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Abstract  

Background. Characterizing aggregate genetic risk for alcohol misuse and identifying variants 

involved in gene-by-environment interaction (G×E) effects has so far been a major challenge. 

We hypothesized that functional genomic information could be used to enhance detection of 

polygenic signal underlying alcohol misuse, and to prioritize identification of single nucleotide 

polymorphisms (SNPs) most likely to exhibit G×E effects.  

Methods. We examined these questions in the young adult FinnTwin12 sample (n=1170). We 

used genome-wide association estimates from an independent sample to derive two types of 

polygenic scores for alcohol problems in FinnTwin12. Genome-wide polygenic scores included all 

SNPs surpassing a designated p-value threshold. DNase polygenic scores were a subset of the 

genome-wide polygenic scores including only variants in DNase I hypersensitive sites (DHSs), 

which are open chromatin marks likely to index regions with a regulatory function. We 

conducted parallel analyses using height as a non-psychiatric model phenotype in order to 

evaluate the consistency of effects. For the G×E analyses, we examined whether SNPs in DHSs 

were overrepresented among SNPs demonstrating significant G × E effects in an interaction 

between romantic relationship status and intoxication frequency.  

Results. Contrary to our expectations, we found that DNase polygenic scores were not more 

strongly predictive of alcohol problems than conventional polygenic scores. However, variants 

in DNase polygenic scores had per-SNP effects that were up to 1.4 times larger than variants in 

conventional polygenic scores. This same pattern of effects was also observed in supplementary 

analyses with height. In G×E models, SNPs in DHSs were modestly overrepresented among 

SNPs with significant interaction effects for intoxication frequency. 
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Conclusions. These findings highlight the potential utility of integrating functional genomic 

annotation information in order to increase the signal-to-noise ratio in polygenic scores and 

identify genetic variants that may be most susceptible to environmental modification. 

Keywords: alcohol, functional genomics, gene-environment interplay, polygenic scores 

 

Introduction 

Alcohol misuse (i.e., risky drinking and alcohol use disorder) is a top public health 

problem worldwide (World Health Organization, 2014), and reflects a complex interplay of 

genetic and environmental influences across development (Pagan et al., 2006). Twin and 

adoption studies have been critical in demonstrating that genetic influences account for roughly 

half of the variation in the risk for alcohol use disorder (Verhulst et al., 2015) and other alcohol 

use behaviors (Dick et al., 2011). Translating findings from family-based research designs of 

unmeasured genetic variance (i.e., inferred based on resemblance among different types of 

relatives) into a measured genetic framework to identify the specific variants associated with 

alcohol outcomes has been challenging (Hart and Kranzler, 2015). Although a few individually 

important genes and genetic variants have been identified, results from genome-wide 

association studies (GWAS) of alcohol use disorder underscore its highly polygenic nature (Yang 

et al., 2014, Hart and Kranzler, 2015, Mbarek et al., 2015). This high level of polygenicity is 

consistent with emerging findings from GWAS of psychiatric disorders more broadly 

(Geschwind and Flint, 2015), as well as findings that psychiatric conditions also share much of 

their polygenic underpinnings (Anttila et al., available online April 2016). 

Characterizing Aggregate Genetic Risk for Alcohol Outcomes 

 In recent years, polygenic approaches have emerged as one method to characterize 

aggregate measured genetic risk (Wray et al., 2014). These efforts were motivated by the 

growing recognition that many genes and genetic variants, each of small individual effects, 

contribute to complex disorders; as well as the practical, clinical goal of being able to accurately 

predict disease and disorder from genetic information. Most commonly, polygenic scores are 
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created by summing the number of “risk” alleles an individual carries across a selected set of 

single nucleotide polymorphisms (SNPs), weighted by empirical information from genetic 

association results obtained from an independent discovery sample. In effect, polygenic scores 

capture the composite additive effect of these multiple variants. This approach was initially 

used in the study of schizophrenia (The International Schizophrenia Consortium, 2009) and has 

since been applied to numerous complex traits (Dudbridge, 2013). As reviewed by Hart & 

Kranzler (2015), several recent studies have successfully used polygenic score approaches to 

predict alcohol-related outcomes (Yan et al., 2014, Vrieze et al., 2013, Frank et al., 2012, Kos et 

al., 2013, Levey et al., 2014).  

Polygenic scores can encompass thousands of individual genetic variants spread 

throughout the genome and include a mixture of true genetic association signal and noise from 

statistical artifact and stochastic error (Maher, 2015). Conventional polygenic scoring methods 

have typically accounted for less than 2% of the genetic liability underlying complex traits, 

although this improves as the discovery sample sizes increases. Simulations indicate that tens of 

thousands of subjects may still be needed to achieve clinically meaningful prediction with these 

methods (Dudbridge, 2013). Efforts to amplify true genetic signal and reduce noise could 

enhance the predictive power of polygenic scores. Although some methods have been 

developed to improve polygenic scores, as of yet there has been no attempt to use information 

beyond the discovery GWAS (i.e. p value thresholds for filtering the inclusion of SNPs or linkage 

disequilibrium structure for weighting SNPs) to further refine the creation of such scores. 

The past decade of genomic research has provided a wealth of information about the 

genetic variants that are being aggregated in these polygenic scores, including information 

about which variants are more or less likely a priori to have functional consequences on human 

traits and behaviors (ENCODE Project Consortium, 2012). In the same way that functional 

genomic information is important for understanding the biological coherence underlying GWAS 

results, it may also inform better ways to characterize individuals’ aggregate genetic risk for 

alcohol outcomes. Recent large-scale efforts have established that genetic variants associated 
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with a variety of complex diseases and traits are not randomly distributed throughout the 

genome, but rather are stratified based on their genomic context (Schork et al., 2013, Finucane 

et al., 2015). Across many complex diseases and traits, there is modest evidence for an 

overrepresentation of SNPs with significant GWAS signals in or near protein-coding regions, and 

even stronger evidence for overrepresentation of SNPs in certain noncoding regions (Hindorff 

et al., 2009). Once considered "junk DNA", it is now known that many regions outside of the 

exons that code for proteins have an indirect biological effect through the regulation of when, in 

what tissue, and under what circumstances a gene is expressed (ENCODE Project Consortium, 

2012). Epigenetic factors near the transcription start site of a gene and in other key regulatory 

regions can influence gene expression by changing the physical conformation of the DNA, thus 

changing how accessible the DNA is to the cellular machinery responsible for transcribing genes 

into proteins. 

In particular, GWAS signals are enriched within regions of open chromatin identified by 

deoxyribonuclease I (DNase I) mapping (Maurano et al., 2012). These so-called DNase I 

hypersensitive sites (DHS) are regions where DNA is highly accessible (Bell et al., 2011), and 

likely serves some cis-regulatory function (Thurman et al., 2012). The location of DHS signals 

overlaps that of many other regulatory markers, indicating that they are a broad, non-specific 

marker of sites of active regulatory DNA, capturing many different ongoing biological processes 

affecting gene expression. The enrichment of significant GWAS associations in these regions 

provides some biological coherence for interpreting the functional impact of variation in these 

non-coding variants, and also suggest that SNPs located in DHSs (referred to as DHS SNPs) may 

be more likely to be “true” signals and less likely to be false positives. For this reason, we 

hypothesized that functional annotation information like DHS location could be used to improve 

the predictive ability of polygenic scores. Using alcohol problems as our primary outcome, we 

expected that polygenic scores based on SNPs in regulatory regions (DHSs) would provide 

stronger predictive power (i.e., account for more variance) compared to conventional, 

unselected, genome-wide polygenic scores that included a mixture of DHS SNPs and non-DHS 
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SNPs. We focus specifically on localization in DHSs in view of recent evidence that SNPs with 

lower p values in our discovery sample GWAS were more likely to be in DHS regions (versus 

non-DHS regions) (Edwards et al., 2015), as well as broader evidence from genomic partitioning 

analyses that DHS SNPs accounted for the majority (79%) of the heritability across 11 common 

diseases (Gusev et al., 2014). Additionally, in the absence of existing knowledge about what 

specific functional annotations would be most advantageous to inform polygenic scores, DHS 

status provides a non-specific tool for a first look into whether this approach holds promise.  

Identifying Genetic Variants Involved in Gene-by-Environment Interaction Effects  

Unlike Mendelian disorders such as cystic fibrosis or Huntington’s disease, where a 

mutation in a single gene is sufficient to cause disorder, the pathway from genotype to 

phenotype for alcohol outcomes is not necessarily straightforward. Alongside advances in 

characterizing genetic risk, research has suggested that a number of environmental factors can 

alter the importance of genetic influences on alcohol outcomes (Young-Wolff et al., 2011), and it 

has also been suggested that G×E effects may harbor some of the ‘hidden heritability’ for 

complex behavioral outcomes (Manolio et al., 2009). Despite strong evidence for G×E effects 

from twin studies (Young-Wolff et al., 2011), the study of G×E using measured genotypes has 

been controversial (Duncan and Keller, 2011, Dick et al., 2015).  

Among the major criticisms is the focus on “usual suspect” candidate genes in the 

serotonin or dopamine pathways (e.g., SLC6A4 or MAO-A) (Dick et al., 2015). Thus, the field is in 

need of answers to the question of which SNPs are worth carrying forward into studies of G×E 

using measured genotypes. One way to answer this question is to examine whether certain 

types of SNPs (based on genomic information) are overrepresented among SNPs with G×E 

effects. Thus, in an effort to move away from the candidate gene approach, we tested the 

exploratory hypothesis that SNPs in regulatory regions would be more likely to have significant 

G×E effects. We believed DHS SNPs would be enriched for G×E interaction effects given that 

the DNA variants in DHS regions may be more likely to affect the chromatin structure around a 

gene that determines whether the DNA is accessible to transcription factors (i.e., the proteins 
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responsible for transcribing DNA to RNA and determining gene expression levels) (Cockerill, 

2011). Environmental exposures are known to affect epigenetic processes, and can further drive 

gene expression or repression via alterations to the availability of transcription factors 

(Meaney, 2010, Lopez-Maury et al., 2008). For these reasons, we hypothesized that allelic 

variation in DHS SNPs may be particularly impactful for responsiveness to environmental cues 

that alter gene expression (Liu et al., 2008).  

We examined romantic relationship status as the environmental moderator for these 

analyses in view of evidence that (1) involvement in a romantic relationship in young adulthood 

is associated with lower alcohol use (Fleming et al., 2010) and (2) that romantic relationship 

status changes the degree to which genetic influences are important for alcohol outcomes 

(Heath et al., 1989, Prescott and Kendler, 2001). Of particular relevance for this exploratory 

G×E hypothesis, recent analyses of the FinnTwin12 sample indicated that genetic variance for 

intoxication frequency was attenuated for those in a romantic relationship compared to those 

not in a romantic relationship (Barr et al., in press). This implies that genetic influences on 

intoxication frequency are less important for those who are in a relationship, and more 

important for those who are single. The results from these twin studies suggested that romantic 

relationship status would be a particularly good “candidate environment” when testing our 

hypothesis that SNPs in regulatory regions would be enriched for G×E effects. Twin studies of 

G×E effects using inferred genotypes typically show a fan-shaped pattern of effects, whereby 

additive genetic factors have more influence in certain environments, and less in others. 

Detecting a latent G×E effects with inferred genotypes implies that the majority of measured 

genes are likely to be moderated in the same way, such that the effect of measured genotypic 

influences on a phenotype varies across levels of the environment.  

The Current Study  

We examined two research questions related to the incorporation of functional genomic 

information to understand the genetic and G×E influences on alcohol use outcomes in a 

population-based sample of young adult Finnish twins (Kaprio, 2013, Kaprio et al., 2002): 1) Do 
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polygenic scores informed by DHS annotation predict lifetime alcohol problems better than 

conventional polygenic scores that include a mixture of DHS and non-DHS SNPs? And 2) Are 

DHS variants overrepresented among SNPs with G×E effects for alcohol misuse in a model 

where romantic relationship status is the environmental moderator? As a set, these questions 

contribute to efforts to enhance polygenic signal and empirically prioritize variants likely to be 

involved in G×E effects.  

Materials and Method 

Sample 

 Our sample comes from the youngest cohort of the Finnish Twin Cohort Study 

(FinnTwin12), which was established to examine genetic and environmental factors influencing 

health-related behaviors (Kaprio, 2013), including the development of alcohol misuse. 

Participants were recruited from Finland’s Population Registry, permitting comprehensive and 

unbiased nationwide ascertainment of all twins born across five birth cohorts in Finland from 

1983 to 1987. Baseline collection occurred when twins were aged approximately 12 years old, 

with a sample of some 5600 twins and their families (Kaprio, 2013) and an overall participation 

rate of 87%. Follow-up surveys occurred at ages 14, 17.5, and 22 years. Of the original 

epidemiological sample, 1035 families were chosen as part of an intensive subsample, from 

which 1852 twins (89% participation) completed the adolescent version of the Semi-Structured 

Assessment for the Genetics of Alcoholism (SSAGA; Bucholz et al., 1994) interview at age 14. 

Follow up of the intensive subsample when twins were, on average, age 22 (n=1347) included 

the adult SSAGA. DNA from blood or saliva samples was collected from 1295 twins. Data for the 

present study is drawn from the psychiatric assessment at age 22 among participants for whom 

genotypic data were available (n=1170). The sample was 53.6% female (N = 627) and the age 

range varied from 20-26, with a mean age of 22.42 years (SD=0.72). Participants were fully 

informed of study procedures and gave written consent to participate. The Helsinki University 

Central Hospital District’s Ethical Committee and Indiana University’s Institutional Review 

Board approved the FinnTwin12 study. 
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Measures 

 Lifetime alcohol dependence symptoms. The alcohol dependence symptoms (ADsx) 

measure was the count of the number of lifetime DSM-IV criteria that respondents endorsed 

from the SSAGA (Bucholz et al., 1994). Responses ranged from 0 to 7. ADsx was natural log-

transformed after adding 1 to adjust for the positive skew and to retain participants who 

endorsed zero symptoms. Individuals who never initiated alcohol use were coded as missing (n 

= 35).  

 Frequency of intoxication. For the G×E analyses, we expected that the moderating 

effect of relationship status would be on a contemporaneous alcohol misuse outcome rather 

than a cumulative lifetime alcohol misuse outcome, such as ADsx. Accordingly, we used a time-

delimited measure of frequency of intoxication for the G×E analyses. Frequency of intoxication 

was assessed at age 22 by the single item, "How often do you use alcohol in such a way that you 

get really drunk?" Response options included "never" (0) to "daily" (8). Response categories 

were transformed to reflect the number of days per month participants were intoxicated and 

natural log-transformed after adding 1 to adjust for the positive skew and to retain participants 

who reported “never” (Dick et al., 2001). 

Relationship status. Participants were asked, “How long (in years) have you been 

together with your present partner?” Those who indicated they were not dating were coded as 

0. Those who indicated they were in a romantic relationship (dating, married, or living in a 

common law relationship) of any length were coded as 1.  

Genotyping 

 Genotyping was conducted using the Human670-QuadCustom Illumina BeadChip 

(Illumina, Inc., San Diego, CA, USA) at the Wellcome Trust Sanger Institute (Kaprio, 2013). 

Quality control steps included removing SNPs with minor allele frequency < 1%, genotyping 

success rate < 95%, or Hardy-Weinberg equilibrium p < 1 × 10−6, and removing individuals with 

genotyping success rate < 95%, a mismatch between phenotypic and genotypic gender, excess 

relatedness (outside of known families), and heterozygosity outliers. Genotypes were imputed 
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to the 1000 Genomes Phase I (v3) reference panel using ShapeIT (Delaneau et al., 2012) for 

phasing and IMPUTE2 (Howie et al., 2009) for imputation. Prior analyses indicated a single 

dimension of ancestry in the sample (Meyers, 2012). Although a single dimension of ancestry 

does not preclude variation along this dimension, we note that fine-scale population 

substructure is less of an issue for common variants (versus rare variants), especially in the 

present sample given the relatively longer LD blocks that make the Finnish population more 

homogenous than other populations of mixed European ancestry. We also note that in 

supplementary analyses of the first 10 ancestry principal components and the ADsx and 

frequency of intoxication measures, we found no substantial evidence of population 

stratification. Out of 20 possible associations, only a single PC had a p-value of less than 0.10 

(PC3 for ADsx, p = 0.04). These converging pieces of evidence suggested that it was not 

necessary to correct for population stratification, and informed our decision to not include 

ancestry principal components in our analyses.   

Analytic Plan 

 Polygenic score creation. Summary association statistics used to create the polygenic 

scores for alcohol problems come from a previously reported GWAS of an alcohol problems 

factor score conducted in 4,304 Caucasian young adults from the Avon Longitudinal Study of 

Parents and Children (Edwards et al., 2015); this is the largest GWAS to date of alcohol 

problems in European young adults. Genotypes in this discovery sample were also imputed to 

the 1000 Genomes Phase I (v3) reference panel. From this discovery sample, we selected a list 

of 4,415,289 SNPs also available in FinnTwin12 and with a minor allele frequency > 5% and 

imputation quality R2 > .90 in both samples, and pruned this SNP set to obtain 212,718 

autosomal SNPs (4.8% of the common SNPs) in approximate linkage equilibrium (R2 < .25). This 

list was further filtered to create two sets of score SNPs with nominal GWAS association p 

values in the discovery GWAS (thresholds of p < .05 and p < .01, NSNPs = 10,693 and 2,221, 

respectively), based on preliminary analyses as well as previous work showing these thresholds 

have the best signal-to-noise ratio/predictive power for polygenic scores (Yang et al., 2014).  
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Scores were calculated in FinnTwin12 using the score procedure in PLINK version 1.9 

(Chang et al., 2015) summing each individual’s total number (imputed dosage) of minor alleles 

from the score SNPs, with each SNP weighted by the negative log of the GWAS association p 

value and sign of the association (beta) statistic. As illustrated in Figure 1, identical procedures 

were used to create a set of DNase I-restricted polygenic scores, except that the final list of LD-

pruned SNPs described above was further restricted to SNPs located in DHS sites. The locations 

of DHSs were based on narrow peak hotspots identified across 53 consolidated epigenomes by 

the RoadMap Epigenomics Project (http://www.roadmapepigenomics.org). The 53 epigenomes 

are summarized in the Supplementary Information (Table S1). SNPs were considered to be DHS 

SNPs if they directly overlapped a DHS or were in perfect linkage disequilibrium (LD) with 

another SNP overlapping a DHS. Of the 212,718 genome-wide score SNPs, 78,948 (37%) were 

located in a DHS site, and 3,946 (37%) and 789 (36%) of the DHS score SNPs fell under the 

GWAS p value thresholds of p < .05 and p < .01, respectively. Hereafter we will use the terms 

“GW-scores” to refer to polygenic scores created from the genome-wide set of SNPs and “DHS-

scores” to refer to polygenic scores from SNPs located in DHS sites only.  

Polygenic scores for alcohol phenotypes have had very modest effects in previous 

studies. Thus, in an attempt to conceptually validate findings coming out of the primary alcohol 

analyses, we also compared the predictive power of DHS- and GW-scores for height as a 

secondary outcome. We selected height as a model phenotype given that its molecular genetic 

etiology is further advanced (relative to alcohol problems) and polygenic scoring methods have 

already demonstrated substantial success (Wood et al., 2014). We used the same procedure to 

calculate the polygenic scores for height, with discovery GWAS summary statistics coming from 

the GIANT Consortium meta-analysis results of ~250,000 adults of European ancestry (Wood et 

al., 2014; available at http://portals.broadinstitute.org/collaboration/giant). Genotypes from 

the GIANT study were imputed to the HapMap2 CEU reference population, so the LiftOver tool 

(http://genome.sph.umich.edu/wiki/LiftOver) was used to harmonize SNP IDs and genomic 

locations with those of the 1000 Genomes-imputed FinnTwin12 dataset. There were 1,831,837 

http://genome.sph.umich.edu/wiki/LiftOver
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SNPs in common after filtering, pruned for LD to 193,884 SNPs (31,358 and 15,239 below p 

thresholds of .05 and .01, respectively). Of these, 76,913 (39.7%) SNPs were located in a DHS, of 

which 13,593 (43.3% of GW) and 6,918 (45.4% of GW) met p value thresholds of .05 and .01. 

Height (in centimeters) was measured in the FinnTwin12 sample by a self-report survey item at 

age 22. 

Predictive ability of DHS-scores versus GW-scores. In order to compare the relative 

strength of the DHS- and GW-scores, we fit a series of separate linear mixed-effects models 

incorporating each of the GW- and DHS-scores to predict ADsx and height. Each model also 

included sex (and, for height, age) as covariates. To account for clustering at the family level, we 

fit mixed models with random intercepts using the lmer function from the lme4 package 

(version 1.1.11) in R (version 3.2.3). Models were fit with risk scores calculated using SNPs at 

the p < .01 and p < .05 thresholds from the discovery GWAS. We examined the relative 

predictive ability of DHS- and GW-scores in two ways. First, we compared the significance of 

association and the overall variance accounted for (R2) by each score. However, because the 

number of SNPs included in the polygenic scores differed substantially between the GW-scores 

and DHS-scores, a direct comparison of the magnitudes of their association statistics may not be 

meaningful. Thus, as a second approach we calculated an average “per-SNP” effect to facilitate 

comparisons on the same metric. To do this, we divided the variance accounted for each by each 

score (R2) by the number of SNPs in that score. 

G×E analyses. We examined whether SNPs in regulatory regions were enriched for 

G×E effects using a chi-square test that compared the proportion of DHS SNPs among the set of 

SNPs with significant (p < .05) G×E effects relative to the proportion of DHS SNPs in the full 

genome. For these analyses we used a contemporaneous measure of alcohol misuse, 

intoxication frequency. We focused on a contemporaneous measure of alcohol misuse in order 

to ensure that our romantic relationship status environmental moderator and alcohol misuse 

outcome were temporally matched1. For these analyses, we selected a set of top SNPs in the 

ALSPAC GWAS (p < 0.005) from the set of 212,718 LD-pruned autosomal SNPs common across 
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the ALSPAC and FinnTwin12 samples, resulting in 1137 SNPs. We focused on the set of the more 

highly associated SNPs in view of evidence that G×E effects are most likely to be observed for 

SNPs with smaller p-values (Thomas, 2010). This threshold was arbitrary, but was selected in 

an attempt to balance testing a large enough number of “top” SNPs with the computational 

resources required for such tests. For each SNP, we then examined gene-environment 

interaction effects in a linear model where relationship status was the moderator and frequency 

of alcohol intoxication was the outcome. G×E models were run using the lme4 package in R in 

order to account for familial nesting. G×E was tested using a parameterization method that 

takes into account effects between three gene levels in order to accurately capture interactions 

that can otherwise be misrepresented when using a single cross-product term (Aliev et al., 

2014). The method checks the additive interaction between any two of the three gene levels and 

corrects for the number of tests. The resulting p-value corresponds to the difference between at 

least two of the gene levels. Sex and age were included as covariates. Preliminary analyses 

indicated only a modest association between relationship status and intoxication frequency (r = 

-.10), and no association between the GW- and DHS-scores and relationship status (range rpb  = -

0.04 to 0.004, all p > 0.14). The latter null associations, in particular, minimized concerns about 

gene-environment correlation as a potential confounder when testing G×E effects. Regarding 

multiple testing concerns, we note that the inferential test of interest for this research question 

was a chi-square test of the proportion of DHS SNPs among the set of SNPs with a significant (p 

< .05) G×E effects relative to the overall proportion of DHS SNPs, thus representing a single 

statistical test for enrichment. 

Results 

Descriptive Statistics  

Table 1 provides an overview of the distributions of the key measures in the 

FinnTwin12 sample. On average, participants endorsed 1.03 ADsx criteria, and reported being 

intoxicated 1.52 days per month (SD= 1.79). With respect to relationship status, of the 1,148 
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nonmissing responses, 58% (n=664) of the twins reported being involved in a relationship, of 

which 567 (84.8%) had been involved in that relationship for one year or more. 

Do DHS- Scores Predict Outcomes Better than GW-scores?  

ADsx. Regression results for GW-scores and DHS-scores predicting ADsx are shown in 

Table 2. The GW-scores predicted ADsx at both the p<.01 and p<.05 inclusion thresholds (β 

=.0006, p<.001 and β =.0003, p<.001, respectively). The DHS-scores also predicted ADsx at the 

p<.01 and p<.05 inclusion thresholds (β =.0008, p=.009 and β =.0004, p=.022, respectively). The 

overall effect sizes were relatively small, with each GW-score explaining about 1% of the 

variance in ADsx. Effect sizes for the DHS-scores were also modest, with each explaining ~0.5% 

of the variation in ADsx. The GW- and DHS-scores included different numbers of SNPs; 

accordingly, we compared the per-SNP effect sizes for the two types of polygenic scores. Ratios 

of the DHS to GW per-SNP effect were 1.1 to 1.4 for the per-SNP variance accounted for (R2). 

This indicates that, on average, each SNP in DHS-scores accounted for 1.1-1.4 times more 

variance in ADsx compared to each SNP included in the GW-scores.  

Height. Regression results for GW-scores and DHS-scores predicting height are shown 

in Table 3. The GW-scores significantly predicted height at both the p<.01 and p<.05 inclusion 

thresholds (β =0.0028, p=1×10-47 and β =0.0025, p=3×10-48, respectively). Likewise, the DHS-

scores significantly predicted height at the p<.01 and p<.05 inclusion thresholds (β =0.0042, 

p=1×10-37 and β =0.0040, p=3×10-39, respectively). Compared to polygenic prediction of ADsx, 

the predictive power of polygenic scores for height was much stronger and the total phenotypic 

variance accounted for was considerably larger, ranging from 8.6 – 8.9% for GW scores and 6.4 

– 6.9% for DHS scores. The per-SNP ratios for DHS to GW effects ranged from 1.6 to 1.8 for R2, 

indicating that each SNP included in the DHS-scores accounted for, on average, 1.6-1.8 times the 

variance in height compared to SNPs in GW-scores.  

Are DHS SNPs Enriched for Significant G×E Effects? 

Of the top independent 1137 SNPs, 55 (4.8%) showed significant evidence for 

interaction (p < .05 in the interaction model). In total, 27 of the 409 DHS SNPs showed 
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significant G×E effects (7%) compared to 28 of 728 non-DHS SNPs (4%). A chi-square test of 

independence indicated that DHS SNPs were overrepresented among significant G×E effects 

relative to expectation, χ2(1) = 3.92, p = 0.05. This indicates that gene-environment interaction 

effects for this particular environment were modestly enriched for DHS SNPs.  

In supplementary analyses, we also examined whether relationship status moderated 

the main effect of the aggregate GW- and DHS-scores in predicting alcohol intoxication. None of 

these interaction effects were significant (all p > 0.05).  

Discussion 

We tested two hypotheses related to the incorporation of functional genomic 

information to understand genetic and G ×E effects on alcohol use outcomes. We found that 

DHS-scores were more parsimonious compared to the GW-scores while capturing the majority 

of the same signal. The per-SNP effects for variants in the DHS-scores were 1.1 to 1.4 times 

larger than the per-SNP effect for variants in the GW-scores. We found a similar pattern of 

effects for a second non-psychiatric phenotype, height. We also found that DHS SNPs were 

modestly enriched for G×E effects compared to non-DHS SNPs in a model looking at romantic 

relationship status as the moderator.   

These findings add to a growing literature demonstrating that incorporation of 

functional information about SNPs can advance our understanding of genetic contributions to 

complex diseases and disorders (Schork et al., 2013, Edwards et al., 2015, Maurano et al., 2012, 

Finucane et al., 2015). There was minimal loss in predictive power when polygenic scores were 

limited to variants in DHS regions, which is an encouraging sign that the included variants may 

be etiologically relevant given their higher a priori probability of having functional 

consequences. These results also provide some evidence that, like other complex traits 

(Maurano et al., 2012, Gusev et al., 2014), regulatory mechanisms appear to play a large role in 

the genetic factors impacting alcohol use outcomes. We should note, however, that the clinical 

utility of polygenic scoring methods for alcohol problems remains modest: both DHS- and GW- 

polygenic scores accounted for < 1% of the variance in alcohol dependence symptoms. It was for 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

this reason that we repeated the analyses with height, where there is greater predictive ability 

associated with polygenic risk scores calculated from large meta-analyses. We were encouraged 

to find a parallel pattern of results. 

 Our findings also provide initial evidence that DHS variants are more likely (compared 

to non-DHS variants) to be involved in gene-by-environment interaction effects. The study of 

measured gene-by-environment interaction is controversial, in part owing to problems 

surrounding the selection of the handful of SNPs in “usual suspect” candidate genes commonly 

examined (Dick et al., 2015, Duncan and Keller, 2011). Our results provide evidence for an 

empirically based approach that builds on findings from twin studies, GWAS, and functional 

genomics to select SNPs for studies of measured G×E. Thus, there may be a biologically and 

empirically justifiable way forward to identify the variants likely to be moderated by 

environmental factors. Important questions remain about the specific mechanisms underlying 

these statistical interactions, and where in the pathway from genes to behavior an 

environmental factor is likely to exert its moderating effect (Moore and Thoemmes, 2016). We 

speculate that DHS SNPs may be especially responsive to environmental inputs given their 

involvement in gene regulation (Liu et al., 2008).  

Limitations 

Our results should be considered in the context of several limitations. First, there was 

imperfect correspondence between the study populations and alcohol problems measures 

across the ALSPAC and FinnTwin12 samples. This concern is lessened in view of the genetic 

overlap evident between multiple dimensions of alcohol use (Dick et al., 2011). Second, the 

sample sizes of ALSPAC and FinnTwin12 are relatively small given the growing recognition of 

the large sample sizes needed to precisely estimate small effect sizes. We recognize that there 

are larger GWAS of alcohol-related behaviors (e.g., Schumann et al., 2016). Several factors 

guided our choice to use ALSPAC as our discovery sample, including the greater similarity 

between the ALSPAC and FinnTwin12 sample populations and alcohol problems phenotypes (in 

contrast to the aging-related cohorts included in the Schumann et al. (2016) study, as well as 
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that study’s focus on an alcohol consumption phenotype). Third, the polygenic scores derived 

here include only common variants in regions well tagged by the variants in the 1000 Genomes 

panel. Fourth, there are alternative enrichment (Finucane et al., 2015) and alternative polygenic 

scoring methods (e.g., LDpred; Vilhjalmsson et al., 2015). Some combination of these may 

provide additional avenues for optimizing the predictive ability of polygenic scores in the 

future.  

Fifth, we did not take into account the tissue specificity of regulatory markers when 

delineating DHS SNPs, as all variants located in (or in perfect LD with) a DHS site in any of the 

RoadMap tissue lines was considered a DHS SNP. Therefore, SNPs that have only a regulatory 

function in tissues that are not relevant to alcohol use would have been included in the DHS-

scores along with true important functional variants, diluting the magnitude of the per-SNP 

association and the difference in association between SNPs included in the DHS versus non-DHS 

scores. We performed supplementary analyses using scores that included DHS SNPs limited to 

brain tissue samples and DHS SNPs present in two or more tissue samples to determine 

whether SNPs from certain samples were more relevant. Neither of these scores at either p-

value threshold predicted ADsx. This may be due to the very small number of markers included 

in both the brain tissue score (p<.01 = 139; p<.05 = 653) or the two tissue score (p<.01 = 495; 

p<.05 = 2,571).  

Sixth, our environmental moderator (romantic relationship status) captures only one of 

many relationship features previously implicated in studies of gene-environment interplay for 

alcohol use and problems (Jarnecke and South, 2014), and our measure of it was rather crude. 

Although we detect modest evidence that SNPs in DHSs were enriched for G × E effects, we 

note that these statistical interactions do not in themselves illuminate the biological processes 

through which these effects occur. Furthermore, as with all studies of G×E with measured 

genotypes, power is a concern and the results should be interpreted with appropriate caution. 

We conducted post-hoc power analyses using Quanto (Gauderman, 2002), and when the G×E 

effect was very small (R2 = 0.0005), we had very low power to detect effects (12%). However, 
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when the G×E effect was somewhat larger (R2 = 0.005) we had 72% power to detect 

interactions. On a more conceptual level, we note that previous analyses using the FinnTwin12 

data have established latent G×E effects for relationship status and intoxication frequency 

(Barr et al., in press). This gives us more confidence in the G×E results using measured 

genotypes. Finally, as with other tests of enrichment, the focus of this analysis was not on 

interpreting the direction of any of the SNP × Relationship Status effects themselves, but rather 

examining whether there was overall enrichment to inform future studies about “which SNPs 

and which genes” are worth carrying forward into studies of GxE using measured genotypes.  

Conclusions and Future Directions 

These findings highlight the potential utility of integrating genomic annotation 

information in order to increase the signal-to-noise ratio in polygenic scores, and identify 

genetic variants that may be most susceptible to environmental modification. This work can be 

expanded in several ways, including extensions to jointly consider multiple annotation 

categories (Pickrell, 2014) and to make use of alternative weighting schemes to up- and down-

weight variants across a range of regulatory marks rather than the blunt filtering tool applied 

here. Such advancements, in conjunction with ongoing efforts to increase power in gene 

identification studies, have the potential not only to provide biological insights into the etiology 

of alcohol misuse and other complex psychiatric disorders, but also to one day provide clinical 

utility to identify and treat at-risk individuals. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

References 

Aliev F, Latendresse SJ, Bacanu SA, Neale MC, Dick DM (2014) Testing for measured gene-

environment interaction: problems with the use of cross-product terms and a regression 

model reparameterization solution. Behav Genet 44:165-81. 

Anttila V, Bulik-Sullivan B, Finucane H, Bras J, Duncan L, Escott-Price V, Falcone G, Gormley P, 

Malik R, Patsopoulos N, Ripke S, Walters R, Wei Z, Yu D, Lee PH, Igap Consortium, Ihgc 

Consortium, Ilae Consortium on Complex Epilepsies, Imsgc Consortium, Ipdgc 

Consortium, Metastroke and Intracerebral Hemorrhage Studies of the International 

Stroke Genetics Consortium, Attention-Deficit Hyperactivity Disorder Working Group of 

the Psychiatric Genomics Consortium, Anorexia Nervosa Working Group of the 

Psychiatric Genomics Consortium, Autism Spectrum Disorders Working Group of the 

Psychiatric Genomics Consortium, Bipolar Disorders Working Group of the Psychiatric 

Genomics Consortium, Major Depressive Disorder Working Group of the Psychiatric 

Genomics Consortium, Obsessive Compulsive Disorder and Tourette Syndrome Working 

Group of the Psychiatric Genomics Consortium, Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, Breen G, Bulik C, Daly M, Dichgans M, Faraone S, 

Guerreiro R, Holmans P, Kendler K, Koeleman B, Mathews CA, Scharf JM, Sklar P, 

Williams J, Wood N, Cotsapas C, Palotie A, Smoller JW, Sullivan P, Rosand J, Corvin A, 

Neale BM, Brainstorm Consortium (available online April 2016) Analysis of shared 

heritability in common disorders of the brain. 

Barr PB, Salvatore JE, Maes H, Aliev F, Latvala A, Viken RJ, Rose RJ, Kaprio J, Dick DM (in press) 

Social relationships moderate genetic influences on heavy drinking in young adulthood. 

J Stud Alcohol Drugs. 

Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome 

accessibility. Nat Rev Genet 12:554-64. 

Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JL, Jr. Reich T, 

Schmidt I, Schuckit MA (1994) A new, semi-structured psychiatric interview for use in 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

genetic linkage studies: A report on the reliability of the SSAGA. J Stud Alcohol 55:149-

158. 

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: 

rising to the challenge of larger and richer datasets. Gigascience 4:7. 

Cockerill PN (2011) Structure and function of active chromatin and DNase I hypersensitive sites. 

FEBS J 278:2182-210. 

Delaneau O, Marchini J, Zagury JF (2012) A linear complexity phasing method for thousands of 

genomes. Nat Methods 9:179-81. 

Dick DM, Agrawal A, Keller MC, Adkins A, Aliev F, Monroe S, Hewitt JK, Kendler KS, Sher KJ 

(2015) Candidate gene-environment interaction research: Reflections and 

recommendations. Perspect Psychol Sci 10:37-59. 

Dick DM, Meyers JL, Rose RJ, Kaprio J, Kendler KS (2011) Measures of current alcohol 

consumption and problems: two independent twin studies suggest a complex genetic 

architecture. Alcohol Clin Exp Res 35:2152-61. 

Dick DM, Rose RJ, Viken RJ, Kaprio J, Koskenvuo M (2001) Exploring gene-environment 

interactions: Socioregional moderation of alcohol use. J Abnorm Psychol 110:625-632. 

Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 

9:e1003348. 

Duncan L, Keller MC (2011) A critical review of the first ten years of measured gene-by-

environment interaction research in psychiatry. Am J Psychiat 168:1041-1049. 

Edwards AC, Aliev F, Wolen AR, Salvatore JE, Gardner CO, Mcmahon G, Evans DM, Macleod J, 

Hickman M, Dick DM, Kendler KS (2015) Genomic influences on alcohol problems in a 

population-based sample of young adults. Addiction 110:461-470. 

Encode Project Consortium (2012) An integrated encyclopedia of DNA elements in the human 

genome. Nature 489:57-74. 

Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, Anttila V, Xu H, Zang C, Farh 

K, Ripke S, Day FR, Reprogen C, Schizophrenia Working Group of the Psychiatric 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Genomics Consortium, Raci Consortium, Purcell S, Stahl E, Lindstrom S, Perry JR, Okada 

Y, Raychaudhuri S, Daly MJ, Patterson N, Neale BM, Price AL (2015) Partitioning 

heritability by functional annotation using genome-wide association summary statistics. 

Nat Genet 47:1228-35. 

Fleming CB, White HR, Catalano RF (2010) Romantic relationships and substance use in early 

adulthood: An examination of the influences of relationship type, partner substance use, 

and relationship quality. J Health Soc Behav 51:153-167. 

Frank J, Cichon S, Treutlein J, Ridinger M, Mattheisen M, Hoffmann P, Herms S, Wodarz N, Soyka 

M, Zill P, Maier W, Mossner R, Gaebel W, Dahmen N, Scherbaum N, Schmal C, Steffens M, 

Lucae S, Ising M, Muller-Myhsok B, Nothen MM, Mann K, Kiefer F, Rietschel M (2012) 

Genome-wide significant association between alcohol dependence and a variant in the 

ADH gene cluster. Addict Biol 17:171-80. 

Gauderman WJ (2002) Sample size requirements for matched case-control studies of gene-

environment interaction. Stat Med 21:35-50. 

Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric disease. Science 349:1489-

1494. 

Gusev A, Lee SH, Trynka G, Finucane H, Vilhjalmsson BJ, Xu H, Zang C, Ripke S, Bulik-Sullivan B, 

Stahl E, Schizophrenia Working Group of the Psychiatric Genomics C, Consortium S-S, 

Kahler AK, Hultman CM, Purcell SM, Mccarroll SA, Daly M, Pasaniuc B, Sullivan PF, Neale 

BM, Wray NR, Raychaudhuri S, Price AL, Schizophrenia Working Group of the 

Psychiatric Genomics C, Consortium S-S (2014) Partitioning heritability of regulatory 

and cell-type-specific variants across 11 common diseases. Am J Hum Genet 95:535-52. 

Hart AB, Kranzler HR (2015) Alcohol dependence genetics: lessons learned from genome-wide 

association studies (GWAS) and post-GWAS analyses. Alcohol Clin Exp Res 39:1312-27. 

Heath AC, Jardine R, Martin NG (1989) Interactive effects of genotype and social-environment 

on alcohol-consumption in female twins. J Stud Alcohol 50:38-48. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) 

Potential etiologic and functional implications of genome-wide association loci for 

human diseases and traits. Proc Natl Acad Sci U S A 106:9362-9367. 

Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method 

for the next generation of genome-wide association studies. PLoS Genet 5:e1000529. 

Jarnecke AM, South SC (2014) Genetic and environmental influences on alcohol use problems: 

Moderation by romantic partner support, but not family or friend support. Alcohol Clin 

Exp Res 38:367-375. 

Kaprio J (2013) The Finnish Twin Cohort Study: an update. Twin Res Hum Genet 16:157-62. 

Kaprio J, Pulkkinen L, Rose RJ (2002) Genetic and environmental factors in health-related 

behaviors: Studies on Finnish twins and twin families. Twin Res 5:366-371. 

Kos MZ, Yan J, Dick DM, Agrawal A, Bucholz KK, Rice JP, Johnson EO, Schuckit M, Kuperman S, 

Kramer J, Goate AM, Tischfield JA, Foroud T, Nurnberger J, Jr., Hesselbrock V, Porjesz B, 

Bierut LJ, Edenberg HJ, Almasy L (2013) Common biological networks underlie genetic 

risk for alcoholism in African- and European-American populations. Genes Brain Behav 

12:532-42. 

Levey DF, Le-Niculescu H, Frank J, Ayalew M, Jain N, Kirlin B, Learman R, Winiger E, Rodd Z, 

Shekhar A, Schork N, Kiefe F, Wodarz N, Muller-Myhsok B, Dahmen N, Nothen M, Sherva 

R, Farrer L, Smith AH, Kranzler HR, Rietschel M, Gelernter J, Niculescu AB (2014) Genetic 

risk prediction and neurobiological understanding of alcoholism. Transl Psychiatry 

4:e391. 

Liu L, Li Y, Tollefsbol TO (2008) Gene-environment interactions and epigenetic basis of human 

diseases. Curr Issues Mol Biol 10:25-36. 

Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing 

environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583-

93. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Maher BS (2015) Polygenic Scores in Epidemiology: Risk Prediction, Etiology, and Clinical 

Utility. Curr Epidemiol Rep 2:239-244. 

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, Et Al. (2009) Finding the 

missing heritability of complex diseases. Nature 461:747–753. 

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, 

Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield 

TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, 

Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA 

(2012) Systematic localization of common disease-associated variation in regulatory 

DNA. Science 337:1190-5. 

Mbarek H, Milaneschi Y, Fedko IO, Hottenga JJ, De Moor MH, Jansen R, Gelernter J, Sherva R, 

Willemsen G, Boomsma DI, Penninx BW, Vink JM (2015) The genetics of alcohol 

dependence: Twin and SNP-based heritability, and genome-wide association study 

based on AUDIT scores. Am J Med Genet B Neuropsychiatr Genet 168:739-48. 

Meaney MJ (2010) Epigenetics and the biological definition of gene x environment interactions. 

Child Dev 81:41-79. 

Meyers J (2012) Elucidating genetic and environmental influences on alcohol-related 

phenotypes. ProQuest Dissertations & Theses Global Order No. 3523904. 

Moore SR, Thoemmes F (2016) What is the biological reality of gene-environment interaction 

estimates? An assessment of bias in developmental models. J Child Psychol Psychiatry 

57:1258-1267. 

Nakagawa S, Schielzeth H, O'hara RB (2013) A general and simple method for obtaining R2 from 

generalized linear mixed-effects models. Methods Ecol Evol 4:133-142. 

Pagan JL, Rose RJ, Viken RJ, Pulkkinen L, Kaprio J, Dick DM (2006) Genetic and environmental 

influences on stages of alcohol use across adolescence and into young adulthood. Behav 

Genet 36:483-97. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Pickrell JK (2014) Joint analysis of functional genomic data and genome-wide association 

studies of 18 human traits. Am J Hum Genet 94:559-73. 

Prescott CA, Kendler KS (2001) Associations between marital status and alcohol consumption in 

a longitudinal study of female twins. J Stud Alcohol 62:589-604. 

Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF, Kelsoe JR, O'donovan 

MC, Furberg H, Tobacco, Genetics C, Bipolar Disorder Psychiatric Genomics C, 

Schizophrenia Psychiatric Genomics C, Schork NJ, Andreassen OA, Dale AM (2013) All 

SNPs are not created equal: genome-wide association studies reveal a consistent pattern 

of enrichment among functionally annotated SNPs. PLoS Genet 9:e1003449. 

Schumann G, Liu C, O'reilly P, Gao H, Song P, Xu B, Ruggeri B, Amin N, Jia T, Preis S, Segura Lepe 

M, Akira S, Barbieri C, Baumeister S, Cauchi S, Clarke TK, Enroth S, Fischer K, Hallfors J, 

Harris SE, Hieber S, Hofer E, Hottenga JJ, Johansson A, Joshi PK, Kaartinen N, Laitinen J, 

Lemaitre R, Loukola A, Luan J, Lyytikainen LP, Mangino M, Manichaikul A, Mbarek H, 

Milaneschi Y, Moayyeri A, Mukamal K, Nelson C, Nettleton J, Partinen E, Rawal R, Robino 

A, Rose L, Sala C, Satoh T, Schmidt R, Schraut K, Scott R, Smith AV, Starr JM, Teumer A, 

Trompet S, Uitterlinden AG, Venturini C, Vergnaud AC, Verweij N, Vitart V, Vuckovic D, 

Wedenoja J, Yengo L, Yu B, Zhang W, Zhao JH, Boomsma DI, Chambers J, Chasman DI, 

Daniela T, De Geus E, Deary I, Eriksson JG, Esko T, Eulenburg V, Franco OH, Froguel P, 

Gieger C, Grabe HJ, Gudnason V, Gyllensten U, Harris TB, Hartikainen AL, Heath AC, 

Hocking L, Hofman A, Huth C, Jarvelin MR, Jukema JW, Kaprio J, Kooner JS, Kutalik Z, 

Lahti J, Langenberg C, Lehtimaki T, Liu Y, Madden PA, Martin N, Morrison A, Penninx B, 

Pirastu N, Psaty B, Raitakari O, Ridker P, Rose R, Rotter JI, Samani NJ, Schmidt H, Spector 

TD, Stott D, Strachan D, Tzoulaki I, Van Der Harst P, Van Duijn CM, Marques-Vidal P, 

Vollenweider P, Wareham NJ, Whitfield JB, Wilson J, Wolffenbuttel B, Bakalkin G, 

Evangelou E, Liu Y, Rice KM, Desrivieres S, Kliewer SA, Mangelsdorf DJ, Muller CP, Levy 

D, Elliott P (2016) KLB is associated with alcohol drinking, and its gene product beta-



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Klotho is necessary for FGF21 regulation of alcohol preference. Proc Natl Acad Sci USA 

113:14372-14377. 

The International Schizophrenia Consortium (2009) Common polygenic variation contributes to 

risk of schizophrenia and bipolar disorder. Nature 460:748-752. 

Thomas D (2010) Gene-environment-wide association studies: Emerging approaches. Nat Rev 

Genet 11:259-272. 

Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis 

AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, 

Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, 

Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds 

AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, 

Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, 

Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, 

Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin 

landscape of the human genome. Nature 489:75-82. 

Verhulst B, Neale MC, Kendler KS (2015) The heritability of alcohol use disorders: a meta-

analysis of twin and adoption studies. Psychol Med 45:1061-1072. 

Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S, Genovese G, Loh PR, Bhatia 

G, Do R, Hayeck T, Won HH, Schizophrenia Working Group of the Psychiatric Genomics 

Consortium DB, Risk of Inherited Variants in Breast Cancer S, Kathiresan S, Pato M, Pato 

C, Tamimi R, Stahl E, Zaitlen N, Pasaniuc B, Belbin G, Kenny EE, Schierup MH, De Jager P, 

Patsopoulos NA, Mccarroll S, Daly M, Purcell S, Chasman D, Neale B, Goddard M, Visscher 

PM, Kraft P, Patterson N, Price AL (2015) Modeling Linkage Disequilibrium Increases 

Accuracy of Polygenic Risk Scores. Am J Hum Genet 97:576-92. 

Vrieze SI, Mcgue M, Miller MB, Hicks BM, Iacono WG (2013) Three mutually informative ways to 

understand the genetic relationships among behavioral disinhibition, alcohol use, drug 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

use, nicotine use/dependence, and their co-occurrence: Twin biometry, GCTA, and 

genome-wide scoring. Behav Genet 43:97-107. 

Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Chu AY, Estrada K, Luan J, Kutalik 

Z, Amin N, Buchkovich ML, Croteau-Chonka DC, Day FR, Duan Y, Fall T, Fehrmann R, 

Ferreira T, Jackson AU, Karjalainen J, Lo KS, Locke AE, Magi R, Mihailov E, Porcu E, 

Randall JC, Scherag A, Vinkhuyzen AA, Westra HJ, Winkler TW, Workalemahu T, Zhao JH, 

Absher D, Albrecht E, Anderson D, Baron J, Beekman M, Demirkan A, Ehret GB, Feenstra 

B, Feitosa MF, Fischer K, Fraser RM, Goel A, Gong J, Justice AE, Kanoni S, Kleber ME, 

Kristiansson K, Lim U, Lotay V, Lui JC, Mangino M, Leach IM, Medina-Gomez C, Nalls MA, 

Nyholt DR, Palmer CD, Pasko D, Pechlivanis S, Prokopenko I, Ried JS, Ripke S, Shungin D, 

Stancakova A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, Van Der Laan 

SW, Van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Afzal U, Arnlov J, 

Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Bluher M, Bolton JL, 

Bottcher Y, Boyd HA, Bruinenberg M, Buckley BM, Buyske S, Caspersen IH, Chines PS, 

Clarke R, Claudi-Boehm S, Cooper M, Daw EW, De Jong PA, Deelen J, Delgado G, Denny JC, 

Dhonukshe-Rutten R, Dimitriou M, Doney AS, Dorr M, Eklund N, Eury E, Folkersen L, 

Garcia ME, Geller F, Giedraitis V, Go AS, Grallert H, Grammer TB, Grassler J, Gronberg H, 

De Groot LC, Groves CJ, Haessler J, Hall P, Haller T, Hallmans G, Hannemann A, Hartman 

CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hemani G, Henders AK, Hillege 

HL, Hlatky MA, Hoffmann W, Hoffmann P, Holmen O, Houwing-Duistermaat JJ, Illig T, 

Isaacs A, James AL, Jeff J, Johansen B, Johansson A, Jolley J, Juliusdottir T, Junttila J, Kho 

AN, Kinnunen L, Klopp N, Kocher T, Kratzer W, Lichtner P, Lind L, Lindstrom J, Lobbens 

S, Lorentzon M, Lu Y, Lyssenko V, Magnusson PK, Mahajan A, Maillard M, Mcardle WL, 

Mckenzie CA, Mclachlan S, Mclaren PJ, Menni C, Merger S, Milani L, Moayyeri A, Monda 

KL, Morken MA, Muller G, Muller-Nurasyid M, Musk AW, Narisu N, Nauck M, Nolte IM, 

Nothen MM, Oozageer L, Pilz S, Rayner NW, Renstrom F, Robertson NR, Rose LM, 

Roussel R, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Schunkert H, Scott RA, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Sehmi J, Seufferlein T, Shi J, Silventoinen K, Smit JH, Smith AV, Smolonska J, Stanton AV, 

Stirrups K, Stott DJ, Stringham HM, Sundstrom J, Swertz MA, Syvanen AC, Tayo BO, 

Thorleifsson G, Tyrer JP, Van Dijk S, Van Schoor NM, Van Der Velde N, Van Heemst D, Van 

Oort FV, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Waldenberger M, Wennauer R, 

Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q, 

Arveiler D, Bakker SJ, Beilby J, Bergman RN, Bergmann S, Biffar R, Blangero J, Boomsma 

DI, Bornstein SR, Bovet P, Brambilla P, Brown MJ, Campbell H, Caulfield MJ, Chakravarti 

A, Collins R, Collins FS, Crawford DC, Cupples LA, Danesh J, De Faire U, Den Ruijter HM, 

Erbel R, Erdmann J, Eriksson JG, Farrall M, Ferrannini E, Ferrieres J, Ford I, Forouhi NG, 

Forrester T, Gansevoort RT, Gejman PV, Gieger C, Golay A, Gottesman O, Gudnason V, 

Gyllensten U, Haas DW, Hall AS, Harris TB, Hattersley AT, Heath AC, Hengstenberg C, 

Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Hovingh GK, Humphries SE, Hunt SC, 

Hypponen E, Jacobs KB, Jarvelin MR, Jousilahti P, Jula AM, Kaprio J, Kastelein JJ, Kayser 

M, Kee F, Keinanen-Kiukaanniemi SM, Kiemeney LA, Kooner JS, Kooperberg C, Koskinen 

S, Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, 

Lehtimaki T, Lupoli S, Madden PA, Mannisto S, Manunta P, Marette A, Matise TC, 

Mcknight B, Meitinger T, Moll FL, Montgomery GW, Morris AD, Morris AP, Murray JC, 

Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Ouwehand WH, Pasterkamp G, Peters A, 

Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ritchie M, 

Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schwarz PE, Sebert S, Sever P, 

Shuldiner AR, Sinisalo J, Steinthorsdottir V, Stolk RP, Tardif JC, Tonjes A, Tremblay A, 

Tremoli E, Virtamo J, Vohl MC, The Electronic Medical Records Genomics Consortium, 

The Migen Consortium, The Page Consortium, The Lifelines Cohort Study, Amouyel P, 

Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bottinger EP, 

Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, De Bakker PI, Dedoussis G, 

Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA, Hamsten A, Hayes MG, Hui J, 

Hunter DJ, Hveem K, Jukema JW, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y, Martin 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

NG, Marz W, Melbye M, Moebus S, Munroe PB, Njolstad I, Oostra BA, Palmer CN, 

Pedersen NL, Perola M, Perusse L, Peters U, Powell JE, Power C, Quertermous T, 

Rauramaa R, Reinmaa E, Ridker PM, Rivadeneira F, Rotter JI, Saaristo TE, Saleheen D, 

Schlessinger D, Slagboom PE, Snieder H, Spector TD, Strauch K, Stumvoll M, Tuomilehto 

J, Uusitupa M, Van Der Harst P, Volzke H, Walker M, Wareham NJ, Watkins H, Wichmann 

HE, Wilson JF, Zanen P, Deloukas P, Heid IM, Lindgren CM, Mohlke KL, Speliotes EK, 

Thorsteinsdottir U, Barroso I, Fox CS, North KE, Strachan DP, Beckmann JS, Berndt SI, 

Boehnke M, Borecki IB, Mccarthy MI, Metspalu A, Stefansson K, Uitterlinden AG, Van 

Duijn CM, Franke L, Willer CJ, Price AL, Lettre G, Loos RJ, Weedon MN, Ingelsson E, 

O'connell JR, Abecasis GR, Chasman DI, Goddard ME, Visscher PM, Hirschhorn JN, 

Frayling TM (2014) Defining the role of common variation in the genomic and biological 

architecture of adult human height. Nat Genet 46:1173-1186. 

World Health Organization 2014. Global Status Report on Alcohol and Health. Geneva: World 

Health Organization. 

Wray NR, Lee SH, Mehta D, Vinkhuyzen AA, Dudbridge F, Middeldorp CM (2014) Research 

review: Polygenic methods and their application to psychiatric traits. J Child Psychol 

Psychiatry 55:1068-87. 

Yan J, Aliev F, Webb BT, Kendler KS, Williamson VS, Edenberg HJ, Agrawal A, Kos MZ, Almasy L, 

Nurnberger JI, Jr., Schuckit MA, Kramer JR, Rice JP, Kuperman S, Goate AM, Tischfield JA, 

Porjesz B, Dick DM (2014) Using genetic information from candidate gene and genome-

wide association studies in risk prediction for alcohol dependence. Addict Biol 19:708-

21. 

Yang C, Li C, Kranzler HR, Farrer LA, Zhao H, Gelernter J (2014) Exploring the genetic 

architecture of alcohol dependence in African-Americans via analysis of a genomewide 

set of common variants. Hum Genet 133:617-24. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Young-Wolff KC, Enoch MA, Prescott CA (2011) The influence of gene-environment interactions 

on alcohol consumption and alcohol use disorders: A comprehensive review. Clin 

Psychol Rev 31:800-816. 

 

 

Figure Legend 

Figure 1. Schematic of DHS- and GW-polygenic score creation in the FinnTwin12 sample using 

an illustrative p-value of p < 0.01. The GW-score is the weighted linear combination of all SNPs 

meeting p < 0.01 in the discovery sample (ALSPAC) GWAS (Edwards et al., 2015). The DHS-

score is the weighted linear combination of the subset of SNPs meeting p < 0.01 in the discovery 

sample GWAS that were also located in a DHS site. Abbreviations: DHS = DNase I hypersensitive 

site; GWAS = Genome-wide association study; LD = linkage disequilibrium; SNP = single 

nucleotide polymorphism.  

 

 

Footnote 

1. Our measure of intoxication frequency was moderately correlated with ADsx (r = .42 p < 

.001). Comparisons of GW and DHS scores in predicting intoxication frequency showed that 

GW scores at the p < .001, p < .05, and p < .01 thresholds were significantly associated with 

intoxication frequency in the expected direction (i.e., higher polygenic score associated with 

more frequent intoxication). DHS-scores at the p < .001 and p < .01 thresholds were 

significantly associated with intoxication frequency. Overall, both GW- and DHS-scores 

predicted intoxication frequency, though less strongly than ADsx (GW-scores: R2 = .000 - 

.008; DHS-scores: R2 = .000 - .004). 
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Table 1 

 

Descriptive statistics for FinnTwin12 sample  

Measure N / Mean % / SD Range 

Alcohol dependence symptoms 1.03 1.31 0 7 

Frequency of intoxication (days per month) 1.52 1.79 0 30 

     

Height (cm)  172 9.38 145 207 

In a Romantic Relationship 664 58.0% - - 

   Relationship lasting > 1 year 567 49.4% - - 

Note. All percentages based on valid responses.      
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Table 2 

 

Linear mixed-effects models for alcohol dependence symptoms (natural log transformed) across two GW and DHS polygenic score thresholds (N = 

1,098) 

 GW scores 

Threshold Beta 95% CI P Pseudo-R2 SNP Count Per-SNP R2 

P<.01 0.0006 0.0003 - 0.0010 0.0003 0.011 2,221 4.96E-06 

P<.05 0.0003 0.0001 - 0.0006 0.0006 0.010 10,694 9.57E-07 

 DHS scores 

Threshold Beta 95% CI P Pseudo-R2 SNP Count Per-SNP R2 

P<.01 0.0008 0.0001 - 0.0014 0.0094 0.005 789 6.76E-06 

P<.05 0.0004 0.00001 - 0.0008 0.0220 0.004 3,947 1.03E-06 

Notes. All models include sex as a covariate. Pseudo-R2 calculated using the method outlined by Nakagawa et al. (2013). Abbreviations: GW, genome-

wide; DHS, DNase I hypersensitive sites.   
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Table 3 

 

Linear mixed-effects models for height across two GW and DHS polygenic score thresholds (N = 1151) 

 GW scores 

Threshold Beta 95% CI P Pseudo-R2 SNP Count Per-SNP R2 

P<.01 0.0028 0.0024 - 0.0031 1.15E-47 0.086 15,239 5.63E-06 

P<.05 0.0025 0.0022 - 0.0029 2.88E-48 0.089 31,358 2.85E-06 

 DHS scores 

Threshold Beta 95% CI P Pseudo-R2 SNP Count Per-SNP R2 

P<.01 0.0042 0.0036 - 0.0049 1.24E-37 0.064 6,918 9.27E-06 

P<.05 0.0040 0.0035 - 0.0046 2.98E-39 0.069 13,593 5.05E-06 

Notes. All models include age and sex as covariates. Pseudo-R2 calculated using the method outlined by Nakagawa et al. (2013). 

Abbreviations: GW, genome-wide; DHS, DNase I hypersensitive sites.   
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