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The field of molecular magnetism studies the magnetic properties of molecular
systems as opposed to conventional metal-based magnets. The high chemical
modifiability of the constituting molecules makes such materials highly versatile,
and the small size of the building blocks leads to the rise of various quantum
mechanical phenomena, such as tunneling and entanglement. These phenomena
can then be further utilized in the construction of nanoscale quantum devices.

This dissertation describes computational and theoretical studies in the field
of molecular magnetism using state-of-the-art quantum chemical methods based
on ab initio multireference approaches and broken symmetry density functional
theory. Of the eight papers included in this work, the first three describe the ex-
perimental and computational characterization of magnetic interactions between
organic radicals, transition metal ions, and lanthanide ions. The next paper intro-
duces an approach to design ferromagnetically coupled organic radical dimers,
which can be used in the construction of magnets consisting of purely organic
molecules. This theory can also be extended to the design of organo-main-group
radical systems and ferromagnetically coupled metal–radical complexes. The
following three papers focus on the study of magnetic anisotropy in mono- and
polymetallic Dy(iii) coordination complexes. The last paper develops a theo-
retical model for the description of anisotropic spin-dependent delocalization
and applies this model to study the magnetic interactions in excited states of
bilanthanide endohedral metallo-fullerenes. In all cases where computational
tools are applied to experimentally characterized systems, the computations offer
more insight into the electronic structure and chemical properties of the systems,
giving rise to the various macroscopically observed magnetic phenomena than
what could be obtained by experimental tools only. The results contribute to our
understanding of magnetically interesting molecular systems and suggest new
research directions in the field.

Keywords: molecular magnetism, single-molecule magnets, organic magnets,
endohedral metallo-fullerenes, lanthanides, magnetic anisotropy, ex-
change interaction, spin-orbit coupling, quantum chemistry, broken
symmetry DFT, DFT, CASSCF, CASPT2, NEVPT2
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1 INTRODUCTION

In 1927, Walter Heitler and Fritz London published a paper titled “Wechsel-
wirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik”
in Zeitschrift für Physik.1 The title can be freely translated to English as “Interac-
tion of Neutral Atoms and Homopolar Binding in Terms of Quantum Mechanics”,
and the paper constitutes the first application of modern quantum theory to a
chemical problem. It is arguably one of the most important, if not the most
important, contribution to our understanding of the concept of the chemical bond.
In their work, Heitler and London explain the interaction of two hydrogen atoms
and the formation of a chemical bond using the wave mechanics formulation of
quantum theory published by Schrödinger the previous year.2–6 An important
aspect of the work of Heitler and London, and a key to its ultimate success, was
the correct enforcement of anti-symmetry relative to particle exchange on their
trial wave function. This leads to correct realization of the Pauli principle and is
the origin of a phenomenon that came to be known as exchange interaction.7–14

The following year Heisenberg published his nominal paper “Zur Theorie des
Ferromagnetismus” (“On the Theory of Ferromagnetism”), in which he took the
concept of exchange interaction further and used it to explain the spin-ordering
of electrons in ferromagnetic (FM) metals.15 Heisenberg’s theory forms the ba-
sis of our understanding of the quantum mechanical effects, which lead to the
formation of permanent magnets.

Thus, the genesis of the fundamental quantum theories of both chemistry
and magnetism lies in the concept of exchange interaction; and it is reasonable to
state that magnetism and the electronic structure of molecules are closely related
on a microscopic level. For the better part of the 20th century, however, these two
fields of study remained rather segregated. The magnetic properties of molecular
systems certainly were widely studied as analytical tools in the context of nuclear
magnetic resonance (NMR) spectroscopy,16–18 electron paramagnetic resonance
(EPR) spectroscopy,19–21 and in the field of mangnetochemistry,22, 23 which studied
paramagnetic properties of molecules as a tool for structural determination. It
was not until the early 1980s when advances in the understanding of the magnetic
properties of molecules and in experimental techniques initiated a paradigm shift
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in the field of magnetochemistry, which moved the field from the analysis of
structures on the basis of their paramagnetism towards designing structures with
specific and novel magnetic properties.24–26 This newborn research field became
known as molecular magnetism and is the topic of this dissertation.

1.1 Historical outline and current state of the field

Early work in the field of molecular magnetism focused on controlling the
magnetic properties of molecules through their chemical structure.26, 27 A true
hallmark in this regard was achieved in 1982 when Kahn and co-workers induced
FM interaction between transition-metal ions by exploiting orbital symmetries
of different ions introduced into the same ligand framework (Figure 1a).28 The
focus then moved towards designing systems with three-dimensional long-range
magnetic order using the so-called bottom-up approach where one begins with
tailoring the interaction between neighboring molecules and then moves towards
longer and longer ranges of interactions.29 In 1987 long-range order was achieved
in an organometallic decamethylferrocene–tetracyanoethylene salt (Figure 1d)30

and in 1991 in the β-phase of purely organic para-nitrophenyl nitronyl nitroxide
radical (Figure 1b).31 The design of organometallic, purely organic, and organo-
main-group magnets remains an active research field.32–35 One of the main goals
is the design of systems with higher ordering temperatures. The current record is
36 K observed in a material consisting of a dithiadiazolyl radical (Figure 1c).36

Some recent advances have also been achieved by introducing heavier main-group
atoms into the radical frameworks to induce spin-orbit coupling (SOC)37, 38 and
by introducing spin-canting.39

A true renaissance of molecular magnetism started in 1993 when Sessoli et al.
discovered slow relaxation of magnetization in [Mn12O12(PhCOO)16(H2O)4] or, as
it is commonly known as, Mn12 (Figure 2a).40, 41 The anisotropy is a consequence
of the interplay of SOC at the Mn ions and the crystal-field (CF) potential of the
ligands. What is truly remarkable about the observation is that the slow relax-
ation is not a property of the bulk material but emerges at the single-molecule
level. In other words, if a single Mn12 complex was doped into a diamagnetic
crystal lattice, the slow magnetic relaxation would still be observed. What this
means is that if the magnetic moment of a given Mn12 complex is oriented in a
specific direction by an external magnetic field and the field is then switched off,
the molecule will remember this direction over some finite time. Considering the
extremely small size of the system (∼ 1 nm), this “magnetic memory” is coupled
with quantum phenomena, such as quantum entanglement, tunneling, and deco-
herence. This has immediate implications to potential technological applications
in molecular-size quantum technologies, such as microscopic digital memory,42, 43

spintronics,44–46 and quantum computing.46, 47 Systems demonstrating slow re-
laxation of magnetization emerging at the molecular level can be considered as
zero-dimensional magnets and are commonly known as single-molecule magnets
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a)

b)
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d)

FIGURE 1 a) Ferromagnetically coupled complex of Kahn and co-workers, b) para-
nitrophenyl nitronyl nitroxide radical, which orders ferromagnetically, c) a
dithiadiazolyl radical of Rawson and co-workers, which orders ferromag-
netically below 36 K, and d) decamethylferrocene–tetracyanoethylene salt,
which orders ferrimagnetically.

(SMMs). The discovery of Mn12 led to a shift of focus from three-dimensional
magnetic systems to zero-dimensional systems constructed using polymetallic
high-spin complexes. The main aim was, and still is, to design systems with
higher blocking temperatures. The blocking temperature has several definitions
but can be considered as the highest temperature where the slow relaxation of
magnetization can be observed at a “mechanical timescale” sometimes standard-
ized as 100 s.25 In most SMMs, the blocking temperature is in the range of a few
kelvins above absolute zero.

An important aspect in the development of new systems has been the use
of theoretical models and computational tools, which have afforded insight into
the features of the chemical structure leading to the desired magnetic function-
ality. Theoretical calculations have been carried out on magnetic systems for
several decades, and calculations on the magnetic properties of atoms using self-
consistent field methods were well-established already in the 1930s.48 However,
application to larger molecular systems was severely limited by the available
computational hardware until the 1990s. EPR parameters of small systems were
calculated by semi-empirical methods with rather stringent approximations start-
ing from the 1970s.21, 49 More accurate calculations for systems where SOC
could be treated using low-order perturbation theory started to appear in the
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a) b)

FIGURE 2 a) Structure of [Mn12O12(CH3COO)16(H2O)4] and b) structure of a
phthalocyanine–lanthanide(iii) double-decker complex.

late 1990s in the context of density functional theory (DFT) methods50–65 and
wave-function-based ab initio methods.66–69 Isotropic exchange coupling con-
stants were calculated starting from the early 1980s,70–75 and by the early 2000s,
calculation on small to moderate size third-row transition-metal complexes using
multireference ab initio methods were well established.76, 77 Accurate estimates of
exchange coupling constants can also be made using DFT in the so-called broken
symmetry formalism, which was developed in the 1980s.70–73 The method is
widely used (for examples see reviews 61, 78, 79, and the references therein),
but its formal interpretation in the context of DFT remains somewhat controver-
sial.80–86 Starting from the turn of the millenia, anisotropic magnetic properties
could be described by using multireference ab initio methods, where SOC was
introduced in a non-perturbative manner.87–89

The need for high-level theoretical calculations of highly anisotropic mag-
netic properties became more apparent when in 2003 Ishikawa and co-workers
demonstrated that phthalocyanine–lanthanide complexes with just one metal ion
(Figure 2b) can show very pronounced SMM behavior.90, 91 This led to a huge
surge in the research on lanthanide-based SMMs.92, 93 By that time, computa-
tional methods for the multireference treatment of systems with strong SOC were
available,94 and the physics of the magnetic properties of lanthanide ions were
already well-established in the book of Abragam and Bleaney published in 1970.20

The tools to put the calculated results in correspondence with various empirical
quantities used to characterize these systems, however, were still missing for the
most part. These were developed during the 2000s by Ungur, Chibotaru, and
co-workers95–101 with contributions by Atanasov, Neese, and co-workers.102, 103

The theoretical results showed that more pronounced SMM behavior could
be achieved by using simpler complexes with just one metal ion as opposed to
complicated polymetallic systems.104 Such systems are sometimes referred to as
single-ion magnets (SIMs). It was further shown by Ungur and Chibotaru that the
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FIGURE 3 Structure of a dysprocenium SMM.

optimal system should have a highly axial CF with strong anionic ligands in axial
positions of the coordination sphere and weak neutral or, better yet, no ligands at
all in the equatorial positions.105 A similar conclusion can also be drawn from
the simple and highly successful electrostatic model introduced by Rineheart and
Long106 (based on earlier work by Sievers107), and from later theoretical works
by various authors.108–110 Most of the recent hallmarks in the field of SMMs
have been achieved using this strategy.VI, 111–114 The SMM that currently has
the highest blocking temperature up to 60 K is a dysprocenium cation with no
equatorial ligands (Figure 3).VI, 114 The operational temperature of this SMM is
approaching the temperature of liquid nitrogen (77 K), which can be considered
as a lower temperature limit for actual industrial applications.

Another important trend in the design of SMMs is the construction of
systems with a few, strongly exchange-coupled lanthanide ions. This design
strategy started with the observation of a blocking temperature of 14 K in a
N3−

2 radical-bridged Tb complex {[(Me3Si)2N]2(THF)Tb}2(µ-η2:η2-N2) (Figure
4a).115 The Gd–N3−

2 exchange coupling in the Gd analogue was the strongest
observed in any lanthanide system116 and the remains the highest observed in
any coordination complex. The {[(Me3Si)2N]2(THF)Tb}2(µ-η2:η2-N2) complex was
very recently further improved by replacing the (Me3Si)2N and THF auxiliary
ligands with cyclopentadienyls raising the blocking temperature to 20 K. Stronger
exchange coupling has since been achieved in an endohedral metallofullerene
Dy2@C80(CH2Ph) (Figure 4b) with a blocking temperature of 18 K.117 The theoret-
ical description of the anisotropic interaction between strongly spin-orbit-coupled
ions is extremely complicated. Usually in lanthanide systems, the exchange inter-
actions are weak and are described within the framework of the Lines model118 by
introducing one empirical parameter, which is fitted to experimental data.96, 98, 99

The exact expression for the interaction has been derived but has seen very
limited use so far due to its complicated form.119–121 This complexity greatly
hinders the development of new polymetallic SMMs in a rational way. In the
case of SIMs, theoretical calculations can be used to predict anisotropic magnetic
properties of the systems,108, 109 but in the case of polymetallic systems, one is
still largely confined to explaining the properties observed experimentally.
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a) b)

FIGURE 4 a) Structure of {[(Me3Si)2N]2(THF)Tb}2(µ-η2:η2-N2) and b) structure of
Dy2@C80(CH2Ph).

Theoretical models and calculations on the interaction between SMMs and
the surrounding lattice, which results in magnetic relaxation, have also started
to emerge very recently.122, 123 The theoretical developments in this regard are
still in many ways in their infancy, but understanding the structural effects on
the coupling between the phonons of the bulk lattice and the magnetic state of
the SMM will most likely provide some new design criteria for high-temperature
SMMs in the future.

A key problem in all of molecular magnetism is the need to achieve higher
operational temperatures. In the case of SMMs, this means higher blocking
temperatures, and in the case of organic magnets, higher ordering temperatures.
This all comes down to design of chemical structures, which give rise to the
desired properties in a controlled manner. The research effort is approached on
three fronts: firstly, there is the synthetic effort of chemists to produce structures
suggested by theory; secondly, there is the analytical effort both by chemists and
by experimental physicists to observe the magnetic properties in the first place
and to get more insight into the electronic structure and magnetic properties of the
molecular magnets so that they can be compared with predictions made by theory;
and thirdly, there is the theoretical and computational effort of theoreticians in
understanding the relationship between the chemical structure and the magnetic
properties on a microscopic level and in predicting new structures. The present
work contributes to the latter.

1.2 Aim of this study

This dissertation focuses on the theoretical and computational study of molecular
magnetic systems. The aim of the present work is threefold:

i) to analyze isotropic exchange interactions in molecular metal–radical and
radical–radical systems using state-of-the art computational tools, and to
use these results in the design of new organic ferromagnets;
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ii) to analyze anisotropic magnetic properties of mono- and polymetallic
transition-metal and lanthanide systems using state-of-the-art computa-
tional tools to better understand the relationship between the chemical
structure of the complexes and their magnetic properties; and

iii) to develop theoretical models for the understanding of novel exchange
interaction mechanism encountered in the field of molecular magnetism,
which cannot be properly described by any pre-existing model.

This dissertation has been divided into eight chapters. Following this introduc-
tion, the next four chapters provide some background on the theoretical and
computational tools used in this work. The next three chapters discuss the results
of the three main topics of this work: the computational analysis of isotropic ex-
change interactions and the use of these results to design new molecular systems,
the computational analysis of anisotropic magnetic properties, and the theoretical
derivation of a new model of spin-dependent delocalization. The last chapter
provides conclusions and discusses the outlook of the results.

1.3 Notation and conventions

In addition to the SI units, two systems of units will be used in this work
with some notable exceptions. In discussion of quantum chemistry and density
functional theory, the Hartree atomic units124 will be used throughout. In this
system of units, the electron mass (me), the reduced Planck constant (h̄ = h/2π),
the magnitude of the elementary charge |e|, and the Coulomb constant 1/4πǫ0 are
all set to unity by definition, and all other units follow from these. Most notably,
the speed of light is c ≈ 137. In relativistic equations, the electron mass may be
explicitly written following the convention in the field. When discussing general
theory of angular momentum, the convention h̄ = 1 will also be applied.

The field of molecular magnetism has (in our opinion rather unfortunately)
inherited the use of the cgsemu system of units from the field of magneto-
chemistry. Since this is the system of units used in practically all literature
in the field, we will stick with this choice. The easiest way to understand the
cgsemu system is to consider that molar magnetization has the same dimen-
sion as the product of Avogadro’s constant (NA) and the Bohr magneton (µB):
NAµB = 5585 cm3 G mol−1, and to derive other units from this result. In the
literature, it is (again unfortunately) rather common that oersted, which is the
unit of magnetic field strength, and gauss, which is the unit of magnetic induction,
are used interchangeably. Sometimes even tesla, which is the SI unit for magnetic
induction, is used with oersteds in the same work. In cgsemu, the value of the
permeability of vacuum is µ0 = 1, which is important to note when converting
expressions from cgsemu to other systems of units. When reporting energies,
again following convention, we use the wave number cm−1, which is neither part
of the Hartree atomic units nor the cgsemu system (nor the SI system, for that
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matter). With this choice of units the conversion factor

NAµB
2

3kB
= 0.125048612 cm3 mol−1, (1)

where kB is the Boltzmann constant, is very useful and can be used to relate
energies and other quantities with the SI system. Other common convention
in the field is to express energies in kelvin. Both kelvin and cm−1 are of the
same order of magnitude and are related by the Boltzmann constant: kB =
0.69503877 cm−1 K−1. In the context of thermochemistry, the SI unit kJ mol−1

will be used. More detailed discussion on the cgsemu system in the context of
magnetochemistry and molecular magnetism is available, for example, in the
books of Mabbs and Machin23 and of Kahn.24

The relevant energy scale in molecular magnetism is set by the thermal
energy from liquid helium temperature to ambient conditions, which is roughly
1.4 cm−1 to 210 cm−1. Thus, when referring to interaction as “weak”, we are
referring to interaction energies of the order 10−1 cm−1 or less. Likewise, when
stating that something is “energetically well separated”, we are implying that the
energy difference is considerably larger than the available thermal energy and
thus of the order 103 cm−1 or greater.

Following the convention set by Russell et al. for quantum numbers, we
will use lowercase symbols for quantum numbers of individual particles or
quasi-particles and uppercase symbols for quantum numbers associated with
some ensemble of particles.125 In the mathematical notation, we will use regular
italic symbols for scalars, bold symbols for vectors, matrices, and tensors, and
calligraphic symbols for more general entities, such as vector spaces or operators
on vector spaces. The hat symbol will be used for operators acting within vector
spaces and the superscript asterisk and the dagger for complex conjugates and
Hermitian conjugates, respectively. The tilde symbol will be used for pseudospin,
and in the case of pseudospin operators we will not use the hat symbol. In
CASSCF and related theories (Chapter 4), specific indices will run over specific
one-particle states, but these will be indicated when relevant. In other parts of
the text specific symbols used for indices do not carry any special implications.

We will be using notation from several different fields of physics, which
unavoidably leads to the use of the same symbol for different quantities. Avoiding
this would result in very unconventional notation, and we see overlapping
symbols as a smaller problem than deviating from common conventions. The
same symbols will, however, be used in very different contexts, making confusion
unlikely. In cases where confusion is possible, an explanation will be explicitly
stated.
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2 QUANTUM MECHANICAL DESCRIPTION OF
MANY-PARTICLE SYSTEMS

Any analysis of the magnetic properties of molecular systems requires under-
standing of the electronic structure of the molecules. The computational methods
to obtain these properties will be discussed in Chapter 4, but first one must
establish how the many-particle states arising from the electronic structure can be
represented. In the present work, we will describe non-interacting many-particle
states using the common molecular orbital approach, whereas interacting many-
particle states will be described using the abstract concept of occupation number
vectors and the formalism of second quantization.

2.1 Molecular orbital description of non-interacting many-particle
states

Let us consider N electrons, which do not interact with each other but do
interact with an external electric potential Vext(r), which can be, for example, the
Coulombic potential of atomic nuclei. Each one-particle state is described by
a one-particle function ϕi(r, ms) known as a spinorbital, where r is the spatial
coordinate and ms is the projection of the particle spin. The one-particle states
exist in an infinite-dimensional one-particle Hilbert space H, and the N-particle
system can then be described by a state in an N-particle Hilbert space

H⊗N = H⊗H⊗ · · · ⊗ H
︸ ︷︷ ︸

N

. (2)

The simplest N-particle wave function in H⊗N would be a simple product
ϕ1(r1ms1)ϕ2(r2ms2) · · · ϕN(rNmsN) of the one-particle states of the N electrons
known as a Hartree product.124, 126, 127 The particles in such a state would neither
be indistinguishable nor would they have the correct symmetry under permu-
tation of particle indices.7, 10–13 To correctly enforce these properties, one needs
to take a linear combination of all the possible permutations of the particle
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indices in the Hartree product with the signs of each term determined by the
number of particles permuted in each term. Such a structure is known as a Slater
determinant:127–129

Φ({ri, msi}) =
1√
N!

∣
∣
∣
∣
∣
∣
∣
∣
∣

ϕ1(r1, ms1) ϕ2(r1, ms1) · · · ϕN(r1, ms1)
ϕ1(r2, ms2) ϕ2(r2, ms2) · · · ϕN(r2, ms2)

...
... . . . ...

ϕ1(rN, msN) ϕ2(rN, msN) · · · ϕN(rN, msN)

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3)

where {ri, msi} is the set of spatial and spin coordinates of all electrons and 1/
√

N!

is a normalization factor.
Φ({ri, msi}) is an exact solution to the Schrödinger equation for a system

of non-interacting fermions in some external electric potential Vext(r). A Slater
determinant describes a single electronic configuration where each spinorbital
in the determinant is occupied by exactly one electron. The spinorbitals can be
separated into a spatial orbital (or simply a molecular orbital, MO) φi(r) and a
spin function σ(ms):

ϕi(r, ms) = φiσ(r)σ(ms). (4)

There exist two orthonormal spin functions σ(ms) ∈ α(ms), β(ms), and they have
the following properties:

α(−1/2) = 0, α(1/2) = 1, β(−1/2) = 1, and β(1/2) = 0. (5)

The spin index σ in φiσ(r) can be replaced by adding a bar over the orbital symbol
for β orbitals: φiα(r) ≡ φi(r) and φiβ(r) ≡ φ̄i(r). A rather common situation in
electronic structure theory is the so-called restricted case where an α and a β

electron share the same spatial function: φi(r) = φ̄i(r) and the spin index or
bar notation can be dropped altogether. In this case, i indexes unique spatial
orbitals and not individual particles. The opposite (more general) case when
φi(r) 6= φ̄i(r) is called the unrestricted case. A rarer situation is the so-called
restricted open-shell case where some orbitals are doubly occupied and share the
same spatial orbital and a few valence orbitals are singly occupied and differ in
the spatial part.

2.2 Fock-space description of many-particle states and second quan-
tization

2.2.1 States and operators in the Fock space

The molecular orbital description of many-particle states introduced in section 2.1
is very useful for the description of non-interacting many-particle systems, and it
can be extended to interacting systems as well. The interacting situation, however,
is perhaps easiest to treat using the formalism of second quantization130–135

where the many particle system is represented by a superposition of occupation
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number (ON) vectors. The ON vectors used in second quantization are in many
ways similar to the Slater determinants used in wave function approaches. It is
therefore very common in the literature to use the terms ON vector and Slater
determinant interchangeably; we will, however, always speak of ON vectors
in the context of second quantization. The state vectors describing the system
are entities in the Fock space F .131 The Fock space is a direct sum over all
antisymmetrized M-particle Hilbert spaces H⊗M where M ranges from zero to
infinity. Such a construct can be formally expressed as

F =
∞⊕

M=0

S−H⊗M = C ⊕H⊕ S−(H⊗H)⊕ S−(H⊗H⊗H)⊕ · · · , (6)

where C is the set of complex numbers and S− is an antisymmetrizising oper-
ator. A state vector in an antisymmetrized M-particle Hilbert space is given as
|n1, n2, · · · 〉 where n1 is the number of particles occupying one-particle state 1, n2
is the number of particles occupying the one-particle state 2, etc., and ∑ ni = M.
The allowed ONs are 0 or 1 since two or more fermions may not occupy the
same state due to the Pauli principle.136, 137 Like in section 2.1, the one-particle
states are represented in the Cartesian space by a spinorbital ϕi(r, ms). The an-
tisymmetrizing operator S− ensures the correct permutation symmetry of the
electrons:

| · · · ni · · · nj · · · 〉 = −| · · · nj · · · nj · · · 〉. (7)

The Fock space can also be constructed for an ensemble of bosons in which case a
symmetrizing operator is used instead. Such a system is, however, of no interest
to us here.

A general state in the Fock space is given by a linear combination of ON
vectors:

|ψ〉 = ∑
k

Ck|nk
1 , nk

2 , · · · 〉 ≡ ∑
k

Ck|k〉, (8)

where the expansion coefficients Ck are called configuration interaction (CI)
coefficients and where we have simplified the notation so that the vector k
corresponds to a specific set of the ONs: k = {nk

1 , nk
2 , · · · }. Different |k〉 in the

same expansion may have different numbers of particles but in chemistry we are
only interested in operators which conserve the particle number.

The states in the Fock space are operated by creations and annihilation
operators â†

P and âP, respectively. Like their name suggests, the operators add or
remove particles from the states and therefore couple subspaces of the Fock space
with different total particle numbers. As is evident from the notation they are
Hermitian conjugates of each other. The effect of the operators on state vectors is
defined as

â†
P| · · · , nP, · · · 〉 = δnP,1(−1)∑Q<P nQ | · · · , nP + 1, · · · 〉 (9)

âP| · · · , nP, · · · 〉 = δnP,0(−1)∑Q<P nQ | · · · , nP − 1, · · · 〉, (10)

where the phase factor (−1)∑Q<P nQ ensures that the correct permutational sym-
metry is conserved. The phase factor can be read as even if the number of
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occupied particle states “left” to the state being operated on is even and odd in
the opposite case. Any ON vector in the Fock space can be constructed by sequen-
tial application of creation operators to the vacuum state |vac〉 = |0, 0, · · · , 0〉.
The vacuum state should not be confused with a zero vector. The fermionic
creation and annihilation operators have the following anticommutation relations

[âP, âQ]+ = 0, [â†
P, â†

Q]+ = 0, and [âP, â†
Q]+ = δPQ (11)

and all other properties follow from them.133, 134 The consecutive operation on
the same one-particle state by an annihilation and a creation operator returns the
occupation number of that state. This operator n̂p = â†

pap is called the occupation
number operator and the action on an ON vector is

n̂p| · · · , np, · · · 〉 = np| · · · , np, · · · 〉. (12)

The total particle number operator N̂ is defined as the sum of occupation number
operators: N̂ = ∑p n̂p.

The upper case indices P and Q labeling the one-particle states contain all
information on the spatial and spin properties of the one-particle state. It is often
more practical to consider a less general coordinate by setting P → p, σ, where p

is the spatial index of the one-particle state and σ ∈ α, β is a spin index. This is
very much analogous to the concept of spinorbital and spatial orbital introduced
in section 2.1. Thus, for each one-particle state p there exists an α state and a β

state. The creation and annihilation operators act on both the spin and spatial
parts of the one-particle states and therefore the substitution P → p, σ leads to
two indices on the creation and annihilation operators âP → âpσ.

If the one-particle states are represented by restricted orbitals, lot of the
following notation will be simplified by introducing the spin-free one- and two-
particle excitation (or replacement) operators

Êpq = Êα
pq + Ê

β
pq = â†

pα âqα + â†
pβ âqβ = ∑

σ

â†
pσ âqσ (13)

Êpq,rs = ÊpqÊrs − δqrÊps = ∑
σ,τ

â†
pσ â†

rτ âsτ âqσ

Both Êpq and Êpq,rs create and annihilate the same amount of α and β electrons and
therefore they do not alter the total particle number or the total spin projection
MS of the system. The spin-free one-particle excitation operator Êpq can be
considered as a singlet excitation operator (up to a scaling factor of

√
2) which

are irreducible tensor operators of rank zero.133, 138 Therefore, Êpq does not add
or remove any spin or orbital angular momentum from the state it operates
on. Since the two-particle spin-free excitation operator Êpq,rs is constructed from
the one-particle operators, it also conserves the angular momenta of the state
it operates on. Irreducible tensor operators will be discussed in more detail in
section 3.2.3.
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2.2.2 Expectation values and reduced density matrices

Spin-free one- and two-particle operators, ĥ and ĝ, can be constructed from the
spin-free excitation operators as

ĥ = ∑
p,q

hpqÊpq and ĝ =
1
2 ∑

p,q,r,s
gpqrsÊpq,rs, (14)

where hpq and gpqrs are the so-called one- and two-electron integrals over the
spatial representation of the one-particle states φp(r):

hpq =
∫

φ∗
p(r)ĥC(r)φ

∗
q (r)dr (15)

gpqrs =
∫∫

φ∗
p(r1)φ

∗
r (r2)ĝC(r1, r2)φq(r1)φs(r2)dr1dr2 (16)

ĥC(r) and ĝC(r1, r2) are spatial representations of the operators (i. e. operators
in the wave function representation). The two-particle operator we are mostly
interested in is the Coulomb operator. Its integrals are usually referred to simply
as two-electron integrals and have special notation:

∫∫

φ∗
p(r1)φ

∗
r (r2)

1
|r1 − r2|

φq(r1)φs(r2)dr1dr2 ≡ (pq|rs). (17)

It is important to take note of the order of the indices. The respective matrix
elements over states of the type (8) are given as

〈ψ|ĥ|ψ′〉 = ∑
p,q

hpq〈ψ|Êpq|ψ′〉 = ∑
p,q

hpqγpq (18)

〈ψ|ĝ|ψ′〉 = ∑
p,q,r,s

gpqrs〈ψ|Êpq,rs|ψ′〉 = ∑
p,q,r,s

gpqrsΓpqrs, (19)

where γpq = 〈ψ|Êpq|ψ′〉 and Γpqrs = 〈ψ|Êpq,rs|ψ′〉 are the one- and two-particle
reduced density matrices, respectively.133, 134 Reduced density matrices play a key
role in quantum chemistry and all relevant physics can be formulated through
them.139–143 The reduced density matrices will be discussed in the context of
the electron density in the Cartesian space in section 2.3. In the literature on
quantum chemistry, the one-particle reduced density matrix is often referred to
simply as the density matrix. It is also common to drop the term ’reduced’ and
simply speak of one- and two-particle density matrices or even just one- and
two-matrices. We will follow this convention in the present work. It should be
noted that all dependence on the spatial aspects in the expectation values (18)
and (19) is confined to the integrals hpq and gpqrs and all dependence on the CI
coefficients is contained in the density matrices.

The one- and two-particle density matrices are the matrix representations
of the one- and two-particle density operators γ̂ = ∑p,q Epq and Γ̂ = ∑p,q,r,s Epq,rs.
The one-particle density operator can be split into one-particle spin density
operators

γ̂ = γ̂α + γ̂β = ∑
p,q

(

Êα
pq + Ê

β
pq

)

. (20)
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2.2.3 Spin properties of states in the Fock space

It is well-known that the non-relativistic Hamiltonian in the absence of external
magnetic fields commutes with the total spin operator Ŝ2 and the spin-projection
operator Ŝz.144, 145 This results from the fact that the Hamiltonian is an irreducible
tensor operator of rank zero (i. e. a singlet operator, see section 3.2.3).133 Therefore
it is always possible to choose the eigenstates of the Hamiltonian in such a way
that they are also eigenstates of Ŝ2 and Ŝz. It should be noted that this is strictly
the case only for exact eigenstates of the Hamiltonian and not necessarily for
approximate eigenstates we encounter in practical calculations. It is nonetheless
useful in most cases to enforce the correct spin symmetry on the optimized
state. One main advantage of this is that the size of the variational space can be
reduced significantly. A rather notable exception to this is the broken symmetry
Hartree–Fock and DFT methods discussed in chapter 5 where the spin symmetry
is deliberately broken to offer more variational flexibility.

A given ON vector |k〉 has a well-defined number of α and β electrons and
is therefore an eigenstate of the particle number operator N̂σ which returns the
number of particles of given spin when operating on |k〉:

N̂σ|k〉 = ∑
p

â†
pσ âpσ|k〉 = ∑

p

npσ|k〉 = Nσ|k〉, (21)

where Nσ is the number of electrons with spin σ. The Ŝz commutes with N̂σ
133

and since there are no degeneracies in the eigenvalue of N̂σ, |k〉 is an eigenstate of
Ŝz. However, Ŝ2 does not commute with N̂σ and therefore |k〉 is in general not an
eigenstate of Ŝ2. A very common exception to this is the case when |k〉 contains
only closed shell orbitals.133 However, it turns out that in the case of restricted
orbitals it is always possible to construct some spin-adapted basis where all
states are eigenstates of Ŝ2 by taking finite linear combinations in {|k〉} . These
eigenstates are called configuration state functions (CSFs). Each ON vector in a
CSF has the same spatial occupations and only differs in the spin indices. All of
the ON vectors in this set, {|m〉}, have the same total spin projection MS. The
CSF |ΦS,MS

〉 with spin S and projection MS can then be expanded as

|ΦS,MS
〉 = ∑

m
Bm|m〉. (22)

There are multiple ways of constructing CSFs from a restricted ON vector basis.
The most popular methods today are based on the graphical unitary group
approach (GUGA) initially formulated by Paldus146 and Shavitt.147, 148 The details
of this procedure are deeply rooted in group and graph theories and will not be
discussed here. An excellent and highly detailed description of the construction
of CSFs is given in the book of Pauncz.149

When considering practical aspects, the use of CSFs usually leads to shorter
CI expansions but the use of ON vectors leads to simpler expressions for expec-
tation values and therefore either choice as a basis requires some compromise.
For a long time, the CSF basis was preferred over the ON vector basis but more
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recent work using modern computers is starting to question this choice.150 Most
of the theory presented in this work is general enough that it can be applied both
to ON vector and to CSF bases. When CSFs are required in a given expression,
this is indicated by explicitly labeling the states with the spin quantum numbers.

2.3 The electron density

The electron density ρ(r) gives the probability of finding an electron at r when
the position of all other electron is arbitrary.151 Likewise, the spin densities ρα(r)
and ρβ(r) give the probabilities of finding an electron with an α or a β spin at
r. All three densities are functions in the Cartesian space and can, in principle,
be determined experimentally. They therefore contribute a very important link
between the electronic structure theory and experimental reality. They also form
the basis for density functional methods discussed in chapter 5. The electron
density is related to the wave function by

ρ(r) =
∫

ψ∗(r1, ms1, r2, ms2, · · · )ψ(r1, ms1, r2, ms2, · · · )dms1dr2dms2 · · · , (23)

where the integration over the values of ms in practice means summation as ms

can only have two values. The integrand in (23) is the conditional probability
density of the N-particle system which gives the probability of finding an electron
with spin ms1 infitesimally close to r1, electron with spin ms2 infitesimally close to
r2, etc. The electron density is then obtained from this distribution by integrating
out all the degrees of freedom associated with all particles except one. The spin-
densities are obtained by integrating out the degrees of freedom associated with
the opposite spin as well. It should be noted that the electron density integrates
to the number of particles, not to unity.

The relationship with the density in the formulation so far has been made
through the abstract representation of the density operators in the Fock space.
In second quantization the connection with the electron density in the Cartesian
space can be made through the so-called electron field operators:130, 132, 135

ψ̂σ(r) = ∑
p

φpσ(r)âpσ and ψ̂†
σ(r) = ∑

p

φ∗
pσ(r)â†

pσ. (24)

The action of the field operators on the Cartesian space can be considered as
creating or annihilating an electron with spin σ at r. The spatial representation of
γ̂α and γ̂β is obtained by the substitution âpσ → ψ̂pσ(r):

γ̂σ → γ̂σ(r; r′) = ∑
p,q

φ∗
pσ(r

′)φqσ(r)Êσ
pq (25)

The respective matrix elements are the one-particle spin density matrices in the
spatial representation:

γσ(r; r′) = ∑
p,q

φ∗
pσ(r

′)φqσ(r)γσ
pq, (26)
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where γσ
pq = 〈ψ|Êσ

pq|ψ′〉. The one-particle density matrix is simply the sum of the
spin density matrices

γ(r; r′) = γα(r; r′) + γβ(r; r′). (27)

The density matrix is the kernel of the density operator in the wave function
representation.143, 151 The name ’density matrix’ is somewhat misleading here as
γ(r; r′) is clearly a function. McWeeney has noted that the term “density kernel”
would be a better choice.143 The electron density and spin densities are given by
the “diagonal” values of the density matrices:

ρ(r) = γ(r; r), ρα(r) = γα(r; r), and ρβ(r) = γβ(r; r). (28)

The one-particle density matrix can be brought to a diagonal form by a
proper unitary rotation of the MOs, giving

γ(r; r′) = ∑
p

ωpη∗
p(r

′)ηp(r), (29)

where the eigenfunctions ηp(r) are called the natural orbitals (NOs) and the eigen-
values ωp are known as the natural orbital occupation numbers (NOONs).139, 140

NOONs have a very important physical interpretation as they give the proba-
bility amplitudes for finding a particle in the respective one-particle state in the
N-particle ensemble. The two-particle density matrix can also be diagonalized to
yield functions known as the natural geminals. The corresponding eigenvalues
give the probability amplitudes for finding two particles in a specific two-particle
state.



3 QUANTUM THEORY OF MOLECULAR
MAGNETISM

The main overall goal in the field of molecular magnetism is to tailor the macro-
scopic magnetic properties of a molecular material by chemical design and
modification of the constituent molecules. It is, therefore, of critical importance to
understand the relationship between the electronic structure of the molecules and
the microscopic magnetic properties, and how these give rise to various macro-
scopic phenomena. The magnetic properties are most often discussed in terms
of spin or pseudospin Hamiltonians, which act in reduced Hilbert spaces and
reproduce the lowest-lying energy levels of the system.20, 97 In the (pseudo)spin
description, the complicated electronic structure is compressed into a small set of
scalar, vector, and tensor parameters, which have some physical interpretation.
The Hamiltonian parameters can be calculated from first principles and, to an
extent, extracted from experiment. In the words of Griffith, (pseudo)spin Hamilto-
nians provide “a convenient resting place during the long trek from fundamental
theory to [the results of experiments].”152

Thus, the quantum theory of molecular magnetism consists of three layers:
the macroscopic magnetic properties observed experimentally, the microscopic
magnetic properties arising from the quantum realm of the electronic structure,
and the (pseudo)spin description of the electronic structure used to reduce the
complexity of the problem and to provide a “language” to discuss the properties
therein. The connection between the macroscopic and microscopic properties is
achieved through statistical mechanics, whereas the formal connection between
the microscopic magnetic properties and (pseudo)spin Hamiltonians is achieved
through the theory of effective Hamiltonians.97, 153–155 In the present chapter, we
will introduce the relevant theoretical foundations of these three layers and briefly
discuss dynamics of the magnetic properties and the experimental methods used
to determine them.
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3.1 Macroscopic magnetic properties

Two main properties of bulk materials that are used to probe their magnetic
properties are magnetization (M) and the magnetic susceptibility (χ).24–26, 156

Magnetization is a vector, and the magnetic susceptibility is a second rank tensor.
In practical experiments on powdered samples, however, only the isotropic
spherical averages will be observed, which are noted by the scalars M and χ.
We will focus here on molar magnetization and molar magnetic susceptibility,
which give the quantities in terms of one mole of material. We will drop the term
’molar’ in further discussion but will bear in mind that we are always discussing
molar quantities unless stated otherwise.

Both M and χ describe the materials response to some external homoge-
neous magnetic field B. The term “magnetic field” is used rather ubiquitously
in the field of molecular magnetism to describe both magnetic field strength (H)
and magnetic induction (B). This stems from the fact that in vacuum, the two
are related by B = µ0H and in the cgsemu system µ0 = 1. Therefore, for all
practical intents and purposes, B and H are often considered equivalent and are
sometimes used interchangeably in the literature. This is no longer the case in the
SI system nor is this the case inside materials where the material itself produces
a demagnetizing field as a response to the external field. We will ignore this
complication and simply bear in mind that this needs to be accounted for when
considering experimentally measured values. A more detailed account of these
considerations is given, for example, in the book of Gatteschi et al.25

Each energy eigenstate of a quantum mechanical system with energies
E1, E2, · · · , has a microscopic magnetization

µi = −∂Ei(B)
∂B

, (30)

which describes the response of the state to the magnetic field. The magnetiza-
tion M can then be obtained by summing the Boltzmann-weighted microscopic
magnetization of each state in the ensemble as

M = NA

∑i µi exp
(

−Ei(B)
kBT

)

∑i exp
(

−Ei(B)
kBT

) , (31)

which can be written in a more compact form as

M = NAkBT
∂ log Z(T, B)

∂B
, (32)

where log is the natural logarithm and

Z(T, B) = ∑
i

exp
(

−Ei(B)
kBT

)

(33)
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is the partition function. Magnetization is a vector quantity describing “how
magnetic a material is” and its given in units equivalent to Bohr magneton per
unit mole. The scalar magnetization is given by averaging M over all rotational
angles.

Components of the magnetic susceptibility tensor are given as

χαβ = NAkBT
∂2 log Z(T, H)

∂Bα∂Bβ
, (34)

where α, β ∈ x, y, z and the spherically averaged scalar susceptibility is then
obtained from the trace as:

χ =
χxx + χyy + χzz

3
. (35)

It is common to assume that the magnetic field is weak so that M = χB, where B

is the field strength.

3.2 Microscopic theory of angular momentum

3.2.1 Angular momentum and rotations

The total angular momentum J of a many-particle system is described by the total
angular momentum quantum number J and the angular momentum projection
quantum number MJ , which describes the projection of J on the quantization
axis. Common convention is that the quantization axis is chosen as the z axis of
the coordinate system. MJ can have 2J + 1 values −J,−J + 1, · · · , J and is the
eigenvalue of the operator Ĵz, which describes the z component of the angular
momentum. The other two Cartesian components can be defined in terms of the
so-called lowering and raising operators Ĵ+ and Ĵ− as

Ĵx =
1
2
(

Ĵ+ + Ĵ−
)

and Ĵy = − i

2
(

Ĵ+ − Ĵ−
)

. (36)

The operators for the Cartesian components of the total angular momentum of a
many-particle system can be expressed as sums of the one-particle operators ĵα
(α ∈ x, y, z) acting on individual particles: Ĵα = ∑i ĵiα. The action of Ĵz, Ĵ±, and the
squared total angular momentum operator Ĵ2 on a general angular momentum
state |JMJ〉 is given as

Ĵz|JMJ〉 = MJ |JMJ〉, (37)

Ĵ±|JMJ〉 =
√

J(J + 1)− MJ(MJ ± 1)|JMJ ± 1〉, and (38)

Ĵ2|JMJ〉 = J(J + 1)|JMJ〉. (39)

Thus, |JMJ〉 is an eigenstate of Ĵ2 and Ĵz but not of Ĵ±. In general, all the operators
for the Cartesian components commute with Ĵ2, but not with each other. The
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commutators of the Cartesian operators are

[ Ĵx, Ĵy] = i Ĵz, [ Ĵy, Ĵz] = i Ĵx, and [ Ĵz, Ĵx] = i Ĵy, (40)

and the lowering and raising operators follow

[Ĵ2, Ĵ±] = 0, [ Ĵz, Ĵ±] = ± Ĵ±, and [ Ĵ+, Ĵ−] = 2 Ĵz. (41)

The Cartesian operators Ĵx, Ĵy, and Ĵz can be interpreted as the generators
of finite rotations of the system.157 A rotation R̂(α, β, γ) over the Euler angles α,
β, and γ is given as

R̂(α, β, γ) = exp
(
iγ Ĵz

)
exp

(
iβ Ĵy

)
exp

(
iα Ĵz

)
. (42)

Matrix elements of R̂(α, β, γ) are given by the Wigner matrices157, 158

D(J)
MJ ,M′

J
(α, β, γ) = 〈JMJ |R̂(α, β, γ)|JM′

J〉, (43)

which have tabulated values.159 The set of states {|JMJ〉} defined by one value
of J and all allowed values of MJ forms an irreducible representation of the
rotation group.157, 158 Therefore, no rotation can take a state |JMJ〉 to state |J′M′

J〉,
where J 6= J′. Interpretation of the angular momentum operators as generators of
rotations also explains why the Cartesian operators do not commute; for example,
a rotation around x axis means that rotation around y axis is no longer the same
rotation if the rotation around x axis was not carried out.

The equations given so far are perfectly general to any type angular momen-
tum. In molecular magnetism, one encounters three types of angular momenta,
the spin S described by the quantum numbers S and MS, the orbital angular
momentum L described by L and ML, and the total angular momentum J = L+S
described by the quantum numbers J and MJ . The operators and commutation
relations associated with these angular momenta can be obtained by simply re-
placing J and MJ with the respective quantum numbers. In spherically symmetric
systems (such as an atom or an ion), all six are good quantum numbers if SOC
is neglected. Under SOC, the spin and orbital angular momentum eigenstates
become mixed and only J and MJ remain good quantum numbers. When the
symmetry is lowered from spherical to the finite point groups of molecular sys-
tems, none of the above remain good quantum numbers. An exception to this is
linear molecules, which conserve the angular momentum projection and where
the ML, MS (in the absence of SOC), and MJ remain good quantum numbers. If
SOC is neglected and no external magnetic field is present, then S and MS are
good quantum numbers also in molecular systems as the spin is not coupled to
the external potential in any way, and the correct rotational symmetry of the spin
is conserved. This is approximately the case for light elements in low symmetries.

The angular momentum is not strictly conserved in practically any of the
systems of interest to us in molecular magnetism. The quantum numbers are,
however, still a useful starting point when characterizing distinct manifolds of
states and form the foundation for the construction of spin and pseudospin
Hamiltonians as explained in section 3.3.
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3.2.2 Coupling of angular momenta

The addition of different angular momenta arises in several contexts in molecular
magnetism: in the coupling of one-particle angular momenta to yield the many-
particle momentum, in SOC, and in the coupling of different magnetic sites in
a polymetallic system. Let us consider two sets of angular momentum states
{|j1mj1〉} and {|j2mj2〉} for some fixed values of j1 and j2. The two sets span
Hilbert spaces H1 and H2 with dimensions 2j1 + 1 and 2j2 + 1, respectively. A
coupled state |JMJ〉 in a (2j1 + 1)(2j2 + 1)-dimensional direct product space
H1 ⊗H2 can then be formed so that J = j1 + j2. The state |JMJ〉 can be expanded
as

|JMJ〉 = ∑
mj1,mj2

C
JMJ

j1mj1,j2mj2
|j1mj1〉 ⊗ |j2mj2〉, (44)

where
C

JMJ

j1mj1,j2mj2
=
(
〈j1mj1| ⊗ 〈j2mj2|

)
|JMJ〉 (45)

is a Clebsch–Gordan (CG) coefficient.144, 157, 159, 160 A general expression for the
coefficients is available but it is so complicated that usually pre-tabulated or
computer-generated values are used.159 The CG coefficients are real, but one
should play close attention to the phase convention used in a specific table of
values as this can vary. Further angular momentum can be coupled to |JMJ〉 in
a similar manner. It should be noted that in expansion (44) quantum numbers
J, MJ , j1 and j2 are conserved; therefore, the coupled state |JMJ〉 should be
more generally labeled as |j1 j2 JMJ〉. The basis set {|j1mj1〉 ⊗ |j2mj2〉} is called the
uncoupled basis, and the expansion (44) constitutes a transformation between
the coupled and uncoupled bases.

Probably the most concrete example of angular momentum coupling in
molecular magnetism is represented by SOC. In this case, the coupled basis is
given by the total angular momentum states {|JMJ〉} and the uncoupled basis
by the direct product of orbital angular momentum and spin states {|LML〉 ⊗
|SMS〉}. In the case of weak or vanishing SOC, the uncoupled basis forms a better
representation of the electronic states, whereas at the limit of strong SOC, the
coupled basis is the more natural representation. A special case of the coupled
basis is the so-called Russell–Saunders or LS coupling scheme, where the |JMJ〉
state is formed from a set of uncoupled states with one specific value of L and
one specific value of S.48, 161 These states are called multiplets and are labeled
as |LSJMJ〉 or, following the standard spectroscopic notation,48 as 2S+1LJ . In the
same notation, the uncoupled states are called terms and are labeled as 2S+1L.
Due to historical reasons, the orbital angular momentum L is labeled using a
letter S, P, D, F, G, H, I, K, L, · · · standing for 0, 1, 2, 3, 4, 5, 6, 7, 8, · · · .

3.2.3 Irreducible tensor operators

Irreducible tensor operators (ITOs) are entities very closely related to angular mo-
mentum. A general ITO T̂k of rank k is a collection of 2k + 1 operators T̂kq, where
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q = −k,−k + 1, · · · , k labels the components of the operator.144, 157, 159, 162, 163 The
set of operators {T̂kq} for a fixed value of the rank k (i. e., the operators in the
set defined by T̂k) form a basis for an irreducible representation of the rotation
group and transform under rotations as

R̂†(α, β, γ)T̂kqR̂(α, β, γ) =
k

∑
q′=−k

T̂kqD(k)
q′,q(α, β, γ). (46)

ITOs have the following commutation relations with the primitive angular mo-
mentum operators Ĵz and Ĵ±:162

[ Ĵz, T̂kq] = qT̂kq and [ Ĵ±, T̂kq] =
√

(k ∓ q)(k ± q + 1)T̂kq±1. (47)

Since the Cartesian components of a vector transform into each other under
rotation and form a complete set, or in other words, they form a basis for an
irreducible representation of the rotation group, any Cartesian vector operator
can be represented as an ITO of rank 1. More specifically, a vector operator v̂
can be written in terms of spherical components v̂−1, v̂0, and v̂+1, which can be
related to the Cartesian components as

v̂0 = v̂z and v̂±1 = ∓ v̂x ± iv̂y√
2

. (48)

The action of an ITO component T̂kq on an angular momentum state can
be considered as adding angular momentum k with projection q to the angular
momentum state. Therefore, an ITO with rank zero conserves the angular mo-
mentum of the state and does not couple states with different angular momenta.
Rank one ITOs couple states that differ by one quanta of angular momentum and
so on.

The main advantage of using ITOs comes from the Wigner–Eckart theo-
rem158, 164 which states that the matrix elements of ITO components T̂kq in a basis
of angular momentum eigenstates {|JMJ〉, |J′M′

J〉} can be expressed as a product
of a CG coefficient and a reduced matrix element that is independent of the
values of MJ , M′

J , and q:

〈JMJ |T̂kq|J′M′
J〉 = C

JMJ

J′M′
J ,kq

〈J||T̂||J′〉. (49)

Thus, for each value of J, J′, and k, one only needs to evaluate one matrix
element to obtain a value of the reduced matrix element 〈J||T̂||J′〉 and all other
matrix elements can be generated from this by simple multiplications with CG
coefficients.

One very efficient use of ITOs is the decomposition of multiples or powers
of angular momentum operators. A special case of the ITOs are the spherical
tensor operators Ykq(Ĵ), which are obtained from the Cartesian spherical harmon-
ics Ykq(r/r)157 by the replacement r/r → Ĵ or in a similar manner in the case of
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operators Ŝ and L̂. Each multiple of angular momentum operators in the replace-
ment needs to be an averaged sum of all possible permutations of the respective
operators due to the noncommutativity of the quantum mechanical operators.
The Wigner–Eckart theorem can be applied to the angular momentum operators
expressed in terms of Ykq(Ĵ) to greatly simplify the resulting expressions. A
further useful property of the spherical tensor operators is that the resulting
non-zero matrix elements in angular momentum state basis are proportional to a
CG coefficient C

JMJ

kq,JMJ
. From the properties of the CG coefficients, it is possible

to show that coefficient is zero unless k ≤ 2J.159 This sets a limit for the highest
rank of operators entering the expressions. The equivalence between the sets of
operators {Ykq(Ĵ)} and {Ykq(r/r)} also means that is is possible to expand local
multiplicative electrostatic potential operators of the form V̂(r) in terms of the
spherical tensor operators. This is called the method of equivalent operators
and is widely used in the theory of crystal-fields.20, 165 The matrix elements
of the equivalent operators can be easily calculated in the basis of the angular
momentum states {|JMJ〉}.

3.2.4 Time-reversal symmetry and Kramers’ theorem

Symmetry under reversal of time is one of the fundamental symmetries of nature
resulting from the fact that the laws of physics are invariant under the replacement
t → −t. We are mostly interested in the time-reversal of the angular momentum
states |JMJ〉. If we consider a state |ψ〉 = ∑J,MJ

CJMJ
|JMJ〉 expanded in angular

momentum states, the effect of the time-reversal operator θ̂ is

|ψ̃〉 = θ̂|ψ〉 = ∑
J,MJ

C∗
JMJ

(−1)J−MJ |J − MJ〉, (50)

where |ψ̃〉 denotes the time-reversal conjugate of |ψ〉.20 The time-reversal operator
is anti-unitary and anti-linear. The latter means that, in general, θ̂ does not
commute with complex numbers. In the absence of external magnetic fields, the
Hamiltonian is invariant under time reversal, and thus, the energy of the system
must be conserved under the operation of time-reversal. This is true if |ψ〉 and
|ψ̃〉 are degenerate or if |ψ〉 = |ψ̃〉. It turns out that if the system has a non-integer
total angular momentum (i. e., odd number of electrons) |ψ〉 6= |ψ̃〉 always holds,
and the system must be at least doubly degenerate. This is proved in Kramers’
theorem166 and the resulting degeneracy is called Kramers degeneracy. If the
symmetry of the system is less than cubic under the action of the CF, the states
of the system will be split into doublets known as Kramers doublets.167 This
conservation of degeneracy has rather important consequences,20 and systems
with odd number of electrons are called Kramers systems, whereas systems with
an even number of electrons are known as non-Kramers systems. It should be
noted that when the point-group symmetry of the system has doubly degenerate
representations (trigonal symmetry or higher), Kramers degeneracy does not
necessarily introduce any new degeneracies but can coincide with the spatial
degeneracies.
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If an external magnetic field is present, the time-reversal invariance is
broken, and the Kramers’ theorem no longer holds. This means that Kramers
doublets can split and mix under the Zeeman interaction. This breaking of
time-reversal symmetry does not imply that electrodynamics are not invariant
under time-reversal; this is a consequence of the fact that we have not included
the current producing the magnetic field into the system. If the full system was
considered, the time-reversal operation would reverse the direction of the current
producing the magnetic field, and the system would remain invariant.145

3.2.5 The microscopic magnetization

The microscopic magnetization µi in equation (30) can be expressed as

µi =
∂Ei

∂B
=

〈

ψi

∣
∣
∣
∣

∂Ĥ

∂B

∣
∣
∣
∣

ψi

〉

, (51)

where we have used the Hellmann–Feynman theorem168, 169 and |ψi〉 is the elec-
tronic state. The only part of the Hamiltonian, which depends on the magnetic
field (assuming that the field is relatively weak compared to the Coulomb inter-
action), is the Zeeman term

ĤZee = −µBB ·
(
L̂ + geŜ

)
, (52)

where ge is the free electron g value. Thus, the microscopic magnetization can be
given as

µi = −µB

(
〈L̂〉i + ge〈Ŝ〉i

)
(53)

where 〈L̂〉i and 〈Ŝ〉i are the expectation values of the orbital and spin angular
momenta of state i. It is easy to see from (53) and (31) that all magnetic properties
of a molecular material arise from the angular momenta of the many-particle
system.

3.3 Model Hamiltonians

3.3.1 Spin and pseudospin Hamiltonians

The concept of spin and pseudospin Hamiltonians was introduced in the 1950s by
Pryce and Abragam,170, 171 Bleaney and Stevens,19, 172 and Koster and Statz.173, 174

The initial work introduced them as model Hamiltonians determined on phe-
nomenological grounds to explain experimental observations related to the low-
energy spectrum of magnetic insulators. The theory related to the concept is
rather well formulated in the book of Abragam and Bleaney.20 The idea behind
(pseudo)spin Hamiltonians is to reduce the massive number of degrees of free-
dom in a many-particle system to only a few, in many cases just one, spin degree
of freedom. An effective Hamiltonian can then be constructed purely in terms
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of angular momentum operators, which greatly reduces the dimension of the
Hilbert space one needs to work with. The other physical properties not related
to spin are absorbed into effective parameters expressed as scalars, vectors, or
tensors. If the dimension of the space spanned by the (pseudo)spin states is
chosen in a reasonable way, the effective parameters have clear physical interpre-
tation. The two concepts introduced here, spin and pseudospin Hamiltonians,
are closely related but distinct concepts, and only the latter can be used in the
most general case to build a connection between experimental observations and
the full microscopic Hamiltonian of the system under study.

Spin Hamiltonians are operators written in terms of spin operators: Ĥspin =

Ĥspin(Ŝ1, Ŝ2, · · · ) and operate in a Hilbert space known as the model space P0
spanned by the states {|S1MS1〉 ⊗ |S2MS2〉 ⊗ · · · }.155, 175 The dimension of P0 is
dim(P0) = (2S1 + 1)(2S2 + 1) · · · . Let us then consider a magnetic molecular
system with several spin sites with spins S1, S2, · · · . The spins are coupled in
some way in the ground state to yield a ground spin-state with total spin S, and
if we neglect all SOC, the 2S + 1 states of the ground manifold are degenerate.
The full Hamiltonian of the system Ĥ commutes with Ŝ2 and Ŝz; therefore, the
states in the (2S + 1)-fold degenerate manifold can be represented by the set
{|SMS〉}. The space spanned by these states is called the target space P ′, and it
constitutes a subspace of the full space P spanned by all eigenstates of the full
Hamiltonian of the system. The basis set {|S1MS1〉 ⊗ |S2MS2〉 ⊗ · · · } spanning
P0 is isodimensional to the basis {|SMS〉} spanning P ′. The two are related
by a unitary transformation. Thus, it is very easy to see that in this case the
spectrum of the spin Hamiltonian Ĥspin acting in the model space P0 and of the
full Hamiltonian Ĥ acting in the target space P ′ can be made fully equivalent.

The situation becomes more complicated when SOC is weak but not negligi-
ble. Then, the 2S + 1 lowest eigenstates of Ĥ are split and become weakly mixed
with higher-lying spin states. The spin S is not conserved, and P ′ cannot be fully
spanned by the set {|SMS〉}. P ′ is also no longer closed under the operations Ŝ2

and Ŝz, but now the operators connect the states in P ′ to those in its orthogonal
complement P −P ′.97, 155, 175 We can, however, still construct a spin Hamiltonian
in such a way that

Ĥ|ψI〉 = EI |ψI〉 ⇐⇒ Ĥspin|ξ I〉 = EI |ξ I〉, (54)

where the eigenstates {|ξ I〉} of Ĥspin are expanded in the basis states of P0:

|ξ I〉 = ∑
MS1,MS2,···

CMS1 MS2···|S1MS1〉 ⊗ |S2MS2〉 ⊗ · · · (55)

At this point, it is clear that the spin operators Ŝ1, Ŝ2, · · · used in the construc-
tion of Ĥspin can no longer be physical spin operators, but instead should be
considered as convenient fiction, which is used to obtain the eigenvalues {EI}
from the states spanning P0. Ĥspin can be derived from Ĥ by using the theory
of effective Hamiltonians introduced in section 3.3.2. Here, it suffices to say that
as long as one can establish a mapping between {|ψI〉} in P ′ and {|ξ I〉}, a spin
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Hamiltonian can, in principle, be constructed in such a way that equation (54)
holds exactly.

Choosing the manifold of states defining the spin Hamiltonian is easy when
SOC is weak and the (2S + 1)-dimensional manifold of states is clearly separated
from the other states. The situation is also similar when SOC is very strong and
other interactions are weak so that the lower manifold is (2J + 1)-dimensional and
the spin Hamiltonian can be constructed in terms of Ĵ operators. In other cases
of strong SOC, the N lowest energy eigenstates of the full Hamiltonian cannot
necessarily be attributed to any set of spin operators. A very common example
of this is a trivalent lanthanide ion, which splits under SOC and crystal-field
interaction into Kramers doublets. The two components of the lowest doublet
do not coincide with any real angular momentum, spin or orbital, of the system
except in special accidental cases. Such a system cannot then be described by any
spin Hamiltonian. It is however, possible to define a pseudospin S̃ so that 2S̃ +
1 = N. The total pseudospin can then be decomposed into contributions from
pseudospins S̃1, S̃2, · · · of individual spin sites. The corresponding pseudospin
operators behave like normal spin operators and obey all the same commutation
relations. The pseudospin operators are, however, only defined by the matrices
representing them. Thus, no general form can be given to any pseudospin
operator. To emphasize this, we are not using the hat symbol for pseudospin
operators but opt for the tilde symbol both for the pseudospins and the respective
operators. In the literature, pseudospin is sometimes referred to as effective spin
(which has other meanings as well), fictitious spin, or simply as spin.176

The difference between spin and pseudospin Hamiltonians is most obvious
when the ground manifold of electronic states cannot be assigned to the set of
eigenstates of any real angular momentum operator. The spin and pseudospin
formalism may differ, however, also in the case when S̃ = S. This results from
the fact that pseudospin Hamiltonians are defined in such a way that they
can always be put in correspondence with the phenomenological Hamiltonians
used to describe experimental results,20 which is not always possible with spin
Hamiltonians (see section 3.4.3).100 In such a case, the spin operator entering the
definition of the spin Hamiltonian is related to the respective pseudospin operator
by a rotation in the Cartesian space.97 The spin Hamiltonian formalism can be
related to experiment in the most general case only when SOC is completely
absent. The deviations between the spin and pseudospin, when present, arise
already at the first order of perturbation theory when SOC is included.97 In
real systems, SOC is always present, but quantum chemical calculations can be
(and often are) carried out without any SOC, and in such cases, the calculated
Hamiltonian can be put in correspondence with the spin Hamiltonians in a
meaningful and, in principle, exact way in all situations.

Explicit forms of spin and pseudospin Hamiltonians will be discussed in
sections 3.4 and 3.5.



47

3.3.2 Effective Hamiltonian theory

Spin and pseudospin Hamiltonians can be constructed on purely phenomeno-
logical grounds as they were first introduced.170, 171 They can, however, also be
rigorously derived from the full Hamiltonian Ĥ (or some reasonably general
approximation of the full Hamiltonian) using the theory of effective Hamiltoni-
ans.153–155, 175, 177 Similar to the spin and pseudospin Hamiltonians introduced in
section 3.3.1, an effective Hamiltonian Ĥeff spans an N-dimensional model space
P0 which is put into correspondence with the isodimensional target space P ′

spanned by the N lowest eigenstates {|ψI〉} of Ĥ:

Ĥ|ψI〉 = EI |ψI〉 ⇐⇒ Ĥeff|ξ I〉 = EI |ξ I〉, (56)

where I = 1, · · · , N and {|ξ I〉} are the eigenstates of the effective Hamiltonian.
An effective Hamiltonian can be constructed from the eigenstates {|ξ I〉}

using the spectral decomposition

Ĥeff = ∑
I

|ξ I〉EI〈ξ I |. (57)

In order to use equation (57), we need to know the projections of {|ξ I〉} onto
{|ψI〉} and the eigenvalues {EI}. The former can be easily evaluated, but the
latter can only be obtained by diagonalizing the full Hamiltonian. This is cer-
tainly feasible if we have already calculated the eigenvalues using some ab initio

method and want to put the calculated Hamiltonian in correspondence with
some effective Hamiltonian. If we, however, simply want to know the form of the
effective Hamiltonian without carrying out the diagonalization, equation (57) is
not very useful. Furthermore, Hamiltonian (57) is not necessarily Hermitian as
the projection P0 = ∑I |ξ I〉〈ξ I | acting on the states in the target space P ′ does not
necessarily yield a complete basis. Exact Hermicity can be enforced by orthogo-
nalization of the basis,178 but the Hamiltonian is then no longer unique.77 This
problem of non-Hermicity can be avoided by constructing the effective Hamilto-
nian using the theory of unitary transformations.154, 155, 179 The full Hamiltonian
is first decomposed to Ĥ = Ĥ0 + V̂, where Ĥ0 connects states within the target
space P ′ or within its orthogonal complement P −P ′. The operator V̂ connects
these two blocks in the Hamiltonian. Once the Hamiltonian has been partitioned,
the full Hamiltonian can be transformed to the effective Hamiltonian by

Ĥeff = eŴ Ĥe−Ŵ , (58)

where Ŵ is an anti-Hermitian operator defined as

Ŵ = ∑
I,J

〈ψ(0)
I |V̂|ψ(0)

J 〉
EJ − EI

|ψ(0)
I 〉〈ψ(0)

J |. (59)

{|ψ(0)
I 〉} are eigenstates of Ĥ0. In practice, the exponential is expanded as a

Taylor series, and the expansion is terminated at some pre-determined order. If
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the states in P ′ are only weakly coupled to those in P − P ′, the series should
converge rapidly. If the coupling is strong, the physical sense of the chosen
form of the effective Hamiltonian can be questioned. The transformation (58)
can be interpreted as “decoupling” the states in P ′ from those of its orthogonal
complement so that they can be related to the states in the model space P0. The
interaction coupling P ′ and P −P ′ is constructed into the effective Hamiltonian
in a perturbative manner.

3.4 Electronic structure of metal ions in molecular complexes

3.4.1 Classification of metal ions

The building blocks of molecular systems with magnetic properties are either
transition metal ions, lanthanide ions, actinide ions, or radicals. Radicals are
the simplest to treat as the ground state is usually a spin-doublet with no
angular momentum, and usually SOC effects can be largely neglected, although
exceptions do exist.180 The electronic structure of metal ions of the d and f
blocks is usually much more complicated, and the single-ion electronic states are
often discussed by starting from the free-ion approximation and then introducing
various interactions, including SOC and interaction with the CF, in a step-wise
manner. In the literature, the ions are often classified into two or three separate
classes depending on the relative strength of the intra-ionic interactions and
the interaction with the crystal-field.20, 152, 181 We will use a somewhat different
(although largely analogous) classification system, which is compatible with the
pseudospin description introduced in section 3.3. In this approach the systems are
classified according to the quantum numbers, which can be used to approximately
classify manifolds of electronic states.97

In S-type systems, the CF is much stronger than SOC and splits any spatially
degenerate states quenching the angular momentum to such an extent that no
orbital angular momentum can be coupled to the spin at the lowest order of
(quasi-degenerate) perturbation theory. Such systems are said to have no first-
order angular momentum. The ground spin-multiplet is then well-separated
from any excited state. The 2S + 1-fold degeneracy of the ground spin-multiplet
is slightly lifted by SOC due to mixing of higher-lying states into the ground
spin-multiplet at higher orders of perturbation theory, but the ground manifold
is still characterized by a manifold of 2S + 1 state clearly separated from other
states, and the system can be described by a pseudospin quantum number S̃ = S.
In systems with an odd number of electrons, at least double degeneracy in each
spin-orbit split multiplet state is retained. Most complexes of the 3d transition-
metal elements are S-type systems (with some exceptions, such as the Co(ii) ion
in a CF of octahedral symmetry), and practically all organic and main-group
radical systems fall into this category as well.20, 23

In J-type systems, SOC is much stronger than the CF splitting, and the
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ground manifold consists of 2J + 1 states, which are weakly split by the CF. This
situation is encountered in trivalent lanthanide complexes, where the 4f orbitals
housing the unpaired electrons are strongly shielded by the occupied 5s and
5p orbitals with larger spatial extents. This leads to very weak CF splitting. In
lanthanide ions, the splitting of different J multiplets is of the order ∼ 103 cm−1,
whereas the CF splitting is of the order ∼ 102 cm−1. Thus, all of the electronic
states can be clearly assigned to some J manifold described by the pseudospin
quantum number J̃ = J. Exceptions to this are Sm(iii) and Eu(iii) systems, where
the splitting due to SOC is relatively weak.182–184 In the case of Kramers systems,
the 2J + 1 states of the ground manifold are split into Kramers doublets. Higher
degeneracy is possible in cubic or higher point-group symmetries, but such are
extremely rare in lanthanide complexes. Non-kramers systems do not necessarily
retain any degeneracies, but usually the energy spectrum is such that some
quasi-doublet structure is retained. In trigonal or higher point-group symmetries
some doublets can be exactly degenerate due to spatial symmetry and are called
Ising doublets.

Γ-type systems are complexes of high symmetry (usually cubic), where the
SOC and CF are of the same order of magnitude. In such cases, the number
of states in the ground manifold does not correspond to 2S + 1 nor to 2J + 1.
However, in sufficiently high symmetry, the number of states corresponds to
2Γ + 1, where Γ is the dimension of the representation of the molecular point
group corresponding to the ground state. It should be noted that since SOC is
included, one should use relativistic double groups instead of the non-relativistic
point groups usually encountered in chemistry. Examples of Γ-type systems
include most high-symmetry paramagnetic complexes of 4d and 5d transition-
metals, actinides, and some systems of 3d transition-metals, such as complexes of
Co(ii) in octahedral CFs.97 An important special case of Γ-type systems with no
spatial point group symmetry beyond C1 are all systems with an odd number
of electrons. The ground electronic state of such systems consists of a Kramers
doublet and the two states of the doublet related by the operation of time-reversal
transform as a two-dimensional representation of SU(2)167 (special unitary group
in two dimensions158); therefore, the manifold defined by the doublet can be
described using a Γ̃ = 1/2 pseudospin.

The last class of systems is all systems that cannot be classified as S-, J-,
or Γ-type systems and contains low-symmetry systems with SOC and CF of
comparable strength. In such cases, the molecular electronic structure cannot be
related to the electronic structure of the respective free ion in a meaningful way
and has to be treated on a case-by-case basis.

It is important to note that in some cases the classification depends on the
available thermal energy. For example, in coordination complexes of trivalent
lanthanide ions, the overall CF splitting is usually of the same order of magnitude
as the thermal energy at room temperature (although in some case it can be
considerably higher). Thus, in ambient conditions all states in the multiplet
are populated, and the system can be described as a J-type system. When the
temperature is lowered to that of liquid helium, usually only the lowest doublet



50

is occupied, and the magnetic properties are better described by categorizing the
system as a Γ-type system. It is common that the optical spectrum of a lanthanide
complex is treated using a J̃-pseudospin, whereas the low-energy EPR spectrum
is rationalized in terms of a Γ̃ = 1/2 pseudospin.

3.4.2 The microscopic Hamiltonian

The electronic structure of a metal ion in a complex can be described by the
electronic Hamiltonian

Ĥcomplex = Ĥel + ĤCF + ĤSOC + ĤZee, (60)

where the first terms includes all the electrostatic interactions within the metal
ion (including the kinetic energy, electrostatic interactions, and exchange inter-
action), the second describes the interaction between the ion and the CF, the
third describes the SOC, and the last is the Zeeman operator. The eigenstates of
Ĥcomplex are expanded in terms of angular momentum states

|ψI〉 = ∑
ν

∑
J,MJ

CνJMJ
|νJMJ〉 or |ψI〉 = ∑

ν
∑

S,MS

∑
L,ML

CνSMSLML
|SMS〉 ⊗ |νLML〉

(61)
depending on whether we choose a coupled or uncoupled basis. The former is
the natural choice for J-type systems, whereas the latter is a better choice for
S-type systems. The index ν contains all other quantum numbers required to
define the electronic state beyond the angular momentum quantum numbers. Ĥel
is the only part of (60) that acts on the part of the state defined by ν, whereas
ĤCF, ĤSOC, and ĤZee all act on the angular momentum part of the state.

The form of the SOC operator is discussed in section 4.4.5 in more detail, and
it suffices to state here that it mixes states that differ in spin by ∆S = ±1, 0 and
in orbital angular momentum by ∆L = ∓1, 0. The Zeeman interaction is given
by equation (52). The CF is an electrostatic potential, which can be expanded in
spherical tensor operators using the method of equivalent operators20 (see section
3.2.3):

ĤCF =
∞

∑
k=0

k

∑
q=−k

BkqÔkq(Ĵ), (62)

where Bkq are the CF parameters and Ôkq(Ĵ) is a Stevens operator named after
Stevens who first introduced the concept of equivalent operators in 1952.165 The
original definition by Stevens has been extended to the so-called extended Stevens
operators introduced by Rudowicz.185–187 The operators are proportional to the
Cartesian spherical harmonics: Ôkq(Ĵ) ∝ Ykq(Ĵ). The normalization constants
of the spherical harmonics have been dropped and can be considered as being
absorbed into the CF parameters Bkq. This means that the CF parameters of high
ranks may have very small values but can still contribute significantly. Also, the
Stevens operators are not Hermitian: Ô†

kq(Ĵ) = (−1)qÔk−q(Ĵ). These inconvenient
properties along with the lack of any general expression for matrix elements
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of the operators has lead to alternative definitions.95, 119 Some of the Stevens
operators are tabulated, for example, in the appendices of ref. 20, but it should
be noted that the tabulated forms of Stevens operators in various sources have
some notorious typos.187

In the basis {|JMJ〉}, the operators with q = 0 only induce splitting between
states corresponding to different values of MJ but do not induce any mixing.
Thus, they are usually referred to as the diagonal operators. The operators
with q 6= 0 are referred to as off-diagonal operators and mix states belonging to
different values of MJ differing at maximum by q. The CF parameters Bkq should
be interpreted as phenomenological parameters that reproduce the experimentally
observed splitting of the states. The parameters do not have any simple explicit
relation to the integrals defining the energy levels of the real system. When
CF theory was first introduced, the CF was considered as a purely electrostatic
potential acting on the free ion.184, 188–191 It quickly became apparent that metal–
ligand covalency plays an important role in the CF splitting;152, 171, 181, 192–195 this
has been confirmed both by spectroscopic measurements196 and high-level ab

initio calculations.101, 103 Several attempts have since been made to calculate the
CF parameters from first principles by approximating the electrostatic potential or
from models introducing effects of the metal–ligand covalency in some empirical
manner,152, 181, 195, 197 but none of these methods have been able to reproduce
the relevant splittings on a quantitative level without making some reference to
parameters determined by a fit to experiment. Thus, the CF Hamiltonian should
be interpreted as an effective Hamiltonian, not as an approximation to the full
microscopic Hamiltonian.

The highest rank of operators giving non-zero matrix elements is 2J. Time-
reversal symmetry further dictates that only operators with even ranks enter
the expansion. The CF operator must also transform as the totally symmetric
representation of the molecular point group. In high-symmetry systems this
greatly reduces the number of operators. The non-zero CF parameters for various
crystallographic point groups are listed, for example, in Benelli and Gatteschi.26

It is rather common in the literature to encounter the so-called electrostatic
approximation, where all covalent interactions between the metal ion and the
ligands are neglected. In this case, the highest rank entering the CF operator is 2l,
where l is the orbital angular momentum of the orbitals occupied by the unpaired
electrons. Thus, for transition metal ions only ranks k = 0, 2 enter the expansion,
and for trivalent lanthanides only ranks k = 0, 2, 4, 6 are retained. The zeroth
rank operator is a scalar, and it only constitutes a constants shift in the energy
spectrum and is therefore usually neglected. The electrostatic approximation has,
however, been show to be rarely valid for molecular systems.101 It nonetheless
remains widely used in the literature.

In S-type systems, the operator Ĥel + ĤCF determines the main features
of the electronic structure, and ĤSOC and ĤZee can be treated as a perturbation,
which lifts the degeneracy of various manifolds. In such systems, the effect of
ĤSOC is called zero-field splitting (ZFS), as it lifts the (2S + 1)-fold degeneracy
of spin states in the absence of an external field. In J-type systems, the main
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manifolds of the electronic states are determined by the operator Ĥel + ĤSOC (i. e.,
the free-ion Hamiltonian), and the operators ĤCF and ĤZee act as a perturbation,
which lifts the (2J + 1)-fold degeneracy of the manifolds. Equation (62) can be
applied in the {|SMS〉 ⊗ |LML〉} basis by the simple replacement Ĵ → L̂.

3.4.3 Spin and pseudospin Hamiltonians for monometallic complexes

Before proceeding to the pseudospin description, we will first discuss the spin
Hamiltonians describing the Zeeman interaction and ZFS. In S-type systems, we
can partition the Hamiltonian into Ĥ = Ĥ0 + V̂ in such a way that Ĥ0 = Ĥel + ĤCF
and V̂ = ĤSOC + ĤZee. The form of the spin Hamiltonians is then obtained using
the transformation (58) as

Ĥ
spin
Zee = eŴ ĤZeee−Ŵ = µBB · g · Ŝ and (63)

Ĥ
spin
ZFS = eŴ ĤSOCe−Ŵ = Ŝ · D · Ŝ, (64)

where the transformation of ĤZee has been carried out to the first order and the
transformation of ĤSOC to the second order.97 g is the so-called Zeeman g-tensor,
also sometimes known as the gyromagnetic tensor, and D is known as the ZFS
tensor.

The elements of the g-tensor are given as87, 89, 97, 198, 199

gαβ = geδαβ +
N

2S ∑
ν

〈ψ(0)
0SS|L̂α|ψ(0)

νSS〉〈ψ
(0)
νSS|ẑβ|ψ(0)

0SS〉+ 〈ψ(0)
0SS|ẑβ|ψ(0)

νSS〉〈ψ
(0)
νSS|L̂α|ψ(0)

0SS〉
E
(0)
0S − E

(0)
νS

,

(65)

where α, β ∈ x, y, z, N is the number of electrons, ν contains other indices used
to define the electronic states beyond the spin indices, ẑβ are spatial operators

arising in the mean field treatment of SOC (see section 4.4.5). The states |ψ(0)
νSS〉

are eigenstates of Ĥ0 with specific spin S and spin projection MS = S. It is easy
to see from (65) that in the absence of terms arising from the SOC operator, the
g-tensor reduces to the isotropic form g = ge1.

The elements of the ZFS tensor have somewhat more complicated forms. By
defining the operator

Ĥ
(2)
αβ = ∑

p,q
ŝαpẑαpŴŝαqẑαq, (66)

where ŝαp are one-particle spin operators and the summation in Ŵ (equation (59))
runs over the index ν defining the electronic states, the elements of D can be
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given as60, 87, 89, 97

Dαα = − 2
2S − 1

(

〈ψ(0)
0SS|Ĥ

(2)
αα |ψ(0)

0SS〉 − 〈ψ(0)
0SS−1|Ĥ

(2)
αα |ψ(0)

0SS−1〉
)

Dxy = Dyx = −i
2
S

(

〈ψ(0)
0SS−1|Ĥ

(2)
xy |ψ(0)

0SS〉
)

(67)

Dxz = Dzx =

√
2

S
√

S

(

〈ψ(0)
0SS−1|Ĥ

(2)
xz |ψ(0)

0SS〉
)

Dyz = Dzy = −i

√
2

S
√

S

(

〈ψ(0)
0SS−1|Ĥ

(2)
yz |ψ(0)

0SS〉
)

.

The ZFS tensor is usually discussed in terms of the ZFS parameters D and E. The
parameters are obtained by diagonalization of D to yield the eigenvalues Dx, Dy,
and Dz and then assigning the eigenvalues to D and E so that24

D =
3Dz

2
and E =

Dx − Dy

2
. (68)

The eigenvalues are assigned to Dx, Dy, and Dz in such a way that Dz is the
one most clearly distinct from the two others and that Dx − Dy is positive. Or,
in other words, |D| > 3E and E ≥ 0.175 A negative value of the D parameter
indicates an easy-axis (or uniaxial) type anisotropy, where the magnetic moment
of the ground state favors alignment along the main anisotropy axis. Easy-
axis anisotropy is usually a requirement for an S-type SMM25 although some
exceptions are known.200, 201 The opposite situation to easy-axis anisotropy is
easy-plane anisotropy.

The experimentally observed Zeeman splitting and ZFS can be described
using phenomenological model pseudospin Hamiltonians of the form

H̃Zee = µBB · g̃ · S̃ and H̃ZFS = S̃ · D · S̃, (69)

where g̃ is the pseudospin g-tensor. The D tensors in the pseudospin and spin
description at the weak SOC limit are equivalent; therefore, ZFS can be described
by both spin and pseudospin Hamiltonian formalism. The g- and g̃ tensors are
not, in general, equivalent. This results from the fact that in experiments the
main magnetic axes (defined as eigenvectors of g̃) of the system are defined in
such a way that the Zeeman splitting has an extremum value when the magnetic
field is applied along these directions. The Hamiltonian (69) can then be made
diagonal in the coordinate frame defined by the magnetic axes by applying the
magnetic field along one of these axes:

H̃Zee = µBBα g̃αS̃α, (70)

where α labels the Cartesian axes. Ĥ
spin
Zee cannot, in general, be brought to the

form (70) for any direction of the magnetic field. The operators Ŝ and S̃ are
related by a rotation

S̃α = Ŝα + ∑
β

gαβ − gβα

ge
Ŝβ. (71)
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If the system has a three-fold rotation axis or higher (trigonal point group
symmetry or higher), the main magnetic axis of the system (usually chosen
as the z axis) is oriented along the main rotational axis. When all of the axes
are determined by symmetry, the spin and pseudospin descriptions become
equivalent for S-type systems.

In the case of arbitrarily strong SOC we are only interested in the S̃ = 1/2

pseudospin in the present work. ZFS is effective only when S̃ ≥ 1; therefore, we
only need to consider the Zeeman splitting. Let us denote the two components
of the doublet as |ψ1〉 and |ψ2〉. If the system has an odd number of electrons,
the two components are degenerate due to Kramers theorem and are related by
the operation of time-reversal. The matrix element of the α component of the
magnetic moment in the basis of these states is given as

(µα)I J = 〈ψI |Ŝα + ge L̂α|ψJ〉, I, J ∈ 1, 2. (72)

If the doublet is subjected to a homogeneous magnetic field of the form (ξxB, ξyB, ξzB),
where {ξx, ξy, ξz} are the directional cosines and B is the field strength, the dou-
blet splits into states with eigenvalues20, 95, 97

E = ±B

√

∑
α,β

ξα Aαβξβ, (73)

where Aαβ are components of a tensor A given as

Aαβ = −1
2

(∣
∣
∣
∣

(µα)11 (µα)12
(µβ)21 (µβ)22

∣
∣
∣
∣
+

∣
∣
∣
∣

(µβ)11 (µβ)12
(µα)21 (µα)22

∣
∣
∣
∣

)

(74)

The A tensor is proportional to the Abragam–Bleaney tensor20 G = g̃ · g̃T:
µB

2G/4 = A. Both tensors can be brought to their diagonal forms G′ and A′

by the same transformation, and the diagonal elements of the g̃′ and A′ tensor
can then be related as95, 97

g̃′αα = ± 2
µB

√

A′
αα. (75)

The back transformation to the original coordinate system can be determined
from the eigenvectors of A, and g̃′ can then be transformed to g̃. It should be
noted that due to the square root operation in (75), the signs of the individual
components of the g̃-tensor cannot be determined. In Ising and quasi doublets,
only the eigenvalue of g̃-tensor corresponding to main magnetic axis has a
non-zero value due to the Griffith’s theorem.202

General expressions for the elements of the g̃ and D tensors at arbitrar-
ily strong SOC and arbitrary magnitude of pseudospin have been derived by
Chibotaru and Ungur using ITO techniques95, 97 but will not be discussed here.
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3.5 Exchange interaction

3.5.1 Direct exchange mechanism

In systems with multiple magnetic sites, such as polymetallic complexes, the way
the spin angular momenta of the sites are coupled to yield the total spin S of
the system is determined by exchange interactions. In most cases, the exchange
interaction is a two-site process (although some exceptions do exist177, 203–206),
and the exchange interactions in polymetallic systems can be constructed from
pairwise two-site exchange interactions. We will first consider the case of ex-
change interaction known as direct exchange, where the magnetic sites interact
directly. We will further limit our initial treatment to the simplest case, which
considers two sites a and b, each with one unpaired electron and zero orbital
angular momentum. Such a case is encountered, for example, when considering
organic diradicals, radical dimers, or bimetallic Cu(ii) systems, where the metal
ions interact directly. More complicated situations are discussed in terms of spin
Hamiltonians in section 3.5. The electrons occupy magnetic orbitals76, 177 φa(r)
and φb(r), which are Wannier type functions,207–209 maximally localized at sites a

and b while still maintaining their mutual orthogonality. A useful starting point
for the description of this system is the generalized Hubbard model177, 179, 210

Ĥdirect
Hubbard =Uan̂aαn̂aβ + Ubn̂bαn̂bβ + Uab ∑

σ,σ′
n̂aσn̂bσ′ (76)

+ Kab ∑
σ,σ′

â†
aσa†

bσ′ âaσ′abσ + tab ∑
σ

(

â†
aσ âbσ + â†

bσ âaσ

)

,

where Ua = (aa|aa) and Ub = (bb|bb) describe the on-site Coulomb repulsion
between two electrons occupying orbitals φa and φb, respectively, Uab = (aa|bb)
describes the inter-site repulsion between electrons in different orbitals, Kab =
(ab|ba) is the exchange integral between the electrons in the different orbitals, and
tab = 〈φa|ĥ|φb〉 is the transfer integral describing the resonance of the electrons
between the two orbitals (ĥ is the one-electron part of the full Hamiltonian). The
indices σ, σ′ ∈ α, β run over the spin indices. The mechanism is schematically
represented in Figure 5a.

The magnetic orbitals φa(r) and φa(r) can be occupied in four different
ways to give four ON vectors with MS = 0: |ab̄〉, |āb〉, |aā〉, and |bb̄〉; one ON
vector with MS = 1: |ab〉; and one with MS = −1: |āb̄〉. |ab̄〉 and |āb〉 are called
neutral states, and |aā〉 and |bb̄〉 are called ionic states, as they have an excess
electron on one site and an electron hole in the other state. The configurations
are given in a pictorial form in Figure 5b. The two neutral states are mixed
to each other and the two ionic states to each other by the exchange term in
(76). The neutral and ionic states are separated from each other by the electron
promotion energies Ua −Uab and Ub −Uab. The neutral and ionic states are mixed
into each by the transfer term in (76) and the off-diagonal element connecting
the states is tab. In magnetic insulators (of which we are mostly interested
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FIGURE 5 a) A schematic representation of the direct exchange mechanism involving
two electrons in two orbitals and b) the electron configurations involved in
the mechanism.

in molecular magnetism), the Coulombic repulsion is much stronger than the
transfer interaction: tab ≪ Ua − Uab, tab ≪ Ub − Uab. This means that the ionic
states can be considered as a perturbation mixed into the neutral states by the
transfer term.179 Since we are assuming there is no orbital angular momentum,
SOC has no effect and the spin projection MS is conserved. Thus, the MS = ±1
ON vectors will not mix with any other state, and the Hamiltonian can be
diagonalized in the basis of the two neutral MS = 0 states; the mixing with the
ionic states can be introduced later as a perturbation.179, 211, 212

The energy difference between the MS = 0 singlet and triplet states is

∆EST = E(S0)− E(T0) = 2Kab − tab
2
(

2
Ua − Uab

+
2

Ub − Uab

)

. (77)

The other two components of the triplet are the MS = ±1 basis states, which are
degenerate with |T0〉. The exchange integral Kab is always positive and, therefore,
stabilizes the triplet state which favors FM interaction. We refer to this form of
exchange as Coulomb exchange as it originates from the Coulomb operator in
the Hamiltonian. This interaction is sometimes also called direct exchange on
its own. The Coulomb repulsion integrals Ua, Ub, and Uab in the denominator
are always positive, and the on-site repulsion is always larger than the inter-site
repulsion; hence, the latter term in (77) stabilized the singlet state and favors
anti-ferromagnetic (AFM) interaction. It is known as kinetic exchange,212 as its
magnitude is determined by the transfer integral, which largely depends on how
strongly the kinetic energy operator mixes the two magnetic orbitals. The kinetic
exchange is usually much stronger than the direct exchange unless the transfer
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integral is zero or nearly zero by some symmetry condition. Consequently, AFM
interaction is much more common in Nature than FM interaction.

When discussing exchange interaction, we usually mean all interactions
that determine the relative ordering of the coupled spin states. Therefore, the
direct exchange interaction contains in addition to the Coulomb exchange, which
is exchange in its purest form, also the kinetic exchange contribution, which
originates from electron delocalization or resonance. It is also worth noting here
that the kinetic exchange formally originates from the mixture of the ionic states
into the neutral states, and magnetic interaction occurs when this mixing is weak.
The opposing limit, when tab is of the same order as U, is known as the covalent
or Hückel limit and corresponds to the formation of a covalent bond between
the magnetic orbitals. Thus, the exchange interaction between two electrons in
two orbitals can also be interpreted as an extremely weak covalent bond. The
exact limit between strong AFM exchange and weak covalent bonding is not
well-defined, and organic diradicals, where this situation is often encountered,
can be essentially described as either of the cases.

3.5.2 Superexchange mechanism

In the previous section, exchange interaction was introduced as a two-orbital
process where the two electrons in those two orbitals interact directly. This
is the case in radical–radical or metal–radical systems and is known as direct
exchange. In polynuclear transition metal complexes, however, the exchange
interaction usually takes place through some diamagnetic ligand, and the metal
orbitals do not directly interact. Such a process is known as superexchange.
The concept was first considered by Kramers,213 formulated by Anderson,211, 212

and elaborated by Goodenough214–216 and Kanamori.217 We will demonstrate
here the simplest possible case with two unpaired electrons in two equivalent
magnetic orbitals φa(r) and φb(r), and one doubly occupied ligand orbital φl(r).
Even in this relatively simple situation, the number of relevant interactions is
fairly large, and in order to obtain a simple closed-form expression for the
singlet–triplet splitting comparable to (77), only the major interactions can be
introduced to the Hamiltonian. Thus, we will only consider the on-site Coulomb
repulsion at the two metal sites (Um), the metal–ligand transfer parameter (tml),
and the splitting between the metal and ligand orbital energies (∆ml). All intersite
interactions beyond electron transfer will be neglected as well as the Coulombic
on-site repulsion at the ligand. Direct metal–metal transfer will also be neglected.
This simple models provides a qualitatively correct picture, and the effect of the
various parameters neglected here on quantitative estimates has been discussed
in great detail by Van den Heuvel and Chibotaru.218 The generalized Hubbard
Hamiltonian is given as

Ĥ
super
Hubbard =Um

(
n̂aαn̂aβ + n̂bαn̂bβ

)
+ ∆ml

(
n̂lα + n̂lβ

)
(78)

+ tml ∑
σ

(

â†
aσ âlσ + â†

lσ âaσ + â†
bσ âlσ + â†

lσ âbσ

)

.
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A schematic representation of the superexchange mechanism is given in
Figure 6a. The basis for the diagonalization of this Hamiltonian consists of three
MS = 1, three MS = −1, and eight MS = 0 configurations given in Figure 6b.
Treating the ionic states as a perturbation and following the same procedure as
in section 3.5.1 gives the singlet–triplet splitting as

∆EST =
4tml

4

(Um + ∆ml)2

(
1

Um
+

1
Um + ∆ml

)

(79)

It is worth noting that the superexchange mechanism as described by
Hamiltonian (78) will always stabilize the AFM state. Stabilization of the FM
state requires either a mechanism involving additional mutually orthogonal
orbitals in the bridging ligand (the so-called ferromagnetic superexchange), a
competing direct exchange mechanism between the metal orbitals, or more than
one orbital per metal site (the so-called Goodenough’s mechanism). Usually
the ferromagnetic superexchange mechanism is the only FM mechanism strong
enough to affect the energetic ordering of spin states. More detailed account
of the different kinetic exchange terms in the case of higher number of orbitals
and/or electrons is given in Goodenough’s book.216

3.5.3 Double-exchange mechanism

A third form of exchange interaction we will consider is the so-called double-
exchange introduced by Zener,219 Anderson and Hasegawa,220 and de Gennes.221

In this model, we again consider two sites a and b, but now both sites have
two orbitals φa(r), φ′

a(r) and φb(r), φ′
b(r). The orbitals φa(r) and φb(r) are both

occupied by one electron each in the ground state. The system has one additional
electron, which resonates between the orbitals φ′

a(r) and φ′
b(r). We will assume

that the orbitals φa(r) and φb(r) do not interact directly; therefore the only
inter-site interaction is the a′ ↔ b′ transfer interaction described by the transfer
parameter ta′b′ . At site a, the resonating electron occupying φa′ is coupled to the
electron in φa by the Hund’s rule coupling described by the parameter Kaa′ and
likewise for site b. The systems is then described by a Hamiltonian

Ĥdouble
Hubbard = (Ua + Uab)

(

n̂a′α + n̂a′β

)

+ (Ub + Uab)
(

n̂b′α + n̂b′β

)

(80)

+ Kaa′ ∑
σ,σ′

â†
aσa†

a′σ′ âaσ′aa′σ + Kbb′ ∑
σ,σ′

â†
bσa†

b′σ′ âbσ′ab′σ

+ ta′b′ ∑
σ

(

â†
a′σ âb′σ + â†

b′σ âa′σ

)

.

A schematic representation of the mechanism is given in Figure 7a.
The basis consists of two MS = 3/2 states, two MS = −3/2 states, six

MS = 1/2 states, and six MS = −1/2 states. Each basis state represents a localized
state, where the resonating electron is localized at either site a or site b. The
configurations are given in pictorial form in Figure 7b. It should be noted that
in all states, either φ′

a(r) or φ′
b(r) is occupied; hence, the on-site repulsion Ua
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FIGURE 6 a) A schematic representation of the superexchange mechanism involving
four electrons in three orbitals and b) the electron configurations involved in
the mechanism.
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FIGURE 7 a) A schematic representation of the double-exchange mechanism involving
three electrons in four orbitals and b) the electron configurations involved in
the mechanism.
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or Ub contributes to the energy of all basis states and the energy penalty for
electron transfer is |Ua − Ub|, which is usually a small quantity. This situation is
commonly encountered in conducting materials. If we further assume that the
two sites are equivalent (i. e., related by a symmetry operation), |Ua − Ub| = 0,
and the energy of the localized states is completely defined by the Hund’s rule
coupling Kaa′ = Kbb′ ≡ K. In the case when ta′b′ ≪ K, which is considered a
requirement for the double-exchange mechanism to be operational, the electron
transfer can be considered as a perturbation. To first order, the eigenvalues of the
quartet states of (80) are

−K ± ta′b′ (81)

and those of the four doublet states are

−K ± ta′b′

2
and K ± ta′b′

2
(82)

Thus, energies of all the states are centered around the Hund’s rule coupling with
splitting ±ta′b′ or ±ta′b′/2 for the quartets and doublets, respectively. The energy
difference between the lowest quartet state and the lowest doublet state is

∆EST =
|ta′b′ |

2
, (83)

which is always positive; thus, double-exchange always stabilizes the high-spin
state. This result also holds in the case when the system has higher number of
unpaired electrons or when the electrons in the orbitals φa(r) and φb(r) interact
weakly via a direct or superexchange mechanism. The more general case will be
discussed in section 3.5.4 in terms of spin Hamiltonians.

3.5.4 Spin Hamiltonians for isotropic exchange

The simplest exchange coupled systems consisting of two electron in two orbitals
can be described by the Heisenberg–Dirac–van Vleck spin Hamiltonian

ĤHDvV = −JabŜa · Ŝb (84)

first introduced by Heisenberg15 and later refined by Dirac,8 van Vleck,184, 222

and Slater.223 Jab is an exchange coupling constant, and Ŝa and Ŝb are spin
operators acting on sites a and b. The product of spin operators has two unique
eigenvalues, one corresponding to a singlet state and the other triply degenerate
and corresponding to a triplet state. The main purpose of the bilinear operator
Ŝa · Ŝb is, therefore, to separate the different spin states from each other. The
operators Ŝa and Ŝb on their own do not serve any physical meaning, and they
could equally well be replaced by an operator in orbital space, which interchanges
the sites a and b without any effect on the interpretation of the final results.179 The
energy difference between the singlet and triplet states is Jab = ∆EST = ES − ET.
Therefore, a positive exchange coupling constant favors FM interaction and a
negative value favors AFM interaction. Comparing this result with equations (77)
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and (79) immediately yields the results

Jab = 2Kab − tab
2
(

2
Ua − Uab

+
2

Ub − Uab

)

and (85)

Jab =
4tml

4

(Um + ∆ml)2

(
1

Um
+

1
Um + ∆ml

)

(86)

for the direct and superexchange mechanisms, respectively, under the approx-
imation discussed in sections 3.5.1 and 3.5.2. ĤHDvV can be derived from the
Hubbard Hamiltonian using the effective Hamiltonian theory.177, 179, 224 It should
be noted that several forms of ĤHDvV are used in the literature, where 2J might
be used instead of J or where the negative sign might be dropped.

The HDvV Hamiltonian can be generalized to the case when Sa > 1/2

and/or Sb > 1/2. This is most often carried out by simply using the form (84)
with no modification other than applying the operators Ŝa and Ŝb on larger
spins.24 In this case, the value of the exchange coupling constant can be related to
the energy difference between the S = Sa + Sb (high-spin, HS) and S = |Sa − Sb|
(low-spin, LS) states as225

Jab =
ELS − EHS

2SaSb + Sb
, (87)

where we have assumed (without loss of generality) that Sa ≥ Sb. If the exchange
Hamiltonian in the Sa, Sb > 1/2 case is derived from the Hubbard Hamiltonian
using effective Hamiltonian theory, in addition to the bilinear term of equation
(84), also biquadratic terms of the type (Ŝa · Ŝb)

2 and possibly higher-order terms
can arise,177, 226 which are not necessarily negligible.227 These terms are usually
only considered in the context of ab initio calculations, as extracting them from
experiment is usually difficult due to correlations between the parameters, which
make obtaining a unique fit impossible.

An isotropic spin Hamiltonian has also been derived for double-exchange
by Girerd, Münck (GM), and co-workers:24, 224, 228

ĤGM =
(
Ea − JaŜa · ŝa

)
n̂a +

(
Eb − JbŜb · ŝb

)
n̂b + dT̂ab. (88)

The operator acts in a basis of states {|SMS〉a, |SMS〉b}, where the subscript a or
b indicates that the resonating electron is localized at site a or b. The fixed spins
at the two sites can have any magnitude but the resonating electron will have
s = 1/2. The operators Ŝa and ŝa act on the total spin of the fixed electron and
the spin of the resonating electron when it is located on site a, and the operators
Ŝb and ŝb act analogously at site b. The operators n̂a and n̂b return one if the
resonating electron is at site a or b, respectively, and zero otherwise. The operator
T̂ab connects the two localized states:

T̂ab|SMS〉a = (S + s) |SMS〉b and T̂ab|SMS〉b = (S + s) |SMS〉a. (89)

Ea and Eb are the zeroth-order energies of sites a and b in the absence of the
resonating electron, and d is the effective transfer parameter. If the two sites are
identical, d is given as

d =
tab

2S0 + 1
, (90)
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where S0 is the total spin of the fixed electrons.

3.5.5 Spin Hamiltonians for weak anisotropic exchange

When SOC is weak enough for the spin Hamiltonian approach still to make
physical sense but strong enough not be neglected, the exchange coupling is
given by the spin Hamiltonian

Ĥaniso = −Ŝa · Jab · Ŝb, (91)

where Jab is the exchange tensor and relates the two spin sites in a non-collinear
manner. It is convenient to decompose Jab into contributions from various
interactions:24, 175, 229, 230

Ĥaniso = −JabŜa · Ŝb + Ŝa · Dab · Ŝb + dab · Ŝa × Ŝb, (92)

where the first term is the isotropic part of the exchange interaction described
by (84), the middle term is the symmetric anisotropic exchange, and the last is
the antisymmetric or Dzyaloshinsky–Moriya (DM) interaction.229, 231 The DM
interaction is strictly zero if the spin sites are related by inversion symmetry.

In the case of Sa, Sb ≥ 1, biquadratic symmetric exchange interaction

Ŝa ⊗ Ŝa · Daabb · Ŝb ⊗ Ŝb, (93)

where Daabb is a rank four tensor, should be included into Ĥaniso as well.230

Higher-order terms for the antisymmetric exchange have also been derived,232

but will not be discussed here.

3.5.6 Pseudospin Hamiltonians for strongly anisotropic exchange

In the case of strong SOC, no general form of a pseudospin Hamiltonian ap-
plicable in all cases has been derived. In such cases each situation has to be
considered separately, and the form of the Hamiltonians can be extremely com-
plicated.179, 233, 234 In certain special cases, however, general Hamiltonians are
available. The first situation is Ising exchange interaction, which takes place
under special conditions and can be described by a pseudospin Hamiltonian of
the form235

H̃
Ising
aniso = −JabS̃zaS̃zb, (94)

where the pseudospin operators act only on the projection of the pseudospin.
Another case where the Hamiltonian has been derived is the situation

where the LS coupling is a reasonable approximation to the electronic structure
at the two interacting sites and, the angular momentum at the sites can be
described by Ĵ operators. Within the LS coupling, the target space is closed
relative to the operator Ĵ, and the descriptions according to the real angular
momentum operators Ĵ and the respective pseudospin operators J̃ are equivalent.
The Hamiltonian describing the exchange interaction is then119

ĤLS
aniso = ∑

k,q
∑
k′,q′

Jkqk′q′
Ôkq(Ĵa)Ôk′q′(Ĵb)

Ok0(Ja)Ok′0(Jb)
, (95)
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where Okq(Ĵa) and Ôk′q′(Ĵb) are Stevens operators. Due to time-reversal symmetry,
the sum of the ranks of operators k + k′ must be even for all terms. The highest
value of the rank k is determined either by 2la + 1, where la is the orbital angular
momentum of the orbital occupied by the unpaired electrons at site a, or by 2Ja,
depending on which is larger. The highest rank k′ is determined in an analogous
manner for site b. The number of terms entering the expansion can also be
limited by symmetry, but it should be clear that in low-symmetry systems, the
number of exchange coupling constants Jkqk′q′ required to describe the interaction
is very large. Expressions for the Jkqk′q′ parameters in terms of quantities of the
generalized Hubbard Hamiltonian is given in ref. 119.

3.6 Dynamic magnetic properties

Slow relaxation of magnetization is the most important characteristic feature of
SMMs. The term “slow relaxation” implies non-equilibrium dynamics. Although
the features of the electronic structure required for achieving slow relaxation are
well-known, especially in the case of monometallic systems, there are serious
gaps in the quantitative understanding of the actual dynamics of the relaxation
process at a microscopic level. The relaxation is a consequence of the interaction
of the magnetic system with the lattice vibrations described as phonons. The
widely used theory is based on the seminal work of Orbach published in 1962,236

which assumes validity of the so-called Debye model237 and assigns all relaxation
interactions to the low-energy acoustic phonons. In the words of Lunghi et al.:
“Despite its first formulation is more than fifty years old and the fact that a proof
of its validity has never been provided, the Debye model remains the basis for
the interpretation of every experiment to date.”123 Some very recent work in the
field has been carried out to improve our understanding of the models and to
relate the model parameters to microscopic or ab initio quantities.122, 123, 238–241 As
the present work is mostly focused on static properties, we will introduce the
dynamic properties on a superficial manner and using the widely used qualitative
theory. More in-depth discussion is available on a general level in Abragam and
Bleaney,20 focusing on transition-metals in Gatteschi et al.25 and the review
published by Atanasov, Neese, and co-workers,89 and on a more introductory
level in the tutorial review by Liddle and van Slageren.242

The ZFS (in S-type systems) or the CF splitting (in J-type systems) leads
to the splitting of the lowest (2S + 1)- or (2J + 1)-fold degeneracy of the states,
which under optimal conditions form a barrier-like structure of energy levels in
terms of the magnitude of the magnetic moment (Figure 8a). The lowest states on
the opposite side of the barrier have opposite signs of magnetic moment leading
to opposite signs of microscopic, and eventually macroscopic, magnetization.
When an external field is applied along one of these magnetization directions,
the state with a magnetic moment opposite to the field will have the lowest
energy. The system will then relax in such a way that only this side of the
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FIGURE 8 Examples of the relaxation of magnetization in SMMs: a) the relaxation
pathway in an ideal D∞h symmetric [DyCl2]+ ion and b) a more realistic
pathway in a pseudo-D5h symmetric complex. The energetics and the calcu-
lated relaxation pathway are unpublished results of the present author. The
geometry in b) is taken from ref. 243.

barrier has significant population. Once the external field is switched off, the
systems will still have an excess magnetization in one direction, creating a non-
equilibrium situation that will eventually evolve into an equilibrium where both
sides of the barrier have equal populations. In an ideal situation, the relaxation of
magnetization would require transitions over the barrier leading to an Arrhenius-
like temperature-dependence of the relaxation rate with an “activation energy”
corresponding to the barrier height. In reality, however, there is no reason why
the magnetization should traverse the entire barrier, but transition between any
electronic states are, in principle, possible (Figure 8b). Any transition between
the components of the ground doublet (whether it takes place directly or via
some intermediate state) requires some magnetic interaction. This can originate
from dipolar or weak exchange coupling between neighboring ions, from the
hyperfine coupling between nuclear spins, or from the modulation of the CF by
lattice vibrations, which through SOC translate into an oscillating magnetic field.
The actual transitions imply exchange of energy with the phonons of the crystal
through spin–phonon coupling or quantum tunneling of magnetization (QTM).

QTM takes place when a transverse (i. e., perpendicular to the magnetic
z axis) external magnetic field, usually originating from dipolar or hyperfine
coupling, couples the two components of the ground doublet.25, 244 In the case of
Kramers systems, this can only take place if the g̃-tensor describing the Zeeman
interaction with the doublet has non-zero transverse components gx and gy in the
coordinate frame of the magnetic axis.105, 109 In low-symmetry systems, this is
usually the case. The gx,y values of all doublets are strictly zero in the axial point
group symmetries D∞h and C∞v, and some of them will be strictly zero when
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the point group has a threefold or higher rotational axis.105 If no point group
symmetry is present but the system has a very axial CF, usually the values of gx,y
in the lowest doublets are negligibly small.V, VI, 111–114 The mixing of the doublets
by magnetic field induces a weak splitting, and QTM between the states can occur.
In non-Kramers systems, QTM is possible always when the doublets are not
exactly degenerate (i. e., not Ising doublets). This is the case in all low-symmetry
systems. Again, in point group symmetries D∞h and C∞v, all doublets are exactly
degenerate and no QTM takes place, and in point group symmetries with a
threefold or higher rotational axis, some doublets may be Ising doublets.245 The
QTM process can in many cases be suppressed by applying a static external field
in the z direction, which decouples the states.

Spin–phonon transitions can take place either directly between the two com-
ponents of the doublet (direct process), via an excited doublet (Orbach process)
or via a virtual state (first- and second-order Raman processes). The spin–phonon
factor in the direct process is proportional to the third power of the energy gap be-
tween the two states20 and is therefore not present in Kramers systems due to the
so-called van Vleck cancellation246 unless the components of the lowest doublet
are split by an external magnetic field. In non-Kramers systems, the direct process
is operative, but usually the density of phonons in the relevant energy range is so
low that this process is not competitive with the other relaxation mechanisms. In
the Orbach process, one phonon first excites the systems to an excited state, which
is then relaxed to the ground doublet via an emission of another phonon. The
Orbach relaxation process from one component of the ground doublet to the other
can include several elementary excitation and de-excitation steps (i. e., climbing
the barrier). This type of transition can be interpreted as several consecutive direct
transitions. In the first-order Raman process, the magnetic system interacts with a
superposition of two lattice waves with an energy difference which matches that
of the electronic transition. The electronic transition can be interpreted as taking
place via a virtual state similar to the Raman mechanism in optical spectroscopy.
In the second-order Raman process, both the electronic system and the phonon
system undergo a transition via a virtual state. Due to the presence of the virtual
state, the transition does not require the energy of the interacting phonons to
match the energy difference between some real electronic states. The different
spin-phonon relaxation mechanisms are summarized schematically in Figure 9.

The dominant relaxation process in S-type 3d transition-metal SMMs is the
Orbach process, and the relaxation usually takes place over the full barrier. In
lanthanide systems, QTM is usually very strong and needs to be suppressed by
correct design of the CF environment or by applying an external field. Depending
on the system, various mechanisms might become dominant.247 In actinide
SMMs, the relaxation mechanisms are largely unknown.248

The temperature-dependence of the time constant τ of the total relaxation
process arising from different relaxation mechanisms can be written as

τ−1 = τ−1
QTM + ABn1 T + CTn2 + τ0

−1 exp
(

−Ueff

kBT

)

, (96)
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FIGURE 9 A schematic representation of the different spin-phonon relaxation mecha-
nism operational in SMMs. Blue levels show transitions in the spin system,
whereas red levels indicate transitions in the phonon system.

where T is the temperature, Ueff is the effective barrier height determining the
Arrhenius-like behavior, B is the field strength, and τQTM, A, C, n1, n2, and τ0
are parameters of the model. The powers n1 and n2 can be given predefined
integer values under certain conditions,20 or they can be considered as adjustable
parameters. The parameters are not, in general, mutually independent. The first
term in (96) describes the QTM, the second term describes the direct relaxation
processes, the third term describes the Raman processes, and the last term
describes the Orbach processes. In polymetallic systems, each magnetic site has
an individual set of relaxation processes along with the relaxation processes of
the coupled system.249 The temperature-dependence of the relaxation is usually
studied by constructing a log τ vs. T−1 plot based on experimental results. In
monometallic systems, if the direct and Raman processes are negligible, which is
usually the case for Kramers or Ising doublets and relatively low temperatures,
the plot will have a linear region at higher temperatures due to the Orbach term
and a temperature-independent term at low temperatures due to the QTM term.
A linear Arrhenius-type fit to the linear region yields the exponential prefactor τ0
and the effective barrier height Ueff. In polynuclear systems, the plot may have
several different linear regions due to the different sites. In the case when Raman
processes are active, the plot will deviate from linearity. It is in principle possible
to extract the full set of parameters τQTM, A, C, n1, n2, and τ0 by fitting the data,
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but the risk of a non-unique fit due to cross-correlations is very high. Therefore,
usually attempts are made to suppress some of the processes by the experimental
conditions (i. e., specific temperature range or magnetic dilution).

The value of Ueff is the characteristic property of SMMs most often reported
in the literature. Effective barrier heights have been reproduced, at least at a semi-
quantitative level, by modeling the dynamics of the system based on quantities
calculated from first principles.114 The effective barrier height is, however, usually
considerably higher than the actual magnetic blocking temperature. For example,
the current record for blocking is 60 K, whereas the respective barrier height
is 1837 K (given in here in units kelvin for comparison),VI, 114 which differ by
a factor of 30. The magnetic blocking temperature has never been calculated,
qualitatively or otherwise, from first principles nor derived from theory at any
level of approximation. This indicates that the theory related to the magnetic
relaxation of SMMs still remains rather incomplete.

3.7 On experimental techniques

Although the present work is purely focused on theory, the aim of any theory is
to explain experimentally observed phenomena; therefore, the theory will always
be discussed in the context of experiment. Thus, we will very briefly describe
the experimental techniques, which provide the data that are to be explained
by the theory. The emphasis is placed on the types of data these experiments
provide and the actual experimental procedures will not be described in any
detail. Further information is available, for example, in Benelli and Gatteschi,26

Gatteschi et al.,25 in the book chapter by Pedersen et al.250 and the references
therein.

The two most widely used experimental techniques in the study of the
magnetic properties of molecular systems are SQUID magnetometry and EPR
spectroscopy, although other methods are used as well.250 The first is perhaps
the most widely used technique in molecular magnetism. SQUID, or a super-
conducting quantum interference device, is a magnetometer capable of detecting
extremely weak magnetic fields. The experiments usually measure the mag-
netization either as a function of temperature or as a function of the magnetic
field strength. The most often reported data are the temperature-dependent χT

product (calculated from the magnetization by χ = M/B) and the isothermal
field-dependent magnetization. The χT data is usually measured in a temper-
ature range from liquid helium temperature to ambient conditions, and the
magnetization is measured in temperatures of a few kelvins above absolute zero.
The χT plot can be fitted to a model to obtain various pseudospin Hamiltonian
parameters. In highly anisotropic systems, the problem is that the number of
parameters is large and the models becomes overparameterized very easily. Fit-
ting the χT product is the main method for obtaining experimental values for
isotropic exchange coupling constants when the number of unique parameters is
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reasonably small. Additional information from optical spectra, NMR spectra, and
elastic neutron scattering measurements can also be used to reduce the number
of free parameters. The isothermal magnetization at high fields can be used to
extract the ground state (pseudo)spin.

Dynamics of the relaxation of magnetization can also be examined by
SQUID magnetometry. In the case of sufficiently slow relaxation, the two most
often used experiments measure the magnetic hysteresis and the divergence of
the field-cooled (FC) and zero-field-cooled (ZFS) magnetization. In a hysteresis
measurement, the magnetization is measured as a function of the field strength
at some fixed ramping speed by first bringing the field to the point of magnetic
saturation and then ramping the field down to the opposite direction. In the
case of slow relaxation, the sample should remain magnetized once the field is
ramped down to zero and show some coercivity to magnetization in the opposite
direction when the field is further ramped down. This experiment gives values of
the remnant magnetization (the value of magnetization once the field is brought
down to zero) and the coercive field (the strength of the magnetic field required
to reverse the magnetization). In the FC/ZFC experiment, the magnetization is
measured twice, first by lowering the temperature with an external magnetic field
and then repeating the measurement without the field. At some temperature the
two curves will diverge from each other, indicating a point where the relaxation
of the magnetization becomes blocked. Both the divergence temperature in the
FC/ZFC experiment and the highest temperature where hysteresis is observed
are used as values for the blocking temperature of an SMM. One should be
careful to note that the results of both experiments depend on some arbitrarily
defined ramping speed of the field strength and the values measured for two
different systems are therefore not necessarily comparable.

In the case when the slow relaxation dynamics are too fast compared to
the ramping speed of the measurement device, the dynamics can be probed by
alternating current (ac) SQUID magnetometry. The alternating current creates an
oscillating magnetic field, and the frequency of these oscillations can be varied. If
the magnetization relaxes more slowly than the field oscillates, the magnetization
starts to “lag behind” the field oscillations, and this can be observed in the so-
called out-of-phase component of the susceptibility. Data extracted from these
measurements can also be fitted to empirical models of the relaxation to obtained
the effective barrier height (Ueff) and the parameters describing the QTM and
Raman relaxation processes. It should also be noted that a temperature-dependent
frequency shift in the ac susceptibility measurement cannot be attributed to the
formation or deformation of domain walls in a bulk magnetic (which also lead
to magnetic hysteresis and divergence of FC/ZFC plots), but is an indication of
SMM or spin glass behavior.

EPR spectroscopy measures the transition between different states split by
the Zeeman interaction.20 If sufficiently well resolved, the EPR spectrum of a
given complex shows a large number of peaks and, in principle, contains more
information than a χT plot, which is often just a single slope with a varying
gradient. Simulation of the observed EPR spectra with a model Hamiltonian,
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therefore, allows the extraction of a much larger number of parameters than can
be reliably obtained from a χT plot. EPR spectra are also considerably more
sensitive to anisotropy effects than susceptibility measurements are even in the
presence of strong isotropic exchange coupling. In solid-state measurements, it
is possible to extract all elements of the g̃ and D tensors of the ground state. In
magnetically diluted samples, such as in solvated systems or complexes doped
into a diamagnetic lattice, it is possible to also deduce the hyperfine structure of
the spectrum that results from the coupling of electron spin with the nuclear spin.
This gives valuable information on the delocalization of the electron spin over
the molecule and is especially useful in the analysis of organic radical systems.
In the context of organic systems, EPR is sometimes referred to as electron spin
resonance (ESR).



4 WAVE-FUNCTION-BASED QUANTUM
CHEMISTRY OF STRONGLY CORRELATED
SYSTEMS

The purpose of the present chapter is to introduce wave-function-based (as
opposed to density-functional-based) computational methods, which are widely
used in the field of molecular magnetism. Practically all molecular magnetic
systems studied by quantum chemistry have very strong electron correlation
effects and are hence called strongly correlated. This means that the systems
cannot be described by mean-field independent particle models, and the necessary
treatment even at zeroth order is rather complicated. Emphasis is based on
introducing quantum chemical methods used in the present work, and other
methods are simply mentioned in passing. The emphasis is also placed on the
implementations (and especially on the differences in the implementations) in
Orca251, 252 and Molcas253, 254 codes, which are the two most commonly used
sets of programs in the field of molecular magnetism. Much of the methodology
is available in other computer codes as well, most notably in Molpro,255 possibly
with some variations, but these will not be discussed. The aim of the text is to
provide the reader with sufficient understanding on why a certain method might
be favored over another and what challenges one faces when applying these
methods in practice.

In molecular electronic structure theory, the quantum system of interest con-
sists of N electrons interacting with each other, with atomic nuclei, and possibly
with some external fields. Usually we make the so-called Born–Oppenheimer
approximation129, 256,a where we assume that the nuclear and electronic degrees
of freedom are not coupled and we can, therefore, solve the Schrödinger equa-
tion of the interacting electrons independent of the motion of the nuclei. Once
the electronic problem has been solved, derivatives of the electronic energy

a The standard citation for Born–Oppenheimer approximation is the 1927 paper by Born and
Oppenheimer. The approximation is implied in the paper, but it is neither purposefully
derived nor clearly apparent in the equations. A clear derivation is available, for example,
in Jensen’s book.129
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and nuclear–nuclear repulsion energy relative to displacements of the nuclei
can be calculated, and the nuclear wave function can then be constructed in a
semi-classical manner, which is usually sufficiently accurate for chemical prob-
lems.129, 257 Furthermore, we usually either neglect relativistic effects completely,
or, assume that they can be sufficiently well reintroduced as some simple correc-
tion to the non-relativistic equations. Thus, the molecular electronic structure
problem consists of analyzing a system of N electrons interacting with each
other and some local multiplicative external potential Vext. In the present work,
we are only interested in time-independent properties and will therefore only
consider systems where Vext is independent of time. External magnetic field will
be considered separately, and we will therefore further assume that Vext contains
only electric fields.

4.1 Basics of electronic structure calculations

4.1.1 Variation of energy

The essence of electronic structure calculations lies in the variational princi-
ple,144, 145, 258, 259 which states that the energy expectation value of any approxi-
mate wave function must be greater than or equal to the ground state energy of
the system and that the equality only holds if the approximate wave function is
the ground state wave function. Therefore, the ground state energy and wave
function of a given system for which the Hamiltonian is known, can be approxi-
mated by minimizing the energy expectation value in terms of some variation in
the wave function. The parameters that are obviously suitable for variation are
the CI coefficients in (8), but another important set of parameters, which we have
not discussed so for, are found in the spatial orbitals {φi(r)}.

Exact expressions for the spatial orbitals are not, in general, available, and
they are usually expanded in some predetermined basis set:

φp(r) = ∑
m

cmpχm(r), (97)

where the expansion coefficients cmp are usually referred to as the MO coefficients.
In molecular calculations, a good compromise between accuracy, computational
efficiency, and conceptual simplicity can be obtained by using atomic orbital
(AO) like basis functions as the one-particle basis set. It is well-known that the
atomic orbitals of a hydrogen-like atom consist of a spherical harmonic and a
radial function with exponential decay. In the context of atomic calculations,
Slater suggested the use of radial functions with exponential decay.260 Such
functions, however, are rarely used in molecular calculations (with some very
notable exceptions261, 262) due to the unfavorable mathematical properties of the
exponential functions when considering computational efficiency. Boys first
suggested using a Gaussian functions instead of an exponential one,263 and these
ideas were greatly developed by Pople in the following decades.264–277 Gaussian
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functions have much more favorable mathematical properties than exponential
functions; namely, the product of two Gaussian functions is a single Gaussian
centered between the two original functions. Even though usually a much larger
number of Gaussian functions are needed to sufficiently converge the results in
terms of the basis set expansion in (97),133 the availability of analytical expressions
for Gaussian products leads to better scaling in terms of overall cpu time. In
modern calculations, the set of basis functions for a given atom is considerably
larger than the number of corresponding atomic orbitals. The valence orbitals are
usually split into so-called double-ζ, triple-ζ, etc. sets of orbitals, which indicate
that there are two, three, etc. sets of valence orbitals for each atom. Usually
higher angular momentum functions, known as polarization functions, are also
added to the basis sets to afford more variational freedom in terms of polarization
and electron correlation (see section 4.1.3 vide infra). Sometimes, functions with
slowly decaying tails, known as augmentation functions, are also added to the
basis if molecular properties related to diffuse electron densities are of interest.129

Usually, preoptimized basis sets are used, and each basis function consists of
several Gaussian functions contracted with predetermined coefficients.

The ground state energy can be determined by minimizing the energy
functional

E = min
C,c

E[ψ(C, c)] = min
C,c

〈ψ(C, c)|Ĥ|ψ(C, c)〉
〈ψ(C, c)|ψ(C, c)〉 . (98)

Vector C and matrix c contain the CI expansion coefficients of equation (8) and
the MO orbital expansion coefficients of equation (97), respectively. Considering
the Hamiltonian within the Born–Oppenheimer approximation (Ĥ = ĤBO), ne-
glecting relativistic terms, and using (18) and (19), the energy functional can be
written as

E = min
C,c

[

∑
p,q

hpqγpq +
1
2 ∑

p,q,r,s
(pq|rs)Γpqrs

]

, (99)

where

hpq =
∫

φ∗
p(r)

(

−1
2
∇T

p · ∇q + Vext(r)
)

φ∗
q (r)dr. (100)

In the minimization, the density matrices γpq and Γpqrs depend only on the CI
coefficients, whereas the one- and two-particle integrals depend only on the MO
coefficient matrix c.

The energy expression (99) can be minimized by making it stationary with
respect to the MO and CI coefficients. The latter is straightforward, as the CI
coefficients enter the energy expression in a linear fashion and the problem can
be cast into a simple eigenvalue problem:127, 133, 278

HBOCA = EACA, (101)

where HBO is a matrix representing the Born–Oppenheimer Hamiltonian in con-
figuration basis, and the index A runs over different pairs of eigenvalues (EA) and
eigenvectors (CA). Optimization of the MO coefficients is less straightforward as
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they enter the equations in a non-linear manner and can only be solved iteratively.
Furthermore, the orbitals must be kept orthogonal during the optimization proce-
dure, which can be achieved either by introducing a Lagrange multiplier127, 129, 278

or by carrying out the optimization in terms of unitary rotations.133, 134, 150 Making
(99) stationary with respect to the MO coefficients leads to effective one-particle
equations known as the self-consistent field (SCF) equations:

∑
p

F̂pqφq(r) = ∑
p

ǫpqφq(r), (102)

where F̂pq is the Fock operator and the ǫpq are Lagrange multipliers. The Fock
operator is defined as

F̂pq = γpqĥC + ∑
r,s

Γpqrs

(
Ĵrs − K̂rs

)
. (103)

The operators

Ĵrsφq(r1) =
∫

φ∗
r (r2)φs(r2)dr2

|r1 − r2|
φq(r1) (104)

K̂rsφq(r1) =
∫ φ∗

r (r2)φq(r2)dr2

|r1 − r2|
φs(r1) (105)

are the Coulomb and the exchange operators, respectively. The letter J used
for the Coulomb operator should not be confused with an exchange coupling
constant. The Fock operator only contains one-electron operators, but as can
be seen from (104) and (105), all of the orbitals are required to construct the
Coulomb and exchange operators; thus, the effective one-particle equations must
be solved iteratively. This means that some initial guess of the orbitals is first
made, and then all one-particle equations are solved to produce a new set of
orbitals. The new Fock operator is then constructed from these orbitals, and
the procedure is repeated until the orbitals no longer change (i. e., the equations
become self-consistent). In practice, such a naïve SCF procedure rarely leads
to convergence, and a convergence acceleration scheme or more complex SCF
algorithm is required to bring the equations into self-consistency.129, 133

If the expansions in both (8) and (97) are complete (i. e., infinitely long), E is
the exact lowest eigenvalue of ĤBO, and this is called the full CI (FCI) limit. Such
a calculation is impossible to perform in practice as we are always constricted to a
finite expansion of the MOs in (97), and this then results in a finite number of one-
particle states. Thus, only a finite number of configurations can be constructed,
and the CI expansion (8) will also be finite. If the full CI expansion is constructed
in this finite one-particle basis, the limit is called the complete CI limit (CCI). CCI
can be considered as FCI in a subspace of the complete Fock space. It should
be noted that in the literature, the term FCI is often used for CCI. Although the
CCI method offers the most accurate results in any given finite one-particle basis,
the length of the CI expansion becomes untractable for all but the smallest of
molecular systems, such as diatomics or the water molecule. Some approximation
to the CI expansion is, therefore, necessary to perform calculations on larger
molecular systems.
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4.1.2 The Hartree–Fock method

The simplest approximation to the CCI problem is to only include one state in
the CI expansion. This state corresponds to the ground electron configuration
constructed by occupying the orbitals according to the aufbau principle, and the
resulting approximation is called the Hartree–Fock method13, 124, 126–128, 279, 280,b.
A single configuration is the exact solution for an ensemble of non-interacting
fermions; therefore, if the one-particle interactions are much stronger than the
electron–electron repulsion, this single-configuration approximation should be
reasonable. Indeed, the HF method is remarkably successful, and for many
chemical problems, it provides qualitatively correct results.129, 133, 257 The HF
method is most accurate in cases where the ground configuration is well-separated
in energy from any excited configuration. In the presence of degenerate electronic
states, the model fails completely. Since the field of molecular magnetism almost
exclusively works with systems with near-degenerate electronic states, the HF
model is all but useless in the present work. The theory, however, provides a
useful reference for the discussion on DFT-based methods in Chapter 5; therefore,
the HF method will be briefly introduced here.

The reference state consists of only a single configuration; thus, the possible
orbital ONs are npσ = 0 or npσ = 1. The unoccupied orbitals are usually referred
to as virtual orbitals in the context of quantum chemistry. It turns out that all
density matrix elements with virtual indices are zero; consequently, the summa-
tions in the energy expression (99) only need to run over the occupied orbitals.133

The single-configuration approximation greatly simplifies the structure of the
density matrices, and the ground state HF energy is given as

EHF = min
c

(
Nα

∑
p

hpp +
Nβ

∑
p

h p̄ p̄ +
1
2

Nα

∑
p,r

[(pp|rr)− (pr|rp)] (106)

+
1
2

Nβ

∑
p,r

[( p̄ p̄|r̄r̄)− ( p̄r̄|r̄ p̄)] +
1
2

Nα,Nβ

∑
p,r

(pp|r̄r̄)

)

,

where Nα and Nβ are the number of α and β electrons, respectively. The orbitals
are considered as unrestricted, and the bar over the orbital indices in the two-
electron integrals indicates a β orbital and the lack of a bar an α orbital. The two
types of two-electron integrals appearing in (106), (pp|rr) and (pr|rp), are known
as the Coulomb and exchange integrals according to the operators (104) and (105)
used to generate them.

The minimization leads to two sets of effective one-particle equations, one

b We are citing here, in addition to the papers of Hartee and Fock, also the papers by Slater.
By all fairness, the method should be called Hartree–Slater–Fock method as John C. Slater
contributed to the development of the theory at least as much as Douglas Hartree did.
A summary of the contributions from various authors into the development of the HF
method in the late 1920’s is given in the section “History of the determinental method” in
Slater’s MIT technical report from 1953.14
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for the α orbitals and another for the β orbitals:

F̂α
ppφpα(r) = ǫpαφpα(r) and F̂

β
ppφpα(r) = ǫpβφpα(r), (107)

which are written here in the so-called canonical form where the orbitals are
transformed in such a way that they are eigenfunctions of the Fock operator.127, 129

The eigenvalues ǫpσ can be interpreted as the orbital energies. The Fock operators
F̂α

pp and F̂
β
pp can be written as:

F̂α
pp = ĥC +

Nα

∑
r

[
Ĵαα
rr − K̂αα

rr

]
+

Nβ

∑
r

Ĵ
ββ
rr and (108)

F̂
β
pp = ĥC +

Nβ

∑
r

[

Ĵ
ββ
rr − K̂

ββ
rr

]

+
Nα

∑
r

Ĵαα
rr . (109)

Inserting the MO expansion in (97) into (107) gives two coupled matrix equations

Fαcα = Scα
ǫ

α and Fβcβ = Scβ
ǫ

β, (110)

where Fα and Fβ are matrix representation of the α and β Fock operators in
the AO basis, cα and cβ are matrices of the MO expansion coefficients cmp in
(97), S is an overlap matrix of the AO basis functions (Smn = 〈χm(r)|χn(r)〉),
and ǫα and ǫβ are diagonal matrices containing the eigenvalues ǫpα and ǫpβ.
Equations (110) are known as the Pople–Nesbet equations281 and are essentially
a generalized eigenvalue problem, which can be solved using standard linear
algebra techniques.127

In the literature, the HF method is most often given in its restricted formu-
lation, where the system has an equal number of α and β electrons and each
pair of electrons shares a spatial orbital. The formulation of the theory is very
similar. The main difference is that the summation runs over the electron pairs
and, therefore, only runs up to N/2, where N is the total number of electrons. The
ground state energy is given as

EHF = min
c

(
N/2

∑
p

hpp +
N/2

∑
p,q

[2(pp|qq)− (pq|qp)]

)

(111)

The minimization leads to a set of N/2 one-particle equations with the Fock
operator

F̂RHF
pp = ĥC +

N/2

∑
r

[
2 Ĵrr − Krr

]
. (112)

We have used here the superscript RHF to explicitly state that this is the HF Fock
operator in the closed-shell or restricted case. Expansion of the MOs leads to a
single matrix equation

Fc = Scǫ, (113)

which is known as the Roothan–Hall equation.282, 283
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The most computationally expensive part of a HF calculations is the genera-
tion of the two-electron integrals, and the method formally scales as O(Nbasis

4),
where Nbasis is the number of basis functions. The number of integrals is so
large that for moderate or large systems, it is not usually feasible to store them
on disk, and they are evaluated as they are needed. The Fock operator is usu-
ally constructed in an incremental manner, which means that not all integrals
need to be calculated at every iteration,133 which brings the scaling down. The
Coulomb integrals can also be evaluated more efficiently using the so-called
density fitting284–289 or resolution of identity (RI)290–296 approximations, which
can significantly reduce the computational costs. The exchange integrals are more
difficult to evaluate in an efficient manner, but Weigends RI-JK approximation297

and the chain of spheres exchange (COSX) method of Neese and co-workers298, 299

can make the evaluation of integrals very efficient. The RI approximation can be
considered a special case of the Cholesky decomposition (CD) method of integral
evaluation, which can also be used to hasten the integral evaluation.300–302 CD
employs a single parameter to determine the level of approximation, whereas the
RI approximation is based on preconstructed density fitting (or auxiliary) basis
sets.

4.1.3 Electron correlation

The single-configuration approximation in the HF method leads to a model where
N electrons move in a mean-field potential formed by the other electrons. The
movement of same-spin electrons is correlated due to the Pauli principle, which
has been enforced on the Fock space state by the antisymmetrizing operator.
The opposite-spin electrons are not correlated in any way. Thus, the HF model
includes the Fermi correlation, resulting from antisymmetry, but does not take
into account the Coulomb correlation, resulting from electrostatic interaction, in
any way.129, 151, 303 The energy not accounted by the HF method is accordingly
called the correlation energy (Ecorr) and is defined as

Ecorr = E0 − EHF, (114)

where E0 is the ground state energy corresponding to the Born–Oppenheimer
Hamiltonian (with some relativistic correction possibly included). The definition
of Ecorr in (114) was originally proposed by Löwdin141 and is the one most often
used in the context of wave-function-based quantum chemistry, although it is not
the only one;304 in DFT a different definition is used. The correlation energy is
always negative and according to the variational principle accounting for Ecorr
will always bring the model closer to the exact solution. In the Fock space,
the correlation can be interpreted as the mixing of different ON vectors (i. e.,
configurations) and in the Cartesian space as the reduction of electron density in
the vicinity of a given electron.

Molecular systems can be very roughly divided into two categories: single-
reference systems and multireference systems. If a system is a single-reference
system, it means that the HF method provides a qualitatively correct picture
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of the relevant physics, and the electrons can be considered to a very good ap-
proximation as independent particles interacting with some mean-field potential.
In the case of a multireference system, the independent particle picture breaks
down, and the HF approximation often provides results that are incorrect even at
a qualitative level. Thus, the importance of electron correlation is much greater
in multireference systems, and such systems are said to be strongly correlated.
Likewise, single-reference systems are said to be weakly correlated. Of course,
no distinct border can be drawn between single- and multireference systems, and
this division is always somewhat arbitrary; it nonetheless provides a very useful
picture. Most of molecular systems fall into the category of single-reference
systems. The system has multireference character only when several electronic
configurations lie close in energy. Such a situation can occur, for example, in
transition metal complexes due to close-lying d or f orbitals or in bond dissocia-
tion processes where bonding and anti-bonding orbital combinations lie close in
energy and occupying either one of these orbitals leads to similar energy. The
simplest diagnostic for the evaluation of multireference character in a given state
is by calculating its NOONs (see equation (29)). In a single-reference system for
the lowest N single-particle states ωp ∼ 1, and for the rest of the states ωp ∼ 0;
in multireference systems, significant deviations are observed.

In quantum chemistry electron correlation is often divided into two cate-
gories: static correlation and dynamic correlation. Static correlation is associated
to multireference character, whereas dynamic correlation is present in all elec-
tronic systems. In the Fock space picture, dynamic correlation can be considered
as the weak mixing of high-lying configurations into the ground configuration,
whereas static correlation is the strong mixing of a relatively small number of
low-lying configurations. The mixing due to static correlation can be so strong
that the system no longer has a single dominant configuration.

Weak or dynamic electron correlation can be systematically introduced into
the model by starting with the HF model and then including more ON vectors
into the approximate state. The Fock space can be spanned by generating singly,
doublet, triply, etc. excited ON vectors from a HF reference state:127, 133

|ψ〉 =




C0 + ∑

p,t
Ct

p â†
t âp + ∑

p,q,
t,u

Ctu
pq â†

t â†
u âp âq + ∑

p,q,r,
t,u,v

Ctuv
pqr â†

t â†
u â†

v âp âq âr + · · ·




 |HF〉,

(115)

where p, q and r are indices of orbitals that are occupied in the HF reference and t,
u and v are indices of virtual orbitals. In practice, usually only single and double
excitations can be included into the model to keep the problem computationally
tractable. Such a model is called CI singles, doubles, or CISD.305–307 Higher
excitations can be included into the model, but this limits the size of the system
to a few atoms. The reference state can also be generated using more complicated
methods. In coupled cluster theory, the reference state is constructed using an
exponential excitation operator.133, 308 Such a reference state has more favorable
physical properties but will not be of interest to us here. The CISD model can
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provide very good results for single-reference systems, where |C0|2 ∼ 1. However,
in the case of multireference systems, the single and double excitations are not
sufficient to account for the electron correlation, and CISD can often be almost
as inaccurate as HF is. A more useful approach is the so-called complete active
space SCF method, which will be introduced in the next section.

4.2 The complete active space self-consistent field method

The general idea in the complete active space self-consistent field (CASSCF)
method133, 150, 309–312 is to choose a relatively small orbital space, usually consisting
of two to sixteen orbitals, and generate all possible CI states withing this space.
This orbital space is known as the active space. The doubly occupied orbitals
are known as inactive orbitals, and, like in HF theory, the unoccupied orbitals
are called virtual orbitals. The active space corresponds to a subspace of the
complete one-particle Hilbert space H and will be referred to as Hactive. All
possible configurations within the active space are constructed and used as the
variational state. This is known as the complete active space (CAS) expansion.
The CAS expansion is equivalent to fully spanning the Fock space constructed
from Hactive, referred to as FCAS. The CI problem in the CAS (usually referred
to as the complete active space CI, CASCI) is equivalent to the CCI problem in
FCAS. Once the active space is chosen and the CAS is constructed, the CI and
MO coefficients are simultaneously optimized. Thus, the CASSCF method is a
special case of the more general multiconfigurational SCF (MCSCF) theory.313, 314

Limiting the CI expansion to the CAS means that only a relatively small portion
of the electron correlation is recovered. The trick here is to choose the active space
using chemical intuition so that the properties of interest are reasonably well
described. For example, if one is studying the properties of a transition metal
complex, the active space should include the valence d orbitals and some ligand
orbitals. Some useful rules for the choice of active space can be formulated, but
ultimately the correct choice depends on intuition, trial and error, and sometimes
on pure luck.150

The MCSCF approach to the electronic structure problem was formulated a
decade after the HF theory was brought to a complete form.315, 316 Over the fol-
lowing decades the MCSCF theory developed slowly along with advances in com-
putational algorithms and availability of better computational hardware.313, 314, 317

A brief historical outline on the development of the theory is given in Roos et

al.150 The modern approach to solving the CASSCF problem is based on unitary
rotations expressed as an exponential of an anti-Hermitian operator133, 134, 150

and was initially formulated by Dalgaard and Jørgensen.318 The actual theory is
rather involved and will not be reviewed in great detail here. We will only give
the main results. Detailed account of the derivations is available, for example,
in Helgaker, Jørgensen, and Olsen133 and in Jørgensen and Simons.134 Before
proceeding to the minimization of the CASSCF energy, we need to define unitary



80

operators eT̂ and eŜ, which conduct unitary transformations on the orbitals and
the CI vector, respectively. We follow the usual convention of using the character
S for the CI rotations, even though the symbol has already been used for spin
and orbital overlap. The operators T̂ and Ŝ are defined as

T̂ = ∑
p>q

Tpq

(
Êpq − Êqp

)
(116)

Ŝ = ∑
K 6=0

SK0 (|ψK〉〈ψ0| − |ψ0〉〈ψK|) , (117)

where the matrix elements Tpq and SK0 are parameters for the unitary transforma-
tion and describe the mixing of orbitals p and q, and the mixing of the CI vectors
0 and K. The CASSCF reference state (i. e., the zeroth CI vector) is defined as

|ψ0〉 = ∑
k

Ck0|k〉, (118)

where {|k〉} are the ON vectors or CSFs spanning FCAS. We can also define
dim(FCAS)− 1 other CI vectors, which are orthonormal to |ψ0〉:

|ψK〉 = ∑
k

CkK|k〉. (119)

The operators eT̂ and eŜ can be used to generate a new CASSCF state |ψ′
0〉 from

the CASSCF reference state |ψ0〉 by unitary transformations of the orbitals and
the CI vector:

|ψ′
0〉 = eT̂eŜ|ψ0〉. (120)

The energy expectation value of |ψ′
0〉 can then be expressed as a function of the

matrices T and S containing the transformation parameters Tpq and SK0:

ECASSCF(T, S) = 〈ψ0|e−Ŝe−T̂ ĤeT̂eŜ|ψ0〉. (121)

The CASSCF energy is invariant under inactive–inactive, active–active, and virtual–
virtual rotations; therefore, only rotations between the different orbital subspaces
need to be considered in the construction of (116).

The main reason behind this rather complicated re-parameterization is that
the optimization problem in terms of the matrices c and C can be cast into an
optimization problem in terms of the matrices T and S:

ECASSCF = min
C,c

E(C, c) → min
T,S

E(T, S). (122)

The energy E(T, S) can be expanded up to second order as

E(T, S) = E(0, 0)− 2
(
T S

)
(

W
V

)

+
(
T S

)
(

HTT HTS

HST HSS

)

︸ ︷︷ ︸

=H

(
T
S

)

+ · · · , (123)

where E(0, 0) is the energy expectation value of |ψ0〉, W is the orbital gradient
matrix, V is the CI gradient vector, and H is the electronic Hessian matrix. Thus,
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the CASSCF energy can be minimized by finding the parameters Tpq and SK0,
which minimize (123), and then by using these parameters and equation (120) to
construct a new CI vector and orbitals, and subsequently repeating this process
until the gradients fall below certain predetermined threshold. Making the energy
stationary with respect to variations in T and S gives

(
T
S

)

=

(
HTT HTS

HST HSS

)−1(
W
V

)

. (124)

The elements of the gradient matrix W and vector V are relatively straight-
forward to evaluate. The orbital gradient elements are given as

Wpq = 〈ψ0|[Ĥ, Êpq − Êqp]|ψ0〉, (125)

which is known as the generalized Brillouin theorem (also known as the Brillouin–
Lévy–Bethier theorem), and it states that at a stationary state, the Hamiltonian
matrix elements between the optimized ground state and a singly excited state
are zero.319 The CI gradients are given as

VK = 2〈ψ0|Ĥ|ψK〉, (126)

which implies that |ψ0〉 is a solution to the eigenvalue equation (101) as should be
expected. Evaluation of the Hessian matrix elements is less straightforward and
will not be discussed here. More detailed description is available in references 133
and 134. What is worth noting here is that if one is optimizing the HF state (i. e.,
the active space has zero orbitals), only the orbital–orbital matrix HTT is non-zero
and if one is optimizing the CI state with no orbital optimization, only the HSS

matrix is non-zero. In principle, the CASSCF problem can be solved without ever
constructing the Hessian matrix by only considering the linear term (the first
term on the right-hand side of (123)) in the energy minimization. In practical
calculations, this can be a feasible approach to the first few iterations when the
MCSCF is far from convergence but full convergence is extremely difficult to
achieve without including the quadratic term in (123) in some manner.

One of the main advantages of the CASSCF method is that it can be used
to solve the energy, CI vectors, and orbitals of not just the ground state but of
several low-lying states. In principle, each of these states have their own sets of
CI coefficients and orbitals. However, it is usually advantageous to use a single
set of orbitals, which are optimized as the averaged optimal orbitals of each
state considered. This method is known as state-averaged (SA) CASSCF. The
opposite case is known as state-specific CASSCF. Using state-specific orbitals is in
principle more accurate than using the SA orbitals. However, if a large number of
states are considered, the convergence can become practically impossible in the
state-specific case. Also, if qualitatively different orbitals are optimized for the
different states, energy differences between the states can be difficult to assign to
any physical energy difference. The state-specific density matrices of state K are

γK
pq = 〈ψK|Êpq|ψK〉 and ΓK

pqrs = 〈ψK|Êpq,rs|ψK〉, (127)
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and the state-averaged densities are obtained as

γSA
pq = ∑

K

νKγK
pq and ΓSA

pqrs = ∑
K

νKΓK
pqrs, (128)

where ∑ νK = 1. The coefficients {νK} are usually chosen to be equal for all
states.

By far the most serious computational limit in a CASSCF calculation is the
number of orbitals included in the active space. The dimension of the CAS is
given as

dim(FCAS) =
2S + 1

norb + 1

(
norb + 1

NCAS/2 − S

)(
norb + 1

NCAS/2 + S + 1

)

, (129)

where S is the total spin, norb is the number of orbitals, and NCAS is the number
of electrons in the active space. The quantities in parenthesis are binomial
coefficients, and their presence in (129) means that the complexity of the CI
problem grows essentially factorially with the size of the active orbital space. For
example, if we consider singlet states constructed in a two-electron-two-orbital
active space (commonly denoted as a (2,2) space), there are three configurations.
When we start increasing the active space to (4,4), (6,6), or (8,8) spaces, we have
20, 175, and 1764 configurations respectively. In a (16,16) space there are 34
million configurations. The number of orbitals that can today be included in the
active space is roughly fourteen to sixteen orbitals depending on the spin state,
or around one million ON vectors.150

New theories have been developed to address the steep computational
scaling relative to the size of the active space. The oldest of these is probably the
restricted active space SCF (RASSCF) method, in which the active orbitals are di-
vided into three subspaces and when excited configurations are constructed, only
limited excitations between different subspaces are allowed.150, 320 The RASSCF
model has been extended to an arbitrary number of subspaces in the generalized
active space SCF (GASSCF) of Gagliardi and co-workers.321, 322 In addition to the
development of methods to limit the number of configurations constructed in
the active space, other methods have been developed to approximately solve the
full CASSCF problem. Arguably, the most successful of these methods are the
ones based on the density matrix renormalization group (DMRG), which allows
calculations on active spaces including more than fifty orbitals.323–330 Other
novel CASSCF methods include the very recent iterative configuration expansion
CI (ICE-CI)331 which provides performance comparable to the DMRG and the
variational two-particle reduced density matrix calculations of Mazziotti.332, 333

All of these approximate CASSCF methods represent state-of-the-art methods
that are still under development and are lacking in certain key properties, such
as unique solutions and invariance with respect to orbital rotations in a given
orbital subspace.150 Furthermore, inclusion of dynamic correlation on top of
the reference wave functions produced by these methods is usually not trivial,
although in recent years, some promising methods have been developed in the
context of DMRG.334–339 None of these methods have yet found widespread use
in the field of molecular magnetism, and they have not been used in the present
work.
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4.3 Multireference perturbation methods

4.3.1 General remarks

As mentioned above, the CASSCF method only accounts for a small part of
the electron correlation energy. If the active space is chosen in a reasonable
way, the method does account for enough correlation to provide a qualitatively
correct wave functions for multireference systems. However, in order to provide
quantitative results, the CASSCF wave functions need to be augmented with
dynamic electron correlation. The most popular way of achieving this in systems
of moderate to large size is to utilize second-order multireference perturbation
methods. The most widespread ones are the complete active space perturbation
theory at the second order (CASPT2) of Roos and co-workers340–342 and the
N-electron valence state perturbation theory at the second order (NEVPT2) of
Angeli et al.343–345 The former is implemented in the Molcas code and the latter
in the Orca code. CASPT2 and NEVPT2 are the most popular multireference
perturbation theories and are the ones used in the present work, but they are by
no means the only formulations of the multireference perturbation problem.

One of the main problems in any perturbation approach is the choice of
the zeroth-order Hamiltonian Ĥ0. In the case of a closed-shell single-reference
systems and a HF reference state, this is rather straightforward, as the Fock
operator is diagonal and Ĥ0 can be chosen as the Fock operator. The first-order
correction to energy is simply the HF energy, and the second-order correction
includes some electron correlation. This approach is known as the Møller–Plesset
perturbation theory346 and is most often used up to the second order, giving
the MP2 method. In the case of multireference wave functions, the choice of
Ĥ0 is less straightforward as the general Fock operator given by (103) is no
longer diagonal and the CASSCF eigenstates are not eigenstates of the Fock
operator. The main difference between the CASPT2 and NEVPT2 theories lies
in the choice of the zeroth-order Hamiltonian. Another important choice for
practical application of perturbation theory in electronic structure calculations
is the first-order interacting space (FOIS) containing the states that are mixed
with the reference state |ψ(0)〉 through the perturbation Ĥ1. In principle, this
space could consist of all states generated as single or doublet excitations from
the reference CASSCF state as ON vectors differing by one or two occupations
interact through the one- and two-electron operators of the Hamiltonian. In
practice, however, such a space would be unmanageably large even for relative
small system. Therefore, a process called internal contraction is applied to the
FOIS as first suggested by Siegbahn347, 348 and Meyer.349 In this approach, the
FOIS states {|ψ′

pqrs〉} are generated from a CASSCF reference state |ψ0〉 as

|ψ′
ijat〉 = ÊaiÊtj|ψ0〉 = ∑

k
C
(0)
k ÊaiÊtj|k〉, (130)

where C
(0)
k are the zeroth-order CI coefficients determined by the preceding
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CASSCF calculation. The indices i and j refer to inactive orbitals in the CASSCF
reference, a to orbitals in the active space, and t to virtual orbitals. To simplify
notation, we define an overall index I for the states in the FOIS {|ψ′

ijat〉} ≡ {|ψ′
I〉}.

Not all of the states in the FOIS generated in (130) are needed. There are eight
different classes of excitations depending on whether the excitation indices belong
to the inactive, active, or virtual orbital subspaces. The different classes are given
in ref. 341. The internal contraction greatly complicates the structure of the FOIS,
and the states {|ψ′

I〉} are, in general, neither orthogonal nor linearly indepen-
dent. We can, therefore, define an overlap integral SI J = 〈ψ′

I |ψ′
J〉. Furthermore,

the contraction introduces more excitation operators into the matrix elements
requiring the evaluation of higher-order density matrices. The construction of
higher-order density matrices can be avoided by keeping certain subspaces of
the FOIS uncontracted.350 In either case, the internal contraction procedure does,
however, considerably reduce the size of the FOIS; thus, regardless of all the
computational complications that arise in the theory, it still greatly reduces the
overall computational costs. The number of states in the FOIS is larger than in
the corresponding MP2 case, where the active space is empty but still of the same
order of magnitude.150

4.3.2 The CASPT2 method

In the CASPT2, following the Møller–Plesset theory, the Fock operator

F̂ = ∑
p,q

FpqÊpq (131)

is chosen as Ĥ0. In general, |ψ0〉 is not an eigenstate of the Fock operator, and
it interacts with the states in the FOIS via Ĥ0. Therefore, ĤCASPT2

0 must be
constructed using projection operators.133, 341 The interacting space is divided
into the reference space P containing the single reference CASSCF state and the
complementary space Q = F −P , which includes the other CASSCF states and
the states in the FOIS. The projectors onto these spaces are

P̂ = |ψ0〉〈ψ0| and Q̂ = ∑
K 6=0

|ψK〉〈ψK|+ ∑
I

|ψ′
I〉〈ψ′

I |, (132)

where K runs over all states in the CAS and I over all states in the FOIS. The
zeroth-order Hamiltonian can then be defined as

ĤCASPT2
0 = P̂F̂P̂ + Q̂F̂Q̂. (133)

The first-order correction to the CI coefficients can be obtained from the matrix
equation133

C(1) = −P
(

H0 − E(0)S
)−1

PH1C(0) (134)

P = 1 − C(0)C(0)T
,
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where SI J = 〈ψ′
I |ψ′

J〉. This set of linear equations is known as the CASPT2 equa-
tions, and their solution is the computational bottleneck of a CASPT2 calculation.
The solution procedure is not trivial due to linear dependencies in the FOIS and
has to be solved by a symmetric orthonormalization.150 Once the first-order CI
coefficients are obtained, the first and second-order corrections to the energy can
be calculated as:133

E(1) = C(0)T
H1C(0) and E(2) = C(1)T

H1C(0). (135)

The one-electron operator used as ĤCASPT2
0 introduces the problem that,

at the zeroth order, there may be states in the FOIS with energies similar to or
below the CASSCF reference state. In practice, this can cause denominators in the
expression used for solving the CASPT2 equations to become zero or very nearly
so, which then leads to singularities in the energy and spurious results. The
common solution to this so-called intruder state problem is to shift the zeroth-
order energies of all the states in the FOIS.351–353 Such a level shift affects the
results, and although the results are corrected for this afterwards, the level shift
still makes the results dependent on a user-defined number. Another user-defined
parameter, which is often used in CASPT2 calculations, is the so-called IPEA
shift (IPEA stands for ionization potential electron affinity), which modifies the
diagonal elements of the Fock operator. The shift leads to improved results (but
see the discussion by Zobel et al.354), and an IPEA shift of 0.25 is used as default
in newer versions of the Molcas code.

The CASPT2 theory as presented so far is state-specific in the sense that
the CASPT2 correction is calculated for an individual CASSCF state. Each
CASSCF state has a state-specific zeroth-order Hamiltonian due to the projector
P̂ in (133), which only projects onto the reference state. Such a treatment is,
however, insufficient if the dynamic correlation introduces a strong mixing of
closely packed CASSCF states. The closely related multistate CASPT2 (MS-
CASPT2)355 and extended multistate CASPT2 (XMS-CASPT2)356 methods use
multidimensional reference spaces. The reference space consists of the set of states
{|ψA〉}, which is a subset of the CASSCF states obtained from a SA-CASSCF
calculation. The projector into this reference space is

P̂ = ∑
A

|ψA〉〈ψA| (136)

and, like in the conventional CASPT2, the zeroth-order Hamiltonian is

Ĥ
(X)MS-CASPT2
0 = P̂F̂SAP̂ + Q̂F̂SAQ̂. (137)

The Fock operator F̂SA is constructed using a SA density:

F̂SA = ∑
p,q

FSA
pq Êpq, FSA

pq = hpq + ∑
r,s

γSA
rs

[

(rs|pq)− 1
2
(rp|sq)

]

(138)

and is, in general, not diagonal in the basis of the reference states:

FAB = 〈ψA|F̂|ψB〉 = ∑
p,q

∑
k,k′

FpqC∗
kACk′B〈k|Êpq|k′〉. (139)
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The difference between the MS-CASPT2 and XMS-CASPT2 methods lies in the
construction of the operator P̂F̂SAP̂ in (137). In MS-CASPT2, only the diagonal
elements of the Fock operator in the reference state basis, |ψA〉FAA〈ψA|, are
included, whereas in XMS-CASPT2, the off-diagonal elements |ψA〉FAB〈ψB| are
also taken into account. In XMS-CASPT2 theory, the reference states are rotated
by a suitable unitary operator into basis {|ψ̃A〉}, which diagonalizes P̂F̂SAP̂. The
only difference in the zeroth-order Hamiltonian in MS-CASPT2 and XMS-CASPT2
theories is then the basis used for the representation of the first operator in the
right-hand side of (137).

The (X)MS-CASPT2 problem is solved for each reference state following the
same procedure of solving linear equations (134) as in the conventional CASPT2
to yield the first-order states {|ψ(1)

A 〉}. These states are used to construct an
effective Hamiltonian ĤMS-CASPT2

eff with matrix elements

(

ĤMS-CASPT2
eff

)

AB
=

1
2

(

〈ψA + ψ
(1)
A |Ĥ|ψB〉+ 〈ψA|Ĥ|ψB + ψ

(1)
B 〉
)

, (140)

where |ψA + ψ
(1)
A 〉 is the reference state corrected to first order. This effective

Hamiltonian is then diagonalized to yield the final second-order MS-CASPT2
energies. In case of XMS-CASPT2, exactly the same procedure is used but in the
transformed reference state basis. Construction of the effective Hamiltonian (140)
requires the calculation of the off-diagonal elements between different first-order
corrected states. This becomes increasingly expensive in terms of computational
resources as the number of states included in the reference space grows. Great
savings in cpu time can be achieved by neglecting the off-diagonal terms, which
considerably simplifies the calculation. This approximation essentially means
that the (X)MS calculation does not mix any of the reference states but simply
calculates corrections to diagonal elements of the CASSCF Hamiltonian using the
state-averaged Fock operator. This is the method that is most often used in SOC
calculations utilizing CASPT2 corrections discussed in section 4.4.5.

It is very important to note that when performing calculations on metal
ions with an orbitally degenerate ground state, only XMS-CASPT2 will correctly
reproduce the degeneracy.V, 101 In trivalent lanthanide ions (with the exception of
Gd), the artificial splitting produced in a CASPT2 or MS-CASPT2 calculations
can be several hundreds of wave numbers. Similar serious problems have been
reported in calculations of potential energy surfaces in the vicinities of conical
intersections and avoided crossings.357 It is currently not known how severe
the artificial splitting problem is in molecular lanthanide complexes, where the
spatial degeneracies of the ions are broken. In a recent study on the CF energy
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levels of some lanthanide complexes Ruiz, Coronado, and co-workers,358,c using
the conventional CASPT2 method, noticed no significant improvement in the
results compared to CASSCF, whereas in a study by Ungur and Chibotaru101

a significant improvement over CASSCF was observed using the XMS-CASPT2
method. In any case, until these issues have been fully investigated, the XMS-
CASPT2 method should be the method of choice for treating lanthanide systems.
The same problems also appear in lighter transition metal systems, but the
artificial splittings are usually not as severe as in the case of lanthanides.

4.3.3 The NEVPT2 method

NEVPT2 has been formulated in three different variations: uncontracted, par-
tially contracted, and strongly contracted.343–345 The first features no internal
contraction, and the middle one uses the same contraction as CASPT2. The last is
the one we are interested in as it is computationally fastest and the most widely
used variant. The wide use is most likely a result of the fact that it was the only
variant implemented in Orca 3.0.X codes, which popularized the method, and
the other two variants were only implemented in the newer Orca 4.0.0 code. The
strongly contracted variant takes the internal contraction scheme one step further
than equation (130) and also contracts the excitation operators using two-electron
integrals:

|ψ′
ija〉 = ∑

t

[
(aj|ti)ÊajÊti + (ai|tj)ÊaiÊtj

]
|ψ0〉, (141)

where we have used the same indexing scheme as in (130). The states defined
in (141) are mutually orthogonal: 〈ψ′

I |ψ′
J〉 = δI J where we have again used a

general indices I and J for states in the FOIS. It has been shown that the strong
contraction (141) introduces only a negligible error compared to the contraction
in (130).343

The choice of zeroth-order Hamiltonian in NEVPT2 is based on the rather
elaborate operator ĤD known as the Dyall Hamiltonian:359

ĤD = ∑
i

FiiÊii + ∑
a

FaaÊaa + ∑
p,q

heff
pq Êpq +

1
2 ∑

p,q,r,s
(pq|rs)

[
ÊpqÊrs − δqrÊps

]
+ C,

(142)

c It should be noted that there are some very notable misunderstandings of the theory in the
work of Ruiz, Coronado, and co-workers.358 For example, sentences “...apply perturbations
in the wrong order, in CASPT2 both dynamic correlation and spin-orbit effect are included
perturbatively...” and “...the fact that the single_aniso procedure applies spin-orbit
coupling after, rather than before, the ligand-field, has fundamental...” are clearly incorrect
as the spin-orbit coupling is not treated as a perturbation and the single_aniso procedure
does not add any SOC, but rather uses ab initio results calculated earlier. Overall, they
present a lot of criticism of the fact that the ab initio methodology does not treat the effects
of SOC, CF, etc. in the same manner as is done in conventional pen-on-paper treatments
of the electronic structure problem of transition metal complexes, where one starts with
an isolated ion and then adds interactions in consecutive manner. Such criticism is rather
unfounded, as treating the electronic structure of the entire complex in one calculation is
certainly more accurate than introducing various interactions in a step-wise manner.
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where

Fmn = hmn + ∑
i

[2(ii|mn)− (im|in)] + ∑
p,q

γSA
pq

[

2(mn|pq)− 1
2
(mp|nq)

]

, (143)

heff
pq = hpq + ∑

i

[(ii|pq)− (ip|iq)] , and (144)

C = 2 ∑
i

hii + ∑
i,j

[2(ii|jj)− (ij|ij)]− 2 ∑
i

Fii. (145)

Indices i and j indicate inactive orbitals, t and u indicate active orbitals, a and
b indicate virtual orbitals, and p, q, r, and s run over all orbitals. m and n

are dummy indices, which can mean either inactive, active, or virtual orbitals
depending on the context. ĤD is much more complicated in form than the simple
Fock operators used in CASPT2, but it has many advantages. Most notably,
the CASSCF reference is an eigenstate of ĤD (this is ensured by addition of the
constants C to the Hamiltonian), and the two-electron terms included in the
operator account for all electron correlation within the CAS and ensure that no
intruder states are present. Therefore, no empirical parameters are needed in a
NEVPT2 calculation.

The NEVPT2 zeroth-order Hamiltonian can be expressed in a spectral
decomposition form as

ĤNEVPT2
0 = |ψ0〉E(0)〈ψ0|+ ∑

I

|ψ′
I〉E′

I〈ψ′
I |, (146)

where E′
I = 〈ψ′

I |ĤD|ψ′
I〉. The states in the FOIS are eigenstates of ĤNEVPT2

0 ; thus,
unlike in CASPT2, no system of linear equations needs to be solved and the
calculations are very efficient. The first-order correction to the CI coefficients is
given as

|ψ(1)
0 〉 = ∑

I

√

〈ψ′
I |ψ′

I〉
E(0) − E′

I

|ψ′
I〉 (147)

and the second-order energy as

E(2) = ∑
I

〈ψ′
I |ψ′

I〉
E(0) − E′

I

. (148)

The NEVPT2 method is state-specific, similar to CASPT2. A multistate ver-
sion of the NEVPT2 method known as quasi-degenerate NEVPT2 (QD-NEVPT2)
has also been formulated.360 A more recent development is the domain-based
local pair-natural orbital NEVPT2 (DLPNO-NEVPT2), which scales linearly for
large systems in terms of computational effort and can, therefore, be used for very
large systems, which are not accessible using conventional NEVPT2 or CASPT2.
Similar to CASPT2, NEVPT2 and QD-NEVPT2 also fail to reproduce exact spatial
degeneracies. However, at least in the case of strongly contracted NEVPT2, the
artificial splitting in the case of lanthanide ions is much weaker than in CASPT2 or
MS-CASPT2 and is usually in the range of a few wave numbers. The exact reason
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for this has not yet been clarified, but it seems that unless one is interested in
very accurate results, NEVPT2 should be a viable method for lanthanide systems
as well.

The NEVPT2 method has not been as thoroughly tested by time as CASPT2,
but it has been demonstrated to show very good performance in variety of
problems, usually comparable to CASPT2.89, 361–363 A recent study by Pierloot et

al. found surprisingly large deviations between CASPT2 and NEVPT2 results
when calculating excitation energies of transition metal complexes.364 It should,
however, be noted that in that study, the IPEA shift was employed in the CASPT2
calculations, whereas NEVPT2 is parameter-free; hence, the results essentially
compare semi-empirical CASPT2 results to purely ab initio NEVPT2 results.

4.3.4 Beyond perturbation theory

The CASPT2 and NEVPT2 methods are popular as the computational costs
are low enough for them to be applied to moderate size systems. They often
provide good results, but the perturbation series is still truncated at the second
order, and there is, therefore, no reason to assume that they would provide
quantitative results in every case. Usually, the quality of the results is largely
dependent on the quality of the CASSCF reference wave function. The next
logical step in improving the results would be to include the interaction with the
FOIS in a variational manner, as opposed to second-order perturbation theory by
diagonalizing the CI Hamiltonian constructed in the basis of the states in the CAS
and FOIS. Such a treatment is known as multireference CI (MRCI). In principle,
higher-order excitations could also be added to the treatment as the triple and
quadruple excitations interact with the reference state indirectly through the
singles and doubles block of the Hamiltonian. Such a treatment would, however,
be untractable and is never done in practice. The acronym MRCISD is sometimes
used to highlight the fact that the method includes only the single and double
excitations, but MRCISD is largely synonymous to MRCI in the literature.

The earliest MRCI calculations were carried out by Buenker and Pey-
erimhoff365–367 and precede multireference perturbation treatments but were
severely limited in scope by the computational hardware. These methods were
based on individual selection of configurations rather than on internal contraction
of the interacting space. More efficient MRCI approaches have been developed
using internal contraction schemes. The most widely used method (based on the
number of citations on the original paper) is the MRCI approach proposed by
Werner and Knowles,368–370 which is implemented in the Molpro code. Even
with the internal contraction, the method has rather strong limits on the number
of inactive orbitals, which makes it inapplicable to most molecular magnetic
systems. The most efficient MRCI code to date is the mrcic code in Molpro

based on the newer internal contraction scheme by Werner and co-workers.350, 371

Unfortunately, the method is currently limited to only the lowest state in a given
multiplicity and representation of the molecular point-group, and, therefore, has
limited applicability in molecular magnetism. Another very recent internally
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contracted MRCI approach is that of Sivalingam et al.372 implemented in the
Orca 4.0.0 code. The implementations, is however, still not complete enough to
apply it to molecular magnetic problems.

The only MRCI method that has seen wide application in the field of
molecular magnetism is the so-called difference-dedicated CI (DDCI) method
by Caballol and co-workers.373–375 DDCI is based on individual selection, and
the general idea in the method is that the interacting space is generated with
single and double excitations, where at least one of the indices is an active
orbital. This eliminates all “doubly external” excitations and offers considerable
computational savings while still describing the relative energy differences within
a given geometry reasonably accurately. A more detailed account of the DDCI
method and its applications to molecular magnetism is available in the review by
Guihéry and co-workers177 and in the references therein.

4.4 Relativistic corrections and properties

4.4.1 Four- two- and one-component theories

The electronic structure theory as described so far is a one-component theory; that
is, the one-particle states can be represented as functions in the three-dimensional
Cartesian space with one additional spin index. On the other hand, Dirac’s
theory of the electron,9, 376, 377 which unifies one-particle quantum theory and
special relativity, leads to the result that the mathematical entity representing the
electron must be a four-component quantity. In a wave function representation,
the state can be represented by the Dirac four-component spinor (a spinor can
be considered as a relativistic generalization of a spinorbital) consisting of the
one-component wave functions functions Ψ+α, Ψ+β, Ψ−α, and Ψ−β. The former
two are the α and β components of the large component, and the latter two are α

and β components of the small component. This notation can be expressed as






Ψ+α

Ψ+β

Ψ−α

Ψ−β







=

(
Ψ+

Ψ−

)

. (149)

The large component represents the electronic (or positive energy) states and the
small component the positronic (or negative energy) states. The Dirac equation
in this representation for a stationary system in a stationary frame of reference378

and in the absence of external magnetic fields is given as
(

mec
2 + V̂ext cσ · p̂

cσ · p̂ −mec
2 + V̂ext

)(
Ψ+

Ψ−

)

= E

(
Ψ+

Ψ−

)

. (150)

σ is a vector of the Pauli spin matrices

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i

i 0

)

, and σ3 =

(
1 0
0 −1

)

, (151)
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where p̂ is the momentum operator and Vext is an external electric potential.
It should be noted here that we are adhering to the convention in relativistic
quantum chemistry to explicitly write the electron mass me even though in Hartee
atomic units me ≡ 1.

All commonly used quantum chemical methods have been generalized to
a four-component form even though this has faced considerable difficulties in
many cases.278, 378 The positronic states themselves, however, have little relevance
in chemistry, and it would, therefore, be useful to decouple the large and small
components of the Hamiltonian:

(
mec

2 + V̂ext cσ · p̂
cσ · p̂ −mec

2 + V̂ext

)(
Ψ+

Ψ−

)

→
(

Ĥ+ 0
0 Ĥ−

)(
Ψ+

Ψ−

)

. (152)

Such decoupling would then allow one to solve the eigenvalue problem of the
electronic states and simply neglect the positronic states. This also avoids all
physical ambiguities in interpretation of the negative energy states, which is a
source of numerous complications in four-component quantum chemistry.278, 378

Two approaches to the decoupling have been successfully used: the elimina-
tion of the small component and unitary transformations.278 The most popular
approach to the former is the zeroth-order regular approximation (ZORA)379–382

and to the latter is the Douglas–Kroll–Heß (DKH) theory383, 384 as well as the
so-called exact decoupling methods.385 Once the eigenvalue equation has been
reduced to a two-component form, the Hamiltonian can be further divided into a
scalar term and a spin-orbit term380 although such a division is usually somewhat
arbitrary.386 In scalar relativistic approximations, the spin-orbit terms are simply
neglected, and only the scalar term is considered. As the name suggests, the
scalar term only contains a scalar potential, and the two-component eigenvalue
problem can then be further decoupled into two eigenvalue problems of α and β

spins, which in the absence of magnetic fields are equivalent to a one-electron
problem; thus, the one-component form of non-relativistic quantum mechanics
is recovered. Scalar relativistic terms are the simplest relativistic corrections to
introduce in a quantum chemical calculation as they only require modification
of the one-electron operator. This will be discussed in more detail in sections
4.4.2, 4.4.3, and 4.4.4. Calculation of properties that depend on the one-electron
operator usually requires some modification of the property integrals known as
picture-change effects. The spin-orbit interaction can be treated either by not
neglecting the spin-orbit term in the two-component Hamiltonian, which leads to
a two-component formalism (which is widely used in the context of DFT), or by
first solving the electronic structure problem with only scalar relativistic effects
included and then accounting for SOC a posteriori.378 In the present work, we are
only interested of the latter, and this approach will be discussed in section 4.4.5.

So far, we have discussed relativity only in the context of a one-electron
theory. Generalization to a many-particle problem requires introduction of the
Coulomb operator into the Hamiltonian. The simplest approximation is to simply
use the non-relativistic form |r1 − r2|−1 together with the Dirac one-electron
operator to give the Dirac–Coulomb Hamiltonian. The non-relativistic Coulomb
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operator, however, suggests immediate interaction across any distance in space
and is clearly not Lorentz-invariant and, therefore, not compatible with any
theory based on special relativity. The practical SOC calculations discussed in
section 4.4.5 are based on the Breit–Pauli Hamiltonian.137, 278, 387, 388,d

4.4.2 Zeroth-order regular approximation

The ZORA Hamiltonian was first derived by Chang, Pelissier, and Durand379

in 1986 using the theory of effective Hamiltonians. It is, therefore, sometimes,
although rarely, referred to as the CPD Hamiltonian. The name zeroth-order
regular approximation (ZORA) was given to it by van Lenthe et al. in a series
of papers published during the 1990’s.380–382, 389 ZORA was first implemented
in the Amsterdam Density Functional (ADF) code261 and due to its conceptual
simplicity, it is now available in numerous quantum chemistry programs. The
ZORA Hamiltonian reads379, 380

ĤZORA =
(cσ · p̂)2

2mec2 − V
+ V̂ (153)

and it can be separated into a scalar and spin-orbit parts as380

ĤZORA =
c2p̂2

2mec2 − V
+ V̂

︸ ︷︷ ︸

=ĤZORA
scalar

+
c2σ · (∇V̂ × p̂)
(2mec2 − V)2
︸ ︷︷ ︸

=ĤZORA
SO

. (154)

The ZORA method has been extended to the so-called infinite-order regular
approximation (IORA).390

The obvious problem in application of ĤZORA is the presence of the potential
in the denominator. First, this introduces considerable difficulties in evaluation
of the matrix elements, and if the real potential is explicitly introduced into the
denominator, the operator in most cases has to be integrated numerically over
a grid. The second and much more serious problem is that the potential enters
the Hamiltonian in a non-linear manner. This means that a constant shift in the
potential does not translate to a constant shift in the eigenvalues and ĤZORA is
not energy-gauge-independent. In practice, this problem can be circumvented by
using some model potential constructed, for example, as a superposition of pre-
defined atomic densities.391, 392 The numerical integration and the construction of
a model-potential are both easier to implement in the context of DFT; thus, ZORA
is mostly utilized in density functional calculations. Since in DFT calculations,
the computational bottleneck is usually the evaluation of two-electron integrals,
the inclusion of scalar ZORA often leads to a negligible increase in the overall
computational costs (assuming that a model potential in ĤZORA

scalar is used) and

d We are citing here the papers by Pauli137 and Breit,387, 388 which along with the papers
by Dirac,376, 377 constitute the citation for the Dirac–Coulomb–Breit Hamiltonian. The
actual Breit–Pauli Hamiltonian can be derived from the Dirac–Coulomb–Breit Hamiltonian
by applying the so-called Foldy–Wouthuysen transformation. A detailed account of this
process along with the related references are given in Reiher and Wolf.278
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is, therefore, a very viable way of treating scalar relativity. In the present work,
ZORA is applied only in DFT calculations, whereas wave function calculations
are carried out using the methods introduced in the next sections.

4.4.3 Douglas–Kroll–Heß transformation

The Douglas–Kroll–Heß (DKH) transformation was first suggested by Douglas
and Kroll in 1974383 and formulated to a practically applicable form by Heß in
1986.384 The general idea in DKH theory is that a unitary transformation, which
exactly decouples the Dirac Hamiltonian, is expanded in a sequence of specific
unitary transformations:

Û†ĤDiracÛ = Û†
∞ · · · Û†

2 Û†
1 Û0ĤDiracÛ0Û1Û2 · · · Û∞ =

(
Ĥ+ 0
0 Ĥ−

)

. (155)

A given transformation Ûi is constructed in such a way that it removes the
off-diagonal elements of (150) up to a given order in the potential V. The
approximately decoupled hamiltonian to order K can be written as

ĤDKHK =
K

∑
k

hDKH
k =

(
hDKH

K+ 0
0 hDKH

K−

)

. (156)

The explicit expressions of the unitary transformations and hDKH
k up to DKH5 are

given in the book of Reiher and Wolf278 and will not be repeated here. The theory
is most often used in the scalar relativistic form (the scalar form is again obtained
by neglecting the non-scalar terms) up to second-order giving the scalar DKH2
method. The necessary expressions for arbitrary-order DKHK can be generated
symbolically.393

A complication that arises in the DKH theory is that exact expressions of the
specific unitary transformations can only be given in a basis that diagonalizes p̂2.
This requires that the operators must first be transformed into the p̂2 basis and
then back-transformed once the DKH Hamiltonian of a given order is calculated.
This transformation does add notable computational costs, but in most cases, the
calculation of two-electron integrals still dominates over the DKH transformation;
therefore, inclusion of the DKH correction does not introduce any bottlenecks to
the calculation.
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4.4.4 Exact decoupling methods

A decoupling scheme that has gained popularity over recent years is the so-called
exact two-component (X2C) approach385, 394–399,e which is based on a one-step
decoupling of the large and small component as opposed to the sequential DKH
approach. Also, as opposed to any finite-order DKH approach, the decoupling of
one-particle Hamiltonians in X2C theory is, in principle, exact. The starting point
of the X2C method is the modified Dirac equation400

(

V T
T 1

4m2
e c2 W − T

)(
c+
c−

)

=

(

S 0
0 1

2mec2 T

)(
c+
c−

)

E (157)

which can be considered as the matrix representation of the Dirac equation
(150) transformed to a spin-restricted kinetically balanced basis.278, 397 V, T,
and S are matrix representations of the external electrostatic potential V̂ext, non-
relativistic kinetic energy, and basis overlap, respectively. E is a diagonal matrix
containing the eigenvalues, and W is the matrix representation of the operator
(σ · p̂)V̂ext(σ · p̂). The matrices c+ and c− contain the expansion coefficients of
the two-component spinors of the large and small component in the same basis.
Equation (157) presents a generalized eigenvalue problem, which can be solved
to yield the coefficients c+ and c−. This allows one to construct an operator X̂,
which relates the large and small components:278

Ψ− = X̂Ψ+, (158)

which in the spinor basis reads c− = Xc+ and can be trivially solved to yield

X = c− (c+)
−1 . (159)

This result is highly significant, as the operator X can be used to construct the
transformation matrix

UX2C =







1√
1 + X†X

− X†
√

1 + XX†
X√

1 + X†X

1√
1 + XX†







, (160)

which exactly decouples the Dirac equation to yield a two-component operator.
A scalar version of the X2C method can be achieved by the replacement

(σ · p̂)V̂ext(σ · p̂) → p̂ · V̂extp̂ (161)

in the elements of the W matrix in the modified Dirac equation (157).278

e A citation for the X2C method is somewhat complicated. We are citing here the theo-
retical work by Kutzelnigg and Liu,394–396 and the practical implementations by Liu and
Peng397, 398 and by Iliaš and Saue.399 It should be noted that the work by Kutzelnigg
and Liu is based on a conference presentation “Douglas–Kroll the easy way” by Jensen
presented at the REHE2005 conference as discussed by Reiher.385 The review by Reiher,385

which we are also including in the citation, does not contribute to the development of
the theory but does contain a very useful historical narrative of the development along
with several more references. The review also discusses other (more or less) equivalent
methods developed simultaneously with the work of Kutzelnigg and Liu. The essentially
same discussion is also available in ref. 278.
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4.4.5 Spin-orbit coupling

In the context of CASSCF calculations, SOC can be introduced in a two-step
process. First, a state-averaged CASSCF calculation is carried out to produce a
large number CASSCF states. If the active space is chosen as the d- or f-orbital
space, usually all possible roots are solved at least in the highest multiplicities.
The SOC Hamiltonian matrix is then constructed using these states as a basis and
diagonalized to yield the spin-orbit coupled states.88, 89, 94, 378 This approach to
SOC has been shown to be extremely accurate if the preceding ab initio calcula-
tions are accurate enough.89, 401 If the set of CASSCF states is {|ψν,S,MS

〉}, (where
ν contains all other quantum numbers beyond S and MS required to defined the
state), matrix elements of the full Hamiltonian can be written as

〈ψν,S,MS
|ĤBO + ĤSOC|ψν′,S′,M′

S
〉 (162)

= δνν′δSS′δMS M′
S
ECASSCF

ν,S,MS
+ 〈ψν,S,MS

|ĤSOC|ψν′,S′,M′
S
〉,

where ĤBO is the Born–Oppenheimer Hamiltonian including scalar relativistic
effects in the one-electron operator. The SOC eigenstates are then given as

|ψSOC
I 〉 = ∑

ν,S,MS

CI
ν,S,MS

|ψν,S,MS
〉, (163)

where the expansion coefficients {CI
ν,S,MS

} are, in general, complex. Before the
inclusion of SOC the MS components of states with the same values of ν and S are
degenerate, and this degeneracy is, in general, lifted by SOC. Dynamic correlation
corrections calculated with CASPT2 or NEVPT2 methods can be included as
simple corrections to the diagonal values of (162). In the context of molecular
magnetism, the method in equation (162) is most often used with the Orca and
Molcas codes. In the former, the method is called quasi-degenerate perturbation
theory (QDPT) approach to SOC, and in the latter the methods is called spin-orbit
restricted active space state-interaction (SO-RASSI).f The implementations in
Orca and Molcas differ in some details but produce very similar results.

The main problem in diagonalizing (162) is the evaluation of the matrix ele-
ments of the SOC Hamiltonian. In both Orca and Molcas implementations, the
SOC operator is based on the SOC part of the Breit–Pauli Hamiltonian:137, 278, 387

ĤBP
SOC =

α2

2

(

∑
i,A

ZA

|ri − RA|3
l̂iA · ŝi − ∑

i,j

1
|ri − rj|3

l̂ij ·
(
ŝi + 2ŝj

)

)

, (164)

where α = c−1 is the fine structure constant, A indexes nuclei, i and j index
electrons, ZA is a nuclear charge, ri is an electron coordinate, and RA is a nuclear

f The method could also be SO-CASSI for spin-orbit complete active space state-interaction,
but the rassi program in Molcas is general enough to treat states calculated with the
RASSCF method. Sometimes, the abbreviation RASSI is used instead of SO-RASSI to
denote the method, but this should be avoided, as the RASSI methodology and the rassi

program in Molcas can be used to calculate numerous other properties and neither the
method nor the program is in any way specific to SOC.
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coordinate. The orbital angular momenta are given as

l̂iA =
(
r̂i − R̂A

)
× p̂i and l̂ij =

(
r̂i − r̂j

)
× p̂j. (165)

The first term in the parentheses in (164) is a one-electron SOC operator, whereas
the second term is a two-electron operator and contains a contribution from
spin-same-orbit and spin-other-orbit couplings. The two-electron terms are
rather complicated to evaluate and introduce a substantial bottleneck in the
computational times. It would, therefore, be useful to somehow recast ĤBP

SOC into
the form of an effective one-electron operator. The simplest approximation would
be to simply neglect the two-electron term and scale the one-electron operator
in an empirical manner by, for example, using effective nuclear charges. Such
an approach has indeed been attempted, but it produces unreliable results. Heß
suggested402 that the Breit–Pauli SOC operator could be treated with a mean-field
approximation, which allows it to be written in the form

ĤSOMF
SOC = ∑

i

ẑi · ŝi, (166)

where ẑi is a vector operator that only acts on the spatial orbital of electron i, and
SOMF stands for spin-orbit mean-field. The SOMF operator can be written as an
ITO:88

ĤSOMF
SOC =

k

∑
q=−k

(−1)q ∑
i

ẑi,q ŝi,−q, (167)

where k = 1 is the rank of the operator. It is easy to see from (167) that the
SOMF operator transfers 0 or ±1 quanta of angular momentum projection from
the orbital part to the spin part. The problem that remains now is evaluation
of the matrix elements (zi,mk

)pq = 〈φp|ẑi,mk
|φq〉. The matrix elements of (164)

and (166) between two ON vectors that differ by a single one-electron excitation
are equivalent. Thus, in the SOMF approximation, all matrix elements are
constructed as if they were evaluated between two CASSCF states differing by a
one-electron excitation.401, 402 If a CI expansion is generated that contains only
single excitations, the SOMF treatment is equivalent to the use of the full ĤBP

SOC
operator, but the inclusion of higher excitations (as is the case in all problems
considered in the present study), it constitutes an approximation. Based on
numerical results, however, the approximation is very good.401

Following Neese401 and Berning et al.,403 the matrix elements of ẑp are given
as

〈φp|ẑ|φq〉 =〈φp|ĥBP
SOC|φq〉+ ∑

r

nr

(
∫∫

φ∗
p(r1)φ

∗
r (r2)ĝ

BP
SOCφq(r1)φr(r2)dr1dr2

− 3
2

∫∫

φ∗
p(r1)φ

∗
r (r2)ĝ

BP
SOCφr(r1)φq(r2)dr1dr2 (168)

− 3
2

∫∫

φ∗
r (r1)φ

∗
q (r2)ĝ

BP
SOCφp(r1)φr(r2)dr1dr2

)

,
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where

ĥBP
SOC =

α2

2 ∑
t,T

ZT

|rt − RT|3
l̂mM, ĝBP

SOC =
α2

2 ∑
t,u

1
|rt − ru|3

, (169)

and np is the occupation number of orbital p. First of the two-electron integrals in
the parenthesis in (168) is the Coulomb integral, and the other two are exchange
integrals, analogous to HF theory. Two exchange integrals are needed as the
matrix elements of the two-electron SOC operator have lower permutational
symmetry than the respective elements of the Coulomb operator. The matrix
elements of individual Cartesian or spherical components of the operator ẑ can
be obtained by simply replacing the angular momentum vector operator with
the operator of the corresponding component. Equation (168) constitutes the
“full” SOMF approximation, which is widely used in the Orca code. A further
approximation to the SOMF treatment is the atomic mean-field integral (AMFI)
operator, where only one-center integrals are kept in all expressions and the other
integrals are simply neglected; moreover, instead of the full molecular density,
pre-determined spherical atomic densities are used in the Coulomb and exchange
terms.402, 404 One-center integrals implies here the integrals in AO basis, where
all the AOs entering the expression are centered on the same nucleus. The AMFI
operator is used in the Molcas code and numerous other programs. The SOMF
and AMFI operators give very similar results.89, 401

In order to diagonalize (162), the matrix element between the CI states
{|ψν,S,MS

〉} need to be evaluated. This can be greatly simplified by application
of the Wigner–Eckart theorem, as ĤSOMF

SOC can be written as an ITO, and the
spin-states are eigenstates of the Ŝ2 operator. The matrix elements can be written
in terms of a reduced matrix element as

〈ψν,S,MS
|ĤSOMF

SOC |ψν′,S′,M′
S
〉 =

k

∑
mk=−k

(−1)mk C
SMS

S′M′
S,kmk

〈ψν,S||∑
i

ẑi,mk
ŝi,−mk

||ψν′,S′〉,

(170)
where C

SMS

S′M′
S,kmk

is a CG coefficient and k = 1 is the rank of the SOMF operator.
The only non-zero reduced matrix elements are

〈ψν,S||∑
i

ẑi,0ŝi,0||ψν′,S〉 =
√

S(S + 1)
S

〈ψν,S,MS
|∑

i

ẑi,0ŝi,0|ψν′,S,MS
〉, (171)

〈ψν,S||∑
i

ẑi,+1ŝi,−1||ψν′,S+1〉 =
√

2S + 3
2S + 1

〈ψν,S,MS
|∑

i

ẑi,+1ŝi,−1|ψν′,S+1,MS
〉, and

(172)

〈ψν,S||∑
i

ẑi,−1ŝi,+1||ψν′,S−1〉 = 〈ψν,S,MS
|∑

i

ẑi,−1ŝi,+1|ψν′,S−1,MS
〉, (173)

where MS can be any of the allowed values and is usually chosen as MS = S

which is the simplest to evaluate as usually the MS = ±S CASSCF states have
the shortest CI expansions. Thus, only a single matrix element for each value
of MS corresponding to some S, ν need to be evaluated. The only problem
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then remaining is the diagonalization of (162). This is rather trivial as the
number of states solved in a state-averaged CASSCF calculation is rarely over
a thousand; therefore, the matrix can be completely stored in memory and
diagonalized by any standard linear algebra library. In Orca, the limit of the
number of states to include is essentially set by the hardware limits on how
large a CASSCF calculation can be carried out. In Molcas, the RASSI method
is implemented in such a way that it writes large arrays of scratch data on disk
during evaluation of the SOC operator matrix, and the size of the scratch disk
usually limits the number of states that can be included in the SOC treatment. A
further complication that arises in the SO-RASSI treatment of Molcas is that the
CASSCF states for each multiplicity have their own set of optimized orbitals. This
means that if CASSCF states of several multiplicities are mixed by SOC, they are
not necessarily orthogonal. Thus, overlap matrices between the CASSCF states
need to be evaluated, and the states are then transformed using a method known
as a biorthogonal transformation to a form where they can be used as if they had
been constructed in the same orbital basis.94, 150, 405

4.4.6 Zeeman interaction

Zeeman interaction between the electron angular momentum and the magnetic
field is not strictly a relativistic effect, but it will be mentioned in this section,
as the evaluation is based on the same formalism as the spin-orbit coupling
treatment discussed in section 4.4.5. The Zeeman interaction can be included by
simply adding the Zeeman term (ĤZee) into equation (162):

δνν′δSS′δMS M′
S
ECASSCF

ν,S,MS
+ 〈ψν,S,MS

|ĤSOC + ĤZee|ψν′,S′,M′
S
〉, (174)

where ĤZee is
ĤZee = µBB · ∑

p

(

l̂pO + geŝp

)

. (175)

The index pO indicates the angular momentum of electron p relative to some
user-defined origin O.

4.5 Extraction of spin Hamiltonian parameters from ab initio calcu-
lations

4.5.1 g-, g̃-, and D-tensors

The one-site anisotropy tensors g and D are usually calculated by performing a
state-averaged CASSCF calculations on a monometallic systems by correlating
all electrons in the open atomic shell usually consisting of d or f orbitals. In
polymetallic-systems all ions except the one of interest are usually replaced
by the closest matching diamagnetic ion. For example, in trivalent lanthanide
systems, this is usually achieved by replacing the other ions with Y(iii) or Lu(iii)
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depending on the ionic radius. Dynamic correlation can be accounted for with
the NEPVT2, CASPT2, or XMS-CASPT2 methods and/or by extending the active
space beyond the minimal CAS.

In the weak SOC case, the elements of the g and D tensors can be evalu-
ated directly by using expressions in equations (65) and (67). This approach is
implemented in Orca and works well when SOC is weak. Once the SOC starts
to grow stronger, the second-order treatment will fail. In such a case, one can use
the effective Hamiltonian approach of Maurice, Guihéry, and co-workers.406 In
this approach, a numerical effective Hamiltonian is constructed from spin-orbit
coupled orthogonalized ab intio eigenvalues and eigenvectors using the spectral
decomposition in equation (57). This numerical Hamiltonian is then put in cor-
respondence with an analytical Hamiltonian written in the model space basis
of {|SMS〉}. The elements of the g and D tensors enter the Hamiltonian matrix
elements in a linear manner, and a system of linear equations can be formed by
equating the elements of the numerical and analytical matrices. This approach
does not rely on any expansion terminated at some finite order and, therefore,
works better when SOC is moderately strong. The method does assume that
the forms (63) and (64) of the Zeeman and ZFS operators are valid and that the
coupling between the target space P ′ and its orthogonal complement P −P ′ is
weak. The latter conditions breaks down for sufficiently strong SOC. The effective
Hamiltonian approach is also implemented in Orca.

In the case of strong SOC and S̃ = 1/2, the g̃-tensor can be obtained by
directly applying equations (72)–(75). The elements of the g̃-tensor are completely
defined by the values of the magnetic moments (72), which are produced by the
ab initio calculation. Evaluation of the pseudospin tensors is implemented in the
single_aniso routine of Molcas for arbitrarily high values of S̃.95–97

4.5.2 Isotropic exchange coupling constants

In systems with just a few spin sites, isotropic exchange coupling constants are
usually extracted from energy differences between different spin states. In the
simplest case of just two sites, the exchange coupling constant can be evaluated
using equation (87). In more complicated cases, especially when one is also
interested in the biquadratic terms, effective Hamiltonian methods can be used
in a similar manner as described in section 4.5.1.177, 407

The exchange coupling constants are usually extracted from state-averaged
CASSCF calculations performed on a bimetallic system. The values depend
very strongly on the amount of dynamic correlation included in the calculation.
Performing a CASSCF calculation using just the minimal active space (i. e., the ten
d orbitals in transition metal dimer or just the HOMO and LUMO of an organic
diradical) can lead to values that are only 20% of the actual exchange coupling
constants.177 In order to produce quantitative values, dynamic correlation must
be explicitly treated. Methods based on second-order perturbation theory (such as
NEVPT2 or CASPT2) are insufficient if only the minimal active space is used in the
preceding CASSCF calculation.76, 77, 177, 408–413 Better results can be obtained either
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by variational treatment of dynamic correlation using multireference CI methods
or by enlarging the active space beyond the minimum. The problems arising from
insufficient treatment of dynamic correlation are usually more severe in organic
radical systems, where the magnetic orbitals are highly delocalized.414–416

4.5.3 Parameters for anisotropic exchange

No general implementation for the evaluation of anisotropic exchange parameters
is available in any commonly available quantum chemistry code. In the case
of weak SOC, Maurice, Guihéry, and co-workers have derived the elements of
the tensors describing the anisotropic exchange interaction in simple bimetallic
high-symmetry model systems.230, 417 The extraction is based on comparison of
analytical and numerical effective Hamiltonians. The approach is not general nor
can it be used when the systems have low symmetry. In the case of strong SOC,
to the best of our knowledge, no fully ab initio calculations have ever been carried
out on bimetallic systems. The largest strongly spin-orbit coupled systems that
have been treated in a fully ab initio manner to date consist of lanthanide–radical
systems418 and without any treatment of dynamic correlation.

The most commonly applied computational method for the treatment of
weak exchange interactions in trivalent lanthanide systems is based on a model
proposed by Lines118 and used in an empirical manner. The idea is that one
carries out calculations on each magnetic site in the system while all other sites are
replaced by diamagnetic ions. Then a basis {|ψ(a)

I 〉 ⊗ |ψ(b)
J 〉 ⊗ · · · } is constructed

from the one-site states as a direct product of the electronic states I, J = 1, 2, · · ·
of each site a, b, · · · . For polymetallic systems, the dimension of the basis grows
very quickly, and it is common to only include a few states from each site, usually
either the lowest Kramers, Ising, or quasi doublet, or all doublets originating
from a J-multiplet. A model exchange operator of the form

ĤLines = −∑
i,j

JijŜi · Ŝj, (176)

where i, j ∈ a, b, · · · is then introduced. ĤLines only acts on the spin parts of
the states. The Lines parameters Jij are empirical parameters, and their value
is chosen by fitting the χT product and/or magnetization obtained from the
ab initio calculation to experiment. In the limit of vanishing SOC or Ising-type
exchange interaction,235 the Jij parameters can be related to physical quantities
by the effective Hamiltonian theory. In other cases (which entails practically all
cases where the model is used), the Jij parameters are purely empirical; they
cannot be related to physical quantities, and they cannot be, even in principle,
explicitly calculated from ab intio results. The Lines model is widely used in the
poly_aniso routine of Molcas.96, 98, 99

Beyond the use of the Lines model, there are very few examples of the calcu-
lation of exchange parameters in lanthanide systems. The exchange Hamiltonian
for the coupling between LS multiplets given in equation (95) has been applied to
molecular systems. In these calculations, the various parameters necessary for the



101

evaluation of the exchange parameters have been extracted from various ab initio

calculations on free ions and DFT calculation on the full systems.119–121 A similar
approach has been used in the present work for the description of anisotropic
spin-dependent delocalization.VIII

4.5.4 Ab initio crystal-field for lanthanides

In addition to methods for the evaluation of pseudospin Hamiltonian parame-
ters, a method for the extraction of the CF parameters (equation (62)) has been
implemented in Molcas.101 The formalism is based on the assumption that
the 2J + 1 lowest eigenstates of the SO-RASSI calculation can be put in direct
correspondence to states expanded in the basis {|JMJ〉} with one specific value
of J, i. e., one assumes that the coupling between P ′ and P −P ′ is negligible. In
the case of trivalent lanthanides (with the exception of Sm(iii) and Eu(iii), see
section 3.4.1), this is usually a very good approximation. The magnetic moment
operator µ̂ = L̂ + geŜ = gJ Ĵ is diagonal in the states {|JMJ〉} spanning the model
space. gJ is the so-called Landé g-factor20, 419 given by

gJ =
(ge + 1)J(J + 1)− (ge − 1)[L(L + 1)− S(S + 1)]

2J(J + 1)
. (177)

The operator µ̂ can be constructed from the integrals produced by the ab initio

calculation. Diagonalization of this operator in the target space gives the transfor-
mation matrix from the basis of the ab initio eigenstates to the mode space basis
{|JMJ〉}. Thus, the numerical matrix elements from obtained from the ab initio

calculation can be put in correspondence with the analytical matrix elements
of the CF Hamiltonian (62) in the {|JMJ〉} basis. The CF parameters Bkq enter
matrix elements in a linear manner allowing one to write down a system of linear
equations for the values of the CF parameters. The set of equations is usually
overdetermined, so the parameters are solved by a least-squares fit.

A related but in principle more general method implemented in Orca is
the ab initio ligand-field theory (AILFT) of Atanasov, Neese and co-workers.102, 103

The theory as, presented above, is restricted to J-type systems, where LS coupling
is reasonably well realized. The AILFT has no such restrictions but has not been
used in this work.

4.5.5 Qualitative relaxation barrier

As discussed in section 3.6, the calculation (or more precisely, simulation) of the
dynamic magnetic relaxation in SMMs is a field still largely in its infancy. A
method based on the construction of a qualitative relaxation barrier is, however,
implemented in the single_aniso and poly_aniso modules of Molcas.100 The
idea is to plot the energy of the electronic states as a function of the magnetic
moment, which gives the barrier-like structure. The electronic states are then
connected by matrix elements of the transition magnetic moment, and the path
laid by the largest matrix elements defines the relaxation pathway. The results are
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conceptually easy to interpret and, although inevitably qualitative, give ample
insight into the relaxation process.249

The spin–phonon coupling is caused by dynamical distortions of the CF
potential.25 The matrix elements of the spin–phonon coupling are then con-
structed from factors depending on the lattice vibrations (which possibly include
temperature- and field-dependent terms depending on the mechanism) and from
an electronic matrix element resulting from the distorted CF. The electronic ma-
trix element consists of the two states coupled by the CF distortion operator,
which can be expanded as powers of the operators Ŝα (for S-type systems) or Ĵα

(for J-type systems), where α ∈ x, y, z. In S-type systems, the most important
contributions to the relaxation mechanisms arise from the rotational contribu-
tions of the CF distortions, which are given by operators proportional to the
anti-commutator [Ŝα, Ŝz]+, α ∈ x, y.25, 109, 420, 421 Assuming that this is also the case
for J-type systems, the transition matrix elements are taken over operators of
the form [ Ĵα, Ĵz]+, α ∈ x, y.109, 422, 423 Let us further assume that the LS-coupling
scheme is valid so that the state can be expanded as |ψ〉 = ∑MJ

CMJ
|JMJ〉. Since

the basis states are eigenstates of Ĵz, only the Ĵα operators in [ Ĵα, Ĵz] induce mixing
between the states. Then, the electronic contribution to the transition can be
reduced to elements of the transition magnetic moment

(µI J)α = gJµB〈ψI | Ĵα|ψJ〉, (178)

where |ψI〉 and |ψJ〉 are the initial and final states in the transition and α ∈ x, y, z.
The transition probability can then be estimated from the average

µI J =
|(µI J)x|+ |(µI J)y|+ |(µI J)z|

3
. (179)

The relaxation barrier calculated using the values of µI J is qualitative at
best, as all factors governing the lattice part of the spin–phonon transition rates
are assumed to be of relatively the same order in all matrix elements so that the
transition rate is determined purely by the magnitude of the electronic factors,
and because only the lowest ranks of angular momentum operators (the rotational
contributions) are considered. Therefore, there is no reason to assume that the
qualitative barrier should in all cases coincide with experimental observations.



5 DENSITY FUNCTIONAL THEORY OF STRONGLY
CORRELATED SYSTEMS

The quantum chemical methods introduced in Chapter 4 were based on calcu-
lations where the state vector |ψ〉 was approximate but the exact form of the
energy functional E[ψ] was known at least to a very good approximation. The
main challenge that then arose was the minimization of the energy in terms of
the massively complex state vector. An alternate formulation to the theory is
to, instead of the state vector, use the three-dimensional electron density ρ(r)
(see section 2.3) as the variational entity and approximate the energy functional
E[ρ(r)]. In approaches based on the exact Hamiltonian, the exact form of the
state vector is known (i. e., the FCI treatment) although it must be approximated
in practice. In density functional approaches, we know very little of the exact
energy functional. It, nonetheless, turns out that fairly simple approximations of
the functional can actually lead to very accurate results, which are obtained in
density functional approaches at a fraction of the computational costs associated
with CI treatments.

Density functional theory (DFT) in its Kohn–Sham incarnation151, 303, 424–429

is in many ways an unrivaled success story in the annals of theoretical chemistry,
and it can be used to describe a multitude of molecular properties to very
high accuracy.61, 78, 303 However, in the case of strongly correlated systems (as
introduced in Chapter 4) all commonly used density functional approximations
will fail in one way or the other.430–433 DFT can, however, be used to describe
strongly correlated systems within the so-called broken symmetry formalism
initially proposed by Noodleman.70–73 The general theory and features of DFT
are only briefly introduced here as a great wealth of literature on DFT is available
that can describe these aspects at any desired level of detail.151, 209, 303, 429, 434 We
will further consider only calculations on finite molecular systems that are carried
out using atomic orbital basis sets in the spirit of HF calculation introduced in
section 4.1.2. The main focus is placed on introducing the broken-symmetry
approach and the many theoretical and practical complications associated to it.
We will also briefly address the calculation of g- and D tensors using DFT.
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5.1 Density functional theory

5.1.1 Fundamental proofs

Methods to evaluate the energy as a functional of the electron density emerged
already at the same time as the HF theory was being developed.435–438 However,
the first formal proof for the existence of E[ρ(r)] was not given until 1964 when
Hohenberg and Kohn published their famous theorems.424 The first theorem
proves the existence of E[ρ(r)] for non-degenerate ground states of an N-particle
system of interacting fermions with the density ρ(r), which can be associated with
local and multiplicative external electric potential Vext(r). This association with a
potential is called the V-representability condition. The density ρ(r) is completely
defined by the external potential Vext(r) up to an arbitrary constant, and since
the external potential Vext(r) along with the number of particles N (which can
be obtained by integrating the density) completely defines the Hamiltonian,
the density ρ(r) implicitly determines all properties of the system. The second
theorem states that for any trial density ρ̃(r), E[ρ̃(r)] > E0, meaning that the
ground state energy can be determined in a variational manner:

E0 = min
ρ(r)

E[ρ(r)]. (180)

The general form of the energy functional is

E = min
ρ(r)

E[ρ(r)] = min
ρ(r)

{

FLL[ρ(r)] +
∫

ρ(r)Vext(r)dr
}

, (181)

where FLL[ρ(r)] is the so-called Levy–Lieb (LL) functional. We are following
here the constrained search formulation of DFT formulated by Levy439, 440 and
Lieb.441 In the original theory by Hohenberg and Kohn, the Hohenberg–Kohn
(HK) functional FHK[ρ(r)] was used, which has a very similar mathematical form
as FLL[ρ(r)] but is constrained to densities that are V-representable. The most
general approach to DFT is given by the Lieb functional FL[ρ(r)].426, 441 The Lieb
functional is convex and has very favorable properties, such as it is guaranteed to
produce a unique solution and the convexity of the functional is closely related
to its differentiability.442, 443 The derivation and properties of the Lieb functional
are related to convex analysis and will not be discussed here.

The LL functional is given as

FLL[ρ(r)] = min
ψ→ρ(r)

〈ψ|T̂ + V̂ee|ψ〉, (182)

where T̂ is a kinetic energy operator, V̂ee is the Coulomb operator for the electron–
electron repulsion, and the minimization runs over all states |ψ〉 represented by
a wave function ψ({ri, msi}), which produces the density ρ(r) through equation
(23). The LL functional is defined for any density ρ(r), which can be generated
from some N-particle wave function ψ({ri, msi}) (the so-called N-representability
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condition), and the existence of such a wave function for a set of simple and
reasonable conditions has been proven.444 It should be noted that in the strictest
mathematical sense, the minimum in (182) should be replaced with an infimum.

The proof of Hohenberg and Kohn considers purely electrostatic external
potentials Vext(r), which are time-independent. Generalization to time-dependent
potential is possible445 but is of no interest to us here. When considering the
magnetic properties of materials, much more relevant generalization is to consider
external potentials with magnetic fields. In a non-relativistic framework, the
practical generalization to the case of magnetic fields is fairly simple if we neglect
the effects of the magnetic field on orbital degrees of freedom. This is a rather
good approximation for S-type systems in weak fields, and this is the situation
we are mostly interested in here. The generalization entails the replacement of
the total density with spin densities:151, 446–448 ρ(r) → ρα(r), ρβ(r). An equivalent
formulation is to consider the density and the spin-polarization density defined
as Q(r) = ρα(r)− ρβ(r). Both the density and the spin-polarization density are
actual observables. The spin-dependent generalization of DFT is known as the
spin-density functional theory, which is the theory we are interested in here,
and we will refer to it simply as DFT. A strict derivation of spin DFT starting
from the relativistic theory is rather complicated and cannot be presented in
a satisfactory way without considering quantum field theory.278, 429, 449 In the
present work, we will only consider the spin-dependent generalization by the
substitution ρ(r) → ρα(r), ρβ(r).

The application of FLL[ρ(r)] is in practice equivalent to carrying out a full
CI calculation on all conceivable wave functions describing the system. It is
obvious that such an approach is neither feasible even for a fairly small set of
wave functions of a very simple system of chemical interest nor would such
an approach make any sense since if this was possible we could simply carry
out the FCI calculation and be content with it. The unfortunate feature of HK,
and LL, and Lieb theories for that matter, is that they do not suggest any useful
way of approximating FHK[ρ(r)], FLL[ρ(r)], or FL[ρ(r)]. It can be rather easily
shown that the value of the energy depends on the value of the density at every

point in space and that the functional will vary in terms of the particle number
N in a non-analytic manner.209 The idea of developing a simple, or even highly
complicated, approximation to the LL functional, therefore, seems rather hopeless.
The theory can, however, be turned into a useful form by the approach proposed
by Kohn and Sham by the introduction of a non-interacting reference system.425

5.1.2 The Kohn–Sham theory

In 1965, the year following the publication of the celebrated HK theorems, Kohn
and Sham published another seminal paper, which formulated a practical ap-
proach to DFT.425 The Kohn–Sham (KS) formulation is so widely used today that
the term DFT is by all intents and purposes synonymous with KS DFT. The idea
in KS theory is that the density ρ(r) has an energy E = E[ρ(r)] regardless of
how the density is produced as long as it and the energy functional are exact.
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Therefore, they introduced a non-interacting KS reference system ΦKS({rp, msp}),
which is represented by a single Slater determinant constructed from orbitals
{φpσ(r)} so that

ρ(r) = ∑
p,σ

φ∗
pσ(r)φpσ(r). (183)

The LL functional is then divided into

FLL[ρ(r)] = T[{φpσ(r)}] + J[ρ(r)] + EXC[ρα(r), ρα(r)], (184)

where the first term on the right-hand side is the kinetic energy of the non-
interacting reference system, the second term is the classic electrostatic interaction
between the electrons (usually known as the Hartree energy), and the last term
is the so-called exchange–correlation (XC) functional. The kinetic and Hartree
energies are given by the well-known expressions

T[{φpσ(r)}] = −1
2 ∑

i,σ
φ∗

pσ(r)∇2φpσ(r)dr and J[ρ(r)] =
∫∫

ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2.

(185)

The explicit form of the XC functional is not known, but assuming that we can
approximate it reasonably well using some simple expression (and it turns out we
can), we should be able to approximate the full energy of the system reasonably
well since most of the energy is already accounted for by the T[{φpσ(r)}] and
J[ρ(r)] terms. It should be noted that T[{φpσ(r)}] is an explicit functional of the
orbitals, and implicit functional of the density as the density indirectly determines
the orbitals. In spin-polarized systems, the XC functional is a functional of the
spin densities or, equivalently, a functional of the density and the spin-polarization
density.

Minimization of (181) using (184), similar to HF theory, yields N effective
one-particle equations known as the KS equations

(

−1
2
∇2 + V̂σ

KS(r)
)

φiσ(r) = ǫiσφiσ(r). (186)

The KS potential V̂σ
KS(r) is defined as

V̂σ
KS(r) = V̂ext(r) + V̂Hartree(r) + V̂σ

XC(r), (187)

where V̂Hartree(r) and V̂σ
XC(r) are the functional derivatives of the Hartree and XC

functionals with respect to the density:

V̂Hartree(r) =
∫

ρ(r)′

|r − r′|dr′ and V̂σ
XC(r) =

δEXC[ρ
α(r), ρβ(r)]

δρσ(r)
. (188)

It should be noted that compared to the HF theory, the energy minimization has
an additional constraint that the XC potential must be local and multiplicative.429

Solving the KS equations is very similar to solving the HF equations, and
most quantum chemistry codes capable of carrying out HF calculations are also
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capable of carrying out KS DFT calculations. The most problematic term is the XC
potential, which usually cannot be integrated analytically and, therefore, has to be
evaluated on a grid. The grid introduces a new approximation to the calculation,
but the actual numerical integration is rarely a computational bottleneck. A
further advantage in DFT calculations is that the energy does not necessarily
depend on any non-local potential, and RI and density-fitting techniques can be
used very efficiently. The formal scaling of DFT methods is of the same order
as HF but can be brought significantly down using linear scaling techniques.450

Like HF calculations, DFT calculations can also be formulated in restricted and
unrestricted formalism. We will here focus only on the unrestricted case as the
restricted case is not relevant for magnetic systems.

5.1.3 The exchange-correlation functional

The main choice for the user of a DFT code is the approximation to the XC
functional, or equivalently, the XC potential. The quality of the approxima-
tion is ultimately what the success of a DFT calculation thrives or dies with.
The XC energy is usually divided to contributions from the exchange energy
EX = EX[ρ

α(r), ρβ(r)] and the correlation energy EC = EC[ρ
α(r), ρβ(r)]. The XC

potential can then be divided in a similar manner. The exchange energy is usu-
ally (at least in single-reference systems) an order of magnitude larger than the
correlation energy.

DFT was originally founded as a theory to describe materials; therefore,
the simplest starting point for the description of exchange and correlation is
the homogeneous electron gas (HEG), which is a hypothetical model system
consisting of constant electron density over all space balanced by a uniform
positive charge. The exact expression for the exchange energy of HEG is known,
and the correlation energy can be approximated to very high accuracy.151 The
simplest approximation to the XC functional is the local spin density approxima-
tion (LSDA), where the electron density is assumed to act locally like the HEG
and to vary slowly over space. The LSDA was the initial approximation to the
XC functional proposed in the paper of Kohn and Sham.425 The LSDA exchange
and correlation functionals are given as

ELSDA
X [ρα(r), ρβ(r)] =

∫

ρ(r)ǫHEG
X (ρα(r), ρβ(r))dr (189)

ELSDA
C [ρα(r), ρβ(r)] =

∫

ρ(r)ǫHEG
C (ρα(r), ρβ(r))dr, (190)

where ǫHEG
X (ρα(r), ρβ(r)) and ǫHEG

C (ρα(r), ρβ(r)) are the exchange and correlation
energy densities of the HEG, which are functions of the spin densities. The explicit
form of the former is known, and it is called the Slater exchange, and the latter
is usually approximated by an empirical form fitted to high-accuracy ab initio

data. The most common approximations to the correlation energy density are the
VWN and VWN5 approximation of Vosko, Wilk and Nusair.451

While the homogeneous electron gas is a reasonable approximation to
certain metallic materials, such as the alkali metals where the electron density
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is rather uniform, this is certainly not the case for atoms or molecules where
the density can vary from high values near atomic nuclei to zero in the vacuum
surrounding the system. The generalized gradient approximation (GGA) is an
improvement over the LSDA in the cases of non-homogeneous electron gas. The
GGA exchange functional is written as

EGGA
X [ρα(r), ρβ(r),∇ρ(r)] =

∫

ρ(r)FX(ξ)ǫ
HEG
X (ρα(r), ρβ(r))dr, (191)

where we have introduced the enhancement factor F(ξ), which is a function of
the reduced density gradient

ξ =

(

∇ρ(r)

2 [3π2ρ(r)]
1/3

ρ(r)

)2

. (192)

A more generalized approximation can be achieved in the so-called meta-GGA
functionals, where the enhancement factor is, in addition to ξ, also a function
of the “reduced density Laplacian” η written as a function of the kinetic energy
density

τ(r) =
1
2 ∑

p,σ
|∇φp(r)|2, (193)

where the summation runs over occupied orbitals.
While certain properties of F(ξ) and F(ξ, η) are known, the enhancement

factors are usually constructed in a somewhat empirical way by either enforcing
known limits and constraints and/or by fitting parameters to experimental or
high-level ab initio data. Popular early approximations to the exchange functional
that still remain in wide use are the 1986 approximation by Perdew and Wang
(PW86)452 and the improved version developed in 1991 (PW91),453, 454 the 1988
approximation by Becke (B88),455 and the 1996 functional by Perdew, Burker,
and Ernzerhof (PBE).456, 457 The GGA and meta-GGA correlation functionals
have somewhat complicated forms and will not be discussed in detail here. The
most popular early approximations include the 1986 approximation by Perdew
(P86)458, 459 the 1988 functional by Lee, Yang, and Par (LYP),460 the correlation
part of the PW91 functional,453, 454 and the correlation part of the 1996 PBE
functional.456, 457 All of these early functionals were developed by satisfaction of
known constraints and limits. A general form of a GGA with parameters that can
be fitted to experiment was developed by Becke in 1997 (B97).461 Several other
parameterizations, including the B97-1, B97-2, B98 functionals, have since been
published by several authors.462–464 Ideas borrowed from the B97 model have
also been used in the development of the HCTH family of functionals by Handy
and co-workers,465–467 the meta-GGA kinetics functional by Bose and Martin
(BMK),468 the meta-GGA functional by Tao, Perdew, Staroverov, and Scuseria
(TPSS),469, 470 and the M06-L471, 472 and SOGGA11473 meta-GGA functionals by
Truhlar and co-workers.

GGA and meta-GGA functionals are accurate enough to have practical use
in quantum chemistry. It was not, however, until a class of functionals known as
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hybrid functionals were introduced that DFT became an overwhelming success
in computational chemistry. The idea in hybrid functionals is to introduce a
percentage of exchange energy calculated using HF theory. The exchange energy
is given by the expectation value of the operator (105) taken over all orbitals
of the reference system. This exchange is usually referred to either as exact
exchange or Fock exchange. We will adopt the latter term, as the Fock exchange
is not exact in the broadest sense of the word. HF theory is capable of treating
exchange effects of a non-interacting many-particle system of fermions exactly.
In KS DFT, we are already introducing the majority of the kinetic energy by
simply evaluating the kinetic energy of the non-interacting reference system; it
would, therefore, seem reasonable that we could also introduce the majority of
exchange energy by considering the exchange energy of the reference system.
This is, however, not the case. Fock exchange is a non-local property, whereas the
GGA correlation is a local in the sense that it only depends on local gradients. It
can be shown that the sum of exact exchange and exact correlation is also a local
property.430 Therefore, the correlation functional should be able to compensate
for the non-locality of the Fock exchange, which cannot be achieved by any
local or semi-local approximation, such as LSDA or GGA. The locality/non-
locality of exchange and correlation is usually discussed in terms of the exchange
and correlation holes, which make the concepts much more intuitive (see, for
example, references 303 and 430). To avoid the problems related to the non-
locality, Becke suggested that a predetermined percentage of Fock exchange
should be introduced, while the rest of the exchange would be described by the
LSDA and GGA exchanges.474, 475 A formal justification for this approach lies in
the so-called adiabatic connection.429, 475–478

Hybrid functionals are usually constructed in an empirical manner. Initially,
Becke suggested a fifty-fifty mixing of Fock and LSDA exchanges.474 The initial
form was not highly successful, but it was later refined to the the so-called B-
half-and-half-LYP, which utilizes B88 exchange and LYP correlation and is often
abbreviated as BHHLYP. The first truly successful hybrid was introduced by
Becke in the general form475

E
3−hyb
X = a0EFock

X + a1∆EGGA
X + (1 − a0 − a1)ELSDA

X (194)

E
3−hyb
C = b1∆EGGA

C + (1 − b1)ELSDA
C , (195)

where ∆EGGA
X and ∆EGGA

C are the GGA corrections to the LSDA exchange and
correlation energies. The original parameterization used the standard Slater
exchange in the LSDA part, the B88 GGA functional for exchange, the VWN
correlation in the LSDA part, and the PW91 GGA correlation.474 Several forms
of the VWN functional were introduced in the original paper by Vosko, Wilk,
and Nusair451 and the version used in the hybrid functional depends on the
implementation in a specific quantum chemistry code. The parameters were
optimized by fitting to experimental thermochemical data to give a0 = 0.20,
a1 = 0.72, and b1 = 0.81. This combination of functionals and parameters is
known as the B3PW91 hybrid. The same functional form and set of parameters



110

were also employed by Stephens et al. in the B3LYP functional, where the PW91
GGA correlation is replaced by the LYP correlation.479 B3LYP is possibly the most
widely used hybrid functional, and in fields, such as organic thermochemistry,
its use is so widespread that the terms B3LYP and DFT are largely synonymous.

Later, a simpler one-parameter form

E
1−hyb
X = a0EFock

X + (1 − a0)EGGA
X (196)

E
1−hyb
C = EGGA

C (197)

has been introduced,478 where EGGA
X and EGGA

C are total GGA energies including
the contribution from the underlying LSDA. The most notable example of this
functional form is the PBE0 functional, where a0 = 0.25 and the PBE exchange
and correlation GGA functionals have been used.480, 481,a The parameter has been
determined in a non-empirical manner by perturbation arguments.478 A similar
functional form was also used in Becke’s B1B95 functional, which employs the B88
exchange functional and the rarely used 1995 correlation functional by Becke.482

Numerous other hybrid functionals have been developed with more complicated
parameterization including hybrid versions of the B97, B97-1, B97-2, B98, HCTH,
BMK, and TPSS (known as TPSSh) functionals discussed above. Some of the most
complicated functionals have been developed by Truhlar and co-workers and are
usually referred to as the Minnesota family of functionals. These functionals come
in a number of different incarnations and modifications, and include the M05,483

M05-2X,484 M06,471, 472 M06-2X,471, 472 M06-HF,471, 472, 485 M08-HX,486 M08-SO,486

and SOGGA11-X.487

It should be noted that the the energy minimization in KS DFT is constrained
in such a way that the KS potential (187) must be local and multiplicative; the
exchange potential in HF theory constructed using the operator (105) is neither.
The non-local nature of the potential introduces an explicit dependence on the
“off-diagonal” elements of the spin-density matrices in the energy expression. This
means that if the HF exchange potential is used in a DFT calculation, as it usually
is, the calculation is no longer strictly a DFT calculation but instead a reduced
density matrix functional theory calculation.444, 488 Usually, this problem is,
however, simply ignored as a theoretical formality with little practical relevance.
A potential that is both local and multiplicative and corresponds to the HF

a The first results using the PBE0 functional were simultaneously and independently pub-
lished by Ernzerhof and Scuseria480 and by Adamo and Barone.481 The papers were
submitted to the Journal of Chemical Physics on consecutive days and both accepted in
December 1998. Ernzerhof and Scuseria called the functional PBE1PBE standing for “PBE
exchange one-parameter hybrid PBE correlation” following the same naming convention
as Becke. Adamo and Barone used the name PBE0, which stands for “PBE zero-parameter
hybrid”. The term ’zero parameter’ implies that the functional has no parameters, which
have been fitted to experimental data although it does have one parameter determined
from first principles. The name PBE1PBE is used in the Gaussian code, whereas the name
PBE0 is more common in other codes. In the literature, sometimes only one of the papers
is cited, usually in a manner related to the naming convention of the functional. The PBE0
and PBE1PBE functionals are, however, equivalent and in our opinion, the standard citation
should include both papers.
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exchange energy functional can be constructed using the optimized effective
potential (OEP) methods,209, 429 but this will not be discussed here.

The hybrids defined by equations (194)–(195) introduce the Fock exchange
through global scaling, meaning that the same set of parameters for the Fock/GGA
exchange division is used in every point in space. An alternative approach is to
use range-separation, where the Fock exchange is introduced as a function of r
in the exchange potential Vσ

X (r).
489 The idea was first introduced into quantum

chemistry by Savin and co-workers in various approaches to combine wave-
function-based methods with DFT490–492 and was later applied to the separation
of the exchange potential by Tsuneda and co-workers.493 The general idea in
range-separated functionals is to separate the Coulomb operator into a short and
a long range part. This is most often achieved by use of the error function:

1
r
=

1 − erf(ωr)
r

+
erf(ωr)

r
, (198)

where r = |r1 − r2| and ω is the range separation parameter. In solid state
calculations on periodic systems, the long-range part in (198) is usually treated
with GGA exchange due to complications which arise from the slow decay of
the Fock potential, and the short-range exchange is treated with Fock exchange.
In molecular systems, which we are mostly interested in the present work, the
short range part is treated with GGA exchange and the long-range part using
Fock exchange. This results into the correct asymptotic decay of the exchange
potential and also allows one to include higher amounts of Fock exchange into
the approximation as compared to conventional global hybrids, which is useful
in the context of the calculation of exchange coupling constants as discussed in
section 5.2.4. In such approximations, at the limits |r| = 0 and |r| → ∞, all of the
exchange is described by the GGA and Fock exchange, respectively. The range-
separation parameter ω determines how rapidly the transition between these
two types of exchange potentials takes place when r increases. The ω parameter
is in principle a functional of the density and, therefore, system-specific,494 but
in practice, a single value is usually determined from a fit to experimental data
and used in the functional definition. Another approach is the so-called optimal
tuning, where ω is chosen for each system in such a way that it equates the energy
of the highest occupied orbital with the ionization potential.495, 496 This approach
is often used in the calculation of charge-transfer excitation energies497–499 but
leads to undesired consequences, such as loss of size-consistency.500 The error
function is chosen due to its favorable mathematical properties when used in
conjunction with Gaussian basis sets, but other functions are possible and have
been used.501–503

A more general parameterization of the range-separation (198) was intro-
duced later by Yanai et al., which allows one to have finite amounts of GGA and
Fock exchange at both limits |r| = 0 and |r| → ∞:504

1
r
=

1 − [a + b erf(ωr)]
r

+
a + b erf(ωr)

r
, (199)
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The original paper by Yanai et al. applied the general form (199) with the B88 and
LYP GGA functionals and parameters ω = 0.33, a = 0.23 and b = 0.57 giving the
CAM-B3LYP functional (CAM stands for Coulomb-attenuating method). Other
widely used parameterization is the ωB97X functional of Head-Gordon and
co-workers based on the B97 GGA.505 Range-separation has also been used in
the context of highly paremterized pure meta-GGA functionals, such as the
M11-L,506 MN12-L,507 N12,508 and MN15-L509 to introduce the GGA exchange
in different forms for different ranges. These meta-GGA functionals have been
further employed in the construction of the state-of-the-art range-separated
hybrids M11,510 N12-SX,511 MN12-SX511 and the global hybrid MN15512 with
range-separated GGA exchange.

In the original approach suggested by Tsuneda, the range-separation enters
the density functional approximation only in the LSDA part. This means that
any GGA functional can be used in conjunction with the range-separation as
the enhancement factor F(ξ, η) in equation (191) remains unaltered. Another
approach has been introduced by various authors in conjunction with the PBE
functional, where the range-separation is carried out on the full GGA functional
and not just on the LSDA part giving the functional ωPBE.513–515 This approach
is, in principle, more accurate, but the derivation has so far only been possible
on the PBE functional due to its simple analytical form. The ωPBE functional is
used in the LC-ωPBE515–518 and HSE515, 517, 519–523 functionals of Heyd, Scuseria,
Ernzerhof, Vydrov, Henderson, and co-workers.b The former uses Fock exchange
in the long-range part, whereas the latter is designed for periodic calculations
and uses Fock exchange in the short-range part.

5.2 The broken symmetry method for strongly correlated systems

5.2.1 Energy difference between spin states in the context of DFT

In order to calculate exchange coupling constants between two sites with spins
S1 and S2, one needs to evaluate the energy difference between the HS state,
where S = S1 + S2 and the LS state with S = |S1 − S2|. Assuming the two sites
are orbitally non-degenerate (i. e., S-type systems), the HS state is described

b When comparing data calculated with HSE and LC-ωPBE functionals, one should be
careful as both functionals have several incarnations. The first forms of ωPBE and HSE
were published in 2003513, 514 and a slight improvement in the derivation of the ωPBE
functional was carried out in 2004.519 Both of these first two incarnations or just the
latter one are sometimes referred to as HSE03 in the literature. The LC-ωPBE functional
was introduced in 2006 using the 2004 definition of ωPBE.516 In 2006, the value of the
range-separation parameter in HSE was slightly modified, and the improved version of
the functional is usually referred to as HSE06.523 In 2009, Henderson et al. suggested a
further improvement in the ωPBE functional derivation.515 The resulting improved version
of HSE is still usually referred to as HSE06, whereas the improved version of LC-ωPBE
is sometimes referred to as LC-ωHPBE, where the H stands for Henderson. It should be
noted that the notations HSE03, HSE06, and LC-ωHPBE are in no way standardized.
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qualitatively correctly using just a single Slater determinant. The LS state is,
however, intrinsically multiconfigurational and cannot be described by a single
determinant. In principle, this should not matter in DFT as the KS reference
system is just mathematical fiction and is not required to represent the true
many-particle wave function of the system. In practice, however, all commonly
applied approximation to the XC functional will fail if the KS reference wave
function is qualitatively different from the real wave function; or, in other words,
the XC energy is large.430–433 The KS approach is able to account for some of
the static electron correlation arising from the multireference nature of the state,
but does this in a spurious manner. The “static correlation” is mostly errors in
the functional approximation mimicking static correlation effects. The concept of
static electron correlation in the context of DFT has been extensively discussed by
Cremer and co-workers in a number of articles.524–533

A further problem in the calculation of energy differences between spin
states arises because one cannot strictly enforce a spin-state on a system in
KS DFT. It has been shown by Gunnarsson and Lundqvist476 that the energy
minimization can be carried out in principle by confining the solution to a specific
spin state assuming that SOC can be neglected. The total spin of the system
is a functional of the electron density, but no explicit expression is available.
Therefore, in practice, one usually only fixes the projection of the spin MS, which
can be simply calculated from the number of α and β electrons in the system
and is known if the spin densities are known, which is usually the case. Thus,
when addressing the HS and LS states in the context of DFT, the HS state is
taken as the one where MS = MS1 + MS2 and the LS state as the one where
MS = |MS1 − MS2|. The single-determinental state with S = S1 + S2 is the
lowest energy state with MS = MS1 + MS2; thus, fixing the spin projection to
MS = MS1 + MS2 usually yields a good approximation to the actual S = S1 + S2
state. The situation is quite different in the case of the LS solution, where
the MS = |MS1 − MS2| solution usually converges to a state that is neither the
MS = |MS1 − MS2| component of the S = S1 + S2 state nor the S = |S1 − S2| state.
If the two magnetic sites are related by a symmetry operation, the LS solution
usually has lower symmetry than the nuclear framework and is therefore referred
to as the broken symmetry (BS) solution. The symmetry breaking results from
the inability of the XC functional to introduce enough static correlation energy to
optimize the LS solution to the correct spin state. In the following, we will use
the term BS state for the MS = |MS1 − MS2| state and the term HS state for both
the S = S1 + S2 and MS = MS1 + MS2 states.

DFT approaches to avoid this unphysical symmetry breaking by introducing
the missing static electron correlation have been developed. Some notable suc-
cesses have been achieved by using the random phase approximation (RPA)534–537

or by replacing the single-determinental reference wave function with an en-
semble density in the ensemble KS referenced (REKS) approach of Filatov and
co-workers.538–543 Some success in describing the static correlation has also been
achieved in the conventional KS scheme by Becke544–548 and, based on Becke’s
work, by Kong and co-workers.549–552 A completely different approach is to cal-
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culate the energy difference between the HS and LS states as a response property
of the HS state and avoid making any explicit reference to problematic BS state
altogether. Such approaches include methods based on spin-flip time-dependent
DFT,553–556 constrained DFT,557, 558 non-collinear spin DFT perturbation theory,559

non-collinear couple-perturbed spin DFT,560–563 non-collinear time-dependent
spin DFT,564 and Green’s functions.565

The most popular approach to the evaluation of the energy difference,
however, is the BS formalism. In the BS approach, the idea is to construct the
energy difference between the HS and LS states from the energy difference
between the HS and BS states. The BS approach was initially introduced in the
context of unrestricted HF theory and Slater’s Xα theory303, 566 also known as
the Hartree–Fock–Slater method. The Xα theory can be considered as both an
approximate HF approach and rudimentary density functional method. The
difference between DFT and the HF methods is that in the latter we have an
approximate wave function, whereas in the former we only have the wave function
of the reference state, which serves no physical meaning. We will first discuss the
BS approach in the context of approximate wave functions, as it was originally
formulated, in section 5.2.2 and then discuss the generalization to DFT framework
in section 5.2.3.

5.2.2 Broken symmetry method in the context of Hartree–Fock theory

Let us again consider a system with two spin sites a and b. The HS state is
described reasonably well at unrestricted HF (UHF) level by constraining the spin
projection to MS = MSa + MSb. The calculation produces a single determinant
with a number of approximately closed shell orbitals corresponding to the metal
core and ligand orbitals and a set of singly occupied molecular orbitals (SOMOs)
localized at the spin sites a and b. This is a reasonable approximation to the true
HS state with S = Sa + Sb, and the SOMOs can be put into direct correspondence
with the orthogonal magnetic orbitals. If the SOMOs are delocalized, they might
first have to be transformed by some unitary transformation. The LS state with
S = |Sa − Sb| is inherently multideterminental and cannot be described at HF
level. Constraining the spin projection to MS = |MSa − MSb| and lifting any
spatial symmetry constraints leads to the BS state. The BS state can be thought of
as the HS state but with the spins at one site flipped and the orbitals re-optimized.
In UHF, the α and β orbitals are orthogonal with each other only through the spin
functions, and the spatial orbitals can have finite overlap. This means, that unlike
the orthogonal magnetic orbitals, the SOMOs in the BS solution are not orthogonal
and are conceptually more closely related to the valence bond description of
magnetic interaction than the strictly orthogonal MO description.70, 567 The two
limits, zero overlap and perfect overlap, are known as the Ising limit and the
covalent limit, respectively. At the covalent limit, the orbitals at the two sites
interact strongly, and the situation is better described as covalent bonding than
AFM interaction. At this limit, the system can be reasonably well described by a
single determinant and is of no interest to us. In molecular magnetic systems, the



115

Ising limit is usually realized at least approximately. The nature of the BS state
can be investigated by the 〈Ŝ2〉BS expectation value, which is produced after the
UHF calculation. 〈Ŝ2〉UHF is given by127

〈Ŝ2〉UHF = MS(MS + 1) + Nβ −
Nα

∑
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∑
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, (200)

where we have, without loss of generality, assumed that Nα ≥ Nβ. When Sa = Sb,

at the covalent limit, all overlap integrals S
αβ
ab between the magnetic orbitals are

equal to unity and 〈Ŝ2〉BS = 0 (i. e., the BS state is the pure singlet state). At
the Ising limit, the integrals S

αβ
ab between the magnetic orbitals are all zero and

〈Ŝ2〉BS = 2Nup, where Nup is the number of unpaired electrons (i. e., electrons
occupying the SOMOs).

In the simplest case, when Sa = Sb = 1/2, the space spanned by the two
SOMOs and the orthogonal magnetic orbitals is the same, and the BS and HS
states constructed in this space can be related to the CI states constructed in this
same orbital space in a complete manner. This means that within this highly
truncated orbital space, the exact energy difference between the HS and LS states
can be mapped to the energy difference between the HS and BS states. The
derivation of the exchange coupling constant in this case can be carried out at
the Ising and covalent limits and any intermediate situation (see, for example,
references 80 and 568). Once the interactions between the magnetic orbital space
and the other orbitals are taken into account, additional energy contributions will
arise from spin and charge polarization effects, and the treatment is no longer
exact. Nor is the treatment exact in the more general case when Sa = Sb > 1/2.
At the Ising limit, an approximate expression for the exchange coupling constant
in the Sa = Sb > 1/2 case is given by

Jab =
2(EBS − EHS)

(Sa + Sb)2 , (201)

which is the form initially proposed by Noodleman.70 Equation (201) is usually
referred to as a spin projection or Noodleman’s projection. The most general case
in the Ising limit when Sa 6= Sb is discussed in terms of the Ising Hamiltonian in
the next section.

The intermediate situations between the Ising and covalent limits are more
difficult to treat and usually one simply assumes one of the limits based on
whichever limit the value of 〈Ŝ2〉BS is closer to. Yamaguchi and co-workers have
developed an approximate projection method in the intermediate Sa = Sb case
given as569–572

Jab =
2(EBS − EHS)

〈Ŝ2〉HS − 〈Ŝ2〉BS
. (202)

The Yamaguchi projection reduces to the form (201) at the Ising limit and to (87)
at the covalent limit and offers some approximation in the intermediate situations.
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It has been recently shown that the Yamaguchi projection can produce spurious
results if the system becomes highly spin-polarized.573

It should be noted that the derivation of equation (201) in the form presented
here assumes that contributions from spin-polarization of the non-magnetic
orbitals can be neglected. Spin-polarization is definitely present in both the BS
and HS states, but the assumption is realized if the extent of spin-polarization is
similar in the two states so that it does not contribute to the energy difference
EBS − EHS. It has been shown, however, that the energy contribution from
spin-polarization can be rather sizable in certain cases,574, 575 which inevitably
introduces spurious energy components into the exchange coupling constant.

5.2.3 Broken symmetry method in the context of DFT

In practice, the BS formalism can be applied to DFT calculations in the exact same
manner as to HF calculations. However, application in a theoretically rigorous
manner is much less straightforward. The problem arises because one needs
to interpret the BS state and its energy in some way in the context of DFT. In
HF theory, an approximate wave function is available, and the interpretation
is unambiguous. If we had the exact XC functional, a calculation constrained
to some value of MS should produce the lowest energy solution with that spin
projection. For a system with a triplet ground state, the MS = 0 and MS = 1
components should then be degenerate, but it is very easy to show by calculation
that this is not case for any known XC functional within the KS framework. On the
other hand, the XC functional does introduce some static correlation524, 527–529, 533

and the energy difference between the BS and HS states is then not strictly
equivalent to the UHF formulation of the BS approach. If one wishes to use
equations (201) or (87), one needs to first make an assumption whether the
energy of the BS state is a closer approximation to that of the Ising state or the
LS state. Use of equation (202) further requires that one must take the 〈Ŝ2〉
expectation values of the KS reference system as an approximation to the 〈Ŝ2〉
values calculated from the approximate true wave function, producing the same
density as the KS reference system.

The assumption that the energy of the BS state is a reasonable approximation
to the energy of the LS state was made in some early Xα calculations576, 577 and
later by Ruiz and co-workers in the context of KS DFT.225, 578–581 The original
justification for this assumption was that DFT tends to produce more delocalized
densities; therefore, the covalent limit is a more appropriate model, and on
numerical success of the calculations, as pointed out by Illas and co-workers.80

Later studies showed that neither of these arguments holds to scrutiny. A
more formal rationalization was given in terms of the self-interaction error
(SIE)447, 582, 583 which is an inherent problem in all approximate XC functionals and
arises from the incomplete cancellation of the self-interaction terms in the Hartree
potential by the XC functional. The SIE is closely related to the delocalization
error,432, 584, 585 and these terms are sometimes used interchangeably. The SIE
mimics static correlation,529 and Ruiz and co-workers argued in a notoriously
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controversial paper that the use of equation (201) leads to double-counting of
static electron correlation, and based on this reasoning, equation (87) should
be favored.84, 86, 586 Perdew et al. have also argued that there is no fundamental
reason in KS DFT why spin symmetry needs to be enforced on the BS solutions.587

The later advances in the field, however, turned strongly towards favoring
the spin projected approach. This was partially due to improvements in the XC
functional approximations, which allowed one to reduce SIE and the double-
counting of electron correlation (see section 5.2.4). The need to correctly enforce
spin symmetry on the BS solution by projecting the exchange coupling constant
from the EBS − EHS energy difference has been strongly emphasized by Illas
and co-workers.80–82, 85, 588, 589 They have suggested that the HS and BS states in
the context of DFT should be interpreted as Ising states. The Ising states are
eigenstates of the Ising Hamiltonian

ĤIsing = −JabŜzaŜzb, (203)

which only operates on the z component of the local spins. In a basis of the
orthogonal magnetic orbitals, the diagonal elements of the Ising Hamiltonian
are equivalent to the diagonal elements of the HDvV Hamiltonian (84).590, 591

If the HS and BS states are interpreted as eigenstates of (203), the energies
of these states can then be interpreted as the diagonal elements of the HDvV
Hamiltonian, and the exchange coupling constant can be easily extracted from
their energy differences. The equivalence between the diagonal elements of
(203) and (84) further guarantees that the exchange coupling constants in the
two operators are equivalent.85, 590, 591 The great advantage of using (203) is that
it only contains operators acting on the individual spin sites, and its practical
application and extension to polymetallic systems with three or more magnetic
sites is straightforward. The exchange coupling constant in a two-site system is
then given as

Jab =
EBS − EHS

2SaSb
, (204)

which is also valid in the case when Sa 6= Sb (but see ref. 592). In the case of
Sa = Sb, equation (204) is equivalent to equation (201) and to equation (202) in
the Ising limit.

The underlying assumption for the validity of equation (204), as already
mentioned, is that the HS and BS states can be interpreted as Ising states. This
assumption is only really founded on the homomorphicity between the set of
eigenstates of (203) and the set of BS states, which can be generated within
the same set of orbitals. Furthermore, the two sets are truly homomorphic
only when Sa = Sb.592 Equation (204) is strictly valid only when i) all electron
correlation outside the magnetic orbital space is accounted for; ii) all dynamic
electron correlation within the magnetic orbital space is accounted for; iii) all static
correlation within each site a and b in the magnetic orbital space is accounted
for; iv) no static correlation between the magnetic orbitals on sites a and b is
included; and v) none of the spin and/or charge polarization effects of the
doubly occupied orbitals due to changes in the magnetic orbitals contributes to
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the energy difference between the HS and BS states. This list of assumptions
also makes the further assumptions that dynamic and static correlation can be
distinguished from each other in an unambiguous manner and that the concept of
magnetic orbitals can be rigorously defined in the framework of DFT. It is rather
safe to say that these conditions are never rigorously realized, except perhaps
for the simplest of model systems, such as two weakly interacting hydrogen
atoms. A study by the author of the present work is currently underway to
better understand to what extent these assumptions are broken and what types of
spurious energy contributions the violations introduce to the exchange coupling
constants. As of now, the main justification for the validity of the BS methodology
in the context of DFT lies in the numerical success of the recipe.

5.2.4 On the choice of exchange-correlation functional

It has been well established in a number of benchmarking studies that the
magnitudes of exchange coupling constants calculated using BS DFT have a very
strong dependence on the choice of the XC functional.84, 225, 578, 592–607 The errors
can range in the order of hundreds of percents, and errors of the order of 50%
are rather common. This means that it is, in principle, possible to reproduce any
predefined value, which causes significant problems if BS DFT is used to predict
exchange couplings. Usually, the sign of Jab is produced correctly except when
the value is very small, such as a few wave numbers.

The majority of the experimentally characterized systems used for bench-
marking different XC functionals for the calculation of exchange coupling con-
stants consist of bimetallic Cu(ii) complexes although other 3d transition-metals
complexes have been included in some studies.84, 225, 592, 594, 602 A H–He–H model
system has also been extensively studied, as the system is simple enough so that
reference values can be calculated at the CCI level.84, 225, 595, 596, 601 The general
conclusion from all of these studies is that range-separated functionals, such
as the LC-ωPBE, global hybrids with larger-than-average percentage of Fock
exchange, such as BHHLYP and double hybrid functionals such as B2PLYP,608

give the best results. In a detailed study on the effect of Fock exchange in BS
DFT calculations, Phillips and Peralta showed that good results are obtained if a
large enough percentage of Fock exchange is introduced regardless of whether
it is introduced through global scaling or through range-separation.609 The
improvement of results upon increasing the percentage of Fock exchange can
be rationalized by reduced SIE. In magnetic coupling calculations, SIE has a
tendency to exaggerate the covalent interactions between spin sites and, therefore,
overestimate the magnitude of AFM interaction.

The results obtained for transition-metal complexes do not, however, usually
apply to π conjugated organic radical systems. In a detailed study of the meta-
xylylene diradical, Illas and co-workers observed that the LC-ωPBE functional
produced unacceptably bad estimates of the exchange coupling, whereas reason-
able values were obtained with M06-2X and B3LYP. For transition-metal systems
the exact opposite is observed: LC-ωPBE produces consistently good results, and
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M06-2X and B3LYP may have relative errors larger than 50%.592, 596, 599 Related
discrepancy is also observed when tuning the percentage of Fock exchange in
the B3LYP functional to optimally reproduce experimental values. In the case
of ionic transition-metal salts, the best results are obtained by using a value of
35%.610, 611 Similarly, 35% of Fock exchange in the PBE0 functional produce the
best results for a series of transition-metal complexes.609 For a series of organic
diradicals, Cho et al. obtained the best estimates with a value of 5%.612

The system-specific dependence of the values of exchange coupling con-
stants on the choice of the XC functional and the arbitrariness related to the
interpretation of the BS state as discussed in section 5.2.3 all highlight the impor-
tance that BS DFT should never be applied in a black box manner.

5.3 Calculation of g- and D-tensors using DFT

Several approaches to the DFT calculation of g-tensors were introduced starting
from the late 1990s.50–57, 65, 613 The elements of the g-tensor are given by the
derivative

gαβ =
1

µB

∂2E

∂Bα∂Sβ
, (205)

where α, β ∈ x, y, z. Technical details of the application of (205) are given,
for example, in the review by Autschbach56 and in the various papers on the
practical implementations.51, 55, 57 Usually the DFT-based approaches to the g-
tensor provide rather accurate results if the effects from SOC are very weak,
such as in organic systems, and the system is reasonably well described by a
single determinant. In multireference systems, the DFT treatment breaks down,
and the correct way to approach the problem is through multireference ab initio

calculations as described in section 4.5.1.
Two DFT methods have been developed for the calculation of the ZFS tensor,

or more precisely, the D and E parameters. The first method was proposed
by Pederson and Khanna58 and another was introduced by Neese.59, 60 The
Pederson–Khanna method was later studied and improved by van Wüllen and
co-workers.62–64, 614 It should be noted that the approach proposed by Neese
and the approach of Pederson, Khanna, van Wüllen, and co-workers are not
strictly equal at any limit.64 This is a rather serious problem, but even more
severe is the fact that none of the methods are highly reliable and can fail
rather dramatically in an inconsistent manner.615, 616 The predictive power of the
methods is qualitative at best. This makes the DFT approaches to ZFS rather
useless in practical problems. In the present work,VIII we developed a method
for extracting the ZFS parameters from DFT calculations using the so-called
DFT/ROCIS method, which introduces SOC in a similar manner as described
in section 4.4.5 but using orbitals and eigenvalues calculated at DFT level and
some empirical scaling parameters.617–619 Although the method provided better
results than the common DFT-based methods, no actual validation studies on its
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performance have been carried out.
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6 COMPUTATIONAL MODELING OF ISOTROPIC
EXCHANGE INTERACTIONS AND WEAK
ANISOTROPY

The field of molecular magnetism was founded on the systematic design of
isotropic exchange interactions in molecular systems by modification of the chem-
ical structure of the constituting molecules. Whereas intramolecular magnetic
interactions can be relatively easily related to the chemical structure through
the so-called magneto-structural correlations,24, 27 the systematic design of inter-
molecular interactions proved a much tougher challenge and remains as such
to this date. In transition metal systems, it is extremely difficult to construct
intermolecular superexchange pathways in such a way that sufficiently strong
magnetic interaction is retained. An alternative approach to superexchange is
the so-called metal-radical approach, where the coupling between metal ions
is mediated by paramagnetic radical ligands.29 Organic or organo-main-group
radicals usually have much more delocalized spin densities and intermolecular
magnetic interactions are then much more likely. Papers I and II included in
the present work investigate the magnetic interactions in molecular complexes
constructed using the metal-radical approach. Although this approach allows
one to construct intermolecular exchange interactions, the problem of controlling
the type (i. e., FM or AFM) of interaction still remains unsolved. Nature has a
strong tendency towards favoring AFM interaction, which ultimately leads to
diamagnetic (or ferrimagnetic) solids. In Paper IV, rational design of mixed
radical systems with ferromagnetic interaction is examined. The focus is placed
on purely organic radical systems, but the results are also generalizable to more
complicated systems, such as transition-metal–radical complexes. The calcula-
tions in Paper III focus on analysis of the exchange interactions in a polymetallic
Ni(i) complex.

In addition to the analysis of isotropic exchange coupling, the ZFS parame-
ters of some of the complexes introduced in Paper I will also be calculated. The
system studied in Paper II has a strongly anisotropic Dy(iii) ion and displays slow
relaxation of magnetization under an applied dc field, but the focus in the study
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is placed on the exchange interactions and not on the anisotropic properties.

6.1 Computational details

The BS DFT calculations in Paper I were carried out in a non-relativistic DFT
framework with the Gaussian 09 program revision D.01620 using the 2006 ver-
sion of the range-separated LC-ωPBE hybrid XC functional in conjunction with
Ahlrichs’ older polarized triple-ζ quality basis sets (TZVP, sometimes known
as def-TZVP).621 The calculations utilized geometries extracted from the crystal
structures, and no additional geometry optimizations were carried out. No con-
straints were placed on spin or spatial symmetries, and stability analyses622, 623

were carried out to ensure that all optimized reference wave functions corre-
sponded to minima in the variational space. The same computational approach
was also used for the BS DFT calculations in Paper III.

In Paper II, the BS DFT calculations were carried out using scalar relativistic
DFT with the Orca 3.0.3 code.251 The scalar relativistic effects were treated using
ZORA as implemented in Orca.392 The range-separated CAM-B3LYP hybrid
XC functional was used in conjunction with the polarized triple-ζ quality ZORA-
def2-TZVP basis sets624 for the lighter elements and the polarized quadruple-ζ
quality SARC2-ZORA-QZVP for the Gd ions.625 Both basis sets are specifically
designed for scalar relativistic ZORA calculations; the former is a re-contracted
version of the widely used def2-TZVP basis sets,294, 626 and the latter is a 2016
upgrade of the segmented all-electron relativistically contracted (SARC) basis sets
of Pantazis et al., which are purpose-specifically designed for ZORA calculations
on heavy elements.627

Wave-function-based multireference calculations in Papers I and III were
carried out with the Orca 3.0.3 code using standard CASSCF techniques and
the strongly contracted variant of the NEVPT2 method for the treatment of
electron correlation outside the CAS. In Paper I, two different active spaces were
employed. The first CAS consisted of the five 3d orbitals and the radical SOMO.
All states that can be constructed in this CAS were solved in a single SA-CASSCF
calculation. This entails 6 sextets, 84 quartets, and 210 doublets for Fe(ii); 15
quintets, 105 triplets, and 105 singlets for Co(ii); and 20 quartets and 70 doublets
for Ni(ii). The second active space, used in conjunction with a diamagnetic ligand,
contained only the five 3d orbitals. Again, all states that can be constructed in this
space were solved: 5 quintets, 45 triplets, and 50 singlets for Fe(ii); 10 quartets
and 40 doublets for Co(ii); and 10 triplets and 15 singlets for Ni(ii). In Paper
III, a four-electron-four-orbital active space containing the four different 3dx2−y2

orbital combinations was used. Larger active spaces were also tested, but these
did not lead to visible improvement in the results. One quintet, three triplets,
and one singlet corresponding to the lowest manifold of states were solved in
the SA-CASSCF calculation. Scalar relativistic effects were treated using the
second-order DKH transformation. DKH-def2-TZVP basis sets624 (analogous to
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ZORA-def2-TZVP put optimized for DKH2) were used along with corresponding
auxiliary basis sets for the RI approximation used in the integral transformations.
SOC was treated using the SOMF operator and the QDPT formalism as described
in section 4.4.5 and as implemented in Orca.88 The ZFS D and E parameters in
Paper I were extracted using the effective Hamiltonian approach of Maurice et

al.406

In Paper IV, a comprehensive validation study of various functionals was
carried out (vide infra). The tested functionals included the global hybrids B3LYP,
PBE0, M06, M06-2X and the range-separated hybrids LC-ωPBE, CAM-B3LYP,
and ωB97XD.628 The latter has the same functional form as ωB97X but has been
optimized with an empirical dispersion correction. The validation calculations
were carried out both by completely neglecting dispersion effects not accounted
for by the XC functional and by treating them using the DFT-D3 correction of
Grimme and co-workers.629 Both the original zero damping function and the
newer Becke–Johnson (BJ) damping630 were used in the DFT-D3 calculations.
The DFT-D3 correction has only been parameterized for the M06 and M06-2X
functionals using the zero damping function as the functional included some
short-range dispersion interaction, and using a non-zero damping in the short
range would lead to double-counting of dispersion energy. The ωB97X functional
already includes the dispersion correction in its definition and was, therefore,
not augmented with any additional correction. The LC-ωPBE functional with
the DFT-D3 correction and BJ damping was chosen for all further calculations.
The DFT calculations were carried out in a non-relativistic framework using the
Gaussian 09 code revision D.01620 and def2-TZVP basis sets.294 The geome-
tries were fully optimized with no constraints on spatial or spin symmetries,
and frequency calculations were carried out to ensure that the optimized sta-
tionary points corresponded to true minima on the potential energy surface
and to generate the vibrational frequencies used in the evaluation of thermo-
chemical quantities. The thermochemical data were evaluated using standard
methods257 at 298 K. The geometry optimizations were started from crystal struc-
tures where available and from scratch in other cases. Basis set superposition
error (BSSE)133 was corrected with the counterpoise method.631 All calculated
reference wave functions were subjected to stability analysis before and after the
geometry optimizations to ensure that no lower energy minima were obtainable
in the variational space. Additional energy evaluations of the HS states using
the LC-ωPBE/def2-TZVP optimized geometries were carried out employing the
domain-based local pair-natural orbital (DLPNO) coupled cluster theory with
single, double, and perturbative triple excitations (DLPNO-CCSD(T)).632–636 The
CCSD(T) method129, 133, 308 offers highly accurate energies for single reference
systems, and the DLPNO approach627, 637–639 makes the scaling of the computa-
tional costs relative to system size effectively linear, thus greatly reducing the
computational costs.640–642 The DLPNO-CCSD(T) calculations were carried out
using the Orca 4.0.1 code.252
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a) b)

FIGURE 10 a) The structure and SOMO of the radical 1 and b) the structure of the
1–Co(ii) complex 4. The structures of complexes 2, 3, and 5 are qualitatively
similar.

6.2 Computational analysis of exchange interactions in transition-
metal, lanthanide, and radical systems

6.2.1 3d metal complexes of a 1,2,4-benzotriazinyl radical

Papers I and II study the coordination complexes of a 1-phenyl-3-(pyrid-2-
yl)benzo[e][1,2,4]triazinyl radical ligand (1, Figure 10a) based on a radical frame-
work initially synthesized by Blatter in the 1960s.643 The ligand is air- and
moisture-stable and has highly delocalized spin density. Properties of the ligand
and its Cu(ii) coordination complex were studied in an initial communication.644

The experimental work in Paper I extended the coordination complexes of 1 to
the rest of the latter 3d transition metals, and the complexes Mn(1)(hfac)2 (2, hfac
= hexafluoroacetylacetonate), Fe(1)(hfac)2 (3), Co(1)(hfac)2 (4), and Ni(1)(hfac)2
(5) were characterized. In all cases, the coordination geometry around the metal
ion is pseudo-octahedral. Structure of 4 is presented in Figure 10b and the ge-
ometries of the other complexes are qualitatively similar. In the crystal phase, the
complexes 2 and 3 form dimers with some short, intradimeric, radical–radical
contacts. The unit cell of complex 4 contains a large number of complexes with
a number of short radical–radical contacts. Complex 5 also forms dimers with
intradimeric radical–radical contacts as well as short radical–radical contacts
between neighboring dimers giving a chain-like structure.

The most general HDvV-type Hamiltonian describing the magnetic interac-
tion within a given dimer of complexes can be written as

ĤHDvV =− JMRŜM · ŜR − JM′R′ŜM′ · ŜR′ − JRR′ŜR · ŜR′ (206)

− JMR′ŜM · ŜR′ − JM′RŜM′ · ŜR − JMM′ŜM · ŜM′ ,

where the indices M and R refer to the metal and the radical, respectively, and the
indices in the first complex of the dimer are unprimed, whereas the indices in the
second complex are primed. The Hamiltonian thus considers the metal–radical
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interactions within both complexes, the radical–radical interaction, the interaction
between the metal-ion in one complex and the radical in the other complex, and
the interaction between the two metal ions. The metal–radical interactions in
both complexes can be considered equivalent as can the interactions between
the metal ion and the radical of the other complex, thus setting JMR ≡ JM′R′ and
JMR′ ≡ JM′R. With these simplifications, it is possible to form six different states in
the BS DFT calculations with unique energies. Let us label these states as |αααα〉,
|αααβ〉, |ααβα〉, |ααββ〉, |αβαβ〉, |αββα〉, where the spin indices are ordered as
M, R, R′, M′, and we only consider the local states at the metal ions where all
unpaired electron have the same spin. Interpreting these states as Ising states
allows one to extract the exchange coupling constants from the energy differences
as

JMR = − 1
14

Eαααα −
1
14

Eααββ +
1

14
Eαβαβ +

1
14

Eαββα (207)

JRR = −1
2

Eαααα − Eαααβ + Eααβα +
1
2

Eααββ +
1
2

Eαβαβ −
1
2

Eαββα (208)

JMR′ = − 1
14

Eαααα +
1
14

Eααββ −
1

14
Eαβαβ +

1
14

Eαββα (209)

JMM′ = − 1
98

Eαααα +
1
49

Eαααβ +
1
49

Eααβα +
1
98

Eααββ +
1

98
Eαβαβ −

1
98

Eαββα. (210)

In the case of complexes 2, 3, and 5, the exchange coupling constants JMR′

and JMM′ have negligibly small values that cannot be reliably distinguished from
numerical noise, and these exchange couplings are, therefore, neglected in all
subsequent considerations. The exchange couplings JMR and JRR were determined
for 2, 3, and 5 using BS DFT calculations and are listed in Table 1 along with the
experimental values obtained by fitting experimentally observed temperature-
dependent χT plots. In the case of 4, the ZFS is of the same order of magnitude
as the exchange coupling (vide infra), and the exchange interaction, therefore,
cannot be described by any simple model with a single effective parameter. The
exchange coupling constants could, in practice, be determined from the BS DFT
calculations but would not correspond to any parameter of a physically relevant
model. Obtaining the necessary parameters from a fit to experimental data would
also lead to severe overparameterization of the model and was not carried out.
The agreement with the calculated and experimental values of JMR in the case
of complexes 2 and 3 is good. In the fit to experimental data, the intermolecular
interactions were modeled by the so-called molecular mean-field operator, which
reduces the intermolecular interactions into a single effective parameter. This
parameter also indirectly contains all the effects arising from the weak ZFS. Thus,
the parameter cannot be related to the calculated values in a meaningful way,
but the parameters do indicate weak intermolecular AFM exchange. In the case
of 3, this is correctly reproduced by the calculations, but the calculations for 2
indicate weak FM exchange. The origin of this discrepancy is difficult to explain,
but it should be noted that the the value of 1.3 cm−1 is an extremely small energy
difference and well beyond the numerical accuracy of DFT calculations. It is,
therefore, likely that the difference in the sign arises simply from inaccuracies in
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TABLE 1 Values of exchange coupling constants of complexes 2 to 5 as calculated at BS
DFT level and as obtained by fitting experimental data

Calculated Experimental
Complex JMR / cm−1 JRR′ / cm−1 JMR / cm−1 JRR′ / cm−1

2 (Mn) −142 1.3 −129 weak, AFM
3 (Fe) −175 −0.6 −143 weak, AFM
4 (Co)
5 (Ni) 222 −3.9, −45.3 111 to 222 −76 to −60

the underlying DFT calculation.
The experimental determination of the metal–metal and metal–radical cou-

plings in complex 4 was problematic, as the two coupling constants had very
strong cross-correlation. The temperature-dependent χT product could be equally
well reproduced with JMR values ranging from 111 cm−1 to 222 cm−1 and JRR′ val-
ues ranging from −76 cm−1 to −60 cm−1. A slightly worse fit could be obtained
with an even wider range of values. The calculation predicts a metal–radical ex-
change coupling of 222 cm−1, which matches exactly the largest value obtainable
from the fit. Analysis of the crystal structure and further calculations show that
there exists two radical–radical couplings: one within the dimer and another be-
tween neighboring dimers. The calculated values are −45.3 cm−1 and −3.9 cm−1

for the intra- and inter-dimeric interactions, respectively. Neither value fits into
the range of values obtained from the fit, but the order of magnitude is correct.
Furthermore, the fit only considered a single radical–radical exchange parameter
and, therefore, in principle, neglected the weak intra-dimeric exchange. This
will inevitably have an effect on the quality of the experimental radical–radical
couplings but adding another parameter into the model, which is already strongly
cross-correlated, would add further ambiguity into the experimental parame-
ters. Thus, in this particular case, the calculated parameters cannot be reliably
compared with the experimentally obtained ones.

The ZFS parameters D and E were also determined for complexes 3, 4, and 5
at CASSCF/NEVPT2/QDPT level. The Mn(ii) complex 2 has a 3d5 configuration
giving rise to a 6A1g term in an octahedral field, which has no first-order angular
momentum and which is well-separated from any higher-lying configurations in
an octahedral field; this, and the relatively small SOC constant of the Mn(ii) ion,23

means that ZFS can be assumed to be extremely weak and the ZFS parameters
for 2 were, therefore, not calculated. The ZFS was treated using the giant spin
approach, where it is assumed that the exchange coupling is much stronger than
the ZFS; the radical and metal spins in a given complex are coupled to give some
total spin S; the resulting (2S + 1)-fold degenerate manifold is then weakly split
by SOC.175, 230 The calculated values are D = 8.5 cm−1 and E = 2.0 cm−1 for 3,
D = 17.0 cm−1 and E = 2.5 cm−1 for 4, and D = −2.2 cm−1 and E = 0.6 cm−1

for 5. The ZFS is of easy-plane type in 3 and 4; hence no SMM behavior should
be expected for these systems. The anisotropy in 5 is of easy-axis type but very
weak; thus, the system should not display any pronounced SMM behavior. The
values adhere very well to what can be expected based on the electronic ground
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states of the relevant ions in an ideal octahedral field. The ground configurations
of Fe(ii) and Co(ii) ions give rise to 5T2g and 4T1g terms with first-order angular
momentum;23 thus, both 3 and 4 show moderately strong ZFS when compared
to other pseudo-octahedral 3d transition metal complexes. The ground term
of Ni(ii) is 3A2g, which has no first-order angular momentum.23 5 shows the
weakest ZFS of the systems considered and results from the mixing of higher
states into the ground term by the SOC.

The validity of the assumption behind the giant spin approach to the evalu-
ation of the ZFS parameters can be tested by calculating the ZFS parameters for
analogous systems with diamagnetic ligands. This can be achieved by replacing
one of the non-coordinated nitrogen atoms in 1 by a carbon. Such a change
inevitably also changes the CF potential experienced by the metal ions, and the
calculated ZFS parameters are thus only approximations of the real single-ion
parameters. If the parameters are much smaller than the respective exchange
coupling constants, the giant spin approach should be well justified. The cal-
culated values are D = 5.8 cm−1 and E = 1.4 cm−1 for 3, D = 43.1 cm−1 and
E = 9.7 cm−1 for 4, and D = −2.2 cm−1 and E = 1.2 cm−1 for 5. Thus, the giant
spin approach is a reasonable approximation for the anisotropy in 3 and 5. In
4, however, the D parameter is fairly large and starts to become comparable
to the exchange coupling constants. Thus, the electronic structure of 4 is no
longer properly described as an S-type system nor can it be described as a Γ-type
system due to deviations of the pseudo-octahedral coordination geometry from
an ideal octahedron. The electronic structure can then only be described using
spin Hamiltonians by introducing a very large number of parameters, which
would destroy the interpretive qualities of the model.

6.2.2 Dy(III) complexes of a 1,2,4-benzotriazinyl radical

After completing the series of 3d transition-metal complexes of the radical ligand
1, the possibility to coordinate it to trivalent lanthanide ions was studied next.
Paper II describes the characterization of the Dy(iii) complex Dy(1)(tbacac)3 (6,
tbacac = 2,2,6,6-tetramethyl-3,5-heptane-dionato). The Dy(iii) ion has a distorted
square anti-prismatic or, roughly equivalently, a distorted triangular dodecahedral
coordination geometry. The complex 6 form dimers in the solid state with short
intradimeric contacts and also with some short contacts between neighboring
dimers in a column-like structure along the crystal c axis. The structure of the
complex dimer is shown in Figure 11.

The coordination geometry around the Dy(iii) ion is not ideal when consider-
ing possible SMM properties as Dy(iii) ion is known to show strong anisotropy in
axial CFs.106 The low axiality and low overall symmetry of the CF in 6 mean that
the QTM process should be very efficient. Indeed, ac susceptibility measurements
at zero dc field do not show any out-of-phase component in the susceptibility
meaning that any relaxation of magnetization is faster than the oscillating mag-
netic field in the ac experiments. In principle, the exchange interaction between
the Dy(iii) ion and the radical ligand could suppress the QTM due to decoupling
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FIGURE 11 The structure of a dimer of complexes 6.

of the two components of the ground Kramers doublet of the Dy(iii) ion, but this
is not the case for 6. The SM = 5/2 spin on the Dy(iii) ion and the SR = 1/2 spin
of the radical give an integer total spin, and this means that the exact degeneracy
of the ground doublet is no longer enforced by Kramers theorem. Given the low
symmetry of the distorted square anti-prismatic coordination environment, the
exchange interaction is more likely to enhance QTM than to suppress it.

A much more interesting feature revealed by magnetization measurements
is that the system orders anti-ferromagnetically below 8.6 K at zero field. This
ordering can be lifted by an external magnetic field. The external field can also
be used to suppress the QTM to show some slow relaxation of magnetization.
Application of a 9100 G field at 1.85 K, which lies at the border between the
AFM and paramagnetic phases in a H vs. T plot, led to the observation of slow
relaxation of magnetization with an Arrhenius-type profile. This decoupling
of the dynamic properties of the individual magnetic sites from the long-range
magnetic properties of the crystalline solid has been utilized before in long-range
ordered single-chain magnet systems.645–647 A fit to the relaxation data yielded
an effective barrier height of Ueff = 8.2 cm−1, which is fairly low for a Dy(iii)
system. Thus, the dynamic magnetic properties of 6 were not studied any further,
and the main focus was placed on the origin of the AFM ordering.

In order to study the system without the theoretical complications arising
from the strong SOC of the Dy(iii) ion, calculations were carried out on an
isostructural model system, where the Dy(iii) ions were replaced by Gd(iii). The
8S7/2 ground multiplet of the Gd(iii) ion has no first-order angular momentum
and can be treated by simply considering the SM = 7/2 spin. The tert-butyl
groups in the auxiliary tbacac ligands were replaced by methyl groups in the
calculations to reduce computational costs. The alkyl groups in the ligands do
not carry any spin density, and thus their neglection should have a negligible
effect on the relative energies of the different spin states. Two structures were
considered in the calculations: the complex dimer in Figure 11 and a dimer
constructed from two neighboring complexes along the crystal c axis with short



131

intermolecular radical–radical contacts. The exchange coupling constants can
then be extracted by applying equations (207)–(210). The evaluated intramolecular
exchange coupling constants JMR′ and JMM′ were again so small (< 0.1 cm−1)
that they are either zero or cannot be reliably distinguished from numerical
noise. The intramolecular coupling constant is JMR = −9.4 cm−1. This can be
re-scaled from the SM = 7/2 spin of the Gd(iii) ion to the SM = 5/2 spin of the
Dy(iii) ion to give an approximate Dy(iii)–radical coupling of JMR = −6.7 cm−1.
Similar re-scaling approach has been used in several papers.648–650 The resulting
exchange parameter estimates the coupling strength, but it is purely fictional
in the sense that in the real physical system SOC will play a considerable role
and the interaction cannot be reduced to a single parameter. The intradimeric
radical–radical coupling constant is JRR′ = −16 cm−1, which is rather strong for
an intermolecular interaction. These two exchange coupling constants explain
the interactions within the complex dimer, but not the long-range AFM ordering.
A radical–radical coupling constant between neighboring complexes along the
crystal c axis is JRR′′ = −0.4 cm−1. This would, however, still only explain
long-range ordering in one dimension, and the value is too small to support
AFM ordering at 8.6 K. Other possible exchange pathways were also studied,
but none showed exchange coupling constants with values larger than 0.1 cm−1.
Values below this threshold cannot be reliably evaluate at BS DFT level. Thus,
the long range ordering must be addressed to dipolar coupling between the
magnetic moments of the Dy(iii) ions. Further theoretical studies are still needed
to elucidate the details of the interactions leading to the AFM ordering.

6.2.3 [Ni{N(SiMe3)2}]4 tetramer

The Ni(i) tetramer [Ni{N(SiMe3)2}]4 (7, Figure 12a) was characterized as a
decomposition product during the preparation of the linear Ni(ii) silylamide
complex Ni{N(SiMe3)2}2.III The characterization of two-coordinate complexes
M{N(SiMe3)2}2 where M = Mn(ii), Fe(ii), Co(ii), and Ni(ii) were first reported
several decades ago.651–653 It was later shown that the reported Co(ii) and Ni(ii)
complexes were in fact the THF adducts M{N(SiMe3)2}2(THF).III, 654 All of the
complexes except Ni{N(SiMe3)2}2 are thermally stable, but Ni{N(SiMe3)2}2
decomposes at room temperature. The early work reported the decomposition
product as a black solid, but it was not structurally characterized.652 In 2015,
during the preparation of the THF-free complex Ni{N(SiMe3)2}2, the black solid
was isolated, characterized by X-ray crystallography, and shown to contain the
tetramer 7. The THF-free Ni{N(SiMe3)2}2 was characterized in solution but
did not yield crystals suitable for further structural characterization by X-ray
crystallography.III A structurally similar cobalt tetramer with highly pronounced
SMM properties has been very recently characterized.655

The effective magnetic moment of 7, determined using the Evans method656

at 300 K, is µeff = 2.70 µB. This number should be taken as the Boltzmann-
averaged magnetic moment of the different spin states thermally populated at
300 K each having an effective magnetic moment of µeff = 2

√

S(S + 1)µB, where
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FIGURE 12 a) Structure of the complex 7 and b) the four valence orbitals describing
the intermolecular exchange interactions along with the respective natural
orbital occupation numbers.

S is the total spin of the electronic state. The temperature-dependent χT product
was also measured. The interpretation of the susceptibility data was, however,
greatly complicated by the presence of some paramagnetic impurity or impurities.
This impurity was taken into account in the simulation of the data as a constant
shift in the χT values independent of temperature. The constant shift corresponds
to a spin system with some total spin S with no orbital angular momentum at
any order, and where all MS states are equally populated. This is equivalent to
the Curie law.24, 184 No real system strictly adheres to these conditions, but they
are rather well realized in 3d transition-metal ions with no first-order angular
momentum, except for very low temperatures. The spin system in 7 was modeled
by the HDvV-type Hamiltonian

ĤHDvV = −J
(
Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3 + Ŝ3 · Ŝ4 + Ŝ4 · Ŝ1

)
, (211)

where the indices on the spin operators index the four Ni(i) ions in a consecutive
manner and S1 = S2 = S3 = S4 = 1/2. The model only included the exchange
coupling between nearest-neighbor ions. A fit to the χT plot yielded a value
of J = −204 cm−1 for the exchange coupling constant, although the quality of
the fit was not very good. The low-quality fit, the simplistic treatment of the
paramagnetic impurity, and the neglection of exchange coupling beyond the
nearest neighboring ions mean that the experimental exchange coupling constant
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is neither reliable nor is the model used to characterize the experimental data
necessarily capable of accounting for all magnetic properties of the system.

The energies of the different spin states were calculated at CASSCF/NEVPT2
level. The (4,4) active space included the four possible combinations of the
3dx2−y2 orbitals (Figure 12b). Several test calculations with larger active spaces
were carried out but with no visible change in the energetics or NOONs. This
is somewhat surprising considering the minimal size of the (4,4)CAS used but
can be rationalized by the fact that all valence orbitals in 7 except the ones
in the (4,4) CAS are fully occupied. This considerably reduces the number of
excitations in the valence space, which could be used to account for the electron
correlation. Thus, the correlation effects mainly arise from interactions with
configurations, which are considerably higher in energy and reasonably well
described at NEVPT2 level. The calculations predict the ground state of 7 as a
singlet with the first excited singlet 1160 cm−1 above the ground state. The three
triplets lie 587 cm−1, 1186 cm−1, and 1188 cm−1 above the singlet and one quintet
lies at 1735 cm−1. The effective magnetic moments of the singlet, triplet, and
quintet states are 0.00 µB, 2.83 µB, and 4.90 µB, respectively. The room temperature
effective magnetic moment of 2.70 µB indicates significant thermal populations
of the triplet and quintet states, which is somewhat at odds with the relatively
high energies. Calculating µeff at 300 K using the energy values listed above
would yield a value of µeff = 0.44 µB, which is considerably smaller than the
experimentally observed value. It should, however, be noted that the experimental
measurement has been carried out on the solvated system, whereas the calculated
values are evaluated on geometry extracted from the crystal structure. Thus, any
chemical interaction with the solvent is neglected from the calculations, and it has
been well established that small geometric variations can lead to large differences
in the spin state energetics.

At the time of publication of Paper III, no further computational analysis
of the spin state energetics had been carried out. BS DFT calculations on 7
were, however, carried out later and are reported here. It has been shown both
by experimental measurements and theoretical calculations that in the case of
rectangular spin arrangements in Cu(ii) salts, both next-nearest-neighbor and
four-body exchange terms are important in the quantitative description of spin
state energetics.177, 203–206, 657, 658 The four-body terms describe ring currents in
the four-site system. Assuming that the same interactions are also operational in
7, the HDvV-type Hamiltonian describing the system is then

ĤHDvV =− J
(
Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3 + Ŝ3 · Ŝ4 + Ŝ4 · Ŝ1

)
− J′

(
Ŝ1 · Ŝ3 + Ŝ2 · Ŝ4

)
(212)

− J′′
[(

Ŝ1 · Ŝ2
) (

Ŝ3 · Ŝ4
)
+
(
Ŝ1 · Ŝ4

) (
Ŝ2 · Ŝ3

)
−
(
Ŝ1 · Ŝ3

) (
Ŝ2 · Ŝ4

)]
,

where J′ is the next-nearest-neighbor exchange coupling constant and J′′ is the
exchange coupling constant for the ring current or, in other words, for the cyclic
permutation of all four spins. We are neglecting some of the cyclic permutation
terms considered in ref. 206 (the h2 and h3 terms) as the number of unique
energy differences only allows for the extraction of three independent parameters.
Assuming that all four sites are chemically equivalent, four different states with
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unique energies can be formed in the BS DFT calculations: |αααα〉, |αααβ, |ααββ〉,
and |αβαβ〉, where the spin indices are in numerical order. Following Calzado
and Malrieu, the exchange coupling constants can be extracted from the BS DFT
energies by interpreting them as the expectation values of (212) acting on the
respective Ising states as:206,a

J =
1
2
(
Eαβαβ − Eαααα

)
(213)

J′ = Eααββ −
1
2

Eαβαβ −
1
2

Eαααα (214)

J′′ = 8Eαααβ − 2Eαβαβ − 4Eααββ − 2Eαααα. (215)

The calculated values are J = −619 cm−1, J′ = −51 cm−1, and J′′ = −22 cm−1.
Hence, it is immediately clear that the exchange couplings J′ and J′′ are certainly
not negligible and that the Hamiltonian (212) is insufficient to describe all the
relevant magnetic properties of 7. The calculated nearest-neighbor exchange
parameter J is roughly three times larger in magnitude than the value extracted
from the experimental fit, but the calculated values should be considered as more
reliable due to the reasons discussed above. All of the exchange couplings are
AFM, meaning that the system is spin-frustrated. The nearest-neighbor exchange,
however, is an order of magnitude larger than the two other couplings, meaning
that the ground state should be singlet as predicted by the CASSCF/NEVPT2
calculations.

6.3 Design of organic radical systems with ferromagnetic interac-
tion

6.3.1 Theoretical framework

The complex 6 orders antiferromagnetically and complexes 2, 3, and 5 show
some intermolecular AFM interaction. Design of molecular ferromagnets requires
that the intramolecular interactions must be ferromagnetic. This is usually very
difficult to realize as the kinetic exchange in equation (77) almost always surpasses
the Coulomb exchange contribution resulting in AFM interaction. The interaction
is FM only when the transfer integral tab in (77) vanishes. In organic magnets, such
as the para-nitrophenyl nitronyl nitroxide,31 this results from what was referred to
by Kahn as “accidental orthogonality” of the radical SOMOs.28 In the same paper,
Kahn and co-workers synthesized a hetero-bimetallic transition-metal complex,
where the transfer integrals between the metal SOMOs is exactly zero due to
symmetry. In Paper IV, we extended Kahn’s approach to organic radical dimers.
Although our paper focuses on specific organic systems as a proof-of-concept, the
approach is general enough that it can also be applied to radical–metal complexes

a If comparing the expressions presented here and those in ref. 206, one should note that we
use a different sign for the exchange coupling constants here.
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and other systems with sufficiently high symmetry or, possibly, pseudo-symmetry.
We are not the first ones to consider the extension of Kahn’s approach to radical
systems.659, 660 However, we present quantitative calculations on real-life radical
systems, which could, in principle, be experimentally characterized.

In their original work, Kahn and co-workers formulated the theory for the
enforcement of FM interaction in hetero-bimetallic transition metal complexes
within the framework of valence bond theory,28, 661 and this same approach has
been used in other works in the field.659, 660 We will describe the theory here
in terms of orthogonal magnetic orbitals, which are easier to relate to the point
group symmetry of the system. We will consider a system with two spin sites a

and b with one electron each occupying the orthogonal magnetic orbitals φa(r)
and φb(r) localized at the two sites. All orbital angular momentum is assumed
to be absent, which is usually a reasonable assumption in radical systems. The
transfer integral tab is given as the Fock matrix element between the two orbitals:
tab = 〈φa|F̂|φb〉.177 If the two sites are identical and related by a symmetry
operation, say inversion, neither φa(r) nor φb(r) forms a basis for a representation
of the molecular point group. A HF calculation on the system produces two
canonical symmetry-adapted orbitals of gerade (g) and ungerade (u) symmetry:

φg(r) =
1√
2
[φa(r) + φb(r)] and φu(r) =

1√
2
[φa(r)− φb(r)] . (216)

The transfer integral is then given by

tab = 〈φa|F̂|φb〉 =
1
2




〈φg|F̂|φg〉
︸ ︷︷ ︸

=ǫg

− 〈φg|F̂|φu〉
︸ ︷︷ ︸

=0

+ 〈φu|F̂|φg〉
︸ ︷︷ ︸

=0

− 〈φu|F̂|φu〉
︸ ︷︷ ︸

=ǫu




 (217)

=
1
2
(
ǫg − ǫu

)
,

where we have used the fact that F̂ is diagonal in the canonical orbitals with the
orbital energies ǫg and ǫu as eigenvalues. Thus, the transfer integral is simply half
the negative of the HOMO–LUMO gap. If the interaction between the two sites is
non-vanishing, the HOMO–LUMO gap will be non-zero, and kinetic exchange
will be present.

Now, let us consider another situation where the molecule has a point group
symmetry, which is higher than C1, but the two sites a and b are not related by
any symmetry operation. In practice, this means that the system has a mirror
plane, which dissects the two spin sites. Let us then further consider the situation
where a and b are not equivalent and transform differently under the symmetry
operations of the point group. In this situation, the magnetic orbitals φa(r) and
φb(r) both form a basis for a different representation of the point group, and no
linear combination of them can give a symmetry-adapted canonical orbital. Thus,
a HF calculation on this system produces the orbitals φa(r) and φb(r) as solutions,
and the magnetic orbitals are eigenfunctions of the Fock operator. In other words:

tab = 〈φa|F̂|φb〉 = 0, (218)
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and the interaction between the sites must be FM. The conditions for this are that
i) each magnetic orbital forms a basis for a representation of the point group on
its own, and ii) the magnetic orbitals form bases for different representations.

6.3.2 Model systems for a proof-of-concept study

When applying Kahn’s approach to organic radical dimers, the natural starting
point is to consider radicals with sufficiently high symmetry or pseudo-symmetry
and with highly predictable dimerization geometry. Preferably, the chosen radical
framework should also be chemically modifiable to fine tune the necessary
interactions for the radical dimerization. These conditions are fulfilled by systems
based on the phenalenyl radical (Figure 13a),662–665 and systems of this type were
used in Paper IV. Phenalenyl is an odd-alternate π-conjugated hydrocarbon,
which can be considered as three fused benzene rings or, equivalent, as a small
piece of graphene.666 A more detailed account on the properties of phenalenyl
and a more comprehensive bibliography is given in the book chapter by Morita
and Nishida.667 Phenalenyl cannot be isolated in the solid state, but in 1999,
Goto et al. synthesized the tert-butyl substituted 2,5,8-tri-tert-butyl-phenalenyl
(8, Figure 13c) and obtained crystals suitable for X-ray diffraction.668 8 forms
staggered 8–8 dimers (Figure 13b) with short intermolecular carbon–carbon
contacts ranging from 320.1 pm to 332.3 pm. The radical spins are strongly
coupled to give an AFM ground state. The exchange coupling constant has been
estimated as J = −1390 cm−1 based on SQUID measurements668–670 carried out
in the presence of paramagnetic impurities and as J = −2910 cm−1 based on
signal intensities in EPR measurements.671 The radical–radical interaction in 8–8
has been the subject of several spectroscopic and computational studies and is
often described as a two-electron-twelve-center covalent bond.672–685

The 2,5,7-tri-tert-butyl-6-oxophenalenoxyl radical (9, Figure 13c) is struc-
turally similar to 8 but has oxygen substituents on the phenalenyl skeleton at
1 and 6 positions.686 9 also forms a staggered 9–9 dimer with AFM interac-
tion.687 Visual examination of the SOMOs of 8 and 9 (Figures 13d and 13e)
shows that they transform differently relative to a reflection through a plane
perpendicular to the molecular plane. Considering the staggered geometry, which
retains this reflection pseudo-symmetry also in the dimer means that according
to Kahn’s approach, the interaction in a 8–9 heterodimer should be ferromag-
netic. In Paper IV, the exchange interactions and dimerization enthalpies of 8–8,
9–9, and 8–9 were calculated. Paper IV only discusses the dimers constructed
from 8 and 9, but we also studied dimers constructed from other experimen-
tally characterized phenalenyl derivatives 2,5,8-triphenyl-phenalenyl (10)682 and
2,5,8-tris(perfluorophenyl)-phenalenyl (12),688 as well as from their hypothetical
oxophenalenoxyl analogues 2,5,8-triphenyl-6-oxophenalenoxyl (11) and 2,5,8-
tris(perfluorophenyl)-6-oxophenalenoxyl (13). The results of these calculations
will be reported here.
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FIGURE 13 a) The structure of phenalenyl radical, b) a phenalenyl-based radical dimer,
c) structures of phenalenyl derivatives 8 to 13, d) the optimized structure
and SOMO of 8, and e) the optimized structure and SOMO of 9.

6.3.3 Validation studies

Before the actual calculations were carried out, the DFT methods used in the
computations were subjected to a validation study to ensure reliability of the final
results. Since we were mostly dealing with dimers for which there are no experi-
mental structures available, the geometries had to be optimized from scratch. This
proved somewhat challenging as the formation of the dimers is strongly stabi-
lized by long-range dispersion interactions. Although some functionals can treat
short-range dispersion in a phenomenological manner (such as the Minnesota
functionals), long-range dispersion must be treated by some empirical dispersion
correction. Furthermore, in order to evaluate the dimerization enthalpies, the
calculations must be corrected for BSSE, and the energy of the ground singlet
state must be projected from the energies of the BS and HS states. Assuming
that the geometry optimized for the BS state is a reasonable approximation to
the geometry of the LS state, which is an unavoidable approximation, the energy
of the LS state can be evaluated by adding the value of the exchange coupling
constant to the HS energy evaluated at the LS geometry:598

ELS
LS ≈ EBS

LS = EBS
HS +

2(EBS
BS − EBS

HS)

〈Ŝ2〉BS
HS + 〈Ŝ2〉BS

BS
, (219)

where the subscript refers to the state being evaluated and the superscript refers
to the state the geometry has been optimized in, and we have used equation (202)
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TABLE 2 Exchange coupling constants calculated for the 8–8 dimer using various
functionals and geometry extracted from the crystal structure.

Functional Jcrystal / cm−1

B3LYP −3669
PBE0 −3531
M06 −3787
M06-2X −4239
LC-ωPBE −2754
CAM-B3LYP −3323
ωB97XD −3431
Experimental −1390a, −2910b

a Based on SQUID measurements.668–670

b Based EPR measurements671

for the evaluation of the exchange coupling constant. In a similar approximation,
it is assumed that the vibrational frequencies calculated for the BS state are a
reasonable approximation those of the LS state.

The validation calculations were carried out on the 8–8 dimer in two phases.
In the first series of calculations, the exchange coupling constants were calculated
using the geometry extracted from the crystal structure to separate the effects of
the XC functional on the exchange interaction from those on the geometry opti-
mization and the dimerization energetics. In the second phase, the dimerization
enthalpy was calculated using fully optimized geometries. The exchange coupling
constants calculated using the crystal structure geometry are listed in Table 2.
All calculated XC functionals exaggerate the AFM coupling when compared to
the experimental values. However, as discussed above, the experimental values
have been determined in the presence of paramagnetic impurities and should be
taken as qualitative. Thus, direct comparison with experiment is difficult. The
best agreement is made with the LC-ωPBE functional. All functionals do predict
strong AFM coupling and are in qualitative agreement with the experiment.

The results of the dimerization enthalpy calculations listed in Table 3 show
that with the exception of the Minnesota functionals, a dispersion correction
is required to make the dimerization energetically favorable. The cases where
the monomer–monomer interaction is repulsive, were not studied any further.
The dimerization enthalpy has been determined experimentally using different
methods, all giving roughly similar values (see Table 3). The results show
that in all cases, the magnitude of the dimerization enthalpy is exaggerated
by the calculations. This systematic overestimation makes direct comparison
with experiment again rather difficult. The best estimate of the experimental
value is given by CAM-B3LYP-D3, although with a considerably overestimated
distance between the monomers. Based on this observation, the dimerization
enthalpies of the HS states in the final calculations were evaluated at DLPNO-
CCSD(T) level using the DFT optimized geometries. The main criteria for the
choice of the XC functional was then made the ability of the chosen functional
to correctly reproduce the experimental geometry. The crystallographically
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TABLE 3 Exchange coupling constants, dimerization enthalpies, and central carbon dis-
tances in the 8–8 dimer as calculated with various functionals using optimized
geometries

Functional Jopt / cm−1 ∆Hdimer / kJ mol−1 d(C − C) / pma

B3LYP Repulsive
B3LYP-D3 −4524 −78 315.1
B3LYP-D3BJ −5345 −88 308.2
PBE0 Repulsive
PBE0-D3 −3246 −81 327.0
PBE0-D3BJ −4347 −80 313.7
M06 −3327 −89 331.3
M06-D3 −3434 −143 331.0
M06-2X −5110 −74 312.7
M06-2X-D3 −5120 −98 312.7
LC-ωPBE Repulsive
LC-ωPBE-D3 −2016 −83 329.9
LC-ωPBE-D3BJ −2140 −92 327.6
CAM-B3LYP Repulsive
CAM-B3LYP-D3 −1864 −73 344.6
CAM-B3LYP-D3BJ −1829 −81 345.0
ωB97XD −2828 −105 331.0
Experimental −1390b, −2190c −31d, −37e, −40f 320.1g

a Distance between the central carbons of the two radicals.
b Based on SQUID measurements.668–670

c Based EPR measurements671

d Based on UV-Vis measurements.676

e Based on UV-Vis measurements.675

f Based on EPR measurements.675

g From crystal structure.668

determined d(C − C) distance between the central carbons of the two radicals is
best reproduced with the B3LYP-D3 functional. The functionals LC-ωPBE-D3,
LC-ωPBE-D3BJ, M06-2X, M06-2X-D3, PBE0-D3, and PBE0-D3BJ also produce
geometries with the value of d(C − C) deviating from experiment by less than
1 pm. Based on these results and the calculated exchange coupling constants, the
LC-ωPBE-D3BJ functional was chosen for further calculations. It should be noted,
however, that any of the tested functionals should produce qualitatively correct
results.

The dimerization energy of 8–8 has been calculated previously from first
principles only in the paper of Kertesz and co-workers,679 and the same results
have been later used in ref.682 Kertesz used the M05-2X functional without any
dispersion correction and obtained a dimerization energy (including zeropoint
and BSSE corrections) of −33 kJ mol−1 and a distance of 320.9 pm between the
central carbons of the two radicals. Both values are in very good agreement
with experiment. In our calculations, the dimerization enthalpy calculated using
the M06-2X functional (which is an improved version of M05-2X) without any
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TABLE 4 Exchange coupling constants, dimerization enthalpies, and central carbon
distances calculated for dimers of various phenalenyl-based radicals

Dimer Jopt / cm−1 ∆Hdimer / kJ mol−1 d(C − C) / pma

8–8 −2141 −69 (−103)b 327.6
9–9 −75 −59 (−93)b 359.5
8–9 435 −00 (−105)b 330.6
10–10 −4234 −146 321.6
11–11 −130 −130 356.0
12–12 −117 −98 711.2
13–13 −35 −101 337.7
10–11 −227 −128 335.4
10–13 −898 −131 343.7
11–12 −274 −115 274.3
12–13 −201 −98 337.7
a Distance between the central carbons of the two radicals.
b The first value is evaluated using DLPNO-CCSD(T) energies and the value in

parenthesis uses only DFT energies.

dispersion correction is −74 kJ mol−1, which is considerably larger than that
calculated by Kertesz and co-workers. We attribute these differences to the use of
spin-projection in our calculations and the use of a considerably larger basis set.
In preliminary calculations, we noted that using the smaller def2-SVP basis sets626

lead to qualitatively different results in some cases as compared to calculations
carried out using the def2-TZVP basis. Thus, our calculations should be taken as
more accurate than those of Kertesz and co-workers.

6.3.4 Results

In order to demonstrate the validity of the theoretical framework presented in
section 6.3.1, calculations were carried out on the dimers 8–8, 9–9, and 8–9. The
dimerization enthalpies were evaluated by using DLPNO-CCSD(T) energies for
the HS states and by evaluating the first EBS

HS term on the right-hand side of
equation (219) at DLPNO-CCSD(T) level in the case of the LS states. The results
are listed in Table 4 and show that in the case of 8–8 and 9–9, the exchange
interaction is AFM, whereas in the case of the mixed dimer 8–9, the interaction
is FM and in full agreement with the theoretical reasoning. It is also notable
that formation of the mixed 8–9 dimer is energetically more favorable than the
formation of the respective homodimers 8–8 and 9–9; the enthalpy difference for
the formation of 8–8 and 9–9 from two equivalents of 8 and 9 is −128 kJ mol−1,
whereas the enthalpy difference for the formation of two equivalents of 8–9 is
−145 kJ mol−1. This results is very encouraging when considering the practical
application of this approach.

Next, we studied whether FM interaction could also be enforced in dimers
constructed from the phenyl and perfluorophenyl subsituted phenalenyl radicals
10, 11, 12, and 13. The calculated results for these systems are also listed in
Table 4. None of the dimers, however, show any FM coupling. The reason for
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this is that the phenyl or perfluorophenyl substituents are not bulky enough
to prevent the rotation of the two radicals relative to each other in the dimer.
Such a rotation breaks the pseudo-reflection symmetry of the radical SOMOs in
the dimer geometry and allows non-zero overlap between the orbitals, which
then leads to AFM interaction. The use of different substituents does lead to
varying dimerization enthalpies, which means that the interaction between the
two radicals can be made more or less favorable by the introduction of specific
substituents. If these substituents are bulky enough to prevent the relative
rotation of the radicals, the substituents can be tuned to favor the formation of
the mixed dimer over the homodimers.



7 COMPUTATIONAL MODELING OF STRONGLY
ANISOTROPIC MAGNETIC PROPERTIES

The main challenge in the study of SMMs is to synthesize new systems with higher
operational temperatures. In the case of monometallic systems, general conditions
for high-temperature SMMs have been established.106, 108, 109 The most important
of these is the design of CFs in such a way that it stabilizes the largest |MJ |
projections of the ground J-multiplet of the respective trivalent lanthanide ion.
This can be achieved either by constructing strongly axial CFsV, VI, 111–114, 689–692

or strongly equatorial CFs.693–696 So far, the latter has not been as successful
an approach as the former. Papers V and VI included in this work focus on
the characterization of SMMs with highly axial CFs. One of the complexes
synthesized in Paper VI holds the record of the highest blocking temperature
ever observed in a molecular lanthanide SMM: 60 K. Paper VII focuses on the
other main approach to designing high-temperature SMMs: the construction of
exchange coupled lanthanide systems, where the exchange interactions blocks
the ground state QTM.

7.1 Computational details

All multireference calculations in this chapter were carried out using the Molcas

code.254 The 8.1 development version was used for XMS-CASPT2 calculations in
Paper V, the 8.2. release version was used for some of the calculations in Paper
VII, and the 8.0 release version was used for all other calculations. Scalar rela-
tivistic effects were treated with the X2C method. The relativistically contracted
atomic natural orbital (ANO-RCC) basis sets where used throughout.697–699 In pa-
pers VI and VII, a polarized triple-ζ quality basis (ANO-RCC-VTZP) was used for
the Dy(iii) ions699 and polarized double-ζ quality basis sets (ANO-RCC-VDZP)
were used for the other atoms.697, 698 In Paper V, a slightly larger basis was used,
which consisted of a polarized quadruple-ζ quality basis (ANO-RCC-VQZP) for
the Dy(iii) ion, ANO-RCC-VTZP for the atoms in the first coordination sphere,
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and ANO-RCC-VDZP for atoms in the outer coordination spheres. CD with a
threshold of 10−8 atomic units was used in all two-electron integral calculations.
In papers VI and VII, the calculations were standard CASSCF calculations with
no consideration of dynamic electron correlation. In Paper V, CASSCF calcula-
tions were carried out using the full geometry, whereas XMS-CASPT2 calculations
were performed on a simple model geometry. In all papers, all 21 sextet, 224 quar-
tet, and 490 doublet roots were solved in three separate SA-CASSCF calculations,
one for each multiplicity. The XMS-CASPT2 corrections were only calculated for
the sextet states.

SOC was included using the SO-RASSI methodology and the AMFI op-
erator. In the pure CASSCF calculations, all 21 sextets, 128 quartets, and 130
doublets were included in the SO-RASSI treatment corresponding to an en-
ergy cut-off of 50 000 cm−1. Magnetic properties were calculated using the sin-
gle_aniso95–97, 100, 101 and poly_aniso96, 98, 99 programs of the Molcas code. The
Lines exchange parameter in Paper VII was determined by fitting ab initio values
to experimental χT data. The fit was carried out by scanning the parameter with
0.001 cm−1 increments.

In papers V and VI, the positions of the hydrogen atoms were optimized,
while the coordinates of all heavier atoms were kept frozen to their respective
crystal structure geometries. This was carried out because the hydrogen positions
extracted from crystal structures are not reliable and the close proximity of the
hydrogen atoms to the lanthanide ions could have an effect on the magnetic
properties. In Paper VII, the geometry was used as obtained from the crystal
structure. The hydrogen optimizations were carried out at DFT level using the
BP86 GGA XC functional in Paper V and the PBE GGA XC functional in VI. In
V, polarized double-ζ quality ZORA-def2-SVP basis sets624 were used for lighter
atoms, ZORA-SARC-TZVP627 for the Dy(iii) ion, and corresponding auxiliary
basis sets624, 627 for the RI approximation. Scalar relativistic effects were taken
into account in the geometry optimization using the ZORA as implemented in
Orca.392 In VII, the geometry optimization was carried out in a non-relativistic
framework using the polarized double-ζ def2-SVP basis sets626, 700 and a corre-
sponding auxiliary basis.292, 293 The Dy(iii) ion was replaced by a diamagnetic
Y(iii) ion to avoid problems related to static electron correlation. The core elec-
trons of the Y(iii) ion were treated using an 28-electron effective core potential
(ECP). All DFT optimization were carried out using Orca 3.0.3 code251 and the
RI approximation for the Coulomb potential.

The CF-correction procedure introduced in Paper V used the EasySpin

module701 in Matlab702 to carry out the diagonalization of the CF Hamiltonian.
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a) b)

FIGURE 14 a) The structure and principal magnetic axis of the ground Kramers doublet
of 14 and b) the qualitative barrier for the relaxation of magnetization in 14.

7.2 Monometallic Dy(III) complexes

7.2.1 Dy[(CyPh2PO)2(H2O)5]Br3 complex

Paper V studied the magnetic properties of the complex Dy[(CyPh2PO)2(H2O)5]
Br3 · 2(CyPh2PO) · EtOH · 3H2O (14, Figure 14a, CyPh2PO = cyclohexyl-(diphenyl)
phosphine oxide). The structure is very similar to other high-performing SMMs
published by Tong and co-workers.111, 689 The equatorial coordination positions
around the Dy(iii) ion in 14 are taken by five water molecules in an almost ideal
D5h geometry. The axial positions are coordinated by two CyPh2PO ligands. The
overall coordination geometry is pentagonal bipyramidal with some deviations
from ideal D5h symmetry already in the first coordination sphere. The second
coordination sphere around the water ligands consists of two free CyPh2PO
ligands and three bromide ions. The neutral water molecules are weak ligands,
whereas the coordinated oxygen atoms in the CyPh2PO ligands have formally
negative charge, giving an overall axial coordination environment around the
Dy(iii) ion. The pseudo-D5h coordination environment makes the CF even more
preferable for a Dy(iii) SMM, as in an ideal pentagonal bipyramidal field all
Stevens operators with q 6= 0 in expansion (62) up to rank k = 10 vanish due to
symmetry.26 The off-diagonal q 6= 0 operators introduce non-vanishing transition
matrix elements between the different states. Thus, in an ideal D5h symmetry,
all relaxation processes in the lowest doublets should be suppressed to a high
order. Pentagonal bipyramidal SIMs have indeed proven to be some of the best
characterized so far.111–113, 689

The magnetic properties of 14 were studied by dc and ac susceptibility
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TABLE 5 The energies, principal components of the g̃ tensors, and directions of the
principal magnetic axes of the eight lowest Kramers doublets (KDs) corre-
sponding to the CF-split components of the Dy(iii) ground 6H15/2 multiplet in
14

KD E / cm−1 g̃x g̃y g̃z θa

1 0 0.000 0.000 19.881 0.0◦

2 297 0.957 3.427 16.696 90.0◦

3 314 0.088 0.127 16.923 0.3◦

4 370 3.303 4.546 8.707 90.0◦

5 460 1.401 3.777 6.525 0.3◦

6 507 0.247 0.387 13.627 0.4◦

7 555 0.296 1.214 11.228 26.4◦

8 588 0.504 1.011 13.170 28.5◦
a The angle between the principal magnetic axis of the doublet and that of the ground

doublet.

measurements. The system shows hysteresis with open loops up to 19 K with
a scan speed of 200 G s−1. The FC and ZFC susceptibilities diverge below 11 K
with a ramping speed of 2 K min−1. Based on the ac susceptibility measurements,
the relaxation behavior was modeled as an Arrhenius-type process yielding an
effective barrier height of Ueff = 353 cm−1. The presence of the aromatic sub-
stituents in the CyPh2PO ligands leads to a well-resolved luminescence spectrum
with sharp peaks corresponding to the energy levels of the individual Kramers
doublets. The peaks were assigned to give energies 322 cm−1 and 396 cm−1 for
the first and second excited Kramers doublet relative to the ground doublet. The
energy of the first excited state is in good agreement with the effective barrier
height obtained from the ac susceptibility measurements strongly supporting the
Arrhenius-type model for the relaxation of the magnetization.

The energies and principal components of the g̃-tensors of the eight lowest
Kramers doublets corresponding to the CF-split components of the ground 6H15/2

multiplet of the Dy(iii) ion were calculated. The results are listed in Table 5. The
g̃-tensor of the ground doublet is strongly axial (g̃x, g̃y ∼ 0), explaining the lack
of QTM in the ground doublet. The angle between the principle magnetic axes
(the eigenvector of g̃ corresponding to the eigenvalue g̃z) of the ground and first
excited state is almost exactly 90◦. This relative rotation of the magnetic axis
leads to strong transition matrix elements between the components of the ground
and first excited doublets.105, 109 The qualitative relaxation pathway of 14 is given
in Figure 14b.

Although the magnetic relaxation via the first excited doublet is well ex-
plained by the calculations, reproducing the energy of the said doublet proved
much more difficult. A simple CASSCF/SO-RASSI calculation yielded the value
206 cm−1, which is only 64% of the experimental value. It has been well estab-
lished that pure CASSCF calculations, which completely neglect the electron
correlation outside the active space are, in many cases, incapable of quantitatively
reproducing the energies of the lowest excited states, although in the case of
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trivalent lanthanides, the results are usually qualitatively correct.101 The problem
in the case of 14 is that the free ligands in the second coordination sphere affect
the energies of the Kramers doublets; therefore, the geometry that needs to be
treated in the ab initio calculations is rather large. An XMS-CASPT2 calculation
on the full geometry is not possible due to the high computational costs. In order
to introduce the missing correlation energy into the CASSCF calculations, at least
approximately, a CF-correction scheme was developed. This was carried out by
first performing a CASSCF/SO-RASSI calculation on the full geometry. Then,
CASSCF/SO-RASSI and CASSCF/XMS-CASPT2/SO-RASSI calculations were
carried out on a truncated geometry, where all of the phenyl and cyclohexyl
groups in the ligands had beed replaced by methyl groups. The ab initio CF
parameters were extracted from each calculation as described in section 4.5.4.
The difference in the CF Hamiltonians as calculated at CASSCF/SO-RASSI and
CASSCF/XMS-CASPT2/SO-RASSI levels on the truncated geometry is

∆ĤCF = ĤXMS-CASPT2,truncated
CF − ĤCASSCF,truncated

CF , (220)

and this “CF-correction” was added to the CF Hamiltonian extracted from the
CASSCF/SO-RASSI calculation on the full geometry to yield the corrected CF
Hamiltonian:

Ĥcorrected
CF = ĤCASSCF,full

CF + ∆ĤCF. (221)

This Hamiltonian should, in a highly approximate manner, include the electron
correlation effects outside the CAS within the immediate coordination sphere
around the Dy(iii) ion. The final energies of the Kramers doublets were obtained
by diagonalizing this Hamiltonian. The CF-corrected energy of the first excited
doublet is 297 cm−1, which still does not perfectly match the experimental value,
but is much closer than the pure CASSCF/SO-RASSI value and considering the
heuristic nature of the approximation, the result is fairly good. The energies of
the eight lowest Kramers doublets calculated with the different approximations
are listed in Table 6.

TABLE 6 The energies (in cm−1) of the eight lowest Kramers doublets (KDs) correspond-
ing to the CF-split components of the Dy(iii) ground 6H15/2 multiplet in 14 as
calculated with various approximations as well as the available experimental
values

full geometry truncated geometry
KD CASSCF CASSCF CASPT2 CF-correction Experimental
1 0 0 0 0 0
2 206 130 223 297 322
3 242 180 284 314 396
4 267 214 288 370
5 342 250 371 460
6 389 321 451 507
7 425 338 467 555
8 454 365 506 588
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a) b)

FIGURE 15 a) The structures and principal magnetic axes of the ground Kramers
doublet of 15 and b) the structures and principal magnetic axes of the
ground Kramers doublet of 16.

7.2.2 Dysprocenium complexes

In the previous section, it was shown that the strong axial donor ligands in 14
lead to very pronounced SMM behavior. It had already been shown by earlier the-
oretical work on a related system that removing the equatorial ligands altogether
would most likely lead to even higher blocking temperatures.111 The large ionic
radius of the Dy(iii) ion makes low-coordinate complexes extremely unstable,
and it would be very unlikely that the CyPh2PO ligands would be able to offer
enough steric protection to stabilize the Dy(iii) ion in the absence of the equatorial
coordination sphere. Much better steric protection is offered by cyclopentadienyl
ligands with some alkyl substituents coordinated to give metallocene-type sand-
wich complexes of Dy(iii). Various experimental works have established that
the cyclopentadienyl ligands produce a strongly axial CF and introducing only
weakly coordinating ligands into equatorial positions leads to very pronounced
SMM behavior.110, 703–709 Like in the case of complexes analogous to 14, it has
been pointed out that removing the equatorial ligands should lead to slower
relaxation of magnetization and higher blocking temperatures.110, 705 Paper VI
discusses the characterization of two dysprocenium complexes [(Cpttt)2DyCl]
(15, Figure 15a) and [(Cpttt)2Dy]+ (16, Figure 15b), where Cpttt = 1,2,4-tri(tert-
butyl)cyclopentadienide. The latter has no equatorial ligands and is the best
SMM known to date. It should be pointed out that the same exact complexes
were simultaneously and independently characterized and published by Chilton,
Mills, and co-workers.114 During the preparation of this dissertation also the Gd,
Ho, Er, Tm, Yb, and Lu analogues of 16 were characterized by Chilton, Mills and
co-workers.710

The magnetic properties of the chloride salt 15 are not very interesting. The
complex does not show any out-of-phase signal in ac susceptibility measurements
at zero dc field and is therefore not a SMM. The energies, principal components
of the g̃-tensors, and the relative angles of the principal magnetic axes of the
eight lowest Kramers doublet corresponding to the CF-split components of the
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TABLE 7 The energies, principal components of the g̃ tensors, and directions of the
principal magnetic axes of the eight lowest Kramers doublets (KDs) corre-
sponding to the CF-split components of the Dy(iii) ground 6H15/2 multiplet in
15

KD E / cm−1 g̃x g̃y g̃z θa

1 0 0.036 0.073 19.318 0.0◦

2 198 1.325 3.374 13.918 2.1◦

3 289 2.735 4.848 10.155 95.4◦

4 397 2.175 3.272 8.838 94.7◦

5 523 0.787 0.878 11.962 89.8◦

6 661 0.008 0.043 14.751 84.4◦

7 833 0.022 0.023 17.208 87.5◦

8 1084 0.002 0.003 19.725 90.7◦
a The angle between the principal magnetic axis of the doublet and that of the ground

doublet.

TABLE 8 The energies, principal components of the g̃-tensors, and directions of the
principal magnetic axes of the eight lowest Kramers doublets (KDs) corre-
sponding to the CF-split components of the Dy(iii) ground 6H15/2 multiplet in
16

KD E / cm−1 g̃x g̃y g̃z θa

1 0 0.000 0.000 19.884 0.0◦

2 457 0.000 0.000 17.041 2.4◦

3 705 0.001 0.001 14.393 3.9◦

4 864 0.002 0.005 11.749 4.9◦

5 1012 0.075 0.078 9.123 5.6◦

6 1156 0.750 0.962 6.508 4.0◦

7 1270 0.165 1.941 3.881 4.0◦

8 1334 11.556 9.420 1.284 0.6◦
a The angle between the principal magnetic axis of the doublet and that of the ground

doublet.

Dy(iii) ground 6H15/2 multiplet were calculated at CASSCF/SO-RASSI level and
are listed in Table 7. The ground doublet has a largely axial g̃-tensor, but the
transverse components g̃x and g̃y are not small enough to fully suppress the
QTM. This is the most likely reason for the absence of slow relaxation in 15. If
the ground doublet QTM was blocked by an external field, the relaxation would
take place via the first excited doublet giving rise to a barrier of Ueff = 198 cm−1.
The relaxation pathway is illustrated in Figure 16a.

The dysprocenium cation 16 was crystallized with the non-coordinating
B(C6F5)4]

− anion and displays very notable SMM behavior. The hysteresis
loops remain open up to 60 K using a scan speed of 39 G s−1. The FC and ZFC
susceptibilities diverge also at 60 K using a ramping speed of 2 K min−1. The
blocking temperature is more than four times higher than in any other system
characterized earlier. The relaxation data were fitted using an Arrhenius-type
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FIGURE 16 a) The qualitative barriers for the relaxation of magnetization in 15 and b)
the qualitative barriers for the relaxation of magnetization in 16.

model giving an effective barrier height of Ueff = 1277 cm−1. Properties of
the eight lowest Kramers doublets were calculated at CASSCF/SO-RASSI level
and are listed in Table 8. The two lowest doublets have practically perfectly
axial g̃-tensors. The transverse components g̃x and g̃y grow roughly an order of
magnitude each time when one moves to higher energy doublets. The principal
magnetic axes of all doublets are almost perfectly aligned; the largest angle
between the ground doublet and an excited doublet is the 4.9◦ angle between the
ground and fourth excited doublets. The calculated transition matrix elements
predict that the relaxation pathway takes place via the fifth excited doublet
(Figure 16b) predicting an effective barrier of 1156 cm−1, which is in fairly good
agreement with the experimental value. The small deviation most likely results
from the neglection of electron correlation effects outside the active space.

The ab initio CF calculations allow one to decompose the ab initio SO-RASSI
eigenstates into projections onto the states {|JMJ〉}. It is rather common in the
case of Dy(iii) SMMs that the lowest doublets have very large projection onto
a state characterized by a single value of J and of MJ . In the higher energy
doublets, the different MJ components become increasingly mixed. In the case of
16, however, all states have very large projection on some single state |JMJ〉. The
smallest squared modulus of a projection onto some |JMJ〉 state is 0.964 in the
fifth excited Kramers doublet. This is also the doublet where the energy barrier
is crossed in the qualitative relaxation pathway. In an ideally axial system with a
D∞h or C∞v symmetry, none of the |JMJ〉 states are mixed by the CF. Based on
the CF decomposition and to the best of our knowledge, 16 is the closest to an
ideally axial system ever observed in a molecular lanthanide system. This further
highlights the importance of designing strong axial CFs with no ligands in the
equatorial coordination positions. It should also be noted that the axiality could
still be improved leading to an even more pronounced SMM behavior and higher
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blocking temperature.

7.3 Bimetallic [BQ{DyCl2(THF)3}2] complex

In the design of lanthanide SMMs with higher operational temperatures, the first
step is always suppression of the QTM in the ground doublet. In complexes
14 and 16 discussed in the previous sections, this was achieved by a highly
axial CF. Another approach to suppress QTM is to couple lanthanide ions to
each other, to transition-metal ions, or to radical ligands to introduce exchange
interactions. The exchange interaction has a similar decoupling effect on the
components of the ground Kramers doublet as does an external magnetic field.
Several important hallmarks have been achieved by this strategy in the case of
polymetallic Dy(iii) complexes.711–715 The exchange interactions between triva-
lent lanthanide ions mediated by some superexchange mechanism are usually
rather weak, as the unpaired electrons of the lanthanide ions occupy the 4f shell,
which is strongly shielded by the doubly occupied 5d and 5p orbitals with larger
spatial extents. The strongest exchange coupling so far has been achieved in
N3−

2 radical-bridged lanthanide complexes.115, 116, 716 The systems shows mag-
netic blocking up to 20 K demonstrating that strong direct exchange interactions
(when compared to lanthanide–lanthanide superexchange) can be utilized to
design systems with highly pronounced SMM behavior. Unfortunately, other
exchange coupled radical-bridged lanthanide complexes have not demonstrated
exceptionally high blocking temperatures.717–722

In Paper VII, a benzoquinone-bridged bimetallic Dy(iii) complex [BQ{DyCl2
(THF)3}2] (17, Figure 17, BQ = 2,5-bisoxide-1,4-benzoquinone) was characterized.
The original goal in the project was to reduce the BQ bridge into a radical to
yield a radical-bridged complex. Cyclic voltammetry and EPR measurements
support the formation of the radical complex; however, no crystals of the radical
complex suitable for X-ray crystallography could be obtained, and the possible
radical-bridged system could not be structurally characterized. Thus, computa-
tional studies were only carried out on the complex 17 with a diamagnetic bridge.
A very similar complex with a chloroanilate bridge was recently prepared by van
Slageren and co-workers;723 they also characterized the radical-bridged complex
by spectroscopic methods but were unable to obtain a crystal structure.

Ac susceptibility measurements were carried out on 17, but no out-of-
phase signal was observed, indicating that 17 is not a SMM. Properties of the
eight lowest Kramers doublets corresponding to the CF-split components of the
Dy(iii) ground 6H15/2 multiplet were calculated at CASSCF/SO-RASSI level. The
calculations were carried out by replacing the Dy(iii) ion of the other center by
the diamagnetic Y(iii) ion, which has a very similar ionic radius. The two centers
are related by a symmetry operation and are therefore equivalent. Calculations
were carried out on both centers but the results differ due to some numerical
noise only; thus, only one set of values is reported in Table 9. It is immediately
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FIGURE 17 The structure of 17 and the principal magnetic axes of the ground doublets
of the two Dy(iii) ions.

TABLE 9 The energies, principal components of the g̃-tensors, and directions of the
principal magnetic axes of the eight lowest Kramers doublets (KDs) corre-
sponding to the CF-split components of the Dy(iii) ground 6H15/2 multiplet in
17

KD E / cm−1 g̃x g̃y g̃z θa

1 0 0.252 0.817 18.604 0.0◦

2 44 0.206 0.300 19.359 91.0◦

3 74 2.500 4.525 11.653 9.8◦

4 132 8.008 5.110 0.185 82.2◦

5 196 3.068 4.124 11.027 93.0◦

6 251 0.075 1.352 14.788 75.8◦

7 288 0.985 2.392 12.182 95.0◦

8 306 0.842 2.359 14.483 92.6◦
a The angle between the principal magnetic axis of the doublet and that of the ground

doublet.

clear that the transversal components of the g̃-tensor of the ground doublet are
too large to effectively suppress QTM, explaining the lack of SMM behavior.
It is also interesting to note that the principal magnetic axes of the ground
doublets are not aligned along the pseudo-C5 axes of the pentagonal bipyramidal
coordination environments, but rather lie in the molecular plane (Figure 17). This
is easy to understand by considering the formal charges on the oxygen atoms in
the equatorial coordination positions; those of the BQ ligand have formal −1/2

charges, whereas those in the THF ligands are formally neutral. This means that
the actual pseudo-symmetry of the CF is C2v with the main rotational axis lying
in the molecular plane. C2v symmetry (exact or distorted) is not high enough to
enforce axiality of the g̃-tensor.105

Even though the g̃-tensor of the ground doublet in 17 is not axial, it is still
in principle possible that the QTM would be suppressed by exchange interaction
between the two Dy(iii) ions. This type of suppression has been observed in
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bimetallic Dy(iii) complexes with somewhat similar coordination environments
and exchange coupling constants with magnitudes ranging from 3 cm−1 to 7 cm−1

as determined with the Lines model.724, 725 To study why this suppression is not
effective in 17, the exchange interaction was modeled by the Lines model and
the exchange parameter JLines = 0.142 cm−1 was extracted by a fit of the ab initio

calculated single-ion properties to experimental χT data. The parameter is very
weak owning to the large distance between the two ions, and thus, the exchange
interaction is simply too weak to effectively suppress the QTM. The exchange
interaction could be considerably enhanced by introducing unpaired spin into
the bridging BQ ligand, and future work will focus on this.



8 THEORETICAL DESCRIPTION OF ANISOTROPIC
SPIN-DEPENDENT DELOCALIZATION

The favorable SMM properties observed in strongly exchange coupled lanthanide
complexes115, 116, 716 have highlighted the importance in understanding the nature
of exchange interactions in the presence of strong SOC. Within the limit of ap-
plicability of the LS coupling scheme, the pseudospin Hamiltonian describing
the direct or superexchange interaction between two trivalent lanthanide ions
has been derived starting from the microscopic Hamiltonian119, 120 and the model
has been applied to the description of strongly exchange coupled radical-bridged
bimetallic lanthanide complexes.121 Likewise, the conditions for Ising-type ex-
change interactions in lanthanide systems have been established.235 The double
exchange interaction, however, has so far not been addressed even in the limit
of weak SOC. In molecular lanthanide systems, spin-dependent delocalization
involving trivalent lanthanide ions has never been observed; therefore, there has
not been a dire need for a pseudospin Hamiltonian model. Highly delocalized
unpaired electrons have, however, been well-characterized in endohedral metallo-
fullerenes (EMFs),726–728 where lanthanide dimers [Ln2]

5+ (Ln = La, Gd, Lu) are
isolated in fullerene729 or aza-fullerene730–732 cages. The steric protection and the
high electron affinity of the cages can stabilize lanthanide dimers with strong pos-
itive charge. The dimer can be thought of as consisting of two trivalent lanthanide
ions with one “extra” electron resonating between the ions. DFT calculations
have shown that this electron is highly delocalized over the two ions,733, 734 and
interactions between lanthanide ions arising from the delocalization have been
described as a one-electron covalent metal–metal bond.735, 736

The experimental and theoretical studies on bilanthanide EMFs have so
far mostly focused on the lanthanide ions, which are either diamagnetic or
isotropic in their trivalent oxidation states. Very recently, Popov and co-workers
experimentally characterized a bidysprosium EMF Dy2@C80(CH2Ph) (Figure 4b),
which is a SMM with a blocking temperature of 18 K.117 The paper also includes
a rudimentary theoretical analysis. By the time Popov’s paper was published, the
research included in this dissertation was already in its final stage, and there was
no time left to analyze the Dy2@C80(CH2Ph) EMF. However, Paper VIII included
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in this thesis, analyzes the strongly anisotropic spin-dependent delocalization in
the excited states of two experimentally characterized EMFs [Gd2@C78]

− (18) and
[Gd2@C80]

− (19).a The focus in Paper VIII is on the anisotropy of the delocalized
electron, whereas the anisotropy in Dy2@C80(CH2Ph) originates from the 4f
electrons of the Dy ions. The consolidation of the concept of spin dependent
delocalization and the 4f anisotropy into a single pseudospin Hamiltonian model
is currently underway by the author of the present work but will not be discussed
here. The work presented in Paper VIII forms an important foundation for
the development of models to understand the anisotropy in more complicated
systems.

Although Paper VIII discussed the anisotropic spin-dependent delocaliza-
tion in the context of the EMFs 18 and 19, the theory is not specific to these
systems and can, if certain assumptions are valid, be applied to other systems
as well. The fullerene cages in 18 and 19 can be considered as microscopic labo-
ratories, which allow one to study the properties of the simple [Gd2]

5+ dimers.
We will first discuss the general features of the electronic structures and the
ground state magnetic properties of 18 and 19 and then proceed to describe the
anisotropic exchange in the excited states.

8.1 Computational details

The EMFs 18 and 19 have only been characterized in frozen solution; thus, no
crystal structure geometry is available. The geometries were optimized at DFT
level using the PBE0 hybrid XC functional in a non-relativistic framework. An
ECP53MWB ECP737, 738 with a core-polarized valence part corresponding to a
[311111/31111/21111/111/11] contraction739, 740 was used for the Gd ions. This
basis includes the 4f electrons in the ECP definition; hence, the calculations can
be carried out as if for a closed-shell system. Ahlrichs’ older TZVP basis621

was used for the carbon atoms in the geometry optimizations. All further DFT
calculations were carried out in a scalar relativistic framework using the ZORA
Hamiltonian as implemented in Orca.392 The triple-ζ double-polarized SARC-
ZORA-TZVPP basis627 was used for the Gd ions, and the polarized double-ζ
basis ZORA-def2-SVP624 was used for the carbon atoms. Energies of higher-lying
states were calculated using the DFT/ROCIS (DFT restricted open-shell CI singles)
method.617–619 The hybrid PBE0 XC functional was used along with the default
set of parameters for the scaling of the CI matrix elements. The CI matrix was
constructed by generating all single excitations from the SOMOs into all virtual
orbitals up to 5.0 Hartree energy units considering the reference state multiplicity

a The experimental data has not yet been published and is based on personal correspondence
with prof. T. Kato (Kyoto University). The characterization has been discussed in a
conference abstract by T. Yamaguchi, N. Nakatori, T. Mitani, K. Kikuchi, T. Kodama,
K. Furukawa, and T. Kato presented at The 50th Fullerenes- Nanotubes- Graphene General
Symposium in 2016.
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and the multiplicities which differ from the reference state by ±1. The 200 lowest
roots were solved. SOC was introduced by mixing the DFT/ROCIS solutions
using the QDPT formalism and the SOMF operator. All DFT calculations were
carried out with the Orca code.251, 252 Version 3.0.2 was used for the geometry
optimizations, version 4.0.0 for the DFT/ROCIS calculations, and version 3.0.3
for all other DFT calculations.

In order to extract effective single-ion parameters used in the construction
of the model Hamiltonians, multireference ab initio calculations at CASSCF/XMS-
CASPT2 level were carried out on a free Gd(ii) ion. The calculations utilized the
ANO-RCC-VQZP basis,699 and scalar relativistic effects were introduced using
the X2C approach. An (8,12) active space consisting of the seven 4f orbitals
and the five 5d orbitals was used. In two SA-CASSCF calculations, one for each
multiplicity, five roots with S = 4 and another five roots with S = 3 corresponding
to the 9D and 7D terms arising from the 4f75d1 configuration of the Gd(II) ion
were solved. The XMS-CASPT2 corrections were only calculated for the CASSCF
energies and no mixing of states by the electron correlation outside the active
space was considered. SOC was introduced using the SO-RASSI methodology
and the AMFI operator.

8.2 Electronic structures of [Gd2@C78]− and [Gd2@C80]−

The optimized structures of 18 and 19 are illustrated in Figure 18a. 18 retains the
D3h symmetry of an elongated C78-D3h(5) fullerene cage, whereas in 19, the Ih

symmetry of the C80-Ih cage is lowered to an approximate D2h symmetry. The Gd–
Gd distances in 18 and 19 are 408.8 pm and 387.4 pm, respectively. Experimental
EPR measurements show that both systems have a S = 15/2 ground state, where
all fifteen unpaired electrons are coupled to a FM configuration. The (2S+ 1)-fold
degeneracy is weakly split by SOC.

The electronic structures of 18 and 19 were studied by DFT calculations. To
separate the effects of the electronic structure, which can be associated purely
to the [Gd2]

5+ dimers from those arising from the interaction with the cage, the
calculations were also carried out on simple dimers 18’ and 19’, which consist
only of two Gd ions assigned with a +5 charge and fixed at the same distance as
in the respective caged structures. The KS orbitals calculated for 18, 19, 18’, and
19’ show that fourteen of the fifteen unpaired electrons in the ground S = 15/2

spin state occupy combinations of the Gd 4f orbitals. The one resonating electron
occupies a σ-type orbital, which is delocalized over both ions and has large
amplitude in the Gd–Gd bonding region. The σ orbital consist mainly of the
Gd 5dz2 , 6s, and 6pz atomic orbitals. The lowest virtual 5d orbital combinations
in 18 and 19 are extremely diffuse and strongly mix with the cage orbitals. In
the simple dimers 18’ and 19’, however, the virtual 5d orbital combinations can
be easily identified, and they are illustrated in Figure 18b. It is easy to see that
the virtual orbitals represent bonding and anti-bonding π- and δ-symmetric



156

y

x z

y

y

x z

y

σ*

π*

δ*

δ

π

σ

a) b) c)

FIGURE 18 a) The optimized geometries of 18 and 19, b) the σ-symmetric bonding
orbitals in 18 and 19, and c) the 5d orbital combinations in 18’. The orbital
combinations in 19’ are very similar.

combination of the 5d orbitals and the anti-bonding σ type combination. Unlike
the occupied σ-type orbital, the virtual orbitals are very weakly mixed with
s, p, or other orbitals and retain their 5d-like character. To keep the notation
simple, we will refer to both the σ-type orbital and the actual virtual 5d orbital
combinations as 5d orbital combinations.

The relative energies of configurations, where the σ electron is promoted to
one of the virtual 5d combinations, was examined by DFT/ROCIS calculations,
and the results are listed in Table 10. The calculations were carried out both
for the full caged systems and for the dimers. The nature of the excitations
was determined by visual examination of the natural transition orbitals. In the
case of the caged systems 18 and 19, only the lowest two excitations could be
assigned to 5d→5d transitions. The higher energy excitations become energeti-
cally intertwined with various 5d→cage and cage→cage excitations. In case of
the dimers 18’ and 19’, all 5d→5d excitations could be identified and the lowest
excitation energies match the excitation energies calculated for the caged systems
reasonably well. The main difference between the caged systems and the dimers
is that the π- and δ-symmetric orbitals are exactly degenerate by symmetry in the
dimers. The D3h symmetry of 18 should be able to enforce the degeneracy as well
and the two calculated σ → π excitations of 18 have almost the same energies.
The small deviation results most likely from the fact that the symmetry was not
explicitly enforced on the wave function and from numerical inaccuracies. In
19, the pseudo-D2h symmetry should not retain any degeneracies and an energy
difference of 1576 cm−1 is observed between the two σ → π excitations. The exci-
tation energies calculated for the dimers 18’ and 19’ were used as approximations
to the respective excitation energies of 18 and 19 in the subsequent analysis.
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TABLE 10 5d→5d excitation energies (in cm−1) calculated for 18, 19, 18’, and 19’ using
the DFT/ROCIS method

Excitation 18 19 18’ 19’
σ → π 23293.2 21334.8 19357.2 21237.8
σ → π 23331.5 22910.9 19357.2 21237.8
σ → δ 23630.4 26894.6
σ → δ 23630.5 26894.7
σ → δ∗ 24177.2 27733.9
σ → δ∗ 24177.3 27734.0
σ → π∗ 24577.2 28532.7
σ → π∗ 24577.2 28532.7
σ → σ∗ 25115.8 29441.0

8.3 Spin Hamiltonian description

8.3.1 Exchange interaction in Σ states

The ground states of 18 and 19 do not have any first-order angular momentum
and give rise to Σ terms. Here, we are using the same labeling of electronic
states as is used in linear molecules.741 In the case of the 5d orbitals of 18, this
does not introduce any approximations as the Σ, Π, and ∆ representations of the
D∞h group have direct correspondence with the A, E′, and E′′ representations
of the D3h group.245 In the case of 19, this is an approximation as the Π and ∆

representations do not directly correspond to any irreducible representation of
the D2h group. The ground configuration where the 5d electron occupies the
bonding σ orbital gives rise to a Σg term, and the configuration where the electron
occupies the σ∗ orbital gives rise to a Σu term. The strong electron delocalization,
referred to as transfer interaction or resonance, strongly splits these two terms,
leaving the Σg term as an energetically well-separated ground state term. The
exchange interaction between the σ electron and the 4f electrons in the two Gd
ions further splits the Σg into a manifold of different exchange states. Due to the
strong delocalization of the σ electron, the Hund’s rule coupling between the σ

and 4f electrons is weak compared to the effects of electron transfer. This is the
opposite case to what is encountered in conventional double exchange, where
the exchange splitting is stronger than the splitting of terms due to the transfer
interaction. Thus, the system is better described as a three-site spin system where
one of the sites is formed by the σ electron, which is resonating between the two
ions, and the other two sites are formed by the Gd 4f spins. We only need to
consider the case where all seven 4f electrons at each site have the same spin as
any non-Hund state is much higher in energy. This model is described by the
HDvV-type Hamiltonian

ĤHDvV = −J4f−4fŜ0,a · Ŝ0,b − J4f−σ

(
ŝ · Ŝ0,a + ŝ · Ŝ0,b

)
, (222)

where Ŝ0,a and Ŝ0,b operate on the total 4f spins Sa = Sb = 7/2 at Gd ions a and
b, ŝ operates on the σ electron, and J4f−4f and J4f−σ are the exchange coupling
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constants.
The values of the exchange coupling constants were determined from BS

DFT calculations. Since the sites a and b are equivalent by symmetry, three BS DFT
states with unique energies can be constructed: |ααα〉, |αβα〉, and |ααβ〉, where
the first index is site a, second is the σ electron, and third is site b. Following the
usual procedure of interpreting the states as Ising states, the exchange coupling
constants can be extracted as

J4f−4f =
1

49
(
2Eααβ − Eαβα − Eααα

)
and J4f−σ =

1
7
(
Eαβα − Eααα

)
. (223)

The values were calculated for 18’, 19, and 19’. The calculations on the |ααβ〉
state of 18 faced considerable convergence difficulties. However, the exchange
coupling constants calculated for 19 and 19’ are very similar especially when
considering the typical errors in BS DFT calculations; therefore, the exchange
coupling constants calculated for 18’ were taken as a reasonable approximation
to those of 18. The obtained values are J4f−4f = −1.3 cm−1 and J4f−σ = 354 cm−1

for 18 and J4f−4f = −2.9 cm−1 and J4f−σ = 390 cm−1 for 19. Thus, the direct
exchange between the 4f spins of the two Gd ions is very weak and AFM, and
the exchange coupling between the 4f spins and the σ electron is strongly FM.
This should be expected, as the latter exchange originates from the Hund’s rule
coupling, which is always FM. Considering usual values of Hund’s rule coupling,
the values obtained for J4f−σ are fairly weak. This most likely owes to the strong
delocalization of the σ electron compared to the respective atomic situation.

The experimental EPR measurements showed weak ZFS of the ground S =
15/2 multiplet with ZFS parameters D = 0.0498 cm−1 and E = 0.00023 cm−1 for 18
and D = 0.0339 cm−1 and E = 0.0102 cm−1 for 19. The values are extremely small;
thus, evaluating them quantitatively using any DFT or ab initio multireference
method is next to impossible. Therefore, the main goal was to correctly reproduce
the sign of the D parameter. All common DFT-based methods for the evaluation
of ZFS parameters failed to achieve this. Physically meaningful multireference
calculation of the parameters was not possible, as the ZFS originates from the
mixing of high-lying multiplet states into the ground multiplet under SOC
and these states cannot be reduced to the set of states generated within some
reasonably sized active space. The signs were ultimately reproduced correctly
when the ZFS parameters where extracted from the DFT/ROCIS results. A
numerical effective Hamiltonian in a model space of {|S̃M̃S〉} states, where
S̃ = S, was constructed from the DFT/ROCIS eigenvalues and eigenvectors using
equation (57). Norms of the projections of the ab initio states on the states in the
model space are ∼ 1, and the resulting Hamiltonian is practically Hermitian. The
CF Hamiltonian was then constructed as in equation (62) using the substitution
Ĵ → S̃. The CF parameters enter the matrix elements in a linear fashion, and
they were solved by a least-squares fit between the analytical expressions and the
numerical values. The D matrix was then constructed from the rank k = 2 CF
parameters using expressions obtained from the relationship between spherical
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and Cartesian spherical harmonics:97

Dxx = − 2
105

√

3
2

Re(B22), Dxy = Dyx = − 2
105

√

3
2

Im(B22), (224)

Dyy =
2

105

√

3
2

Re(B22), Dzx = Dxz =
2

105

√

3
2

Re(B21), (225)

Dzz =
3

105
B20, Dzy = Dyz =

2
105

√

3
2

Im(B21). (226)

The D matrix was finally diagonalized, and the D and E parameters were obtained
with equation (68). The values are D = 0.297 cm−1 and E = 0.000 cm−1 for 18
and D = 0.375 cm−1 and E = 0.000 cm−1 for 19. The digits beyond the third
decimal cannot be reliably distinguished from numerical noise. The calculated
parameters are still an order of magnitude off, but do correctly reproduce the
sign of the D parameter; and, as noted above, when considering the extremely
small energy differences involved, the results are very reasonable.

8.3.2 Exchange interaction in Π and ∆ states

The general model Hamiltonian describing the most relevant physical interactions
in the states arising from the Π and ∆ terms of 18 and 19 in the presence of
first-order angular momentum is

Ĥmodel = Ĥa
SOC + Ĥa

Hund + Ĥb
SOC + Ĥb

Hund + Ĥab
transfer, (227)

which describes the SOC, Hund’s rule coupling, and transfer interaction. The
superscripts indicate operators that act on sites a or b, and the last term acts on
both sites. We have assumed that mixing between the Σ, Π, and ∆ manifolds is
negligible (see the Paper VIII for more detailed discussion on this assumption);
therefore, the Hamiltonian (227) acts in a space of Π or ∆ CF doublets, which
have double degeneracy due to the spatial symmetry. Under these assumptions,
(227) conserves the projections of the total angular momentum MJ , the orbital
angular momentum ml, and the total spin angular momentum MS. The explicit
forms of the SOC and Hund’s rule coupling operators are

Ĥi
SOC = ζ l̂ · ŝ (228)

Ĥi
Hund = −JHŝ · Ŝ0,i, (229)

where i ∈ a, b, ζ is the Gd(ii) 5d orbital SOC constant, l̂ is an orbital angular
momentum operator acting on the 5d orbital, and JH is the Hund’s rule coupling
constant. The transfer operator is given as

Ĥab
transfer = ∑

ml ,ms

tml

(

â†
ml ,ms

b̂ml ,ms + b̂†
ml ,ms

âml ,ms

)

, (230)

where â†
ml ,ms

(âml ,ms) creates (annihilates) an electron with spin projection ms into
an orbital with angular momentum projection ml at ion a, and b̂ml ,ms and b̂†

ml ,ms
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act accordingly at ion b. tml
is a transfer parameter between orbitals with orbital

angular momentum ml at the two sites. Under the D3h symmetry, the transfer
parameters between orbitals of different symmetry are zero, whereas tml

= t−ml
.

In the absence of the transfer interaction and assuming that the resonating
electron is localized at site a, the eigenvalues of the one-site Hamiltonian Ĥa

SOC +
Ĥa

Hund are given as

Ea
±(JH, ζ; S0,a, MK, ml) (231)

=
1
2

JH ± 1
2

√

J2
Hs2(2S0,a + 1)2 − 8JHζmls2MK + ζ2m2

l

16s2(S0,a + s)

(2S0,a + 1)2 ,

where K = S0,a ± s is the total one-site spin. At the limit of JH → ∞ equation
(231) reduces to

Ea
JH→∞(ζ; MK, ml) = ±2ζmlsMK

2S0,a + 1
. (232)

The transfer interaction mixes the states where the resonating electron is located
at any given site to produce fully delocalized eigenstates. Unfortunately, the
resulting matrix is too large for the characteristic polynomial to have analytic
solutions, and the full Hamiltonian (227) can only be diagonalized numerically.
If the transfer interaction is introduced as a first order perturbation correction to
(232), one obtains

E±(t; K, MK, M0, ml) =







2ζmlsMK ± t (K + MK)

2S0 + 1
if M0 = MK − s

2ζmlsMK ± t (K − MK)

2S0 + 1
if M0 = MK + s

2ζmlsMK

2S0 + 1
else,

(233)

where we have assumed S0,a = S0,b ≡ S0. The approximate eigenvalues (233)
become the exact eigenvalues of (227) at the limit t ≪ ζ and JH → ∞. It
is interesting to note that the eigenvalues depend on both the total one-site
spin K and its projection MK. This Ising-type dependence on the projection
introduces an anisotropy into the energy spectrum. This is in stark contrast to
the conventional double-exchange case described in equation (88), where the
eigenvalues only depend on the total spin quantum numbers.24 Furthermore,
the dependence on MK emerges from both the SOC term and the transfer term
in the Hamiltonian. This then implies that the anisotropy can be chemically
enhanced both by enhancing the single-ion anisotropy and also by tuning the
transfer interaction.

8.4 Numerical results

In order to evaluate the energy spectrum of the states in the Π and ∆ manifolds,
we first need to evaluate the values of the parameters ζ, JH, and {tml

}. The
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TABLE 11 Energies (in cm−1) of the spin-orbit coupled states arising from the 4f75d1

configuration of a free Gd(II) ion as analytical expressions obtained by a
diagonalization of a model Hamiltonian, and as numerical values obtained
by fitting the exact expressions to ab initio values as well as the ab initio

calculated and experimental values

State Analytical expression Model Ab initio Exp.742

9D2
1
8

(

−13JH − 2ζ − 2
√

64JH
2 + 64JHζ + 25ζ2

)

0 0 0

9D3
1
8

(

−13JH − 2ζ − 2
√

64JH
2 + 40JHζ + 25ζ2

)

298 317 279

9D4
1
8

(

−13JH − 2ζ − 2
√

64JH
2 + 8JHζ + 25ζ2

)

758 775 694

9D5
1
8

(

−13JH − 2ζ − 2
√

64JH
2 − 32JHζ + 25ζ2

)

1464 1425 1310
9D6

1
8 (−29JH + 8ζ) 2617 2393 2283

7D5
1
8

(

−13JH − 2ζ + 2
√

64JH
2 − 32JHζ + 25ζ2

)

9404 9045 9356

7D4
1
8

(

−13JH − 2ζ + 2
√

64JH
2 + 8JHζ + 25ζ2

)

9869 9695 9718

7D3
1
8

(

−13JH − 2ζ + 2
√

64JH
2 + 40JHζ + 25ζ2

)

10137 10153 10015

7D2
1
8

(

−13JH − 2ζ + 2
√

64JH
2 + 64JHζ + 25ζ2

)

10264 10470 10234
7D1

1
8 (3J + 8ζ) 10372 10672 10387

SOC and Hund’s rule coupling constants are single-ion properties and can,
therefore, be evaluated from a calculation on a single Gd(ii) ion. The parameters
can be extracted by fitting the eigenvalue spectrum of ĤSOC + ĤHund to the
eigenvalues calculated at CASSCF/XMS-CASPT2 level. This procedure yielded
values ζ = 1038 cm−1 and JH = 2070 cm−1. The energy spectrum of the Gd(ii)
states arising from the 4f75d1 configuration as obtained directly from the ab initio

calculations and as calculated using the obtained parameters along with the
experimental values742 is listed in Table 11. The values are in good agreement
with the experiment. The exact expressions given in Table 11 have been derived
in the supplementary material of Paper VIII.

The transfer parameters where obtained from DFT calculations by utilizing
the one-to-one correspondence between the matrix elements of the KS Fock
operator (the operator on the left-hand side of equation (186)) and that of a
tight-binding Hamiltonian

Ĥtb = ∑
p,q

∑
σ

tpq

(

â†
pσ âqσ + â†

qσ âpσ

)

(234)

when expressed in a basis of localized atomic-like orbitals. Thus, the KS orbitals of
interest (the 4f and 5d combinations) were localized to their respective Gd ions to
give Wannier-type orbitals, which still retain their polarization and hybridization
due to the environment. The KS Fock matrix was then transformed into this basis.
Comparison of the matrix elements of the KS Fock operator and (234) allows
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one to identify the off-diagonal elements as the transfer parameters {tml
}. The

extraction was done on calculations carried out on the simple dimers 18’ and
19’. Some care must be taken because in a hybrid DFT calculation, the occupied
and virtual orbitals do not experience the same potential and a localization
procedure, which mixes the occupied and virtual blocks of the KS Fock operator,
introduces spurious contributions to the transfer parameters. However, in the
actual calculations only parameters obtained from the virtual block of the KS Fock
matrix were used. The tσ parameter was obtained from the σ → σ∗ excitation
energy, and the explicit value was never used in the actual calculations. The
values are tσ = 12557 cm−1, tπ = 2610 cm−1, and tδ = 273 cm−1 for 18’ and
tσ = 14721 cm−1, tπ = 3648 cm−1, and tδ = 420 cm−1 for 19’.

The obtained parameters were used in construction of the matrix elements
of the Hamiltonian (227). A basis consisting of the states {|S0,asKMK〉 ⊗ |a, lml〉 ⊗
|S0,bM0,b〉, |S0,aM0,a〉 ⊗ |b, lml〉 ⊗ |S0,asKMK〉} was used. |S0,asKMK〉 describes the
spin state of site a when the resonating electron is localized at it, and |S0,bM0,b〉 de-
scribes site b in the absence of the resonating electron. |S0,aM0,a〉 and |S0,asKMK〉
represent the opposite situation. |a, lml〉 and |b, lml〉 describe the orbital state
of the resonating electron when it is localized at site a and b, respectively. The
operators Ĥa

SOC, Ĥa
Hund, Ĥb

SOC, and Ĥb
Hund only couple basis states where the

resonating electron is localized at the same site, and Ĥab
transfer only has non-zero

matrix elements between states where the electron is localized at different sites.
The matrix elements of the operators are given as (see the supplementary material
of Paper VIII for full derivations):

〈S0,asKMK| ⊗ 〈a, lml| ⊗ 〈S0,bM0,b|ĤSOC|S0,asK′M′
K〉 ⊗ |a, lm′

l〉 ⊗ |S0,bM′
0,b〉

= δmlm
′
l
δM0,b M′

0,b
ζml ∑

M0,a,ms

msC
KMK
S0,a M0,a,sms

C
K′M′

K
S0,a M0,a,sms

(235)

〈S0,aM0,a| ⊗ 〈b, lml| ⊗ 〈S0,asKMK|ĤSOC|S0,aM′
0,a〉 ⊗ |b, lm′

l〉 ⊗ |S0,asK′M′
K〉

= δmlm
′
l
δM0,a M′

0,a
ζml ∑

M0,b,ms

msC
KMK
sms,S0,b M0,b

C
K′M′

K
sms,S0,b M0,b

(236)

〈S0,asKMK| ⊗ 〈a, lml| ⊗ 〈S0,bM0,b|ĤHund|S0,asK′M′
K〉 ⊗ |a, lm′

l〉 ⊗ |S0,bM′
0,b〉

= − J

2
[K(K + 1)− S0,a(S0,a + 1)− s(s + 1)] δKK′δMK M′

K
δmlm

′
l
δM0,b M′

0,b

(237)

〈S0,aM0,a| ⊗ 〈b, lml| ⊗ 〈S0,asKMK|ĤHund|S0,aM′
0,a〉 ⊗ |b, lm′

l〉 ⊗ |S0,asK′M′
K〉

= − J

2
[K(K + 1)− S0,b(S0,b + 1)− s(s + 1)] δKK′δMK M′

K
δmlm

′
l
δM0,a M′

0,a

(238)

〈S0,asKMK| ⊗ 〈a, lml| ⊗ 〈S0,bM0,b|Ĥab
transfer|S0,aM′

0,a〉 ⊗ |b, lm′
l〉 ⊗ |S0,asK′M′

K〉
= δmlm

′
l
tml ∑

ms

CKMK

S0,a M′
0,a,sms

C
K′M′

K
sms,S0,b M0,b

, (239)
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FIGURE 19 Splitting of the a) ∆ and b) Π terms under the influence of SOC, Hund’s rule
coupling, and electron transfer. The colors of the energy levels correspond
to a specific projection of the total angular momentum, and the vertical lines
indicate the calculated values of the transfer parameters. The energy scale
of 18 is used on the vertical axis. In 19, all the energy levels are translated
to a slightly higher energy due to the stronger CF.
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where the expansion coefficients are CG coefficients. Once the matrix elements
had been constructed, the Hamiltonian was numerically diagonalized. The energy
spectrum originating from the Π and ∆ terms of 18 as a function of the respective
transfer parameter magnitude |t| is given in Figure 19.

The energy spectrum shows that the states arising from the Π and ∆ terms
become energetically mixed even at relatively small values of |t|. The two mani-
folds at small |t| arise from the states where the resonating electron is coupled
into the 4f spins ferromagnetically (lower manifold) and anti-ferromagnetically
(higher manifold). In the range |t| . 2500 cm−1, these two manifolds are clearly
separated from each other. The splitting within each manifold into bonding and
anti-bonding states is also observable from the density of states, which is highest
near the top and the bottom of the respective manifold. For larger values of
|t|, the interaction starts to resemble that of a covalently bound system. At this
limit, the states in the two manifolds with the same values of MJ become strongly
mixed, and any division into some clear manifolds is lost. In the absence of SOC,
the left-hand side of Figure 19 would describe the “classic” double-exchange
situation (transfer interaction is much weaker than exchange interaction), whereas
the right-hand side describes a one-electron covalent bond (transfer interaction
dominates). Considering the transfer parameters calculated for 18 and 19 (the
vertical lines in Figure 19), the states arising from the ∆ terms clearly fall into the
double-exchange region, whereas the states arising from the Π terms are better
described as quasi-covalent states.



9 CONCLUSIONS

The overall goal of the present work has been to apply state-of-the-art computa-
tional and theoretical methods to the research conducted in the field of molecular
magnetism. The discussion presented here has heavily emphasized the quantum
chemical and theoretical aspects of the research. The actual work carried out
in most of the papers included in this dissertation is highly multidisciplinary
and in addition to the work of theoreticians, involves large, in many cases major,
contributions from synthetic chemists and magnetochemists.

The work described in papers I, II, and III focuses on the synthesis and char-
acterization of different exchange coupled systems. Theoretical calculations have
been used to analyze the various radical–radical, metal–radical, and metal–metal
exchange interactions and the weak anisotropy in the complexes characterized in
Paper I. In all cases, it is possible to extract more parameters from the theoretical
calculations than it is from fits to experimentally measured data. This allows
construction of more complicated models, which better represent the macroscopic
magnetic properties. In Paper II, the radical–radical exchange interactions be-
tween complexes 6 could only be analyzed by means of BS DFT calculations,
as the strong SOC of the Dy(iii) ion made such analysis based on experimental
data impossible. In Paper III, it was shown that the simple model used to fit the
experimental data is insufficient to fully describe all of the interactions taking
place in the system; all necessary parameters could only be extracted from the
quantum chemical calculations.

In Paper IV an approach to constructing organic radical systems with
FM radical–radical interaction was introduced. It was shown through BS DFT
calculations that by constructing radical dimers with mixed orbital symmetries,
it is possible to enforce FM radical–radical interaction in these systems. It was
further shown that the dimerization enthalpy of such systems can be favorable.
The work presented in Paper IV focused on purely organic radicals, but the
approach is equally applicable to organo-main-group radical systems and metal–
radical complexes as long as the necessary symmetry conditions are realized.

The papers V, VI, and VII described the characterization and the mag-
netic properties mono- and bimetallic Dy(iii) complexes. Theoretical calculations
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offered insight into the electronic structure and the origins of the various experi-
mentally observed phenomena or to the lack of such observations. The complexes
14 and 16 characterized in papers V and VI, respectively, represent the cutting
edge of experimental research into monometallic SMMs, and 16 holds the current
record for the highest magnetic blocking temperature observed in any SMM so
far. The 60 K blocking temperature is over four times higher than the earlier
record and approaches the temperature of liquid nitrogen.

Paper VIII is a purely theoretical contribution, where we discussed the
interplay of spin-dependent delocalization and SOC in the ground and excited
states of two experimentally characterized EMFs. The co-existence of strong
electron delocalization and SOC in lanthanide systems leads to highly anisotropic
energy spectrum, which is qualitatively different from what is observed in the
case of the conventional double-exchange mechanism. The anisotropy depends
both on the strength of the SOC and on the transfer interaction. This provides
possibilities to tune the anisotropy of polymetallic lanthanide systems with strong
electron delocalization and forms a solid foundation for further research.

Overall, the present work has contributed to field of molecular magnetism
by providing in-depth analyses of the electronic structures and the chemical and
structural factors that contribute to the magnetic properties of experimentally
characterized systems. Furthermore, the present work has provided new direc-
tions to the synthesis of radical, transition metal, and lanthanide complexes, and
has provided understanding of extremely complicated exchange mechanisms.

9.1 Outlook

In a closing section of this dissertation, we would like to briefly discuss the
directions the computational and theoretical research in the field of molecular
magnetism should be, in our opinion, taken based on the results of the present
work.

i) In the case of monometallic SMMs, the chemical design criteria for obtaining
high operational temperatures is generally well-understood at the molecular
level. The blocking temperature ultimately depends on the interaction of
the system with the low-energy phonons of the bulk material. Thus, the
relaxation is a property of the material, not just the SMM. As mentioned
earlier in this work, the ab initio study of the relaxation processes is still
in its infancy, and much work is required to understand the nature of the
spin–phonon interactions, the nature of the low-energy phonons in these
systems, and the relationship between the chemical structure of the SMMs
and the interaction with the lattice vibration.

ii) In the case of polymetallic SMMs, development is still required both in
the computational methods and in the pseudospin Hamiltonian models.
In case of the latter, focus should placed on generalizing the direct and
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superexchange mechanism into the case when LS coupling is not valid and
on further generalization of the double-exchange mechanism. Moreover,
computational methods capable of treating two or more ions in an ab initio

manner are required. The most promising approaches to this are DMRG in
the case of multireference methods and relativistic two-component DFT in
the case of BS DFT. In the absence of such methods, it would also be useful
to further develop methods for the extraction of pseudospin Hamiltonian
parameters from multireference ab initio and DFT calculations conducted
on simplified or fragmented systems.

iii) Throughout the discussion in this dissertation, we have pointed out nu-
merous shortcomings of the computational methods in the various projects.
This highlights the importance of improving the computational methods
that are already routinely used and, furthermore, the importance of under-
standing the nature and origin of these shortcomings so that the accuracy
of obtained results can be assessed even when experimental reference is
not available. Even if a method does not produce quantitative values, the
results can still be extremely useful if the errors manifests themselves in a
controlled and predictable manner. Future work should examine the nature
of these errors in great detail and their relation to the more fundamental
theories of wave-function-based quantum chemistry and DFT.
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