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Olkoon R kommutatiivinen rengas. Tämän tutkielman tarkoituksena on etsiä ylä- ja
alarajat äärellisviritteisen ideaalin I = (a1, . . . , an) ⊂ R minimaaliselle virittäjämää-
rälle. Tärkeänä työkaluna toimii moduliteoria; modulit yleistävät sekä ideaalit että
vektoriavaruudet.

Jos joukko {a1, . . . , an} on vektoriavaruuden V virittäjäjoukko, jossa mikään alkioista
ai ei kuulu toisten virittäjien lineaariseen verhoon, on kyseinen joukko lineaarisesti
riippumaton virittäjäjoukko eli kanta. Tällöin kaikissa vektoriavaruuden V virittäjä-
joukoissa on vähintään n alkiota, ja kaikissa kannoissa niitä on tasan n kappaletta.
Tarpeettomien virittäjien poistaminen ei ideaalin ollessa kyseessä kuitenkaan riitä.
Vaikka mitään ideaalin virittäjistä ai ei voitaisi poistaa, pienempi virittäjäjoukko
saattaa silti olla olemassa.

Erityinen kokoelma renkaita, joissa ideaalin minimaalisen virittäjämäärän selvittämi-
nen on verrattain helppoa, on lokaalit renkaat. Hieman yleisemmin: kun R on lokaali
rengas, niin äärellisviritteisen R-modulin minimaalinen virittäjämäärä on sama kuin
tietyn renkaaseen ja moduliin liittyvän vektoriavaruuden dimensio. Todistus pohjau-
tuu moduliteorian tulokseen, joka tunnetaan nimellä Nakayaman lemma. Lokaalien
renkaiden tapauksessa kysymys voidaan siten palauttaa vektoriavaruuden dimension
selvittämiseen.

Renkaan lokalisaatio syntyy samantapaisella (vaikkakin hieman yleisemmällä) kon-
struktiolla kuin rationaaliluvut. Sen avulla voidaan löytää alaraja ideaalin minimaa-
liselle virittäjämäärälle renkaassa, joka ei ole lokaali. Jokaisella ideaalilla on lokali-
saatiossa sitä vastaava ideaali, jota kutsutaan sen laajennukseksi, ja laajennuksen
minimaalinen virittäjämäärä on pienempi tai yhtä suuri kuin alkuperäisen ideaalin
minimaalinen virittäjämäärä. Alkuideaalin suhteen tehty lokalisaatio on lokaali ren-
gas, joten yllä esitetty tulos antaa halutun alarajan. Jos tämän suuruinen virittäjä-
joukko on löydetty, voidaan näin todistaa että se on minimaalinen siinä mielessä, että
pienempiä virittäjäjoukkoja ei ole olemassa.

Mikäli R on Noetherin rengas, voidaan sen ideaalien minimaaliselle virittäjämäärälle
löytää myös yläraja. Tässä tekstissä esitellään Otto Forsterin tulos. Jokaiselle äärel-
lisviritteiselle R-modulille E määritellään luku b(E) siten, että E voidaan virittää
joukolla alkioita, joita on b(E) kappaletta. Myös tämä tulos hyödyntää lokalisaatiota,
ja sen lisäksi Krullin dimensiokäsitettä ja Zariski-topologiaa.

Käsitteiden selventämiseksi käytetyistä esimerkeistä suurin osa käsittelee polynomi-
renkaita.

Asiasanat: kommutatiivinen rengas, ideaali, lokalisaatio, virittäjä, moduli, polynomi



Abstract

Pirnes, Erika: The Minimal Number of Generators for Ideals in Commutative Rings,
Master’s Thesis in Mathematics, University of Jyväskylä, Department of Mathematics
and Statistics, May 2018. 58 pages, 1 appendix (1 page).

Let R be a commutative ring. The goal of this work is to find upper and lower
bounds for the minimal number of generators for a given finitely generated ideal
I = (a1, . . . , an) ⊂ R. The way towards the solution passes through some module
theory; modules generalize both ideals and vector spaces.

If {a1, . . . , an} is a generating set for a vector space V , and none of the generators ai
belongs to the linear span of the others, the set in question is a linearly independent
generating set and thus a basis. Then all generating sets of V have at least n elements,
with bases having exactly n. However, in the case of an ideal, it is not enough to
remove unnecessary generators. Even if none of the elements ai can be removed, a
smaller generating set might still exist.

Local rings are a special type of rings where it is easier to determine the minimal
number of generators for an ideal. More generally, the minimal number of generators
for a finitely generated module over a local ring is the same as the dimension of a
specific vector space related to the ring and the module. The proof is based on a
module theory result, which is known as Nakayama’s lemma. In the case of local
rings, the problem thus simplifies to finding the dimension of a vector space.

Localization of a ring is constructed in a similar way to rational numbers, although
the process is more general. Using localization, it is possible to obtain a lower bound
for the minimal number of generators for an ideal in a ring that is not local itself.
For any ideal, there is a corresponding ideal, called extension, in the localization, and
the minimal number of generators for the extension is smaller than or equal to the
minimal number of generators for the original ideal. If the localization is done at
a prime ideal, it is a local ring; therefore the result described above gives the lower
bound. In the case when a generating set of this cardinality has been found, this
approach can be used to prove that the generating set in question is ”minimal” in the
sense that there cannot exist any smaller generating sets.

For Noetherian rings, also an upper bound for the number of generators can be
obtained. This text presents a result by Otto Forster. For any finitely generated
module E over a Noetherian ring, it assigns a number b(E) so that E can be generated
by b(E) elements. Also this result makes use of localization, in addition to Krull
dimension concept and Zariski topology.

Polynomial rings are used as an example throughout the text to illustrate the concepts.

Keywords: commutative ring, ideal, localization, generator, module, polynomial
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Preface

The idea for this master’s thesis dates back to roughly a year ago, when I spent
two months in Ann Arbor, Michigan. I participated in a program called Research
Experience for Undergraduates (REU) at the University of Michigan, with Karen
Smith as my mentor. The main goal of my stay was to learn about algebraic geometry,
but I also took several small algebraic (and not so geometric) side steps. I had been
working with ideals in C[x, y], and one day I asked Karen (without having thought
much about it, I have to admit), whether every ideal in that ring can be generated
by two elements. This would have seemed reasonable, as two is also the number of
variables, but of course it was not true.

As a part of her answer, Karen presented a theorem (Corollary 3.7 in this text) that
characterizes the minimal number of generators for an ideal in a local ring, but there
were many things in her explanation that I did not understand. For example, the
theorem was about local rings, which means rings that have a unique maximal ideal,
and it was not clear why or how the result could be applied to the non-local polynomial
ring C[x, y]. The following autumn, after considering other options, I decided to write
my master’s thesis on this subject, as I wanted to understand the theory behind these
ideas.

The topic gradually evolved to include other types of rings besides polynomial rings,
as the results can be applied to a more general situation. And when I started looking
for proofs, it soon became obvious that they required module theory: even to such
extent that most of the results of this work are for modules, which are a more general
concept than ideals. Despite this, I have decided to hold on to ideals and the ”original”
title (which actually changed twice during the process). The main reason behind my
decision is that the most natural examples seem to come from polynomial rings.

Finally, I want to thank two people without whom this text would be completely dif-
ferent. One of them is of course Karen, who gave me the idea for this work. Last but
not least, I want to thank my advisor Jouni Parkkonen, who has used a tremendous
amount of time and effort in reading the unfinished text over and over again. His
valuable support and sharp observations have allowed me to reach much higher than
I could ever have been able to on my own.

Erika Pirnes

Jyväskylä, May 24th, 2018
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Introduction

Let R be a commutative ring, and let I = (a1, . . . , ak) ⊂ R be an ideal. The ideal I
has a generating set of k elements, but some set of fewer elements might also generate
it. The set of those numbers so that I has a generating set of that many elements is
a nonempty subset of the natural numbers, so it has a minimal element. Therefore
there exists a number µ so that I can be generated by µ elements, but no set of less
than µ elements generates I. Now the problem is how this number can be found: it
is obviously not sensible to try to go through all the possible generating sets, unless
the ring R happens to be finite.

In some cases it is easy to see that some of the given elements are not neces-
sary in defining the ideal. For example, the elements a1 and a2 generate the ideal
(a1, a2, a1a2) ⊂ R, and depending on these elements, the ideal might be generated by
just one of them. However, generally it is not obvious whether some of the generators
of an ideal (a1, . . . , ak) ⊂ R can be removed.

For a vector space X, if there is a set of vectors S which spans X and the span of
any subset of S is a proper subspace of X, then S is a basis. Furthermore, all bases
have the same cardinality. So in the case of a vector space, a basis can be found
by removing unnecessary elements. Both ideals and vector spaces are examples of a
more general concept, modules, but the situation with ideals is not as fortunate as
with vector spaces. As an example, consider I = (2) = (4, 6) ⊂ Z. As 2 belongs to
neither (4) nor (6), one might think that both of the two elements are required for
generators, which is not the case.

The example given above is a bit trivial, as Z is a principal ideal domain (i.e. all its
ideals can be generated by a single element), but a similar example for a ring which is
not a principal ideal domain would be (x) = (x2+x, x2) ⊂ Z[x], discussed in Example
2.1. So it is not sufficient to look at the given generators and decide whether all of
them are necessary, which makes the problem more complex.

The goal of this work is to present some existing results regarding upper and lower
bounds for the minimal number of generators, and thus also the structure of this
work breaks naturally into two parts. The first part consists of Chapters 1 to 5; it
treats the special case of local rings and establishes a lower bound for non-local rings.
The purpose of the second part, Chapters 6 and 7, is to find an upper bound for
Noetherian rings.

It is assumed that the reader is somewhat familiar with rings, ring homomorphisms
and quotient rings, as well as groups and quotient groups, polynomial rings in one
variable, and vector spaces. However, few results are assumed to be known, and
the majority of elementary resulsts in this work include a detailed proof. A reader

2



INTRODUCTION 3

wanting to refresh their memory or learn about the basic concepts may benefit from
reading the comprehensive textbook Abstract Algebra by David Dummit and Richard
Foote [Dummit].1

Chapter 1 is a preparation for the theory needed in the other chapters. It introduces
ideals, ideals generated by subsets, Noetherian rings, products of ideals, maximal and
prime ideals and some of their properties. It also discusses the basic concepts of
module theory and gives examples of maximal and prime ideals in polynomial rings.

Chapter 2 presents the problem of finding the minimal number of generators for an
ideal, and compares it with finding the dimension for an vector space. It also gives
examples, one of which shows that the minimal number of generators for the ideal
(x, 2) ⊂ Z[x] is two. This example can be done by elementary methods, but more
general examples need more tools.

In Chapter 3, the minimal number of generators is established for ideals in local
rings, which are rings that have a unique maximal ideal. In the case of local rings,
the minimal number of generators for an ideal is the same as the dimension of a
specific vector space related to the ring and the ideal. However, not every ring is
local: for an example, the familiar rings Z and Z[x] are not, together with other
polynomial rings. Therefore, the result only applies to a narrow collection of rings.

Chapter 4 introduces a process of localizing a ring: from a given ring it produces
another, which is called the localization of the ring. This process is a generalization
of the construction of rational numbers. In the case of rational numbers, all nonzero
integers become invertible, but the more general process makes a possibly smaller
subset of the ring invertible. When this subset is the complement of a prime ideal,
the resulting ring is a local ring.

In Chapter 5, localization is used to obtain a lower bound for the minimal number
of generators for ideals in non-local rings. For any ideal, there is a corresponding
ideal, called extension, in the localization, and the minimal number of generators for
the extension is smaller than or equal to the minimal number of generators for the
original ideal. Localizing at a prime ideal and using the results of Chapter 3 gives
thus a lower bound.

The purpose of Chapter 6 is to build up the background needed for the last chap-
ter. Its topics include radical ideals, Krull dimension concept, tensor products and
localization of modules.

Chapter 7 presents a result by Otto Forster. This result gives an upper bound for
the minimal number of generators for an ideal in a Noetherian ring: it assigns a
number b(E) for any finitely generated module E so that E can be generated by b(E)
elements. The chapter ends with an example which shows that the result does not
hold for a module that is not finitely generated. In this case the number b(E) might
be finite, even though no finite set generates the module.

Throughout this whole text, the capital letter R is used to denote a commutative
ring with a multiplicative identity 1R 6= 0R. When the ring R is clear from context,

1Referring to this book by the name of only one of the authors is not done in order to ignore
the other author, but it is an attempt to create labels that are easy to remember and not too long.
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the subscripts are dropped and less cumbersome notation 1 = 1R and 0 = 0R is used.
When R and S are rings and ϕ : R → S a ring homomorphism, it is required that
ϕ(1R) = 1S. For (additive) quotient groups, quotient rings and quotient modules, the
notation x+D is used to denote the class of the element x, when D is the subgroup,
ideal or submodule with respect to which the quotient is taken.

The symbol Z+ is used to denote the positive integers {1, 2, 3, . . . }, and the symbol
N for the natural numbers {0, 1, 2, . . . }. For inclusion of sets, the notations A ⊂ B
and A  B are used, where the first allows the sets to be equal, and the second does
not. The difference of two sets is denoted by A − B. A list of used notation is in
Appendix A.



CHAPTER 1

Preparation: Ideals and Beyond

The goal of this chapter is to provide sufficient background for the subsequent chap-
ters. It concentrates on generators of ideals, Noetherian rings, maximal ideals, poly-
nomials and modules.

1.1. Generators

The beginning of this section up to Corollary 1.9 deals with ideals generated by subsets
of a ring, and it uses [Dummit, section 7.4]. Proposition 1.13, which characterizes a
Noetherian ring, is a modified version of the well-known result presented in [Dummit,
section 15.1]. The section ends with Lemma 1.16 taken from [Dummit, exercise 12,
section 7.4], which helps to find generators for the product of two ideals.

Definition 1.1. A nonempty subset I of a commutative ring R is an ideal, if it is
a subgroup of the abelian additive group (R,+), and closed under multiplication by
elements of R.

The following two conditions can be used to check whether a subset is an ideal:

(i) for every a, b ∈ I also a− b ∈ I (the subgroup criterion)
(ii) for every a ∈ I and r ∈ R, ra ∈ I.

The second condition implies that if an ideal I ⊂ R contains a unit (an invertible
element) or the multiplicative identity, then I = R.

Remark 1.2. The intersection of arbitrarily many ideals can be easily shown to be an
ideal. In general, unions of ideals may not be ideals, which the next example shows.

Example 1.3. Let R = Z. The union of the ideals (2), (3) ⊂ Z is not an ideal: The
union consists of integers which are divisible by either 2 or 3. Therefore 5 = 2 + 3 is
not an element of the union, so the union is not an additive subgroup, and thus not
an ideal.

Definition 1.4. Let S ⊂ R be a subset. The ideal generated by S is the ideal

(S) =
⋂
{I ⊂ R : I is an ideal, I ⊃ S}.

The set S is called the generating set of (S). An ideal I ⊂ R is said to be finitely
generated if it has a finite generating set, i.e. I = (S) for some finite set S.

Remark 1.5. Every ideal has a generating set, as an ideal always generates itself.
The ideal generated by a set S is the smallest ideal that contains S, as it is the
intersection of all such ideals.

5



1.1. GENERATORS 6

Lemma 1.6. Let S ⊂ R be a subset. Let S∗ be the set of all finite R-linear combina-
tions of elements of S:

S∗ =

{
k∑
i=1

risi : si ∈ S, ri ∈ R, k ∈ Z+

}
.

Then S∗ is an ideal of R which contains S. Moreover, if I ⊂ R is an ideal, then
S∗ ⊂ I if and only if S ⊂ I.

Proof.
It is straightforward to verify that S∗ is an ideal, as all the elements of S∗ consist of
sums. As any s ∈ S can be expressed as s = 1R · s ∈ S∗, it follows that S ⊂ S∗. This
proves the first claim.

Let I ⊂ R be an ideal, and assume first that S∗ ⊂ I. Then S ⊂ S∗ ⊂ I. Assume
then that S ⊂ I. Let t ∈ S∗, so there exists k ∈ Z+ so that t =

∑k
i=1 risi for some

ri ∈ R and si ∈ S. As I is an ideal and each si ∈ S ⊂ I, also each risi ∈ I, and as I
is a subgroup of (R,+), also t ∈ I. Therefore S∗ ⊂ I. �

Proposition 1.7. Let S ⊂ R be a subset, and S∗ as in the previous lemma. Then
(S) = S∗.

Proof.
By the previous lemma, for S∗ ⊂ (S) it is enough to show S ⊂ (S), but this is obvious.
Again by the lemma, S∗ is an ideal which contains S, so as (S) is the intersection of
all ideals of this kind, the inclusion (S) ⊂ S∗ follows. �

The preceding proposition thus gives a convenient form for the ideal generated by a
subset: all its elements can be expressed as finite sums. In the case of a finite set
S = {a1, . . . , an}, it may be assumed that this sum has n terms for each element
of (S); this might be convenient in some proofs. (Gather terms with same si to get
k ≤ n, and if this results in k < n, take ri = 0 for the remaining indices.)

Corollary 1.8. Let S ⊂ R be a subset and I ⊂ R an ideal. Then S ⊂ I if and only
if (S) ⊂ I.

The preceding corollary transforms the problem of deciding whether two ideals are
the same, into determining if the generators of each ideal belong to the other ideal.
More precisely:

Corollary 1.9. Let I, J ⊂ R be ideals with generating sets SI , SJ ⊂ R, respectively.
Then I = J if and only if SI ⊂ J and SJ ⊂ I.

Definition 1.10. A ring R is Noetherian if each of its ideals is finitely generated.

Definition 1.11. An integral domain R is a principal ideal domain, if its every ideal
can be generated by one element.

Example 1.12. All fields are Noetherian rings, as any field F has only two ideals:
the zero ideal generated by 0F and the field itself, generated by 1F . All principal ideal
domains are also Noetherian rings. Some examples of principal ideal domains are Z
and R[x] when R is a field, and they are thus also Noetherian rings.
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Hilbert’s basis theorem (which is proved in section 1.3) states that polynomial rings
over Noetherian rings are also Noetherian, but these are not always principal ideal
domains. Examples 2.3 and 5.3 present ideals of Z[x] and Z[x, y]1 where the minimal
numbers of generators are 2 and 3. When the number of variables is more than 1,
not even R being a field improves the situation: Remark 5.5 gives for each n ∈ Z+

an ideal in R[x, y] which cannot be generated by less than n+ 1 elements.

For many proofs, it is convenient to use a property called the ascending chain condition
on ideals, which states that there are no infinite strictly increasing chains of ideals.
This is equivalent to the ring being Noetherian:

Proposition 1.13. A ring R is Noetherian if and only if it satisfies the ascending
chain condition: whenever I1 ⊂ I2 ⊂ . . . is an increasing chain of ideals of R, then
there exists m ∈ N such that Ik = Im for all k ≥ m.

Proof.
Assume first that R satisfies the ascending chain condition. Assume on the contrary,
that R is not Noetherian. Therefore there exists an ideal I ⊂ R which cannot be
generated by finitely many elements. Let a1 ∈ I. Then a1 does not generate I, so
there is a2 ∈ I such that (a1)  (a1, a2). The set {a1, a2} does not generate I, so there
is a3 ∈ I so that (a1, a2)  (a1, a2, a3). By continuing like this, an infinite strictly
increasing chain of ideals can be constructed. This contradicts the ascending chain
condition. Therefore R is Noetherian.

Assume then that R is Noetherian. Let I1 ⊂ I2 ⊂ . . . be an increasing chain of
ideals. Their union U = ∪k∈Z+Ii is an ideal as the ideals Ik are nested. As R is
Noetherian, U has a finite set of generators {a1, . . . , an}. Each ai ∈ Iki for some ki.
Let m = max{k1, . . . , kn}. As the ideals Ik are nested, Iki ⊂ Im for all ki. Therefore
{a1, . . . , an} ⊂ Im, which implies that U ⊂ Im by Corollary 1.8. As also Im ⊂ U , the
equality Im = U holds. Let k ≥ m, so Im ⊂ Ik. Also

Ik ⊂ U = Im,

so Ik = Im, and the ascending chain condition is satisfied. �

Definition 1.14. The product IJ of two ideals I, J ⊂ R is the set of all finite sums
of terms of the form ij, where i ∈ I and j ∈ J .

It is straightforward to verify that the product of two ideals is an ideal. However,
in the definition of the product, it is necessary to take the sums of the elements ij,
because the set of these elements might not be an ideal:

Example 1.15. Consider the ideal I = (x, 2) ⊂ Z[x], which is a proper ideal consist-
ing of all polynomials with an even constant term. The polynomials x2 and 4 are both
of the form fg, where f, g ∈ (x, 2). Their sum x2 + 4 is an irreducible polynomial
in Z[x], so if x2 + 4 = fg for some f, g ∈ (x, 2), either f or g has to be a constant
polynomial. But only 1 and -1 are possible, and these are not elements of (x, 2).
Therefore the set of elements fg, where f, g ∈ (x, 2), is not an ideal, as it is not closed
under addition.

1see Definition 1.29 for polynomials in several variables
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This kind of an example cannot be constructed with two ideals when one or both of
them are generated by one element, which follows from the next lemma.

Lemma 1.16. Let I, J ∈ R be ideals, and assume that I = (a1, . . . , an) and J =
(b1, . . . , bm). Then IJ is generated by the elements aibj where i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m}.
Proof.
It is obvious that the ideal generated by the elements aibj is contained in IJ . For the
other inclusion, it needs to be shown that any element of IJ can be expressed as an
R-linear combination of the elements aibj.

Assume that c = ab for some a ∈ I and b ∈ J . The elements a and b can be expressed
as R-linear combinations of the generators: there exist r1, . . . , rn, s1, . . . , sm ∈ R such
that

c = (r1a1 + . . . rnan)(s1b1 + . . . smbm) =
∑

1≤i≤n,
1≤j≤m

risjaibj.

As any element of IJ can be expressed as a finite sum of elements of the above type,
IJ is generated by the elements aibj. �

As both I and J are ideals, IJ ⊂ I ∩ J . The next example shows that both equality
and a strict inclusion are possible.

Example 1.17. Let R = Z, I = (2) and J = (3). Then IJ = (6) by the previous
lemma. Also I ∩J = (6), because the elements of the intersection have to be divisible
by both 2 and 3. Therefore, in this case IJ = I ∩ J .

However, the inclusion might be strict. If I = (2) and J = (6), again I ∩J = (6), but
the lemma gives that IJ = (12). Therefore IJ  I ∩ J .

1.2. Maximal Ideals

In this section the goal is to prove a few known results regarding properties and
existence of maximal ideals. The presentation follows [Dummit, sections 7.4 and
8.2].

Definition 1.18. An ideal M  R is a maximal ideal, if for any ideal I satisfying
M ⊂ I ⊂ R either I = M or I = R.

Definition 1.19. An ideal P  R is a prime ideal, if ab ∈ P always implies a ∈ P
or b ∈ P .

Lemma 1.20. Maximal ideals are prime.

Proof.
Let M ⊂ R be a maximal ideal: then M  R by definition. Assume ab ∈ M . If
a /∈M , then the ideal (M ∪ {a}) generated by M and a is the whole ring R, because
M is maximal. Thus 1R = m+ ra for some m ∈M and r ∈ R. It follows that

b = (m+ ra)b = mb+ rab ∈M,

as M is an ideal and m, ab ∈ M . Therefore either a ∈ M or b ∈ M , so M is a prime
ideal. �
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In principal ideal domains, the converse of the result holds for all nonzero prime ideals:

Lemma 1.21. If R is a principal ideal domain, all its nonzero prime ideals are maximal
ideals.

Proof.
Assume that (p) ⊂ R is a nonzero prime ideal, so p 6= 0. Let (q) be an ideal for which
(p) ⊂ (q). Then p ∈ (q), so p = rq for some r ∈ R. As (p) is prime ideal, either
r ∈ (p) or q ∈ (p). If q ∈ (p), then (p) = (q). On the other hand, if r ∈ (p), then
r = ps for some s ∈ R. In this case

p = rq = psq,

which implies that p(1R − sq) = 0. As p 6= 0, it follows that sq = 1R. Therefore the
generator q is invertible, so (q) = R. This shows that (p) is a maximal ideal. �

Proposition 1.22. An ideal I ⊂ R is a maximal ideal if and only if the ring quotient
R/I is a field.

Proof.
Assume first that the ideal I is maximal. Let r+I ∈ R/I, and assume r+I 6= 0R+I.
Then r /∈ I. As I is maximal, (I ∪ {r}) = R, so 1R = m + br for some m ∈ I and
b ∈ R. It follows that br − 1R ∈ I, so

(b+ I)(r + I) = br + I = 1R + I.

Therefore r + I is invertible and (r + I)−1 = b+ I. As every nonzero element has an
inverse, R/I is a field.

Assume then that the quotient R/I is a field. Let J be an ideal for which I ⊂ J ⊂ R.
If J 6= I, then there exists an element x ∈ J − I, and therefore x+ I 6= 0 + I. As R/I
is a field, x+ I has an inverse y + I, and

xy + I = (x+ I)(y + I) = 1R + I.

Therefore xy − 1R = a ∈ I, and 1R = xy − a ∈ (I ∪ {x}) ⊂ J . It follows that J = R,
so I is a maximal ideal. �

The next goal is to prove that every proper ideal is contained in some maximal ideal.
The general version, Theorem 1.23, uses Zorn’s lemma: Assume that S is a partially
ordered set and every chain (totally ordered subset) in S has an upper bound in S.
Then S contains a maximal element. Zorn’s lemma is equivalent to the Axiom of
Choice, and can be found in e.g. [Ciesielski]. However, the version for Noetherian
rings, Theorem 1.24, does not need Zorn’s lemma.

Theorem 1.23. Let I ⊂ R be a proper ideal. Then there exists a maximal ideal
M ⊂ R that contains I.

Proof.
Define S to be the set of all proper ideals of R which contain I. The set S is nonempty,
as I ∈ S, and partially ordered by inclusion. Let C be a chain in S and

J0 =
⋃
J∈C

J.



1.3. POLYNOMIALS 10

The set J0 ⊂ R is an ideal: Firstly it is nonempty, because 0 belongs to each ideal in
the union and thus 0 ∈ J0. Assume that a, b ∈ J0. Then there exist ideals A,B ∈ C
so that a ∈ A and b ∈ B. As C is a chain, either A ⊂ B or B ⊂ A. Thus the element
a− b belongs to either A or B, and therefore also to J0. Furthermore, if r ∈ R, then
ra ∈ A ⊂ J0, because A is an ideal. Therefore J0 is an ideal.

The ideal J0 is a proper ideal: if it is not, then 1 ∈ J0, so 1 ∈ J for some J ∈ C.
However, this is not possible, as all the elements of S were assumed to be proper
ideals. As also I ⊂ J0 (all ideals of the union contain I), it can be concluded that
J0 ∈ S. Clearly J0 is an upper bound for the chain C.

Now each chain in S has an upper bound in S. By Zorn’s lemma, S has a maximal
element. This is thus a maximal ideal which contains I. �

Theorem 1.24. Let R be a Noetherian ring and I ⊂ R a proper ideal. Then there
exists a maximal ideal M ⊂ R that contains I.

Proof.
Assume on the contrary that such an ideal does not exist. Then I itself is not a
maximal ideal, so there is an ideal I1 with I  I1  R. Because I1 is not a maximal
ideal either, there exists I2 with I1  I2  R. Continuing inductively, an infinite
strictly increasing chain of ideals can be obtained, and this contradicts with R being
Noetherian. �

1.3. Polynomials

In this section, the first goal is to prove Hilbert’s basis theorem (Theorem 1.28),
which states that the polynomial ring in one variable over a Noetherian ring is itself
Noetherian. The proof is rearranged from [Dummit, section 9.6] and part of the
proof is separated into a lemma. In the end of the section there are some examples
of maximal ideals in polynomial rings in n variables.

Definition 1.25. Let f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ R[x]. If an 6= 0, then
f has degree n (deg f = n), leading term anxn and leading coefficient an. The degree
of the zero polynomial is not defined, and its leading term and leading coefficient
are both 0. The term a0 is called the constant term, and the constant term of a
polynomial f is denoted by f0.

Remark 1.26. Assume that R is an integral domain. If f, g ∈ R[x] are nonzero
polynomials, then deg fg = deg f + deg g.

Lemma 1.27. Let I ⊂ R[x] be an ideal. Define C(I) to be the set of all leading
coefficients of elements in I, and Cd(I) ⊂ C(I) the set of leading coefficients of
elements in I with degree d, together with 0. Then C(I) and Cd(I) are ideals of R.

Proof.
As 0 is the leading coefficient of 0 ∈ I, it follows that 0 ∈ C(I) and thus C(I) 6= ø.
Let a, b ∈ C(I). Then there exist f, g ∈ I with leading terms axj, bxk for some
j, k ∈ N. Let r ∈ R. Then

(i) a− b ∈ C(I), because it is either 0 or the leading coefficient of xkf −xjg ∈ I
(ii) ra ∈ C(I), because it is the leading coefficient of rf .
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Therefore C(I) is an ideal.

The smaller set Cd(I) can be proven to be an ideal by modifying the proof above;
note that it is nonempty by definition. Now j = k = d. The element a − b ∈ Cd(I),
because it is either 0 or if it is nonzero, it is the leading coefficient of f − g, which has
degree k. The polynomial rf is either 0 or has degree k, so ra ∈ Cd(I). Therefore
Cd(I) is an ideal as well. �

Theorem 1.28 (Hilbert’s Basis Theorem). Assume that R is a Noetherian ring. Then
the polynomial ring R[x] is also Noetherian.

Proof.
Let I be an ideal in R[x]. Then C(I) ⊂ R is an ideal by Lemma 1.27, so as R
is Noetherian, C(I) = (a1, . . . , an) for some ai ∈ R, i ∈ {1, . . . , n}. For each i,
choose fi ∈ I with leading coefficient ai. Denote the degree of fi by di, and let
D = max{d1, . . . , dn}.
For each d ∈ {0, 1, . . . , D}, Cd(I) ∈ R is an ideal by Lemma 1.27. For each nonzero
ideal Cd(I), let bd,1, bd,2, . . . , bd,nd ∈ R be a set of generators, and choose fd,i ∈ I of
degree d with leading coefficient bd,i. Let

I ′ = ({f1, . . . , fn} ∪ {fd,i : 0 ≤ d ≤ D, 1 ≤ i ≤ nd}) .

The next step is to prove that I = I ′. As all the generators for the new ideal I ′ were
chosen from I, clearly I ′ ⊂ I. It thus remains to show that I ⊂ I ′. Assume on the
contrary that this does not hold; then there exists a nonzero f ∈ I with f /∈ I ′ of
minimum degree. Denote the degree of f by δ, and the leading coefficient of f by α.

Suppose first that δ > D. As α ∈ C(I), there exist elements r1, . . . , rn ∈ R such that
α = r1a1 + · · · + rnan. Then g = r1x

δ−d1f1 + . . . rnx
δ−dnfn ∈ I ′ has the same degree

δ and the same leading coefficient α as f . Therefore f − g ∈ I has a degree strictly
smaller than f . Now either

(i) f − g 6= 0, in which case f − g ∈ I ′ by the minimality of f , and thus
f = (f − g) + g ∈ I ′, or

(ii) f − g = 0, so f = g ∈ I ′,

which gives a contradiction in both cases, because it was assumed that f /∈ I ′.
Suppose then that δ ≤ D. In this case α ∈ Cδ(I), so α = r1bδ,1 + · · · + rnδbδ,nδ for
some r1, . . . , rnδ ∈ R. Then g = r1fδ,1 + · · ·+ rnδfδ,nδ ∈ I ′ has the same degree δ and
the same leading coefficient α as f , so this gives a contradiction as above.

Beginning with an arbitrary ideal I ∈ R[x], it was possible to find a finite generating
set. It follows that any ideal of R[x] is finitely generated, so R[x] is Noetherian. �

Definition 1.29. The polynomial ring over R in n variables x1, . . . , xn is defined
inductively by

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

Polynomials in n variables consist of finite sums of monomials : terms of the form
rxd11 . . . xdnn , where r ∈ R and di ∈ N. The degree of the monomial rxd11 . . . xdnn is
d1 + · · · + dn. The monomials of degree 0 (with di = 0 for all i) are called constant
terms. The constant term of a polynomial f is denoted by f0.
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Corollary 1.30. Let R be a Noetherian ring. Then every polynomial ring R[x1, . . . , xn]
in finitely many variables is Noetherian.

Proof.
The claim follows from Hilbert’s Basis Theorem (Theorem 1.28) and induction. �

The rest of this section gives examples of prime and maximal ideals in polynomial rings
in n variables over different types of rings. Note that by Lemma 1.20, all maximal
ideals are prime.

Proposition 1.31. If R is an integral domain, the ideal (x1, . . . , xn) ⊂ R[x1, . . . , xn],
which consists of all polynomials with constant term 0, is a prime ideal.

Proof.
The constant term of the product of two polynomials is the product of their constant
terms. If it is zero, one of the polynomials has to belong to (x1, . . . , xn), as R is an
integral domain. �

Proposition 1.32. The ideal I = (x1, . . . , xn) ⊂ R[x1, . . . , xn] is maximal if and only
if R is a field.

Proof.
Assume first that R is a field. Note that I is a proper ideal, as it does not contain the
constant polynomial 1R. Let J be an ideal for which I ⊂ J ⊂ R[x1, . . . , xn]. If I 6= J ,
there is f ∈ J − I. Therefore f = f1 + f0, where f0 ∈ R, f0 6= 0, and f1 ∈ I ⊂ J . As
J is an ideal, it follows that f0 = f − f1 ∈ J. Because R is a field, f0 has an inverse
and therefore 1R = f0f

−1
0 ∈ J , which implies that J = R[x1, . . . , xn]. This proves the

maximality of the ideal (x1, . . . , xn).

Assume then that I is maximal. Let a ∈ R, a 6= 0. Consider the ideals

I ⊂ (x1, . . . , xn, a) ⊂ R[x1, . . . , xn].

Clearly a ∈ (x1, . . . , xn, a), and as a is a nonzero constant, a /∈ I, so I  (x1, . . . , xn, a).
As I was assumed to be maximal, it follows that

(x1, . . . , xn, a) = R[x1, . . . , xn].

In particular, there exist some polynomials r and qi, with i ∈ {1, . . . , n}, so that

1R = ar +
n∑
i=1

xiqi.

As the constant term of the rightmost sum is 0, it follows that the constant term
r0 ∈ R of the polynomial r has to satisfy ar0 = 1R. Therefore a has an inverse. This
holds for all nonzero elements a ∈ R, so R is a field. �

Proposition 1.33. Let R be a Noetherian ring. If m1, . . .mk are generators for any
maximal ideal in R, the ideal

I = (x1, . . . , xn,m1, . . . ,mk) ⊂ R[x1, . . . , xn]

is a maximal ideal.
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Proof.
First note that I is a proper ideal: if there exist polynomials qi, pj such that

1R =
n∑
i=1

qixi +
k∑
j=1

pjmj,

then the constant terms cj of pj satisfy
∑k

j=1 cjmj = 1R, which is not possible as
M ⊂ R is a maximal ideal.

Assume that J is an ideal for which I ⊂ J ⊂ R[x1, . . . , xn] holds. If J 6= I, there
exists f ∈ J such that f /∈ I. This polynomial can be written as f = f1 + f0, where
f1 ∈ (x1, . . . , xn) ⊂ I ⊂ J and f0 ∈ R is the constant term. As all the elements of
(m1, . . . ,mk) ⊂ R belong to I, it follows that the constant term f0 /∈ (m1, . . . ,mk):
otherwise f would be in I.

As (m1, . . . ,mk) ⊂ R is maximal, it can be concluded that (m1, . . . ,mk, f0) = R.
Therefore there exist elements r1, . . . , rk, r ∈ R such that

(1) 1R = r1m1 + · · ·+ rkmk + rf0.

Because f, f1 ∈ J , also f0 = f − f1 ∈ J . As additionally all mi ∈ J , it follows from
(1) that 1R ∈ J . Therefore J = R[x1, . . . , xn], and thus the ideal I is maximal. �

Corollary 1.34. If R is a principal ideal domain and m is a generator for any
maximal ideal in R, then the ideal (x1, . . . , xn,m) ⊂ R[x1, . . . , xn] is maximal.

Example 1.35. The ideal (x1, . . . , xn, p) ∈ Z[x1, . . . , xn] is maximal for any prime
number p.

Remark 1.36. The variables xi can be replaced by new ”variables”xi−ri, where each
ri ∈ R. Any polynomial can be written in these variables: each xi can be replaced by
(xi − ri) + ri and the expression of the polynomial can then be expanded. Therefore
the propositions 1.31, 1.32 and 1.33 can be generalized for ideals (x1−r1, . . . , xn−rn)
and (x1 − r1, . . . , xn − rn,m1, . . . ,mk).

Remark 1.37. When the coefficient field F is algebraically closed, all maximal ideals
of F [x1, . . . , xn] are of the type (x1 − r1, . . . , xn − rn) for some ri ∈ F ; this follows
from a classical result called Hilbert’s Nullstellensatz, and is proven in [Arrondo].
However, with a field that is not algebraically closed, there exist also other types of
maximal ideals, which the next example shows. The classification of maximal ideals
of e.g. Z[x1, . . . , xn] would be an interesting problem, but it is not within the scope
of this text.

Example 1.38. This example shows that the ideal I = (x2 + 1) ⊂ R[x] is a maximal
ideal. As this ideal consists of the zero polynomial and polynomials of degree at least
two, no polynomial of degree 1 can generate the ideal. Therefore I is not of the type
given above.

The goal is to prove that R[x]/I ∼= C. Then, as the quotient is a field, the ideal has
to be maximal by Proposition 1.22. Note that all classes of elements in the quotient
have representatives of degree 1. This follows from the fact that R[x] has division
algorithm: each f ∈ R[x] can be written as f = g(x2 + 1) + h, where g, h ∈ R[x] are
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unique and either h = 0 or deg h < 2. (Division algorithm can be found in [Dummit,
section 9.2].) Therefore

R[x]/I = {(ax+ b) + I : a, b ∈ R}.
So define ϕ : R[x]/I ∼= C by

ϕ ((ax+ b) + I) = ai+ b.

Firstly, ϕ is well defined: assume that (ax+ b) + I = (cx+ d) + I. Then

(a− c)x+ (b− d) = (ax+ b)− (cx+ d) ∈ I,
so a = c and b = d (I does not have any polynomials of degree 0 or 1). Secondly, ϕ
is a homomorphism, as

ϕ(((ax+ b) + I) + ((cx+ d) + I)) =ϕ(((a+ c)x+ (b+ d)) + I)

=(a+ c)i+ (b+ d) = ai+ b+ ci+ d

=ϕ((ax+ b) + I) + ϕ((cx+ d) + I),

and

ϕ(((ax+ b) + I) · ((cx+ d) + I)) =ϕ((acx2 + (ad+ bc)x+ bd) + I)

=ϕ((acx2 + (ad+ bc)x+ bd− ac(x2 + 1)) + I)

=ϕ(((ad+ bc)x+ bd− ac) + I

=(ad+ bc)i+ (bd− ac)
=(ai+ b)(ci+ d)

=ϕ((ax+ b) + I) · ϕ((cx+ d) + I).

Thirdly, ϕ is injective: Assume that

ϕ((ax+ b) + I) = ai+ b = ci+ d = ϕ((cx+ d) + I).

Then a = c and b = d, so (ax + b) + I = (cx + d) + I. Finally, surjectivity of ϕ is
trivial. This verifies the isomorphism.

1.4. Modules

This section introduces the basic concepts of module theory, which will be used in
Chapter 3 to prove a characterization for the minimal number of generators for an
ideal in a local ring, and in Chapters 6 and 7 to find an upper bound for the minimal
number of generators for an ideal in a Noetherian ring. It follows [Dummit, sections
10.1 and 10.2].

Definition 1.39. A (left) R-module or a (left) module over R is an abelian group
(E,+) together with an action of R on E: a map R × E → E, (r, e) 7→ re, which
satisfies the following conditions whenever r, s ∈ R and e, e′ ∈ E:

(i) (r + s)e = re+ se
(ii) (rs)e = r(se)
(iii) r(e+ e′) = re+ re′

(iv) 1Re = e.
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Remark 1.40. If the ring R is clear from context, it is common to use the word
module instead of R-module. An R-module for a field R is the same as an R-vector
space, as the above requirements are exactly the same ones as for vector spaces. A
ring is a module over itself, and also an ideal I ⊂ R is an R-module (or a submodule
of R; see the definition below). Thus the concept of modules generalizes both vector
spaces and ideals.

Example 1.41. When ϕ : R→ S is a ring homomorphism, S becomes an R-module
via the action R × S → S, (r, s) 7→ ϕ(r)s. More generally, if E is an S-module,
then the action (r, e) 7→ ϕ(r)e makes it an R-module. The properties of the ring
homomorphism ϕ guarantee the properties of the module action.

Definition 1.42. Let E be an R-module. A subgroup F ⊂ E is a submodule of E,
if it becomes an R-module when the action of R on E is restricted to R× F .

Remark 1.43. If F ⊂ E is a subset of an R-module E, the four conditions required
of an action in the definition of a module are automatically satisfied for any r, s ∈ R
and f1, f2 ∈ F ⊂ E. For proving that a subgroup F is a submodule, it thus suffices
to show that the action indeed can be restricted to a map R× F → F : that rf ∈ F
when r ∈ R and f ∈ F .

Whenever F ⊂ E is a submodule, it is possible to form the quotient module E/F
which inherits the R-module structure of E:

Proposition 1.44. Let E be an R-module and F ⊂ E a submodule. The quotient
group E/F is an R-module with the action

r(e+ F ) = re+ F,

where r ∈ R and e+ F ∈ E/F .

Proof.
Since E is an additive abelian group and F ⊂ E its subgroup, the quotient group
E/F is defined and also an additive abelian group. The action given above is well
defined, because if e1 + F = e2 + F , then e1 − e2 ∈ F and, as F is a submodule,
re1 − re2 = r(e1 − e2) ∈ F whenever r ∈ R. This implies that

r(e1 + F ) = re1 + F = re2 + F = r(e2 + F ).

Therefore the action does not depend on the representatives. It is straightforward to
check that the properties for the action hold. Therefore E/F is an R-module. �

Definition 1.45. Let E and F be R-modules. A map ϕ : E → F is an R-module
homomorphism, if

(i) ϕ(e1 + e2) = ϕ(e1) + ϕ(e2) for all e1, e2 ∈ E, and
(ii) ϕ(re) = rϕ(e) for all r ∈ R, e ∈ E.

The kernel of an R-module homomorphism ϕ is the set kerϕ = {e ∈ E : ϕ(e) = 0F}.
A bijective R-module homomorphism is an (R-module) isomorphism, and if such an
isomorphism exists, the modules E and F are isomorphic, denoted by E ∼= F .
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Remark 1.46. From the first condition of Definition 1.45, it can be seen that any R-
module homomorphism ϕ can also be thought as a group homomorphism. The kernel
of ϕ as a group homomorphism is the same set as the kernel of ϕ as an R-module
homomorphism. If R is a field, an R-module homomorphism is a linear map.

Proposition 1.47. Let E and G be R-modules, ϕ : E → G an R-module homo-
morphism and F ⊂ E a submodule. If F ⊂ kerϕ, then the map Φ: E/F → G,
Φ(e+ F ) = ϕ(e), is an R-module homomorphism.

Proof.
Firstly, Φ is well defined: If e1 + F = e2 + F , then e1 − e2 ∈ F ⊂ kerϕ by the
assumption. Therefore

Φ(e1 + F )− Φ(e2 + F ) = ϕ(e1)− ϕ(e2) = ϕ(e1 − e2) = 0,

so Φ(e1 + F ) = Φ(e2 + F ). Secondly, Φ is a homomorphism, because for e, e1, e2 ∈ E
and r ∈ R,

Φ((e1 + F ) + (e2 + F )) =Φ((e1 + e2) + F ) = ϕ(e1 + e2) = ϕ(e1) + ϕ(e2)

=Φ(e1 + F ) + Φ(e2 + F ),

and

Φ(r(e+ F )) = Φ(re+ F ) = ϕ(re) = rϕ(e) = rΦ(e+ F ).

Therefore Φ is an R-module homomorphism. �

The next proposition is often called the first isomorphism theorem.

Proposition 1.48. Let E and F be R-modules and ϕ : E → F an R-module homo-
morphism. Then kerϕ ⊂ E and ϕ(E) ⊂ F are submodules and

E/ kerϕ ∼= ϕ(E).

Proof.
The kernel and the image are both nonempty, as ϕ(0E) = 0F . Let a, b ∈ kerϕ and
r ∈ R. Then

ϕ(a− b) = ϕ(a)− ϕ(b) = 0 and ϕ(ra) = rϕ(a) = 0,

so a − b ∈ kerϕ and ra ∈ kerϕ. Therefore kerϕ is a submodule, and the quotient
module E/ kerϕ exists.

Let y1, y2 ∈ ϕ(E). Then there exist x1, x2 ∈ E such that ϕ(x1) = y1 and ϕ(x2) = y2.
Now

y1 − y2 = ϕ(x1)− ϕ(x2) = ϕ(x1 − x2) ∈ ϕ(E),

and ry1 = rϕ(x1) = ϕ(rx1) ∈ ϕ(E) for any r ∈ R, so ϕ(E) is a submodule.

Define Φ: E/ kerϕ→ ϕ(E) by Φ(e+kerϕ) = ϕ(e). Note that ϕ remains an R-module
homomorphism, when the codomain F is replaced by ϕ(E). Therefore Φ is an R-
module homomorphism by Proposition 1.47. The map Φ is clearly surjective. It is
also injective, as Φ(e1 + kerϕ) = Φ(e2 + kerϕ) implies ϕ(e1− e2) = ϕ(e1)−ϕ(e2) = 0,
so e1− e2 ∈ kerϕ, and thus e1 + kerϕ = e2 + kerϕ. Therefore Φ is a bijection, which
verifies the isomorphism. �
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Definition 1.49. Let E be an R-module and F1, . . . , Fn ⊂ E submodules. The sum
of the submodules Fi is the R-module

F1 + · · ·+ Fn = {f1 + · · ·+ fn : fi ∈ Fi for all i = 1, . . . , n}.

The sum of the submodules F1, . . . , Fn is the smallest submodule that contains each Fi.

Definition 1.50. Let E be an R-module, e ∈ E and A ⊂ E a subset. The submodule
generated by e is Re = {re : r ∈ R}, and the submodule generated by A is

RA =

{
n∑
i=1

riai : ri ∈ R, ai ∈ A, n ∈ Z+

}
.

The submodule generated by a finite set B = {e1, . . . , en} ⊂ E can also be written
as RB = Re1 + · · · + Ren, which coincides with the above definition. A submodule
F ⊂ E is finitely generated if F = RB for some finite set B ⊂ E. By convention, the
empty set generates the zero module.

Lemma 1.51. Let I ⊂ R be an ideal, and E an R-module. Then the set

IE =

{
k∑
i=1

aiei : ai ∈ I, ei ∈ E, k ∈ Z+

}
is a submodule of E.

Proof.
Clearly IE ⊂ E, and IE 6= ø, as both I and E are nonempty. Let x =

∑n
i=1 aiei and

y =
∑m

i=1 bie
′
i be elements of IE. Then

x− y =
n∑
i=1

aiei −
m∑
i=1

bie
′
i =

n∑
i=1

aiei +
m∑
i=1

(−bi)e′i,

and as I is an ideal, the elements −bi ∈ I and thus x − y ∈ IE. By the subgroup
criterion,2 IE is a subgroup. Furthermore, if r ∈ R, then

rx = r

n∑
i=1

aiei =
n∑
i=1

raiei,

and because I is an ideal, the elements rai ∈ I, and thus rx ∈ IE. Therefore IE is
also closed under the action of elements of R. This shows that IE is a submodule. �

Remark 1.52. In the case when also E is an ideal of R, the product IE is exactly
the same as the product of two ideals.

Lemma 1.53. Let I ⊂ R be an ideal and E an R-module. Then E/IE is an R/I-
module.

Proof.
By Lemma 1.51, IE ⊂ E is a submodule, so the quotient E/IE is an additive abelian
group. Define an action of R/I on E/IE by

(r + I)(e+ IE) = re+ IE,

2see Definition 1.1
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when r + I ∈ R/I and e + IE ∈ E/IE. This action is well defined: Assume that
r1, r2 ∈ R and e1, e2 ∈ E so that r1 + I = r2 + I and e1 + IE = e2 + IE. Then
r1 − r2 ∈ I and e1 − e2 ∈ IE. Thus

r1e1 − r2e2 = r1e1 − r1e2 + r1e2 − r2e2 = r1(e1 − e2) + (r1 − r2)e2 ∈ IE,
which implies that

(r1 + I)(e1 + IE) = r1e1 + IE = r2e2 + IE = (r2 + I)(e2 + IE).

Therefore the action does not depend on the representatives. It is straightforward to
verify that the action also satisfies the requirements for a module action. Thus E/IE
is an R/I-module. �

Definition 1.54. Let E be an R-module. The set

Ann(E) = {r ∈ R : re = 0 for all e ∈ E}
is called the annihilator of E.

Lemma 1.55. The annihilator of E is an ideal of R.

Proof.
Firstly, 0 ∈ Ann(E), so Ann(E) is a nonempty subset of R. Let a, b ∈ Ann(E), e ∈ E
and r ∈ R. Then (a − b)e = ae − be = 0 and (ra)e = r(ae) = 0, so Ann(E) is an
ideal. �



CHAPTER 2

The Problem: Minimal Number of Generators

For some rings, there exists a number k so that every ideal of that ring can be
generated by k elements. In principal ideal domains, this number is 1; every ideal can
be generated by one element. In Dedekind domains, any ideal can be generated by
two elements; this is proven in [Dummit, section 16.3].

In the general situation, a global upper bound for the minimal number of generators
might not exist. Example 5.4 shows that when R is an integral domain, for every
n ∈ Z+ there exists an ideal In ⊂ R[x, y] that cannot be generated by less than n+ 1
elements. Therefore no k ∈ Z+ can serve as an upper bound for the minimal number
of generators for all ideals in R[x, y]. It can still be asked what is the minimal number
of generators needed to generate a given ideal I ⊂ R. This number always exists if I
is finitely generated, as in that case the set

{k ∈ N : the ideal I can be generated by k elements}
is a nonempty subset of the natural numbers and hence has a minimal element.

If I = (a1, . . . , an), the first idea might be to check whether any of the generators ai
could be removed so that the others would still generate I. The problem is unfortu-
nately not so simple, which the following example points out.

Example 2.1. Consider the ideal I = (x2 + x, x2) ⊂ Z[x]. As x = (x2 + x)− x2 ∈ I,
(x) ⊂ I. Because both generators of I belong to (x), actually I = (x). On the other
hand, the ideal (x2 + x) is a proper subset of I: If f ∈ (x2 + x), f = (x2 + x)g for
some g ∈ Z[x]. Then either g = 0, which implies that also f = 0, or g 6= 0, in which
case deg f = deg(x2 + x) + deg g ≥ 2. Therefore x /∈ (x2 + x). Similarly, (x2)  I.

The original generating set for I had two elements, neither of which suffices to generate
I. However, there exists a third element, which generates I by itself. In a vector space,
this kind of a situation is not possible: the two-element set would be a basis so it
would not be possible for a single element to span the vector space. This example
shows that the problem of finding the minimal number of generators for an ideal is
more complicated than finding a basis for a vector space, as it is not sufficient to
remove unnecessary generators.

Another way in which ideals and vector spaces differ, is the number of elements needed
to generate a subset. The basis for a proper subspace always has less elements than
the basis for the whole vector space. However, a proper ideal might require several
generators whereas the ring itself is always generated by the identity element.

Example 2.2. The given generating set might also have infinitely many excessive
elements. An infinite ring R generates itself, but also R = (1R). For a less obvious
example, consider I = (x, x2, x3, . . . ) ⊂ Z[x]. The elements of I consist of finite sums
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where each term is divisible by some power of x. Therefore I ⊂ (x). As clearly also
(x) ⊂ I, in this case just one element, x, generates the whole ideal.

Even though Z is a principal ideal domain, the polynomial ring Z[x] is not. In some
cases, the minimal number of generators can be verified using elementary methods,
as in the next example. More general version of this example is given in Example 5.6.

Example 2.3. The minimal number of generators for the ideal (x, 2) ⊂ Z[x] is two.
This ideal consists of polynomials with even constant terms. Assume on the contrary,
that there exists some f ∈ Z[x] so that (f) = (x, 2). Then either f0 = 0 of f0 6= 0.
If f0 = 0, then g0 = 0 for all g ∈ (f), which is not possible, as 2 ∈ (f). Therefore
f0 6= 0.

As x ∈ (f), x = fg for some g ∈ Z[x]. Then deg f + deg g = 1 by Remark 1.26.
Therefore one of the polynomials f and g has degree 0 and the other degree 1, and
thus there exist some a, b, c ∈ Z, a, c 6= 0 for which

x = (ax+ b)c = acx+ bc.

Therefore ac = 1 and bc = 0, so a = c = ±1 and b = 0. As f0 6= 0, it follows that
f = c = ±1, but this is a contradiction, as (x, 2) 6= Z[x].



CHAPTER 3

A Special Case: Local Rings

The goal of this chapter is to prove that the minimal number of generators for an
ideal in a local ring is the same as the dimension of a specific vector space related
to the ring and the ideal. This will be a corollary of a result for modules: Theorem
3.6, which is found in [Matsumura, chapter 2]. The proof of this theorem relies on
Proposition 3.4 and Corollary 3.5, the formulation of which follows the one in [Lang,
chapter X, section 4].

Definition 3.1. A commutative ring R is a local ring, if it has a unique maximal
ideal M . The local ring is denoted by (R,M).

Example 3.2. All fields are local rings, as {0} is the only proper ideal. More examples
of local rings are given in the next chapter in the context of localization at a prime
ideal.

The ring Z is not local, as (p) ⊂ Z is a maximal ideal whenever p is a prime number.
The polynomial ring Z[x1, . . . , xn] is not local either, as the ideal (x1, . . . , xn, p) is
maximal for any prime p (look at Example 1.35).

In fact, polynomial rings R[x1, . . . , xn], where R 6= {0} is a Noetherian ring, are
never local. If {m1, . . . ,mk} ⊂ R is some generating set for a maximal ideal in R,
the maximal ideals (x1, . . . , xn,m1, . . . ,mk) and (x1 − 1R, . . . , xn − 1R,m1, . . . ,mk)
from Remark 1.36 are not the same ideal: if they were, then 1R = x1 − (x1 − 1R)
would be in this ideal. For fields the same conclusion holds for ideals (x1, . . . , xn)
and (x1 − 1R, . . . , xn − 1R). So polynomial rings over fields are not local rings either,
regardless of the fact that fields themselves are local rings.

Definition 3.3. The Jacobson radical of R is the intersection of all maximal ideals
of R, and it is denoted by rad(R).

As the intersection of a (possibly infinite) collection of ideals, the Jacobson radical
rad(R) ⊂ R is an ideal.

Proposition 3.4 (Nakayama’s lemma). Let I ⊂ rad(R) be an ideal of R, and let E
be a finitely generated R-module. If IE = E, then E = {0}.
Proof.
The statement can be proven by induction on the number of generators of E. First
assume that E is generated by one element e1 ∈ E, so E = Re1. As IE = E, there
exist k ∈ Z+, a1, . . . , ak ∈ I and r1, . . . , rk ∈ R such that

e1 = a1(r1e1) + · · ·+ ak(rke1) = αe1,

where α =
∑k

i=1 airi ∈ I. Therefore

(2) (1R − α)e1 = 0R.
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Now 1R − α is a unit: if it is not, it generates a proper ideal which is contained in
some maximal ideal M ⊂ R. As α ∈ I ⊂ rad(R) ⊂M , also 1R = (1R − α) + α ∈M ,
which is not possible for a maximal ideal. By multiplying both sides of the equation
(2) by (1− α)−1, it can be concluded that e1 = 0, so E = {0}.
Assume then that the claim holds for any module with n − 1 generators. Let E be
a module generated by {e1, . . . , en} ⊂ E, so E =

∑n
i=1Rei. As IE = E, there exist

k ∈ Z+, a1, . . . , ak ∈ I and ri,1, . . . , ri,n, i ∈ {1, . . . , k} for which

en =
k∑
i=1

ai(ri,1e1 + · · ·+ ri,nen) = α1e1 + . . . αnen,

where each αj =
∑k

i=1 airi,j ∈ I. This means that

(1R − αn)en = α1e1 + · · ·+ αn−1en−1.

The same reasoning as above shows that 1R − αn is a unit, so it can be concluded
that en belongs to the module generated by the remaining elements. Therefore E is,
in fact, generated by n− 1 elements, and by the induction hypothesis E = {0}. �

Corollary 3.5. Let E be an R-module, F ⊂ E a submodule and I ⊂ rad(R) an
ideal of R. Assume that E/F is finitely generated and E = F + IE. Then E = F .

Proof.
Let f ∈ F and

∑n
i=1 aiei ∈ IE, so ai ∈ I and ei ∈ E. As elementwise(

f +
n∑
i=1

aiei

)
+ F =

(
n∑
i=1

aiei

)
+ F =

n∑
i=1

ai (ei + F ) ,

it follows that
E

F
=
F + IE

F
= I

E

F
.

As E/F is a finitely generated module by assumption, Nakayama’s lemma implies
that E/F = {0}, so E = F . �

Theorem 3.6. Let (R,M) be a local ring, and E a finitely generated R-module. Then
E is generated by {e1, . . . , en} if and only if the set {e1 + ME, . . . , en + ME} spans
E/ME as an R/M -vector space.

Proof.
As M ⊂ R is a maximal ideal, the quotient R/M is a field by Proposition 1.22. By
Lemma 1.53, E/ME is an R/M -module, which is the same as an R/M -vector space.
Thus the claim of the theorem makes sense.

Assume first that E is generated by the elements ei, which means that E =
∑n

i=1Rei.
Let v ∈ E/ME. Then v = b + ME for some b ∈ E, so there exist elements ri ∈ R
such that b = r1e1 + · · ·+ rnen. Thus

v = (r1e1 + · · ·+ rnen) +ME

= (r1e1 +ME) + · · ·+ (rnen +ME)

= (r1 +M)(e1 +ME) + · · ·+ (rn +M)(en +ME).

Therefore the elements ei +ME span the vector space E/ME.
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Assume then that E/ME is spanned by the elements ei + ME. Let x ∈ E. Then
there exist elements ri +M ∈ R/M such that

x+ME =
k∑
i=1

(ri +M)(ei +ME) =
k∑
i=1

riei +ME,

so x−
∑k

i=1 riei = s ∈ME. Therefore

x =
k∑
i=1

riei + s ∈
k∑
i=1

Rei +ME,

and this implies that E ⊂
∑k

i=1Rei + ME. Clearly also
∑k

i=1Rei + ME ⊂ E, so

E =
∑k

i=1Rei +ME. Now M = rad(R) as the unique maximal ideal,
∑k

i=1Rei ⊂ E

is a submodule, and E/(
∑k

i=1Rei) is finitely generated as E is. By Corollary 3.5,

E =
∑k

i=1Rei. �

Corollary 3.7. The minimal number of generators for a finitely generated ideal
I ⊂ R in a local ring (R,M) is the same as the R/M -vector space dimension of
I/MI.

Proof.
As the finitely generated ideal I is also a finitely generated R-module, the result of
the previous theorem can be applied. Firstly, as I is finitely generated, there is some
generating set {a1, . . . , an}. By the theorem, the set {a1 + MI, . . . , an + MI} spans
I/MI as a R/M -vector space. Therefore the vector space I/MI is finite-dimensional,
with dimension k ∈ N, where k ≤ n. Fix a basis {b1 + MI, . . . , bk + MI} of I/MI.
Then, by the theorem, I is generated by {b1, . . . , bk}. This is the minimal number of
generators: if there was a smaller set of generators, their images in I/MI would span
I/MI, which is not possible. �



CHAPTER 4

A Useful Tool: Localization

The purpose of this chapter is to introduce the process of localization of a commutative
ring. This process is similar to the one of constructing rational numbers from integers;
that is actually an example of localization. Generally, localization does not make
all nonzero elements of the ring invertible, as in the rational case. A special case,
localization at a prime ideal, gives a local ring as the result. The chapter follows
[Dummit, section 15.4].

Let S ⊂ R be a multiplicatively closed subset and assume that 1R ∈ S. Define a
relation ∼ on R× S by

(3) (r1, s1) ∼ (r2, s2) ⇐⇒ (r1s2 − r2s1)t = 0 for some t ∈ S.

Lemma 4.1. The relation (3) is an equivalence relation.

Proof.
Let (r1, s1), (r2, s2), (r3, s3) ∈ R × S. The relation is reflexive: (r1, s1) ∼ (r1, s1)
because 1 ∈ S and (r1s1 − r1s1) · 1 = 0. It is also symmetric: if (r1, s1) ∼ (r2, s2),
then there exists t ∈ S for which (r1s2 − r2s1)t = 0. Then also

(r2s1 − r1s2)t = −(r1s2 − r2s1)t = 0,

so (r2, s2) ∼ (r1, s1).

Transitivity: Assume that (r1, s1) ∼ (r2, s2) and (r2, s2) ∼ (r3, s3). Then there exist
a, b ∈ S such that (r1s2 − r2s1)a = 0 and (r2s3 − r3s2)b = 0. Therefore r1s2a = r2s1a
and r2s3b = r3s2b, so

(r1s3 − r3s1)s2ab = (r1s2a)bs3 − (r3s2b)s1a = (r2s1a)bs3 − (r2s3b)s1a = 0.

As s2, a, b ∈ S and S is multiplicatively closed, also s2ab ∈ S and thus the above
calculation implies that (r1, s1) ∼ (r3, s3). �

Remark 4.2. If the ring R is an integral domain and it is assumed that 0 /∈ S, the
condition (r1s2 − r2s1)t = 0 for some t ∈ S simplifies to r1s2 = r2s1. Note that
(r1s2 − r2s1) · 0 = 0, so if 0 ∈ S, all pairs of elements in R× S are equivalent; in this
case there is only one equivalence class.

Definition 4.3. The set of equivalence classes under relation (3), denoted by S−1R,
is called the localization of R at S. The equivalence class of (r, s) ∈ R×S is denoted
by r

s
.

Lemma 4.4. Let S ⊂ R be a multiplicatively closed subset with 1 ∈ S. Then the
operations

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd
are well defined operations in S−1R.

24
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Proof.
Note first that as R is a ring and S multiplicatively closed, the elements resulting
from these operations are in S−1R.

Assume that a1
b1

= a2
b2

and c1
d1

= c2
d2

. Then there exist elements s, t ∈ S such that

(a1b2 − a2b1)s = 0 and (c1d2 − c2d1)t = 0. Also st ∈ S, because S is multiplicatively
closed. Then

((a1d1 + b1c1)b2d2 − (a2d2 + b2c2)b1d1)st

=(a1b2d1d2 + c1d2b1b2 − a2b1d1d2 − c2d1b1b2)st
=(a1b2 − a2b1)sd1d2t+ (c1d2 − c2d1)tb1b2s = 0,

so
a1
b1

+
c1
d1

=
a1d1 + b1c1

b1d1
=
a2d2 + b2c2

b2d2
=
a2
b2

+
c2
d2
.

Therefore the addition is well defined. The multiplication does not depend on the
representatives either:

(a1c1b2d2 − a2c2b1d1)st
=(a1c1b2d2 − a2b1c1d2 + a2b1c1d2 − a2c2b1d1)st
=(a1b2 − a2b1)sc1d2t+ (c1d2 − c2d1)ta2b1s = 0,

so
a1
b1
· c1
d1

=
a1c1
b1d1

=
a2c2
b2d2

=
a2
b2
· c2
d2
.

�

Theorem 4.5. (S−1R,+, ·) is a commutative ring.

Proof.
Let r

s
, r1
s1
, r2
s2
, r3
s3
∈ S−1R. Firstly, (S−1R,+) is an abelian group: It has a neutral

element 0S−1R = 0
1
, as

r

s
+

0

1
=
r + 0

s
=
r

s
.

Note that 0
1

= 0
t

for any t ∈ S. The addition is commutative, as both operations of
R are commutative. Every element has an additive inverse, as

r

s
+
−r
s

=
rs− rs
s2

=
0

s2
= 0S−1R,

and the associativity of the addition follows from(
r1
s1

+
r2
s2

)
+
r3
s3

=
r1s2 + r2s1

s1s2
+
r3
s3

=
(r1s2 + r2s1)s3 + r3s1s2

s1s2s3

=
r1s2s3 + s1(r2s3 + r3s2)

s1s2s3
=
r1
s1

+
r2s3 + r3s2

s2s3

=
r1
s1

+

(
r2
s2

+
r3
s3

)
.
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Secondly, the multiplication satisfies the properties required of ring multiplication.
The multiplicative identity is 1

1
, as

r

s
· 1

1
=
r

s
.

Note that for any t ∈ S, t
t

= 1
1
, because (t − t) · 1 = 0. Both associativity and

commutativity of the multiplication are straightforward consequences of R being a
commutative ring. For the distributivity

r1
s1
·
(
r2
s2

+
r3
s3

)
=
r1
s1
· r2s3 + r3s2

s2s3
=
r1(r2s3 + r3s2)

s1s2s3
· 1

1

=
r1(r2s3 + r3s2)

s1s2s3
· s1
s1

=
r1r2s1s3 + r1r3s1s2

s1s2s1s3

=
r1r2
s1s2

+
r1r3
s1s3

=
r1
s1
· r2
s2

+
r1
s1
· r3
s3
,

and by the above case and the commutativity of both addition and multiplication
also (

r1
s1

+
r2
s2

)
· r3
s3

=
r3
s3
·
(
r1
s1

+
r2
s2

)
=
r1
s1
· r3
s3

+
r2
s2
· r3
s3
.

Therefore S−1R is a commutative ring. �

Example 4.6. Let R = Z and S = Z− {0}. As Z is an integral domain, the simpler
version (look at Remark 4.2) of the equivalence relation (3) determines whether two
elements of the localization are the same. This is the familiar cross-multiplication
of rational numbers, and actually S−1R = Q: this is exactly the way to construct
rational numbers from integers.

Proposition 4.7. The map π : R → S−1R given by π(r) = r
1
, is a ring homomor-

phism.

Proof.
Let r, s ∈ R. Then

π(r + s) =
r + s

1
=
r

1
+
s

1
= π(r) + π(s), and

π(rs) =
rs

1
=
r

1
· s

1
= π(r) · π(s).

Also π(1R) = 1
1

= 1S−1R, so π is a ring homomorphism. �

Remark 4.8. The homomorphism π is injective in the case when S contains neither
0 nor zero divisors: if r

1
= π(r) = 0

1
, then rt = 0 for some t ∈ S. But as t 6= 0 and t

is not a zero divisor, the only possibility is that r = 0. Therefore ker(π) = {0}, and
thus π is injective. In this case, the localization S−1R thus contains a copy of the
ring R.

Definition 4.9. Let ϕ : R1 → R2 be a homomorphism of commutative rings. If
I ⊂ R1 is an ideal, then the extension of I to R2 is the ideal Ie = (ϕ(I)) ⊂ R2, that
is, the ideal generated by the image of I.
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The notation for the extension is a bit vague, as it does not carry information about
the homomorphism in question. However, in this text, the extension is used only in
the context of localization. This means that Ie = (π(I)) ⊂ S−1R, where π is the
homomorphism from the ring R to its localization S−1R given in Proposition 4.7.

Lemma 4.10. Let I ⊂ R be an ideal. The extension of I to a localization S−1R has
the form

Ie =
{a
s

: a ∈ I, s ∈ S
}
.

Proof.
By definition, Ie is generated by π(I), thus by elements of the form a

1
, a ∈ I. Let

s ∈ S. Then a
s

= 1
s
· a
1
∈ Ie, so all the elements of this type are in Ie. Let now y ∈ Ie,

so y =
∑k

i=1
ai
1
· ri
si

, where ai ∈ I, ri ∈ R and si ∈ S. Then

y =
k∑
i=1

airi
si

=

∑k
i=1

(∏
j 6=i sj

)
airi∏k

i=1 si
=
b

t
,

where b ∈ I and t ∈ S, because I is an ideal and S is multiplicatively closed. Therefore
all elements of Ie are of this form. �

Remark 4.11. Images of elements of S are invertible, as s
1
· 1
s

= 1
1

= 1S−1R for any
s ∈ S. (Remember the case of rational numbers, where each k ∈ Z − {0} becomes
invertible.)

Proposition 4.12. Let I ⊂ R be an ideal. Then Ie = S−1R if and only if I ∩ S is
nonempty.

Proof.
Assume first that I ∩ S 6= ø, so there exists s ∈ I ∩ S. Then 1S−1R = s

1
· 1
s
∈ Ie, so

Ie = S−1R.

Assume then that Ie = S−1R, so 1S−1R ∈ Ie. By Lemma 4.10, there exist elements
a ∈ I, b ∈ S for which 1S−1R = 1

1
= a

b
, which implies that (b− a)t = 0 for some t ∈ S.

As S is multiplicatively closed, at = bt ∈ S. Because a ∈ I and I is an ideal, also
at ∈ I, so at ∈ I ∩ S and thus I ∩ S 6= ø. �

Proposition 4.13. Let I ⊂ R be an ideal and A an index set. If I is generated by
the set {ai}i∈A, then Ie is generated by {ai

1
}i∈A.

Proof.
By Lemma 4.10, the extension Ie consists of all elements of the form a

s
, where a ∈ I,

s ∈ S. As 1R ∈ S, it follows that the elements ai
1

are of this form, and thus the ideal
generated by {ai

1
}i∈A is a subset of Ie. On the other hand, if a ∈ I, there exists a

finite subset B ⊂ A, ri ∈ R and ai ∈ I for which a =
∑

i∈B riai. Thus for s ∈ S,

a

s
=

∑
i∈B riai

s
=
∑
i∈B

ri
s
· ai

1
,

so a
s

belongs to the ideal generated by {ai
1
}i∈A. Therefore Ie is a subset of this

ideal. �
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Remark 4.14. In the case of a finite index set, the above proposition has the following
form: If I = (a1, . . . , an) ⊂ R, then Ie =

(
a1
1
, . . . , an

1

)
= (π(a1), . . . , π(an)). The

reversed implication does not hold: even if Ie = (π(a1), . . . , π(an)), it is possible that
the elements ai do not generate I (look at Example 4.20).

Definition 4.15. Let P ⊂ R be a prime ideal. The localization RP = (R − P )−1R
is called the localization of R at (the prime ideal) P .

Proposition 4.16. Let P ⊂ R be a prime ideal. Then the localization RP is a local
ring, with the unique maximal ideal P e.

Proof.
As P is a prime and thus a proper ideal, 1R ∈ R−P , and particularly R−P 6= ø. If
a, b ∈ R − P , then ab ∈ R − P : ab ∈ P would imply either a ∈ P or b ∈ P , because
P is a prime ideal. Therefore the set R − P is closed under multiplication, and it is
possible to construct the localization RP = (R− P )−1R.

The goal is to prove that the set of nonunits of RP , here denoted by N , is an ideal.
As every proper ideal is a subset of N (consists of nonunits), this will then be the
unique maximal ideal. The first step is to prove that a

b
∈ RP is a unit if and only if

a ∈ R− P , which will then imply that

(4) N =
{p
u

: p ∈ P, u ∈ R− P
}
⊂ RP .

Assume first that a
b

is a unit. Then there exists c
d
∈ RP such that a

b
· c
d

= 1
1
, and

thus (ac − bd)f = 0 for some f ∈ R − P . As P is prime, 0 ∈ P and f /∈ P , this
implies ac − bd ∈ P . Now if a ∈ P , also ac ∈ P . Then bd = ac − (ac − bd) ∈ P ,
as P is an ideal. This is a contradiction because both b and d are elements of the
multiplicatively closed set R− P . Therefore a ∈ R− P .

Assume then that a ∈ R− P . Then b
a
∈ RP , and a

b
· b
a

= 1
1
, so a

b
is a unit.

The expression (4) is exactly the same as Lemma 4.10 gives for the ideal P e, so N is
an ideal. Therefore RP is a local ring and N = P e is its unique maximal ideal. �

Remark 4.17. The above proof used the expression for the extension of an ideal
I ⊂ R to RP given by Lemma 4.10:

Ie =
{a
u

: a ∈ I, u ∈ R− P
}
.

Example 4.18. Let R = Z. The ideal P = (0) is a prime ideal, as Z is an integral
domain. The localization Z(0) = Q; this was already discussed in Example 4.6. A
similar construction exists also in other integral domains:

Definition 4.19. If R is an integral domain, the localization R(0) is called its quotient
field or field of fractions.

Example 4.20. This example shows that the statement in Proposition 4.13 cannot
be reversed: even if the images of some set of elements generate the extension of an
ideal, the elements might not generate the original ideal. Let R = Z and I = (4).
The ideal (2) is a prime ideal, so the localization Z(2) can be formed. The ring Z(2)

consists of those rational numbers the denominator of which is not divisible by 2.
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By Proposition 4.13, Ie =
(
4
1

)
∈ Z(2). Also 12

1
is a generator for Ie: 4

1
= 12

1
· 1
3
, so(

4
1

)
⊂
(
12
1

)
, and 12

1
= 4

1
· 3
1
, so

(
12
1

)
⊂
(
4
1

)
. However, 12 does not generate I.

Example 4.21. By Proposition 4.16, the localization Z(2) is a local ring with the

unique maximal ideal M = (2)e, and M =
(
2
1

)
by Proposition 4.13. Consider the

product of M with itself: the ideal M2. By Lemma 1.16, M2 =
(
4
1

)
, and Proposition

4.13 gives that also (4)e =
(
4
1

)
, so M2 = (4)e. By Remark 4.17,

M2 = (4)e =
{a
u

: a ∈ (4), u /∈ (2)
}
,

so the generator 2
1

of M is not an element of M2, as it is not of this form. Therefore
M2  M . This is another example for the strict inclusion IJ  I ∩ J when I and J
are ideals, which was treated in Example 1.17.

In the previous example, the ideal (2) ∈ Z had the property

((2)(2))e = (4)e = M2 = (2)e(2)e.

This is true in a more general setting:

Proposition 4.22. Let I, J ⊂ R be ideals, and S−1R a localization of the ring R.
Then IeJe = (IJ)e.

Proof.
By Lemma 4.10, all elements of IeJe consist of finite sums of terms of the form a

s
· b
t
,

where a ∈ I, b ∈ J , and s, t ∈ S. By the same lemma, all elements of (IJ)e are of the
form c

u
where c ∈ IJ and u ∈ S.

Elements of IeJe can thus be written as follows:

a1b1
s1t1

+ · · ·+ akbk
sktk

=

∑k
i=1

(∏
j 6=i sjtj

)
aibi∏k

i=1 siti
=

∑k
i=1 a

′
ibi∏k

i=1 siti
=
c

u
,

where c ∈ IJ and u ∈ S, because each a′i =
(∏

j 6=i sjtj

)
ai ∈ I and S is multiplica-

tively closed. Therefore IeJe ⊂ (IJ)e.

Conversely, elements of (IJ)e can be written as

a1b1 + · · ·+ akbk
u

=
1

u

(
a1b1

1
+ · · ·+ akbk

1

)
=
a1b1
u

+· · ·+akbk
u

=
a1
1
· b1
u

+· · ·+ak
1
· bk
u
,

so also (IJ)e ⊂ IeJe. �



CHAPTER 5

Generalization: A Lower Bound for Non-Local Rings

In this chapter, the goal is to use the results of Chapter 3 to obtain a lower bound
for the minimal number of generators for an ideal in a ring which is not local.

Proposition 5.1. Assume that R is not a local ring. Let P ⊂ R be a prime ideal
and I ⊂ R a finitely generated ideal. Then the minimal number of generators for I
is greater than or equal to the minimal number of generators for Ie ⊂ RP .

Proof.
As I is finitely generated, I = (a1, . . . , ak) for some ai ∈ R. Proposition 4.13 implies
that Ie = (a1

1
, . . . , ak

1
), so the ideal Ie ⊂ RP is also finitely generated. Let µ denote

the minimal number of generators for Ie. If {b1, . . . , bj} is some other generating set

for I, then Ie = ( b1
1
, . . . ,

bj
1

), which forces j to be greater than or equal to µ. Therefore
the minimal number of generators for I is at least µ. �

Remark 5.2. As RP is a local ring by Proposition 4.16, it follows from Corollary 3.7
that µ = dimRP /P e I

e/P eIe. In the case where a generating set for I of µ elements
has already been found, the above proposition can be used to prove that there does
not exist a smaller generating set.

If I 6⊂ P , then Ie = RP by Proposition 4.12, and thus merely the trivial lower bound
1 is obtained. However, by Theorem 1.23 (or 1.24, if R is Noetherian), there exists
a maximal ideal M ⊃ I, which is prime by Lemma 1.20. By Proposition 4.12, the
ideal Ie ⊂ RM is then proper. So by using this ideal M as the prime ideal, it may be
possible to obtain a nontrivial lower bound.

Example 5.3. Let I = (x, y)2 ⊂ Z[x, y]. Then I = (x2, xy, y2) by Lemma 1.16. In
fact, all generating sets for I have at least three elements:

Let M = (x, y, 2) ⊂ Z[x, y]. The ideal M is maximal (Example 1.35) and thus prime.
As I ⊂ M , by the remark above it is possible to obtain a nontrivial lower bound by
localizing at this ideal. The localization L = Z[x, y]M consists of equivalence classes
of elements of the form f

g
, where f, g ∈ Z[x, y] and g /∈M , and L is a local ring with

the unique maximal ideal M e (Proposition 4.16). Proposition 4.13 gives generators
for the extensions of the ideals I and M to L:

Ie =

(
x2

1
,
xy

1
,
y2

1

)
and M e =

(
x

1
,
y

1
,
2

1

)
.

By Proposition 5.1, the minimal number of generators for I is at least the minimal
number of generators for Ie ⊂ L, which in turn is the L/M e-vector space dimension
of Ie/M eIe by Corollary 3.7. The elements

x2

1
+M eIe,

xy

1
+M eIe,

y2

1
+M eIe

30
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generate Ie/M eIe by Theorem 3.6, because the finitely generated ideal Ie ⊂ L is
also an L-module, and the localization L is a local ring. In order to verify that the
dimension of Ie/M eIe is 3, it suffices to show that these three generators are linearly
independent.

Fortunately the structure of the quotient field L/M e is quite simple: it turns out that
it is isomorphic to the field F2 of two elements. This can be seen in two steps:

Firstly, f
g

+ M e = 0 + M e if and only if f
g
∈ M e. This is equivalent to f ∈ M , as by

Remark 4.17, M e = {f
g

: f ∈M, g /∈M}. Note that f ∈M if and only if the constant

term f0 of f belongs to (2) ⊂ Z: the ideal M consists of all polynomials with an even
constant term. Therefore f /∈M if and only if f0 is an odd integer.

Secondly, if a, b ∈ L with a+M e 6= 0+M e and b+M e 6= 0+M e, then a+M e = b+M e,
so there exist only two equivalence classes, which verifies the isomorphism. Indeed,
assume that f1

g1
, f2
g2
∈ L so that the classes of these element are nonzero, so f1, f2 /∈M .

Then
f1
g1
− f2
g2

=
f1g2 − f2g1

g1g2
∈M e,

because the constant term of f1g2−f2g1 belongs to the ideal (2) ⊂ Z as the difference
of the constant terms of f1g2 and f2g1 which are both odd. Thus

f1
g1

+M e =
f2
g2

+M e.

The isomorphism L/M e ' F2 significantly simplifies the verification of linear inde-
pendence, as it suffices to show that if ai ∈ {0, 1}, the equation

(a1+M e)
(
x2

1
+M eIe

)
+(a2+M e)

(
xy
1

+M eIe
)
+(a3+M e)

(
y2

1
+M eIe

)
= 0+M eIe

implies that ai = 0 for all i. This is true, as none of the elements

x2

1
,
xy

1
,
y2

1
,
x2 + xy

1
,
x2 + y2

1
,
xy + y2

1
,
x2 + xy + y2

1

belongs to M eIe. This can be justified as follows:

By Proposition 4.22, M eIe = (MI)e, and by Lemma 1.16,

MI = (x3, x2y, 2x2, xy2, 2xy, y3, 2y2).

If x2

1
∈M eIe = (MI)e, then x2 ∈MI, as Remark 4.17 gives the expression

(MI)e =

{
f

g
: f ∈MI, g /∈M

}
.

Assume that x2 ∈ MI, so x2 can be expressed by using the generators of MI. By
gathering all generators with y, there exist some a, b, c ∈ Z[x, y] for which

x2 = ax3 + b(2x2) + cy.

On the right-hand side, the only term that could produce the term x2 is b0 · 2x2,
but this has an even coefficient. Therefore x2 /∈ MI and thus x2

1
/∈ M eIe. Similar

reasoning holds for the other elements. (In somewhat imprecise terms, the elements
of the ideal MI are of degree at least 3 in ”variables” {x, y, 2}.)
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Example 5.4. Assume that R is an integral domain, and let In = (x, y)n ⊂ R[x, y]
for each n ∈ Z+. Then the minimal number of generators for In is n+ 1.

Firstly, In can be generated by the set {xn, xn−1y, . . . , xyn−1, yn}, which has n + 1
elements. This follows from Lemma 1.16 and induction. As R is an integral domain,
the ideal P = I1 = (x, y) is a prime ideal by Proposition 1.31. The ideal P consists of
polynomials with constant term 0, and In ⊂ P . The goal is to prove that the minimal
number of generators for Ien ⊂ R[x, y]P is n + 1, and then Proposition 5.1 gives the
lower bound for minimal number of generators for I. By Corollary 3.7, this number
is the same as the dimension of Ien/P

eIen as an R[x, y]P/P
e-vector space. Note that

by Proposition 4.22,

Ien/P
eIen = Ien/(PIn)e = Ien/I

e
n+1.

By Proposition 4.13, the ideal Ien is generated by the set {xn
1
, x

n−1y
1
, . . . , xy

n−1

1
, y

n

1
},

and the images of these generate Ien/I
e
n+1. It remains to show that the set of the

images, {
xn−iyi

1
+ Ien+1 : i = 0, . . . , n

}
,

is linearly independent. This verification can be simplified, as for any f
g
∈ R[x, y]P ,

f
g

+ P e = f0
g0

+ P e: the constant term of the polynomial g0f − f0g is g0f0 − f0g0 = 0,
so this polynomial is in P , and thus by Remark 4.17

f

g
− f0
g0

=
g0f − f0g

g0g
∈ P e.

Actually R[x, y]P/P
e ∼= R(0), where R(0) is the quotient field of R, but this isomor-

phism is not needed for the argument. By the observation above, it suffices to verify
that when ri ∈ R, ti ∈ R− {0}, the relation

n∑
i=0

(
ri
ti

+ P e

)(
xn−iyi

1
+ Ien+1

)
=

0

1
+ Ien+1

implies ri
ti

+ P e = 0
1

+ P e for all i. The relation can be written as∑n
i=0

[(∏
j 6=i tj

)
rix

n−iyi
]

∏n
i=0 ti

=
n∑
i=0

rix
n−iyi

ti
∈ Ien+1,

which is equivalent to
n∑
i=0

[(∏
j 6=i

tj

)
rix

n−iyi

]
∈ In+1.

As the ideal In+1 is generated by monomials of degree n + 1, the monomials of any
nonzero polynomial in In+1 have at least this degree. As every tj 6= 0 and R does not
have any zero divisors, it follows that every ri = 0; otherwise the above polynomial
would have monomial terms with degree n. Therefore also ri

ti
+ P e = 0

1
+ P e for

all i = 0, . . . , n. Now every generating set of In has at least n + 1 elements, and a
generating set with this number of elements was already found, which proves that the
minimal number of generators for In is n+ 1.
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Remark 5.5. As fields are integral domains, the above example shows that the min-
imal number of generators for (x, y)n ⊂ R[x, y] is n+ 1, when R is a field. This shows
that polynomial rings in several variables over fields are not principal ideal domains,
even though those in one variable are.

The next example is a generalization of Example 2.3. It follows the structure of
Example 5.4, and therefore not all the details are repeated.

Example 5.6. Let In = (x, 2)n ∈ Z[x]. Then the minimal number of generators for
In is n+ 1.

The ideal In can be generated by the set {xn, 2xn−1, . . . , 2n−1x, 2n}, which has n+ 1
elements. The ideal P = I1 = (x, 2), which consists of polynomials with even constant
terms, is a maximal ideal by Example 1.35, and thus prime. Also, In ⊂ P for all n.
The minimal number of generators for Ien ⊂ Z[x]P is the same as the dimension of
Ien/P

eIen as R[x]P/P
e-vector space. Also in this case Ien/P

eIen = Ien/I
e
n+1, elements of

the form 2n−ixi

1
generate Ien, and the goal is to prove that the set of their images,{

2n−ixi

1
+ Ien+1 : i = 0, . . . , n

}
,

is linearly independent. The verification can be simplified with the observation that
f
g

+P e = f0
g0

+P e for any f
g
∈ R[x, y]P : the constant term of the polynomial g0f −f0g

is g0f0 − f0g0 = 0, therefore even, so this polynomial is in P , and thus

f

g
− f0
g0

=
g0f − f0g

g0g
∈ P e.

Note that when g /∈ P , g0 is odd. It is now enough to show that for ai ∈ Z, bi ∈ Z−2Z
(odd integers), the relation

n∑
i=0

(
ai
bi

+ P e

)(
2n−ixi

1
+ Ien+1

)
=

0

1
+ Ien+1

implies ai
bi

+ P e = 0
1

+ P e for all i. The relation can be written as∑n
i=0

[(∏
j 6=i bj

)
ai2

n−ixi
]

∏n
i=0 bi

=
n∑
i=0

ai2
n−ixi

bi
∈ Ien+1,

which is equivalent to
n∑
i=0

[(∏
j 6=i

bj

)
ai2

n−ixi

]
∈ In+1.

As the ideal In+1 is generated by the set {xn+1, 2xn, . . . , 2nx, 2n+1}, it is clear that
all the terms of its polynomials have to be divisible by 2kxj with k + j ≥ n + 1.
As all bj are odd, it follows that numbers ai have to be divisible by 2. Therefore
ai
bi

+ P e = 0
1

+ P e for all i. This completes the proof.



CHAPTER 6

More Tools: Ring and Module Constructions

This chapter builds more background for the result of [Forster] in the next chapter.

6.1. Radical Ideals

Radical ideals are a special subtype of ideals. The beginning of the section lists
some basic properties, and it uses [Dummit, section 15.2]. Proposition 6.7 in the
end of this section states that in Noetherian rings, every proper radical ideal is a
finite intersection of prime ideals. The proof, together with Lemma 6.5 and its corol-
lary on which it relies, are based on a question and its answer [Radical Ideal] on
math.stackexchange.com, with the missing details filled in.

Definition 6.1. Let I ⊂ R be an ideal.

(i) The radical of I is
√
I = {r ∈ R : rk ∈ I for some k ∈ Z+}.

(ii) The ideal I is a radical ideal if I =
√
I.

Lemma 6.2. Let I ⊂ R be an ideal. Then
√
I is a radical ideal of R that contains I.

Proof.
The inclusion I ⊂

√
I is clear by definition, and especially

√
I is nonempty. Let

r ∈ R and a, b ∈
√
I, so there exist m,n ∈ Z+ for which am ∈ I and bn ∈ I. Then

(ra)m = rmam ∈ I, so ra ∈
√
I. It remains to show that a− b ∈

√
I. Now

(a− b)m+n =
∑
j,k∈N,

j+k=m+n

rjka
jbk

for some rjk ∈ R, and in each term either j ≥ m or k ≥ n: otherwise j + k < m+ n.

Therefore each term rjka
jbk ∈ I, so (a− b)m+n ∈ I. This shows that

√
I is an ideal.

To prove that
√
I is a radical ideal, the equality

√√
I =

√
I is needed. Again,√

I ⊂
√√

I is clear. If c ∈
√√

I, then there exists s ∈ Z+ for which as ∈
√
I. Then

there also exists t ∈ Z+ for which

ast = (as)t ∈ I.

It follows that a ∈
√
I; this verifies the inclusion

√√
I ⊂

√
I. Therefore

√
I is a

radical ideal. �

Lemma 6.3. Let I ⊂ R be an ideal and P ⊂ R a prime ideal. Then

I ⊂ P ⇐⇒
√
I ⊂ P.

34
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Proof.
Assume first that

√
I ⊂ P . As I ⊂

√
I by Lemma 6.2, then I ⊂ P . Assume then

that I ⊂ P . Let a ∈
√
I, so there is k ∈ Z+ for which ak ∈ I ⊂ P . As P is prime,

either a ∈ P or ak−1 ∈ P . Both options eventually imply that a ∈ P . Therefore√
I ⊂ P . �

Example 6.4. Prime ideals are radical ideals. This can be seen from Lemma 6.3 by
setting I = P , and using the fact given by Lemma 6.2: every ideal is contained in its
radical. However, not every radical ideal is a prime ideal: as an example, (6) ⊂ Z is

radical but not prime. Indeed, if a ∈
√

(6), then there exists k ∈ Z+ and b ∈ Z for
which ak = 6b. Now either b = 0, from which follows a = 0 ∈ (6), or b 6= 0, which
implies that a has both 2 and 3 in its prime factorization, and thus a ∈ (6). This
shows that (6) is a radical ideal.

Even though the radical ideal (6) ⊂ Z is not a prime ideal (prime ideals in Z are
generated by prime numbers), it is the intersection of two prime ideals: (6) = (2)∩(3).
This is true in a more general setting: in Noetherian rings, all radical ideals are
finite intersections of prime ideals: this will be proven in Proposition 6.7, after the
following preparatory lemma and its corollary. It is also easy to verify that every
finite intersection of prime ideals is a radical ideal.

Lemma 6.5. Let I ⊂ R be a radical ideal, and ab ∈ I. Then

I =
√
I + (a) ∩

√
I + (b).

Proof.
By Lemma 6.2, an ideal is contained in its radical. Therefore I ⊂ I+ (a) ⊂

√
I + (a)

and I ⊂ I + (b) ⊂
√
I + (b), so

I ⊂
√
I + (a) ∩

√
I + (b).

Let r ∈
√
I + (a)∩

√
I + (b). Then rm ∈ I+(a) for some m ∈ Z+, and rn ∈ I+(b) for

some n ∈ Z+. This means that there exist c1, c2 ∈ I, s1, s2 ∈ R for which rm = c1+s1a
and rn = c2 + s2b. It follows that

rm+n = rmrn = (c1 + s1a)(c2 + s2b) = c1c2 + c1s2b+ s1ac2 + s1s2ab ∈ I,
as ab ∈ I. Therefore r ∈

√
I = I, so

√
I + (a) ∩

√
I + (b) ⊂ I. �

Corollary 6.6. Let I ⊂ R be a proper nonprime radical ideal. Then there exist
proper radical ideals I1 and I2 with I  I1 and I  I2, so that I = I1 ∩ I2.
Proof.
As I is not a prime ideal, there exists ab ∈ I with neither a nor b being an element
of I. By Lemma 6.5,

I =
√
I + (a) ∩

√
I + (b).

It remains to prove that these two ideals satisfy the given conditions. Firstly, they
are radical ideals by Lemma 6.2. Secondly, as a /∈ I,

I  I + (a) ⊂
√
I + (a),

and similarly I  
√
I + (b). Lastly, if

√
I + (a) = R, then

I =
√
I + (a) ∩

√
I + (b) = R ∩

√
I + (b) =

√
I + (b),
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which is a contradiction, and
√
I + (b) = R leads to a similar contradiction. Therefore

both
√
I + (a) and

√
I + (b) are proper ideals. �

Proposition 6.7. Every proper radical ideal in a Noetherian ring is a finite inter-
section of prime ideals.

Proof.
Let R be a Noetherian ring and I ⊂ R a proper radical ideal. If I is a prime ideal,
there is nothing to prove, so it can be assumed that I is not a prime ideal. By
Corollary 6.6, there exist proper radical ideals I1 and I2 with I  I1 and I  I2, and
I = I1 ∩ I2. If both I1 and I2 are prime, then I is a finite intersection of prime ideals.
Otherwise, the process can be repeated to the nonprime ideal(s). For example, if I1 is
not prime, then Corollary 6.6 gives proper radical ideals I11 and I12 with I1 = I11∩I12,
and then

I = I1 ∩ I2 = I11 ∩ I12 ∩ I2.

At stage n, there are at most 2n proper radical ideals as intersection of which I can
be expressed. It remains to show that after a finite number of steps, prime ideals are
reached. If this does not hold, then at each stage at least one of the ideals is not
prime, and there is a strictly increasing chain, consisting of n + 1 ideals, that ends
with that nonprime ideal. Therefore the process creates an infinite strictly increasing
chain of ideals, which is a contradiction with R being Noetherian. Therefore I can
be expressed as a finite intersection of prime ideals. �

6.2. Zariski Topology

The set of all prime ideals of R can be equipped with a topology called the Zariski
topology. This section uses [Dummit, section 15.5].

Definition 6.8. The prime spectrum of R is the set of all prime ideals of R, and it
is denoted by SpecR. The maximal spectrum of R is correspondingly the set of all
maximal ideals of R, and it is denoted by mSpecR ⊂ SpecR.

Definition 6.9. Let A ⊂ R be a subset and define

V (A) = {P ∈ SpecR : A ⊂ P}.
The Zariski topology on SpecR is the topology τ where the collection of closed sets
is {V (I) : I ⊂ R is an ideal}.

Remark 6.10. When defining V (A), the subset A can be replaced by the ideal it
generates. This follows from the fact given by Corollary 1.8: if I is any ideal, A ⊂ I
if and only if (A) ⊂ I.

Lemma 6.11. Let I ⊂ R be an ideal. Then V (I) = V (
√
I).

Proof.
This follows from Lemma 6.3, which states that when P ⊂ R is a prime ideal , I ⊂ P
if and only if

√
I ⊂ P. �

Proposition 6.12. The Zariski topology is a topology: (SpecR, τ) is a topological
space.
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Proof.
Note that the ideals 0 and R give V (0) = SpecR and V (R) = ø, so SpecR and ø
are closed. It remains to prove that finite unions and arbitrary intersections of sets
V (Ij) are closed (of the form V (I) for some ideal I).

Finite unions: When I and J are ideals, V (I) ∪ V (J) = V (IJ). Firstly, if a prime
ideal P ∈ V (I) ∪ V (J), then I ⊂ P or J ⊂ P . As IJ is contained in both I and J ,
it follows that IJ ⊂ P , and thus P ∈ V (IJ). Secondly, if P ∈ V (IJ), then IJ ⊂ P .
If I 6⊂ P , then there is i ∈ I such that i /∈ P . But as IJ ⊂ P , also iJ ⊂ P , so as P
is prime, it follows that J ⊂ P . Therefore P ∈ V (I) ∪ V (J). By induction, when Ij,
j ∈ {1, . . . , k} are ideals, ∪kj=1V (Ij) is closed.

Arbitrary intersections: Let A be an index set and {Ij : j ∈ A} a collection of ideals.
For a prime ideal P ⊂ R,

P ∈
⋂
j∈A

V (Ij) ⇐⇒ Ij ⊂ P ∀j ∈ A ⇐⇒
⋃
j∈A

Ij ⊂ P ⇐⇒ P ∈ V

(⋃
j∈A

Ij

)
,

it follows that ⋂
j∈A

V (Ij) = V

(⋃
j∈A

Ij

)
.

The union of the ideals Ij is not an ideal in general (look at Example 1.3). However,
by Remark 6.10, it can be replaced by the ideal it generates. Therefore arbitrary
intersections are closed. �

Definition 6.13. A prime ideal P ⊂ R is said to have (Krull) dimension k, denoted
by dimP = k, when there exists a chain P  P1  · · ·  Pk  R of prime ideals, but
no longer chains exist. The (Krull) dimension of R is defined to be

dimR = sup
P∈SpecR

dimP.

Remark 6.14. For a maximal ideal M ⊂ R, dimM = 0. The only prime ideal of a
field F is the zero ideal, which is also a maximal ideal. Therefore dimF = 0.

Example 6.15. The Krull dimension of Z is 1. The integers is a principal ideal
domain, so its every nonzero prime ideal is maximal by Lemma 1.21. If P1 and P2 are
prime ideals, the inclusion P1  P2  Z is therefore possible only for P1 = (0), so the
only prime ideal having nonzero dimension is the zero ideal, which has dimension 1.

Remark 6.16. In Noetherian rings, these kinds of strictly increasing chains of ideals
cannot be infinite. However, the supremum of the lengths, and therefore the Krull
dimension of a Noetherian ring, might be infinite. An example of this is discussed
in [Eisenbud, exercise 9.6], and the original example is in [Nagata, appendix A1,
example 1].

6.3. Tensor Product of Modules

This section introduces the construction of the tensor product of two modules, and it
follows [Lang, chapter 16, section 1]. The construction needs the following concepts:
direct products of groups [Lang, chapter 1, section 2], direct products and sums of
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modules [Dummit, exercise 20, section 10.3], and free modules [Lang, chapter 3,
section 4]. Existence and universal property of free modules (Propositions 6.23 and
6.24) follow [Dummit, section 10.3], and Propositions 6.28 and 6.29 use [Dummit,
section 10.4].

Definition 6.17. Let A be an index set and Gi an additive group for all i ∈ A. Let
G =

∏
i∈AGi be the Cartesian product of the sets Gi; elements of G are thus of the

form (gi)i∈A where each gi ∈ Gi. The set G together with componentwise addition is
called the direct product of the groups Gi.

Proposition 6.18. The direct product of groups Gi, i ∈ A, is a group, and it is
abelian if each Gi is abelian.

Proof.
The addition (gi)i∈A + (hi)i∈A = (gi + hi)i∈A is associative, as the addition in each
Gi is. The zero element of G is (0Gi)i∈A. Also every element (gi)i∈A has an inverse
(−gi)i∈A. Therefore G is a group. The commutativity of addition in each Gi implies
commutativity for addition in G, from which the second claim follows. �

Definition 6.19. Let A be an index set and Ei an R-module for each i ∈ A. The
direct product of the modules Ei, denoted by

∏
i∈AEi, is their direct product as abelian

groups with componentwise multiplication by elements of R. The direct sum of the
modules Ei is the subset of the direct product consisting of all elements (ei)i∈A for
which only finitely many of the components ei are nonzero, and it is denoted by⊕

i∈AEi.

Remark 6.20. The case of a finite index set A is simple: the direct product of
modules E1, . . . , Ek is the same as their direct sum.

Proposition 6.21. The direct product of any collection of R-modules Ei is an R-
module, and the direct sum of the modules Ei is its submodule.

Proof.
Denote the direct product and the direct sum by E =

∏
i∈AEi and E+ =

⊕
i∈AEi.

The direct product is nonempty as (0Ei)i∈A ∈ E, and it is an abelian group by
Proposition 6.18. As each Ei is an R-module, it is straightforward to verify that the
ring action r(ei)i∈A = (rei)i∈A satisfies the required properties, so E is an R-module.

The direct sum is a nonempty subset of the direct product, because (0Ei)i∈A ∈ E+.
If (ai)i∈A, (bi)i∈A ∈ E+, then

(ai)i∈A − (bi)i∈A = (ai − bi)i∈A ∈ E+,

as the set of indices for which ai − bi 6= 0 is finite. By the subgroup criterion, E+ is
a subgroup. As also r(ai)i∈A = (rai)i∈A ∈ E+ for any r ∈ R, E+ is a submodule. �

Definition 6.22. Let E be an R-module. A nonempty subset T ⊂ E is a basis of E,
if every element a ∈ E has a unique expression a =

∑
e∈U ree where U ⊂ T is finite

and each re ∈ R. If a basis T exists, the module E is called a free R-module (on the
set T ), and in this case E =

⊕
e∈T Re.

Proposition 6.23. For any nonempty set T , there exists a free R-module E(T ) on
the set T .
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Proof.
Let E(T ) be the collection of all functions f : T → R that take on nonzero values at
finitely many points, that is, for which the set {t ∈ T : f(t) 6= 0} is finite. The set
E(T ) becomes an R-module, when addition of functions and multiplication by ring
elements are defined pointwise:

(f + g)(t) = f(t) + g(t) and (rf)(t) = rf(t).

For example, for f, g ∈ E(T ) and r ∈ R,

(r(f + g))(t) = r(f + g)(t) = r(f(t) + g(t))

= rf(t) + rg(t) = (rf)(t) + (rg)(t)

for all t ∈ T , so r(f + g) = rf + rg. The other R-module properties can be checked
similarly.

Elements t ∈ T can be identified with functions ft ∈ E(T ), where

ft(x) =

{
1, x = t

0, x 6= t.

In this way, T can be interpreted as a subset of E(T ). Now every function f ∈ E(T )
is a sum of functions ft: If f gets nonzero values at n different points {t1, . . . , tn} and
the values at these points are f(ti) = ri ∈ R, then

f =
n∑
i=1

rifti .

These sums are unique, because each fti only contributes to the value at ti. Also, this
sum can be identified with

∑n
i=1 riti. This proves that E(T ) is a free R-module on

the set T . �

The next proposition shows that free modules have the following property: any map
from the basis to some R-module can be uniquely extended into an R-module ho-
momorphism from the free module. This is known as the universal property of free
modules.

Proposition 6.24. Let E be a free R-module with basis T , and F an R-module. For
every function ϕ : T → F , there exists a unique R-module homomorphism Φ: E → F
for which Φ|T = ϕ.

Proof.
Define Φ: E → F by setting

Φ

(
n∑
i=1

riti

)
=

n∑
i=1

riϕ(ti).

As E is a free module, its elements have unique sum representations, which ensures
that Φ is well defined. It is also an R-module homomorphism, which can be checked
using straightforward calculations, and Φ|T = ϕ follows from the definition.
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If Ψ: E → F is some other R-module homomorphism for which Ψ|T = ϕ, then

Ψ

(
n∑
i=1

riti

)
=

n∑
i=1

riΨ(ti) =
n∑
i=1

riϕ(ti) = Φ

(
n∑
i=1

riti

)
,

which verifies the uniqueness. �

Definition 6.25. Let A and B be R-modules. Denote the free R-module on A×B
(which exists by Proposition 6.23) by E, so

E =
⊕
(a,b)
∈A×B

R(a, b).

Let F be the submodule of E which is generated by all the elements of the following
types:

(a1 + a2, b)− (a1, b)− (a2, b),

(a, b1 + b2)− (a, b1)− (a, b2),

r(a, b)− (ra, b),

r(a, b)− (a, rb),

where r ∈ R, a, a1, a2 ∈ A and b, b1, b2 ∈ B. The quotient module E/F is called the
tensor product of the modules A and B, and it is denoted by A ⊗R B. The classes
of elements (a, b) in the quotient are called simple tensors and they are denoted by
a⊗ b.

Remark 6.26. The tensor product is an R-module by construction. As the free R-
module on A × B consists of finite sums of terms r(a, b), and taking the quotient
forces the relation r(a ⊗ b) = ra ⊗ b, any element of A ⊗R B can be expressed as a
finite sum of simple tensors. This expression might not be unique, which can be seen
from the relation (a1 + a2) ⊗ b = a1 ⊗ b + a2 ⊗ b. This property makes it difficult
to show that maps defined on the tensor product are well defined; however, the next
proposition provides a useful tool for this purpose.

Definition 6.27. Let A, B and E be R-modules. The map ϕ : A×B → E is called
R-bilinear, if it is R-linear in both components, that is,

ϕ(r1a1 + r2a2, b) = r1ϕ(a1, b) + r2ϕ(a2, b)

and

ϕ(a, r1b1 + r2b2) = r1ϕ(a, b1) + r2ϕ(a, b2)

for all a, a1, a2 ∈ A, b, b1, b2 ∈ B and r1, r2 ∈ R.

Proposition 6.28. Let A, B and E be R-modules. If ϕ : A× B → E is R-bilinear,
then the map Ψ: A⊗R B → E given by

Ψ

(
n∑
i=1

ai ⊗ bi

)
=

n∑
i=1

ϕ(ai, bi),

is an R-module homomorphism.
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Proof.
Firstly, by Proposition 6.24, the map ϕ defines an R-module homomorphism Φ from
the free module on A×B to E, and

Φ

(
n∑
i=1

ri(ai, bi)

)
=

n∑
i=1

riϕ(ai, bi),

especially Φ(a, b) = ϕ(a, b) for each (a, b) ∈ A × B. Let F denote the submodule in
the construction of the tensor product, so A⊗R B is the quotient of the free module
by F . Now the R-bilinearity of ϕ ensures that the generators of F belong to ker Φ,
as

Φ((a1 + a2, b)− (a1, b)− (a2, b)) = ϕ(a1 + a2, b)− ϕ(a1, b)− ϕ(a2, b) = 0

and

Φ(r(a, b)− (ra, b)) = rϕ(a, b)− ϕ(ra, b)

for all a, a1, a2 ∈ A, b ∈ B and r ∈ R (other generators similarly). As Φ is an R-
module homomorphism, it follows that F ⊂ ker Φ. By Proposition 1.47, the map Φ
induces an R-module homomorphism Ψ: A ⊗R B → E, where Ψ(a ⊗ b) = Φ(a, b);
note that simple tensors are classes of elements (a, b). As then

Ψ

(
n∑
i=1

ai ⊗ bi

)
=

n∑
i=1

Φ(ai, bi) =
n∑
i=1

ϕ(ai, bi),

this map is the one in the claim. �

Proposition 6.29 (Extension of scalars). Let T be a commutative ring, ϕ : R → T
a ring homomorphism and E an R-module. Then the tensor product E ⊗R T is a
T -module.

Proof.
The homomorphism ϕ makes T into an R-module (look at example 1.41), so the
tensor product E ⊗R T can be constructed and it is an R-module, particularly an
abelian group. Let t ∈ T and define an action of T on E ⊗R T by setting

t ·

(∑
i∈A

ei ⊗ si

)
=
∑
i∈A

ei ⊗ tsi,

note that all the sums in this proof are finite. It needs to be shown that the action is
well defined: that it does not depend on the representation of the element as simple
tensors, which is not unique. It also needs to be shown that the action satisfies the
properties required of a ring action; this, however, can be done using straightforward
calculations which are left out of this proof.

Let F be the submodule of the free R-module on E × T in the construction of the
tensor product (as in Definition 6.25). If

∑
i∈A ei ⊗ si and

∑
j∈B ej ⊗ sj are two

representations for the same element in E⊗RT , then
∑

i∈A(ei, si)−
∑

j∈B(ej, sj) ∈ F .
For the ring action to be well defined, it needs to be shown that∑

i∈A

ei ⊗ tsi =
∑
j∈B

ej ⊗ tsj
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for every t ∈ T . This follows if
∑

i∈A(ei, tsi) −
∑

j∈B(ej, tsj) ∈ F . The elements of

the free module, and thus the elements of F , are unique sums
∑

k∈D rk(ek, sk), where
rk ∈ R, ek ∈ E and sk ∈ T . Therefore it is enough to prove the following:

Claim: If
∑

k∈D rk(ek, sk) ∈ F and t ∈ T , then
∑

k∈D rk(ek, tsk) ∈ F. Firstly, this
holds for all the generators, which are of the form

(e1 + e2, s)− (e1, s)− (e2, s),

(e, s1 + s2)− (e, s1)− (e, s2),

r(e, s)− (re, s),

r(e, s)− (e, rs),

where r ∈ R, e, e1, e2 ∈ E and s, s1, s2 ∈ T . If the second entries of any of these
elements are multiplied by t, another generator is achieved; this follows from the
distributivity and commutativity properties of the ring T . Now a general element of
F can be expressed in terms of the generators, denoted by fl:∑

k∈D

rk(ek, sk) =
∑
l∈C

rlfl.

As the sum on the left-hand side is unique, the same pairs (ek, sk) appear also in the
generators fl. (On the right-hand side, there might be other pairs that cancel each
other, but it does not make any difference.) Therefore multiplying the second entries
by t gives a new set of generators, and thus

∑
k∈D rk(ek, tsk) ∈ F. This completes the

proof. �

6.4. Localization of Modules

The process of localizing modules is very similar to localization of rings that was
discussed in Chapter 4. Localization of modules has also a connection with tensor
products. This section follows [Dummit, section 15.4].

Let S ⊂ R be a multiplicatively closed subset that contains 1R. The relation on E×S
given by

(e1, s1) ∼ (e2, s2) ⇐⇒ t(s2e1 − s1e2) = 0 for some t ∈ S
is an equivalence relation. The equivalence class of (e, s) is denoted by e

s
. Let S−1E

denote the set of equivalence classes. The operation

e1
s1

+
e2
s2

=
s2e1 + s1e2

s1s2

is well defined and makes S−1E into an additive abelian group, and the ring action
of S−1R given by

r

t
· e
s

=
re

ts

is also well defined and gives S−1E an S−1R-module structure. The proofs for the
above claims follow the same pattern as the proofs of the corresponding results for
S−1R in Chapter 4. (The only major difference is that module elements must always
be kept on the right-hand side in the calculations.)
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Definition 6.30. The S−1R-module S−1E is called the localization of E at S. If
P ⊂ R is a prime ideal, the RP -module (R− P )−1E is called the localization of E at
P , and denoted by EP .

Remark 6.31. The ring homomorphisms R→ S−1R and R→ RP from Proposition
4.7 make S−1E and EP also into R-modules; look at Example 1.41.

Lemma 6.32. Let E be a finitely generated R-module, and P ⊂ R a prime ideal. Then
EP = 0 if and only if there exists an element s ∈ R− P for which sE = 0.

Proof.
Assume that there exists s ∈ R − P with sE = 0. Let e

t
∈ EP . As the image of s is

invertible in RP ,
e

t
=
se

st
=

0

st
= 0EP ,

which implies that EP = {0}.
Assume then that EP = 0. As E is finitely generated, there exist generators e1, . . . , ek.
For any generator ei,

ei
1

= 0
1
, so there exists some si ∈ R−P for which siei = 0. Now

the element s =
∏k

i=1 si ∈ R− P satisfies sE = 0:

Every element e ∈ E can be written in terms of the generators: there exist ri ∈ R so
that e = r1e1 + · · ·+ rkek. Therefore

se =

(
k∏
i=1

si

)
(r1e1 + · · ·+ rkek) = 0.

�

Remark 6.33. The annihilator of E is exactly Ann(E) = {r ∈ R : rE = 0} (and it
is an ideal by Lemma 1.55). Therefore, the previous lemma implies that EP 6= 0 if
and only if Ann(E) ⊂ P .

Lemma 6.34. Let P ⊂ R be a prime ideal, E an R-module and A an index set. If E
is generated by {ei}i∈A, then the RP -module EP is generated by { ei

1R
}i∈A. Especially,

if E is finitely generated, then EP is finitely generated.

Proof.
The proof is straightforward and very similar to the proof of the corresponding result
for ideals, Proposition 4.13. �

Proposition 6.35. Let P ⊂ R be a prime ideal, E an R-module and F ⊂ E a
submodule. Then (E/F )P ∼= EP/FP as RP -modules.

Proof.
Define ϕ : (E/F )P → EP/FP by ϕ

(
e+F
q

)
= e

q
+ FP . It first needs to be shown that

ϕ is well defined. If e1+F
q1

= e2+F
q2

, then there exists s ∈ R− P for which

s(q2e1 − q1e2) + F = s (q2(e1 + F )− q1(e2 + F )) = 0 + F,

so s(q2e1 − q1e2) ∈ F . Therefore

e1
q1
− e2
q2

=
q2e1 − q1e2

q1q2
=
s(q2e1 − q1e2)

sq1q2
∈ FP ,
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so

ϕ

(
e1 + F

q1

)
=
e1
q1

+ FP =
e2
q2

+ FP = ϕ

(
e2 + F

q2

)
.

This shows that the value of ϕ does not depend of the module and ring elements
chosen to represent the class.

The map is an RP -module homomorphism, because for any e1+F
q1

, e2+F
q2
∈ (E/F )P ,

ϕ

(
e1 + F

q1
+
e2 + F

q2

)
= ϕ

(
q2e1 + q1e2 + F

q1q2

)
=
q2e1 + q1e2

q1q2
+ FP

=

(
e1
q1

+ FP

)
+

(
e2
q2

+ FP

)
= ϕ

(
e1 + F

q1

)
+ ϕ

(
e2 + F

q2

)
,

and for any r
t
∈ RP , e+F

q
∈ (E/F )P ,

ϕ

(
r

t
· e+ F

q

)
= ϕ

(
re+ F

tq

)
=
re

tq
+ FP =

r

t

(
e

q
+ Fp

)
=
r

t
· ϕ
(
e+ F

q

)
.

Surjectivity of ϕ is trivial. For the injectivity, if ϕ
(
e1+F
q1

)
= ϕ

(
e2+F
q2

)
, then

q2e1 − q1e2
q1q2

∈ FP .

This means that 1R(q2e1− q1e2) ∈ F , and as 1R ∈ R−P , it follows that e1+F
q1

= e2+F
q2

.
Therefore ϕ is an RP -module isomorphism. �

Lemma 6.36. Let E be an R-module and P ⊂ R a prime ideal. Then P eEP = (PE)P .

Proof.
It is a simple matter to check that both of these modules consist of finite sums of
elements of the type

pe

s
,

where p ∈ P , e ∈ E and s ∈ R− P . This verifies the equality. �

The last goal of this chapter is to establish a relation between the tensor product and
localization of modules.

Proposition 6.37. Let E be an R-module and S ⊂ R a multiplicatively closed subset
with 1R ∈ S. Then S−1E ∼= E ⊗R S−1R as S−1R-modules.

Proof.
By Proposition 4.7, there exists a ring homomorphism π : R → S−1R, and thus
by Proposition 6.29, the tensor product E ⊗R S−1R is an S−1R-module. Define
ϕ : S−1E → E ⊗R S−1R by setting

ϕ
(e
s

)
= e⊗ 1

s
.
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Firstly, the map ϕ is well defined. Assume that e1
s1

= e2
s2

. Then there exists s ∈ S for

which s(s2e1 − s1e2) = 0, so ss2e1 = ss1e2. Therefore

ϕ

(
e1
s1

)
= e1 ⊗

1

s1
= ss2e1 ⊗

1

ss2s1
= ss1e2 ⊗

1

ss1s2
= e2 ⊗

1

s2
= ϕ

(
e2
s2

)
.

Secondly, ϕ is a homomorphism of S−1R-modules, as

ϕ

(
e1
s1

+
e2
s2

)
= ϕ

(
s2e1 + s1e2

s1s2

)
= (s2e1 + s1e2)⊗

1

s1s2

= s2e1 ⊗
1

s1s2
+ s1e2 ⊗

1

s1s2
= e1 ⊗

1

s1
+ e2 ⊗

1

s2

= ϕ

(
e1
s1

)
+ ϕ

(
e2
s2

)
for any e1

s1
, e2
s2
∈ S−1E, and

ϕ
(r
t
· e
s

)
= re⊗ 1

ts
=
r

t

(
e⊗ 1

s

)
=
r

t
· ϕ
(e
s

)
for any r

t
∈ S−1R and e

s
∈ S−1E.

Thirdly, ϕ is surjective; as every element of E ⊗R S−1R is a finite sum of simple
tensors, and as ϕ is a homomorphism, it is enough to show that every simple tensor
lies in the image of ϕ. So let e⊗ r

s
∈ E ⊗R S−1R. Then

ϕ
(re
s

)
= re⊗ 1

s
= e⊗ r

s
.

Lastly, the injectivity of ϕ follows, if the map can be proven to possess a well-defined
inverse. If an inverse exists, it has to be e⊗ r

s
7→ re

s
on simple tensors, as e⊗ r

s
= re⊗ 1

s
.

It remains to show that this map is well defined: this is done by showing that it is
induced by an R-bilinear map on E × S−1R.

Define ψ : E × S−1R → S−1E by setting ψ(e, r
s
) = re

s
. The map ψ is well defined:

Assume that (e1,
r1
s1

) = (e2,
r2
s2

). Then e1 = e2 = e and there exists s ∈ S so that

s(s2r1 − s1r2) = 0. It follows that

s(s2r1e− s1r2e) = s(s2r1 − s1r2)e = 0,

which implies that

ψ

(
e1,

r1
s1

)
=
r1e

s1
=
r2e

s2
= ψ

(
e2,

r2
s2

)
.

The map ψ is also R-bilinear, as

ψ
(
t1e1 + t2e2,

r

s

)
=
r(t1e1 + t2e2)

s
= t1

re1
s

+ t2
re2
s

= t1 · ψ
(
e1,

r

s

)
+ t2 · ψ

(
e2,

r

s

)
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and

ψ

(
e, t1

r1
s1

+ t2
r2
s2

)
= ψ

(
e,
s2t1r1 + s1t2r2

s1s2

)
=

(s2t1r1 + s1t2r2)e

s1s2

= t1
r1e

s1
+ t2

r2e

s2
= t1 · ψ

(
e1,

r1
s1

)
+ t2 · ψ

(
e2,

r2
s2

)
.

As both S−1R and S−1E are R-modules, the map Ψ: E ⊗R S−1R→ S−1E,

Ψ

(
n∑
i=1

ei ⊗
ri
si

)
=

n∑
i=1

ψ

(
ei,

ri
si

)
,

is anR-module homomorphism by Proposition 6.28, and Ψ = ϕ−1, as these maps agree
on simple tensors. Hence the inverse is well defined, which completes the proof. �

Corollary 6.38. Let E be an R-module and P ⊂ R a prime ideal. Then EP ∼=
E ⊗R RP as RP -modules.



CHAPTER 7

Upper Bound: A Result for Noetherian Rings

This chapter provides an upper bound for the minimal number of generators for a
module, and thus for an ideal. It is based on the article of [Forster]. The results
use the localization EP for a prime ideal P , as in Definition 6.30. In the original
article, the tensor product E⊗RRP is used instead of the localization EP . These are
isomorphic as RP -modules by Corollary 6.38.

Let E be an R-module, and P ⊂ R a prime ideal. Consider the ideal P e ⊂ RP and
the RP -module EP . Their product P eEP is an RP -submodule of EP by Lemma 1.51,
and EP/P

eEP is an RP/P
e-module by Lemma 1.53. As P e is a maximal ideal by

Proposition 4.16, RP/P
e is a field by Proposition 1.22. Thus the module is actually

a vector space. In the remainder of this chapter, denote

LP (E) = EP/P
eEP and KP (R) = RP/P

e,

so LP (E) is a KP (R)-vector space. Let βP : R→ KP (R) and λP : E → LP (E) be the
natural maps given by βP (r) = r

1
+ P e, λP (e) = e

1
+ P eEP . The map βP is a ring

homomorphism, as it is the composition of the map π : R → RP and the map from
RP to the quotient KP (R), which are both homomorphisms. The following lemma
states some other properties:

Lemma 7.1. For the maps βP and λP defined above, the following properties hold:

(i) βP (r) = 0 if and only if r ∈ P
(ii) λP (e1 + e2) = λP (e1) + λP (e2) for all e1, e2 ∈ E

(iii) λP (re) = βP (r)λP (e) for all r ∈ R, e ∈ E.

Proof.

(i) The condition βP (r) = 0 is equivalent to r
1
∈ P e, which is equivalent to r ∈ P

(look at Lemma 4.10)
(ii) λP (e1 + e2) = e1+e2

1
+ P eEP = e1

1
+ P eEP + e2

1
+ P eEP = λP (e1) + λP (e2)

(iii) λP (re) = re
1

+ P eEP =
(
r
1

+ P e
) (

e
1

+ P eEP
)

= βP (r)λP (e).
�

Remark 7.2. The parts (ii) and (iii) of Lemma 7.1 may resemble the properties
required of a homomorphism, and indeed, λP is an R-module homomorphism. By
Remark 6.31, EP is an R-module, so PEP is its submodule. It can be easily verified
that PEP = P eEP , and therefore LP (E) = EP/PEP is also an R-module.

Lemma 7.3. Let E be an R-module and P1, . . . , Pk ∈ SpecR with LPi(E) 6= 0 for all
i = 1, . . . , k. Then there exists e ∈ E for which λPi(e) 6= 0 for all i = 1, . . . , k.

Proof.
Assuming that the ideals Pi are distinct does not change the situation. After a possible

47
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relabeling of the ideals, it can thus be assumed that Pi 6⊂ Pj when i < j. The proof
is an induction on the number k of prime ideals.

Case k = 1: let P ∈ SpecR with LP (E) 6= 0. Assume on the contrary that λP (e) = 0
for all e ∈ E, so e

1
∈ P eEP for all e ∈ E. Let e

s
∈ EP . Now

e

s
=

1

s
· e

1
∈ P eEP ,

because P eEP is an RP -submodule of EP . Therefore EP = P eEP , which implies that
LP (E) = 0, but this is a contradiction. Thus λP (e) 6= 0 for some e ∈ E.

Assume then that the claim holds for k−1 prime ideals. Therefore an element e1 ∈ E
can be found so that λPi(e1) 6= 0 for all i = 1, . . . , k − 1. If also λPk(e1) 6= 0, then
the choice e = e1 gives the desired element, so it can be assumed that λPk(e1) = 0.
Then it is enough to find e2 ∈ E for which λPk(e2) 6= 0 and λPi(e2) = 0 for all i < k,
and then choose e = e1 + e2. This follows from the fact given by Lemma 7.1 (ii):
λPi(e) = λPi(e1) + λPi(e2). In this sum exactly one of the terms will be nonzero for
any i = 1, . . . , k.

As Pi 6⊂ Pk when i < k, there exist elements ai ∈ Pi−Pk for each i = 1, . . . , k−1. By
Lemma 7.1 (i), βPk(ai) 6= 0 and βPi(ai) = 0 for all i = 1, . . . , k − 1. Let a =

∏k−1
i=1 ai.

As Pk is a prime ideal, a /∈ Pk. Therefore a ∈
(⋃k−1

i=1 Pi

)
− Pk, so βPk(a) 6= 0, and

βPi(a) = 0 for all i = 1, . . . , k − 1. As LPk(E) 6= 0, by case k = 1 there exists e′ ∈ E
for which λPk(e

′) 6= 0. It remains to prove that the element e2 = ae′ has the desired
properties. For all i = 1, . . . , k − 1,

λPi(e2) = βPi(a)λPi(e
′) = 0 · λPi(e′) = 0

by Lemma 7.1 (iii). Furthermore, if λPk(e2) = 0, then the element ae′

1
belongs to

P e
kEPk , which is an RP -submodule of EPk . As a is an invertible element in RP , it

follows that
e′

1
=

1

a
· ae

′

1
∈ P e

kEPk ,

and therefore λPk(e
′) = 0, which is a contradiction. Thus λPk(e2) 6= 0, and the proof

is complete. �

Proposition 7.4. Let E be a finitely generated R-module. Then LP (E) = 0 if and
only if EP = 0.

Proof.
As E is finitely generated, EP is a finitely generated RP -module by Lemma 6.34.
Assume that LP (E) = 0. As LP (E) = EP/P

eEP , this implies that EP = P eEP . As
P e is the unique maximal ideal of the local ringRP by Proposition 4.16, P e = rad(RP ).
Therefore Nakayama’s lemma (Proposition 3.4) implies that EP = 0. The other
direction is trivial. �

Lemma 7.5. Let P ⊂ R be a prime ideal, and E a finitely generated R-module, which
has a generating set of k elements. Denote the minimal number of generators for the
RP -module EP by µ. Then

dimLP (E) = µ ≤ k.
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Proof.
By Lemma 6.34, also EP can be generated by k elements. This gives µ ≤ k. Now
EP is a finitely generated module over the local ring (RP , P

e), so dimLP (E) = µ by
Theorem 3.6, when µ ≥ 1. The case µ = 0 follows from Proposition 7.4. �

Proposition 7.6. Let E be a finitely generated R-module. Then the sets

Xk(E) = {P ∈ SpecR : dimLP (E) ≥ k}

are closed subsets of SpecR for all k ∈ N.

Proof.
As X0(E) = SpecR, it is closed. Now dimLP (E) ≥ 1 if and only if LP (E) 6= 0, which
is equivalent to EP 6= 0 by Proposition 7.4. This is equivalent to Ann(E) ⊂ P by
Remark 6.33. Therefore

X1(E) ={P ∈ SpecR : dimLP (E) ≥ 1}
={P ∈ SpecR : P ⊃ Ann(E)}
=V (Ann(E)).

As the annihilator Ann(E) is an ideal by Lemma 1.55, this proves that also X1(E) is
closed.

Let k > 1. The goal is to find a collection of finitely generated R-modules Ei so that
Xk(E) =

⋂
iX1(Ei). The rest of this proof makes use of the following notation: when

Aj ⊂ E is a subset of k− 1 elements, set Fj = RAj, which is a submodule of E. Now
Proposition 6.35 gives

(5) (E/Fj)P
∼= EP/(Fj)P .

By Lemma 7.5, the minimal number of generators for the RP -module EP is the same
as dimLP (E). If dimLP (E) < k, then EP can be generated by k − 1 elements
ai
qi
∈ EP , so

EP =
k−1∑
i=1

RP
ai
qi

=

(
k−1∑
i=1

Rai

)
P

,

where the equality of the two sets is given by straightforward comparison of elements.
For the subset A0 = {a1, . . . , ak−1} ⊂ E and the corresponding submodule

F0 = RA0 =
k−1∑
i=1

Rai,

the isomorphism (5) gives (E/F0)P = 0, as in this case EP = (F0)P . By Proposition
7.4, it then follows that LP (E/F0) = 0, so P /∈ X1(E/F0).

On the other hand, if dimLP (E) ≥ k, no subset of k−1 elements generates EP , so for
any subset Aj of k− 1 elements and the corresponding submodule Fj, the submodule
(Fj)P ⊂ EP is proper. Therefore the isomorphism (5) implies that (E/Fj)P 6= 0, so
LP (E/Fj) 6= 0, and thus P ∈ X1(E/Fj). From these two cases it follows that

Xk(E) =
⋂

X1(E/Fj),
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where the intersection is taken over all possible subsets Aj and the corresponding
submodules Fj. The sets X1(E/Fj) are closed by the first part of the proof, as the
modules E/Fj are finitely generated; this follows from the fact that E is finitely
generated. As an intersection of (possibly infinitely many) closed sets, Xk(E) is
therefore closed. �

Corollary 7.7. Let E be a finitely generated R-module and P,Q ∈ SpecR. If
P ⊂ Q, then dimLP (E) ≤ dimLQ(E).

Proof.
Denote k = dimLP (E), so P ∈ Xk(E). As Xk(E) is closed, there exists an ideal
I ⊂ R so that Xk(E) = V (I). Therefore I ⊂ P ⊂ Q, so also Q ∈ Xk(E). It follows
that dimLQ(E) ≥ k = dimLP (E). �

Lemma 7.8. Let P ⊂ R be a prime ideal, E an R-module and e ∈ E. Then

LP (E/Re) ∼= LP (E)/KP (R)λP (e)

as KP (R)-vector spaces.

Proof.
By definition, LP (E/Re) = (E/Re)P/P

e(E/Re)P , and LP (E) = EP/P
eEP . Both of

these are RP -modules as well as KP (R)-vector spaces. The set KP (R)λP (e), which
is a subspace of the vector space LP (E), has the form

KP (R)λP (e) =
{(r

t
+ P e

)(e
1

+ P eEP

)
: r ∈ R, t ∈ R− P

}
=
{re
t

+ P eEP : r ∈ R, t ∈ R− P
}
.

This proof makes frequent use of Lemma 6.36, which states that P eEP = (PE)P
whenever E is an R-module and P ⊂ R a prime ideal.

The goal is to find a surjective RP -module homomorphism the kernel of which is
P e(E/Re)P , and then use the first isomorphism theorem to establish the isomorphism.
Define ϕ : (E/Re)P → LP (E)/KP (R)λP (e),

ϕ

(
a+Re

s

)
=
(a
s

+ P eEP

)
+KP (R)λP (e).

Firstly, ϕ is well defined: if
a1 +Re

s1
=
a2 +Re

s2
,

then there exists t ∈ R− P for which

t(s2a1 − s1a2) +Re = t[s2(a1 +Re)− s1(a2 +Re)] = 0 +Re.

Then t(s2a1 − s1a2) ∈ Re, so t(s2a1 − s1a2) = re for some r ∈ R. Therefore

a1
s1
− a2
s2

=
s2a1 − s1a2

s1s2
=
t(s2a1 − s1a2)

ts1s2
=

re

ts1s2
,

so(
a1
s1

+ P eEP

)
−
(
a2
s2

+ P eEP

)
=

(
a1
s1
− a2
s2

)
+P eEP =

re

ts1s2
+P eEP ∈ KP (R)λP (e).
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It thus follows that

ϕ

(
a1 +Re

s1

)
=

(
a1
s1

+ P eEP

)
+KP (R)λP (e)

=

(
a2
s2

+ P eEP

)
+KP (R)λP (e) = ϕ

(
a2 +Re

s2

)
.

Secondly, ϕ is an RP -module homomorphism, as

ϕ

(
a1 +Re

s1
+
a2 +Re

s2

)
=ϕ

(
(s2a1 + s1a2) +Re

s1s2

)
=

(
s2a1 + s1a2

s1s2
+ P eEP

)
+KP (R)λP (e)

=

((
a1
s1

+ P eEP

)
+

(
a2
s2

+ P eEP

))
+KP (R)λP (e)

=ϕ

(
a1 +Re

s1

)
+ ϕ

(
a2 +Re

s2

)
for a1+Re

s1
, a2+Re

s2
∈ (E/Re)P , and

ϕ

(
r

t
· a+Re

s

)
=ϕ

(
ra+Re

ts

)
=
(ra
ts

+ P eEP

)
+KP (R)λP (e)

=
(r
t
·
(a
s

+ P eEP

))
+KP (R)λP (e)

=
r

t
·
((a

s
+ P eEP

)
+KP (R)λP (e)

)
=
r

t
· ϕ
(
a+Re

s

)
for r

t
∈ RP and a+Re

s
∈ (E/Re)P .

Thirdly, kerϕ = P e(E/Re)P : Let first a+Re
s
∈ P e(E/Re)P . The equality

P e(E/Re)P = (P (E/Re))P

then implies that a+Re ∈ P (E/Re). The elements of P (E/Re) have the form

n∑
i=1

pi(ei +Re) =

(
n∑
i=1

piei

)
+Re,

where pi ∈ P and ei ∈ E. Thus it follows that a ∈ PE, so a
s
∈ (PE)P = P eEP .

Therefore

ϕ

(
a+Re

s

)
=
(a
s

+ P eEP

)
+KP (R)λP (e) =

(
0

1
+ P eEP

)
+KP (R)λP (e),

so P e(E/Re)P ⊂ kerϕ.

Let then a+Re
s
∈ kerϕ. Then a

s
+ P eEP ∈ KP (R)λP (e), so

a

s
+ P eEP =

re

t
+ +P eEP
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for some r ∈ R, t ∈ R− P . Then

ta− sre
st

=
a

s
− re

t
∈ P eEP = (PE)P ,

so ta − sre ∈ PE. This implies that ta − sre =
∑n

i=1 piei for some pi ∈ P , ei ∈ E
and n ∈ Z+. Thus

ta+Re =

(
n∑
i=1

piei

)
+Re =

n∑
i=1

pi(ei +Re) ∈ P (E/Re).

Now
a+Re

s
=
ta+Re

ts
∈ (P (E/Re))P = P e(E/Re)P ,

from which the other inclusion kerϕ ⊂ P e(E/Re)P follows.

Lastly, surjectivity of ϕ is trivial, so it has been shown that ϕ is a surjectiveRP -module
homomorphism and its kernel is P e(E/Re)P . Thus the RP -module isomorphism

LP (E/Re) ∼= LP (E)/KP (R)λP (e)

follows from the first isomorphism theorem (Proposition 1.48). Now this isomorphism
is given by the map ψ : LP (E/Re)→ LP (E)/KP (R)λP (e),

ψ

(
a+Re

s
+ P e(E/Re)P

)
=
(a
s

+ P eEP

)
+KP (R)λP (e),

so for this to be an isomorphism of KP (R)-vector spaces, it only needs to be shown
that ψ is KP (R)-linear. This is indeed true: for any r

t
∈ RP and a+Re

s
∈ (E/Re)P

ψ

((r
t

+ P e
)
·
(
a+Re

s
+ P e(E/Re)P

))
=ψ

(
ra+Re

ts
+ P e(E/Re)P

)
=
(ra
ts

+ P eEP

)
+KP (R)λP (e)

=
((r

t
+ P e

)(a
s

+ P eEP

))
+KP (R)λP (e)

=
(r
t

+ P e
)((a

s
+ P eEP

)
+KP (R)λP (e)

)
=
(r
t

+ P e
)
· ψ
(
a+Re

s
+ P e(E/Re)P

)
.

This completes the proof. �

Theorem 7.9. Assume that R is a Noetherian ring and let E be a finitely generated
R-module. Define for each P ∈ SpecR

bP (E) =

{
dimP + dimLP (E), if LP (E) 6= 0,

0, if LP (E) = 0.

Let
b(E) = sup

P∈SpecR
bP (E).

Then E can be generated by a set of at most b(E) elements.



7. UPPER BOUND: A RESULT FOR NOETHERIAN RINGS 53

Proof.
The proof is an induction on b(E). If b(E) = 0, then LP (E) = 0 for every P ∈ SpecR:
otherwise some prime ideal P would give bP (E) ≥ 1. Therefore X1(E) = ø, and
X1(E) = V (Ann(E)) by the proof of Proposition 7.6. The annihilator Ann(E) is an
ideal of R by Lemma 1.55. If it is a proper ideal, Theorem 1.24 implies that it is
contained in some maximal and thus prime idealM . But in this caseM ∈ V (Ann(E)),
which is not possible, as this set was proven to be empty. Therefore Ann(E) = R,
so e = 1R · e = 0 for every e ∈ E. It follows that E is the zero module, which is
generated by zero elements.

Assume then that b(E) > 0, and that the claim has been proven for all finitely
generated R-modules F with b(F ) ≤ b(E) − 1. As E is finitely generated, it has a
generating set with m elements for some m ∈ N. By Lemma 7.5, dimLP (E) ≤ m for
each P ∈ SpecR, so Xt(E) = ø for all t > m. On the other hand, X1(E) 6= ø: if this
does not hold, then LP (E) = 0 for each P ∈ SpecR, and thus b(E) = 0. Therefore
there exists index j ≤ m for which Xj(E) 6= ø and Xt(E) = ø for all t > j.

Let now k ∈ {1, . . . , j}. Then the inclusion Xk(E) ⊃ Xj(E) implies that Xk(E) is
nonempty. As Xk(E) is closed by Proposition 7.6, there exists an ideal Ik ⊂ R so that
Xk(E) = V (Ik). As V (Ik) = V (

√
Ik) by Lemma 6.11, and the radical of an ideal is a

radical ideal by Lemma 6.2, it can be assumed that Ik is a radical ideal. If Ik = R,
then Xk(E) = ø, so the ideal Ik is a proper ideal, and thus a finite intersection of
prime ideals by Proposition 6.7. Therefore there exist prime ideals Pki, i = 1, . . . , lk,
for which Ik = Pk1 ∩ · · · ∩ Pklk , and thus

Xk(E) = V (Ik) = V (Pk1 ∩ · · · ∩ Pklk).

Lemma 7.3 gives e ∈ E for which λPki(e) 6= 0 for all k and i. The next step is to
prove that b(E/Re) < b(E). By Lemma 7.8,

(6) LP (E/Re) ∼= LP (E)/KP (R)λP (e),

so dimLP (E/Re) ≤ dimLP (E). The isomorphism (6) also implies that if LP (E) = 0,
also LP (E/Re) = 0, so it is enough to show that bP (E/Re) < b(E) for all P for which
LP (E) 6= 0.

Let P ∈ SpecR with dimLP (E) = k > 0, so k ∈ {1, . . . , j}. Then P ∈ Xk(E), so
P ⊃ Pk1 ∩ · · · ∩ Pklk . Now Pki ⊂ P for some i: if this does not hold, then for each

i there exist elements aki ∈ Pki with aki /∈ P . Then the element
∏lk

i=1 aki belongs to
each Pki, and therefore also to the intersection and thus to P . As P is a prime ideal,
aki ∈ P for some i, which is a contradiction. Therefore Pki ⊂ P for some i, and it
can be seen from the definition of Krull dimension that dimP ≤ dimPki.

If Pki = P , then λP (e) 6= 0 and thus KP (R)λP (e) is a nonzero subspace of LP (E).
In this case the isomorphism (6) implies that dimLP (E/Re) = dimLP (E) − 1. If
instead Pki  P , then dimP < dimPki by definition of Krull dimension. The obvious
inclusion Pki ⊃ Pk1 ∩ · · · ∩ Pklk = Ik implies that Pki ∈ V (Ik) = Xk(E). Therefore
dimLPki(E) ≥ k, so

dimLP (E/Re) ≤ dimLP (E) = k ≤ dimLPki(E).
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Both alternatives thus lead to

dimP + dimLP (E/Re) < dimPki + dimLPki(E) ≤ b(E).

Therefore b(E/Re) < b(E), so b(E/Re) ≤ b(E)− 1. As E/Re is a finitely generated
R-module, it has a generating set of at most b(E)−1 elements by induction hypothesis.
Therefore there exist elements ai ∈ E, i = 1, . . . , n ≤ b(E)− 1 so that for any a ∈ E

a+Re =
n∑
i=1

(ai +Re) =

(
n∑
i=1

ai

)
+Re.

This implies that a = (
∑n

i=1 ai)+re for some r ∈ R, so especially E can be generated
by a set of at most b(E) elements. �

The result of Theorem 7.9 can be applied to an ideal E = I of a Noetherian ring R,
as ideals are also modules. In this case, LP (I) = Ie/P eIe is an RP/P

e-vector space,
the dimension of which needs to be found for each prime ideal P ⊂ R in order to find
b(I).

Remark 7.10. If b(E) = ∞, the theorem does not offer any information. However,
if R has finite Krull dimension, then b(E) < ∞: Let k be the minimal number of
generators for E. By Lemma 7.5, dimLp(E) is bounded from above by k. Therefore

b(E) = sup
P∈SpecR

bP (E)

≤ sup
P∈SpecR

(dimP + dimLp(E))

≤ sup
P∈SpecR

dimP + sup
P∈SpecR

dimLp(E)

≤ dimR + k <∞.

Example 7.11. This example shows that the assumption ”finitely generated” is cru-
cial in Proposition 7.6 and Theorem 7.9. It shows that if a module E is not finitely
generated, it is possible that some sets Xk(E) are not closed, and that the number
b(E) can be finite even though E does not have a finite generating set. Let R = C[x]
be the polynomial ring in one variable over the complex numbers. The prime ideals
of R are

Pz = (x− z) for z ∈ C and P∞ = (0).

Firstly, the ideals of the first type are prime ideals by the results in Chapter 1 (see
Proposition 1.31 and Corollary 1.36), and the zero ideal is a prime ideal because R is
an integral domain. Assume then that P ⊂ R is a prime ideal. As R is a principal
ideal domain (look at Example 1.12), P = (p) for some p ∈ R. The case p = 0 is
the only one when the degree of p is not defined, and it gives the ideal P∞. Now if
deg p = 0, then p ∈ C − {0}, so p is a unit and thus P = R, which is not possible.
On the other hand, if deg p ≥ 2, then p can be factored into linear factors, but P
does not have any elements of degree 1: this implies that P cannot be a prime ideal.
Therefore the only prime ideals are the ones mentioned above, and thus SpecR can
be identified with C ∪ {∞}.
The closed sets of SpecR are finite subsets and SpecR itself: Assume thatD ⊂ SpecR
is a closed set, so D = V (I) for some ideal I ⊂ R. If I = (0), then D = SpecR,
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and if I = R, then D = ø. Assume then that I is a proper nonzero ideal. As
R is a principal ideal domain, I = (f) for some nonzero polynomial f ∈ R. Now
deg f = k ≥ 1, otherwise I = (0) or I = R. The polynomial f can be factored:

there exist a, zi ∈ C, a 6= 0, for which f =
∏k

i=1 a(x − zi). If P ∈ D, then P ⊃ I
so especially f ∈ P . As P is a prime ideal, x − zi ∈ P for some i, and therefore
(x− zi) ⊂ P . As R is a principal ideal domain, all nonzero Pz are maximal ideals by
Lemma 1.21, so it follows that P = (x − zi). In this case D = {Pz : f(z) = 0} is a
finite set.

For each n ∈ Z, let En = (C,+) with the R-module structure given by the ring action
f ·c = f(n)c: the evaluation homomorphism R→ C, f 7→ f(n) makes (the C-module)
C into an R-module (see Example 1.41). Let then E =

⊕
n∈ZEn. All modules En

are nonzero, so as a countably infinite direct sum, E is not finitely generated. The
elements of E are sequences (cn)n∈Z, where each cn ∈ En, and only finitely many
terms are nonzero. For each n ∈ Z, let ε(n) denote the sequence where

ε(n)i =

{
1, if i = n,

0, if i 6= n.

Then E is generated by {ε(n) : n ∈ Z}, because for constant polynomials cn,

(cn)n∈Z =
∑
n∈Z

cn · ε(n).

First claim: Let EPz be the localization of E at the prime ideal Pz. Then EPz = 0
for z /∈ Z, and EPz

∼= Ez for z ∈ Z.

Verification of the first claim needs the following lemma: Let n ∈ Z. If the polynomial
hn = x− n ∈ R− Pz, then in EPz

ε(n)

1
=

(0)n∈Z
1

.

Proof of the lemma: as(
hn ·

(
ε(n)− (0)n∈Z

))
n

= (hn · ε(n))n = hn(n) = 0,

the sequence (hn · ε(n))n∈Z is the zero sequence (0)n∈Z. The claim of the lemma thus
follows from the definition of localization.

Let first z /∈ Z. Then the prime ideal Pz is either (x − z) for some z ∈ C − Z, or
the zero ideal. In either case, hn ∈ R − Pz for all n ∈ Z: note that as Pz is a prime
ideal, it cannot contain polynomials x− z1 and x− z2 where z1 6= z2. By the lemma

above, ε(n)
1

=
(0)n∈Z

1
for all n. By Lemma 6.34, the elements ε(n)

1
generate EPz , so the

localization is the zero module.

Let then z ∈ Z. Define ϕ : EPz → Ez by

ϕ

(
(cn)n∈Z
g

)
=

cz
g(z)

,
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so the value of ϕ depends only on the element indexed by z. (The division on the
right-hand side is the customary division of C.) Firstly, ϕ is well defined: if

(cn)n∈Z
g

=
(dn)n∈Z
f

,

then there exists h ∈ R− Pz for which

(h(n) [f(n)cn − g(n)dn])n∈Z = h · (f · (cn)n∈Z − g · (dn)n∈Z) = (0)n∈Z.

Especially h(z) (f(z)cz − g(z)dz) = 0. Now h ∈ R − Pz, so h(z) 6= 0. Therefore
f(z)cz − g(z)dz = 0, so it follows that

ϕ

(
(cn)n∈Z
g

)
=

cz
g(z)

=
dz
f(z)

= ϕ

(
(dn)n∈Z
f

)
.

The map ϕ is surjective, as ϕ
(

(c)n∈Z
1

)
= c for any c ∈ Ez. Injectivity can be verified

by looking at the kernel: Assume that ϕ
(

(cn)n∈Z
g

)
= 0. Then cz

g(z)
= 0, so cz = 0. As

hn ∈ R − Pz for all n 6= z, the above lemma implies that ε(n)
1

=
(0)n∈Z

1
for all n 6= z,

and therefore

(cn)n∈Z
g

=

∑
n∈Z cn · ε(n)

g
=

1

g

(∑
n∈Z

cn ·
ε(n)

1

)
=

(0)n∈Z
1

.

It remains to show that ϕ is a homomorphism of R-modules. This holds, as

ϕ

(
(cn)n∈Z
g

+
(dn)n∈Z
f

)
=ϕ

(
(f(n)cn + g(n)dn)n∈Z

gf

)
=
f(z)cz + g(z)dz

g(z)f(z)
=

cz
g(z)

+
dz
f(z)

=ϕ

(
(cn)n∈Z
g

)
+ ϕ

(
(dn)n∈Z
f

)
,

and

ϕ

(
f · (cn)n∈Z

g

)
=ϕ

(
(f(n)cn)n∈Z

g

)
=
f(z)cz
g(z)

= f · ϕ
(

(cn)n∈Z
g

)
.

This proves the first claim. By Proposition 7.4, LPz(E) 6= 0 if and only if EPz 6= 0,
which happens with z ∈ Z. Thus the first claim implies that X1(E) = Z, which is not
a closed set. Therefore the result of Proposition 7.6 does not hold for this module.

Second claim: b(E) = 1.

As b(E) is defined to be the supremum of all numbers bPz(E), it is enough to show
that each of these is bounded above by 1. By the definition of bPz(E), it suffices to
show that

(7) dimPz + dimLPz(E) ≤ 1
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for each Pz for which LPz(E) 6= 0. As LPz(E) 6= 0 is equivalent to EPz 6= 0 by
Proposition 7.4, the equation (7) thus needs to be shown for each z ∈ Z.

As noted above, all nonzero Pz are maximal ideals, so dimPz = 0 for all z ∈ Z.
Each Ez is a nonzero module and generated by 1C, so the isomorphism EPz

∼= Ez
implies that the minimal number of generators for EPz is also 1. By Lemma 7.5,
dimLPz(E) = 1. Therefore dimPz + dimLPz(E) = 1 for all z ∈ Z. This proves the
second claim. As the module E is not finitely generated, it is not possible to find
a single generator: this shows that the result of Theorem 7.9 does not hold for this
ideal.



Afterword

This text presents results that give the minimal number of generators for an ideal in
local rings, a lower bound for this number in non-local rings, and an upper bound in
Noetherian rings. It is not a complete treatment of the subject, but in my opinion, the
most important goal was to gain more confidence in commutative algebra, in which
I think I succeeded. Despite a few moments of despair, on the whole the writing
process was a positive experience, and I learned a lot.

The last chapter is based on an article by Otto Forster. As this article is not quite
recent, it should be no surprise that also other people have brought up the subject after
the publication of the article, and improvements to the result have been introduced.
However, I decided to concentrate on this one article, as I felt that it (or actually just
the first 5 pages of it) offered enough challenges.

Gröbner bases are one topic which I originally planned to include but later left out.
A Gröbner basis of an ideal I in a polynomial ring is a generating set of I so that the
leading terms of its polynomials generate the same ideal as the leading terms of all
polynomials in I. A Gröbner basis is minimal, when none of its subsets is a Gröbner
basis, and all minimal Gröbner bases are of the same size. My question, to which I
did not yet find an answer, was whether it is possible to find a generating set that is
smaller than the minimal Gröbner basis. If a generating set like this can be found, it
means that finding the Gröbner basis, for which there exist algorithms, does not help
in the search for the minimal number of generators.
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APPENDIX A

Index of Notation

Notation Explanation

N Natural numbers {0, 1, 2, 3, . . . }
Z Integers
Z+ Positive integers {1, 2, 3, . . . }
R Real numbers
C Complex numbers
Fp Field with p elements, where p is a prime number
R A commutative ring with multiplicative identity 1R
(a) Ideal generated by one element a
(a1, . . . , an) Ideal generated by elements a1, . . . , an
(S) Ideal generated by a subset S ⊂ R
S−1R (S−1E) Localization of a ring R (module E) at S
RP (EP ) Localization of a ring R (module E) at a prime ideal P ⊂ R
Ie Extension of an ideal I ⊂ R (to the localization S−1R)
R[x] Polynomial ring over R in one variable x
R[x1, . . . , xn] Polynomial ring over R in n variables
deg f Degree of a polynomial f ∈ R[x]
f0 Constant term of a polynomial f ∈ R[x1, . . . , xn]
dimR Krull dimension of a ring R
dimP Krull dimension of a prime ideal P ⊂ R√
I Radical of an ideal I ⊂ R

radR Jacobson radical of R (intersection of maximal ideals)
SpecR Prime spectrum of R
mSpecR Maximal spectrum of R
V (I) Closed set in Zariski topology, {P ∈ SpecR : P ⊃ I}
Re R-module generated by one element e in R-module E
Ann(E) Annihilator of a module E∏

i∈AEi Direct product of modules Ei⊕
i∈AEi Direct sum of modules Ei

A⊗R B Tensor product of R-modules A and B
a⊗ b Simple tensor in A⊗R B
Φ|T Restriction of Φ to set T
kerϕ Kernel of a ring/module homomorphism ϕ
∼= Symbol for (ring/module) isomorphism
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