
Tero Laitila

 USER-CENTERED DEVELOPMENT AND
MAINTENANCE METHOD FOR SOFTWARE TEAMS

JYVÄSKYLÄN YLIOPISTO

TIETOJENKÄSITTELYTIETEIDEN LAITOS

2017

TIIVISTELMÄ

Laitila, Tero
User-centered development and maintenance method for software teams
Jyväskylä: Jyväskylän yliopisto, 2017, 129s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja(t): Tuunanen, Tuure

Tämä tutkimus pyrkii löytämään sopivan metodin jatkuvaan
ohjelmistokehitykseen (tuotekehitys ja ylläpito). Se yhdistää ketterän
ohjelmistokehitysmenetelmän uusimpiin operatiivisiin metodeihin sekä
käyttäjäläheiseen ohjelmistosuunnitteluun. Tutkimus sisältää uuden mallin, joka
sisältää metodin arvot, tavoitteet, periaatteet, säännöt, prosessimallin, roolit ja
vastuut ohjelmistotiimeille. Tämän metodin avulla ohjelmistotiimit voivat
mahdollisesti tehokkaammin tuottaa ja ylläpitää käyttäjäystävällisiä palveluita.
Tutkimuksessa on haastateltu IT-alan ammattilaisia isoimmista suomalaisista IT-
yrityksistä. Tutkimuksen lopputulos on metodi ohjelmistokehityksen
ammattilaisille. Metodi yhdistää käyttäjäläheistä suunnittelua nykyaikaisiin
ketterän ohjelmistokehittämisen metodeihin.

Asiasanat: Ketterät menetelmät, Agile, Scrum, DevOps, Käytettävyys,
Käyttäjäkokemus, UCD, Jatkuva kehittäminen, Tietojärjestelmien kehittäminen

ABSTRACT

Laitila, Tero
User-centered development and maintenance method for software teams
Jyväskylä: University of Jyväskylä, 2017, 129 p.
Information Systems, Master’s Thesis
Supervisor(s): Tuunanen, Tuure

This research aims to find answer for the question: How to continuously develop
and maintain software while fulfilling customer and user expectations? It com-
bines agile development methods and DevOps together with user-centered de-
sign. Research includes new method which includes values, objectives, principles,
rules, process models, roles and responsibilities for a software teams. By using
this kind of method software teams can possibly develop and maintain user fo-
cused software more efficiently. Research includes interviews from information
technology professionals from Finnish companies. The end result of the research
is method which covers software development and maintenance artifacts.

Keywords: Agile, Scrum, DevOps, UCD, Continuous development, Method,
Software development

LIST OF FIGURES

FIGURE 1 DESIGN SCIENCE RESEARCH PROCESS ... 18

FIGURE 2 SOFTWARE DEVELOPMENT PROCESS .. 20

FIGURE 3 WATERFALL METHOD .. 21

FIGURE 4 AGILE METHOD ... 22

FIGURE 5 AGILE PRINCIPLES (AGILE MANIFESTO, 2001) 23

FIGURE 6 SCRUM PROCESS ... 24

FIGURE 7 DEVOPS .. 26

FIGURE 8 ORGANIZATIONAL SILOS BETWEEN DEVELOPMENT AND
OPERATIONS ... 27

FIGURE 9 LAYERS OF CD AND DEVOPS .. 28

FIGURE 10 THE FIVE MAIN ELEMENTS OF SUCCESSFUL USER
EXPERIENCE INNOVATION .. 32

FIGURE 11 USER-CENTERED DESIGN ... 33

FIGURE 12 DESIGN SCIENCE RESEARCH METHODOLOGY (DSRM)
PROCESS MODEL.. 37

FIGURE 13 PROCESS PHASES IN THE RESEARCH ... 38

FIGURE 14 CONTEXT OF METHOD ... 39

FIGURE 15 DESCRIPTIONS OF DIFFERENT VIEWS .. 40

FIGURE 16 VALUES .. 43

FIGURE 17 OBJECTIVES ... 45

FIGURE 18 PRINCIPLES ... 47

FIGURE 19 RULES.. 47

FIGURE 20 ROLES.. 49

FIGURE 21 RESPONSIBILITY MATRIX ... 50

FIGURE 22 PROCESS MODEL ... 51

FIGURE 23 INPUTS AND OUTPUTS OF ACTIVITIES .. 57

FIGURE 24 TOOLS ... 59

FIGURE 25 AGE DISTRIBUTION .. 60

FIGURE 26 ROLES OF INTERVIEWED PEOPLE ... 61

FIGURE 27 WORK EXPERIENCE (IN YEARS) ... 61

FIGURE 28 INTERVIEW COMMENTS REGARDING VALUES 62

FIGURE 29 INTERVIEW COMMENTS REGARDING OBJECTIVES 63

FIGURE 30 INTERVIEW COMMENTS REGARDING PRINCIPLES 64

FIGURE 31 INTERVIEW COMMENTS REGARDING RULES 65

FIGURE 32 INTERVIEW COMMENTS REGARDING ROLES 66

FIGURE 33 INTERVIEW COMMENTS REGARDING TOOLS 67

FIGURE 34 METHOD EVALUATION COMMENTS REGARDING VALUES .. 68

FIGURE 35 METHOD EVALUATION COMMENTS REGARDING OBJECTIVES
 69

FIGURE 36 METHOD EVALUATION COMMENTS REGARDING PRINCIPLES
 70

FIGURE 37 METHOD EVALUATION COMMENTS REGARDING RULES 71

FIGURE 38 METHOD EVALUATION COMMENTS REGARDING
PROCESSES ... 72

FIGURE 39 METHOD EVALUATION COMMENTS REGARDING ROLES 73

FIGURE 40 VALUES .. 77

FIGURE 41 OBJECTIVES ... 78

FIGURE 42 PRINCIPLES ... 79

FIGURE 43 RULES.. 80

FIGURE 44 PROCESS ... 81

FIGURE 45 SURVEY RESULTS .. 85

FIGURE 46 AGE DISTRIBUTION .. 86

FIGURE 47 SURVEY - VALUES - ONE TEAM .. 87

FIGURE 48 SURVEY - VALUES - CLOSE TO CUSTOMER................................... 87

FIGURE 49 SURVEY - VALUES - FOSTER COMMUNICATION 88

FIGURE 50 SURVEY - VALUES - SHARING TOGETHER 88

FIGURE 51 SURVEY - VALUES - VISIBILITY TO ALL .. 89

FIGURE 52 SURVEY - VALUES - PROVIDE EXCELLENCE 90

FIGURE 53 SURVEY - VALUES - EMBRACE WORKING SOFTWARE 90

FIGURE 54 SURVEY - VALUES - USER COMES FIRST .. 91

FIGURE 55 SURVEY - VALUES - MAINTAIN THE SPEED OF DEVELOPMENT
 91

FIGURE 56 SURVEY - VALUES - CHERISH FEEDBACK 91

FIGURE 57 SURVEY - VALUES - SOFTWARE EVOLVES CONTINUOUSLY .. 92

FIGURE 58 SURVEY - VALUES - AUTOMATION CREATES EFFICIENCY 92

FIGURE 59 SURVEY - VALUES - ITERATE AND IMPROVE 93

FIGURE 60 SURVEY - VALUES - MEASURE AND EVOLVE 93

FIGURE 61 SURVEY - VALUES - PASSION FOR THE WORK 94

FIGURE 62 SURVEY - VALUES - BEING PROUD OF OWN WORK 94

FIGURE 63 SURVEY - VALUES - COMMITMENT AND RESPONSIBILITY..... 95

FIGURE 64 SURVEY - VALUES - TRUSTWORTHINESS 95

FIGURE 65 SURVEY - VALUES - RESPECT COLLEAGUE 95

FIGURE 66 SURVEY - OBJECTIVES - VALUE CREATION 96

FIGURE 67 SURVEY - OBJECTIVES - REDUCING SILOS 97

FIGURE 68 SURVEY - OBJECTIVES - HIGHER PRODUCTIVITY WITH LOWER
COSTS 97

FIGURE 69 SURVEY - OBJECTIVES - IMPROVED PREDICTABILITY 97

FIGURE 70 SURVEY - OBJECTIVES - BETTER CUSTOMER AND END-USER
SATISFACTION .. 98

FIGURE 71 SURVEY - OBJECTIVES - FASTER TIME-TO-MARKET 98

FIGURE 72 SURVEY - OBJECTIVES - IMPROVED COLLABORATION 98

FIGURE 73 SURVEY - OBJECTIVES - SATISFYING WORKING
ENVIRONMENT .. 99

FIGURE 74 SURVEY - OBJECTIVES - LOWER RISKS ... 99

FIGURE 75 SURVEY - OBJECTIVES - IMPROVED QUALITY 99

FIGURE 76 SURVEY - OBJECTIVES - COMMON WAYS TO WORK 100

FIGURE 77 SURVEY - OBJECTIVES - MORE MAINTAINABLE SOFTWARE 100

FIGURE 78 SURVEY - PRINCIPLES - OVERALL RATING 101

FIGURE 79 SURVEY - PRINCIPLES – THE MOST IMPORTANT
PRINCIPLES .. 101

FIGURE 80 SURVEY - RULES - OVERALL RATING ... 102

FIGURE 81 SURVEY - RULES - THE MOST IMPORTANT RULES 102

FIGURE 82 SURVEY - PROCESS - OVERALL RATING 103

FIGURE 83 SURVEY - ROLES - OVERALL RATING ... 103

FIGURE 84 SURVEY - OVERALL RATING OF WHOLE METHOD 104

FIGURE 85 CONTEXT OF THE METHOD .. 108

FIGURE 86 VALUES TO FOCUS FOR THE TEAM AND TEAM LEADERS ... 111

FIGURE 87 OBJECTIVES TO FOCUS FOR THE TEAMS AND TEAM
LEADERS ... 112

FIGURE 88 PRINCIPLES TO FOCUS FOR THE TEAMS AND TEAM
LEADERS ... 113

FIGURE 89 RULES TO FOCUS FOR THE TEAMS AND TEAM LEADERS 114

FIGURE 90 DEVELOPMENT APPROACH ... 118

LIST OF ABBREVIATIONS

Abbreviation Explanation

UCD User-centered Design

IT Information Technology

IP Intellectual property

B2B Business to business

SaaS Software as a Service

CD Continuous Development

SysAdmin System Administrator

DBA Database Administrator

CI Continuous Integration

TDD Test-driven Development

UI User interface

UX User experience

DoD Definition of Done

DoR Definition of Ready

DSRP Design Science Research Methodol-
ogy

QA Quality Assurance

SUS System Usability Survey

SAFe Scaled Agile Framework

TABLE OF CONTENTS

TIIVISTELMÄ ... 2

ABSTRACT .. 3

LIST OF FIGURES .. 4

TABLE OF CONTENTS ... 10

1 INTRODUCTION OF RESEARCH .. 13

1.1 Research problem .. 14

1.2 Motivation for the research .. 15

1.3 Objectives for the research.. 15

1.4 Research method and structure ... 17

1.5 Limitations and constraints .. 18

2 INTRODUCTION OF SOFTWARE DEVELOPMENT AND CHOSEN
METHODS ... 19

2.1 Software engineering; system development and maintenance 19

2.2 Researched methods .. 20

2.2.1 Agile and Lean .. 21

2.2.2 Scrum ... 23

2.3 DevOps .. 26

2.3.1 User-centered design ... 31

2.4 Earlier research ... 34

3 RESEARCH METHODS ... 35

3.1 Design Science .. 35

3.2 Approach for qualitative research ... 37

3.3 Design Science use in the research .. 38

3.4 Background of methods (software development) 39

4 METHOD FOR CONTINUOUS SOFTWARE DEVELOPMENT AND
MAINTENANCE .. 41

4.1 Background of method ... 41

4.2 Application of method .. 41

4.3 General .. 41

4.3.1 Values ... 41

4.3.2 Objectives .. 43

4.3.3 Principles, guidelines and rules ... 45

4.4 Structure of the method .. 48

4.4.1 Roles and responsibilities .. 48

4.4.2 Process.. 50

4.4.3 Planning phase.. 51

4.4.4 Development phase ... 53

4.4.5 Maintenance phase ... 54

4.4.6 Relations of activities in the process .. 55

4.4.7 Tools ... 57

5 INTERVIEW RESULTS .. 60

5.1 Chosen group of people in the research ... 60

5.2 Interview results .. 61

5.2.1 Values ... 62

5.2.2 Objectives .. 62

5.2.3 Principles ... 64

5.2.4 Rules ... 64

5.2.5 Roles ... 65

5.2.6 Tools ... 66

5.3 How interviewed people evaluated the method 67

5.3.1 Values ... 67

5.3.2 Objectives .. 68

5.3.3 Principles ... 69

5.3.4 Rules ... 70

5.3.5 Processes .. 71

5.3.6 Roles ... 72

5.4 Most important observations from the interviews 73

5.5 What’s new was found out during the interviews? 74

6 UPDATED METHOD ... 76

6.1 Values .. 76

6.2 Objectives .. 77

6.3 Principles ... 78

6.4 Rules .. 79

6.5 Process ... 80

6.5.1 Changes to the process´s inputs and outputs 81

6.6 Analyze of the method after changes ... 83

7 SURVEY RESULTS.. 85

8 DISCUSSION ... 105

8.1 Comparison to continuous software engineering 105

8.2 Contribution to science ... 106

8.3 Contribution to practice .. 110

9 CONCLUSIONS .. 115

9.1 Limitations .. 116

9.2 Future research ... 118

REFERENCES .. 120

ATTACHMENT 1: INTERVIEW MATERIAL .. 124

1 INTRODUCTION OF RESEARCH

Digitalization is a term which occurs in many circumstances nowadays. Gartner
(2013) defines digitalization as an emerging business model that includes exten-
sion and support of electronic channels, content and transactions. Various organ-
izations are looking way to improve and enhance their processes and lower cost
level. Typically organizations are aiming to find competitive advantages or re-
spond to challenges in their industry. New technologies including software and
hardware are changing organizations ways of working. Successful organizations
are today typically technologically orientated and they effectively use new tech-
nologies to improve their operations. When adapting new technologies and in-
formation systems organizations need to understand their own processes. By un-
derstanding processes organizations can find new advanced tools and infor-
mation systems to improve operative work. When adapting new ways of work-
ing change management is crucial as these new technologies and tools need to
deploy also to daily work.
 Behind of new technology there are always information technology
teams which are producing tools and systems for businesses. This research fo-
cuses on IT teams which are providing new information systems for their cus-
tomers. Previously software was sold to customers as an installable package.
During the years business models have changed and most of the new information
systems or software is provided to customer as a service. As a service means that
service providers provides to customer needed hardware (servers), software,
customer service and maintenance services. With this kind of approach organi-
zations are moving IT related functions to service providers and at the same time
they can focus on their core business. In the big picture this kind of approach is
beneficial also IT service providers as they can handle all components of their
services by themselves. Biggest factor for this kind of business change has been
evolvement of telecommunication networks. If previously networks weren’t fast
or reliable enough today those are. With robust networks service providers can
provide their services example from their own server environments. In practice
information systems can be located far away from the end-user. This also means
that service providers can create hosting environments more efficient way than

14

before. With new technologies and tools software can be designed to work more
effectively in shared environments. If earlier one information system was desig-
nated for one customer today same information system can serve even hundreds
of customers with same instance. This kind of change in business is beneficial for
all parties as service providers can lower their costs with shared services and cus-
tomers can procure services with lower, cost effective prices.
 Behind of information systems and IT related services are IT teams and
members of the team. As business around teams has changed during the years
so has changed the way of working in teams. New kind of business models and
evolvement of technologies requires change to the team working also. As previ-
ously mentioned most of the information systems are provided to customer as a
service and one service can be used of even hundreds of customer. This kind of
environment requires for the IT teams robust processes and ways of working to
deliver required high-quality services in a fast changing business environment.

1.1 Research problem

Information system development has evolved during the years from method to
another. During these years concentration has been in the information system
development phase. Earlier software projects have included one development
phase and after moving to maintenance phase the service or product which cus-
tomer has stopped to evolve without additional orders from service or product
provider. Nowadays customers on business side are expecting continuous devel-
opment from those services what they are buying. This expectation comes from
consumer business where software continuously evolves; nowadays companies
are expecting same from their service providers. Example operating system pro-
viders like Microsoft and Apple are developing their systems all the time and
within certain time cycles they release new version of their operating systems. In
internet era service providers are developing their services in quicker pace than
previously. Current techniques and web-based services are providing environ-
ment where releasing and continuous evolving is easier than previously. As in-
ternet availability has increased also B2B customers are buying information sys-
tems as a service which means that they don’t necessary need to host own server
environments anymore. Service providers are providing to customers their soft-
ware with Software as a Service (SaaS) model. For the customer this is also easier
way to procure information systems. Continuously evolving software requires
releases in fast pace. If development and maintenance has earlier relatively clear
line between different lifecycle phases, nowadays this line has been fading out
and development happens iterativelys.

When technology has evolved consumers have been able to get familiar
with many new services and systems. Many large consumer services like Face-
book, Google and Spotify are based on easy and user friendly interface. When
consumers use these systems their expectations to B2B software and services are
going higher all the time. This kind of evolution puts B2B software providers to

15

position where they need to focus more and more to user experience and usabil-
ity of software and services.

Main problem behind the research is lack of method which consist user ex-
perience perspective together with modern agile development and maintenance
methods. For IT teams there are methods available which consist certain part of
software development phases but there is not available method which combines
suitable parts from different methods in one method. With this kind of method
teams would find development and maintenance method which answer to cur-
rent users and business needs. Main questions for the research is: How to contin-
uously develop and maintain software while fulfilling customer and user expectations?

1.2 Motivation for the research

Motivation for this research comes from my daily work. I am working on IT busi-
ness and I have business to lead. My objective is to find new ways of working
and help team to improve and develop their working as a team. We have used
several year agile methods and I have experience about those also on my early
positions. I have been involved to ramp-up and maintain large scale web-services
which had multiple millions daily users. Personally I have quite solid under-
standing of software development and maintenance process but during the years
used methods have changed as business also. During the years I have noticed
that meaning of user experience and software usability have increased. Already
in the beginning of sales process when you meet the customer first time it is im-
portant to give good impression about the services or software which you are
offering to customer. Good feedback from end-users is always asset when closing
the deal with customer. Without doubt customer is first paying attention to func-
tionalities and price but on the final decision user experience and usability are
playing crucial role. In this research I will observe things mainly from B2B per-
spective.

 I hope that the end result will help also other companies which are oper-
ating in the IT sector. My goal is to keep improved method such a general level
that it could fit for as many companies as possible. Method will have limitations
example regarding team size but it doesn’t exclude away any bigger companies.
Also in a bigger companies teams are working within a product lines and with
certain products and they have quite similar size teams than have in small and
medium size companies. My goal is to provide method which would help any
software team to provide user friendly software to customers or consumers.

1.3 Objectives for the research

This research aims to develop a method for continuous development and maintenance
of software, which meets customer and user expectations. On a high level objectives

16

can be shared on two groups business and technical objectives. In business side
this method aims to provide software in a fast pace (aiming for fast market pen-
etration) with lower costs. New method aims to improve also team work and
collaboration within the team. On technical side the new method concentrates to
provide high quality and better user experience. The main objective of the re-
search is develop a method for continuous development and maintenance of software,
which meets customer and user expectations.
 Previously in the research is spoken about higher release pace but at the
same this need is connected to term time to market. When developing new prod-
ucts it is important to get these products to markets as soon as possible. Every
month that company invests on new product without getting revenue effects on
revenue and to cash flow. If company can make sure that new products have
short time to market it means that they are getting money in faster than previ-
ously and also this might be crucial if observing this from the whole market per-
spective. This way company can conquer market example six months earlier than
competitor and it might gain huge amount of customer within that timeframe.
From business point of view it also means that company gets good references
and when competitor gets same product on the market it might have too large
gap to catch up.
 When developing new software, quality is one of the most important
things. As reflected previously DevOps and Scrum are part of this study in
method perspective. When bringing these methods and UCD together one of the
goal is to increase quality from multiple aspects. While considering many aspects
in this research it means internal and external quality factors. If looking quality
from internal aspect it can example decrease amount of issues in the software. In
practice this means more time to productive work when team members doesn’t
need to spend so much time solving these issues. If looking this from external
perspective quality means working software without so many issues than before.
At the same time when bringing UCD perspective on the method development
it means that customer and end-user needs are taken care more thorough. From
business point of view quality with greater user experience and usability bring
more satisfied customers and with network effect it brings more new customers
and revenue to the company. By bringing DevOps in this method the purpose is
to increase automation level and provide essential tools. As the goal is to find
suitable model for continuous development it is crucial to automatize as many
steps in process as possible. Driving operational and development specialists to-
gether in same process one of the objectives is also bringing more control into the
process. When everyone in the team knows and understands together agreed
processes and ways of working it brings more discipline for the IT teams.
Method’s process phases need to be verified. With verification this method aims
to provide clear approval or decline steps to the process and same time it means
that team commits to so far done work or raises possible issues in a structured
way. With all previously mentioned things one of the main objectives is also
lower total cost of ownership.
 Bringing several methods together in more rational way doesn’t neces-
sary mean that all of the steps and activities should just put together and create

17

a method which consist all artifacts from researched methods. It means that dur-
ing the research it is important to find relevant artifacts, activities, practices and
ways of working and use those in reasonable way. Aim for this kind of trimming
is to keep method as simply as possible but at the same time as effective as pos-
sible. Researching this kind of method development from resource perspective
one of the objectives is also to keep utilization level as high as possible. This way
method focuses to keep labor cost as low as possible.

1.4 Research method and structure

Selected research method for this research is Design Science. Design Science
helps researchers investigate, evaluate, produce and present research results. It
also provides a process to produce research in structured way. The Design Sci-
ence Research Process and Research Method are covered in more detailed level
in chapter 3. The structure of document follows research process (FIGURE 1 De-
sign Science Research Process). Problem identification, motivation description
and objectives are defined in INTRODUCTION –chapter. Theory behind of the
research is introduced in INTRODUCTION OF SOFTWARE DEVELOPMENT
AND CHOSEN METHODS-chapter and the design of new method is available
in METHOD FOR CONTINUOUS SOFTWARE DEVELOPMENT AND
MAINTENANCE -chapter. When planning the research it is recognized that
demonstration and evaluation of this kind of research´s is quite laborious and
slightly difficult. Background of these challenges is the type of research. When
creating new ways of working and renewing processes in teams it requires mas-
sive changes to daily working. Therefore artifacts are described in different ways
(figures, chars, processes etc.) and the actual results are evaluated by information
technology professional with different roles. Evaluation happens with interview
which consist the introduction of new method for continuous development and
maintenance part where professionals can reply to questions. After interviews
new method is refined iteratively. Updated version is introduced in the 6 chapter
and survey results in the chapter 7. The purpose of the survey is to re-evaluate
method after second iteration round before the final discussion and conclusions
are covered.

18

FIGURE 1 Design Science Research Process

1.5 Limitations and constraints

When developing methods and researching possible best sides of different meth-
ods it is important to have clear limitations where the end result (method) can be
used. Method introduced in this research is suitable for 5-15 IT teams which are
developing and maintaining software. Chosen methods in the background and
increasing needs of customer to provide SaaS service over the internet, creates
limitations to the software and environment type. On this research is focused pri-
marily to web-based software which usually is offered to customer with the SaaS
model. This method doesn’t have limitations considering lifecycle phases but it
is focusing mainly on already implemented products. This research won’t take a
stance on team scalability but at the same time purpose is not to create limitations
which could create obstacles in the sense of scaling.

Using new method requires basic understanding of Agile Methodologies
and Software Engineering but at the same time objective is to create a method
which would be quite easy to adapt in any team. Adapting this kind of method
requires also technical knowledge and familiarization to tools from teams who
are willing to use method but this is something what is left for a possible users.
When using the method introduced in research it would be useful if team have
previous experience of software development. Adapting method can be done in
parts and it is not necessary wise to even try to get everything working in one
time.

This kind of method development requires mature tools to work with. Dur-
ing the last decade different kind of cloud-platforms have released labor work
from operative persons to development. Different cloud-platforms like Microsoft
Azure and Amazon Web Services are in crucial role when team wants to do con-
tinuous development for the provided services.

19

2 INTRODUCTION OF SOFTWARE DEVELOPMENT
AND CHOSEN METHODS

In following chapter research concentrates to create understanding for the fun-
damental methods on the research´s background like Software Engineering, Infor-
mation System Development and Software Maintenance. First part of chapter will
help reader to understand what kind of terminology is behind the research and
on later part of this chapter research concentrates to understand how selected
methods works and what those includes. These selected methods are Scrum,
DevOps and User-centered Design (UCD). As operative work in IT business needs
also governance and business perspectives those are partially covered in research
material but not inclusively than in literature of previously mentioned methods.

2.1 Software engineering; system development and maintenance

Software Engineering is “the application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of software” (Ieee,
1990). Definition of Software Engineering can be seen as a generic term and it
describes well also what kind set of activities and processes are done nowadays
in IT teams. These teams provide IT processes and services either to internal or
external clients. In the software development process there are four different high
level phases: gathering requirements, planning the system, developing the sys-
tem and delivering it (FIGURE 2 Software Development Process). Jayaratna
(1994) defines that the Information System Development is seen often as a sys-
tematic process which is composed of actions like identifying, analyzing, design-
ing and implementing. In a literature terms System Development and Infor-
mation System Development are often used in same context when speaking of
Software Engineering. Depending on source terms might slightly change in the
process but the main function and objective for each of these phases has remained
the same during the years.

20

FIGURE 2 Software Development Process

Information system development and processes regarding it covers phases until
delivery but after delivery there is also phase called maintenance which covers
several activities. “Software maintenance refers to all the actions that are needed
to keep software in such a running order that it achieves all its objectives from
the beginning until the end of the usage” (Vehvilainen, 2000). ISO/IEC (2006)
defines that “Software maintenance in Software Engineering is the modification
of a software product after delivery to correct faults, to improve performance or
other attributes”. Typically system maintenance covers software, hardware and
network related support functions.

2.2 Researched methods

As research´s objective is develop a method for continuous development and mainte-
nance of software, which meets customer and user expectations it is important to un-
derstand what kind of current methods, processes and practices are used in IT
operations nowadays and what kind of methods would be suitable for continu-
ous development. Focus in this research is to understand more deeply following
methods; Scrum, UCD and DevOps and inspect how those can be combined and
refined to one common method for IT teams. At the same time when observing
main concepts research will introduce other necessary terms and concepts
around these main observation methods.

21

2.2.1 Agile and Lean

Agile Methodologies have already used for a long time in the software industry
but wider spreading has happened quite tardily. Biggest difference in the Agile
Methodologies (FIGURE 4 Agile Method from traditional waterfall method (FIG-
URE 3 Waterfall method) is iterative delivery which means repeating basic soft-
ware development process (conception, initiation, analysis, design, construction,
testing and deployment) in short development cycles. Agile software develop-
ment praises things like collaboration and self-organizing individuals. There are
several methods which follow Agile Manifesto and principles but all those differ
from each other slightly. Most well-known agile software development meth-
ods/frameworks are: Scrum, Kanban, Scrumban and Extreme Programming (XP)
(Poppendieck & Cusumano 2012).

FIGURE 3 Waterfall method

22

FIGURE 4 Agile Method

Agile Manifesto and Agile Principles (FIGURE 5 Agile Principles (Agile Mani-
festo, 2001) are probably the most well-known part of the agile methodologies.
Agile Manifesto for software development highlights individuals and interac-
tions over processes and tools. Agile Manifesto also praises working software,
customer collaboration and responding to change over documentation, contracts
and plans (Agile Manifesto 2001).

Principle

Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a devel-
opment team is face-to-face conversation.

23

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able to maintain a constant pace indefi-
nitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

FIGURE 5 Agile Principles (Agile Manifesto, 2001)

Lean is customer-orientated model for process management and leadership (Six
Sigma, 2015). Lean was first time attached to software development at MIT dur-
ing the mid-1980. Background of Lean comes from Japanese automotive industry
where Toyota wanted to enhance their product development process
(Poppendieck & Cusumano, 2012). With Lean Toyota achieved significant im-
provements to their production. After doing the changes they noticed that they
need less direct labor, defects amount decreased substantially and they gained
also higher quality for their products (Kennedy, 2010, 13). Lean’s main objectives
are quality improvement, waste elimination, time and cost reducing. Waste as a
term means unnecessary things in production process which doesn’t bring value
to the process. In practice this means that by eliminating example useless meet-
ings, tasks or documentation, company can increase the performance of their pro-
cesses. Lean emphasizes word System as in this context it means team which op-
erates as a whole. Science behind Agile and Lean are similar and both of those
are concentrating on same core artifacts like people/individuals, fast/continuous
delivery, quality and simplicity. (Poppendieck & Cusumano 2012)

2.2.2 Scrum

The Scrum is a framework to develop and maintenance complicated products
(Schwaber & Sutherland, 2011). The Scrum is one of the agile methodologies and
it follows agile principles and manifesto which are covered in the chapter 2.2.1.
It consists different roles, activities, outputs and rules. Scrum is known for a light-
ness and same time it is easy to understand and learn for the IT teams. At the
same time Scrum is difficult to control as it doesn’t give comprehensive instruc-
tions to users. In other words framework brings loose structure for daily working
but at the same time it leaves lot of responsibility and freedom for the users.
 The Scrum has been used since early 90’s for product development.
Schwaber and Sutherland (2011) sees that Scrum is a group of processes (FIGURE
6 Scrum Process) and techniques which are making product management and
system development viable for relevant stakeholders. Scrum utilizes iterative
and incremental approach which is common for also to other agile software de-
velopment methods which are covered on chapter 2.2.1. Schwaber and Suther-
land (2011) highlight three pillars of Scrum. First of pillar Transparency is aiming

24

for visibility to all Scrum members. In practice transparency is viable in common
language and in together decided definitions. Inspection pillar emphasizes the
meaning of adequate monitoring. With adequate monitoring Scrum aims to ad-
vance implementation work and also remove obstacles which might disturb de-
velopers work. The last of three pillars is Adaptation. In practice this means that
“if an inspector determines that one or more aspects of a process deviate outside
acceptable limits, and that the resulting product will be unacceptable, the process
or the material being processed must be adjusted” (Schwaber & Sutherland 2011;
Dingsøyr 2010).

FIGURE 6 Scrum Process

A Scrum Team is the most important part of Scrum and it includes following
roles; Product Owner, Development Team and Scrum Master. Schwaber and
Sutherland (2011) highlights that the Scrum Teams are self-organizing and cross-
functional. Product Owner is responsible for a Product Backlog. The Product
Backlog is one of the Scrum artifacts and it can be seen as storage for a possible
work. Scrum Alliance (2014) defines that the Product Backlog is “a list of ideas for
the product, in order of priority” and Schwaber and Sutherland (2011) defines it
with following words: “The Product Backlog is an ordered list of everything that might
be needed in the product and is the single source of requirements for any changes to be
made to the product”. At the end of the day Product Owner is always accountable
for the Product Backlog. The main idea of the Product Backlog is to gather rele-
vant requirements in one place where those can be chosen to next iteration of
work. Prioritization and choosing correct requirements belongs on the Product
Owner responsibilities (Schwaber & Sutherland, 2011). Goal and mission need to
be crystal clear for the Product Owner as selection of implementable items be-
longs to him or her. Scrum highlights the meaning of visibility and in the Product
Owner role this is also one of the main things if thinking the Product Backlog.
The Product Backlog and items inside of it need to understandable for everyone
in the Scrum Team. The Scrum Master is servant-leader of the Scrum Team
(Schwaber & Sutherland, 2011). The Scrum Master takes care of team´s daily

25

work and makes sure that everyone follows the policies, processes and rules. At
the same time the Scrum Master is also protector of the team and on this role it is
important to make sure that other Development Team members have industrial
peace. The Development Team is the part of Scrum Team which completes most
of the work what Scrum Team provides. All team members are professionals
with necessary competencies and Scrum highlights the importance of capability
for self-organizing. Development Team members might have usually specialized
skills for certain areas but accountability is still shared for the whole Develop-
ment Team. (Guang-Yong 2011; Mundra et al. 2013; Schwaber & Sutherland 2011;
Dingsøyr 2010)
 Development process of Scrum includes various events. These events are
time-boxed as framework creators have wanted to avoid irregularity. All the
Scrum events have maximum time limits as also Sprints have fixed timeframe.
The Sprint has a timeframe which tells the length of development iteration. Usu-
ally the length of Sprint is between one to four weeks (Sutherland & Van Solingen,
2011, 28). During the Sprint development team produces useable and potentially
releasable product increment (Schwaber & Sutherland 2011). Every Sprint in-
cludes all relevant events that belongs on process like; the Sprint Planning, Daily
Scrums, the development work, the Sprint Review and the Sprint Retrospective
(Schwaber & Sutherland 2011). The Sprint Planning is an event where team mem-
bers are planning the content of next Sprint. Sutherland and Van Solingen (2011,
71) emphasizes that “the essence of planning is to become predictable. Comparing esti-
mates against reality facilitates learning”. The Scrum Master is responsible to ar-
range this meeting and owner of role takes care that all rules and policies of
Scrum are obeyed. Output of Sprint Planning should be together agreed and un-
derstandable list of items what team is committed to deliver in upcoming Sprint.
This list of selected items is called the Sprint Backlog. The Sprint Backlog is one of
the artifacts of Scrum and it consist a set of selected functionalities from Product
Backlog to the next increment (Schwaber & Sutherland, 2011). When Sprint Plan-
ning is done team can start their work (Sutherland & Van Solingen, 2011, 41).
Work monitoring happens daily in Daily Scrums. Daily Scrums are short time-
boxed meetings where team can identify and remove impediments, get answers
shortly from a colleague and in general share knowledge of progress. Agenda for
participants is usually following; what did I do yesterday? What I will do today
to meet Sprint goals? Do I see any impediments that might harm own or teams
goals? In the end of Sprint Product Owner invites the Scrum Team and stake-
holders to Sprint Review meeting. In the Sprint Review meeting participants will
go through all finished items and also those items which for reason or another
are not ready. During the meeting completed items will be presented usually by
responsible person. In the meeting there should be discussed also following mat-
ters; possible problems and resolution of those; situation of the Product Backlog;
preparing of next Sprint; and possible changes on market situation, financials or
in the schedule (Schwaber & Sutherland, 2011). Continuous learning is one of the
important things in Scrum process. End of every Sprint Scrum Master organizes
Sprint Retrospective meeting where whole Development Team gathers together.

26

During the meeting team inspects how last Sprint went regards to people, rela-
tionships and tools (Schwaber & Sutherland, 2011). In the meeting team will
gather a list of improvable things and plan how to implement those. Sprint Ret-
rospective process guides team to make improvements and create more enjoya-
ble working environment for the team members. (Guang-Yong 2011; Mundra et
al. 2013; Schwaber & Sutherland 2011; Dingsøyr 2010)

2.3 DevOps

On IT industry there has been already couple year’s vivid discussion about the
DevOps and seems that definitions of DevOps are changing as much as there are
answerers. Swartout (2012, 1) defines that DevOps is “a way of working that en-
courages the Development and Operations teams to work together in highly collaborative
way towards the same goal”. Longbottom (2014) says: “DevOps – essentially, bringing
the development and operational teams closer together through automation to support the
speed of change the business requires”. Both of these professionals are speaking
about operations and development teams and bringing those closer together.
DevOps is also seen as a combined part of OPS, DEV and QA functions (FIGURE
7 DevOps).

FIGURE 7 DevOps

DevOps is many times connected also for delivering software in quickly pace.
Regarding quick pace Humble (2011) says that DevOps is “a cross-disciplinary
community of practice dedicated to the study of building, evolving and operating rapidly-
changing resilient systems at scale”. As can be infered there is no official definition

27

available for DevOps but the main objective for the DevOps is to bring develop-
ers and operative specialists together and the same time break barriers between
organizational lines (FIGURE 8 Organizational silos between Development and
Operations). With this kind of approach infrastructure management will be part
of software development process (Gofore, 2013). On high level DevOps can be
shared on two parts: philosophical and practical. In the background of DevOps
there are Lean and Agile Software Development. Humble (2011) says that
DevOps values are pretty much captured from Agile Manifesto (FIGURE 5 Agile
Principles (Agile Manifesto, 2001). Baseline for the DevOps methods comes from
Agile Methodologies. In the practice this means that operational functions are
integrated to Agile Methodologies. Scrum or Kanban or any other Agile Method
is suitable for the DevOps purposes. Continuous Delivery is a term which is often
connected to DevOps. Swartout (2012, 1) defines that Continuous Delivery “is a
way of working whereby quality products, normally software assets, can be built, tested,
and shipped in quick succession”. Like some might perceive Continuous Delivery is
different thing than DevOps but Swartout sees it as a part of DevOps. (Cois,
Yankel, & Connell 2014; Farroha & Farroha 2014; Hussaini 2014; Hüttermann
2012; Spinellis 2012)

FIGURE 8 Organizational silos between Development and Operations

When going deeper to DevOps can be seen that it includes numerous aspects and
activities. In the DevOps these can be classified to following groups: Culture, Au-
tomation, Measurement and Sharing (Hüttermann 2012, 4). Like in Agile Meth-
odologies people are acting crucial role in the DevOps. In the Agile Manifesto
there is a mention that people should go over processes and tools and same value

28

applies on DevOps. Therefore Hüttermann (2012, 22) emphasizes meaning of
people in DevOps with following words: “Software is made by and for people”.
Swartout (2012, 71) encourages to open, honest and courageous dialogue. With
this he means that everyone involved to the delivery process should be able to
comment and openly discuss any ideas, issues, concerns and problems. Hütter-
mann (2012, 30) is speaking about avoiding so called “blame game”. When earlier
operations and development teams were apart now this kind of situations
shouldn’t become as DevOps quides to “one team” approach where all members
are aiming to mutual goal. In this kind of “one team” approach programmers,
testers, and system administrators are all involved to develop solution together
(Hüttermann, 2012, 15). Building trust is also one of the themes what is often
spoken in DevOps. All values and practices emphasizes team work and collabo-
ration as a “one team” and by achieving common goals together team starts to
build trust between each other’s. Also Swartout (2012, 86) emphasizes the mean-
ing of trust with following words: “Trust is powerful tool and allows for a greater
degree of collaboration”. Hüttermann (2012, 27) defines that respect for one another,
commitment to shared goals, collective ownership and shared values are prereq-
uisites for the cooperation and the trust. Swartout (2012, 75) encourages to col-
laborate but also emphasizes that it needs monitoring as collaboration needs to
be continuous way of working. Swartout (2012, 87) describes on his book many
layers of CD and DevOps. From description of these layers it is easy to see over-
view of culture related matters in DevOps (FIGURE 9 Layers of CD and DevOps).
(Cois et al. 2014; Farroha & Farroha 2014; Hussaini 2014; Hüttermann 2012;
Spinellis 2012)

FIGURE 9 Layers of CD and DevOps

29

As covered earlier in the DevOps there is value: working together as a “one team”
and this partially works already when observing to Agile Methodologies where
software programmers and testers are seen as a “one team” and they are called
developers. So in Agile Methodologies these two group of specialists are already
working in a “one team” but DevOps emphasizes that specialist like SysAdmins,
DBAs and Network technicians should be a part of this “one team” not separated
(Hüttermann, 2012, p. 87). When these functions are isolated from one another it
might cause conflicts example during the transition process if development team
provides software increment to operations team and there are some nonfunc-
tional requirements which should be fulfilled but those are not considered before
increments comes to operations. That’s only one example but gives insight why
these functions should work as a “one team”. This kind of misalignment situation
comes from the classic view where development team wants to create change to
systems and operations wants to stabilize environments. Both of these functions
are working towards their goals so no-one doesn’t have made mistake but still
there is possibility for a collision. DevOps aims to avoid this kind of possible col-
lision situations by bringing these people together in same team. Bringing people
to same team means also changes in culture and way of working. As in previous
paragraph was spoken people are in crucial role in the change process. By bring-
ing these two functions together it creates same goals and targets for the whole
team which is one of the most important fundamentals of the DevOps. (Cois et
al. 2014; Farroha & Farroha 2014; Hussaini 2014; Hüttermann 2012; Spinellis 2012)
 Working as a “one team” is a first step for the cooperation but there is
still a need for shared processes and tools. The Scrum concentrates on the process
which includes several activities. Simplified and effective processes bring visibil-
ity and transparency for all involved stakeholders and these same goals are also
highlighted in DevOps than in the Scrum. DevOps wants to bring alignment be-
tween teams with defined quality attributes (Hüttermann, 2012, 27). The main
objective of DevOps still remains; delivering changes to application in fast pace
and with quality.
 In the Agile Methodologies processes, roles and responsibilities are more
important role rather than single tools. In the DevOps tools are also in important
role as those helps teams in their daily working with defined processes. The big-
gest fundamental in the background of tools is high level of automation. DevOps
relies on end-to-end automation (Hüttermann, 2012, p. 29). With appropriate
tools DevOps wants to apply baselines for the source code; conduct builds; run
technical, functional and acceptance tests; packing code packets; deploying to
different environments. With this kind of automation and tools DevOps aims to
reduce a need for human work and at the same time it decreases amount of pos-
sible mistakes in the development process. This kind of approach also creates
common practices and it means certain practices are every time done with similar
way. Automation can be seen an essential for the high speed delivery.
 Swartout (2012, 50) defines that most relevant rules or processes for
DevOps point of view are; Always use source control; Commit small code
changes frequently; Do not make code overly complex and keep it documented;

30

If you have automated tests, run them very frequently; If you have a continuous
integration (CI) solution controlling your build and test suite, run it very fre-
quently; Use regular code reviews; Do not be afraid of having tests that fail or
others finding fault in your code. The idea of source control is to have one com-
mon place for all code what team has implemented. Source control gives team an
overview of code they have created and at the same time it gives secure environ-
ment which includes access for all team members. Usually source control also
provides automatic backups for the code and with it team can easily create ex-
ample different code branches if wanted. Source control can be seen as valuable
tool for DevOps adoption and at the same time it creates possibility to deliver
small and frequent updates to system (Swartout, 2012, 51). The purpose of deliv-
ering small and frequent changes is to reduce complexity and maintain quality
(Swartout, 2012, 51). It also helps to reverse-engineer if there are some regressions
noticed in code base. As DevOps embraces the high level of automation auto-
mated build and testing is one of the most important things in the delivery pro-
cess. Swartout (2012, 55) recommend Test-Driven Development (TDD) which
aims to find possible defects in code as early in the process as possible. In practice
it means those tests are written before even the actual code development begins.
During the code writing these tests can be run over and over again. During the
development process team member can easily notify if something fails in the
code. Developers might see TDD slightly cumbersome but meaning of automated
testing increases as system grows bigger. Hütterman (2012, 58) spokes about Test
Automation Mix which consists UI, Service Components and Unit layers. All
these different layers are using automated tools for testing. UI testing layer tests
implemented code which consist functionalities in user interface. Service Com-
ponents layer tests codes in back-end system which usually consist code related
on business logic. Units are often classes which can be tested with automation
tools. These classes are providing certain functionality which can be used in the
one purpose but in a multiple instances. A unit doesn’t usually have connection
to any database or other systems and those can be tested individually. (Cois et al.
2014; Farroha & Farroha 2014; Hussaini 2014; Hüttermann 2012; Spinellis 2012)
 Continuous Integration (CI) is also seen as important in DevOps. CI is
software solution that allow team to run automated scripts during the develop-
ment process which example commits to source control every ten minutes, over-
night and so on CI systems provides also usually extensive reporting which
means that team members can easily see if something fails in the process and they
can trail results, compare to previous and fix possible error in the process. Previ-
ously mentioned automated test can also run with CI systems. In practice system
can run automated test in binary repository and if something fails it can be traced
and fixed in short notice. (Swartout 2012, 56).
 Monitoring and measuring the work with certain metrics is one part of
software engineering process. As DevOps and Agile Methodologies wants to cre-
ate visibility and transparency to the whole delivery process is important to have
simple and adequate monitoring metrics. In the Scrum there is a Definition of

31

Done (DoD) which is the exact definition of when task is completed. In measur-
ing context this is first part where team should have well enough documented
acceptance criterias. In the DoD team defines what kind of tests and functionality
should be implemented before work can be approved. In the DevOps typical
metrics for the monitoring are Cycle Time, Lead Time and Throughput. These
are telling how well the process works and how long it will take example from
customer contact to shipped fix for the reported issue. Cycle Time includes all
the sub processes which are determined to do during the process (Hüttermann,
2012, p. 39). Usually this process includes several steps and Cycle Time measures
how long it takes to go through all of those. Lead Time differs slightly from Cycle
Time as it usually measures time when issue is raised to system until to comple-
tion. Both of these metrics are measuring effectiveness of team. In the DevOps
usually also amount of shipped functionalities or fixes are measured. Certain
amount of fixes or functionalities can be shipped either in bigger or smaller
batches which is decided by the product management together with team. Dur-
ing the development process there can be done several different test which are
helping team to understand what kind of defects process creates. (Cois et al. 2014;
Farroha & Farroha 2014; Hussaini 2014; Hüttermann 2012; Spinellis 2012)

2.3.1 User-centered design

User Experience (UX) is critical part of information system development. Kraft
(2012, 1) defines User Experience as a “feelings” that user gets when he or she is
using the product, system or service. User experience is a part of information
system process which is controlled by using User-centered Design (UCD) meth-
ods or practices. User-centered design (UCD) is a “design philosophy that puts the
user of a product, application, or experience, at the center of the design process. In UCD,
a designer strives for a detailed understanding of the needs, wants, and limitations of the
people who will use the end product and then makes design choices that incorporate this
understanding” (Pratt, 2012, 12). During the User Experience design process team
members need to consider many different factors which are affecting the whole.
Pratt (2012, 15) mentions that factors like business goals of client, the limitations
of technology, timeline and budget will effect on designing process. User Expe-
rience is highly connected to user expectations. If user expectations aren’t high
expectations are easier to fulfill but this works also the other way around, when
expectations are high user can easily get disappointed. When speaking about
User Experience and User-centered Design process the output of this process is
User Interface in products, systems and service. Understanding the user has seen
as an important factor during the development process (Pratt, 2012, 16). In prac-
tice this means that developer need to understand what user wants and what
they need. Pratt (2012, 16) emphasizes that poor design can be frustrating, pre-
ventive, and in extreme cases even deadly. From business perspective User Ex-
perience of the new products, system and service is the key battlefield (Kraft 2012,
p. 16). The ideal User Experience makes user to feel happy, satisfied, proud or
even love most of the time (Kraft, 2012, p. 9). Good User Experience starts from

32

innovation. Innovation can be seen an idea to market (Kraft, 2012, 12). Innovation
is often seen as a “big thing” but it is important to understand that many times
even small innovation can be meaningful; the main point is to create value for
user. Kraft (2012, 12) introduces the five main elements of successful User Expe-
rience innovation (FIGURE 10 The five main elements of successful User Experi-
ence innovation).

FIGURE 10 The five main elements of successful User Experience innovation

Relevance indicates the need of something. Without relevancy user doesn’t do
anything with new innovation. Experience of positive feelings is something what
makes user enjoy when using the product, system or service. When speaking
about uniqueness it doesn’t necessary mean that innovation need to be some-
thing which is not discovered before but it needs to be something new for the
user which creates a feeling of uniqueness. By visibility Kraft means that user
needs to experience the innovation and notify this is something new. From busi-
ness perspective innovation need to have always market. With this kind of ap-
proach and considering these elements during the development process team is
closer to successful User Experience. (Kraft 2012, 16)
 User-centered Design process contains on high level three main factors;
understanding users; interaction definitions; and UI design. Many sources are
using more or less similar process model but on this case I have chosen model
which is presented by SAP (2009) (FIGURE 11 User-Centered Design). As UCD
has seen collaborative process between product, system or service providers and
users is important to understand the baseline for the process. On planning phase
team needs to identify all stakeholders who would be involved in the process.

33

This group of stakeholders includes both external and internal people. During
the planning process relevant UCD activities will be identified. Typical UCD ac-
tivities are; building of User Scenarios; describing process flows; defining con-
ception outputs (wireframes, UI-proto, site maps); user testing and possible sur-
veys. This kind of planning gives scope for the coming process. (SAP, 2009)

FIGURE 11 User-Centered Design

Research phase concentrates on understanding user needs. On this part of pro-
cess team defines what the possible user groups are and what kind of different
kind of needs these user groups have. User groups and users might differ very
much depending on product, system or service market. Example there might be
users from elder customers who might have different needs than younger users
or in companies different level of organizations might have different information
needs. Kraft (2012, 26) sees that “defining target users is essential step, since it will
not only help you focus on innovations, your approach, and your marketing, but it will
help you to avoid creating product that tries (and fails) to do everything for everyone”.
Typical activities on this phase are; field research (what users want really do);
run focus groups or lead user workshops (Kraft 2012, 39)(what users think and
how they are responding to new concept); conduct interview; and conduct form-
ative usability test to evaluate design. (SAP 2009)
 During the design phase team uses all the information what is gathered
in research phase. In system development this phase includes activities like user
case creation and user object modeling; UI design sketching (wireframes); and
validation of design proposals (SAP 2009). Pratt (2012, 124) highlights that during
the design phase it is important to maintain continuous collaboration with users.

34

In the beginning all sketches and wireframes are blueprints but during the itera-
tive dialogue and development process understanding increases and product,
system or service evolve towards customer needs. The design phase can start
from sketches, evolve to wireframes and prototypes.
 When the design phase end and adaption phase starts it important to
understand that evolvement continues. During the adaptation when team mem-
bers are implementing the product, system or service there might become issues
which must be handled proper way. During the adaptation phase dialogue with
need to remain and it is important that at the end all implemented things are
validated by customer. After designing phase when the actual product, system
or service is ready starts measuring phase. On this phase team measures effec-
tiveness, efficiency and satisfaction. All these metric are planned in first phase
and results of measurement will be reflected on those. (SAP, 2009)

2.4 Earlier research

Each of main methods and models DevOps, Agile (Scrum) and UCD are topics
which have earlier researches available. These researches typically focus on one
of these and they are observing method or model in different perspective than I
am doing. Earlier researches might focus example for agile testing, challenges of
scrum, how to deploy agile methods, how to implement usability testing with
agile methods, comparison of maturity models in agile or how to move from wa-
terfall to scrum. Researches about UCD usually focus directly on some part of the
UCD model. Example researchers have focused on doing mockups, culture of
UCD, interactivity of the process or knowledge based approach for UCD.
Uniqueness of this research comes from combination of these three methods
which together provide whole method for developing software continuously and
more effectively. With UCD this method brings user closer to the development
and maintenance work. (Pesonen 2012; Tikkanen 2014; Kamppi 2013; Maukonen
2015; Säde 2004; Iivari 2006; Kalermo 2014; Koskela 2014)

35

3 RESEARCH METHODS

At the beginning of the research there were two different research methods
which would be possible to use in this kind of research. These two different re-
search methods were Method Engineering and Design Science. Both of these
methods have good sides but eventually Design Science was more suitable for
this case. In the Method Engineering process gathers all requirements and during
the process researcher will develop and prototype solution. The evaluation of
Method Engineering is done against the original requirements which have con-
ducted at the beginning of research. In the Design Science process researcher con-
structs a hypothesis as is done in this research. Based on the hypothesis evalua-
tion can be done with different ways. In this research evaluation is done by pro-
fessionals who are working in the IT industry and they have relevant competen-
cies and experience to evaluate constructed hypothesis.

3.1 Design Science

The background of the Design Science extends to 1960 when first time was talked
about systematic form of designing. First opinion leaders during that time were
Fuller, Simon and Compton. Design science can be seen as a body of knowledge
for designing. Design science provides systematic and formalized design meth-
odologies to research various segments. Design science research aims to produce
valid knowledge for designing. The biggest difference between Design science
and natural science is their nature. Natural science aims to understand reality
and design science attempts to create things that serve humans. Design science
can be seen technology orientated and usually with it researchers aims to gain
either value or utility. The products of design science include four different types
to describe results: constructs, models, methods and implementations. With con-
structs design science characterizes different phenomenon. Models are used in
design science to describe tasks, situations or artifacts. Design science is also used
to describe goal-orientated activities. Previously mentioned goal-orientated ac-
tivities are handled in practice with implementations. Design science can be seen
as a research method which helps to create innovative constructs, models, meth-
ods and implementations which create value way or another for certain group of
people. Design science consist two basic activities, build and evaluate. Building
phase constructs artifact for a specific purpose. The goal of evaluation process is
to understand how well artifact actually performs in that context where it is
meant. (March & Smith 1995)

Peffers et al. (2006) have built in their research a process model for the de-
sign science (FIGURE 12 Design Science Research Methodology (DSRM) Process
Model). DSRP model includes six activities in nominal sequence. First, problem

36

identification phase defines the problem behind the research. In this phase re-
searcher defines the problem and divides it to small enough pieces. When prob-
lem is described comes motivation part. In motivation part researcher describes
why it is important to solve this particular problem and why it is worth of re-
searching. On a second phase researcher defines objectives of solution. This part
of process describes what desirable solution is and how it solves the problem
behind the research. In this phase researcher answer also to question: why solu-
tion is better example than some previous solutions. This phase gives goals and
objectives for the research. On a third phase researcher creates artificial solution.
As previously mentioned design science consist four different types to describe
results: constructs models, methods and implementations. These are used to de-
scribe the artificial solution. Fourth phase demonstration is meant for proving the
efficiency of the solution. This phase creates understanding how well the created
solution actually works with research problem. For this kind of demonstration
can be used example simulation, case studies or any other suitable activities. Sec-
ond last phase evaluation observes and measures how well solution solves prob-
lem. Evaluation is done against the original problem definition. Depending on
research researcher need to choose relevant tools and metrics to evaluate how
well the solution suits for problem solving. Researcher can use either quantitative
or qualitative metrics for providing relevant information for the research. Typical
implementations are surveys, feedback from relevant people or simulations. Last
phase in this process is communication. When research is done and described
with common structure of research papers it will be shared to relevant parties
like practicing professionals. (Peffers et al. 2006)

37

FIGURE 12 Design Science Research Methodology (DSRM) Process Model

3.2 Approach for qualitative research

Qualitative research will include approximately five interviews. On these inter-
views researcher introduces the created method material (Attachment 1: Inter-
view Material) and each of participants will answer to open questions which are
evaluating how method would work in their working environment. Each of par-
ticipants in these interviews are professional from the information technology
industry. In the interviews there will be 2-3 persons at the same time and answer-
ing will be done in a group. Purpose for these interviews are to gather infor-
mation for method values, principles, rules, processes, roles, responsibilities and
tools (Attachment 1: Interview Material) and in later phase breed and updated
method based on the interview results.

38

3.3 Design Science use in the research

This research will follow the Design Science process. At the chapter 1.1 it is de-
scribed the problem for the research. Motivation for the research is described in
the chapter 1.2 and objectives are available in the chapter 1.3. Designed theoreti-
cal method is introduced at chapter 4. Theoretical version of method will be
demonstrated to IT professionals who will also evaluate the hypothesis of
method. After first evaluation round method will be iteratively developed as de-
scribed in the Design Science process. First evaluation round will be based on
face-to-face interviews and after iterative development another group of IT-pro-
fessionals will re-evaluate the method with survey. Results of first evaluation
round are available at chapter 5. After first evaluation and analyze method will
be updated and next version of method will be evaluated with the survey. Survey
will include numerical evaluation of method. In this survey answerers will dif-
ferent persons than in the first evaluation phase. Next version of method and
survey results are available at the chapter 6 and 7Error! Reference source not

found. (FIGURE 13 Process phases in the research)

FIGURE 13 Process phases in the research

39

3.4 Background of methods (software development)

Methods usually include guidelines, processes, roles, responsibilities and other
relevant information to organized way of working. Jayaratna (1994, 35) defines
that method is “an explicit way of structuring one’s thinking and actions. Methodolo-
gies contain model(s) and reflect particular perspectives of ‘reality’, based on a set of phil-
osophical paradigms. A methodology should tell you ‘what’ steps to take and ‘how’ to
perform those steps but most importantly the reasons ‘why’ those steps should be taken,
in a particular order.” In many sources term “methodology” is synonym for the
“method”. Brinkkemper (1996, 275-276) defines method as “an approach to perform
systems development project, based on a specific way of thinking, consisting of direction
and rules, structured in a systematic way in development activities which corresponding
development products”. Methods in operative work can be seen as backbone for the
IT operative work. Methods have always certain structure of information. This
structure describes relevant information components and helps us to understand
what kind of information is needed when creating method for the IT operations.
Leppänen (2005) defines on his research method context with following model
(FIGURE 14 Context of Method). On this model method consists following com-
ponents; Historical view, Application view, Generic view, Contents view,
Presentation view, Structural view and Physical view.

FIGURE 14 Context of Method

40

All of these different views (FIGURE 15 Descriptions of different views) have
their own characteristics and each of those complements one another. For the re-
search most important views are application, generic, contents, presentation and
structural views.

Name of view Description of view

Historical view Describes the background of method

Application view Describes also where and how the method is applied.

Generic view Nature of method, fundamentals on background like values and
assumptions.

Contents view Conceptual contents of the method

Presentation view Describes how method is expressed to understandable mode
and how it is presented

Structural view Structure of method, including principles, models, techniques,
rules, guidelines etc.

Physical view Describes how method appearance and how it is available for
the reader

FIGURE 15 Descriptions of different views

41

4 METHOD FOR CONTINUOUS SOFTWARE DEVEL-
OPMENT AND MAINTENANCE

4.1 Background of method

This method gathers, combines and tailors values, principles, rules, roles, pro-
cesses, practices and techniques from the Scrum, DevOps and UCD. All selected
methods fulfill each other in this method. On a high level Scrum framework cre-
ates a baseline for development work and DevOps brings maintenance activities
and practices together with agile methodologies. User-centered design gives end-
user and usability aspect to the method. As a whole method for continuous de-
velopment focuses to develop a method for continuous development and maintenance
of software, which meets customer and user expectations.

4.2 Application of method

This method is meant for teams which are providing software development and
maintenance for consumers or/and customers. Agile background of method pro-
vides a way react more quickly and respond more accurately to the inevitable
change that comes from consumers and customers. Especially method works
with complex software where targets aren’t always clear during the software
lifecycle. Method includes practices to work in fast pace environment and it is
designed for developing software continuously with high automation level.
Method also takes into consideration user experience and usability of provided
software. Method consists following structure in this document:

 Common values and objectives

 Principles, rules (and practices)

 Roles and responsibilities

 Processes
o Events/meetings/activities

 Tools

4.3 General

4.3.1 Values

Agile Manifesto provides values for Scrum framework but there are no common
known values available for DevOps. As DevOps relies on Agile Methodologies

42

values remains quite same but it would be good to have also operative perspec-
tive for the values. The method combines UCD and Agile Manifesto with relevant
parts. (Agile Manifesto 2001).

 On this method there are divided values for three main categories (FIG-
URE 16 Values). These categories are collaboration, quality and delivery. Both
Scrum and DevOps are highlighting the meaning of collaboration within the
team. UCD has also same kind of values but it highlights the meaning of end-
user/customer. In the values one team means same time working as a team. If
previously hardware admins and software developers were separated on this
method situation is changed and those specialist are brought together in one
team. Communication is crucial part of software development and that reason it
is one of the sub-values. During the software development things are changing
all the time and without researching/planning together and sharing information
software development will become more difficult. Therefore it is very important
to share information and communicate with each other. It is also important to
make information visible for all team members. Commitment is one of the sub
values. Purpose for this value is to make sure that everyone commits on their
work as every piece and every part of software matters in the end-result. Com-
mitting to deliverables strengthen the team as everyone can see that whole team
is working towards common goal. (Dingsøyr 2010, 203-233; Swartout 2012, 22-26,
75; Kraft 2012)

 One of the main values is a quality. Under the quality there are four dif-
ferent sub-values: provide excellence, embrace working software, user comes
first and measure and evolve. With these values method aims to create best pos-
sible software which works all the time and same time it is user-friendly. As one
of the main ideas of method is continuous improve it is important to measure
how well software is working. By gathering feedback from end-users team can
understand their needs. By using the acquired information team can improve the
software. (Agile Manifesto 2001).
 Third main value is delivery. Delivery section includes also four sub-val-
ues which highlight continuous development and delivery. It also considers au-
tomation as automation creates framework to deliver software in fast pace. When
talking about measuring quality same thing applies on delivery side. It is vital
for the team measure how well they are performing and how well software is
performing. Therefore measuring and growing knowledge that way helps team
to improve developed software and their practices during the software´s lifecycle.
(Swartout 2012; Agile Manifesto 2001)

Method value chart:

43

FIGURE 16 Values

4.3.2 Objectives

All researched methods have their own objectives. In the created method objec-
tive is to combine best parts of these common methods in one model which
would get benefits from all of them (FIGURE 17 Objectives). Scrum and agile
methods are aiming for following things; managing risk and change, faster time
to market, improved quality, stakeholder satisfaction and higher productivity
with lower costs. Slicing the scope for smaller parts helps software teams to un-
derstand the each part in development better than previously. Process forces
teams to communicate with particular way which helps everyone in the project
to stay up-to-date. One of the main things in Scrum is faster time-to-market. Eve-
ryone who is working with the business understands that every month what
company is not in the market with new product they are losing potential money.
Scrum aims to produce minimum sellable product which can get market faster
than with the older software development methods (e.g. waterfall). When the
new product is on the market cash flow starts and it helps company financially
to invest on further development. Scrum aims also to improve quality and mainly
this happens by formalizing processes. As a process of scrum is easy to use it
creates the effectiveness for the IT teams. Same time it forces stakeholders to par-
ticipate in the process whereas helps information sharing and collaboration be-
tween stakeholdes. Scrum as a process can be compared to train line; it always

44

follows same track, delivers new shippable increments and when it is at the end
point it starts again from the beginning. This kind of approach makes it also ef-
fective and improves productivity and lower costs. (Swartout 2012; Hüttermann
2012)
 DevOps and Scrum completes each other as they have many same goals.
DevOps also aims to faster time to market with high automation. These methods
gives a tools and practices to provide faster software and also update software in
faster pace than previously. If Scrum aims to reduce risk with certain process
DevOps aims to reduce risk mainly with tools and with certain practices and cul-
tural factors. When as many as possible parts in the process are automatized it
helps whole team to develop new version and ship those to production faster
than before. Shipping software faster than previously lower costs also. If certain
parts of process took previously two or three days with DevOps this part of pro-
cess can be handled with correct tools and practices even ten times faster. Addi-
tionally DevOps aims to effect on culture. Previous goals and objectives have
concentrate on tools and business matters but it also aims to bring people to-
gether in team. (Swartout 2012 72-74; Hüttermann 2012; Schwaber & Sutherland
2011)
 In previous chapters covered goals have been related on following ques-
tions; what kind of process need to have when creating software; how develop-
ment can be done effectively; how all these can be done in a fast pace? UCD goals
are more near to user who actually uses the delivered software. UCD aims to
design software for the users and for their duties. UCD aims to consistency which
means that provided software is easy and logical to use in every situation. By
using UCD in the method gathering requirements phase ease to team members.
From business aspect UCD aims to improved customer satisfaction and eventu-
ally increase revenue. Summing up goals for this method includes six main goals;
Improved collaboration, better customer and end-user satisfaction, lower risks,
faster time to market, improved quality and higher productivity with lower costs
(FIGURE 17 Objectives). (Kraft 2012)

45

FIGURE 17 Objectives

4.3.3 Principles, guidelines and rules

The fundamental principle of developing software with agile methods starts
from iterative development. Iterative development creates a baseline for all de-
velopment work in this method. When doing software development all iterations
and activities need to have a time-boxes. In practice this mean example that team
has to have together agreed amount of days/weeks how long iteration will last
before next one starts or sprint planning takes two hours. Typically iteration
length is between 2-4 weeks. With prioritization product owner chooses those
backlog items to development which creates most value for users and for the
business. Collaboration is one of the main things in the whole method. It is high-
lighted in many places already in the method structure. Collaboration can be seen
as a backbone for the whole method. It needs to be considered in many places
and there need to be culture of which encourages for open and honest communi-
cation within the team and with stakeholders. If earlier developing teams have
leaded strictly by each person nowadays that situation has changed. This method
emphasizes the meaning of each individual self-organizing. In practice it means
that each member will proactively take tasks and aims to do best in every situa-
tion. Strong results will follow when every person in the team will do their best,
everyone follows the rules (FIGURE 19 Rules) and whole team is aiming for com-
mon target. One part of collaboration is feedback. Getting feedback from stake-
holders and inside the team creates baseline for growing up. Whole method is

46

structured to follow certain process. It means that without following process
things doesn’t work as planned. Therefore it is important to follow the process.
This method doesn’t go details in that sense what actually happen inside partic-
ular activity but it creates baseline for the continuous development. As one of the
main ideas of this method is also to focus end-users principle chart includes also
principles regarding end-user experience and usability. Developing starting
point need to be in users and their feedback. When team understands the end-
user needs and they are designing and developing software for them team has
good starting point. When designing usable software everyone need to follow
consistency on designing. As a part of this consistence team is good to have
guidelines for doing user interfaces which gives framework for designing. In
many cases less is more and it also works in software. Therefore one of the prin-
ciples in this principle chart (FIGURE 18 Principles) is “keep it simple”. In prac-
tice it can mean that example when developing new feature developer together
with UI/UX specialist will think what is the easiest way to implement this new
feature? How amount of clicks during the process can be decreased? When de-
veloping user-friendly software if possible take end-users part of the develop-
ment work. As earlier covered the collaboration and meaning of it but in this
context it is important to find ways to get feedback from users. Getting feedback
creates baseline for continuous improvement. Improving continuously needs
solid structure behind of development. It means that system architecture and
whole ecosystem of several products need to be created to support these func-
tions. When fundamentals like architecture, common techniques and environ-
ment structures are well planned it is easier to automatize certain parts in the
process. Automation improves the pace and quality, lowers costs and it also
makes team life easier as manual work in the process has decreased. (Swartout
2012; Hüttermann 2012; Schwaber & Sutherland 2011; Poppendieck & Cusumano
2012)

47

FIGURE 18 Principles

FIGURE 19 Rules

48

4.4 Structure of the method

4.4.1 Roles and responsibilities

On this method baseline for the roles comes from the Scrum. Primary target was
combine several methods in one so therefore in method there will be some new
roles which doesn’t are part of Scrum framework. As one of the main goals has
been bringing development and maintenance specialist to working in same team
that is something what has been taken into account. Target was also raise up
meaning of user experience and usability this method includes roles for UI/UX
specialists. (Hüttermann 2012; Mundra et al. 2013; Schwaber & Sutherland 2011)

 Responsibilities of each role are listed on a high level on roles chart (FIG-
URE 20 Roles) and more detailed level in responsibility matrix (FIGURE 21 Re-
sponsibility matrix). Depending on size and broadness of business one person
might have several roles. Example one person might be developer and archi-
tect/tech lead at the same time. Also team structure can include several members
with same role. Example team can have 5-7 developers. Team roles and respon-
sibilities might change during the time and depending on business but more im-
portant is to keep up-to-date list where these are documented.

49

FIGURE 20 Roles

50

FIGURE 21 Responsibility matrix

4.4.2 Process

As discussed in chapter 2.1 there are usually pretty similar phases while devel-
oping software. Always when designing new software there need to be a plan-
ning phase where team members can design incoming features or bug fixes etc.
The most important thing in this phase is that all team members have common
understanding of the scope and everyone understands the content of work pack-
ages which are included to the next iteration. When planning phase ends and
team have common goal for the next iteration the development phase starts. De-
velopment phase includes practical code implementation but also many other
relevant activities which team needs to take care about. When the iteration ends
team has been able to provide working increment to the software they were de-
veloping. This particular increment is always a part of some production release
but production release might happen in different cycles than iterations. Example
one production release might contain working software increments from three
different development iterations.

51

 On a high level the process is divided on a three different main phases
which are plan, develop and maintenance. Inside of these phases have own sub-
phases. In the planning phase there are two sub-phases: vision and planning. De-
velopment phase contains development, quality assurance and end of iteration
sub phases. In the running phase there are possible release and operating sub
phases. All sub phases includes one or more activities which have own certain
purpose in the process (FIGURE 22 Process Model). Activities can consists exam-
ple event or some practices but in this method those are called activities. In the
next paragraphs there are introduced activities and example tools which can be
used in the process. It is important to understand that chosen tools will be applied
in whole team which covers all different phases in software lifecycle.

FIGURE 22 Process Model

4.4.3 Planning phase

Vision sub-phase includes a roadmap activity. The roadmap is a document which
describes high level features which are coming to certain product. Roadmap can
change during the time and prioritization of items in the roadmap changes de-
pending on business needs. Items in the roadmap are described on a high level
and that does not typically cover all technical details. The roadmap gives insight
to the team members and also to customer and both of them can see what is com-
ing in the future. The roadmap can be seen as a crucial document for product
management which gives a structure for future development. Product Owner is
responsible for the roadmap. Inputs to the roadmap come from the business and

52

customers and it provides outputs to the product backlog. (Mundra et al., 2013;
Schwaber & Sutherland, 2011)

The product backlog is one of the scrum artifacts. Product backlog includes all
features and items which will be developed in the future. Product backlog is the
main tool for the Product Owner. Product backlog includes user stories which
describe functional requirements for the new features. Roadmap is one of the
main sources of items in product backlog but product backlog handles these
items more accurately and more detailed level. Items from product backlog are
refined in product backlog refinement. This event is organized by Scrum Master
which prepares items from the product backlog for the coming iterations or
sprints. During the refinement team defines product backlog items in level which
fulfills the definition of ready. Definition of ready means that item in the product
backlog is described at least in a level which covers all requirements in DoR.
There might be requirements like: User story must be available, test cases must
be defined, UI wireframe or mockup must be available, estimations must be
available etc. At the same time when product backlog refinement is done UI/UX
specialist will concentrate on UI design and research. This process will provide
UI/UX related requirements and specifications to the team. As an output from
UI design and research activity there will be process flows and wireframes or
mockups available for the development team. There might be also UI-prototype
which shows how certain functionalities should work in the product. UI-proto-
types are usually done in rough level and it evolves in the process. UI-prototypes
work also well when product management have close cooperation with stake-
holders which are using the system. This way Product Owner and team can get
valuable information from stakeholders and relevant people. (Guang-Yong, 2011;
Mundra et al., 2013; Schwaber & Sutherland, 2011)
 When team has refined product backlog available and all prioritized
backlog items fulfills the DoR team can start to plan next sprint. Sprint planning
is an event where team checks how much they have resources in use in next sprint
and how much each team member has allocated time for development. Each
team member has certain capacity to use for a development purposes. When
Scrum Master has understanding of resources team plans together with Product
Owner which items they will choose from product backlog to the next sprint.
Team picks-up as many items from the product backlog as they can do during
the sprint. During the sprint planning team commits to the work they have cho-
sen for the next sprint and the same time they have responsibility to deliver
agreed items for the next software increment. As an output from the sprint plan-
ning event team has sprint backlog. Sprint backlog includes all items which team
will implement in agreed timeframe. Usually timeframe of one sprint might
change from one week to four weeks depending on team. During the sprint team
and Product Owner monitor progress against sprint backlog. Typical chart for
the monitoring is a Burndown Chart which shows graphically how much work
is left versus time. Horizontal axis describes the timeframe and vertical describes
the amount of estimated work in the sprint. All sprint work is eventually split to

53

tasks for each person will handle tasks one by one during the sprint. (Guang-
Yong, 2011; Mundra et al., 2013; Schwaber & Sutherland, 2011)

4.4.4 Development phase

Development phase starts from developing work which got inputs from the plan-
ning phase. Software implementation happens in decided development environ-
ment. Team can use example together agreed IDE (integrated development envi-
ronment) while they are completing their tasks from the sprint backlog. During
the programming process team complies with together agreed coding conven-
tions. With coding conventions team ensure that programming principles are fol-
lowed. This kind of approach increases the quality of code and drives down com-
plexity. In every phase of software lifecycle it is important to follow together
agreed coding conventions as there will be phases where developers need to re-
factor and renew or change source code which might be produced even years
ago. Without having common rules in programming handling change request
and implementing new features will be more laborious than if team has complied
with coding conventions. During the programming work developers will follow
rules of TDD (test-driven development). In practice this means that developers
will write test cases before writing the actual part of code. This kind of approach
increases quality and creates a baseline for automated testing. Benefits of TDD
are coming more visible when system grows. TDD with automated tests provides
teams ability to launch new releases in quick pace when testing phase doesn’t
take so long time. In software development process teams need to use version
controlling systems. Version control systems provide control over changes to
source code. With version control team can manage different source code
branches and merge branches to code baseline. Version control must be inte-
grated to the used IDE and continuous integration tool. With integration contin-
uous integration tool can automatically deploy newest committed changes to
chosen environments. This provides a practice where example several persons
can work in same software environment and commit new changes to version
control and continuous integration tool will automatically deploy done changes
to testing, pre-production environments which allows to process continue
smoothly to the next steps. In the process there is also step called code review.
This activity aims to find and remove vulnerabilities and possible mistakes in
code. In code review activity it is recommended to use automated code review
tools which can be integrated example to IDE. Code review and rules can be writ-
ten directly to the decided tools. This activity provides higher code quality and it
also heads to solid source code. (Cois et al., 2014; Farroha & Farroha, 2014;
Guang-Yong, 2011; Hüttermann, 2012; Mundra et al., 2013; Schwaber &
Sutherland, 2011)
 Part of development work method includes activities which effects on
quality like code review and TDD. Reason why previously mentioned activities
are under development phase is their tight bond with developing work as activ-
ities under QA are timely positioned to later phase. In QA sub phase team will

54

run different kind of test combinations. Functional testing test covers the actual
functionality of new features. During the product backlog refinement process
and part of DoR team defines test cases for the functional testing. When develop-
ment team has done their development work testing specialists will test delivered
functionality against these specifications. Usability testing could be also part of
functional testing but in this method it is highlighted to be own separated activity
in the process. As usability and user experience is highlighted in the method the
process provides possibility to end users use system before official release. Usa-
bility testing covers internal usability testing where own personnel tests usability
and user experience against UI/UX specifications which were done in planning
phase. In addition automated releasing process with CI tools will provide newest
releases to dedicated environment for focus groups that can test new features
before the official version release. During this process they have also possibility
to provide feedback to the development team about possible improvements. Au-
tomated testing includes test sets example for unit, regression and sanity testing.
Automated testing can cover testing for different components like units, UI, se-
curity and interfaces etc. (Cois et al., 2014; Farroha & Farroha, 2014; Guang-Yong,
2011; Hüttermann, 2012; Mundra et al., 2013; Schwaber & Sutherland, 2011)

4.4.5 Maintenance phase

At the end of development phase there is new software increment available. De-
pending on release cycle team can release new version or not (requires approval).
Software increments might have dependencies to previous or next increments
and therefore is not always reasonable to release newest software increment to
the production environments. Software increment might include also parts
which might belong to bigger epic in product backlog. In practice this means that
product management has decided to create larger package of new features which
compliments each other. This kind of situation means that there is no sense nec-
essary to provide partial feature set to customers and product management has
decided to launch whole package in one bigger release which contains several
software increments. During the process continuous integration tool is maintain-
ing automatically different environments but production updates need to be han-
dled with manual trigger. New releases to production environment include
larger testing set before the new release can be launched. Team will provide re-
lease candidate version example to the pre-production or staging environment
where testing specialists will complete their testing set. Typically this kind of
testing set includes end-to-end testing where example all interfaces all tested.
 In the operating phase there are several activities which need to be han-
dled. Team will monitor all environments which are needed in various activities.
Typically there are software environments for development, testing and produc-
tion purposes. All environments need to be up-to-date in all circumstances. In
practice this means that all necessary operating system, security and other re-
quired software need to be up-to-date. Monitoring activity includes also moni-

55

toring for networks and connections. Evaluating activity includes close coopera-
tion with developers in team. In this activity team evaluates whether there are
some requirements from software perspective which might effect on hardware.
During the development process there have to be continuous discussion with the
developers and operative specialists whether there is a need for hardware up-
dates or not. During the operative phase there might occur issues which might
be related on software or hardware. These issues are monitored in incident and
problem management activity. Service manager together with support specialist
will triage possible issues and address those to correct persons in team. It’s im-
portant that team have common tools to gather issues. In optimal circumstances
all tickets are gathered in one tool. In practice this means that team has one tool
where they have development and maintenance related tickets in same system.
One tool helps also teams to identify if there is some regression related on previ-
ous software increments. It also helps team to identify and monitor what kinds
of issues are raised up from customer. Issues might have also dependencies to
some previous development tasks and during the process support specialists
might point out that this certain issue is related on certain development ticket.
Baseline to incident and problem management comes from ITIL V3 processes.
ITIL V3 processes include also change management processes. In this method
change management is handled through the product management and develop-
ment process. Development iterations include both new features and also possi-
ble change requirements management activities. (Farroha & Farroha, 2014; Guo
& Wang, 2009; Hüttermann, 2012)
 Operating phase includes activities which are handled by service man-
ager and product owner. Every time when new release is available service man-
ager and product owner will arrange system usability surveys. This survey gath-
ers input from end-users where they can give valuable input to the team. This
survey includes system usability surveys (SUS) and general evaluation of new
features. As a part of operating phase product owner will also arrange focus
group meetings where chosen main users are involved. The purpose of this meet-
ing is to gather feedback from customer related on previous release but also
gather input to roadmap and product backlog regarding their requirements and
needs. This process is important as main users have best insight of their business
needs. (Schwaber & Sutherland, 2011; Veneziano, Mahmud, Khatun, & Peng,
2014)

4.4.6 Relations of activities in the process

In the process model there are mentioned several activities. Each of these activi-
ties has connections with previous activities and the same time each activity aims
to create value and relevant input for next activities in the process. In following
table I have listed all activities and what kind of input and outputs each activity
contains (FIGURE 23 Inputs and outputs of activities).

Input(s) Activity Output(s)

56

Market trends, Strategy,
Vision, User Surveys
and Focus Groups

Roadmap Documented Roadmap
with preliminary sched-
ules and high level epics

Roadmap, change man-
agement, User Surveys
and Focus Groups

Product Backlog Documented Product
Backlog with user stories

Documented Product
Backlog with user sto-
ries

Product Backlog Refine-
ment

Refined backlog with
technical details which
fulfills DoR.

User Surveys, Focus
Groups, Visual Guide

UI Design & Research Mockups/wireframes to
complement backlog
items

Refined backlog with
UI
mockups/wireframes

Sprint Planning Sprint backlog

Roadmap, Product
Backlog

Architecture update Updated architecture

Sprint backlog Tasks for development Allocated tasks (tickets)
to team members

Sprint backlog, allo-
cated tasks and user sto-
ries

Implementation with
TDD

Releasable functionali-
ties and test cases for au-
tomatized testing

Version controlling sys-
tem, agreed branching
rules, programming
guidelines

Version Controlling Releasable functionali-
ties in correct source
code branches

Automatized code re-
view system, manual
code review (if used
pair coding), imple-
mented backlog items

Code Review Reviewed code, source
code ready for testing

Committed code and
automatized CI scripts

Building with CI Compiled code

Implemented, tested,
builded and compiled
code

Automated Releases
(staging)

Newest software version
available in all decided
environments

User stories with test
cases and testing docu-
mentation

Functional Testing Tested functionality and
updated testing docu-
mentation

User stories with usa-
bility guidelines and
visual guide

Usability Testing Usability tested user sto-
ries

Coded test cases in
same time with devel-
opment

Automated Testing Automatized tests and
test reports

57

Security requirements
and security test cases.
OWASP top 10,
CWE/SANS TOP 25
Most Dangerous Soft-
ware Errors

Security Testing Security/thread report
and possible improve-
ment requirements

Sprint backlog and re-
ports

Sprint Review Communicated features
and changes to the sys-
tem

Feedback from previ-
ous sprint

Sprint Retrospective Action plan for improve-
ments

Software increment, re-
lease plan

Production Deployment New software version to
production environment

Customer feedback Customer Support Support and possible re-
quests for the team

Monitoring tools (OS,
Hardware, network, au-
tomatized reporting)

Monitoring Automatized reports
from environments

Environment reports
and Roadmap

Evaluating Hardware update plan

System monitoring, au-
tomatic reporting, user
feedback, focus groups

Incident and problem
mgmt.

Triaged incident and
problem tickets

New available software
version in correct envi-
ronments

User Surveys SUS report

New available software
version in correct envi-
ronments

Focus Groups Changes to vision,
roadmap items and user
stories

FIGURE 23 Inputs and outputs of activities

4.4.7 Tools

Teams have different kind of tool use during the process (FIGURE 24 Tools). On
below it is listed possible tools which are sorted for different categories. This
chapter won’t go through all of these tools but it is good to have a list where to
start and tailor toolset to fit for team´s and business´s purposes. Product Owner
can maintain product roadmap example with basic MS tools but there are also
tailored tools for road mapping (e.g. Aha!). When developing new software it is
good to have work documented in same place and for that purpose there are
some good ticketing tools available (e.g. JIRA). These kind of ticketing tools are
very effective to handle all things in one place and in one system. Example with
JIRA team can gather all work to tickets in same system no matter was the task
related on development or to maintenance or support. These tools have also ex-
tensive plugin storage where each team can tailor suitable set for them. Many

58

tools have also plugins which are suitable for certain methods and these plugins
will help team to example work with scrum processes with certain tool. Tools
usually include editors where team can edit workflows within the tool which
makes those flexible also for possible process changes. Many of ticketing tools
have also different schemas for ticket information structure. Example if team fol-
lows in maintenance ITIL way of working they can attach ITIL processes and
ticket structure to the system. When team is designing new layout or developing
mockups (e.g. Sketch 3) or wireframes (e.g. Pencil) to software they have own
tools for that. With these tools they can “draw” easily wireframe which shows on
high level where each buttons and each functions are located in layout. With this
kind of tools team can also describe the navigation structure better that everyone
in the team understands how the coming software or feature works. If team de-
cides to design layouts with wireframes it’s good to have visual guide which tells
things like typography, colors and themes and that kind of things as wireframes
doesn’t usually cover those. It is also possible to create more accurate mockups
where previously mentioned things are covered but this is something what each
team to think and decide by themselves.
 Earlier in the research is covered what DevOps will change on high level.
It will bring individuals to work together and it will do the culture shift for the
daily work. In addition it will bring also lot of tools which can help teams in their
daily work it will bring the effectiveness of working. The most important tools
on this area are continuous integration (e.g. Jenkins) and configuration manage-
ment tools. Continuous integration tools will help team to automate and deploy
software easier than before. These tools help also to share information and keep
it on one place. Configuration management (e.g. Chef) tools help team to auto-
mate and orchestra infrastructure and components inside of it. It is one of the
main matters when speaking about infrastructure management in this method.
There are also many other tools which will help team standardize builds and
monitor systems working (e.g. Nagios).

Type: Example tools:

Communication tools Slack, Skype, MSOC, IRC

Roadmap tools Aha!

Product Backlog tools JIRA + JIRA plugins (Agile)

Ticketing tools JIRA, Redmine, ITSM
UI wireframe & mockup tools Balsamiq, Pencil, FluidUI, Pidoco,

Sketch 3, Keynote, Invision

Operating systems Linux (variants), Windows
Infrastructure as a Service Amazon, Azure

Virtualization platforms VMware, VirtualBox, SaltStack
Configuration management Puppet, RANCID, Chef
Containerization tools Docker

Application servers JBoss, Tomcat, Jetty
Monitoring New Relic, Nagios, Logstash

59

Databases MySQL, PostgreSQL, MongoDB
Queues and caches Memcache, RabbitMQ

Logging PaperTrail, Loggly
Version control Git, SVN

Continuous integration Jenkins, Bamboo, Hudson
Test and build systems Maven

Test automation JUnit, Selenium, SoapUI
Security Snorpy Threat Stack, Tripwire
Security testing Owasp Zap, Burb intruder, BDD-se-

curity
Functional Testing Selenium, WebDriver

System tools Atlas, ScriptRock GuardRail
FIGURE 24 Tools

60

5 INTERVIEW RESULTS

5.1 Chosen group of people in the research

All interviewed people were IT-professionals with two to ten year experience
(FIGURE 27 Work experience (in years)) on IT-sector and age between 26 to 34
(FIGURE 25 Age distribution). These persons were working in following roles:
Scrum Master, Technical Architect and Software Developer (FIGURE 26 Roles of
interviewed people). They all had previous experience about Agile, UCD and
DevOps methodologies. Scrum was the most well-known methodology for all
interviewed persons. During the research there was eight participants who were
part of the interview process. In each interview there were two persons and both
of them had possibility to answer for all questions. At the beginning of interviews
researcher introduced the main things of interview and chosen methods (DevOps,
Scrum and UCD) which were already familiar already for most of the people.
After introducing researched methods persons answered to open questions re-
garding the methods’ values, objectives, principles, rules, roles and tools. In open
questions -part researcher introduced the new method. During the method intro-
duction all interviewed persons had a possibility to comment and evaluate the
method. When evaluating the method´s different parts we also discussed about
previous open answers.

FIGURE 25 Age distribution

29
27 28

26

34

26
29

27

1 2 3 4 5 6 7 8

Age distribution

61

FIGURE 26 Roles of interviewed people

FIGURE 27 Work experience (in years)

5.2 Interview results

Following chapters will include more details about the interviews. At the begin-
ning there is section which covers open questions and on later phase there are
details about artifacts evaluation.

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Scrum Master

Software Developer

Technical Architect

Count of Role

5

3

4

2

10

3

6

3

1 2 3 4 5 6 7 8

Work experience

62

5.2.1 Values

Communication and collaboration were the most highlighted values in the inter-
views. Interviewed persons emphasized meaning of internal and external collab-
oration. The aim of external collaboration was to understand more deeply cus-
tomer needs and requirements and also to build up relationship with customer.
With internal communication interviewed people were aiming to openness and
transparency. These persons also highlighted that within the team there must be
an eminent confidence between team members as team’s results are the sum of
each individual work. They emphasized that all team members have to commit
together agreed content of work. Some of the people also mentioned about being
proud of own work and they spoke about the great team work which is required
for creating good results. About being proud was attached to independency of
decisions and having responsibility. Almost every one of interviewed people also
mentioned that quality is one of the most important values which should be on
one of the fundamentals when doing development work. When discussing about
quality interviewed persons commented that it’s the ultimate value but it is a
sum of many well done actions during the software development. (FIGURE 28
Interview comments regarding values)

Date Comments from interview

2.6.2016 “Well of course one thing which comes on my mind is bringing
development so close to customer that possible.”

 “Customer close to development and visibility between differ-
ent stakeholders.”

9.5.2016 “Everyone need to have common target and common ways to
work.”

3.5.2016 “Trustworthy. When you promise something for the team it
must get done. It is impossible to do team work if someone says
that it will be tomorrow ready and eventually same situation re-
mains after day and day.”

19.5.2016 “Quality is important”
FIGURE 28 Interview comments regarding values

5.2.2 Objectives

Interviewed persons divided goals or objectives for those which are related on
internal work and the customer. When speaking about objectives interviewed
persons bring forth about value creation to the customer and they also spoke
about speed of value creation with iterative methods. Creating value to the cus-
tomer born from high quality software and easily adaptable user interface. For
customer perspective they emphasized that using these methods also increases
visibility and it’s easier to customer do changes during the software development.
(FIGURE 29 Interview comments regarding objectives)

63

While speaking about internal objectives interviewed persons mentioned
that during the software development it is crucial to aim for creating transpar-
ency for whole team´s work. Creating transparency arises from smaller software
increments, removing organizational silos, common ways of working and clear
responsibilities. They also highlighted that product management perspective is
important. While doing the software it’s important that method aims to focusing
prioritized tasks and entities. They mentioned also that this kind of methods
should focus on whole product lifecycle. It is important that team concentrates
on maintainability already from the beginning. In practice it means that written
code must be easy to understand and commented well enough as it helps to
maintain the software in future. (FIGURE 29 Interview comments regarding ob-
jectives)

Interviewed persons also wanted that method should have individual goals
or objectives. They emphasized that bringing operative, UI/UX specialists and
development persons in the seam team one aim is also spreading competencies
within the team. Interviewed persons emphasized also that the method should
aim to self-managing persons who are striving for common target. (FIGURE 29
Interview comments regarding objectives)

Date Comments from interview

2.6.2016 “Creating value for the customer is most important objective.”

 “Doing actions which provides more value to customer in the
future.”

 “Being closer to customer helps reaction more rapidly to
changes and it brings more visibility. Release cycles are bringing
visibility to customer in smaller increments. This way we can
provide more value to customer in a faster way.”

9.5.2016 “Employee satisfaction increases when everyone can show their
talent.”

 “Expanding own competencies. Example with user interface.”

3.5.2016 “I believe that development need to be faster, agile and cheaper.
Teams should be self-driven and they should have clear respon-
sibilities”

 “Tools need to support processes and daily work.”

 “Main objective is to provide end results what customer is look-
ing for.”

19.5.2016 “Processes need to developed iteratively”

 “Quality need to remain high, we need to provide high quality
products and customer need to be happy.”

 “Of course we cannot just provide functionalities, we need to
provide software which is nice to use and it also looks good.”

FIGURE 29 Interview comments regarding objectives

64

5.2.3 Principles

Interviewed persons accentuated that principles are something what team cre-
ates together and there might be various bunch of good principles. They empha-
sized that whatever the principles are in the team whole team must follow those
together agreed principles. Focusing on meaningful task/entities and reducing
waste was mentioned multiple times. In practice it means that team wants to fo-
cus only on important things and they want get rid of everything else. During
the software development they wanted to see clear definitions and clear docu-
mentation which is output of well-defined DoR. They highlighted that all devel-
opment should start lightly and lightly doesn’t mean low quality and forgetting
rules and principles. It means that it is not wise to plan something too long-term
and then develop product as things changes during the time. They told that it is
easier to create products example with prototyping as then process creates envi-
ronment for collaboration and discussion which bring better results at the end of
the day. Principles and rules were seen quite similar things and therefore next
chapter includes complementary matters for principles. (FIGURE 30 Interview
comments regarding principles)

Date Comments from interview

2.6.2016 “Avoid waste.”

 “Don’t concentrate on things that you can automate.”

 “Improving all the time and continuously trying to find things
to improve”

9.5.2016 “Clear responsibilities and allocations”

 “Common principles for all”

3.5.2016 “Commitment for rules and this means everyone. We need to
hold on together agreed things.

 “Bringing problems for the team. It is important to discuss to-
gether if there is some problems. This way we can get best re-
sults and we don’t need afterwards fix those.”

19.5.2016 “Team must plan and prototype the UI at the first phase more
thoroughly.”

 “Lean thinking on this is quite important. We don’t have afford
to do anything unnecessary. We need to focus on important
matters.”

FIGURE 30 Interview comments regarding principles

5.2.4 Rules

When speaking about rules one word comes up many times and it is the team.
Interviewed persons told that no matter what kind of rules you have you need to
follow those as a team. All members need to commit those rules and they need

65

to help each other’s to achieve common targets. They highlighted that all infor-
mation must be kept open and visible for everyone and the same time everyone
need to know who is doing, what is doing and when is doing. Bringing up pos-
sible problems was also emphasized as those obstacles might harm whole team’s
work. There was listed also common rules which should be followed during the
development like code conventions, how to handle tasks in ticketing systems,
how to write documentation, how to follow share information to stakeholders
etc. (FIGURE 31 Interview comments regarding rules)

Date Comments from interview

2.6.2016 “If we are speaking about team then we need to commit on to-
gether agreed work or tasks. If someone has challenges then
someone will help.”

 “Decisions need to be made by those persons who understand
the problem best. No unnecessary steps.”

3.5.2016 “When coding we need to conventions, naming process at gen-
eral when we have different branches. Also general together
agreed rules example with meetings.”

19.5.2016 “Planning sprints and freezing those.”

 “Start with minimum content and don’t try to get everything in
one time.”

 “Common rules starting by coding conventions and how we
work and how we use different tools. As we have good guides
and rules for these daily working is quite smoothly.”

FIGURE 31 Interview comments regarding rules

5.2.5 Roles

Interviewed persons identified that on this kind of method there must be client
facing person who handles all communication between the team and customer.
They bring forth that there must be own UI/UX specialist in the team as compe-
tences between software developer and UI/UX specialist differs each other so
much. Persons highlighted that in the team there must be business owner and
someone who owns the products. They told that someone in the team must have
the vision of product and it doesn’t mean that vision is something what the prod-
uct looks it is more thoroughly vision which includes business intelligence and
market knowledge. Interviewed persons brought up that operative person
should become more near to development team as it helps team work together
and share information more efficiently. (FIGURE 32 Interview comments regard-
ing roles)

Date Comments from interview

2.6.2016 “Roles shouldn’t be so strict and defined as everyone in the team
should understand at least basic things in all relevant areas.”

66

 “All relevant competencies should be available in the team.”

9.5.2016 “No matter which role you have everyone need to have same
objectives”

 “Someone need to take care of things on a high level and busi-
ness”.

 “We need management roles for business and projects.”

 “We need to have some visionary and someone who is taking
care of that pixels are in right place.”

 “Some of the roles need to focus on usability not only for lay-
out.”

3.5.2016 “There are still gap between OPS and DEV and it needs more
communication.”

19.5.2016 “Of course traditional roles like Scrum Master, Product Owner
and those. I am not sure whether OPS members be part of the
team but in any case they should be near.”

FIGURE 32 Interview comments regarding roles

5.2.6 Tools

Interviewed persons brought up that fundamental tools in this kind of work are
working development tools like laptops and robust network. When going deeper
to team’s processes they highlighted the need of collaboration tools which in-
cludes text-based communication and software should also include video confer-
ence and screen sharing features (e.g Skype or Slack). Interviewed people men-
tioned that team should have ticketing tools to track and monitor developing
progress (e.g. JIRA). When building a new products and new features for the
current products, there should be wire-framing and prototyping tools to plan
user interface (e.g. Adobe XD). During the development team needs tools for cod-
ing, version controlling and continuous integration tool to build and release soft-
ware (e.g. GIT and Jenkins). They also mentioned that tools for virtualization and
building containers are needed. When doing testing in development phase they
see that team should have tools for automated testing. For testing purposes per-
sons listed tools like Mocha and JUnit. (FIGURE 33 Interview comments regard-
ing tools)

Date Comments from interview

2.6.2016 “CI tools.”

 “Project tools.”

 “Tools for containerization and virtualization. It makes life eas-
ier example when ramping up development environments.”

 “Project management, different wireframes, testing automation,
virtualization, continuous integration and version controlling.”

 “Every interface should be tested and monitored.”

9.5.2016 “Tools for managing Scrum, ticketing tool.”

67

 “Automated releases and testing with CI tools.”

3.5.2016 “Well the basic tools like version controlling. For continuous de-
velopment we need CI-tools and it doesn’t matter which CI it is.
Tools for managing backlog.”

 “Some prototyping tools.”

19.5.2016 “Place for documentation, guides etc. example wiki or some-
thing like that.”

 “Working network, tools and laptops.”
FIGURE 33 Interview comments regarding tools

5.3 How interviewed people evaluated the method

In the first phase of interviewed persons didn’t know anything about created
method, they answered for open questions and answer for those questions are
analyzed on previous chapters. The structure on the interview gave people pos-
sibility to give answers for open questions in defined framework (Fundamental
methods (DevOps, Scrum and UCD) were opened). On the last part of the inter-
view persons evaluated the new method.

5.3.1 Values

When interviewed persons got possibility to review the method they mostly
brought up same values which was already in the method. They see that collab-
oration is the most important value together with commitment to work and daily
tasks. As a part of collaboration they see that feedback from all stakeholders is
important source to continuous improvement. When asking from interviewed
persons is there anything missing from the method they emphasized that all val-
ues are good and most of the things they have thought regarding this topic are
way or another included in those values which are already in the method. No
matter most of the values were same than interviewed persons bring forth there
was still missing things like self-actualization and rising up work satisfaction.
Interviewed persons think that one of the values could be related on passion to
work and creation of great software products. When people in the team have
passion to their work, very likely they provide better results. Good results will
lead to better feedback and better feedback creates flow state to work even harder
to perceive better results. Previous comments are related mainly to individual
not so much to the method but it was interesting to find out and see how this
kind of individual things might effect on whole team. (FIGURE 34 Method eval-
uation comments regarding values)

Date Comments from interview

68

2.6.2016 “Pretty well we had same things highlighted like example col-
laboration.”

 “All values seems really valid.”

9.5.2016 “Values seems valid and I wouldn’t take anything away.”

3.5.2016 “Lot of same things what we said like ‘one-team’ and commu-
nication.”

 “Feedback is something what should come from every direc-
tion.”

 “Most of the comments what we said are pretty near if not ex-
actly same.”

19.5.2016 “I think we could find more values but like already said collab-
oration is still the most important one. We also need to deliver
right things and quality, delivery must work.”

 “All listed values are good.”
FIGURE 34 Method evaluation comments regarding values

5.3.2 Objectives

If interviewed persons agreed method’s values same situation was with goals or
objectives. They think that listed goals in the method were good but they also
find couple things to discuss during the interview. Interviewed persons doubt
the balance between faster time and improved quality. They see that you can al-
ways improve quality but it affects always on timetable and schedule. During the
interviews there was discussion about satisfactory quality which means that dur-
ing the software develop team aims to together agreed quality level which con-
tains usability, user experience, code, functional and non-functional perspectives.
Interviewed persons mentioned about lower risks and one of the persons empha-
sized that all changes to software are all always a risk but without changes it is
impossible work with the software business. No matter of this kind of opinion
interviewed persons thought that with relevant processes and ways of working
team can mitigate and remove most of the risks. Interviewed persons also high-
lighted that when team has robust software development processes it will de-
crease bugs from the software and same time clear processes will motivate people
as there is no unnecessary tasks to do. During the interviews was spoken also
about launch time heroic. In practice this means that when team has clear pro-
cesses and goals it’s easier to launch new products and releases on time and team
can avoid working around the clock couple days before the version releases.
Based on this improved predictability could be one of the goals. (FIGURE 35
Method evaluation comments regarding objectives)

Date Comments from interview

2.6.2016 “Hard to find something to add.”

69

 “When we have focused on collaboration we have notified that
also bugs have decreased. One of the things was also the satis-
faction which increased when everyone know better where the
project was going. These kind of methods will improve own be-
havior and it these also motivates people.”

 “I see that one objective is decreasing risks. Smaller releaseses
will decrease ‘launch time heroic’.”

9.5.2016 “Quality is difficult as you can polish applications as long as you
want. Biggest question is where goes the line for the ‘good
enough’.”

 “Team need to find balance between delivery speed and quality.
Therefore ‘improved quality’ and ‘faster time’ might have a con-
flict.”

3.5.2016 “Most of the objectives had same what we listed. Hard to find
more.”

 “If I would like to add something maybe it would be related on
planning and importance of it.”

19.5.2016 “All objectives are good.”
FIGURE 35 Method evaluation comments regarding objectives

5.3.3 Principles

Interviewed people thought that listed items in the method are good but they
highlighted couple important matters during the interviews. First one was value-
based prioritization. Interviewed persons emphasized that in software develop-
ment this kind of prioritization should be clearly defined. As long as it is just
value-based prioritization without any defined formula it is just product owner’s
opinion of the most valuable feature or epic. Therefore all software methods were
prioritization is done should include transparent prioritization rules. In the
method there is mentioned UI consistency but interviewed persons also brought
up that code consistency is equally important. When building several products
with consistent way of coding the maintainability remains better. No silos –prin-
ciple shouldn’t effect on responsibilities as in the team those should be defined
by team members. Interviewed persons highlighted that no matter team mem-
bers are closer together it doesn’t mean that everyone is doing everything. Team
members have their own competences and responsibilities and those should re-
main no matter organizational silos are removed. As a part of iterative develop-
ment and process control interviewed persons thought that product backlog re-
finement is in the crucial role. They emphasized that iterative development
doesn’t mean developing without planning and therefore they highlighted the
meaning of the product backlog refinement. (FIGURE 36 Method evaluation
comments regarding principles)

Date Comments from interview

70

2.6.2016 “Value based prioritization should be defined well.”

3.5.2016 “Need to refine early enough and enough at general. At behind
there can be principle that you have to plan enough before you
start doing anything.”

FIGURE 36 Method evaluation comments regarding principles

5.3.4 Rules

Every one of interviewed people thought that listed items in the method were
good but they manage to find some points which could be more specified. At
generally this kind list of rules can be way more extensive depending on the team.
We discussed about DoR and how it should also include non-functional require-
ments which they thought to be forgotten quite often when doing software de-
velopment. Interviewed people thought that there should be rules which are re-
lated on measuring. They wanted to understand how it would be possible to
measure development at individual level example measuring feature complexity
and realized time of development. They also bring forth that measuring might be
quite complex depending on software architecture. One of the most important
finding was architecture which was seen often too stabile. Interviewed people
emphasized that architecture should be developed continuously during the soft-
ware development. Importance of architecture was more important when cre-
ated system includes several integrations from system to another. Used libraries
and component chooses should be refined in regular timeframes. Persons
thought that many times when creating software it will remain on market several
years’ or even decades. During the product lifecycle outdated architecture, librar-
ies and components will cause technical debt and therefore those should be up-
dated regularly. One thing which came up was rules regarding testing responsi-
bilities. Interviewed people highlighted that when testing has partial responsibil-
ities between testers and developers rules and responsibilities should be defined
exactly. Interviewed bring forth also rules about removing obstacles on personal
level not only a team level. They saw that in the agile rules often team is removing
obstacles on a team level but not necessary on individual level and eventually
effort of team is a sum of individuals. (FIGURE 37 Method evaluation comments
regarding rules)

Date Comments from interview

2.6.2016 “It is important rule that we must like changes, but we cannot
do those during the sprints. If we would do changes during the
sprints it would destroy our predictability.”

 “That ‘understanding architecture’ is good but it is sometimes
really hard when development is done in small pieces. On SAFE
there is architectural runaway where this kind of things should
considered.”

71

9.5.2016 “These are good but we should also monitor somehow individ-
uals. Example how individuals have evolved during time. Mon-
itoring only team can lead on situation where some members
will just pick easy tickets. So at least we cannot measure it with
amount of tickets.”

 “In addition for UI consistency there should be code con-
sistency. It will make life easier in a long run. There could be
mentioned also simplified code. It is not always best solution to
write shortest or the most effective code.”

 “Framework selection has quite big meaning when we are
watching products after many years. Example if you haven’t
updated the code base for a while and then you start doing it
again.”

3.5.2016 “These are good. Maybe on this should also highlight that it is
everyone’s responsibility to bring problems forth.”

 “Team should remove problems from the team also not only
from software.”

19.5.2016 “Good list. I love that ‘live by values’ –rule.”

 “Hard to find anything to add.”
FIGURE 37 Method evaluation comments regarding rules

5.3.5 Processes

When discussed about processes people highlighted that iterative way of run-
ning process wasn’t clear enough in method’s chart. They thought that when do-
ing automatized or robot testing TDD is one of the key things. When doing au-
tomatized or robot testing it causes more work during the development phase
but it saves time from testers and especially when time goes by and product
evolves and complexity increases it will be beneficial. One of the interviewed
person highlighted that there could be also convention testing mentioned in the
process. Also when discussed about processes interviewed people bring forth
that architecture renewing should be part of the process. At least it should be
evaluated regularly. When discussing about architecture they highlighted that
there should be responsible person to thing architecture for the future. Documen-
tation was emphasized also several times during the interviews. No matter agile
development doesn’t emphasize documentation people still thought that it is im-
portant especially when people in the team are changing and product lifecycles
are long-lasting. One interesting point which came up was UI/UX validation.
They thought that UI/UX designer should validate layout, usability and user ex-
perience before new release is launched. Interviewed people highlighted that
testing is not planned well enough in this process. Testing is part of the process
but it should be planned in some point of the process. Prototyping was also one
of the topics which came up. Now the method doesn’t include prototyping which

72

is often done during especially when ramping up new products. (FIGURE 38
Method evaluation comments regarding processes)

Date Comments from interview

2.6.2016 “Upper part of chart is confusing as it looks like ‘waterfall’.”

 “Teams should have clearly defined environments for different
purposes.”

 “Maybe there should be pair-programming mentioned.”

9.5.2016 “Convention testing is missing, otherwise looks good.”

 “Architecture update regularly is important and it is good to see
that it is here.”

3.5.2016 “Documentation should be highlighted in the process.”

 “In development phase there could be also some sort of small
pilots or prototypes.”

19.5.2016 “Iterativity should be shown more clearly.”

 “Testing planning should be covered in some part of the pro-
cess.”

FIGURE 38 Method evaluation comments regarding processes

5.3.6 Roles

Every one of interviewed people though that roles in the method were good.
They emphasized that individuals might have multiple roles in the team. Inter-
viewed people also bring forth that rules and responsibilities between testers and
developers should be specified in software development processes more thor-
oughly. Nowadays when automated testing or robotized testing is increasing de-
velopers thought that their role is to create relevant unit tests, test scripts to robot
and automatized testing. Whereas end-to-end testing or acceptance testing
against acceptance criteria should have own tester role in the team. (FIGURE 39
Method evaluation comments regarding roles)

Date Comments from interview

2.6.2016 “This is good but I see that testers role should be separated. Ex-
ample when you have to test bigger system and match it with
requirements. Of course unit testing goes for development but
when speaking about system and integration testing these
should be done by testers.”

9.5.2016 “Tester role is quite hard if it goes on deep technical level.”

 “Someone should validate that UI match also with requirements
and usability is on wanted level.”

3.5.2016 “It is hard to find testes who really understand the code. Some-
one has always to do code review. Code review should be part

73

of the process always and it is developer responsibility typi-
cally.”

 “I see that developer role has become more near to tester role
nowadays. Automation is used more and more and therefore
coding skills are needed while doing the testing. In practice it
means that developers are writing the test scripts while coding.”

19.5.2016 “It would be great if developers would have more UI skills. This
way team could utilize their members better.”

 “Developer need to have tester skills.”

 “Depend on testing type which role there should be. If you are
doing testing like acceptance testing or any wider testing then
you should have own role for that.”

FIGURE 39 Method evaluation comments regarding roles

5.4 Most important observations from the interviews

During the interviews it came clear that DevOps as a term was more or less un-
clear for several interviewed persons. Most of the interviewed people knew
something about it but it wasn’t clear for all. No matter people didn’t know de-
tails about the DevOps they still spoke a lot of those things which are actually
crucial when going towards DevOps. Almost everyone bring up the importance
of communication and collaboration between all relevant stakeholders in the pro-
cess, which is actually the core of DevOps. DevOps wants to break to silos in the
organization and it wants to bring specialists work together. Without knowing
the details of DevOps interviewed persons bring forth also criticism about
DevOps. In the interview it was discussed about different aspects regarding ob-
jectives between development and operative teams. One of the most important
thing that was realized is essential conflict between these two (Dev & Ops)
groups; development team wants to change all the time something in the soft-
ware when at the same time operative team wants to keep system as stable as
possible and minimize changes. When these groups might have this kind of fun-
damental conflicts in their objectives it might cause problems. It is clear that the
most important thing in the team is creating common goals for a whole team
which includes operative and development people. At the same time whole team
needs to understand that things are changing all the time in environment where
they are working. Team needs to embrace the change as mentioned in the Agile
Manifesto (2001). When everyone in the team has same objects and they under-
stand each other better they can provide tools, processes and ways of working
which are leading the team towards common goal.

Increasing automation level is not always so easy. During the interview it
is noticed that there are several things which can be automatized but also several
things where automation doesn’t necessary increase the efficiency or it is hard to
implement. Increasing automation helps especially when; system complexity has
increased, system includes several target platforms or devices, generally tasks or

74

operations which have clear steps and which are recurring regularly. Especially
interviewed persons bring forth that it’s easy to do automated testing for basic
use cases but typically errors or bugs doesn’t occur in basic use cases and there-
fore creating automated testing is difficult to build comprehensively.

Architecture doesn’t get enough attention. Often systems have architecture
decided at the beginning but it stays as it is once decided and implemented. Dur-
ing the product lifecycles and development processes team should evaluate the
architecture more often and if they see risks they should react on it. On scaled
agile framework (SAFe) there is a process which pays attention on architecture
in every iteration but example on Scrum it is not so clear part of methodology.

Clear responsibilities between testers and developers are missing. When
team is changing the way of working example by automated testing or robot test-
ing they are still using same processes and roles what they have decided or took
from some software development method. This is causing dubiety about the re-
sponsibilities between these two roles. During the research is realized that there
should be more accurately defined testing responsibilities between these roles.

Rules and principles list can be almost endless. In this kind of frameworks
you can create list of rules or principles but at the end of the day those should
evolve and updated by the team. It is good to have some fundamental matters
listed but in every team there is own dynamic and nuances which are affecting
this kind of lists.

Values were hard to define for most of the people. During the research was
found out that when asked about values in this kind of method it was pretty dif-
ficult for them. Possible reason behind this is abstraction level at daily work is so
much higher and people don’t actually think so much this kind of matters in their
daily work. If values were generally difficult topic for the interviewed persons it
was surprising to see that every one of the interviewed people highlighted the
meaning of collaboration. Software development is nowadays so often team
work and communication between people that everyone realizes that communi-
cation skills and collaboration between each other is essential matter.

5.5 What’s new was found out during the interviews?

If looking this research as a whole there didn’t come any big surprises. Of course
during the research and interviews it was seen that interviewed people had var-
ious different angles when they observed the method. Maybe one of the interest-
ing a new thing was to realize that people sees this kind of methods too technical
or team-centric. Methods don’t take into account personal or individual perspec-
tives. Many of the interviewed persons bring forth that example processes are
always thought from the team perspective and there is not necessary nothing
from individual aspect. Especially one word came up multiple times when speak-
ing about values and it was passion. Many of the interviewed persons were think-
ing that without passion on individual level team cannot achieve great results as
a team.

75

 Creating a team with various competences (UI/UX, Ops, Dev) is pre-
cious not just for the team but also for the individuals. Interviewed people see
that their competence is increasing when there are people which are great for
some certain skill that they don’t personally have. Example developers bring
forth that their UI/UX skills are increasing all time when working in the same
team together with UI/UX specialists.

Pair working and peer support is something what should be used more.
Interviewed persons highlighted that sometimes they are doing difficult and far-
reaching decisions without getting enough peer support. If possible software de-
velopment processes should guide to work as a pair in high risk tasks.

76

6 UPDATED METHOD

On the interviews there was introduced method which was analyzed and com-
mented by professionals. Based on these comments method was iteratively de-
veloped for the next version and in following chapters these changes are covered.
In further phase when method is updated professionals have possibility to an-
swer on survey which aims to get understanding of maturity level of the method.
Survey results are available on chapter 7.

6.1 Values

After interviews method is refined and updated based on comments from the
interviewed people. During the interviews it came clear that there must be indi-
vidual perspective. Therefore values chart includes totally new main area which
is called Individual (FIGURE 40 Values (after interviews)). Under the Individual
main area I gathered important values like “Passion for the work” and “Being
proud of own work”. These both are related on individual effort for the team
work. Individuals want to be part of something bigger. They want that their work
has purpose and they want to help their customers by creating awesome prod-
ucts and services. Interviewed people see that all team members need to be trust-
worthy. If you cannot rely on your team member it easily tears team down. When
all members have commitment to their work and they also deliver what they
have promised team archives the best results. Based on the comments collabora-
tion and quality areas were also updated. Visibility to all members and stake-
holders was seen so important thing that it was raised on this list. Speed of de-
velopment came up also in the discussion. This was raised on the list as it is im-
portant part of the method if we want to improve time to market.

77

FIGURE 40 Values

6.2 Objectives

After interviews it was clear that there are couple things missing from this
method’s objectives list. “Value creation” in every aspect is the main objective
what this kind of method should have (FIGURE 41 Objectives). All the time and
in every task team is creating value. Value can be created to external or internal
parties. It can be related on product or it can be related on end-users. Main thing
is that the team can always see some stakeholder who gets value from the tasks
we are working. “Reducing silos” is also one of the new goals. This is actually
one of the main things in the DevOps so it should be on there also earlier. One of
the important new goal is also “Common ways to work”. When team has com-
mon ways to work it decreases the uncertainty. When uncertainty can be de-
creased it helps team to focus on important things. Interviewed people see that
“Satisfying working environment” should be on this list. This has relation on in-
dividual main area on values. Team results will be better when their methods are
in good shape. When methods supports the team work it will create more satis-
fying environment to work. As brought up product lifecycle can be even decades
so it is important to have goal which focuses on product maintainability.

78

FIGURE 41 Objectives

6.3 Principles

Principle list is also updated after interviews. As other method artifacts this has
now more principles related on team working. One important change was also
ideology of acceptable failure which should be available in the method. This
means that in the team is approved to try something new and fail with it. With
this kind of culture organization is supporting innovative team where members
can try something new and it doesn’t need necessary always need to be some-
thing what team will necessary deploy to any products. Main ideology behind of
this is that team will also learn from failures. Most important thing in this kind
of tech spiking culture is ability to stop wasting time with things that doesn’t
work. “Create loved products” is one of the change that is related on method’s
values (FIGURE 42 Principles). At the same time when team is developing tech-
nical solutions they need to have passion to create products which are loved by
users. At general all of these method artifacts have got changes which connects
those more near to each other.

79

FIGURE 42 Principles

6.4 Rules

During the interview there came up couple rules which were pretty important
for the method. One of the most important things was architecture which need
to up-to-date all the time. Too often team have one-time planned architecture
which doesn’t evolve during the product lifecycle. Therefore it is important to
update architecture during the development process. With this kind of rule team
also can refactor and improve those solutions what they have done earlier. In the
rules list there is couple new collaboration related rules added in the list; “No
solo-playing” and “Ask if something is unclear” (FIGURE 43 Rules). With these
rules objective is to highlight the meaning of team work. Individuals doesn’t nec-
essary always see that their work and success might have relation example on
schedules and other important matters. Testing was one of the things which was
discussed quite a lot. Interviewed people bring forth that testing responsibility is
nowadays shared. It is not anymore so clear than it has maybe been previously.
Developers will usually do unit-, component-testing and also they update auto-
mated testing scripts. In the development process there are typically testers who
are focusing on feature-, E2E- and acceptance testing. Team has also responsibil-
ity to keep up-to-date tools and technology stack which they are using. This has
to be continuous process where “tech stack” is evaluated regularly and if neces-
sary it will be updated to the next version. There might be situations example
that one technical component, layer or framework is getting old and team has
noticed that is important to start move on new option.

80

FIGURE 43 Rules

6.5 Process

Process is the part of the method which is giving directions to daily work. Inter-
viewed people highlighted that iterativity should be displayed more clearly in
the process chart. In the planning section there are now new process phases:
“Prototyping” and “Change Management” (FIGURE 44 Process). Prototyping is
part of the development process where team is testing something new. It can be
in tech spike where team is testing new techniques or it can be prototyping of
new feature. Even in some cases team can evaluate alternative solutions for
planned features. Change management can be either part of the maintenance pro-
cess or it can locate in planning phase. This has dependency to the required speed
of updates. If release includes changes which have extremely high priority it is
necessary to do changes as soon as possible but in the normal development cycle
changes are coming either from service management or product management
processes. One new phase in the development section is UI/UX review. This was
seen good enhancement to the process as too often UI/UX specialists are in-
volved to the process in the planning section but they don’t necessary review and
approve their plans at the end of development.

81

FIGURE 44 Process

6.5.1 Changes to the process´s inputs and outputs

Input(s) Activity Output(s)

Market trends, Strat-
egy, Vision, User Sur-
veys and Focus Groups

Roadmap Documented Roadmap
with preliminary schedules
and high level epics

Roadmap, change man-
agement, User Surveys
and Focus Groups

Product Backlog Documented Product Back-
log with user stories

Business needs, tech
spike ideas, alternative
options for features

Prototyping Possible better solu-
tions/feature, possible new
usable technique/frame-
work/tool

Change requests from
continuous services,

Change Management Change to current product

82

Change request from
business epics

Documented Product
Backlog with user sto-
ries

Product Backlog Re-
finement

Refined backlog with tech-
nical details which fulfills
DoR.

User Surveys, Focus
Groups, Visual Guide

UI Design & Research Mockups/wireframes to
complement backlog items

Refined backlog with
UI
mockups/wireframes

Sprint Planning Sprint backlog

Roadmap, Product
Backlog

Architecture update Updated architecture

Sprint backlog Tasks for develop-
ment

Allocated tasks (tickets) to
team members

Sprint backlog, allo-
cated tasks and user
stories

Implementation with
TDD

Releasable functionalities
and test cases for automa-
tized testing

Version controlling
system, agreed branch-
ing rules, program-
ming guidelines

Version Controlling Releasable functionalities
in correct source code
branches

Automatized code re-
view system, manual
code review (if used
pair coding), imple-
mented backlog items

Code Review Reviewed code, source
code ready for testing

Committed code and
automatized CI scripts

Building with CI Compiled code

Implemented, tested,
builded and compiled
code

Automated Releases
(staging)

Newest software version
available in all decided en-
vironments

User stories with test
cases and testing docu-
mentation

Functional Testing Tested functionality and
updated testing documen-
tation

User stories with usa-
bility guidelines and
visual guide

Usability Testing Usability tested user stories

Coded test cases in
same time with devel-
opment

Automated Testing Automatized tests and test
reports

Security requirements
and security test cases.
OWASP top 10,
CWE/SANS TOP 25
Most Dangerous Soft-
ware Errors

Security Testing Security/thread report and
possible improvement re-
quirements

83

Sprint backlog and re-
ports

Sprint Review Communicated features
and changes to the system

Feedback from previ-
ous sprint

Sprint Retrospective Action plan for improve-
ments

UI/UX plan UI/UX review Acceptance or change re-
quests to the product man-
agement

Software increment, re-
lease plan

Production
Deployment

New software version to
production environment

Customer feedback Customer Support Support and possible re-
quests for the team

Monitoring tools (OS,
Hardware, network,
automatized reporting)

Monitoring Automatized reports from
environments

Environment reports
and Roadmap

Evaluating Hardware update plan

System monitoring, au-
tomatic reporting, user
feedback, focus groups

Incident and problem
mgmt.

Triaged incident and prob-
lem tickets

New available soft-
ware version in correct
environments

User Surveys SUS report

New available soft-
ware version in correct
environments

Focus Groups Changes to vision,
roadmap items and user
stories

6.6 Analyze of the method after changes

Interviews verified that the blueprint and the artifacts in the method were in
good shape but it can still can be refined. After changes to method it is in better
shape but same time it is clear that there is possibility to iterate more and more
after further feedback rounds. At the same time when adding more details in the
method it would increase the method’s complexity. One of the research targets
was to keep method simple and therefore it is good to have some limits which
matters are reasonable and which are not. Mainly it is discussion what is good
enough and in this shape method is quite near to settled research objectives.
There are still some artifacts or parts inside the method which could get more
attention. To pinpoint some of those objectives could be more refined and also
the method’s process. In the process there are some parts which are not necessary
opened enough and those would need some fine tuning and more closely speci-
fying. With this maturity level most of the teams would benefit by using this
method. Of course method is not comprehensive when we are going to daily
work but it will gave a framework for it. Teams which are already in good level

84

with their methods can still find some parts of this research which would help
them to improve their work.

85

7 SURVEY RESULTS

After interviews the method was updated for the next version. The purpose of
refinement was to improve method based on professional’s comments and re-
views. After refinement professionals can review how well the method would
work in practice with the survey (FIGURE 45 Survey results).

FIGURE 45 Survey results

86

Age distribution in the second iteration was between 20 to 33 years (FIGURE 46
Age distribution). Youngest ones had less than year experience from the software
business as the oldest ones had eight year experience. These people who involved
to the survey were mainly software developers but some of those had also expe-
rience about operative work with servers (Ops experience).

FIGURE 46 Age distribution

In first question purpose was to evaluate which values were most important for
the team. Each value had numerical value between one to five and five. In the
survey grade five means that value was really meaningful for the team and the
grade one was opposite.
 In general people who answered to survey are seeing that collaboration
section inside the values is important matter. “One team”, “Foster communica-
tion” and “Sharing together” values gathered the highest grades regarding the
meaningfulness for the team. It was interesting to see that responders doesn’t see
that being close to customer is not as relevant as collaboration within the team.
This might be related on roles in the team. Developers and people who are doing
the actual code doesn’t see the interaction with customer so relevant as example
Scrum Masters and Product Owners see it. (FIGURE 47 Survey - Values - One
team, FIGURE 48 Survey - Values - Close to customer, FIGURE 49 Survey - Val-
ues - Foster communication, FIGURE 50 Survey - Values - Sharing together, FIG-
URE 51 Survey - Values - Visibility to all)

87

FIGURE 47 Survey - Values - One team

FIGURE 48 Survey - Values - Close to customer

88

FIGURE 49 Survey - Values - Foster communication

FIGURE 50 Survey - Values - Sharing together

89

FIGURE 51 Survey - Values - Visibility to all

Second section under the values was quality. Under the quality section there was
following values under evaluation: “Provide excellence”, “Embrace working
software”, “User comes first”, “Maintain the speed of development” and “Cher-
ish feedback”. Most of the responders see that working software is the main thing
from the quality perspective. Responders saw this value so fundamental that
without working software it is hard to provide quality software services. As pre-
vious section in this section maintaining the speed of development is one of those
values which are more related to business and especially it is important to Prod-
uct Owner and Scrum Master roles. On these roles predictability of the team ef-
fort is in important role and they need to understand and forecast output of the
team in every sprint. If there is volatility in team velocity it will make their work
more difficult but it is not necessary seen within the developers or operative spe-
cialist roles. (FIGURE 52 Survey - Values - Provide excellence, FIGURE 53 Survey
- Values - Embrace working software, FIGURE 54 Survey - Values - User comes
first, FIGURE 55 Survey - Values - Maintain the speed of development, FIGURE
56 Survey - Values - Cherish feedback)

90

FIGURE 52 Survey - Values - Provide excellence

FIGURE 53 Survey - Values - Embrace working software

91

FIGURE 54 Survey - Values - User comes first

FIGURE 55 Survey - Values - Maintain the speed of development

FIGURE 56 Survey - Values - Cherish feedback

92

The third section under values was delivery. Values under the section were:
“Software evolves continuously”, “Automation creates efficiency”, “Iterate and
improve” and “Measure and evolve”. As a section delivery didn’t get so high
grades from the responders as other main value categories. Responders see that
under the section values related on automation and iterative development were
the most important ones for the team. (FIGURE 57 Survey - Values - Software
evolves continuously, FIGURE 58 Survey - Values - Automation creates effi-
ciency, FIGURE 59 Survey - Values - Iterate and improve, FIGURE 60 Survey -
Values - Measure and evolve)

FIGURE 57 Survey - Values - Software evolves continuously

FIGURE 58 Survey - Values - Automation creates efficiency

93

FIGURE 59 Survey - Values - Iterate and improve

FIGURE 60 Survey - Values - Measure and evolve

Fourth section under the values was individual. Under the individual section are
values regarding individual team member. These values under this section were:
“Passion for the work”, Being proud of own work”, “Commitment and respon-
sibility”, “Trustworthiness” and “Respect colleague”. As seen already in the in-
terviews “Commitment and responsibility” –value is the most important value
from team member individual perspective. Team works well when everyone on
the team can rely on colleague and they can be sure that everyone commits to
their work and take care of their tasks. In the survey people had also possibility
to add and comment each section. One of the responders highlighted that there
could be also value which would refer to personal development. This is some-
thing what team should also consider within the team how each of the team
members develop their personal skills. In practice this kind of personal develop-
ment can happen example by rotating people between the projects, learning by
doing and giving opportunity to learn via trainings. (FIGURE 61 Survey - Values

94

- Passion for the work, FIGURE 62 Survey - Values - Being proud of own work,
FIGURE 63 Survey - Values - Commitment and responsibility, FIGURE 64 Survey
- Values - Trustworthiness, FIGURE 65 Survey - Values - Respect colleague)

FIGURE 61 Survey - Values - Passion for the work

FIGURE 62 Survey - Values - Being proud of own work

95

FIGURE 63 Survey - Values - Commitment and responsibility

FIGURE 64 Survey - Values - Trustworthiness

FIGURE 65 Survey - Values - Respect colleague

96

In the survey method’s objectives were listed as previous artifacts and every re-
sponder has possibility to give grade between one and five for the each objective.
Grade number five was the most meaningful for the team and grade one was the
opposite. Method objectives which were listed in the survey were: “Value crea-
tion”, “Reducing silos”, “Higher productivity with lower costs”, “Improved pre-
dictability”, “Better customer and end-user satisfaction”, “Faster time-to-market”,
“Improved collaboration”, “Satisfying working environment”, “Lower risks”,
“Common ways to work” and “More maintainable software”.
 Most of the responders were thinking that “Value creation”, “Better cus-
tomer and end-user satisfaction”, “Satisfying working environment” and “Im-
proved quality” with “More maintainable software” are the most important ob-
jectives. In the results it is interesting to see that “Faster time-to-market” is not so
important for the team members. This shows again that team members doesn’t
see business objectives as important as example business or product owners. This
kind of behavior is quite normal as people who work with development and soft-
ware want to make sure that they provide good service or products to customers,
they provide value and great user experience for the end-users within the satis-
fying working environment. Those matters are important for them and making
business with created products is important for those roles which have business
responsibility. (FIGURE 66 Survey - Objectives - Value creation, FIGURE 67 Sur-
vey - Objectives - Reducing silos, FIGURE 68 Survey - Objectives - Higher
productivity with lower costs, FIGURE 69 Survey - Objectives - Improved pre-
dictability, FIGURE 70 Survey - Objectives - Better customer and end-user satis-
faction, FIGURE 71 Survey - Objectives - Faster time-to-market, FIGURE 72 Sur-
vey - Objectives - Improved collaboration, FIGURE 73 Survey - Objectives - Sat-
isfying working environment, FIGURE 74 Survey - Objectives - Lower risks, FIG-
URE 75 Survey - Objectives - Improved quality, FIGURE 76 Survey - Objectives -
Common ways to work, FIGURE 77 Survey - Objectives - More maintainable soft-
ware)

FIGURE 66 Survey - Objectives - Value creation

97

FIGURE 67 Survey - Objectives - Reducing silos

FIGURE 68 Survey - Objectives - Higher productivity with lower costs

FIGURE 69 Survey - Objectives - Improved predictability

98

FIGURE 70 Survey - Objectives - Better customer and end-user satisfaction

FIGURE 71 Survey - Objectives - Faster time-to-market

FIGURE 72 Survey - Objectives - Improved collaboration

99

FIGURE 73 Survey - Objectives - Satisfying working environment

FIGURE 74 Survey - Objectives - Lower risks

FIGURE 75 Survey - Objectives - Improved quality

100

FIGURE 76 Survey - Objectives - Common ways to work

FIGURE 77 Survey - Objectives - More maintainable software

One part of the survey were principles for the team. These principles were shown
as a group for the responders and they evaluated how well these principles
would work in practice. Responders had possibility to give grade between one
and five. Grade number five was the best one and one was opposite. Responders
evaluated which principles are most meaningful for the team when they want
achieve good results. All responders gave grade four or over for the next listed
principles (FIGURE 78 Survey - Principles - Overall rating). Each responder
choose five the most important principles for the team. They see that “Working
as a team”, “Continuous collaboration”, “Iterative development”, “Rapid feed-
back” and “Prioritize always” are the most important principles (FIGURE 79 Sur-
vey - Principles – The most important principles). All these principles are the
fundamentals of agile software development. “Teamwork”, “close collaboration

101

within the team”, “with customer with prioritized backlog” and “iterative devel-
opment” are crucial in a sense of team results. Responders also highlighted that
getting feedback in fast pace makes their daily work easier.

FIGURE 78 Survey - Principles - Overall rating

FIGURE 79 Survey - Principles – The most important principles

Like principles, the rules were evaluated similarly. Each member evaluate be-
tween one and five how well team would work by following the listed rules. Over
60% of responders think that by following listed rules team would work really
well. Responders think that “Helping colleague” is the most important rule. This

102

confirms that in software projects team working is really important and team
members are demanding and expecting to get help from colleagues. In daily
work backlog refinement was sawn also important as team members work will
be easier when they have clear tasks available. Other important rules that re-
sponders emphasized are “Ask if something unclear”, “Understand the architec-
ture” and “Be proactive” (FIGURE 81 Survey - Rules - The most important rules).

FIGURE 80 Survey - Rules - Overall rating

FIGURE 81 Survey - Rules - The most important rules

103

Processes and roles were evaluated with overall rating. As previous questions in
the survey grade one was the lowest one and five was the highest rating. Almost
90% of responders thought that process would work well or very well for the
team (FIGURE 82 Survey - Process - Overall rating). Also roles seem to match
very well for the purpose (FIGURE 83 Survey - Roles - Overall rating). As previ-
ous sections responders had possibility to give comment and one of the respond-
ers gave feedback that roles cannot be so tightly matched and there can be several
roles for one person. This actually confirms researcher’s own thoughts about the
person with several roles depending on individual competences. At the end of
the survey responders were asked to answer how well method with previously
mentioned artifacts would work. All of the responders thought that as an overall
the method would work well or very well for creating and maintaining software
and the same time fulfilling the customer and end-user expectations (FIGURE 84
Survey - Overall rating of whole method).

FIGURE 82 Survey - Process - Overall rating

FIGURE 83 Survey - Roles - Overall rating

104

FIGURE 84 Survey - Overall rating of whole method

105

8 DISCUSSION

The main question for the research was: “how to continuously develop and maintain
software while fulfilling customer and user expectations?” Result of this research is a
method which structure is based on ISD method model. Baseline for the method
comes from currently widely used methods like Scrum, DevOps and UCD but
research’s uniqueness comes from combination of these methods. The research´s
purpose was to find method which would create relevant artifacts for the teams
which are working with the software. Created method can be used as a baseline
for the teams but it doesn’t include detailed instructions for daily work (as don’t
other public method either).

As mentioned earlier theoretical background for this research comes from
Scrum, DevOps and UCD methods. Scrum method provided the software devel-
opment part and DevOps expanded the method with IT operations perspective.
The reason why UCD has brought to this method is user experience and usability
of services and software. Combining UCD together with Scrum and DevOps it
was possible to create method which has usability view as a part of the software
development and maintenance.

The method generation process started from with theoretical method hy-
pothesis which was evaluated with IT professionals. Based on evaluations and
interviews the method was refined, improved and updated to the next version.
The end result of method is combination of literature and practical experience of
IT professionals. Updated version of method was evaluated with the survey. This
survey included questions where responders evaluated how well created method
would work in their work and within their teams.

In practice this method brings values, objectives, principles and rules to fol-
low in daily work, working process with inputs and outputs for each activity,
roles for the members and example toolkit for the team. This method can be used
by any team which is providing software services. As the survey results proves
IT professionals believe that the method would work well or very well. All re-
sponders evaluated the method between four and five grades (five was the best
one). (FIGURE 84 Survey - Overall rating of whole method)

8.1 Comparison to continuous software engineering

In software development and maintenance it is nowadays important to keep and
maintain the speed of development even the project phase has ended. End-users
and customers are expecting continuous development after the system procure-
ment also. In the market there are several tools which are helping teams to im-
prove continuous software engineering but also same time it is a change for the
development culture. Fitzgerald and Stol (2015) have researched continuous soft-
ware engineering and they see the same fundamental change from waterfall

106

method to flow-based engineering where various continuous processes are fol-
lowing each other. They introduced model where DevOps follows BizDev pro-
cesses iteratively. In their research Continuous Planning and Continuous Budg-
eting sub-phases are part of the Business Development phase and under the De-
velopment there are sub-phases: Continuous integration, Continuous Deploy-
ment, Continuous Delivery, Continuous Testing and Verification, Continuous
Security, Continous Compliance and Continuous Evolution. Under Operations
there are sub-phases: Continuous Use, Continuous Trust and Continuous Run-
time Monitoring. And all of the above create environment for continuous im-
provement and experimentation with innovation. If compared to created method
to Fitzgerald and Stol (2015) model this method contains same fundamentals as
method in this research. Their research includes also large scale agile develop-
ment aspect for the enterprise level which wasn’t in the scope of this research.
On enterprise level organization can leverage SaFe framework. The method
which is introduced in this research can be also utilized together with the SaFe
framework as it is planned to be used in team level. In SaFe teams are called Agile
Teams. DevOps is also covered in their research and it contains most of the parts
same matters which are bound to the created method in this research. Fitzgerald
and Stol (2015) have mentioned leadership principles; “Customers. Focus every-
one on improving customer outcomes, not on hierarchical relationships; Organi-
zation. Organize as a network of lean, accountable teams, not around centralized
functions; Responsibility. Enable everyone to act and think like a leader, not
merely follow the plan. Autonomy. Give teams the freedom and capability to act.
Do not micromanage them; Values. Govern through a few clear values, goals,
and boundaries, not detailed rules and budgets; Transparency. Promote open in-
formation for self-management, do not restrict it hierarchically.” These principles
are in line with research results and the created method complies with these. Fitz-
gerald and Stol (2015) covered also budgeting, business strategy and planning
perspectives which were out of this research scope. As in this research Lean-
thinking was one of the fundamentals so it has been on Fitzgerald’s and Stol’s
(2015) research. They are focusing on flow and batch sizes and the same time
keeping focus on decreasing waste and continuous improvement. Otherwise
their research results are pretty much aligned with created method and the big-
gest difference is that on this research many of the artifacts are covered and re-
fined to deeper and more detailed level. Fitzgerald’s and Stol’s (2015) research
confirms that the created method in this research has included right components
and fundamentals no matter the used terms are slightly different in some artifacts.

8.2 Contribution to science

When comparing the results to literature it can be seeing that currently literature
focuses on certain areas of software development but it doesn’t cover the change
when teams need more competences based on business needs. As seen in the last
year typical boundaries are fading away and teams are built to match objectives

107

and business needs. Example if business wants to highlight the meaning of usa-
bility of services and cybersecurity in the strategy these changes must reflect on
team´s allocation and to professional’s daily work. At the moment literature fo-
cus on certain parts but as research proves ISD method model can be used to
leverage currently used methods. As the business needs will change also in the
future this kind of research can be used to understand how change can be man-
aged and what things will change in a fundamental level. As seen during the
research bringing new competences to the team will also effect on fundamentals
(like values) in the team. When business changes and new competencies have
brought to team it has to reflect example on values. Like notified during the re-
search old silos are still alive example between operative and development team
members. Without bringing the new perspective and updates to values and ob-
jectives team members might have target misalignment between each other’s.

If compared to the literature this created method is completely something
new what current literature doesn’t cover. It brings new perspectives to software
development. The wideness of research is also unique as it covers main areas
during the whole product lifecycle (FIGURE 85 Context of the method). The
method includes all relevant ISD method model parts and it can be leveraged
many ways in future researches. Every artifact of the method is thought to be
tightly combined with each other and example every process phase has own in-
puts and outputs. All the roles and responsibilities are planned to match with
processes. The method includes also example tools which are suitable for the soft-
ware teams and those match together with other artifacts in the method.

108

FIGURE 85 Context of the method

In the beginning of the research is introduced very limited process chart

which has been used several years in the sector. This process includes in high
level following processes; requirement, planning, delivery and development
phases (FIGURE 2 Software Development Process). During the software devel-
opment evolution processes have become iterative (FIGURE 4 Agile Method). It-
erative software seems to work better especially in software business where final
result is unclear at the beginning of software development project. One part of
this research has been the process for the software team which includes all activ-
ities from the beginning of development all the way until maintenance phases
with iterative approach. The process is rather complex if compared to methods
in the background but all activities inside of the process has own purpose and
each activity complements other. This process can be utilized in any software
team and users can develop it further. The method includes also inputs and out-
puts for the all process’s phases and these must be updated same time when up-
dating the process. Inputs and outputs of each activity helps team members to
understand how each activities are related on others and which kind of results
each activity should generate.

109

Swartout (2012, 71) and Hüttermann (2012, 12) encouraged to build soft-
ware that is made by and for the people. As Hüttermann (2012, 12) and Swartout
(2012, 71) highlighted the meaning of user likewise the UCD´s philosophy com-
plements the software development purposes by putting the user of the product,
application, or experience at the center of design process (Pratt, 2012, 12).
Swartout’s, Hüttermann´s and UCD´s approaches for the software development
are more meaningful nowadays when services must to be thought from the user
perspective already at the first phase. The market nowadays is requiring software
companies to create products and services which make users feel happiness, sat-
isfaction and even love those used products (Kraft, 2012, 12). Values (Agile prin-
ciples) in the Agile Manifesto are also still valid and many of them (if not all) are
good to agile teams understand (FIGURE 5 Agile Principles (Agile Manifesto,
2001). One part of the method was values and those are introduced in chapter 6.1.
These values are essential to understand for everyone who is working in the soft-
ware business. Values are evolving during the time but there are many long last-
ing values which remains no matter time flies by. Example high level values col-
laboration, quality, delivery and individual are those which will remain no mat-
ter time changes. Already on this research has seen that individual perspective
will raise in future and soft values should be part of the methods. Method’s val-
ues are combination of other development and maintenance methods and it is
updated based on professional´s comments.

If method values are setting the normative ethics for the software develop-
ment those are reinforced in the research with objectives, principles and rules.
All previous artifacts are introduced in chapter 6. These artifacts compliments
the method’s values. Objectives gives the understanding for the team what they
should be aiming for. Research’s end result regarding these artifacts compliments
Pratt’s (2012, 12) philosophy where end-user is put in the middle of development.
In the method user satisfaction is not only part of the development process it is
included in the all artifacts in the method. In the objectives part of it user-salience
is seen in ‘better customer and end-user satisfaction’ which was also one of the
most important value when asked from the professionals. Previous artifacts also
complements the Agile and Lean artifacts and they are trying to concentrate on
people/individuals, fast/continuous delivery, quality and simplicity (Poppend-
ieck & Cusumano 2012). The method’s principles and rules are near to daily work
and same time those are guiding team members in their actions. Principles and
rules have relation to values and objectives but those are also combined tightly
to daily processes. Without relation to ‘higher’ level values and objectives,
rules/principles doesn’t shift to daily work. Also process and tools are combined
tightly to rules and principles and they compliments others. As Longbottom
(2014) said that DevOps essentially tries to bring development and operational
teams closer together through automation to support speed of the business re-
quires this method includes also includes set of tools to support his idea. These
tools compliments the other artifacts inside the method. Mainly those are de-
signed for cloud-based web-application development but they can be used in

110

other development and environment types also. If used in other type of environ-
ments users should update the tool list. Tools are also evolving all the time, so it
is good to understand that it is on team responsibility to update tool and technol-
ogy stack regularly. This way team can make sure that their tools and used tech-
nologies are supporting the other artifacts in the method.

The method has also content in every artifact which was related on individ-
ual development and it includes matters which are looking the software devel-
opment and maintenance from individual perspective. These aims to bring team
members more near to daily processes and other artifacts. People are in essential
role in the software business and therefore they are involved in the method as is
highlighted in the CD and DevOps layers (Swartout, 2012, 87).

The method can be used in the teams as it is or teams can take part of it to
use. It is important to understand that every artifact can be or even must be up-
dated based on the organization, business or team needs. Anyway it provides a
baseline for the software development and maintenance work and same time fo-
cus is kept at end-users which was the original objective of the research.

8.3 Contribution to practice

The result of this research is a method which can be used as a baseline for the
software development and maintenance work. Every team no matter have they
worked earlier together or not can found something to their daily work from the
method. The method provides fundamental artifacts for the daily work like val-
ues, objectives, principles, rules, roles and processes. Without this kind of funda-
mentals it is more difficult to start or run successful software teams. While re-
searching the method and doing the survey there was founded also focus areas
which are important to software teams and leaders of those teams. As the survey
proved all responders think that generally method would work well or very well
(FIGURE 84 Survey - Overall rating of whole method). In the survey profession-
als highlighted different matters what they seem to be most important. These are
the most important findings of the research and every software team and team
leaders should ask from themselves how we can improve these things for become
a better team. Based on the research every team and team leaders should focus
on improving collaboration, working software; quality of it, maintainability and
user-experience, team commitment and carrying responsibility (FIGURE 86 Val-
ues to focus for the team and team leaders).

111

FIGURE 86 Values to focus for the team and team leaders

When setting the targets and objectives for the team and himself/herself leaders
should focus on value creation, better customer and end-user satisfaction, satis-
fying working environment, quality improvements and maintainable software
(FIGURE 87 Objectives to focus for the teams and team leaders).

112

FIGURE 87 Objectives to focus for the teams and team leaders

Most important focus areas regarding the principles shown that answers are
aligned with values and objectives. Professionals want that team and leaders fo-
cus on; working as a team, collaboration, designing for the users, automation,
rapid feedback and prioritization.

113

FIGURE 88 Principles to focus for the teams and team leaders

When team and leaders are creating working environment they should focus on
creating environment where everyone helps each other. Professionals have high-
lighted that helping colleague is the most important rule in the team and teams
should focus on that. Other rules what teams and leaders should focus on are:
Backlog refinement, asking when team member doesn’t understand something,
understanding the architecture and proactive attitude. The most important areas
within the rules artifact are related on team culture and openness. When the team
and leaders can create environment where people can act proactively, ask help
from team member and getting help from them team is already in the right track
(FIGURE 89 Rules to focus for the teams and team leaders).

114

FIGURE 89 Rules to focus for the teams and team leaders

As the results shown professionals think that the process and the roles are in
good level but getting in very good level needs still improvements. These im-
provements will arise to the team within the time when they evolve their own
processes, working culture and other matters which are affecting to the team re-
sults.

115

9 CONCLUSIONS

The main question for the research was: “how to continuously develop and maintain
software while fulfilling customer and user expectations?” In the research was sought
a method which would help IT teams continuously develop and maintain soft-
ware and the same time fulfill customer and end-user expectations as well as
possible. At the beginning one of the main purposes was also to bring team mem-
bers more near each other and that way improve team collaboration. The purpose
was to create method which covers whole product lifecycle rather than including
some certain phases from it.

The research was started by scoping it. During the scoping it was already
clear that it would be one of the most tedious tasks in this research. When speak-
ing about software development and methods around it is easy to expand scope
too much. During the research focus was on methods which were assumed to
match together with defined objectives. On a high level software service includes
typically some server components, network and software. Therefore DevOps and
Agile methodologies were chosen. Agile methodologies are giving for the
method software development perspective and DevOps completes software de-
velopment with operative functions. As one of the objectives was also to create
method which pursues to better end-user experience therefore UCD was one of
the chosen parts of the method. Research started by researching more about these
chosen methods and by understanding what those actually includes. When all
chosen methods were examined the first version of new method was generated
based on the literature and practical knowledge. When creating the artifacts to
the method there is a need for method structure. The purpose was to understand
what a method typically includes; what kind of components and parts there
should be in the method and what kind of information is needed. After under-
standing what the method should include and examination of DevOps, Scrum
and UCD best parts of each method were combined together. One of the most
difficult part of this research was actually combining these chosen methods to-
gether reasonable way. When creating method purpose was to pick up best parts
of each method and all the time keeping focus into creating the process where
every activity completes each other. Main thing during the researching was to
find out clear inputs and outputs for each activities.

When the method was created and it was aligned with context of the ISD
method and material for the interviews was prepared. Created research material
was actually useful as it includes charts for evaluating purposes at the interviews.
Interviews included open questions and evaluation part where interviewed peo-
ple had possibility to comment the method. When all interviews were done the
method was refined and updated to next version based on the comments got
from interviews. After the method update it was evaluated with the survey. Sur-
vey’s target was to get feedback from the professionals to question “how well
this method would work in practice” and “which things are the most important
ones in each section”.

116

The end result of this research was the method for software teams to guide
their job at high level. The method includes relevant information components
and artifacts. The baseline of the method is constructed from chosen methodolo-
gies (DevOps, Scrum and UCD). On later phase it has been updated based on
professional interviews. When summing up the research there are some main
questions to ask. Would the method be useful to software teams? Based on the
survey results it would definitely help many teams but at the same time there are
artifacts which should be still updated (FIGURE 84 Survey - Overall rating of
whole method). As all methods they give fundamentals how teams should work
(values, principles, rules, roles and responsibilities) and processes to guide their
work but meanwhile there are many moving and changing matters that these
kinds of methods doesn’t cover. Software teams are always struggling with var-
ious issues and best teams are measured how they learn and evolve during the
time. Anyhow without this kind methods there is nothing to rely on team work
so definitely there is a need for this kind of research work and methods.

Different IT development and maintaining methods are going to right di-
rection when fading out different team boundaries. Beforehand many processes
have baseline from some certain small part of product lifecycle aspect as nowa-
days same teams might take care of products from the beginning at the shutting
down point. It is good that the way of thinking how teams should be built is
nowadays based on required competencies. When team owns pervasive compe-
tences it also creates a foundation for growing up on individual level.

The created method can be used in every software team but also at the same
time it is essential to remember that as business changes the method must be
updated. On the information technology sector business is changing so rapidly
that working methods need to keep up-to-date. The method is not perfect but it
is great starting point or baseline for any team. Also older and more mature soft-
ware teams can find new things inside on it or they can pick just some best parts
of it. Survey results will provide great information for the teams, team leaders
and business leaders. People in previous roles can find relevant information what
professionals appreciate nowadays and what kind of working environment they
want to create for themselves and for the team.

9.1 Limitations

When starting this research the preliminary idea of method combination was
available. As a purpose was to focus on software development and maintenance
by concentrating at the same time on user experience and user interface chosen
methodologies were suitable package. At the beginning when locking in the used
methods: DevOps, UCD and Scrum it was possibility that there has been maybe
already limited some better methods out. By choosing these methods and limit-
ing possible better methods out of the scope in the research was ended up on
situation where research cannot actually answer to the original answer. Method
which was created might be very good one but no one cannot say is the most

117

suitable one if compared to research objective. During the research it came clear
that the method can be updated endlessly. Software development and mainte-
nance are changing and evolving so rapidly that already while writing down this
research many things have changed.
 When planning the interviews it was difficult to find best possible ap-
proach and structure for the interviews. The original purpose was to ask as many
open questions as possible in a way that researcher wouldn’t lead people to some
certain direction on their answers. At the same time afraid was that without giv-
ing some certain framework or fundamental matters answers wouldn’t be rele-
vant for the research purpose. Final decision was to end up on interview model
where at the beginning the big picture of research was opened and on later part
interviewed people had possibility to evaluate the created method. During the
interviews some people get slightly confused if not fundamentals were opened
well enough. Even it was decided to give relevant background information it was
quite hard to get answers for some of the open questions. When pondering this
afterwards it would be more beneficial to spend more time on introductions in
the interviews.

Interviewed persons were working on pretty similar environments. This sit-
uation might distort the answers. Ultimately when doing this kind of research it
would be best to get interviewed persons from totally different companies and
these companies size should vary. Also projects and history regarding the pro-
jects will likely effects on answers. Best possible situation would be that you have
as heterogeneous group as possible but they all have relevant knowledge of soft-
ware development and maintenance methodologies.

The final survey was meant to evaluate the method after interviews and
method update. As this kind of method cannot be tested without heavy invest-
ments easily on practice it was clear that method’s functionality can be only eval-
uated by asking opinions from the professionals. When analyzing the results it
was realized that the survey results are related on role within the team. Each re-
sponder evaluated the method from their own perspective. Based on this obser-
vation the results might become distorted as business perspective is not covered
as well as technical.

In the software business there are many ways to build processes around it.
This kind of method works best for the teams which are working with products.
On a high level there are nowadays typically projects where team provides cer-
tain application for the customer and on these projects customers owns intellec-
tual property (IP) after the project (FIGURE 90 Development approach) is done.
Opposite of previous there is software product business where company owns
the IP and they are offering it as a service for a multiple customers. The created
method fits better for this kind of environment where development continues the
whole product lifecycle. Especially bringing UCD as a part of the team is im-
portant when the complexity of the software increases during the time. Without
having UCD expertise in the team and bounded it in the processes the user expe-
rience and usability starts easily become weaker during the time. When creating
new products there are process phases which are necessary in the beginning as

118

“building the business model”, “validating the business case”, “concept pictures”
and “MVP scoping”. When these phases are done and business has decided to
go forward with the product created method for the teams will be useful.

FIGURE 90 Development approach

9.2 Future research

In the future it would be beneficial to do research example how this kind of
method would work in the practice. If someone could measure how team works
beforehand and afterwards everyone could understand better the actual results.
This kind of research requires business commitment and changes which are not
necessary easily done. The method artifacts like values are bound deep in the
organization culture and changing these will take time. This kind of evaluation
and research would take even years depending on the starting point where the
team is on the beginning. The method could be combined to some sort of ma-
turity test which would evaluate at the first where the team is at the beginning.
Combining this kind of information, planning and implementing the changes
and evaluating those after decided period could be seen how things are devel-
oped.
 As already mentioned earlier every kind of boundaries are fading away
in the software organizations. This means in practice that resourcing of every
software project starts from customer and project needs. This change is signifi-
cant as this way project outputs are always better when all the relevant compe-
tencies are gathered in the same team. During the research software business has

119

already started to talk about DevSecOps. In practice this extends first research
thoughts about the software teams where all relevant competences should be in
the same team. In future someone could find out how artifacts would change if
teams have more cybersecurity competence within the team. This kind of
knowledge would cause changes on every artifact in the method. As notified al-
ready in the research depending on role professionals emphasizes matters which
are the most important for their own roles. Of course there are a lot of things
which would remain but this kind of expand would definitely bring some minor
new things to the method.
 When software development methods are evolving all the time it would
be good to see what kind of benefits are achieved when comparing to older mod-
els. What are the most important achievements and how the team members have
seen the change? It would be also important to understand how teams could
move from one agile maturity level to another. What kind of matters there should
be considered in each steps and how this process could be done effectively?
 One of the important future research approach would be also individual
perspective in the software teams. Within the research it was noticed that many
of methods doesn’t cover matters in individual perspective. When discussing
about individual perspective in the software development and maintenance
method we are on slightly grey area as we are combining pretty technical method
perspective to the leadership of the team. Many of the software team leaders
would appreciate the information about catalyst which are driving team in good
“flow-state” where they are delivering together best possible results. There are
many kind of things behind it but it would be beneficial to understand those mo-
tivation drivers for the team members. What would be the most important focus
areas to achieve best results? Are those new technologies which are driving team
members forward? How about good team spirit and how it could be improved
in the software teams? Or are the daily methods what they are using the key for
the success?
 During the research it was examined also what kind of handover phases
from different software product lifecycle includes. This is also interesting and
relevant point as all persons are not so much involved example during the MVP
creation phase and some of the persons are not so much involved with continues
services. It would be interesting to understand better which kind of processes
there should be example when new products are going to maintenance phase at
first time. What kind of information is needed to get Service Delivery Manager
up-to-date and how the responsibilities can be fulfilled after moving to the new
phase in the software´s lifecycle.

120

REFERENCES

Agile Manifesto. (2001). Agile Principles. Retrieved 13.2.2015 from
http://www.agilemanifesto.org/principles.html

Brinkkemper S. (1996). Method Engineering: Engineering of Information Systems
Development Methods and Tools. In Proceedings of the Fifth International Con-
ference on Information Systems Development (ISD’96), Wrycza-Zupancic (ed.).
Gdansk, Poland.

Cois, C. A., Yankel, J., & Connell, A. (2014). Modern DevOps: Optimizing
Software Development Through Effective System Interactions.

cPrime. (2014). Scrum Process. Retrieved 15.2.2015 from
https://www.cprime.com/resources/what-is-agile-what-is-scrum/

Dingsøyr T. (2010) Agile Software Development

Farroha, B. S., & Farroha, D. L. (2014). A Framework for Managing Mission
Needs, Compliance, and Trust in the DevOps Environment. 2014 IEEE
Military Communications Conference, 288–293. doi:10.1109/MILCOM.2014.54

Fitzgerald, B., & Stol, K. (2015). Continuous Software Engineering: A roadmap
and agenda. The Journal of Systems and Software 123 (2017), 176–189

Gartner. (2013). Digitalization. Retrieved 28.4.2015 from http://www.gart-
ner.com/it-glossary/digitalization

Gofore. (2013). DevOps – määritelmä. Retrieved 16.2.2015 from https://go-
fore.com/ohjelmistokehitys/devops-sovelluskehittajan-roolin-evoluutio/

Guang-Yong, H. (2011). Study and practice of import Scrum agile software
development. 2011 IEEE 3rd International Conference on Communication
Software and Networks, ICCSN 2011, 217–220.
doi:10.1109/ICCSN.2011.6013698

Guo, W., & Wang, Y. (2009). An incident management model for SaaS
application in the IT organization. ICRCCS 2009 - 2009 International
Conference on Research Challenges in Computer Science, 137–140.
doi:10.1109/ICRCCS.2009.42

Hussaini, S. W. (2014). Strengthening harmonization of Development (Dev)
and Operations (Ops) silos in IT environment through Systems approach
., 178–183.

Hüttermann, M. (2012). DevOps for Developers. New York, USA: Apress.
doi:10.1007/978-1-4302-4570-4

121

Iivari, N. (2006). Discourses on 'culture' and 'usability work' in software product
development. Oulu : University of Oulu, 2006

Ieee. (1990). IEEE Standard Glossary of Software Engineering Terminology
(IEEE Std 610.12-1990). Los Alamitos. CA: IEEE Computer Society, 121990,
69. Retrieved from
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:IEEE+S
tandard+Glossary+of+Software+Engineering+Terminology+(IEEE+Std+61
0.12-1990)#0

ISO/IEC (2006). ISO/IEC 14764:2006, Software Engineering -- Software Life Cy-
cle Processes – Maintenance. Retrieved 22.2.2015 from
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_de-
tail.htm?csnumber=39064

Jayaratna, N. (1994). Understanding and Evaluating Methodologies. McGraw
Hill Book Company, London.

Kalermo, S. (2014). Käyttäjäkeskeinen suunnittelu Jyväskylän yliopiston IT-
palveluissa. Pro Gradu, Jyväskylän yliopisto

Kamppi, J. (2013). Ketterän menetelmän käyttöönotto. Pro Gradu, Jyväskylän
yliopisto

Kennedy, M. (2010). Product Development for the Lean Enterprise. Oaklea Press,
USA.

Koskela, A. (2014). Ketterän ohjelmistokehityksen ja kevyen
käytettävyystestauksen yhteensovittaminen: tapaustutkimus

Kraft, C. (2012). User Experience Innovation. doi:10.1007/978-1-4302-4150-8

Longbottom, C. (2014). ComputerWeekly.com: How to tame the new IT beast
called DevOps. Retrieved 16.2.2015 from http://www.computer-
weekly.com/feature/How-to-tame-the-new-IT-beast-called-DevOps

March, S. T., & Smith, G. F. (1995). Design and natural science research on
information technology. Decision Support Systems, 15(4), 251–266.
doi:10.1016/0167-9236(94)00041-2

Maukonen, H. (2015). Ketterän ohjelmistokehityksen kypsyysmallien vertailu.
Pro Gradu, Jyväskylän yliopisto

Mundra, A., Misra, S., & Dhawale, C. a. (2013). Practical scrum-scrum team:
Way to produce successful and quality software. Proceedings of the 2013 13th
International Conference on Computational Science and Its Applications, ICCSA
2013, 119–123. doi:10.1109/ICCSA.2013.25

122

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V., &
Bragge, J. (2006). The Design Science Research Process: A Model for
Producing and Presenting Information Systems Research. The Proceedings of
Design Research in Information Systems and Technology DESRIST’06, 24, 83–
106. Retrieved from
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+D
esign+Science+Research+Process:+A+Model+for+Producing+and+presenti
ng+Information+Systems+Research#0

Pesonen, K. (2012). Agile software testing and Scrum. Pro Gradu, Jyväskylän yli-
opisto

Poppendieck, M., & Cusumano, M. a. (2012). Lean software development: A
tutorial. IEEE Software, 29, 26–32. doi:10.1109/MS.2012.107

Pratt A. (2012). Interactive design: an introduction to the theory and application
of user-centered design. Rockport Publishers, 2012.

SAP. (2009). SAP User-Centered Design. Retrieved 25.2.2015 from
http://www.sapdesignguild.org/resources/ucd_process.asp

Schwaber, K., & Sutherland, J. (2011). The scrum guide. Scrum. Org, October, 2,
17. doi:10.1053/j.jrn.2009.08.012

Scrum Alliance. (2014). Core Scrum. Retrieved 15.2.2015 from
https://www.scrumalliance.org/why-scrum/core-scrum-values-roles

Six Sigma. (2015). Yleistä Leanista. Retrieved 14.2.2015 from
http://www.sixsigma.fi/fi/lean/yleinen/

Spinellis, D. (2012). Don’t install software by hand. IEEE Software, 29(4), 86–87.
doi:10.1109/MS.2012.85

Sutherland, J., & Van Solingen R. (2011). The Power of Scrum. CreateSpace, USA.

Swartout, P. (2012). Continuous delivery and DevOps: A quickstart guide. Packt
Publishing, Birmingham.

Säde, S. (2004). Cardboard mock-ups and conversations : studies on user-cen-
tered product design. Helsinki : University of Art and Design Helsinki, 2001

Tikkanen, K. (2014). Ketterän ja perinteisen ohjelmistokehityksen yhdistämiseen
liittyviä haasteita ja ratkaisuja : tapaustutkimus. Pro Gradu, Jyväskylän ylio-
pisto

Vehvilainen, R. (2000). What is preventive software maintenance? Software
Maintenance, 2000. Proceedings. International Conference on, 18–19.
doi:10.1109/ICSM.2000.882971

123

Veneziano, V., Mahmud, I., Khatun, A., & Peng, W. W. (2014). Usability
Analysis of ERP Software : Education and Experience of Users ’ as
Moderators, (1001).

124

ATTACHMENT 1: INTERVIEW MATERIAL

125

126

127

128

