IO (QIRDP(L = Suye) = Ko @ lrey e/ D 1= 5,))  (173)

)
ISR V]

x

‘ -

27 (22020 + 2) + 23) o (IK0(QIRIP(1 = Spy0) = (Ko@) (1 = 5,.)

]
RSa v

Y

“2 (4 mnd + G )20) TS K@D - 80

In the UV-divergent term one can now analytically perform the z-integral and the z,-integral, which results in

8Maem€f(;2 anF
—_2(] (2‘ )6((]/ q ) - P} < - )/
xy

UV—div (2m) ™

x/ol 222 (1 = 2)2[Ko(Qlra, ) [ +log( )+1og(lf )}{%-ﬁ-log <r§”1’f> —2\1/0(1)}(1—3%).

0@ T Q2N = Spi(7.Q%N)) gz

(174)

EMS

This expression precisely cancels the term in square brackets in Eq. (145). After this cancellation we can write the
total cross section for longitudinal virtual photon at NLO accuracy as a sum of two finite terms

oA =0 +o| (175)
aq adg
where the finite contribution to the cross section coming from the gg-component is
* 4
o a””efQ / / dz22(1 — 2)[K, (Qlra, )]
W i (176)
A (2O [l (2 ) o™ 8 (1-8.,)
r Jl2®\1-2) 6 "2 =y
and the subtracted ¢gg-component
2 A2 1—z
e N, 4aeme]; <aSC’F) / / dzl/ 1 dzy {
qdg (2m) & xyz
2 2) 1 2 = 2 —r2 /(x2, E)
4 (200 2) 4 28) 5 (K0@QIRDP (1= ,0) = [Ko(@lrsy DPe ™/ (1= 5,,))
2 (177)

1

+ 2 (25300 + 20) + 3 ) o (IKo(QIRNP(L = 842) = Ko (@l P/ (1 = 8,,)

-

Y

-2 ((21 + 22)212’3 + (22 + 23)232%) &ﬁ[KO(Q‘R|)]2(1 - Szyz)}'

Now that these expressions are UV finite, all the coordinate integrals can be performed in 2 transverse dimensions.

Here we should emphasize that the scheme dependent UV contribution in Eq. (174) precisely cancels the scheme
dependent UV part obtained in Eq. (146), and the remaining finite contribution in Eq. (146) leads to the scheme
independent final result for gg-part in Eq. (176). We have confirmed both analytically and also numerically that our
final results for the cross section in Eq. (176) and Eq. (177) agree with those of G. Beuf [30].
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In addition, we should note that in the z, — 0 limit the part inside the curly brackets in Eq. (177) reduces to

2

Ty 1 22 0% 1 2 2,6
Mﬁm@%m{;ulxwﬁeMWGM%>zewmﬁkl@w. (178)

zxtzy zZx zy

Noting that (1 — S,,) does not depend on z and using the integral (this is the same integral that is studied in
Appendix E)

2
Ty 1 —r? r2 e’ 1 —r2 r2 e”
/[2 v L emrh/ehe) L el ehe ) g (179)
z

r,,r r Ty

zatzy zx

the form Eq. (178) can, under the integral over z in Eq. (177), be replaced by

22222 [Ko(Qlray )2 2% [(1 = Saye) — (1 = Say)] (180)

ToaTzy

which is recognized as the leading order wave function times the r.h.s. of the BK equation (or the first equation in the
Balitsky hierarchy). Note that it is precisely to achieve the cancellation Eq. (179) and thus to obtain the conventional
BK equation that we chose the constant £ (see Eq. (165)) to have the value e””. Thus we see that the zo-integral
exhibits a small-z divergence that must be absorbed into a renormalization group evolution of the target, and that
this can be done using the BK equation e.g. similarly as is done in [31].

B. Transverse photon

Let us then consider the case of transverse virtual photon. Similarly as in the longitudinal photon case, the mixed
space expression for the gg-component of the transverse virtual photon amplitude computed in the FHD scheme at
NLO accuracy is given by

h/:il:( 7Q )\ ZPS@)/dQ /d2 (wVT—HI‘J

h,A color

'VT_“]q
+UNLo
FDH

Ww%mmwmwwum>

FDH

Here the factor PS (E) is given in Eq. (141), and the transverse Fourier transformed LO and NLO LCWEF’s for transverse
virtual photon in the mixed space can be written as

— / d p ( Yr—aq
= YLO/NLO
H ( ) FDH

The momentum space expressions for the LO and NLO wave functions are given in Egs. (65) and (95), respectively.
Using the result given in Egs. (C4), (C6) and (C7) we obtain for the LO part

.+
_ dagreesQap g Kz - %) 5 ihle”} &Kl (Qlr.y)) (183)

FDH (277) 2 ‘ ry|

w’YT"qq
LO/NLO

> P Teu, (182)

QZJ’YT —qq

and similarly for the NLO part

4i + 5 - . *
- cerQap <aSCF> {z(l —2) {(z — 1) 5 — ihle”}K"’T
FDH (2m) 21 2 2

where the NLO kernel in the FDH scheme simplifies to

YT —qq
e

FDH

r xy\

IC’YT

* 3 « 1 r2 ,u2 1 9 z =~ 5
1 1 — +1 | =20 (1 =1 ——+= . (1
o {2+og( )—I—og(l_ )}{Em—i—og( 4 ol )}+2og (1_2) 6+2+0(€) (185)

Note that after the Fourier transform to mixed space (but not before), the NLO correction KT for transverse photons
is the same one as for the longitudinal ones in Eq. (145). Squaring the LCWF in Eq. (181) (summed over the helicity)
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together with the eikonal scattering operator (1 — S ) we find the final (unsubtracted) result for the ¢gq part of the
cross section as

* & * 4Ncaem€2Q2
q(j(fyT(q/Jrv Q27 )‘/)‘1 - SE|7T(q+7 sz >‘)>qri = 2q+(2ﬂ)5(ql+ - qu)T)JC

x /xy /01 dz[K, (QIr,,|))72(1 - Z){l — a1 - Z)} {1 N (QSTCF> o

The mixed space expression for the ggg-component of the transverse virtual photon amplitude computed in the
FDH scheme at NLO accuracy is given by

(gt Q% N) Vegg = Z ZPS(?))/ ]<QZJ7T%qq9

h,o,A color

(186)

:| (1 - SM/) + O(O‘emag)'
FDH

) 0t %, b )Ty <k gk 7, 0,a)),  (187)

FDH

where PS Eg) is given in Eq. (150), and from Eq. (126) the NLO expression of transverse virtual photon LCWF in the
mixed space simplifies to

e q. 2 klrik -2 *[ jkl ik *[
w’YTqug = 7866fgrt26(zlz3) Y {ZZ&) IZ ( yaczvrzxaQ(h)aw(h))Ea +Eg> Il ( xy27 zyaQ( w(z )

FDH (188)

) =2 *1 15 -2 *7 j
+ E(‘j)z( yazzr Lzas Q(])? W(j))goZ < Edg)z(rzyz? Toys Q(k)a w(k))EO' }E‘;

Similarly as in the case of longitudinal photon, we have introduced the notation

2 d—2 igrk iP-b iK-r
Iik(b,r,QQ,w):H2_§/ d Pg/ TS PR < (189)
(2m) (27) {P2+@2} [K2+w (P2+62)]

o

and

. . 42p 492K oPb K
I(b,r, Q" w) = " = . 190
(b,r w) = p /(271_)2 / (27T)d 2 [K2+w <P2+@2>} (190)

Squaring the amplitude in Eq. (187) with the eikonal operator (1 — S ), and using the result Eq. (D6) we get

+) 16(27T)3Ncaeme?" (asCF)

qq9 <’Y’>|1:(q/+> Q2: )‘l)|1 - SE"Y’){“(Q+7 Q27 A))q(}g = 2qjL (27T)6(ql+ —q

(2m)° g (191)
/ / dz; / dz3/ 0(z1 + 29 + 23 — 1)O(21, 29, 23) (1 — Sxyz) .
xy|[z]
Here, following the same notation as in section VII A, we have defined the function © as
klrik ikl ik =2 xl
0= Z |:EZ%) Il Tyzzs Loy Q(h)7 h))s + Zz(J) 7 ( ToyzrTays Q(i)aw(i))ea
~2 *i ij 2 *d
<R Ezj)z( yzzarzz7Q(j)aw(j))Ea - E(‘;ﬂz(rzymrzy7Q(k’):w(k))€U:| (192)

mnrs r -2 mnrsmr -2 *S
X |:E(h) ™ (ryzz7 L) Q(h) ) w(h))e + Z:( A (rzyzv L) Q(L) ) w(i))ea

=2 *Mm * *
+ ST ynn o Q) ) )Es™ — S0 (rxyzvrzy,Qw)vw(k))Ean} exex”

which corresponds to the full ggg-sector wave function (see Eq. (188)) squared and summed over the gluon and photon
polarization vectors. The expression in (192) can be simplified further by introducing the notation

O =00 +0u) +063) + Oy +Owmym i) (193)
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with

4z (@, Q% N1 = Splyi(a”, Q% V) gge = 247 (2m)5(d™* — )

16(27)° Noagme? (aSCF)

(2m)° i (194)
oo o0 o0 d o
/ / dzl / ng/ %5(21 + Z9 + Z3 — 1)@(2’1,2’2,2’3),
xy J0 0 0 2
where the individual terms coming from the wave function squared are given by
@ _ Zijklzik =2 Emjrlzmr =2 * 1 S 195
"= (2] (h) (rywz7 Tz Q(h) ’ w(h)) (h) (ryz-zv Teas Q(h)7 w(h)) ( - :Eyz) ( )
0, = [ {zikigi Q STl o laos 196
(i) — . (i) (rzy27 Tays (i)» w(z)) (3) (rzyzv Tays (i) w(z)) ( zyz) ( )
= ij =2 ij =2 *
G(J) = /[] {E(g)I(rz/xzv Togs Q(j)7 w(j)) (E(;)I(ryacw L Q(J) ) w(]))) } (1 - Sﬂ?yZ) (197)
z
— - —2 .. ) *
G(k) = /[]{Ezi-)z(rxyza oy Q(k)?w(k)) (Zzi)z(racyzv Ty Q(k)aw(k))) } (1 - Sx:yz) (198)
and the possible cross terms:
. .. . _9 . _9 *
e(h) (1) (5) (k) =2 /[ ] Re [Ezjh,};lzlk(ryxzv Toxs Q(h)7 w(h)) (EZ?)jTlImT (racyz7 oy Q(z) ) w(z)))
P _9 o _ o
+ (Zziﬁlzm (ryoczv L) Q(h) ) w(lz)) + EZ(Z)MIW (rwyz7 Toys Q(z)a w(?))) (199)

lj 72 15 —2
x (E(jj)z(rym’ Ca00 Q) @) = X L(Tayz: Loy, Q(k-)aw(k)))
(%3 —=2 id —_9 *
— Eé)z(rfgmz» g QQ), W(j)) (Z(;)I(rwz, | Q(k;), W(k))) :| (]_ — Szyz) .

The contributions in Egs. (195), (196), (197) and (198) correspond to the squared amplitudes from diagrams (h), (i),
(j) and (k) respectively, and the contribution in Eq. (199) contains the cross terms of these diagrams.
In order to simplify the individual contributions above we note that

—2 —=2 —2 —=2 —2 —2
Quy=Qy =Quy Qu =Qx = CQum) (200)
and
Win) = W) =Wy, W) = Wik = Wim)- (201)
This implies that
-2 2 =2 2 2152 -2 2 -2 2 2152
QR = QR =Q° R, QR = QR = QR (202)

where R” is defined in Eq. (172). Using the definitions in Eq. (126) and result derived in Eq. (C17) we obtain

F(21, 29, 23)(H2)2_d/2 2 \3—d p2/. 2 2 H2
@(h> = 1627Td [ ](ryxz : rya:z)(rzac) L (rymz7rzx7 Q(h)7w(h)) (1 - Sa:yz) (203)
and
G(21, 29, Z3)(/~42)27d/2 2 \3—d p2/ 2 2 A2
8(1) = 1627Td ~/[z] (rIyz ' rzyz)(rzy) L (rzy27 rzy7 Q(?)? w(z)) (1 - Szyz) ) (204)
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where
( ) R2 Z1%9 2
r i = — r
yxrz " tyxz 23(21 n 22) 23(21 + 22)2 zx
) (205)
R 23722 2
(rzyz : rzyz) = - oy

21(22 +23) 251(22 +23)2

The two functions F' and G above are given by

Fz2) = Kzl TR ;>2 * ﬂ Kl - % <21?22>>2+ i <lejzz>2] (206)

_ m [1 2241 — zg)} [2,21(21 +2) + zﬁ]

= [(5-3) 103 () 5 (52)

- m [1 — 22,1 zl)] {223(2'2 + o)+ zi}

and

and, similarly as in the longitudinal case, we have defined the function
- ® du g vt (d ’
Lb% 1% Q% w) :/ e oy ( —1,‘”). (208)
0 U 2 4u

Now the UV divergences in the © ;) and © ;) terms can be subtracted in the same way as in the longitudinal photon
case. Introducing the subtraction terms

a F(217227Z3)(N2)2id/2 2 . 2\3-d| 2,2 2 A2
6(11) = 2 d rzy(rzz) L (rzyvrzQO(h,)vw(h)) (1 - Sﬂl) (209)
UViz—x 1677 2] uv
and
a G(21722723)(N2)2 4/2 2 . 2\3-d| p2,.2 2 72
6(1) = 162 d / Try (rzy) L (rmy7 Toys Q(L)?w(7)) (1 - S”cy) ) (210)
UViz—y ™ (2] uv
where

2

e — 2 _x2 0O _
[T G (f )R- PR @bhr(p-1) e B een ()
0

we can write down the UV subtracted contributions for (203) and (204)

Lb% 1%, Q°w)

uv

2
Om) — O (4. :4(§7T)4f(21722723) /Z Kér - %%) (K1 QIR (1= S,y2) o)
_ é[Kl(Q( r xy‘)]Q *r”/(rwé)( Smy):|
and
2
- @l e }
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with
F(z1,29) = (ZIZTSZQ) {1 — 2241 — 23)} {221(21 +z) + zg} -
9(z1,29) = (zgzﬁ {1 2z (1— zl)} {2z3(zg + o)+ zg} .

The contributions in Eqgs. (197), (198) and (199) are all UV-finite and hence one can perform the computation in
four dimension. The calculation of these terms is lengthy but straightforward. Thus in here we only show the final
result and include the detailed derivation in Appendix F:

2 2 2
_ K (QR R(r., -,
e} _ Q - / [ 1(Q‘2 )] [_22123{ [(1 _ 21)2 + Zﬂ + {(1 o 23)2 + Zg]} (1; 21‘ y)
UV-finite 4(27T) z R rzrrzy
2Zl (2223)2 (rzw : rzy) 223(2221)2 (rz:v . rzy) { 2 2
+ 2129239 (21 + 22)" + (20 + 2 215
(Zl _'_22) I'zw (ZQ +Z3) I‘zy 1#2#3 ( 1 2) ( 2 3) ( )

IR B CE) M CEY M [(Zl 7)ot Z?’)} H (1-8,,.)-

(1 +2)°  (z2+23)°  Ll2tz)  (21+2)

Adding all the pieces together gives the result

§ N 16(27)° Noap e [ a,C
wa0 (@ T Q%N = Splvi(aT, Q% N)gae = 2¢F 2m)0(¢"T = ¢T) (2m) ! ( F> /
xy

(2m)? 7T
/ dz / dzs/ 6(21 + 29 + 23 — 1){ [@m) - O } + {@m G }
UV;z—x UV;z—y
L0 1o, 16, }
UV-finite UV;z—x UV;z—y
(216)
Dividing this expression into finite and UV-divergent parts as
q§g<7’}(q/+7 ng )‘l)|1 - SE‘V;‘(q+a Q27 A))qt}g = q(jg(r}/;‘(qhh QQa )‘/)ll - ‘SA’E|’Y’}(q+7 ng )‘)>q§g
UV—fin
(217)
+ qqg(’y%(q/_‘_v Q27 )‘/)‘1 - SE|FY:£‘(q+7 Q27 )\)>ng
UV—div

and carrying out some algebra we otain

. A , 4NcaemQ262 a,C
aaorr(@t, Q% N1 = Splvr(at, Q% N) e =2¢"(2m)5(q"" - q") e ( F) /
Xyz

UV—fin (2m) T

/ d, / - dz?{ 7 [[Kl(QIRI)]Z (1= 81y2) = (K (@ gy )26 20/ 208 (1—szy)] (218)

+ 2 [UQRDE (1= 802) - 6 @050 (1= 5,) | + EE R (1,

rzy

where

R*(r,, -r,,) 2z (2223)% (taa - T2y) | 223(2021)° (Tan - T2y)
= — 22 2. 12 2+Z2:|+|:1—Z2+22:|} zx 2y 1\~2~3 zx zy 3\~2~1 2T zy
1 5{ [( 1) 1 ( 3) 3 I‘izriy (21 + 29) rl, (22 + 23) I‘iy

(2123)° (2123)° ., [(21 + 22) n (22 + 2’3)}
(214 2)°  (22+23)° et 2) (21 +22)

+ zlzm{(zl +2)" + (23 + 23)° + 227 + 225 +

) {pzzgu—zg)} {Qzl(z1+z2)+z§} ) [1727;1(141)} [223(22+z3)+z§]}

(21 + 25)° (22 + 23)°
(219)
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and

q§g<7’}(q/+7 Q27 )‘l)|1 - SE‘V;(q+a Q27 /\)>q(jg

4N, 20? 1
— el - ) e (25 [
™ xy J0

UV—div (27T)2

< [K1 (Qlray 22 (1 z){l S z)} E +10g (%) +1og (%)} {6;5 +log <rizu2> Q 2\1/0(1)} (1-8,,).
(220)

Like in the longitudinal photon case, the last expresion above cancels the UV-divergent term in square brackets in
Eq. (186). Finally thanks to Eq. (60), the total cross section for transverse virtual photon (averaged over the two
incoming transverse virtual photon polarization states) at NLO accuracy is given by

oT[A] =0T +o0T| (221)
aq adg
where the gg-term is
2 N2 1
o't = 4NC%;L2Q/ / dz[K; (Qray|)])*2(1 — z){l —22(1— z)}
" BTy do ) (222)
0 Ci\ L2 ( =) 5
X {1+< - ) |:210g (1—,2) i —I—Q}}(l Szy)
and for the ¢gg-component we find
2 2 —z
o7 = 4]\7(:70éemefg2 <QSCF) / /1 dz, /1 Loy
qqg (277) T xyz J 0 0 22
f A —1‘2 I‘,2
x {7 K1 QRDP (1= S4y2) = (K1 (@ g D™/ (1 =5, (223)

+ % |:[K1(Q|RD}2 (1 - SI'UZ) - [Kl(@(v',)|rzy|)]26_riy/(riy€) (1 - Szz/):| + @H (]‘ - 811/2) }

Again, as for the longitudinal case the scheme dependent UV contribution in Eq. (220) cancels the scheme dependent
UV part obtained in Eq. (186), and the remaining finite contribution in Eq. (186) leads to the scheme independent
final result for gg-part in Eq. (222). In addition, like in the longitudinal case, we have confirmed both analytically
and also numerically that our final results for the cross section in Eq. (222) and Eq. (223) agree with [30], and we
have checked that the part inside the curly brackets in Eq. (223) reduces to the r.h.s. of the BK equation.

VIII. CONCLUSIONS AND OUTLOOK

As a concrete result, we have in this paper derived the NLO cross section for deep inelastic scattering in the dipole
picture, with the final results given in Eq. (175) (with Egs. (176) and (177)) for the longitudinal and in Eq. (221)
(with Eqgs. (222) and (223)) for the transverse virtual photon polarization. We have confirmed both analytically and
numerically that our results agree with those of G. Beuf in [30]. Being derived in a different regularization scheme,
they are an indication of the scheme-independence of this result. As a small difference, we believe that our choice of
the subtraction term to cancel the UV divergence is, while equivalent, somewhat more benign numerically.

Nevertheless, the most important purpose of this paper has been to develop calculational techniques that should
enable further NLO calculations to be more efficiently performed in LCPT. We have demonstrated how to express
the elementary vertices of the theory systematically in terms of their natural variables, the center-of-mass splitting
momentum, splitting momentum fraction and the helicities of the particles involved. Using our expressions the
evaluation of the scheme-independent parts of the cross section reduces to multiplications of 2-dimensional vectors
and tensors, and simple scalar integrations over longitudinal momentum fractions. They can be easily automated by
symbolic manipulation prograns such as FORM [42] or FEYNCALC [43]. The scheme dependent parts require some
more work, where at one point one must reduce expressions of Dirac matrices contracted with (d, — 2)- and (d — 2)-
dimensional Kronecker deltas. However, this procedure also is readily automated. We hope that the method developed
here can be useful in future work. As an immediate future application with clear phenomenological relevance, the
next step is to include quark masses in the DIS cross section calculation.
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Appendix A: Decomposition of LC vertices

In this section we show how to decompose the general LC vertex to the symmetric and antisymmetric parts as
discussed in section I1B. The most general form for the LC vertex (without the coupling and color structure) in the
LC gauge is given by

q'e]
_ / ij — N+ i — /N i
Xn(P)EA(@Qws(p) = =267 30 (D)7 ws(p) — exxn ()7 ws(p), (A1)
where x and w can be either positive or negative energy massless spinors, i.e. w or v. For massless quarks the spinors
x and w satisfy the Dirac equations:

P, (p) = (Wp* +77p" =P ) w,(p) =0,

) N W (A2)
_ / — / /— — I 17
Xn(P)P :xh(p)(v Py = ):0-
Applying the Clifford algebra one can write
Xn (@) Yy ws(p) = =X ()7 T ws (0) = =250, ()Y ws(p) + Xu ()77 Y ws(p) (A3)
which gives
— 2%, )Y ws (0) = Xn PV Y'Y " ws(p) — X (P YT ws (). (A4)
Furthemore, using the Dirac equation (A2) we find
B S 1 _ . 1 _ . _ .
Xn (@)Y Y'Y ws(p) = Fxh(p’)f’ylv phw,(p) = *Fxh(p’)fv’ (v*p - vjpj) w,(p) (A5)
and
N — 4 i L A NI r_ + - VAN
Xn(P )Y 7 Y ws(p) = FXh(p T Y ws(p) = _FXh(p) (7 P —7'p ) 7 we(p). (A6)
Since v T41 = 0, these simplify to
N+ i — Pj N+ i j
Xn(0)7 Y'Y ws(p) = X (@)Y Y ws(p)
! (A7)
p/j
. /N — 7 — / j 1
Xn()v Y ws(p) = _FXh(p )7 Yy ws (p).
Combining Eqs. (A4) and (A7) we obtain
pj p/j
A N — / i g — / j 1
— 2, (P ) ws(p) = FxXa ()Y Y'Y ws(p) + p,jxh(p 7 Yy w, (p). (A8)
In order to separate the symmetric and anti-symmetric parts in Eq. (A8) we use the identity
o I T
vy ==Y+ S, (A9)

2
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which gives
j 1J

1% p S95%, (p)At pj p/] = (Nt~ AT A10
7++2p/+ Xn(0)y " ws(p) — W T XY Jws(p)- (A10)

Xn ()Y ws(p) =

Inserting the above expression into Eq. (Al) gives

i 1

) (@), () = [‘t - "4 3075 ()7 s ) - [41; - ;}}] @)y B Al p). (A1)

This equation is valid in arbitrary spacetime dimensions and automatically includes the plus and transverse momentum
conservation.

In the particular case d = 4, this expression can be very compactly expresed in the helicity basis by first nothing
that the commutator of Dirac transverse gamma matrices can be expressed as

V'] = —4i€ 5%, (A12)

where € is the anti-symmetric rank-two levi-civita tensor, and 5% is the light cone helicity operator acting on the
good component of the spinors 3

G h @
S*u ") = Sup (")
N (A13)
§*07 (") = —50 7 (0"),

where we denote the two fermion spin states +1/2 by h = £ for notational simplicity. In addition, it is easy to show
that the following relation between the complete spinors and good component of the spinors is satisfied

X (@) ws(p) = X0 Tl (o). (Al14)

Therefore, in four dimensions we find a very useful simplification of the Dirac algebra in Eq. (6)
_ 3 j . 4G — 3 . 17 —
Wy () I Tun(p) = —4ie ()7 S un (p) = ~2ihe” @, (p)y T un (p). (A15)
Appendix B: Transverse integrals

1. Transversely polarized photon

In order to compute the vertex corrections for the transversely polarized virtual photon one must evaluate the
following rank-3 (r3) tensor integral

’ i mdo vk
190, My 21y = () [ PP (B1)
m DODI
where the denominators D, and D; are defined as
Dy=m’+M,;, D;=(m-r)*+M, (B2)

and the integral measure in d;, = 2 — 2¢ dimensions is

I GRE (f;)fﬂ [ (d%)m (B3)

3 The projections to the good (G) and bad (B) components of a complete spinor field ¥ are defined as Pg,pV = ¥/, where Pg =
vyt /2 and Pg = 4Ty 7 /2 (see e.g. [4]).
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Using the standard Feynman parametrization with
(1 —2)Dy + 2Dy = (m — ar)® + (1 — 2)r> + (1 — 2) M, + =M, (B4)

and performing the change of variables n = m — xr gives

1 7 A 1 A /7
1790, My, My) = (am) [ [(HE D ka0 (85)
0 n (Il +M)
where
M =z(1 —2)r* + (1 — )M 4 zM,. (B6)

Upon the integration over transverse momentum n the numerator simplifies to

2
(n+xr)' (n+ar —p)’ (n+zr — (j)k = gf{xr%]k + (ar — ;b')]c?lk + (zr — Q)kél]} +ar'(xr — p) (xr — (j)k (B7)
1

+ O(n and n®),

where the linear and cubic terms in n goes to zero in dimensional regularization framework. Performing the transverse
integrals over n with standard momentum integrals that we have listed in [35], and expanding in power of £ we obtain

+ I("B) + I("B)

uv

109 (e, ps My, My) = 10

+ O(e), (B8)

f F

where the UV-divergent part of the integrals becomes

f 171 2 1 . , y
™ = 3 [— + log % } / dz (xrléjk + (wr —p) o™ + (wr — fi)ké”)
UV ENS Q 0
ol ) (B9)
=2 [; + log <g)2>} (rzéjk +(r—2p)Y 6% + (r — 2(})’“6”)
MS
and the UV-finite parts

(r3) 1 ! (r3) (r3) @2
109 =3 ) o (22 + 25" Y108 | =7 |- (B10)

1 3 A (73) 2 A (73) (r3)
73| _ / qp P Br1 + 2 Apy +2lpy (B11)

rJo M

Here the coefficients A(FTi3) and Ag %) are given by
AU — iy
ALY = =1 (g" + )
AR = 'y d* (B12)
AGY = ok I g kst
Ags) — st ghsi

2. Longitudinally polarized photon

In order to compute the vertex corrections for the longitudinally polarized virtual photon one must evaluate the
following rank-2 (r2) tensor integral

19 (e, i My, My) = (47) / mi(m —p)! (B13)

m DODI
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where the denominators Dy and D, are given by Eq. (B2). Performing the Feynman parametrization and the transverse
integrals as in the transverse photon case we obtain

179 (e, p; My, My) = 172 4 109 410D L 0(e) (B14)
uv f F
where the UV and finite parts simplify to
6 1 2
) =4 [— +log [ £5 } (B15)
uv 2 lews Q
s 1 @2
) = ) / dalog | <= B16
= [ aros (5 (B16)
and
1 2 A (12) (r2)
X A A
1(72) _ / deI F1 + F2 (B].?)
rJo M
with the coefficients Agf) =r'r/ and A%TQQ) = friﬁj . The remaining integrals over x are straighforward to perform,

but yield complicated expressions that we will not write out here.

Appendix C: Transverse Fourier Integrals

In this appendix, we present the integrals that are needed to calculate the Fourier transformed LCWEF’s for transverse
and longitudinal virtual photon in the mixed space up to NLO. The Fourier transform momentum integrals obtained
in this paper can be computed by applying the Schwinger parametrization

1 1

IR T S 'y
Aﬁ_r(ﬁ)/o AP L, A8 >0, 1)

For the gg-component of the longitudinal and transverse virtual photon, the two basic momentum integrals expressed
in the mixed space (see section VII) can be written as

dd—QP iP-x _ oo B =2 L2
/ r e ~ (4! d/2/ qeel -2 1@ %
(27) {Pz +@2} 0

. dd*QP iP-x : . _ 0o 3 =2 2
/ X e pi— 1X1(4ﬂ_)1 d/2/ dp—/2,71Q i
(27) [Pz 4@2} 2 0

(C2)

where the (d — 2)-dimensional Gaussian integrals are performed over P. Using the formula

oo B/2
B
/ AP e e T =2 (Z) K_4 (2\/,43) ., AB>0 (C3)
0

where K, (z) is the modified Bessel function of the second kind, the integrals in Eq. (C2) simplify to

d/2—2

dd—2P eiP~x 1 6 o
/ (2m)?? {P2 +@2] B <T|X\) Ky (XIQ)

Ap JPx g\ B
/ (2m)" {PS QQ}P = (gg) e (i)
+

(C4)
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In addition, we also need the integrals (see derivation in [29])

d—2 iP-x 2 =2 — d/2—2 9—2
[ (T ) = o (k) K (<@ {5108 () + wo)
(Qﬂ)d 2 p? 4 02 Q 27 \ 27|x| 2 2 4
e (C3)
+0(d - 4)}
d—2 iP-x 2, ~2 = d/2—1 2—2
d f) c P’ log w = ix’ @ 1 log xQ + Uo(1) | Ka_y (|XQ)
(2 )d 2 2 . =2 2 27T|X| 2 4 g1
(PR Sy @
(C6)
+ K, (x[Q) + 0(d - 4)}
Q" ’
where ¥q(x) is the digamma function with ¥4(1) = —vg, and
_ P. 2,752 —2 — o d/2-1
.dd 2P esz ; P +Q P2+ w 1 o
/ =3 P ( . ) log 72Q = 2ix (2 C|2X|> {iKO (|X\Q) +0(d - 4)} (C7)
(2m) {PQ + @2} p Q ™ x|Q
For the ggg-component of the longitudinal virtual photon we need the following integral
. ., » 2P 442K Ko Px Ky
ooy @ =ntt [ 25 (8)

(2m)?2 |:P2 JrQQ} {KQ Y (Pz +@2)} '
Using Eqgs. (C2) and (C1) we get

) . - ) [e’e] .2 [e’e] — d2P 5 .
T'(xy,Qw) = 12 % L(am) ~ 4%y / At~ 2 / dse— (st / (%)267<s+m>1’ P (C9)
0 0

where the Gaussian integral over the transverse momentum P is

P Px _ IR
/(2 )26 (s+tw)PQeZP _ (47T) 1(s+tw) 16 Ty (C].O)
Yis

By making the change of variables u = s + tw,

X . a / B . (e ¢] _ - 2 oo d =2 7&
Iz(x,y,Q27w) =12 g%(éhr) d/2yl/ dtt~2e / L i (C11)
0 tw

and changing the order of integration we obtain

. . 4 B oo d a2 w/w 3 - 2
T'(x,y, @ w) = u* S (4m) d/zyb/ @ / dit= 2= (C12)
0o u 0

Finally, performing the outer integral with respect to ¢ we obtain the result

) _4 ai ) B © qu A2 x2 d 2
T'(xy. @ w) = u* F o Pyiy?) / S, mr(—l,“’y), (C13)
0

u

where I'(s, z) is the upper incomplete gamma function. For the case d = 4,

Ii(X,y762,w) = ﬁ%}—(o (Q X2 +0Jy2> . (014)
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Similarly, for the ggg-component of the transverse virtual photon we need the integrals

) . d2P dd—ZK Psz iPx iK'y
(2m)= - (2m) [PQ + @2} {KQ tw (P2 + @2)}
and
- - 2P 192K iP-x_iK-y
I(x,y,Q w) = p* 2 / 2 / T s : (C16)
2m)® ) (27) [Kerw (P2+@2)]
Following the same steps described previously we find
; — —d/2 © du _,a5% _ d wy?
7ik 2 2-dj2T ikyo2 1—d/2/ du @~ (4 Wy C17
(X7Y7Q’w) /~L 16 Xy(y) 0 Uze € 2 ’ 47.L ( )
and
dj2—1

I(x,y,Q w) = (2m) " (f)zjd/? L Kay <@\/x2 + wy2> : (C18)

For the case d = 4

o _ 1 xivE Ie) _
Ty, Qw) = ——— S, Y (Q X’ +wy2)
2m) y /52 1 wy?
(C19)
_ 1 Q _
I(x,y,QQ,w) = 5 Q K, (Q x2 +wy2> .
(2m) /52 n wyz
Appendix D: Wilson line color algebra
For the cross section we need the following qq and ¢gg matrix elements with eikonal operator S B

5&66a’5’ <Q(€+a X/a h7 a/)q(€l+> yla 7}7‘7 /gl)‘l - SVElq(p+7 X, h» a)@(pl+7 Y, 7h7 B)) (Dl)

and
taﬁt (@ (E x', h a) (f y’,—h,ﬁ’)g(w‘k,z',a',b)|1—S'E|q(p+,x7 h,a)q(pH',y,—h,ﬁ)g(k+,z,o,a)>. (D2)

Using the definition of eikonal scattering operator Eq. (51) together with the normalization conditions in Eq. (50) one
obtain

<(j(€+,xl,h704) (£+>Ya hﬁ)‘lfsEM(p Xha‘j 7Y7 hﬁ))
[6(,&55[3 > A aalUTTA¥)] 55004 M} aptpt2)?opt — )T — )8 (x - x)§P (y — ).

a,p

On the cross section level this expression is multiplied with d,40,,/ 8 and thus
5a56a'ﬁ’ <q_(£+7 X/7 h7 a/)q(£l+a ylv 7ha /Bl)|1 - 5'E‘q(p+7 X, ha a)d(pl+7 Yy, 7ha 5)>

D4
N {Nc - Tr (VA1 G)U T[4 <y>)} W T - 0 - -y y)
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Similarly, for the ggg-term one obtain
<Q(Z+7 X/7 h? a/)q(£/+7 y/7 _h7 B/)g(w+7 Zla Ulv b)ll - S'E|q(p-"_7 X, h7 a)q(p”ra Y7 _h7 5)g(k+7 z,0, a)>

= [%'Q%/ﬁ%a = > WA aalUTAI)] 531V [A)2)]ea (8, 405 300c) (D5)

&,B,c,a
x 8ptp kT (2n)2 s (pT — eT)e(p'T — TSk — w+)(5(2) (x— x/)6(2)(y - y/)5(2)(z —z)5_ .

On the cross section level this expression is multiplied with ¢g Htl[)a'a’v and thus
taaty o (@ X by o )g (0 y' —h, B)g(w™ 7' o' b)|SEla™, x, b, @)@y, —h, B)g(k ", 2,0, a))
— [N 1 (VAU ) WA (D6)
b,a
x 8p TR (2m) (" — (1) — )6k — w e (x = XNy — y)0P (2 - 25, .

Rewriting the adjoint Wilson line as

VIA)(2)]he = 2T (UIA](2)¢"U (4] 2)1") (D7)
and applying the Fierz identity
o a 1 1
tagtap = 5 | 9apdpa — ﬁclsaﬁéaﬁ (D8)

together with the unitarity condition, U[A](z)U[A](z) = 1 N> one finds the expression

2T (U T AN ) VIAN @) = [Tr (U110 [4](2)) Tr (UL A)(2)U " 4] ()
@ D9
- 3T (TLAI00 Al | v
Appendix E: Subtraction procedures
The polynomial subtraction term in [30] is taken as proportional to
S = D2 [ 22 2 o) 2 o), (1)

where the first term corresponds to the desired UV divergence in the limit x55 — 0 and the second term is added in
order to cancel the IR divergence introduced by the first term. We use here the notations of [30], which are related to
ours by Xy = X, X; = ¥, X9 — z and Xgy — ', etc. Using X7 = X9 + X1 and X3, = x§0 + x31 + 2x5¢ - Xg1 We have

(d/2 —1)*

Spol = 421 / dd72x2{x§0(x30)2’d - Xgo (Xgo)lidﬂ(x;)lidm — X30X01 (Xgo)lid/Q(Xgl)lid/Q} (E2)
™

and performing the Feynman parametrization one finds the result
Spot = —(x1)*"*T'(d/2 - 2). (E3)

Note that this result is valid when € < 0. Thus one has to analytically continue this to € > 0 and the result is

1
Spol = + <g +vp + log(x31)> : (E4)
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Our subtraction term uses the integral

r(d/2 1)
Sup = DE D [ato a2t (E5)

d/2—1 2T
%

which has the same divergent behavior in the limit r,,, — 0, but moderated by an exponential function so that there
is no IR divergence. The constant ¢ is taken as £ = ¢”#. This gives

Sexp = (12,6)°*T(d/2 = T2 - d/2). (E6)
This result is valid when € > 0 and we get

1
Sup =+ (£ +75 +loxl) ). (&7

It can be illustrative to go to d = 4 dimensions and perform the angular integral. Doing this one gets

dlx

Spor = 2 Mauxm—mzo\) (ES)
X20|
er.’lJ 7['2 r2

Suey = 2 ‘l ‘\6 2. /(02,8). (E9)

This shows that indeed both functions subtract the same UV divergence in the small daughter dipole limit, but at
larger values of |x9q| = |r,,| the behavior is different. Although both choices lead to a perfectly finite final result, we
believe that the discontinuous theta function in (E8) can be somewhat inconvenient from a numerical point of view
in the multidimensional numerical integration required to evaluate the cross section in practice.

Appendix F: Derivation of UV-finite terms for ¢”T

Here we present the detailed computation of individual UV-finite contributions to the transverse virtual photon
cross section appearing in Eq. (215).

The full cross term given in Eq. (199) is divided into three parts: The conribution coming from the instantaneus
diagrams simply gives

2Re [(])(k)*] =0. (F1)
The interference terms between the radiative diagrams (h), (i) and instantaneous diagrams (j), (k) simplifies to
2 2_ .3 2 2
2Re () + (0)) ((G) = ()" | = 4(;)4 %[m@mo]? [+3 2 + 3<++3 %) 2
207371 (22 + 23)° Tays "Tay | 202320 Tays Ty (F2)
2 + 29 r, 2tz s, |
where
L r2, <z iz ) Ty Ty
17+ 22 (F3)
29 + 23
Thanks to the above identities, Eq. (F2) can be further simplified to
. . * 2 Q2 2 Z1%2%3 21
e (1) + 0 (1) = ()| = (o R @RI 2t () 4 o

o) poaltz ) plrra)]

2 2
Z2+ 23 Iy ey
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with the coefficients
A= ZB{(Zl +2)° + z123(22 + 23)}
B = zl{(zg + 23)° + 2123(21 + z2)}

Finally, the interference term between radiative diagrams (h) and (i) can be cast in the following form

2 @
4(2m)* R?

2173

QB o= T

2Re {(h)(i)*} = [33(2’1 —2z)°

- {zl(zl F29) + 25(20 + 23)] {21(22 +zg) 4 25(21 + zz)} M (F6)

r,,r

zy
2 2 (rzz y rzy)2
+ 2212023 (21 + 22)" + (22 + 23)" | —5—5 — |
rzzrzy
where we have used the identity
R2 29
Yoyz " Tyzz = — + (rzz'rz ) (F7
v (21 +2)(22 +23) (21 + 29) (22 + 23) Y )
The term proportional to (r,, - I‘Zy)2 can be further simplified by noticing that
1 Z9 + zZ3 2 z1 R Z9 2 ]12
r,,- I‘Zy = 5 {(T) r.. + (T I'zy — ?2:3 . (FS)
Straightforward algebra leads to
. 2 Q° 21292 R(r,, -r,,)
2Re (00| = 1o K QR et o T
4(27T) R (Zl + 22)(22 + 23) Toalzy (Fg)
+D 21+ 2o (rzzérzy) + 2y + 23 rzzérzy) +E ’
1 s %3 Iy
where we have defined the coefficients
G CRL )] ZQL(ZQ *7) { [(1 — 7))+ zf} + [(1 —z3)% + z§] }
2
D= 212’3{(2’1 +2) 4 (2 + 23)2} (F10)
E=zy(2 — 23)2-
Summing the contributions in (F4) and (F9) togehter we find for equation
2 2 2
. R . .
(199) = 2Q . Z1%9%3 / [K1(Q\2R|)] [—C (‘;zx;zy) n (rszrzy) {D (Zl + 2’2) B A}
4(2m)* (21 + 22) (22 + 23) J2 R S rs, 21 (F11)

A (2] (e (e s
rzy z3 Z1 +Z2 29 + 23

The sum of contributions coming from the two instantaneus diagrams squared Egs. (197) and Eqgs. (198) can be
simplified to the following form

2Q° 217273 H/ (K. (QR|))? (1-s
)

@,- +@ ) — xyz)
©) * 42m)t (21 + 22) (22 + 23)  Ja R )

(F12)

where

22023 [ (20t 23) | (21 4 22)
= 2 {(21+Z2) * (22‘*‘23)}. (F13)



46

Finally, combining the contributions in Eqs. (F11) and (F12) give the result shown in Eq. (215).
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