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Exposure to ionizing radiation (IR) from radionuclides released into the environment

can damage DNA. An expected response to exposure to environmental radionuclides,

therefore, is initiation of DNA damage response (DDR) pathways. Increased DNA damage

is a characteristic of many organisms exposed to radionuclides but expression of DDR

genes of wildlife inhabiting an area contaminated by radionuclides is poorly understood.

We quantified expression of five central DDR genes Atm, Mre11, p53, Brca1, and p21

in the livers of the bank vole Myodes glareolus that inhabited areas within the Chernobyl

Exclusion Zone (CEZ) that differed in levels of ambient radioactivity, and also from

control areas outside the CEZ (i.e., sites with no detectable environmental radionuclides)

in Ukraine. Expression of these DDR genes did not significantly differ between male

and female bank voles, nor among sites within the CEZ. We found a near two-fold

upregulation in the DDR initiators Mre11 and Atm in animals collected from the CEZ

compared with samples from control sites. As Atm is an important regulator of oxidative

stress, our data suggest that antioxidant activity may be a key component of the defense

against exposure to environmental radioactivity.

Keywords: chernobyl, ionizing radiation, DNA damage, DNA repair, oxidative stress, Atm, Mre11

INTRODUCTION

Accidental release of radionuclides into the environment presents a potential health risk to humans
and wildlife (Møller and Mousseau, 2006; Lourenço et al., 2016). On 26 April 1986, reactor 4 of
the Chernobyl Nuclear Power Plant (NPP) exploded, releasing an estimated 9 × 103 to 1 × 104

petabecquerels (Pbq) of radionuclides over much of Eastern Europe, Russia, and Fennoscandia
(Dreicer et al., 1996). This accident, together with the accident at the Fukushima Daiichi NPP
in 2011, stimulated public and scientific interest in the impacts of environmental radionuclides
on natural ecosystems (Wheatley et al., 2016). To limit human exposure to radionuclides, the
Chernobyl Exclusion Zone (CEZ) was established at ∼30 km radius around the accident site.
The CEZ still contains elevated levels of isotopes with long half-lives, notably strontium-90,
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caesium-137, and plutonium-239 (about 29, 30, and 24,100
years, respectively). The wildlife inhabiting the CEZ provide
the best-studied model of the biological impact of exposure to
radionuclides (Møller and Mousseau, 2006).

One harmful effect of exposure to ionizing radiation (IR)
from radionuclides is elevated DNA damage, either directly
or by generating reactive oxygen species (ROS) through
radiolysis of intracellular water (Ward, 1988; Einor et al.,
2016). Elevated DNA damage, for example as chromosomal
aberrations (Dzyubenko and Gudkov, 2009) or DNA breaks
(Bonisoli-Alquati et al., 2010; Fujita et al., 2014), has been
observed in wildlife and humans inhabiting areas affected
by the accidents at Chernobyl and Fukushima (reviewed by
Lourenço et al., 2016). That not all studies find elevated DNA
damage in areas with increased radioactivity (e.g., Bonisoli-
Alquati et al., 2015) points to interspecific differences in response
to environmental radionuclides (Møller and Mousseau, 2015).
Somewhat surprisingly, despite the many (>200) studies of
DNA damage, few studies have quantified activity of DNA
repair pathway genes on organisms exposed to environmental
radionuclides (Lourenço et al., 2016).

In eukaryotes, DNA repair is activated and regulated by
the DNA damage response (DDR) pathway, which is a multi-
branched signaling cascade initiated by the serine/threonine
kinases ATR and ATM upon detection of single-strand
DNA breaks (SSBs) and double-strand DNA breaks (DSBs),
respectively (Giglia-Mari et al., 2011). DSBs typically result
from exposure to highly genotoxic agents and IR (Ward, 1990)
and pose a serious problem for genomic integrity as they
cannot always be repaired without incorporating mutations,
thus increasing the risk of cancer (Cannan and Pederson,
2016). DSBs are detected by the MRE11-RAD50-NBS1 complex,
which activates ATM. Pathways activated by ATM include
p53-mediated cell cycle checkpoint and apoptosis, increased
antioxidant production, and DNA repair, where the choice
between non-homologous end joining (NHEJ) and homologous
recombination (HR) repair is regulated by BRCA1 (Daley and
Sung, 2014).

Just three studies, all on plants, have quantified DNA
repair activity in wildlife affected by the Chernobyl and
Fukushima accidents. After exposure to high doses (750Gy) of
IR, DNA repair activity in pollen and seed from two species
of plant depended upon the composition of radionuclides in
the soil in which the parental plants had grown (Boubriak
et al., 2008). Progeny of Arabidopsis inhabiting areas around
Chernobyl exhibited low recombination rates, despite X-ray
induced upregulation of homologous recombination repair-
related Rad54-like in samples from a contaminated area
(Kovalchuk et al., 2014). Unfortunately these studies within
the CEZ did not use replicate samples from contaminated
and uncontaminated sites, making it challenging to determine
whether radiation or a third variable accounts for these effects.
In rice (Oryza sativa) seedlings, exposure to low-dose IR affected
expression of stress response and DNA repair associated genes
(Hayashi et al., 2014), with some single-strand break repair
genes initially upregulated but suppressed after 24 h of IR
exposure. Ultimately, plants have been found to be sensitive to

environmental radiation, and it has been suggested that they
could serve as bioindicator species for assessing radiation risk
(Nikitaki et al., 2017). The DDR of wild vertebrates exposed to
environmental radionuclides has rarely been studied, although,
for example, upregulation in the p53 gene has been observed in
wood mice (Apodemus sylvaticus) inhabiting a former uranium
mine area (Lourenço et al., 2013).

The subject of the physiological and ecological effects of
low-dose IR is highly controversial, as evidenced by several
conflicting studies concerning species diversity and abundance
in the CEZ. Populations of large mammals, such as the wild
boar (Sus scrofa), appear especially abundant (Deryabina et al.,
2015), but it is difficult to quantify the effect of human absence
on these populations. Here, we quantify mRNA transcription in
five DDR and repair genes in livers of the bank vole Myodes
glareolus, a small rodent that inhabits areas within and outside the
CEZ. Multiple populations from both experimental and control
regions were studied to ensure spatial replication of study sites
that differ in contamination levels. The bank vole is abundant
(typically 10–80 animals per hectare) in forest habitats in much
of Europe and Asia (Hutterer et al., 2016) and was one of the
first mammals to re-colonize the CEZ after the nuclear accident
(Baker et al., 1996). Bank voles inhabiting the CEZ show an
increased frequency of chromosomal aberrations (Goncharova
and Ryabokon, 1995) and increased oxidative stress in the form
of cataracts (Lehmann et al., 2016), although estimates of DNA
damage have returned conflicting results (Cristaldi et al., 1991;
Rodgers and Baker, 2000). We hypothesize that exposure to
low-dose IR stimulates the expression of key genes in the DDR
pathway.

MATERIALS AND METHODS

Sample Collection
Animals were caught using Ugglan Special live traps (Grahnab,
Sweden), with sunflower seeds and potato as bait, during
6th−11th May 2015, at 14 locations within the CEZ that
differed in levels of soil radionuclides (Figure 1). Bank voles
were also caught during 16th−27th August 2015 at three
separate regions outside the CEZ, where elevated levels of
soil radionuclides have not been detected: Brody (50◦0594N,
25◦10752 E), Lubny (50◦05564N, 32◦98566 E), and Korostyshev
(50◦34422N, 29◦23673 E) in order to control for habitat effects.
At each trapping location, 20 traps were placed in a line,
with each trap separated by about 10m and with trapping
locations separated by at least 500m. Procedures were performed
in accordance with relevant guidelines and regulations,
approved by the Finnish Animal Experiment Board and the
Finnish Ministry of the Environment (under the authorization
ESAVI/3834/04.10.03/2011 and ESAVI/7256/04.10.07/2014).
Ambient radiation levels at the trapping locations were measured
at 1 cm above the ground with a hand-held GM dosimeter
(Inspector, International Medcom INC, Sebastopol, CA, USA)
calibrated to measure Sieverts (Sv); such measurements of
radiation are repeatable among days and even years (Møller
and Mousseau, 2013). Mean ambient radiation levels varied
among trapping locations from 0.1 to 12.3 µSv/h within
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FIGURE 1 | (a) Location of control population trapping sites in Ukraine. (b) Bank vole trapping sites in the Chernobyl Exclusion Zone (CEZ). Background radiation

intensity is shown as circles (<1.0 µGy/h) and as triangles (up to 12.3 µGy/h). Created using ESRI ArcGIS 10.5. Satellite imagery©.

the CEZ (Figure 1) and was 0.135 µSv/h at the three areas
outside the CEZ. To estimate lifetime external doses, animals
were allocated to two age groups based on head width, which
is often used as a proxy of age in small mammals (Kallio
et al., 2014): juveniles (<12.0mm) and adults (≥12.1mm).
Accumulated external doses were calculated for 1 month
(juveniles, ranging from 0.07 to 9.01 mGy) and for the range
of 2–5 months (adults, ranging from 0.20 to 28.64 mGy;
Datasheet 1).

After measuring head width (to 0.1mm) and body mass (to
0.1 g), animals were euthanized by cervical dislocation and liver
tissue samples transferred to Allprotect Tissue Reagent (Qiagen).
We selected bank voles with 10–14mm head width to reduce
variation associated with maturation. Samples were stored at
−80◦C until processing.

Quantitative PCR (qPCR)
Intron-exon boundaries in five DSB damage response
genes Atm, Mre11, Brca1, p53, and p21 were identified
using sequences from a draft bank vole genome (Genbank
accession no. GCA_001305785). Bank vole gene sequences
were aligned using online BLAST (Altschul et al., 1990) with
default parameters against their putative mRNA homologs
in the prairie vole (Microtus ochrogaster) available in
Genbank: p53 (XM_005349777), Brca1 (XM_013354463),
Atm (XM_013346263), Mre11a (XM_013355380), and p21
(XM_005360336). For normalization of gene expression, we
amplified two reference genes: beta-actin (Actb) and retention
in endoplasmic reticulum sorting receptor 1 (Rer1). Beta-
actin primers are based on a sequence from mouse (Mus
musculus) and primers for Rer1 were based on the putative
gene sequence derived from bank vole genome. Primers were
designed using Primer3 (Rozen and Skaletsky, 2000; Table 1).
The mouse nucleotide database in Genbank was used to
identify common transcripts and avoid potentially rare splice
variants.

Up to 30mg liver tissue per sample was homogenized
using TissueLyser II (Qiagen) bead mill (2 × 2min at 25Hz),

TABLE 1 | qPCR primer information.

Gene Primer sequence (5′ –> 3′) Size (bp) E

p53 CCA ACA CAA GCT CCT CTC CC 145 1.900

ATT CGC GTC CTG AGC ATC C

Brca1 AGT TCC AGC CAC AAC CTT CAG 156 1.900

CCT CTT GAG ATG GGC AGT TCC

Atm GGA TGG CAT TGT GGT GAA GC 121 1.944

AGG ACC TAT TTC TCC CAA ACA CC

Mre11a GGC ACA ACA TCT AGC AAA CGG 101 2.038

TGG CTG CTC ATG AAA GGG TC

Actb TGC GTG ACA TCA AAG AGA AG 197 1.906

GAT GCC ACA GGA TTC CAT A

Rer1 GGC CGA TCC TGG TGA TGT AC 132 1.986

CCA CGT CCT CCT TCC CTT TG

and total RNA was extracted with RNeasy Mini Kit (Qiagen)
that incorporated a DNase digestion step according to the
manufacturer’s protocol. Four hundred nanograms of total RNA
per sample was used for reverse transcription in 20 µl reaction
volumes using iScript cDNA synthesis kit (Bio-Rad) according to
the manufacturer’s protocol.

Quantitative PCRs were completed for each individual sample
in 16 µl final reaction volumes that contained 4 ng cDNA
template, 400 nM both forward and reverse primers and 8 µl
LightCycler 480 SYBR Green I Master (Roche). Thermal cycling
profiles were: 95◦C for 5min followed by, 95◦C for 10 s, 60◦C
for 15 s (for all primers), and 72◦C for 10 s (with recording),
using a LightCycler 480 Real-Time PCR System (Roche). Primer
specificity was determined by melt curve analysis and PCR
efficiencies were calculated from standard curves using five-fold
serial dilutions of mixed-sample liver cDNA (Table 1). All qPCRs
were run as three technical replicates and a sample was re-
analyzed if the standard deviation among replicates was >0.4.
Actb showed slightly greater variation in expression (SD = 0.97
cycles, n = 25) than Rer1 (SD = 0.65 cycles, n = 25) across
samples.
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Data Analysis
Raw data were imported into GenEx v.6.1 to allow PCR efficiency

correction (Cq = CqE
log 1+E
log 2

, where CqE is the uncorrected Cq

value and E is the PCR efficiency). Each sample was normalized
against the geometric mean expression of two internal reference
genes Actb and Rer1 (Cqnorm = CqGOI − 1

n

∑n
i=1 CqRGi) to

control for outlying values (Vandesompele et al., 2002). Cq values
were converted to relative linear scale with average expression of
the control groups set as the reference level, after which all data
were converted to log2 scale (Datasheet 2). Subsequent statistical
analyses were performed in SPSS v.24.0 (IBM Corp. 2016).

First, we examined differences in gene expression between
three groups of samples: (1) animals within the CEZ caught from
areas with elevated ambient radiation dose rates (>1.0 µGy/h,
mean 4.8 µGy/h, conferring a yearly external radiation dose of
between ∼10 and 110 mGy at the most irradiated location), (2)
animals from within the CEZ where ambient radiation was not
dramatically elevated (<1.0 µGy/h, mean 0.20 µGy/h) and (3)
animals from outside the CEZ (mean 0.13 µGy/h). While the
levels of soil radiation do not differ significantly between the
latter two groups, bank voles inhabiting the CEZmay havemoved
among areas prior to capture. Variation in gene expression
among the three groups and possible sex interaction was analyzed
using two-way analysis of variance (ANOVA), followed by a
Tukey’s post-hoc test. Second, as no significant differences in
gene expression could be attributed to an animal’s sex or among
samples within the CEZ (see Results), we made a comparison
in gene expression between animals collected (1) from within
the CEZ and (2) the three control areas, using a Student’s
t-test.

RESULTS

We quantified gene expression in five DDR genes Atm, Mre11,
p53, Brca1, and p21 in bank voles populating the CEZ. We
chose these genes for their positions and signaling roles at the
top of the DDR cascade to investigate possible activation of
DDR response in a natural low-dose radiation environment. Our
analyses were based on data from 57 animals: 30 (14 males, 16
females) from the CEZ, and 27 (14m, 13 f) from Brody, Lubny,
and, Korostyshev. Samples from the CEZ were further divided
into two groups of “elevated” (7m, 5 f) and “near-background”
(7m, 11 f) levels of environmental radioactivity as described
above. Lifetime external doses within the “elevated” group were
estimated to range between 1.14 and 9.01 mGy for juveniles
and 2.82 to 28.64 mGy for adults, while in “near-background
group” ranges were 0.07–0.34 mGy for juveniles and 0.13–1.68
mGy for adults. Gene expression levels were found to be similar
between the three external control locations (Datasheet 2), and
thus were considered as a single control group. Liver was selected
as the tissue of interest as it is radiosensitive in a clinical context
(Christiansen et al., 2007; Stryker, 2007); moreover, liver tissue
appears sensitive to DNA damage, with liver tissue from bank
voles exposed to environmental radionuclides having shorter
telomeres compared with samples from control areas (Kesäniemi
et al. unpublished).

We found significant differential expression in Mre11 and
Atm, which could be explained by radioactivity [2-way ANOVA,
Atm F(2, 51) = 9.52, P < 0.001; Mre11 F(2, 51) = 10,18, P <

0.001; p53 F(2, 51) = 0.34, P > 0.05; Brca1 F(2, 51) = 0.04, P >

0.05; p21 F(2, 51) = 0.62, P > 0.05]. No significant differences
in the expression of any of the five genes could be explained
by sex [Atm F(2, 51) = 0.19, P > 0.05; Mre11 F(2, 51) = 0.60,
P > 0.05; p53 F(2, 51) = 0.07, P > 0.05; Brca1 F(2, 51) =

1.82, P > 0.05; p21 F(2, 51) = 0.03, P > 0.05]. Significant
upregulation (compared with samples from control areas) ofAtm
andMre11 was observed in both “elevated” (PAtm < 0.01, PMre11

< 0.05) and “near-background” (PAtm < 0.001, PMre11 < 0.001)
groups of samples from the CEZ, despite the significantly lower
amount of environmental radiation in the latter group of samples
(Figure 2); upregulation of Mre11 was in fact slightly stronger
(but non-significantly so) in the “near-background” treatment.

Hence, relative quantification of five DDR genes among
samples (males and females) from (1) the CEZ and (2) the control
areas outside the CEZ revealed significant upregulation in Atm
andMre11 in bank voles inhabiting the CEZ compared with bank
voles taken from control areas: transcription of mRNA increased
almost two-fold in Atm (1.93-fold increase, t(55) = 4.51, P <

0.001) and Mre11 (1.87-fold increase, t(55) = 4.56, P < 0.001),
whereas no significant differences in mRNA levels of p53, Brca1,
or p21 were detected (Figure 2).

DISCUSSION

Exposure to IR causes DNA damage, and elevated DNA
damage is characteristic of wildlife inhabiting areas affected
by nuclear accident sites. An appropriate response from DNA
repair pathways is an expected response to exposure to
environmental radioactivity. We identified a significant, almost
two-fold, upregulation in expression of Atm and Mre11 in
the livers of bank voles living within the CEZ, which is the
first evidence that expression of DNA repair-related genes is
stimulated in vertebrates exposed to low-dose environmental
radioactivity.

A notable feature of these data is the similar gene expression in
animals caught from within the CEZ, irrespective of the level of
soil radionuclides at the trapping location. The CEZ comprises
a mosaic of radionuclide contamination (Chesser et al., 2004)
where the variation in radionuclide levels in soil and vegetation
introduce small scale (few hundred meters) heterogeneity in the
overall received doses for bank voles (Chesser et al., 2000). One
explanation for the common upregulation effect is that bank
voles can readily disperse over 1 km during the breeding season
(Kozakiewicz et al., 2007) and thus individuals trapped from the
areas with little or no soil radionuclides within the CEZ could
have been exposed to substantial levels of radionuclides prior to
capture. Bank voles inhabit burrows and have an opportunistic
diet (Butet and Delettre, 2011), and are thus exposed to a wide
variety of ingested radionuclides including the common fission
product caesium-137. Caesium-137 is particularly problematic
for ecosystems due to its capacity to form various water-
soluble salts. Bank voles can carry potentially high amounts of
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FIGURE 2 | Relative expression of five central DNA damage response (DDR) genes in livers of bank voles collected from the Chernobyl Exclusion Zone (CEZ)

(Ch-Background = <1.0 µGy/h, Ch-Elevated = up to 12.3 µGy/h) and control locations outside the CEZ. Gene expression was normalized against two internal

reference genes (Actb and Rer1) with the average expression in the control group set as the reference level. (A) Atm, (B) Mre11, (C) p53, (D) Brca1, and (E) p21.

*p < 0.05; **p < 0.005; ***p < 0.001.

internal radiation sources (Baker et al., 2017). In this scenario,
the common upregulation effect between contaminated and
non-contaminated areas represents an average expression for
inhabiting the CEZ especially if there are carry forward effects
from exposure to very high amounts of radionuclides in prior
generations. Such effects of past exposures have been reported
with respect to mitochondrial mutation rates in these same
voles (Baker et al., 2017) and would have the effect of averaging
effects over broader geographic scales. Another possibility is that
observed patterns reflect local adaptations that have spread from
populations at contaminated regions to adjacent areas via gene
flow (Møller et al., 2006; Fedorka et al., 2012) which could also
account for a “higher than expected” level of expression in less
contaminated areas within the CEZ.

Upregulation of DDR pathways of animals residing within
the CEZ may seem intuitive, but these pathways have not
been studied in wildlife inhabiting areas contaminated by
radioactivity. That Atm is upregulated is relevant as this gene
is positioned at the top of the DBS repair pathway. ATM is
primarily regulated at the protein level when subjected to IR
(Bakkenist and Kastan, 2003), but Atm promoter activity, and
protein abundance, is stimulated by exposure to IR in mice
tissues, including liver (Gueven et al., 2006); moreover, silencing

of ATM decreases radioresistance of glioma in vitro and in vivo
(Li et al., 2016). Perhaps crucially, ATM is an important regulator
of cellular oxidative stress (Barzilai et al., 2002), promoting
the production of NADPH (Cosentino et al., 2011). Moreover,
ATM can be activated by oxidative stress independently from
DBS-related activation by the MRN complex (Guo et al., 2010).
Antioxidant production likely constitutes a major part of the
adaptive response against environmental radioactivity in birds
within and around the CEZ (Galván et al., 2014) and in cell
lines of fibroblasts from bank voles (Mustonen et al., submitted).
Moreover, a change in fur color of bank voles within the CEZ
was attributed to downregulation of pheomelanin to reallocate
antioxidants to ROS defense (Boratynski et al., 2014). Indeed,
upregulation of oxidative stress response genes Cat and Fsd3
in Arabidopsis (Kovalchuk et al., 2014) indicate that increased
ROS defense could be a key coping strategy against exposure to
environmental radionuclides.

MRE11 is a constituent protein of the MRE11-RAD50-NBS1
complex, a multi-purpose maintainer of genomic stability whose
tasks include DSB detection and subsequent activation of ATM
protein (Lee and Paull, 2005) as well as DNA repair functions
and telomeric maintenance (Lamarche et al., 2010). Reduced
expression of the Mre11 gene often leads to genomic instability,

Frontiers in Environmental Science | www.frontiersin.org 5 January 2018 | Volume 5 | Article 95

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Jernfors et al. Damage Response Genes in Chernobyl

and increased protein levels of ATM andMRE11 in some tumors
are associated with resistance against radiotherapy (Tribius
et al., 2001; Deng et al., 2011). An apparently low frequency of
micronuclei in bank voles from the CEZ might indicate that this
species has some degree of radioresistance (Rodgers and Baker,
2000). Given our results, Atm and Mre11 represent important
candidate genes that regulate genomic stability in bank voles
exposed to environmental radionuclides.

Our observation of no significant variation in expression of
p53 may be explained by this gene being primarily regulated
through post-translational modification of cellular protein
(Kruse and Gu, 2009), although transcriptional upregulation
has previously been detected in the livers of European wood
mice inhabiting an abandoned uranium mine area (Lourenço
et al., 2013). Significant enrichment of heavy metals (uranium
and cadmium) were also detected in these mice, contributing
to toxicity alongside radiation. Thus, radionuclide levels
comparable to studied areas in the CEZ are not severe enough
to induce transcription in p53. P21 is under transcriptional
regulation by p53 and is required for DNA damage related cell
cycle inhibition (Bunz, 1998). That p21 expression is not altered
in animals inhabiting the CEZ implies cell cycle control pathways
are not activated in response to increased Atm expression. Brca1
is upregulated in response to genotoxic stress (De Siervi et al.,
2010). A lack of change in expression of Brca1 in bank voles from
the CEZ indicates that the homologous recombination repair
pathway is not a key component of the response to environmental
radionuclides, consistent with a recent study of expression of
DBS repair pathways during exposure to IR (Liu et al., 2016).
Arabidopsis from the CEZ show reduced recombination, which
might prevent gross chromosomal rearrangements (Kovalchuk
et al., 2014).

As the expression of p21 and Brca1 is not stimulated it is
plausible that the low-dose IR environment of Chernobyl does
not cause sufficient DNA damage to warrant cell cycle arrest and
activation of DSB repair. Nonetheless, some genomic impact is

derived from exposure to radionuclides as bank voles from the
CEZ have shorter telomeres than bank voles from control areas
(Kesäniemi et al., unpublished), likely reflecting an increase in
oxidative stress that is widely associated with telomere shortening
(von Zglinicki, 2002). Hence is it interesting that ATM can be
activated by oxidation independently from MRN interaction.
Altered telomere homeostasis may affect the expression ofMre11
as a telomere maintainer and the role of this gene warrants
further investigation.
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