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ABSTRACT

Stankevich, Nataliya
Hidden and self-excited attractors in radiophysical and biophysical models
Jyväskylä: University of Jyväskylä, 2017, 44 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 273)
ISBN 978-951-39-7293-6 (nid.)
ISBN 978-951-39-7294-3 (PDF)
Finnish summary
Diss.

One of the central tasks of investigation of dynamical systems is the problem
of analysis of the steady (limiting) behavior of the system after the completion
of transient processes, i.e., the problem of localization and analysis of attractors
(bounded sets of states of the system to which the system tends after transient
processes from close initial states). Transition of the system with initial condi-
tions from the vicinity of stationary state to an attractor corresponds to the case
of a self-excited attractor. However, there exist attractors of another type: hid-
den attractors are attractors with the basin of attraction which does not have in-
tersection with a small neighborhoods of any equilibrium points. Classification
"hidden vs self-excited" attractors was introduced by Leonov and Kuznetsov.

Discovery of the hidden chaotic attractor has shown the need for further
study of the scenarios concerned with the appearance and properties of hidden
attractors, since the appearance of such attractors in the system can lead to a qual-
itative change in the dynamics of the system. In the present work two directions
have been chosen, for which the possibility of the appearance of hidden attrac-
tors can be critical: radiophysics and biophysics. The features of radiophysical
generators which can be used for systems of secure communication based on the
dynamical chaos are considered in detail. Using the Chua circuit as an example,
we investigate the problem of synchronization between two coupled generators
in case when the observed regimes are represented by hidden and self-excited at-
tractors. This example shows that in case of hidden attractors under certain initial
conditions desynchronization of the coupled subsystems is possible, and the sys-
tem of secure communication becomes inoperative. Alternative new radiophysi-
cal generators with self-excited attractors are also proposed. In such generators,
the dynamical chaos is stable to the variation of parameters, initial conditions.
In the context of the biophysics problems, a simplified model describing the dy-
namics of beta-cells based on the Hodgkin-Huxley formalism is presented. It has
a typical for such systems bursting attractor which became hidden. This model
can be used for the description of various pathological states of cells formation.

Keywords: hidden attractors, self-excited attractors, multistability, radiophysical
generator, Chua circuits, pancreatic beta-cell
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1 INTRODUCTION AND THE STRUCTURE OF THE

WORK

1.1 Introduction

One of the central tasks of investigation of dynamical systems is the problem
of analysis of the steady (limiting) behavior of the system after the completion
of transient processes, i.e., the problem of localization and analysis of attractors
(bounded sets of states of the system to which the system tends after transient
processes from close initial states). To solve this problem in mathematics the the-
ory of dynamical systems and methods of analysis of its attractors were devel-
oped. So, in the 19th century effective criteria for analyzing stability and the ap-
pearance of periodic attractors in dynamical systems were developed by Poincaré
and Lyapunov. During the 20th century various scenarios of transition to chaos
were investigated (Feigenbaum, Shilnikov, Sharkovskiy), and chaotic attractors
were discovered in dynamical systems (Ueda, Lorenz). Special difficulties for in-
vestigation is due to the multistable dynamical systems, in which several attrac-
tors can coexist. Thus, the Hilbert’s 16th Problem about the number and mutual
arrangement of limit cycles (periodic attractors) in two-dimensional polynomial
systems has not been solved in the general case as up to now.

From the point of view of numerical simulations for the searching and visu-
alizing of an attractor in the phase space, it is necessary to determine initial con-
ditions inside the area of the attraction of attractor and numerically observe tran-
sient process of trajectory attraction from the initial point to the attractor with the
increase of time. Transition of the system with initial conditions from the vicinity
of stationary state to an attractor corresponds to the case of a self-excited attractor,
this case allows one to carry out an effective numerical search and visualization
of this attractor. However, there exist attractors of another type: hidden attractors
are attractors with the basin of attraction which does not have intersection with
a small neighborhoods of any equilibrium points. Classification "hidden vs self-
excited" attractors was introduced by Leonov and Kuznetsov in 2010 when they
uncovered a hidden attractor in the radiophysical Chua circuit, and thus allowed



10

one to combine the notion of transition process in engineering systems, visual-
ization in numerical mathematics, the basin of attraction and the stability of the
theory of dynamical system.

A wide range of complex dynamical systems from the biology, neurons,
cells (Laurent and Kellershohn, 1999; Pmerening et al., 2003; Ozbudak et al., 2004;
Kelso, 2012; Pisarchik and Feudel, 2014) to engineering applications (De Rossi et
al., 1998; Joshi and Xiao, 2003; Marquardt et al., 2006; Paraïso et al., 2010) may
have many coexisting attractors, so called multistable attractors. The final state,
i.e., the attractor toward which the multistable system evolves strongly depends
on the initial conditions. Additionally, such systems can be sensitive towards
noise and system parameters so a sudden shift to a contrasting regime may oc-
cur. To understand the dynamics of these systems one has to identify all possible
attractors and their basins of attraction. Recently, it has been shown that mul-
tistability can be connected with the occurrence of hidden attractors (Leonov et
al., 2011; Leonov and Kuznetsov, 2013; Dudkowski et al., 2016). Numerical local-
ization of the hidden attractors is not straightforward since there are no transient
processes leading to them from the neighborhoods of unstable fixed points and
one has to use the special analytical numerical procedures. From the viewpoint of
applications, the identification of hidden attractors is the major issue. The knowl-
edge about the emergence and properties of hidden attractors can help to predict
that the system will remain on the most desirable attractor and reduce the risk of
the sudden jump to undesired behavior. The main goal of this work is to obtain a
new models demonstrating hidden attractors, which can be applied in biophysics
and radio physics and to study scenarios of formation of hidden attractors.

1.2 Structure of the work

The present work consists of an introduction, summaries of the results and in-
cludes seven articles (see Figure 1). In the introduction, an overview of the hid-
den attractors theory development history and the main definitions are given;
also applications which were studied are mentioned. The main chapter includes
two parts:

– radiophysical applications;
– biophysical applications.

For different kinds of models a general studying algorithm was applied (see Fig-
ure 2). For each situation, each own model was proposed, representing a system
of ordinary differential equations which were solved by numerical integration in
the MatLab with using package Ode45 (it is the Runge-Kutta adaptive step-sized
method of numerical integration). Also, the numerical bifurcation analysis was
carried out by using software package XPP AUTO (Ermentrout, 2002).

Softwares GnuPlot and CorelDraw were used for visualization of the ob-
tained results and the graphical illustrations.
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FIGURE 1 Structure of the work.

FIGURE 2 Algorithm of studying different models.
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1.3 Included articles and author contribution

In PI and PII, the author applied numerical methods for studying the model of
the Chua circuit to localize a new the existence region of hidden attractors and
to study scenario when hidden attractors occur. In PIII, the author investigated
synchronization between two coupled oscillators with hidden and self-excited at-
tractors using numerical simulations. In PIV, the author considered generalized
model, where the formation of self-excited chaotic attractors with property of ro-
bustness is possible. In PV, the author realized experiment with radiophysical
circuits, which can demonstrate self-excited dynamics including quasiperiodic
oscillations and chaos. In PVI, the author carried out an experiment with multi-
contour generator where chaotic oscillations were observed. In PVII, the author
proposed a modification of the well-known simplified model of the pancreatic
beta-cell, where the existence of hidden attractors was observed.

Author contributions are in writing, numerical simulations, radiophysical
experiments.

The biophysical results were discussed with Prof. E. Mosekilde from Den-
mark Technical Universuty. The author made scientific visit to DTU in 2012. In
2016 the author visited Max-Planck Institute for Molecular Physiology, where she
discussed biological model with Dr. rer. nat. habil. Aneta Koseska.

The results of this work were presented at 20th World Congress The In-
ternational Federation of Automatic Control (IFAC-2017, Toulouse, France, 9-
14 July 2017), at Conference "Understanding learning in the brain" ( Jyväskylä,
Finland, 13-14 June 2017), at IEEE Conference "Progress In Electromagnetics Re-
search Symposium" (PIERS-2017, Saint-Petersburg, 22-25 May 2017), at Interna-
tional Symposium "Topical problems of Nonlinear wave physics" (NWP-2017,
Moscow-St.Petersburg, 22-28 July 2017); at the seminars of the Department of
Applied Cybernetics (St. Petersburg State University), and at the seminars of the
Faculty of Information Technology (University of Jyväskylä).



2 PROBLEM STATEMENT AND MAIN RESULTS

In this section following to papers PI-PVII, the main content is presented.

2.1 Dynamical system: attractors and classification

A dynamical system is a mathematical abstraction designed to characterize and
study systems whose time evolution is uniquely determined by the initial state
and which describe some object, process, or phenomena. A phase space of a
dynamical system is the set of all possible states. Thus, the dynamical system is
characterized by its initial state and the law by which the system evolves from the
initial state. Let us introduce some rigorous notions of a dynamical system and
attractor and discuss the connection with the notions of self-excited and hidden
attractors from a computational perspective.

An autonomous system can be described by the system of differential equa-
tions:

u̇ = f (u), f : U ⊆ Rn → Rn, (1)

where f is a continuously differentiable vector-function. Suppose that any solu-
tion u(t, u0) of (1) such that u(0, u0) = u0 ∈ U exists for t ∈ [0, ∞), it is unique
and stays in U. Then the evolutionary operator ϕt(u0) = u(t, u0) is continuously
differentiable and satisfies the semigroup property:

ϕt+s(u0) = ϕt(ϕs(u0)), ϕ0(u0) = u0 ∀ t, s ≥ 0, ∀u0 ∈ U. (2)

Thus, ϕt
t≥0 is a smooth dynamical system in the phase space (U, ‖ · ‖) : (ϕt

t≥0, (U ⊆
Rn, ‖ · ‖)). Here ‖ u ‖=

√
u2

1 + ... + u2
n is Euclidean norm of the vector u =

(u1, ..., un) ∈ Rn. Similarly, one can consider a dynamical system generated by
the difference equation

u(t + 1) = ϕ(u(t)), t = 0, 1, ... (3)
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where ϕ : U ⊆ Rn → U is a continuously differentiable vector-function. Here
ϕt(u) = (ϕ ◦ ϕ ◦ · · ·ϕ)(u),︸ ︷︷ ︸

t times

ϕ0(u) = u, and the existence and uniqueness (in the

forward-time direction) take place for all t ≥ 0.
The classical definitions of an attractor is connected with investigation of

the limit behavior of the trajectories of dynamical systems.
Definition 1. A set K is said to be positively invariant for a dynamical sys-

tem if

u(t, K) ⊂ K, ∀t ≥ 0,

and to be invariant if
u(t, K) = K, ∀t ≥ 0,

where u(t, K) = {u(t, u0) | u0 ∈ K, t ≥ 0}.
Property 1. Invariant set K is said to be locally attractive for a dynamical

system if, for a certain ε-neighborhood K(ε) of set K,

lim
t→+∞

ρ(K, u(t, u0)) = 0, ∀u0 ∈ K(ε).

Here ρ(K, u) is a distance from the point u to the set K, defined as

ρ(K, u) = inf
z∈K

‖z − u‖,

and K(ε) is a set of points u for which ρ(K, u) < ε.
Property 2. Invariant set K is said to be globally attractive for a dynamical

system if

lim
t→+∞

ρ(K, u(t, u0)) = 0, ∀u0 ∈ Rn.

Property 3. Invariant set K is said to be uniformly locally attractive for a dy-
namical system if for a certain ε-neighborhood K(ε), any number δ > 0, and any
bounded set B, there exists a number t(δ, B) > 0 such that

u(t, B)
⋂

K(ε), ∀t ≥ t(δ, B).

Here

u(t, B
⋂

K(ε)) = {u(t, u0) | u0 ∈ B
⋂

K(ε)}.

Property 4. Invariant set K is said to be uniformly globally attractive for a
dynamical system if, for any number δ > 0 and any bounded set B ⊂ Rn, there
exists a number t(δ, B) > 0 such that

u(t, B) ⊂ K(δ), ∀t ≥ t(δ, B).

Definition 2. (Ladyzhenskaya, 1991; Babin and Vishik, 1992; Boichenko et al.,
2005) For a dynamical system, a bounded closed invariant set K is:
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1) an attractor if it is a locally attractive set (i.e., it satisfies Property 1);
2) a global attractor if it is a globally attractive set (i.e., it satisfies Property 2);
3) a B-attractor if it is a uniformly locally attractive set (i.e., it satisfies Property

3);
4) a global B-attractor if it is a uniformly globally attractive set (i.e., it satisfies

Property 4).

Recently new classification of attractor was introduced.
Definition 3. (Leonov et al., 2011; Leonov and Kuznetsov, 2013; Leonov et

al., 2015b; Kuznetsov, 2016). An attractor is called a hidden if its basin of attraction
does not intersect with a neighborhood of stationary equilibria (states); otherwise,
it is called a self-excited attractor.

For a self-excited attractor, its basin of attraction is connected with an unstable
equilibrium and, therefore, self-excited attractors can be localized numerically by
the standard computational procedure in which after a transient process a trajectory,
started in a neighborhood of an unstable equilibrium (e.g., from a point of its
unstable manifold), is attracted to the state of oscillation and then traces it. Thus,
self-excited attractors can be easily visualized (e.g., the classical Lorenz, Rössler,
and Hennon attractors can be visualized by a trajectory from a vicinity of unstable
zero equilibrium).

For a hidden attractor, its basin of attraction is not connected with equi-
libria, and, thus, the search and visualization of hidden attractors in the phase
space may be a challenging task. Hidden attractors are attractors in systems
without equilibria (see, e.g. rotating electromechanical systems with Sommer-
feld effect described in 1902 (Sommerfeld, 1902; Kiseleva et al., 2016)) and in
systems with only one stable equilibrium (see, e.g. counterexamples (Leonov
and Kuznetsov, 2011, 2013) to the Aizerman’s (1949) and Kalman’s (1957) conjec-
tures on the monostability of nonlinear control systems (Aizerman, 1949; Kalman,
1957)). One of the first related problems is the second part of Hilbert’s 16th prob-
lem (1900) (Hilbert, 1901-1902) on the number and mutual disposition of limit cy-
cles in two-dimensional polynomial systems, where nested limit cycles (a special
case of multistability and coexistence of attractors) exhibit hidden periodic oscil-
lations (see, e.g., (Bautin, 1939; Kuznetsov et al., 2013; Leonov and Kuznetsov,
2013)).

The classification of attractors as being hidden or self-excited was introduced by
G. Leonov and N. Kuznetsov in connection with the discovery of the first hidden
Chua attractor (Leonov and Kuznetsov, 2009; Kuznetsov et al., 2010; Leonov et
al., 2011; Bragin et al., 2011; Leonov et al., 2012; Kuznetsov et al., 2013; Leonov and
Kuznetsov, 2013; Leonov et al., 2015) and has captured attention of scientists from
around the world (see, e.g. (Burkin and Khien, 2014; Li and Sprott, 2014; Chen,
2015; Saha et al., 2015; Feng and Pan, 2017; Zhusubaliyev et al., 2015; Danca, 2016;
Kuznetsov et al., 2015a; Chen et al., 2015; Pham et al., 2014; Ojoniyi and Njah,
2016; Rocha and Medrano-T, 2016; Borah and Roy, 2017; Danca et al., 2017; Wei
et al., 2016; Pham et al., 2016; Jafari et al., 2016; Dudkowski et al., 2016; Singh and
Roy, 2017; Zhang et al., 2017; Messias and Reinol, 2017; Brzeski et al., 2017; Wei et
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al., 2017; Chaudhuri and Prasad, 2014; Jiang et al., 2016; Volos et al., 2017)).
Further study of the hidden Chua attractors and their observation in phys-

ical experiments can be found, e.g., in (Li et al., 2014; Chen et al., 2015; Bao et
al., 2015; Chen et al., 2015a,b; Zelinka, 2016; Bao et al., 2016; Menacer et al., 2016;
Chen et al., 2017; Hlavacka and Guzan, 2017). The synchronization of Chua cir-
cuits with hidden attractors is discussed, e.g. in (Kuznetsov and Leonov, 2014;
Kuznetsov et al., 2016; Kiseleva et al., 2017). Some recent results on various mod-
ifications of Chua circuit can be found in (Rocha and Medrano-T, 2015; Bao et al.,
2015; Semenov et al., 2015; Gribov et al., 2016; Kengne, 2017; Zhao et al., 2017;
Chen et al., 2017; Corinto and Forti, 2017). Also hidden attractors were observed
in other dynamical system (Kuznetsov et al., 2017; Danca and Kuznetsov, 2017a,b;
Danca, 2017, 2016; Danca et al., 2017, 2016; Sharma et al., 2015a,b).

During the last five years different applications were found where presence
of hidden attractors play the crucial role for operability of the system. Hidden
periodic oscillations and hidden chaotic attractors have been studied in models
such as phase-locked loops (Kuznetsov et al., 2015b, 2014), Costas loops (Best et
al., 2015), drilling systems (Kiseleva et al., 2012) (Leonov et al., 2014), DC-DC con-
verters (Zhusubaliyev and Mosekilde, 2015), aircraft control systems (Andrievsky
et al., 2013a), launcher stabilization systems (Andrievsky et al., 2013b), convective
fluid motion (Leonov et al., 2015a), and many others models. In the present work
the role of hidden and self-excited attractors in the radiophysical (in application
to the secure communication) and biophysical models is studied.

2.2 Application to secure communication

Nowadays, one of the areas of engineering where the theory of nonlinear os-
cillations and the theory of dynamical chaos get wide application is communi-
cations. In 2007, the method of direct chaotic communications (transfer by us-
ing chaotic pulses) was introduced into the Standard IEEE802.15.4a (Anon., 2007)
ultra-broadband wireless personal communication. In 2012, ultra-wideband chaotic
impulses were introduced in Standard IEEE 802.15.6- Wireless Body Area Net-
works - WBAN (Anon., 2012).

One of the promising directions of the practical applications of radiophysi-
cal generators of chaotic signals is to use them for secure communication systems
(Cuomo and Oppenheim, 1993; Argyris et al., 2005; Kiani-B et al., 2009; Pono-
marenko et al., 2013; Kaddoum, 2016; Xiong et al., 2016; Gutierrez and Gonzalez,
2016). This direction has been developing for quite a long time, however, there
are a number of problems, preventing the use of these generators in applications.
Such kind of problems can be concerned: the dependence of generation mode
of chaotic signal from the parameters and initial conditions, sensitivity to noise,
the problem of confidentiality of transmitted information, etc. In general all this
problems are connected with different properties of chaotic attractors.

Most of the methods of secure communication based on synchronization of
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chaos use primarily chaotic synchronization regimes (Pecora and Carroll, 1990)
that imply a close identity of oscillators at opposite ends of the communication
channel (See Fig. 3). The use of complete chaotic synchronization for secure infor-
mation transmission implies the presence of at least two unidirectionally coupled
identical chaotic oscillators.

FIGURE 3 Principle scheme for secure communication system based on chaotic mas-
king.

Chaotic masking is one of the first and simplest techniques for transmitting
information in a secure fashion (Cuomo et al., 1993). A schematic diagram of
this method is shown in Fig. 3. The information signal m(t) is combined in the
summator with a carrier generated by the chaotic system GCH-1 x(t) for trans-
mission through the communication channel. The received signal causes chaotic
synchronization of the chaotic oscillator GCH-2 u(t) in the receiver; as a result,
the dynamics of the receiving oscillator becomes similar to that of the transmit-
ting one. The detected signal m̃(t) is produced after passing through the sub-
tractor as a difference between the received signal and the synchronous response
of chaotic oscillator in the receiver (see, e.g., Refs (Cuomo et al., 1993; Kiani-B
et al., 2009)). Such a scheme of secure communication operates rather efficiently
(in that it ensures high-quality transmission of information and its detection at
the outlet) in the absence of noise in the channel (Downes, 1993). Given a noisy
channel, the quality of transmitted information worsens considerably; this ac-
counts for the high signal-to-noise ratio at which the system remains operative.
Moreover, the introduction of a parameter mismatch between identical chaotic
oscillators (located at the opposite ends of the communication channel) results in
the appearance of additional desynchronization noises at the outlet and makes
the transmission difficult to realize.

Then we can depict some problems of the secure communication system
based on the chaotic synchronization connected with different dynamical pro-
perties of radiophysical generators of chaos (see Fig.4).

Hidden attractors were observed in different radiophysical generators, e.g.
in mentioned above Chua circuit and in other generators, e.g., (Kuznetsov et al.,
2015a). Nowadays, such kinds of chaotic electronic generators are used in various
chaotic secure communication systems. If a generator has one global self-excited
attractor, then it is easy enough to synchronize it. But generators can have several
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FIGURE 4 Problems of the scheme of the secure communications based on the chaotic
synchronization.

coexisting attractors. In case when multistable attractors are hidden, it is difficult
to find these attractors. Switching of operational regime on the hidden attractor
can lead to desynchronization between receiver and transmitter, or inoperability
of the whole system. Also additional attractors can appear in the systems with
multistability as a result of interaction between coexisting attractors. In Sec.2.2.1.
the problem of synchronization between two coupled Chua system is considered
for two cases: when self-excited attractors and hidden attractors are observed in
the subsystems.

One of the direction which can help to solve the second problem (see Fig. 4)
is development of the generators of hyperbolic chaos 1, which provide stabil-
ity of operational regime to variation of control parameters and initial condi-
tions. Recently the radiophysical generators of hyperbolic chaos were realized in
(Kuznetsov, 2005; Kuznetsov and Seleznev, 2006; Kuznetsov and Pikovsky, 2007).
In the frame of this work such kind generators were studied. The main results in
this direction are briefly described at the end of Sec.2.2.1.

2.2.1 Chua circuit: synchronization of hidden and self-excited attractors

The Chua circuit, invented in 1983 by Leon Chua (Matsumoto, 1984; Chua, 1992),
is the simplest electronic circuit exhibiting chaos. In Fig. 5 Chua circuit with
two resistors, one inductor, two capacitors (red) and one nonlinear resistor called
Chua diode (green) is shown. The classical Chua circuit can be described by the
following differential equations

ẋ = α(y − x) − α f (x),
ẏ = x − y + z,
ż = −(βy + γz),

(4)

1 See, e.g., (Anosov, 1967; Smale, 1967)
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FIGURE 5 Scheme of Chua circuit

where f (x) = m1x + 1
2(m0 − m1)(|x + 1| − |x − 1|) is a piecewise linear voltage-

current characteristic. Here x, y, z are dynamical variables; parameters m0, m1
characterize a piecewise linear characteristic of nonlinear element; parameters
α, β, and γ characterize resistor, capacitors, and inductance, respectively. It is
well known that model (4) is symmetric with respect to the origin and thereby it
remains unchanged under the transformation (x, y, z) → (−x, −y, −z).

System (4) can be considered as a feedback control system in the Lur’e form

u̇ = Au + bφ(c∗u), u = (x, y, z) ∈ R3, (5)

A =

⎛
⎝ −α(m1 + 1) α 0

1 −1 1
0 −β −γ

⎞
⎠, b =

⎛
⎝ −α

0
0

⎞
⎠ , c =

⎛
⎝ 1

0
0

⎞
⎠ ,

φ(x)= 1
2(m0 − m1)(|x + 1| − |x − 1|).

The system (4) has tree equilibria: two symmetric equilibrium points u1,3
eq

and one equilibrium in zero u2
eq

u1,3
eq = ±(ux

eq, uy
eq, uz

eq) = ±( (γ+β)(m0−m1)
γm1+βm1+β , γ(m0−m1)

γm1+βm1+β , −β(m0−m1)
γm1+βm1+β

)
. (6)

In PI the domains of the parameter plane (m0, m1), where exist hidden at-
tractors in the Chua system (4), were defined 2. In Fig.6 the chart of dynamical
modes is shown. For each point in the parameter plane the dynamical regime
was determined in Poincaré section by plane z = 0. In the right part of Fig.6 one
can see the legends corresponding to the color palette and realizing dynamical
regime. In fact, the chart in Fig.6 depends on the initial conditions. For the con-
struction of this chart we take initial conditions on the surface of hidden attractor
and use continuation method of changing initial condition by varying of control-
ling parameters. In Fig.6, line lH0 corresponds to the line of Hopf bifurcation,
which happened with zero equilibrium point.

2 In PII was discovered another domain in the parameter plane where new hidden attractors
were observed.
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FIGURE 6 Chart of dynamical modes for the Chua system.

For m0 < lH0 (lH0 ≈ −0.1761) in the phase space, there is a saddle-focus in
zero and two saddle-foci corresponding to two symmetric equilibrium points (6).
For m0 > −0.1761 the zero equilibrium point becomes stable, but stability of sym-
metric saddle-foci does not change. Twin chaotic attractors exist for these param-
eters. In Fig. 6 one can see the development of chaotic dynamics. There is stable
limit cycle at m1 = −1.11 (green color on the chart). With decrease in the pa-
rameter m1, bifurcation of symmetry broken happens. Then two symmetric limit
cycles undergo cascade of period doubling bifurcations with transition to chaos.
As a result, two symmetric twin chaotic attractors occur. This scenario develops
in both cases: before and after the Hopf bifurcation for the zero equilibrium point.
In the case of stable equilibrium point m0 < −0.1761, we can talk about the exis-
tence of twin hidden attractors. If m0 > −0.1761 then attractors are self-excited.
Fig.7 a) shows a two-dimensional section of basins of attraction for different at-
tractors at m0 = −0.121, m1 = −1.143. Blue color in Fig.7 a) corresponds to
the regime of divergency, when phase trajectories get unlimited growing to in-
finity. It determines the boundary for the basin of attraction in the phase space.
Light gray color corresponds to the existence of the twin chaotic attractors, dif-
ferent symmetric attractors are not distinguished in the basin (both attractors are
marked by gray color). Red color corresponds to the area of the stable zero equi-
librium point. Two-dimensional projections of twin hidden attractors (A1

H, A2
H),

projections of the saddle-foci (EPS1, EPS2) and the zero equilibrium point (EP0) are
also shown in Fig.7 a). For the chosen parameters m0 and m1, the eigenvalues for
the symmetric equilibriums points are: λ1 = 2.168, λ2,3 = −0.986 ± 2.387i, and
for the zero equilibrium are: λ1 = −8.34, λ2,3 = −0.024 ± 3.259i. If we change
parameter m0, fix it, for example, m0 = −0.2, then the zero equilibrium point be-
comes unstable saddle-focus. For this parameter value, eigenvalues for the zero
equilibrium point equal λ1 = −7.734, λ2,3 = 0.0044 ± 3.229i, for the symmetric
equilibrium points they are the same. In this case, self-excited twin chaotic attrac-
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FIGURE 7 Basins of attraction and two-dimensional projection of chaotic attractors and
equilibrium points for the Chua system.

tors are reached while starting from the vicinity of the zero equilibrium. These
attractors are shown in Fig.7 b) (A1

SE, A2
SE) with the basins of attraction.

Following PIII let us turn to the study of synchronization between two
Chua systems linearly coupled through the second equation by the y variables.
The system of two coupled oscillators may be written in the form:

ẋ1 = α(y1 − x1) − α f (x1),
ẏ1 = x1 − y1 + z1 + MC(y2 − y1),
ż1 = −(βy1 + γz1),
ẋ2 = α(y2 − x2) − α f (x2),
ẏ2 = x2 − y2 + z2 + MC(y1 − y2),
ż2 = −(βy2 + γz2).

(7)

Here MC is the coupling strength. We analyze dynamics of the coupled system
(7) by using the bifurcation diagrams dependence on the coupling parameter MC.

Firstly, the dynamics of self-excited attractors is observed. The parameters
of each individual model are chosen as in Fig.7 b) (m0 = −0.2, m1 = −1.143).
We take different initial conditions in our numerical experiments and consider
dynamics of the coupled system (7) at variation of the coupling strength MC.
We choose two kinds of initial conditions which are critical for detecting hidden
and self-excited attractors. Firstly, we take the initial conditions on the surface
of chaotic attractors. This situation is similar for both self-excited and hidden
attractors. In Fig.8 a) the bifurcation diagram for case (x1

0 = 2.36, y1
0 = 0.97,

z1
0 = −3.96), (x2

0 = 2.361, y2
0 = 0.971, z2

0 = −3.961) is shown. In order to see
different possible regimes, we construct bifurcation diagrams using continuation
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FIGURE 8 Bifurcation diagrams for the system of two coupled Chua models in the
regime of self-excited attractors.

method of changing initial conditions by the varying parameter MC. So the initial
condition for each new value of the parameter is chosen as the final value in the
previous step of integration. Red and green colors in Fig.8 correspond to different
directions of the parameter variation: green from left to right, red from right to
left. Fig.8 a) and b) show the dependences of the x-variable in the first and the
second oscillators, respectively. Fig. 8 c) shows the difference between variables
x2 − x1. As one can see in Fig.8 a) at small coupling starting from the chaotic
attractors in individual oscillators, we can reach chaotic nonsynchronous oscil-
lations in the coupled system. At some value of the parameter MC, one can see
windows of periodicity of period-2 and period-4. At MC ≈ 1.2467, a complete
synchronization between oscillators takes place. The complete synchronization
regime corresponds to regime when difference between variables of different os-
cillators is equal to zero (see Fig. 8 c)). Then we change direction of the parameter
variation. Now one can see that synchronous regime co-exists with the chaotic
non-synchronous regime.

For another initial conditions when one of the oscillators is in the vicinity
of the zero equilibrium point (x1

0 = 0.01, y1
0 = 0.00001, z1

0 = 0.01) and another
is left on the surface of chaotic self-excited attractors (x2

0 = 2.361, y2
0 = 0.971,

z2
0 = −3.961).

The chaotic attractors are reached if we start near the equilibrium point for
a self-excited attractor in an individual oscillator. Consequently, bifurcation dia-
gram for coupled models (7) is exactly the same if we start near the zero equilib-
rium under such initial conditions for self-excited attractors.

Now let us turn to the case of the synchronization between hidden attrac-
tors. We fix parameters m0 = −0.121, m1 = −1.143 (phase portraits for these pa-
rameters are shown in Fig.6 b)) and consider the same two cases, when 1) the ini-
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FIGURE 9 Bifurcation diagrams for the system of two coupled Chua models in the
regime of hidden attractors.
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tial conditions are chosen on the surface of chaotic attractors (x1
0 = 2.36, y1

0 = 0.2,
z1

0 = −6.5), (x2
0 = 2.361, y2

0 = 0.21, z2
0 = −6.51); and 2) in the vicinity of the zero

equilibrium point (x1
0 = 0.01, y1

0 = −0.00001, z1
0 = −0.01) (this point is stable

for hidden attractor and trajectories in the vicinity of equilibrium go into zero
equilibrium point) and on the surface of hidden attractor (x2

0 = 2.361, y2
0 = 0.21,

z2
0 = −6.51). For this case of synchronization between hidden attractors, different

choice of initial conditions leads to different results.
Fig. 9 shows bifurcation diagrams for hidden attractors. Figs. 9 a), b), c) cor-

respond to initial conditions on the surface of chaotic hidden attractors. As one
can see for this initial conditions, structure of the bifurcation diagrams is very
similar to those in case of self-excited attractors. Bifurcation diagrams for small
coupling demonstrate chaotic dynamics. With increase in the coupling strength,
there is window of periodicity with period-4. At MC ≈ 0.296 we can observe
complete mutual synchronization between oscillators (difference between vari-
ables of oscillators is equal to zero). For self-excited attractors with large coupling
strength, synchronization is only observed, complex dynamics is suppressed.
Fig. 9 c) illustrates the difference between dynamical variables, one can see that
it can be equal to zero. It means that the complete synchronization is observed in
the system.

If we change the initial conditions and fix one of them in the vicinity of the
zero equilibrium point, the bifurcation diagrams undergo serious changes (see
Figs. 9 d), e), f)). Stable equilibrium point is observed at large coupling (stabiliza-
tion occurs at MC ≈ 0.316, blue line in Figs. 9 d), e)). Then it becomes unstable
and we can see birth of limit cycle, which is divided into two limit cycles as a
result of broken symmetry bifurcation. Then each of the cycles undergoes cas-
cade of period doubling bifurcations. Thus, a complete synchronization can not
be observed for chosen initial conditions. Also, the chaotic dynamics is destroyed
in this case.

Thus, dynamics of two coupled Chua oscillators is considered with interac-
tion of hidden and self-excited attractors. The possibility of complete synchro-
nization for hidden and self-excited attractors is revealed. Stabilization of zero
equilibrium point is discovered for interacting hidden attractors. Such kind of
dynamics can lead to inoperability in the communication system.

Another aspect of dynamical behavior of radiophysics generators is consid-
ered in PIV - PVII. Generalized model for generator of chaos with property of
robustness in respect to changing of the controlling parameters and initial condi-
tions is suggested in PIV. The birth scenario is studied for such kind of behavior.
Non-autonomous generator of chaos is suggested in PV and realized in an ex-
periment. Another generator with chaotic dynamics is studied in PVI, where
the formation of chaotic dynamics with several incommensurate frequencies and
more wide power spectrum is described.
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2.3 Application to biological models

Multistability, or coexistence of dynamical regimes, is a characteristic feature
of many types of biological cells, neural networks, and other forms of oscilla-
tory biophysical systems (Laurent and Kellershohn, 1999; Pmerening et al., 2003;
Ozbudak et al., 2004; Koseska et al., 2009; Kelso, 2012; Pisarchik and Feudel, 2014;
Wells et al., 2015). This feature is particularly significant in connection with the
study of interacting ensembles of many, nearly identical subsystems. It is well-
known, for instance, that a variety of unusual phenomena that emerge in en-
sembles of coupled oscillators can lead to major reconstructions of an oscillator
population, or to its total collapse. It is broadly accepted, for instance, that syn-
chronization plays an important role in the pathogenesis of neurological diseases
such as Parkinson’s disease and essential tremor (Buzsáki and Draguhn, 2004;
Milton, 2010) and, more specifically, that Parkinson’s disease is associated with
asynchronous pacemaker activity involving a population of many thousands of
neurons in the basal ganglia (Bergman et al., 1998; Sarnthein J. and D., 2003).

It is well-known that the electrical activity of pancreatic beta-cells and other
biological cells relies on a number of different types of voltage- and ligand-gated
ion channels that are permeable to inorganic ions such as sodium, potassium,
chloride, and calcium. Thus, the dynamics of a cell can be described from the
point of view of voltages and currents passing through membrane, this principle
is called Hodgkin-Huxley formalism (Hodgkin and Huxley, 1952). Increasing
evidence suggests that ion channels not only regulate membrane potential, ion
homeostasis, and electrical signaling of these cells but also play an important role
in cell proliferation, migration, apoptosis and differentiation. Recently, the role of
ion channels in different oncogenic processes was demonstrated (Monteith et al.,
2007) (Huang and Jan, 2014) (Litan and Langhans, 2015).

In VII we introduce a modified version of the Sherman pancreatic beta-cell
model obtained by introducing a new type of potassium-like ion channel with a
characteristic set of channel parameters selected in accordance with a standard
Hodgkin-Huxley formalism. The suggested modification is designed to be local
and small enough to allow for the existence of an attracting state inside the regime
of stable bursting dynamics. This provides for the presence of multistability in
the modified beta-cell model and, at the same time, serves as an example of a
biophysical system that allows for the coexistence of a stable equilibrium point
with large amplitude bursting. Let us consider it in detail.

2.3.1 Simplified pancreatic beta-cell model

As the starting point for our analysis, let us use the following simplified beta-cell
model as suggested by Sherman et al. (Sherman et al., 1988):

τV̇ = −ICa(V) − IK(V, n) − IS(V, S),
τṅ = σ(n∞(V) − n),
τSṠ = S∞(S) − S.

(8)
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TABLE 1 Parameters of simplified beta-cell model.

τ = 0.02 sec τS = 35 sec σ = 0.93
gCa = 3.6 gK = 10.0 gS = 4.0
VCa = 25.0 mV VK = -75.0 mV
θm = 12.0 mV θn = 5.6 mV θS = 10.0 mV
Vm = -20.0 mV Vn = -16.0 mV VS = -35.0 mV

Here, V represents the membrane potential, n may be interpreted as the
opening probability of the potassium channels, and S accounts for the presence
of a slow variable in the system. The variables ICa(V) and IK(V, n) are the calcium
and potassium currents, gCa = 3.6 and gK = 10.0 are the associated conductances,
and VCa = 25 mV and VK = - 75 mV are the respective Nernst (or reversal) po-
tentials. Together with IS(V, S), the slow calcium current ICa and the potassium
current IK define the three transmembrane currents of our basic system:

ICa(V) = gCam∞(V)(V − VCa), (9)

IK(V, n) = gKn(V − VK), (10)

IS(V, S) = gSS(V − VK), (11)

with the gating variables for m, n and S representing the opening probabilities of
the fast and slow potassium channels:

ω∞(V) =
1

1 + exp Vω−V
θω

, ω = m, n, S. (12)

Table 1 below lists the parameter values corresponding to the observed bursting
dynamics for model (8). In principle, the characteristic time constant for the mem-
brane potential is determined by the membrane capacity and the corresponding
electrical conductance. In accordance with the original formulation of the model
(Sherman et al., 1988) there is no electrical capacitance in Eq. (8), and the con-
ductances are all dimensionless. To eliminate the dependence on cell size, the
conductances have thus been scaled relative to some appropriate conductance.
With time constants of τ = 0.02 sec and τS = 35 sec, the ratio kS = τ

τS
is quite small,

and the model is numerically stiff.
Figs. 10 a) and b) show typical examples of the time series obtained for

the fast variable V and slow variable S. Calcium functions as an essential part
of a double-sided feedback loop that controls the bursting process and involves
modulations of both electrical activity and hormonal secretion (Chay and Keizer,
1983). Calcium removal leads to depolarization and controls the silent phase
through deactivation of calcium activated potassium channels. This depolariza-
tion activates both the voltage-gated calcium channels and the Hodgkin-Huxley
like potassium channels until a renewed influx of calcium takes place and the
spiking dynamics is initiated again.

Following (Izhikevich, 2000), the bursting attractor in the cell model (8) is
born through simultaneous Hopf and saddle-node bifurcations. The parameter
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FIGURE 10 Time series of the a) fast and b) slow variables; c) fast (blue) and slow (red)
manifolds together with a two-dimensional projection of phase portrait for
the Sherman model.

VS only controls the slow manifold, and with increasing values of this parameter,
the slow manifold moves upwards relatively to the fast manifold. The bursting
attractor is born in the vicinity of the equilibrium point, but after the bifurcation
that occurs for increasing values of VS, the equilibrium point moves far away
from the bursting attractor.

2.3.2 Modification of pancreatic beta-cell model

An interesting feature of the biological bursting system is the large variation one
often observes for the bursting period. We have already referred to this variability
in relation to the discussion of slow and fast bursters. Besides variations associ-
ated with differences in clusters size, the most obvious reason for variations to
occur is inhomogeneity in the cell clusters. This has inspired a number of authors
(Chay and Keizer, 1983; Sherman et al., 1988) to propose the so-called phantom
burster model that allows fast and slow bursting to occur simultaneously, i.e. by
replacing the original equation for the slow potassium current with a set of two
(or more) parallel potassium currents. The idea has been to use a multiple degree-
of-freedom approach to generate a broader range of interacting bursting oscilla-
tors while maintaining the overall structure of the system. If the conductance is
large, the bursting that results from this feedback will be fast. On the other hand,
if the conductance is small, this feedback has little influence, and the bursting
that results from it will be slow. In this way, it has been possible to account for
a range of biomedical phenomena, including the ubiquitous tri-phase response
to a step increase in glucose, the response to perturbations of intra-cellular Ca2+

stores, and different intracellular functions of potassium (Sherman et al., 1988;
Heart and Smith, 2007).

Figure 10 c) shows the two-dimensional projection of the phase portrait
(brown color) together with the fast and slow manifolds for VS = -35 mV. For



28

these parameters, the (periodic) trajectories do not intersect in the neighborhood
of the equilibrium point, but the bursting state terminates in a homoclinic bifurca-
tion as the trajectory hits the slow manifold at some other point. Hence, it appears
possible to reorganize the conditions around the equilibrium point in such a way
that this point is stabilized while the bursting trajectory continues to exist. Be-
tween the stable equilibrium point and the bursting state we expect to find some
rejecting structure and, under these conditions, the bursting state represents a
hidden attractor. To achieve stabilization of the equilibrium point we propose a
form of the voltage-dependent potassium current that varies strongly with the
membrane potential right near this equilibrium point and, hence, its stability can
exist without affecting the global flow in the model. The suggested form of the
potassium current is specified by the equation:

IK2(V) = gK2p∞(V − VK), (13)

where the function
p∞(V) =

1

exp V−Vp
θp

+ exp Vp−V
θp

. (14)

represents the opening probability for the suggested new type of potassium chan-
nel. The same probability functions for the normal channels are represented by
sigmoidal function (12) (see Fig. 11 a), b)). When the membrane voltage reaches a
threshold voltage, the potassium channel will open with probability n∞(V)=1.0.
For the pathological channels, the opening function is never equal to 1.0. When
the membrane voltage reaches a threshold voltage, the opening probability will
equal only 0.5 (this probability function is presented on Fig. 11 c)). From the phys-
iological point of view, such situation can be interpreted as blocking of potassium
channel, or inactivation.

Thus, modified beta-cell model has form:

τV̇ = −ICa(V) − IK(V, n) − IK2(V) − IS(V, S),
τṅ = σ(n∞(V) − n),
τSṠ = S∞(S) − S.

(15)

with IK2(V) and p∞(V) as given by (13) and (14).
All the parameters of the original model (8) still apply. However, the modi-

fied model has three additional parameters gK2, Vp, θp that can be used to charac-
terize the new ion channel. Fig. 11 e) shows the null-clines of the modified model
(15). These curves illustrate how one can introduce new types of ion channels
to the model, each leading to appearance of new pairs of extreme points (min-
ima and maxima) on the fast manifold without affecting the slow manifold. By
changing parameter Vp one can determine the extreme points or the range of volt-
age where the system is most sensitive. The parameter θp=1 controls the voltage
range in which the new ion channel is active regarding the membrane potential
V. In this situation, the equilibrium point can be stable, but bursting dynam-
ics can develop on the same branch of the manifold as in the original model (8).
Figure 11 d) illustrates the variation of Ca2+-current (red) and of the sum of the
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FIGURE 11 Dependence of the membrane potential on the different ions, a) calcium
channel; b) potassium channel; c) probability function of new ion channel;
d) current of Ca2+ and sum of current Ca2+ and current of new channel; e)
fast and slow manifolds of the modified beta-cell model.

Ca2+-currents and the current associated with new ion channel. One can see,
however, that changing the current can only be local, very small, and without
major changes of the system. Figure 11 e) shows the fast (blue) and slow (red)
manifolds of the modified beta-cell model.

FIGURE 12 Charts of dynamical modes for the modified model for different initial con-
ditions.

Let us now consider the mode distribution across a plane scanned by the
parameters Vp and gK2 that characterize the new ion channel in the model. Fig.12
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shows charts of dynamical modes for the modified system (15) with different ini-
tial conditions and different magnifications. These charts were constructed in
the following way: using a standard Poincaré section technique, the parameter
plane was scanned in small steps. The dynamical state was determined by using
a sufficiently long transient for each point in the Poincaré section defined by n
= 0.02. The distribution of points in the Poincaré section and the corresponding
number/colors in Fig. 12 are shown below. If the number of points exceeded 120,
the corresponding region was considered to represent a chaotic mode. Charts a)
and b) were constructed with different initial conditions. Chart c) is a magnified
part of chart b). In Figs. 12 a) and b) the line of Hopf bifurcation of the equilib-
rium point is indicated by blue color. This curve was obtained by the use of the
software package XPP AUTO.

For control parameters we have used the parameter gK2 that characterizes
the conductance of the new ion channel and the parameter Vp, that determines
the point on the fast-slow manifold where the transition occurs. By varying Vp
one can move the fast manifold relatively to the slow manifold, and in this way
can shift equilibrium point. In the original model, the unstable equilibrium point
falls in the point EP0(V0, n0, S0) = (-48.578, 0.0029663, 0.2046). In the following,
we will vary parameter Vp in the vicinity of V0. In Fig. 12, the vertical green line
is the line that corresponds to line Vp = V0.

FIGURE 13 Co-existence of the bursting dynamics and the stable equilibrium point: a)
three-dimensional phase portraits; b) basin of attraction for co-existing at-
tractors.

Let us now focus on the coexistent regimes of bursting and of silence (stable
equilibrium) as they appear in our modified beta-cell model. In the charts of dy-
namical modes, the red area, representing a region of stable equilibrium, and the
purple area, representing a region bursting dynamics, overlap. Hence, depend-
ing on the initial conditions, either the stable equilibrium point or the bursting
oscillator may be the final state.

In Fig. 13 a) we have plotted the trajectories for a pair of coexisting attract-
ing states in three-dimensional phase space. The purple trajectory represents the
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stable bursting attractor and the pink curve represents a phase space trajectory
that goes to the silent regime. Hence, we conclude that the bursting oscillator
(for a range of initial conditions) can operate with a stable equilibrium state in its
middle.

Fig. 13 b) shows a two-dimensional section of the basin of attraction for the
attractors depicted in Fig. 13 a). The section covers the (S0, V0) plane while the
third variable n0 was fixed near the equilibrium point at n0=0.00275. The dynam-
ical regimes were obtained by Poincaré section at the plane n0=0.02. Red color
represents initial conditions that lead to the stable equilibrium point and purple
represents initial conditions that lead to the bursting state. The black curves on
Fig.13 b) represent the lines of the fast and slow manifolds. In this way we can
demonstrate that the basin of attraction for the bursting oscillator surrounds a
three-dimensional region in which the dynamics is controlled by the stable equi-
librium point. This island of stable equilibrium dynamics is located between two
extrema of null-clines. This boundary is defined by the unstable limit cycle which
occurs as a result of introducing the new ion channel via subcritical Hopf bifur-
cation. If we iterate modified model (15) starting from the vicinity of equilibrium
we can not reach bursting attractor; this means that bursting attractor in this case
is a hidden attractor.



3 CONCLUSIONS

This dissertation is devoted to the investigation of hidden and self-excited attrac-
tors in different models which have applications in radiophysics and biophysics.

The present work considers features of radiophysical generators, which can
be used for systems of secure communication based on the dynamical chaos. Us-
ing the Chua circuit as an example, the problem of synchronization between two
coupled generators is investigated in case when the realized regimes represent
hidden and self-excited attractors in the system. It is shown that desynchroniza-
tion of coupled subsystems is possible in case of hidden attractors under certain
initial conditions, which can lead the system of secure communication to an inop-
erative state. Alternative radiophysical generators with self-excited attractors are
also proposed. For these generators, dynamical chaos is stable to the variation of
parameters, initial conditions and fluctuations.

The present work proposes a modification of simplified beta-cell based on
the Hodgkin-Huxley formalism model to demonstrate the coexistence of burst-
ing and silent regimes. For the considered modification of the cell model, this
type of bistability occurs at the introduction of an additional voltage-dependent
potassium current that is activated in the region around the original unstable
equilibrium point. The mechanism of bistability is associated with the birth of
an unstable cycle as a result of the subcritical Hopf-bifurcation inside the burst-
ing attractor. From the point of view of hidden attractors, the bursting regime is
a hidden attractor that can not be reached from initial conditions in the vicinity
of the equilibrium point. This model can be used to describe the formation of
various pathological states of cells, for example, such as cancer cells.
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YHTEENVETO (FINNISH SUMMARY)

Piilevät ja itseherätteiset attraktorit radiofysiikan ja biofysiikan malleissa

Tämä väitöstyö tutkii piilevän ja itseherätteisen kaaoksen syntymistä eri-
laisissa radiofysiikan ja biofysiikan sovelluksissa. Tutkielma käsittelee radiofysi-
kaalisten generaattorien piirteitä joita voidaan käyttää dynaamiseen kaaokseen
perustuvan systeemien turvalliseen viestintään. Kahden kytketyn, Chuan pii-
rien avulla mallinnetun, kaoottisen generaattorin synkronisointia tarkastellaan
tapauksessa, jossa järjestelmän toiminta-alueet sisältävät sekä piilotettuja että it-
seherätteisiä attraktoreita. Tutkimuksessa osoitetaan, että piilotetut attraktorit on
tietyin ehdoin mahdollista desynkronoida tavalla, joka voi mahdollistaa turvalli-
sen kommunikaation osajärjestelmien välissä. Lisäksi työssä esitellään vaihtoeh-
toisia itseherätteisiä kaaos-generaattoreita, joilla dynaaminen kaaos on stabiili pa-
rametrien muutoksille ja alkuehdoille.

Biofysiikan osuudessa esitetään modifikaatio yksinkertaistettuun, Hodgkin-
Huxley, beta-solumalliin. Muokatussa solumallissa ns. hiljaiset alueet ja kaoot-
tiset alueet voivat esiintyä samanaikaisesti. Biofysikaalisesti tämä kaksoisstabii-
lisuuden mahdollistava mekanismi perustuu, jänniteriippuvaan Kaliumvuohon,
joka aktivoituu epästabiilin tasa-painopisteen ympärille. Matemaattisesti kaksois-
stabiiliuden mekanismi yhdistyy epästabiilin syklin syntymiseen sub-kriittisessä
Hopf-bifurkaatiossa attraktorin sisällä. Piilotettujen attraktorien näkökulmasta,
kaootista aluetta ei voida yhdistää epästabiiliin tasapainopisteeseen. Laadullises-
ti mallia voidaan käyttää kuvaamaan solujen tilan patologista muutosta, kuten
esimerkiksi terveen solun muuttumista syöpäsoluksi.
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1. Introduction

The Chua circuit is one of the well-known and well-studied nonlinear dynamical models [Chua, 1992a,b;
Kuznetsov et al., 1993; Belykh & Chua, 1993; Nekorkin & Chua, 1993; Lozi & Ushiki, 1993; Shilnikov et al.,
2001; Bilotta & Pantano, 2008]. To date in the Chua circuit it has been found chaotic attractors of various
shapes (see, e.g. a gallery of Chua attractors in [Bilotta & Pantano, 2008]). Until recently, all the known
Chua attractors were self-excited attractors, which can be numerically visualized by a trajectory starting
from a point in small neighborhood of an unstable equilibrium.

Definition. [Leonov et al., 2011; Leonov & Kuznetsov, 2013; Leonov et al., 2015b; Kuznetsov, 2016]
An attractor is hidden if its basin of attraction does not intersect with a neighborhood of all equilibria

1
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(stationary points); otherwise, it is called a self-excited attractor.
For a self-excited attractor, its basin of attraction is connected with an unstable equilibrium and,

therefore, self-excited attractors can be localized numerically by the standard computational procedure in
which after a transient process a trajectory, started in a neighborhood of an unstable equilibrium (e.g.,
from a point of its unstable manifold), is attracted to a state of oscillation and then traces it. Thus, self-
excited attractors can be easily visualized (e.g., the classical Lorenz, Rössler, and Hennon attractors can
be visualized by a trajectory from a vicinity of unstable zero equilibrium).

For a hidden attractor, its basin of attraction is not connected with equilibria, and, thus, the search
and visualization of hidden attractors in the phase space may be a challenging task. Hidden attractors
are attractors in systems without equilibria (see, e.g. rotating electromechanical systems with Sommerfeld
effect described in 1902 [Sommerfeld, 1902; Kiseleva et al., 2016]) and in systems with only one stable
equilibrium (see, e.g. counterexamples [Leonov & Kuznetsov, 2011, 2013] to the Aizerman’s (1949) and
Kalman’s (1957) conjectures on the monostability of nonlinear control systems [Aizerman, 1949; Kalman,
1957]). One of the first related problems is the second part of Hilbert’s 16th problem (1900) [Hilbert, 1901-
1902] on the number and mutual disposition of limit cycles in two-dimensional polynomial systems, where
nested limit cycles (a special case of multistability and coexistence of attractors) exhibit hidden periodic
oscillations (see, e.g., [Bautin, 1939; Kuznetsov et al., 2013a; Leonov & Kuznetsov, 2013]).

The classification of attractors as being hidden or self-excited was introduced by G. Leonov and
N. Kuznetsov in connection with the discovery of the first hidden Chua attractor [Leonov & Kuznetsov,
2009; Kuznetsov et al., 2010; Leonov et al., 2011; Bragin et al., 2011; Leonov et al., 2012; Kuznetsov et al.,
2013b; Leonov & Kuznetsov, 2013; Leonov et al., 2015a] and has captured attention of scientists from
around the world (see, e.g. [Burkin & Khien, 2014; Li & Sprott, 2014; Chen, 2015; Saha et al., 2015; Feng
& Pan, 2017; Zhusubaliyev et al., 2015; Danca, 2016; Kuznetsov et al., 2015; Chen et al., 2015a; Pham
et al., 2014; Ojoniyi & Njah, 2016; Rocha & Medrano-T, 2016; Borah & Roy, 2017; Danca et al., 2017;
Wei et al., 2016; Pham et al., 2016; Jafari et al., 2016; Dudkowski et al., 2016; Singh & Roy, 2017; Zhang
et al., 2017; Messias & Reinol, 2017; Brzeski et al., 2017; Wei et al., 2017; Chaudhuri & Prasad, 2014;
Jiang et al., 2016; Volos et al., 2017]).

Further study of the hidden Chua attractors and their observation in physical experiments can be
found, e.g. in [Li et al., 2014; Chen et al., 2015a; Bao et al., 2015a; Chen et al., 2015c,b; Zelinka, 2016; Bao
et al., 2016; Menacer et al., 2016; Chen et al., 2017a; Rocha et al., 2017; Hlavacka & Guzan, 2017]. The
synchronization of Chua circuits with hidden attractors is discussed, e.g. in [Kuznetsov & Leonov, 2014;
Kuznetsov et al., 2016, 2017b; Kiseleva et al., 2017]. Also some recent results on various modifications of
Chua circuit can be found in [Rocha & Medrano-T, 2015; Bao et al., 2015b; Semenov et al., 2015; Gribov
et al., 2016; Kengne, 2017; Zhao et al., 2017; Chen et al., 2017b; Corinto & Forti, 2017].

In this work the scenario of the chaotic dynamics development and the birth of self-excited and hidden
Chua attractors is studied. It is shown a pitchfork bifurcation in which a pair of symmetric attractors
coexists and merges into one symmetric attractor through an attractor-merging bifurcation and a splitting
bifurcation of a single attractor into two attractors. It is presented the scenario of the birth of hidden
attractor connected with a subcritical Hopf bifurcation near equilibrium points and a saddle-node bifur-
cation of a limit cycles. In general, the conjecture is that for a globally bounded autonomous system of
ordinary differential equations with unique equilibrium point, which is asymptotically stable, the subcritical
Hopf bifurcation leads to the birth of a hidden attractor.1

2. Dynamical regimes of the Chua circuit

The Chua circuit, invented in 1983 by Leon Chua [Chua, 1992a,b], is the simplest electronic circuit ex-
hibiting chaos. The classical Chua circuit can be described by the following differential equations

ẋ = α(y − x) − αf(x),
ẏ = x− y + z,
ż = −(βy + γz),

(1)

1The conjecture was formulated in 2012 by L. Chua in private communication with N. Kuznetsov and G. Leonov.
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where f(x) = m1x+ 1
2(m0−m1)(|x+1|−|x−1|) is a piecewise linear voltage-current characteristic. Here x,

y, z are dynamical variables; parameters m0, m1 characterize a piecewise linear characteristic of nonlinear
element; parameters α, β, and γ characterize a resistor, a capacitors, and an inductance. It is well known
that model (1) is symmetric with respect to the origin and remains unchanged under the transformation
(x, y, z) → (−x,−y,−z).

System (1) can be considered as a feedback control system in the Lur’e form

u̇ = Pu + qφ(r∗u), u = (x, y, z) ∈ R
3,

P =

⎛
⎝−α(m1 + 1) α 0

1 −1 1
0 −β −γ

⎞
⎠ , q =

⎛
⎝−α

0
0

⎞
⎠ , r =

⎛
⎝1

0
0

⎞
⎠ ,

φ(x) = (m0 −m1) sat(x) =
1

2
(m0 −m1)(|x + 1| − |x− 1|).

(2)

2.1. Local analysis of equilibrium points

Suppose that

(β �= −γ) and

((
m0 < − β

γ+β and m1 > − β
γ+β

)
or

(
m1 <

1
2(m0 − β

γ+β ) and m1 > − β
γ+β

)
or(

m0 > − β
γ+β and m1 < − β

γ+β

)
or

(
m1 >

1
2(m0 − β

γ+β ) and m1 < − β
γ+β

))
.

(3)

Then two symmetric equilibrium points:

u1,3eq = ±(uxeq, u
y
eq, uzeq) = ±( (γ+β)(m0−m1)

γm1+βm1+β , γ(m0−m1)
γm1+βm1+β ,

−β(m0−m1)
γm1+βm1+β

)
, (4)

exist and the corresponding linearizations have the form:

J(u1,3eq ) =

⎛
⎝−α(m1 + 1) α 0

1 −1 1
0 −β −γ

⎞
⎠ . (5)

For the zero equilibrium u2eq =
(
0, 0, 0

)
we have the following matrix of linearization

J(u2eq) =

⎛
⎝−α(m0 + 1) α 0

1 −1 1
0 −β −γ

⎞
⎠ . (6)

Remark that for (m0,m1) → (m1,m0) we have
(
J(u1,3eq ), J(u2eq)

) → (
J(u2eq), J(u1,3eq )

)
. It means that the

local bifurcations, which occur at the symmetric equilibria u1,3eq and at the zero equilibrium u2eq, are the
same. For the symmetric equilibria, the bifurcations occur, when the parameter m1 is varying, for the zero
equilibrium, when the parameter m0 is varying. The stability of equilibria depends on m0 and m1 and is
determined by the eigenvalues (λ1, λ2, λ3) of the corresponding linearization matrices.

Consider the following values of parameters

α = 8.4, β = 12, γ = −0.005, (7)

which are close to the values, considered in [Leonov et al., 2011] and are used for the construction of a
hidden attractor. Then for all equilibrium points, one of the eigenvalues, λ1 is always real and can be
positive or negative. Two other eigenvalues λ2 and λ3 are complex-conjugated and their real parts can be
also positive or negative. Therefore we consider the following types of equilibria:

- F is a stable focus, λ1 < 0, Re(λ2,3) < 0;
- SF -I is a saddle-focus of the first type: there are an unstable one-dimensional manifold and a stable
two-dimensional manifold, λ1 > 0, Re(λ2,3) < 0;
- SF -II is a saddle-focus of the second type: there are a stable one-dimensional manifold and an unstable
two-dimensional manifold, λ1 < 0, Re(λ2,3) > 0.
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Fig. 1. a) Bifurcation lines of equilibrium points on the parameter plane (m0, m1) for α = 8.4, β = 12, γ = −0.005, the

red lines correspond to u2eq and the blue lines to u1,3eq , the areas of existence of the equilibria u1,3eq are filled by violet color;
b) the dependence of the real eigenvalue (red color) and the real part of the complex conjugate eigenvalues (blue color) on
the parameter m1; c) - e), the examples of the voltage-current characteristics, c) m0 = −0.2, m1 = −1.15; d) m0 = −1.2,
m1 = −1.2; e) m0 = −1.2, m1 = −0.05.

In Fig. 1(a) is shown the plane of parameters (m0,m1) with the bifurcation curves: blue color denotes
the bifurcation curves of the symmetric equilibrium stability, red color denotes the bifurcation curves of
the zero equilibrium stability. Areas, filled by violet color, denote the areas of existence of the symmetric
equilibria u1,3eq . The domains filled by white color correspond to the existence of the only one equilibrium
(see conditions (3)). In Fig. 1(b) are shown the plots of λ1 (red color) and real part of λ2,3 (blue color)
versus the parameter m0 for the equilibrium u2eq, where one can see the changes of the eigenvalues sign
caused by a Hopf bifurcation.

In Fig. 1(a) the following symbols are used for u1,3eq and u2eq:

- l1,3H1
(m1 ≈ −1.0004), l2H1

(m0 ≈ −1.0004) are the lines of the Hopf bifurcation corresponding to the
transition from the saddle-focus of the first type (SF -I) to the stable focus (F );

- l1,3H2
(m1 ≈ −0.939), l2H2

(m0 ≈ −0.939) are the lines of the Hopf bifurcation corresponding to the tran-
sition from the stable focus (F ) to the saddle-focus of the second type (SF -II);

- l1,3H3
(m1 ≈ −0.1761), l2H3

(m0 ≈ −0.1761) are the lines of the Hopf bifurcation corresponding to transi-
tion from the saddle-focus of the second type (SF -II) to the stable focus (F ).

As mentioned above, the parameters m0, m1 are characterized by the slopes of piecewise linear char-
acteristic. In Fig. 1(c)-(e) are shown examples of voltage-current characteristic for the Chua system (1) for
different points of the parameter plane.
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ueq
1

ueq
2

Fig. 2. Dynamics of the Chua system, α = 8.4, β = 12, γ = −0.005, and initial conditions: a) in the vicinity of the zero
equilibrium u2eq, x0 = y0 = z0 = 0.0001; b) in the vicinity of one of the symmetric equilibrium points u1eq, x0 = uxeq + 0.0001,
y0 = uyeq + 0.0001, z0 = uzeq + 0.0001.

2.2. Numerical study of the parameter plane. Bifurcation scenario of the
hidden attractors transformations

Consider numerically the dynamics and the qualitative behavior of the Chua system (1) in terms of
parameters m0, m1.

In Fig. 2 the charts of dynamical regimes are shown on the parameter plane (m0, m1). These charts
are constructed in the following way. The parameter plane (m0, m1) is scanned with a small step. The
dynamical regime, corresponding to a point on the plane, is determined according to the number of different
points in the Poincaré section, defined by z = 0 after a long enough transition process. Initial conditions
are the same for each value of parameters: for the chart in Fig. 2(a) we take initial condition (x0, y0,
z0)=(0.0001, 0.0001, 0.0001) in the vicinity of the zero equilibrium u2eq. For the chart in Fig. 2(b) we

choose initial condition (x0, y0, z0)= (uxeq+0.0001, uyeq+0.0001, uzeq+0.0001) in the vicinity of u1eq (one of
the symmetric equilibria, see (4)). Thus, we expect that the dynamical regimes, which are visualized on

these charts, are self-excited. On the charts the symmetric stable equilibrium points u1,3eq are marked by
pink color, the zero stable equilibrium point u2eq by maroon color, the regime of divergency2 by blue color,

the chaotic dynamics3 by gray color. The periodic oscillations with different periods are distinguished: the
green color for cycles of period-1, the yellow color for cycles of period-2, the dark-blue for cycles of period-3,
the blue color for cycles of period-4 and so on (see the color legend in Fig. 2).

We reveal that the complex dynamics of system (1) is developed only in the case that three equilibria
coexist. Most of the areas where there is only one equilibrium (see white domains in Fig. 1), belongs
to the regime of divergency (see the corresponding domains in Fig. 2). The exceptions are the bands,
corresponding to the stable zero equilibrium u2eq for

m0 > −0.1761 and m1 <
1

2
(m0 − β

β + γ
),

and the periodic oscillations, associated with the Hopf bifurcation of the zero equilibrium u2eq, for

m1 > −0.1761 and m0 > − β

β + γ
.

In the case of coexistence of three equilibria the self-excited chaotic attractors are found (gray color).
However besides self-excited attractors, here it is possible to find hidden attractors.

2Regime of divergency corresponds to the regime, when the dynamical variables numerically grow to infinity, the detection of
this regime is realized under the condition

√
x2 + y2 + z2 > 10000.

3Chaotic regime is determined roughly: if the number of discrete points in the Poincaré section is more than 120.



October 13, 2017 12:40 2017 IJBC Chua hidden

6 N.V. Stankevich, N.V. Kuznetsov, G.A. Leonov, L. Chua

In Fig. 2 the blue rectangle (I) is the area of the parameter plane where a hidden chaotic attractor
was discovered for the first time [Leonov et al., 2011]. For m0 < −0.1761 (see, the line l2H3

of the Hopf
bifurcation for the zero equilibrium), all the observed attractors are self-excited. In Fig. 3(a) is shown an
example of self-excited Chua attractor from this area of parameters. For m0 > −0.1761, all dynamical
regimes coexist with stable zero equilibrium point. For m0 > −0.1761, hidden attractors are observed (an
example of hidden Chua attractor is in Fig. 3(b), but in some small part of parameter plane a self-excited
attractor is found: the phase trajectories, starting from a small neighborhood of the zero equilibrium u2eq,
tend to the zero stable equilibrium, but the phase trajectories, starting from the vicinity of the symmetric
equilibria u1,3eq , tend to an attractor (a limit cycle of period-1), in which case the attractors are not hidden.
We consider this case in details in Section 3.1.

As mentioned in Section 2.1, the Chua system (1) has symmetry with respect to the parameters m0,
m1. This means that the replacement (m0, m1) → (m1, m0) in the Chua system (1) leads to the replacement

of stability of the equilibria: u2eq → u1,3eq . Thus, we can consider another area of possible existence of hidden

attractors, which is situated below the line l1,3H3
in Fig. 1(a), i.e. before the Hopf bifurcation at the symmetric

equilibria. This area is denoted by the blue rectangle (II) in Fig. 2. For m1 > −0.1761 (l1,3H3
) there are

hidden attractors which cannot be visualized from the initial conditions in a small vicinity of the equilibria.

Fig. 3. Self-excited and hidden attractors in the Chua system (1) with parameters α = 8.4, β = 12, γ = −0.005: a) two
symmetric self-excited Chua attractors (cyan and blue domains Ase± ) excited from unstable zero equilibrium (parameters

m0 = −0.3, m1 = −1.12); b) two symmetric hidden chaotic Chua attractors (cyan and blue domains Ahid± ). Red and gray

trajectories from unstable manifold of the symmetric saddle-focuses equilibria u1,3eq (orange dots) are attracted to locally stable

equilibrium u2eq (green dot) and infinity, respectively. Black trajectories are stable manifolds of u1,3eq (parameters m0 = −0.121,
m1 = −1.143).

3. Hidden twin attractors

3.1. Merged twin attractors

Now we consider the dynamics of the Chua system (1) with the parameters corresponding to the rectangle
(I) in Fig. 2, the zoom of which is shown in Fig. 4(a). For this area, for each point of parameter plane the
initial conditions are the same as in the vicinity of equilibrium u1eq. In Fig. 4(b) the same fragment of the
chart is constructed by the so-called continuation method for choosing initial conditions, i.e., for each new
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lH3

2

lH3

2

Fig. 4. a), b) magnified fragment (I) of the chart of dynamical regimes for different initial conditions, α = 8.4, β = 12,
γ = −0.005; c) bifurcation diagram: red and violet colors correspond to different initial conditions, m0 = −0.121; d), e)
magnified fragments of bifurcation diagram.

value of parameter as initial point, the same value is chosen as the final point (obtained from the previous
value of the parameter). We use this method to identify the area where hidden attractors exist. In Fig. 4(b)
we mark a point in which we start our calculations, and the arrows show the direction of scanning.

The analysis of stability of the equilibrium points in this area (see Fig. 1(a)) shows that for m0 = 0 three
equilibrium points exist: two symmetric saddle-focus SF -I and one stable focus F (zero equilibrium). In
Fig. 4(a) and (b) is shown the bifurcation line of the loss of stability of the zero equilibrium for m0 ≈ −0.1761
(l2H3

). In the area colored in the maroon, the zero equilibrium point is characterized by one negative real
number and two complex conjugate numbers with negative real part; after crossing the bifurcation line
(l2H3

) the real parts of the conjugate-complex eigenvalues become positive, and a stable focus is transformed
into a saddle-focus with a two-dimensional unstable manifold. For the same parameters there exist also
two symmetric equilibria, which are characterized by one positive real number and two complex-conjugate
eigenvalues with a negative real part.

In the chart of dynamical regimes in Figs. 4(a) and (b), for fixed parameter m0 and decreasing param-
eter m1, one can observe a transition from a limit cycle of period-1 to a chaotic attractor. This transition
corresponds to the Feigenbaum scenario (the cascade of period-doubling bifurcations) and it occurs in both
the self-excited and the hidden attractors.

To analyze the birth of bifurcations, we construct a bifurcation diagram versus parameter m1. In
Fig. 4 are shown bifurcation diagram (c) and its magnified fragments (d, e). In Figs. 4(c)-(e) is shown
the dependence of the variable x, in the Poincaré section by the plane z = 0 (for m0 = −0.1210), on
the parameter m1. In the diagram in Fig. 4(c), we identify the value of the parameter m∗

1 ≈ −1.1247
corresponding to the transition from a self-excited attractor to a hidden attractor. For −1.0929 < m1 <
−1.0800 the system exhibits one limit cycle with period-1 in Fig. 4(c). For m1 ≈ −1.0929, the limit cycle is
split into two different period-1 limit cycles via a pitchfork bifurcation. The pitchfork bifurcation is typical
in the Chua system since this system exhibits an inner symmetry. For −1.1317 < m1 < −1.0929 two limit
cycles of period-1 coexist, these cycles are symmetric to each other. Notice that for m1 ≈ −1.1247 these two
period-1 limit cycles become hidden. For m1 ≈ −1.1317 both limit cycles become limit cycles of period-2
via a period doubling bifurcation. By continuous decreasing the parameter m1, after the sequence of period-
doubling bifurcations, as shown in Fig. 4(c), the two limit cycles are transformed into two different hidden
chaotic attractors, respectively. In this case these attractors coexist with a symmetric twin-attractor, and a
stable zero equilibrium point. For m1 ≈ −1.1483 the twin-attractors are merged into one, which by further
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Fig. 5. Basins of attraction of coexisting self-excited attractors of the Chua system with α = 8.4, β = 12, γ = −0.005, m0 =
−0.121: a) limit cycle of period-1 before pitchfork bifurcation m1 = −1.09, in the section defined by the plane z0 = 0.00001;
b) in the section defined by the plane z0 = uzeq; c) period-1 limit cycles after pitchfork bifurcation at m1 = −1.1, in the section
defined by the plane z0 = 0.00001; d) in the section defined by the plane z0 = uzeq.

decreasing the parameter m1, forms an increasingly larger chaotic set. For m1 ≈ −1.1609, a periodic
window of period-5 emerges (in Fig. 4(d) is shown a magnified fragment near the periodic window of
period-5). The same scenario takes place for the period-5 cycle. For m1 ≈ −1.1621 the period-5 limit cycle
is split into two symmetric period-5 limit cycles via a pitchfork bifurcation. For −1.1626 < m1 < −1.1621
two limit cycles of period-5 coexist. For m1 ≈ −1.1621 both limit cycles bifurcate into two limit cycles of
period-10 via a period-doubling bifurcation. Upon further decreasing the parameter m1, after a sequence of
period-doubling bifurcations, two hidden chaotic attractors emerge. Then they merged at m1 ≈ −1.1628,
and collapse with the chaotic set of the previous attractor at m1 ≈ −1.1631.

Upon a further decrease of the parameter m1, a periodic window of period-3 emerges (Fig. 4(e) shows
a magnified fragment near a period-3 window). In this case there is no pitchfork bifurcation, and for
−1.1714 < m1 < −1.1684 two symmetric hidden cycles of period-3 coexist. For m1 ≈ −1.1714 both
period-3 cycles become a pair period-6 limit cycles via a period doubling bifurcation. Further decrease of
the parameter m1 gives rise to a cascades of period-doubling bifurcations. In this case we can not see the
merging of two chaotic attractors, but for m1 ≈ −1.1719 two hidden symmetric attractors merge into a
chaotic set.

To analyze localization of hidden attractors in the phase space, and transition from self-excited to
hidden attractors, we consider the basins of attraction under varying parameter. Firstly, we consider the
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Fig. 6. Basins of attraction of coexisting hidden attractors of the Chua system with α = 8.4, β = 12, γ = −0.005, m0 =
−0.121: a) twin hidden chaotic attractors for m1 = −1.143, in the section defined by the plane z0 = 0.0001; b) in the section
defined by the plane z0 = uzeq; c) merged hidden chaotic attractors for m1 = −1.15, in the section defined by the plane
z0 = 0.0001; d) in the section defined by the plane z0 = uzeq.

case that a self-excited attractor is realized: m0 = −0.121, m1 = −1.09. Since its basin of attraction in
three-dimensional phase space is difficult to analyze, we analyze two-dimensional sections of this volume
at various planes, which correspond to two-dimensional planes of initial conditions. To distinguish between
hidden and self-excited attractors, the dynamical behavior of the model in the vicinity of equilibria is
crucial. That is why we consider two sections of phase volume: in the vicinity of the zero equilibrium u2eq
and in the vicinity of one of the symmetric equilibria u1eq (for the other symmetric equilibrium u3eq, the
structure of the basin is similar).

In Fig. 5 is shown the two-dimensional plane of initial conditions for vicinities of equilibria points and for
different values of parameter m1. The regime of divergency is marked by blue color, the area of attraction of
the stable zero equilibrium is marked by maroon color. The areas of attraction regimes of different period-1
limit cycles are denoted by two different green colors. The location of the equilibrium points in the plane
is identified by white dots. In Fig. 5(a) is shown a two-dimensional plane of initial conditions for fixed
z0 = 0.0001 in the vicinity of the zero equilibrium u2eq (stable focus F ). For m1 = −1.09 in system (1) the
coexistence of a period-1 limit cycle, before the pitchfork bifurcation, and the stable zero equilibrium is
observed. In Fig. 5(a) is shown the structure of the basins of attraction of two coexisting regimes. There is
a rather large basin of attraction surrounding the stable zero equilibrium (maroon color), and a large area
of divergency. Between these two areas we have an area of stable periodic oscillations, which represents the
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basin of attraction of a period-1 limit cycle. The boundary between the areas of divergency and self-excited
limit cycle is indicated by a thick line, which corresponds to the stable zero equilibrium. In Fig. 5(b) is
shown a vicinity of one of the symmetric points z0 = uzeq (saddle-focuses SF-I ). The symmetric equilibrium
state is located on the boundary between the basin of attraction of the stable limit cycle and the area of
divergency. In this case we cannot affirm that the limit cycle is a hidden attractor because if we start to
iterate a trajectory, with a randomly chosen initial state in the vicinity of symmetric equilibrium points,
it can either diverge from the initial state, or tend to the limit cycle.

After the pitchfork bifurcation (m0 = −1.1) two symmetric limit cycles occur. In Figs. 5(c),(d) are
shown two planes of initial conditions with basins of attraction of symmetric limit cycles in the vicinity
of the two equilibria for fixed third initial conditions z0 = 0.00001 and z0 = uzeq, in which case, the two
different green colors correspond to the basins of attraction of the two symmetric limit cycles (m1 = −1.1).
In this case after the pitchfork bifurcation, the basin of attraction of original limit cycle is split into two
basins of attraction of the two symmetric period-1 limit cycles. These basins have a complex but symmetric
structure. In this case the equilibrium u1eq is also situated on the boundary of the basins of attraction of
the two limit cycles, implying that the limit cycles are self-excited for m1 > m∗

1.
Next, we decrease parameter m1 such that it becomes less then m∗

1. In this case the attractors become
hidden, while bifurcating into chaotic dynamics, and we observe the corresponding changes in the structure
in the plane of initial conditions. In Fig. 4 is shown that hidden twin chaotic attractors exist, for instance,
at m1 ≈ −1.141, and with decreasing parameter m1 these two attractors merged (for m1 ≈ −1.147). In
Fig. 6 are shown the planes of initial conditions for the twin chaotic attractors (a) and (b), and the merged
chaotic attractor (c) and (d). In Figs. 6(a),(b) the basins of attraction of the two different chaotic attractors
are identified by different shaded gray colors. The composition of the basins in the plane of initial states
near the vicinity of the zero equilibrium point is the same as in the case of self-excited limit cycle. We
observe the basins of attraction of the twin chaotic attractors and the basin of attraction of zero stable
equilibrium point in the center. But the structure of the plane of initial states in the section near the
vicinity of the symmetric equilibrium points has a significant distinction. The basin of attraction of the
stable zero equilibrium u2eq at the center is combined with the another part of the basin of attraction of

the stable zero equilibrium point u2eq on the boundary of the area of divergency, and a saddle equilibrium

u1eq is located on the boundary between the basin of attraction of the stable zero equilibrium point and
the area of divergency. Consequently, a twin chaotic attractor becomes hidden because if we choose initial
states near one of the equilibrium points, then we cannot reach the chaotic attractors.

In Figs. 6(c) and d are shown the same illustrations for merged hidden chaotic attractor. In this case
one can see that the basin of attraction of the merged hidden attractor represents the combining of the
areas of attraction of each twin-hidden attractors. In the vicinity of the saddle equilibrium we also see only
two possible regimes: the stable zero equilibrium and the divergency. It follows that the merged attractor
is the hidden one.

3.2. Separated twin-attractors

Now we consider the dynamics of the Chua system (1) and the features of hidden attractors in another
area of the parameter plane, which is marked by the blue rectangles (II) in Fig. 2. In Fig. 7(a) is shown
the zoom of fragment (II). For the continuation method of changing initial conditions, the starting point is
denoted on the parameter plane, and we scan the plane of parameters in different directions in accordance
with the arrows in this figure.

The analysis of stability of equilibria (Fig. 1(a)) shows that in this area there are two symmetric stable
focuses (F1, F2) and one saddle-focus of the first type (SF-I ) at the zero equilibrium point.

By numerical integration the trajectories starting from the vicinity of any equilibrium point in rectangle
(II) can reach only one of the symmetric equilibrium points (Fig. 2). But we can see in Fig. 7(a) that for
some special initial conditions it is possible to observe hidden attractors. In particular, the bifurcation
scenario associated with the hidden attractors from the area of the parameter plane (II) is the same as
that in the area (I): one can observe chaotic dynamics resulting from of a cascade of period-doubling
bifurcations.
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Fig. 7. a) the magnified fragment (II) of the chart of dynamical regimes for continuation method of changing initial conditions,
α = 8.4, β = 12, γ = −0.005; b) bifurcations diagram: black, red, and violet colors correspond to different initial conditions,
m0 = −1.2.

Fig. 8. Example of two symmetric hidden chaotic Chua attractors (blue and cyan domains Ahid± ), m1 = −0.05. Red tra-

jectories from unstable manifold Munst
0 of the zero saddle-focus equilibrium u2eq (orange dot) are attracted to locally stable

equilibria u1,3eq (green dots); gray trajectories are stable manifold Mst
0 of u2eq; green trajectories are stable manifolds Mst± of

u1,3eq .

To analyze the bifurcations and transformations in this case, let us consider a bifurcation diagram. In
Fig. 7(b) are shown diagrams for different initial conditions for m0 = −1.2, as a function of the parameter
m1 in the Poincaré section by the plane z = 0. The black lines correspond to initial condition near the
symmetric equilibrium points (the scanning of parameter m1 was realized by the continuation method to
choose initial conditions), and these lines mark the coexisting stable focuses (F1 and F2). For the red and
violet bifurcation diagrams the initial conditions are chosen in the following way: x0 = ∓1.2, y0 = ∓0.0005,
z0 = 0, respectively. For these initial conditions for m1 = 0 we have two symmetric period-2 limit cycles,
and from these points we scan the parameter intervals m1 [−0.2, 0.1] in two directions (to the right and to
the left).

For m1 = 0.2 there are two symmetric stable equilibrium points. If the parameter m1 decreases, then
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at m1 ≈ 0.15 a limit cycle emerges near each symmetric equilibrium point. In the bifurcation diagram one
can see the hard birth of the cycles, because of the form of nonlinearity (piecewise-linear characteristic
of the Chua circuit). As m1 decreases, we see stable focuses and two coexisting limit cycles, undergoing
a period-doubling bifurcation and transition to chaos. However, for this area of parameter plane there is
no a pitchfork bifurcation of limit cycles and a merging of chaotic attractors. In this case two bifurcation
diagrams in Fig. 7 (b) do not cross each other and are separated by the saddle point at the zero equilibrium.
In Fig. 8 the example of two symmetric hidden chaotic Chua attractors are shown for m1 = −0.05. By red,
gray and green colors in Fig. 8 are shown the stable and unstable manifolds in the vicinity of equilibrium
points. Gray and green trajectories were constructed by integration in inverse time for initial conditions
in the vicinity of equilibrium points (gray lines are near saddle-focus, green lines are near stable focuses).
Red trajectories tend to the symmetric equilibria and are obtained by the integration in forward time near
the zero equilibrium.

To analyze the structure of the phase space and the localization of hidden attractors in the phase space,
we consider two-dimensional planes of initial conditions. Then we can study the basins of attraction of co-
existing attractors. As in the previous case we consider two-dimensional sections of the three-dimensional
phase space of initial states in the vicinity of one of the stable symmetric equilibria u1eq, and in the vicinity

of the zero equilibrium u2eq. In Fig. 9 is shown the structure of areas of attraction for different parameters
of m1 and m0 = −1.2, and for different cross-section of the phase space. In Fig. 9(a) and (b) are shown the
basins of attraction of coexisting attractors for m1 = 0.1 in the vicinity of one stable focus F1 (a) and in
the vicinity of the zero saddle equilibrium (b), the location of equilibrium points are marked in the plane
by black dots. In this case in the bifurcation diagram one can see two coexisting symmetric equilibrium
points and two symmetric cycles of period-1. Also it is observed a new period-1 limit cycle, surrounding
all regimes described above, and the dynamics near the equilibria is developed inside this limit cycle of
sufficiently large radius. So, for this area of parameters we have five coexisting attractors. We shaded the
areas of attraction of different symmetric period-1 limit cycles by green color. The area of attraction of the
outside limit cycle is marked on the plane by light green color. We use the pink and red colors to denote
the basins of attraction of the two symmetric equilibria u1eq and u3eq, respectively.

Firstly, we consider a vicinity of the stable equilibrium (Fig. 9(a)). In the vicinity of the stable equilib-
rium one can see a basin of attraction of one of the symmetric stable equilibrium points. Also, there are the
basin of attraction of another symmetric stable equilibrium point, and the symmetric basins of attraction of
two symmetric limit cycles. The complex structure of their basins is represented by the area of attractions
in the form of bands, which are spiralled together, and their boundaries have self-similar patterns, i.e.,
fractal structures. Also, there is a basin of attraction of the external limit cycle, which surround all other
basins of attraction.

Then we consider a plane of initial conditions and the basins of attraction of different attractors in the
vicinity of the saddle equilibrium point (Fig. 9(b)). We can see that the phase trajectories, starting from
the vicinity of the saddle point, can reach one of the stable symmetric equilibria only. The zero equilibrium
point u2eq is located on a boundary between the attracting areas of different symmetric stable equilibria.
The areas of attraction are symmetric to each other, and a boundary between these areas represents the
stable manifold of the zero saddle-focus. Consequently, if we choose initial conditions in the vicinity of any
equilibrium point, we will reach one of the stable equilibrium points and, thus, all of the limit cycles are
hidden attractors.

Let us decrease the parameter m1 so that chaotic dynamics emerges, and consider the basins of at-
traction of the coexisting stable symmetric equilibria, the chaotic attractors, and the external limit cycle.
In Fig. 9(c) and (d) are shown two planes of initial conditions in the vicinity of the equilibrium points for
m1 = −0.05. By two shades of gray color we identify the basins of attraction of the coexisting twin-chaotic
attractors. It is rather easy to distinguish the basins of attraction for these chaotic attractors because the
attractors in the phase space are separated by the zero saddle equilibrium. For decreasing parameter m1

the structure of the basin of attraction persists. In place of the areas of two symmetric period-1 limit cycles
one sees the basins of attraction of the symmetric chaotic attractors. In this case the order of alternation
of the basin of attraction of different attractors remains the same. The structure of the basin of attraction
in the vicinity of the saddle equilibrium point persists: the saddle point is located on the boundary of
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Fig. 9. Basins of attraction of coexisting attractors of the Chua system (1) α = 8.4, β = 12, γ = −0.005, m0 = −1.2:
a) twin hidden period-1 attractors with m1 = 0.1, and cross-section by the plane z0 = uzeq; b) cross-section by the plane
z0 = 0.0001; c) twin hidden chaotic attractors with m1 = −0.05, cross-section by the plane z0 = uzeq; d) cross-section by the
plane z0 = 0.0001.

the basins of attraction of two symmetric equilibrium points, and the boundary corresponds to an stable
manifold of the saddle point.

In Fig. 10 (a),(b) is shown a structure of the phase space in the above case, where we see a coexisting
large stable limit cycle (orange color in Fig. 10 (a)) and two separated hidden chaotic Chua attractors (blue
and cyan domains Fig. 10 (b)) from Fig. 8. The basins of attraction of periodic and chaotic attractors do
not intersect with small neighborhood of the equilibria, thus, the attractors are hidden. Therefore in this
case there are 5 coexisting attractors: two stable equilibria, one hidden limit cycle, and two hidden “twin”
attractors.
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Fig. 10. Multistability with 5 coexisting attractors in the Chua system (1) with α = 8.4, β = 12, γ = −0.005, m0 = −1.2,
m1 = −0.05. Coexistence of hidden periodic attractor (orange trajectory Ahid

limCyc is a stable limit cycle) and two symmetric
hidden chaotic Chua attractors (blue and cyan domains). Here the basins of attraction of the periodic and the two symmetric
Chua attractors do not intersect with a small neighborhood of the equilibria, thus, the attractors are hidden.

Thus, we reveal two area on the parameter plane (m0, m1), where we observe hidden attractors.
Observe that for the physical realization of the Chua circuit and observation of hidden attractors we
need nonnegative parameters α, β, γ. For example, both configurations of hidden attractors cited above
are observed for the case γ = 0 in [Rocha & Medrano-T, 2015, 2016]; and for the positive γ one may
consider, for example, the following two sets of parameters: α = 8.4562, β = 12.0732, γ = 0.0052,m0 =
−0.1768,m1 = −1.1468 and α = 8.4, β = 12, γ = 0.005,m0 = −0.12,m1 = −1.143.

Note that the existence of hidden attractors in the Chua system can be effectively predicted by the
describing function method (DFM) [Leonov et al., 2011; Rocha & Medrano-T, 2015; Kuznetsov et al.,
2017a]. The classical DFM (see, e.g. [Krylov & Bogolyubov, 1947; Khalil, 2002]) is only an approximate
method which gives the information on the frequency and amplitude of periodic orbits. However DFM may
lead to wrong conclusions4 about the existence of periodic orbits and does not provide initial data for the
localization of periodic orbits. But for the systems of special type with a small parameter, DFM can be
rigorously justified. For this purpose, following references [Leonov et al., 2011; Leonov & Kuznetsov, 2013],
we introduce a coefficient k and represent the linear part and nonlinearity in (2) as follows:

P0 = P + kqr∗ =

⎛
⎝−α(m1 + 1 + k) α 0

1 −1 1
0 −β −γ

⎞
⎠ ,

ψ(σ) = φ(σ) − kσ = (m0 −m1) sat(σ) − kσ,

(8)

where λP0
1,2 = ±iω0, λ

P0
3 = −d < 0. Then we consider a small parameter ε, change ψ(·) by εψ(·), and reduce

4Well-known Aizerman’s and Kalman’s conjectures on the absolute stability of nonlinear control systems are valid from the
standpoint of DFM which may explain why these conjectures were put forward. Nowadays, various counterexamples to these
conjectures (nonlinear systems, where the only equilibrium, which is stable, coexists with a hidden periodic oscillation) are
known (see, e.g. [Pliss, 1958; Fitts, 1966; Barabanov, 1988; Bernat & Llibre, 1996; Leonov et al., 2010; Leonov & Kuznetsov,
2011] and surveys [Bragin et al., 2011; Leonov & Kuznetsov, 2013]; the corresponding discrete examples are considered in
[Alli-Oke et al., 2012; Heath et al., 2015]).
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Fig. 11. Bifurcation diagram of the Chua system (1), α = 8.4, β = 12, γ = −0.005, m1 = −0.05.

by a non-singular linear transformation w = Su system (8) to the following form

ẇ = Aw + bεψ(u∗y),

A =

⎛
⎝ 0 −ω0 0

ω0 0 0
0 0 −d

⎞
⎠ , b =

⎛
⎝ b1

b2
b3

⎞
⎠ , c =

⎛
⎝ 1

0
−h

⎞
⎠ .

(9)

Theorem [Leonov et al., 2011; Leonov & Kuznetsov, 2013; Kuznetsov et al., 2017a] Consider

the describing function Φ(a) =
∫ 2π/ω0

0 ψ(a cos(ω0t)) cos(ω0t)dt. If there exists a positive a0 such that
Φ(a0) = 0, b1Φ

′(a0) < 0, then system (9) has a stable5 periodic solution with the initial data w0 =(
a0 + O(ε), 0, O(ε)

)
and period T = 2π

ω0
+ O(ε).

This theorem gives an initial point for the numerical computation of periodic solution (starting attrac-
tor) in the system with small parameter. Then, using the method of numerical continuation and gradually
increasing ε, one can numerically follow the transformation of the starting attractor.

It turns out that for the numerical localization of the considered hidden attractors we can skip
the multistep procedure based on numerical continuation and use the initial data u0 = S−1w0 for the
localization of hidden attractors in the initial system (). For the parameters α = 8.4, β = 12, γ =
−0.005,m0 = −1.2,m1 = −0.05 we get: a) k = −0.8890, ω0 = 2.0260, a0 = 1.5187 and the corresponding
initial data ±(1.5187, 0.0926,−2.1682) allows us to visualize two symmetric hidden chaotic attractors; b)
k = −0.1244, ω0 = 3.2396, a0 = 11.7546 and the corresponding initial data (11.7546, 9.7044,−16.7367)
allows us to localize the hidden periodic attractor (see Fig. 10). For the parameters α = 8.4, β = 12, γ =
−0.005,m0 = −0.121,m1 = −1.143 we get k = 0.2040, ω0 = 2.0260, a0 = 6.3526 and the corresponding
initial data ±(6.3526, 0.3874,−9.0694) allows us to visualize two symmetric hidden chaotic attractors (see
Fig. 3(b)).

4. Scenario of the birth of hidden attractors

In Sections 3.1 and 3.2 we have shown the opportunity of existence of hidden attractors in different areas of
the parameter plane. In order to study the scenario of the emergence of hidden attractors we use numerical
bifurcation analysis by the software package XPP AUTO [Ermentrout, 2002].

4.1. Formation of separated hidden attractors

Firstly we consider hidden attractors from the area (II) in the parameter plane (m0, m1) (Fig. 2). In
Fig. 11(a) is shown the bifurcation diagram of the Chua system (1) for parameters (7) and m1 = −0.05. In
the diagram red and black color denote stable and unstable equilibrium points, green and blue colors denote
stable and unstable limit cycles, respectively. At m0 ≈ −0.1761 the Hopf bifurcation (H2

3 ) takes place,
that is in a good agreement with the results obtained by linear analysis in Section 2.1 and by numerical

5See detailed discussion in [Leonov & Kuznetsov, 2013].
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Fig. 12. Bifurcation diagram for the Chua system (1) with α = 8.4, β = 12, γ = −0.005, m1 = −1.11.

simulations in Section 3.2. In this case the supercritical Hopf bifurcation occurs: the zero equilibrium point
loses stability and a limit cycle Ahid

limCyc is born. With decreasing of parameter m0 the radius of limit

cycle is increased. At m0 ≈ −0.939 a second Hopf bifurcation (H2
2 ) emerges, where the zero equilibrium

becomes stable, which is accompanied by the hard birth of an unstable limit cycle C1. The radius of the
internal unstable cycle C1 surrounding the zero equilibrium increases initially according to square root of
2, upon a further decrease of the parameter m0. At m0 ≈ −1.0004 occurs a third Hopf bifurcation (H2

1 ),
which is a pitchfork bifurcation of the zero equilibrium, in which case two stable symmetric equilibria are
born, and the zero equilibrium become unstable. In this case the limit cycle C1 surrounds all equilibria,
splits the limit cycle Ahid

limCyc and equilibria in the phase space, and forms the boundary of the basin of

attraction of the limit cycle Ahid
limCyc. The pitchfork bifurcation (H2

1 ) is accompanied by the occurrence of

two symmetric pairs of limit cycles Cst
2 and Cunst

2 , which are denoted in the magnified fragment of the
diagram in Fig. 11(b). The birth of the limit cycles is a result of a saddle-node bifurcation, i.e. a pair of
limit cycles (stable and unstable) are born, along with its identical symmetric pair. Thus, the stable limit
cycle Cst

2 is surrounded by the unstable limit cycle C1 on the one side, and by the unstable limit cycle
Cunst
2 on the other side, making it unreachable from the vicinity of stable equilibria points and also from

the vicinity of unstable equilibrium points. Thus, the limit cycles Cst
2 , and the chaotic attractor, which

occur on the base of this limit cycle are hidden.

4.2. Formation of merged hidden attractors

Formation of hidden attractors in the area (I) in the parameter plane (m0, m1) is as follows. In Fig. 12 the
corresponding bifurcation diagrams are shown. In this case it is better to exam the bifurcation diagrams
by increasing the parameter m0. At m0 ≈ −1.0004 the Hopf bifurcation (H2

1 ) occurs, where the unstable
zero equilibrium point becomes stable, simultaneously with pitchfork bifurcation, and as a result of which
two unstable equilibria are born. At m0 ≈ −0.939 the zero equilibrium point undergoes a supercritical
Hopf bifurcation (H2

2 ), and as a result the zero equilibrium point loses stability and a stable limit cycle
C1 is born, where it is situated between two symmetric unstable equilibria in projections onto the x and z
variables, where it surrounds all equilibria in a projection of y-variable. Upon increasing the parameter m0,
the limit cycle undergoes a symmetry breaking bifurcation (it is the same as a pitchfork bifurcation), and
splits into two stable symmetric limit cycles Cst1

2 , Cst2
2 and one unstable limit cycle Cunst

2 . At m0 ≈ −0.1761
(H2

3 ) the zero equilibrium point changes stability again. In this case the bifurcation is subcritical, and as
a result the unstable limit cycle C3 is born. The limit cycle C3 forms boundaries of the basin of attraction
of the zero stable equilibrium point. In Fig. 12(b) is shown the projection of the y-variable. Thus, for
m0 > −0.1761 (H2

3 ) the limit cycles Cst1
2 and Cst2

2 are isolated from all equilibria by the unstable limit
cycle C3, and these symmetric limit cycles Cst1

2 and Cst2
2 and chaotic attractors, which occur on the base

of these cycles for another set of parameters, are hidden.
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5. Conclusion

The dynamics of the Chua circuit gives a complex picture in the space of controlling parameters. The
areas with similar behavior exist, and the detailed study of the dynamics of the Chua system in these
areas allows one to reveal new hidden attractors. It is shown that the formation of hidden attractors is
connected with the subcritical Hopf bifurcations of equilibrium points and the saddle-node bifurcations of
the limit cycles. In general, the conjecture is that for a globally bounded autonomous system of ODE with
asymptotically stable equilibrium point, the subcritical Hopf bifurcation leads to the birth of a hidden
attractor. In two different areas of parameter plane it was found two types of hidden attractors, namely,
merged and separated attractors. These features of hidden attractors are connected with the location of
stable and unstable equilibria and with the associated with them unstable limit cycles in the phase space.
The open questions are what is the maximum number of coexisting attractors6 that can be exhibited in
the Chua system (1) and how many of the coexisting attractors can be hidden.
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Abstract: In this paper the Chua circuit with five linear elements and saturation non-linearity
is studied. Numerical localization of self-excited attractor in the Chua circuit model can be done
by computation of trajectory with initial data in a vicinity of an unstable equilibrium. For a
hidden attractor its basin of attraction does not overlap with a small vicinity of equilibria, so
it is difficult to find the corresponding initial data for localization. This survey is devoted to
the application of describing function method for localization of hidden periodic and chaotic
attractors in the Chua model. We use a rigorous justification of the describing function method,
based on the method of small parameter, to get the initial data for the visualization of the
hidden attractors. A new configuration of hidden Chua attractors is presented.

Keywords: Chua circuit, hidden attractor, self-excited attractor, describing function method

1. INTRODUCTION

In the initial period of the development of the theory of
nonlinear oscillations (first half of the XX century) main
attention of researchers was paid to analysis and synthesis
of oscillating systems for which the oscillation existence
problem can be solved relatively easily. The structure of
many applied systems considered was such that the exis-
tence of oscillations was ”almost obvious” - the oscillation
was excited from an unstable equilibrium (so called self-
excited oscillation). From a computational point of view
this allows one to use a standard computational procedure,
in which after a transient process a trajectory, started
from a point of unstable manifold in a neighborhood of
equilibrium, reaches a state of oscillation, therefore one
can easily identify it. The use of the term self-excited
oscillation or self-oscillations can be traced back to the
works of H.G. Barkhausen and A.A. Andronov, where it
describes the generation and maintenance of a periodic
motion in mechanical and electrical models by a source
of power that lacks any corresponding periodicity (e.g., a
stable limit cycle in the van der Pol oscillator) (Andronov
et al., 1966; Jenkins, 2013).

Attractor is called a self-excited attractor if its basin of
attraction intersects any arbitrarily small open neighbor-
hood of an equilibrium, otherwise it is called a hidden at-
tractor (Leonov et al., 2011, 2012; Leonov and Kuznetsov,
2013; Leonov et al., 2015; Kuznetsov, 2016). We use the
notion “self-excited” for attractors of dynamical systems
to describe the existence of transient process from a small
vicinity of an unstable equilibrium to an attractor.

If there is no such a transient process for an attractor, it is
called a hidden attractor. For example, hidden attractors
are attractors in systems without equilibria or with only
one stable equilibrium (a special case of multistability and
coexistence of attractors). Some examples of hidden at-
tractors can be found in Shahzad et al. (2015); Brezetskyi
et al. (2015); Jafari et al. (2015); Zhusubaliyev et al.
(2015); Saha et al. (2015); Semenov et al. (2015); Feng
and Wei (2015); Li et al. (2015); Feng et al. (2015); Sprott
(2015); Pham et al. (2015); Vaidyanathan et al. (2015);
Danca (2016); Zelinka (2016); Dudkowski et al. (2016);
Kuznetsov et al. (2017); Danca et al. (2017); Kiseleva et al.
(2016).

The self-excited and hidden classification of attractors
was introduced by Leonov and Kuznetsov in connection
with the discovery of hidden chaotic attractor in the
Chua system (Kuznetsov et al., 2010; Leonov et al., 2011;
Kuznetsov et al., 2013):

ẋ = α(y − x(m1 + 1)) − αψ(x),

ẏ = x− y + z,

ż = −(βy + γz),

ψ(x) = (m0 −m1) sat(x) =

=
1

2
(m0 −m1)(|x + 1| − |x− 1|),

(1)

where α, β, γ, m0, m1 are parameters. This system
provides a mathematical model, describing the behavior of
the Chua circuit (Chua and Lin, 1990; Chua, 1992, 1995)
with five linear elements and saturation non-linearity
(see Fig. 1). Until this discovery only self-excited chaotic
attractors had been found in Chua circuits (see Fig. 2
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and, e.g. works (Matsumoto, 1990; Lozi and Ushiki, 1993;
Bilotta and Pantano, 2008)). Note that L. Chua himself,
analyzing various cases of attractors existence in Chua
circuit, does not admit the existence of hidden attractor
in his circuits (Chua, 1992).
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Fig. 1. Chua circuit with two resistors, one inductor,
two capacitors (red) and one nonlinear resistor called
“Chua diode” (green).

We consider only one type of the Chua circuits, while
there are known various modifications of Chua circuit (see,
e.g. (Banerjee, 2012; Semenov et al., 2015)) where hidden
oscillations can also be localized (Chen et al., 2015b; Bao
et al., 2015; Chen et al., 2015a; Menacer et al., 2016).

F0

S+

S−

Ase
− Ase

+

(a) Parameters α = 15, β = 28,
γ = 0, m0 = −5/7, m1 = −8/7.

F0

S−

S+

Ase
+

Ase
−

(b) Parameters α = 8.5, β = 14.28,
γ = 0, m0 = −8/7, m1 = −5/7.

Fig. 2. Self-excited attractors in Chua system (1): (2a) –
two symmetric spiral attractors, (2b) – two symmetric
Rössler-like attractors.

2. HIDDEN ATTRACTORS LOCALIZATION VIA
DESCRIBING FUNCTION METHOD

In this section an effective analytical-numerical approach
for hidden oscillations localization, based on the describing
function method (DFM), the method of small parameter
and continuation method, is demonstrated.

2.1 Describing function method

The describing function method (DFM) is a searching
method for oscillations which are close to the harmonic
periodic oscillations of nonlinear systems of automatic con-
trol. This method is not strictly mathematically justified
and is one of approximate methods of analysis of control
systems (see, e.g. (Krylov and Bogolyubov, 1947; Khalil,

2002)). One of the first examples, where the describing
function method gives untrue results, is due to Tsypkin
(1984). Remark that well-known Aizerman’s and Kalman’s
conjectures on the absolute stability of nonlinear control
systems are valid from the standpoint of the describing
function method (what explains why these conjectures
were put forward). Nowadays various counterexamples to
these conjectures (nonlinear systems where the only equi-
librium, which is stable, coexists with a hidden periodic
oscillation) are known (see, e.g. Pliss (1958); Fitts (1966);
Barabanov (1988); Bernat and Llibre (1996); Leonov et al.
(2010); Bragin et al. (2011); Leonov and Kuznetsov (2011,
2013); the corresponding discrete examples are considered
in Alli-Oke et al. (2012); Heath et al. (2015)).

Let us recall a classical way of applying the DFM. Consider
a system with one scalar non-linearity in the Lur’e form

dx

dt
= Px + qψ(r∗x), x ∈ R

n (2)

where P is a constant (n× n)-matrix, q, r are constant n-
dimensional vectors, ∗ denotes transpose operation, ψ(σ) is
a continuous piecewise-differentiable scalar function, and
ψ(0) = 0.

In order to find a periodic oscillation, a certain coefficient
of harmonic linearization k (assume that such k exists) is
introduced in such a way that the matrix P0 = P + kqr∗
of the linear system

dx

dt
= P0x, x ∈ R

n

has a pair of pure-imaginary eigenvalues ±iω0(ω0 > 0),
and the rest eigenvalues have negative real parts.

Introduce a transfer function

W (p) = r∗
(
P− pI

)−1
q, (3)

where p is a complex variable, I is a unit matrix. Transfer
function W (p) is applied to define the values of k and ω0.
The number ω0 > 0 is defined from the equation

ImW (i ω0) = 0 (4)

and k is defined by the formula

k = −(
ReW (i ω0)

)−1
. (5)

If such ω0 and k exist, then system (2) has a periodic
solution x(t) for which

σ(t) = r∗x(t) ≈ a cosω0t.

Following the DFM, the amplitude a can be obtained from
the equation∫ 2π/ω0

0

(
ψ(a cosω0t)a cosω0t− k(a cosω0t)

2
)
dt = 0.

Rewrite system (2) as follows

dx

dt
= P0x + qϕ(r∗x), (6)

where ϕ(σ) = ψ(σ)−kσ. As it is mentioned above classical
DFM is not strictly mathematically justified and can lead
to untrue results, however for the systems with a small
parameter it can be rigorously justified. For that let us
change ϕ(σ) by εϕ(σ) and consider the existence of a
periodic solution for system

dx

dt
= P0x + εqϕ0(r∗x). (7)
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To define the initial data x0(0) of the periodic solution,
system (7) is transformed by a linear non-singular trans-
formation x = Sy to the form 1

ẏ1 = −ω0y2 + εb1ϕ(y1 + c∗3y3),

ẏ2 = ω0y1 + εb2ϕ(y1 + c∗3y3),

ẏ3 = A3y3 + εb3ϕ(y1 + c∗3y3),

(8)

where y1, y2 are scalars, y3, b3 and c3 are (n − 2)-
dimensional vectors, b1 and b2 are real numbers; A3 is a
constant ((n−2)× (n−2)) matrix all eigenvalues of which
have negative real parts. Without loss of generality, it can
be assumed that for the matrix A3 there exists a positive
number d > 0, such that y∗

3(A3 + A∗
3)y3 ≤ −2d|y3|2,

∀y3 ∈ R
n−2.

Introduce the describing function

Φ(a) =

2π/ω0∫
0

ϕ(cos(ω0t)a) cos(ω0t)dt (9)

and assume the existence of its derivative.

Theorem 1. [Leonov and Kuznetsov (2013)] If there exists
a positive number a0 such that

Φ(a0) = 0, b1
dΦ(a)

da

∣∣∣∣
a=a0

< 0, (10)

then system (7) has a stable periodic solution with initial
data

x0(0) = S
(
y1(0), y2(0), y3(0)

)∗
,

where y1(0) = a0 + O(ε), y2(0) = 0, y3 = On−2(ε) and
with the period T = 2π

ω0
+ O(ε).

3. HIDDEN ATTRACTORS LOCALIZATION IN
CHUA CIRCUIT VIA THE DESCRIBING FUNCTION

METHOD

In this section we apply the above approach for hidden
attractors localization in Chua circuit. Let us write Chua
system (1) in the Lur’e form (2) (see, e.g. (Leonov et al.,
2011)) with

P =

(−α(m1 + 1) α 0
1 −1 1
0 −β −γ

)
, q =

(−α
0
0

)
,

r =

(
1
0
0

)
, ψ(σ) = (m0 −m1) sat(σ).

(11)

Introduce a coefficient k and a small parameter ε, and
represent (11) in the form (7) with

P0 = P + kqr∗ =

(−α(m1 + 1 + k) α 0
1 −1 1
0 −β −γ

)
,

ϕ(σ) = ψ(σ) − kσ = (m0 −m1) sat(σ) − kσ,

(12)

and λP0
1,2 = ±iω0, λ

P0
3 = −d < 0.

By the non-singular linear transformation x = Sy system
(12) is reduced to the form (8)

dy

dt
= Ay + bεϕ(u∗y), (13)

1 Such transformation exists for non-degenerate transfer functions.

where

A =

(
0 −ω0 0
ω0 0 0
0 0 −d

)
, b =

(
b1
b2
1

)
, c =

(
1
0
−h

)
.

The transfer function WA(p) of system (13) can be repre-
sented as

WA(p) =
−b1p + b2ω0

p2 + ω2
0

+
h

p + d
.

Further, using the equality of transfer functions of systems
(12) and (13) one can obtain

WA(p) = r∗(P0 − pI)−1q.

This implies the following relations

k =
−α(m1 + m1γ + γ) + ω2

0 − γ − β

α(1 + γ)
,

d =
α + ω2

0 − β + 1 + γ + γ2

1 + γ
,

h =
α(γ + β − (1 + γ)d + d2)

ω2
0 + d2

,

b1 =
α(γ + β − ω2

0 − (1 + γ)d)

ω2
0 + d2

,

b2 =
α
(
(1 + γ − d)ω2

0 + (γ + β)d
)

ω0(ω2
0 + d2)

.

(14)

Since by the non-singular linear transformation x = Sy
system (12) can be reduced to the form (13) for the matrix
S the following relations

A = S−1P0S, b = S−1q, c∗ = r∗S. (15)

are valid. After solving these matrix equations, one can
obtain the transformation matrix

S =

(
s11 s12 s13
s21 s22 s23
s31 s32 s33

)
,

where

s11 = 1, s12 = 0, s13 = −h,

s21 = m1 + 1 + k, s22 = −ω0

α
,

s23 = −h(α(m1 + 1 + k) − d)

α
,

s31 =
α(m1 + k) − ω2

0

α
,

s32 = −α(β + γ)(m1 + k) + αβ − γω2
0

αω0
,

s33 = h
α(m1 + k)(d− 1) + d(1 + α− d)

α
.

Using Theorem 1 one obtains the initial data

x(0) = Sy(0) = S

(
a0
0
0

)
=

(
a0 s11
a0 s21
a0 s31

)
. (16)

Back to Chua system denotations, for the determination
of the initial data of starting solution for multistage
procedure, it can be obtained

x(0) = a0, y(0) = a0(m1 + 1 + k),

z(0) = a0
α(m1 + k) − ω2

0

α
.

(17)
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Consider system (1) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 = −0.1768, m1 = −1.1468.
(18)

Note that for the considered values of parameters there
are three equilibria in the system: the zero equilibrium
F0 = (0, 0, 0) is a stable focus-node and two symmetric
equilibria

S± = ±
(

m1 −m0

m1 + β
β+γ

,
γ(m1 −m0)

(γ + β)m1 + β
, − β(m1 −m0)

(γ + β)m1 + β

)
are saddle-foci with one-dimensional unstable manifolds.

Let us try to apply the DFM and define an initial data for
periodic oscillation. Using (4) and (5) for parameters (18)
one obtains following starting frequency and a coefficient
of harmonic:

ω0 = 2.0392, k = 0.2098. (19)

Assuming a ≥ 1, describing function (9) and its derivative
for Chua system (1) can be rewritten as follows:

Φ(a) = 2(m0 −m1)

[
πa

2
+

√
1 − 1

a2
− a arccos

1

a

]
− πak,

dΦ(a)

da
= 2(m0 −m1)

[
π

2
− 1

a

√
1 − 1

a2
− arccos

1

a

]
− πk.

For parameters (18) and (19) one obtains initial amplitude
a0 = 5.8576 that satisfies the conditions of Theorem 1.
Thus, by (17) initial data for the oscillation are as follows

x(0) = 5.8576, y(0) = 0.3694, z(0) = −8.3686. (20)

In our numerical experiments we skip the multistep pro-
cedure based on the small parameter method and apply
initial data (20) for hidden attractors localization in the
initial system (i.e., system (1) in the form (6), ε = 1). It
turns out that in this case this is enough for localization of
two symmetric hidden chaotic attractors Ahid

± in the Chua

system (see Fig. 3). For attractor Ahid
− one should take

symmetric initial data x(0) = −5.8576 y(0) = −0.3694,
z(0) = 8.3686.

Consider system (1) with another values of the parameters

α = 8.4, β = 12, γ = −0.005,

m0 = −1.2, m1 = −0.05.
(21)

Note that for the considered values of parameters the
zero equilibrium F0 is a saddle-focus with one-dimensional
unstable manifold and two symmetric equilibria S± are
stable focus-nodes. Again let us apply the DFM and define
an initial data for periodic oscillation. Note that equation
(4) for parameters (21) has two positive solutions and by
(5) we obtain following starting frequencies and coefficients
of harmonic:

ω0 = 2.0260, k = −0.8890 (22)

and
ω0 = 3.2396, k = −0.1244. (23)

For parameters (21) and (22) one obtains initial amplitude
a0 = 1.5187 that satisfies the conditions of Theorem 1.
Thus, by (17) initial data for the oscillation are as follows

x(0) = 1.5187, y(0) = 0.0926, z(0) = −2.1682. (24)

Using these initial data for original system (1) it is possible
to localize two symmetric hidden chaotic attractors Ahid

±
(see Fig 4).

Ahid
−

Ahid
+

F0

S−

S+

Munst
−

Munst
+

Mst
+

Mst
− Mst

0

Fig. 3. Two symmetric hidden chaotic attractors (Ahid
± -

blue domains) in the classical Chua system (1): tra-
jectories (red) from unstable manifolds Munst

± of two
saddle points S± are either attracted to locally stable
zero equilibrium F0, or tend to infinity; trajectories
(black) from stable manifolds Mst

0,± tend to F0 or S±;
α = 8.4562, β = 12.0732, γ = 0.0052, m0 = −0.1768,
m1 = −1.1468.

For parameters (21) and (23) one obtains initial amplitude
a0 = 11.7546 (also satisfies the conditions of Theorem 1)
which by (17) yields the following initial data

x(0) = 11.7546, y(0) = 9.7044, z(0) = −16.7367. (25)

These initial data for original Chua system (1) allows
to localize a hidden periodic attractor: stable limit cycle
Ahid

limCyc (see Fig. 5). Thus, in this configuration despite

the trivial attractors, i.e. equilibria S±, for system (1)
with parameters (21) we obtain the co-existence of hidden
periodic attractor (stable limit cycle) and two symmetric
hidden chaotic attractors.

CONCLUSIONS

In this paper we discuss the use of describing function
method for searching periodic oscillations in its application
to the famous Chua circuit. Despite the fact that DFM
is an approximate analytical method (which does not
guarantee the true results), the application of DFM to
the Chua system allows us to localize hidden chaotic and
periodic attractors. In particular, for certain values of
parameters we obtain a new configuration of co-existing
hidden attractors (two symmetric chaotic and stable limit
cycle) in the Chua system.
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S−

S+

F0

Ahid
−

Ahid
+

Munst
0

Mst
0

Mst
−

Mst
+

Fig. 4. Two symmetric hidden chaotic attractors (Ahid
±

- blue domains) in the classical Chua system (1):
trajectories (red) from unstable manifold Munst

0 of the
saddle points F0 are attracted to locally stable equi-
libria S±; trajectories (black) from stable manifolds
Mst

0,± are attracted to F0 or S±; α = 8.4, β = 12,
γ = −0.005, m0 = −1.2, m1 = −0.05.

F0

S+

S−

Ahid
−

Ahid
+

Ahid
limCyc

Fig. 5. Co-existence of hidden periodic attractor: the stable
limit cycle Ahid

limCyc, and two symmetric hidden chaotic

attractors Ahid
± in Chua system (1) with parameters

α = 8.4, β = 12,γ = −0.005, m0 = −1.2, m1 = −0.05.
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INTRODUCTION

Originally, the bifurcation called the blue sky catastrophe was described in [1]. In the simplest
case it can be explained as follows. The phase trajectory departs from a vicinity of a semistable
limit cycle (saddle-node periodic orbit) existing at the threshold of the bifurcation, goes around
a large-size loop, and turns back to the limit cycle from the other side. As a control parameter
is varied in one direction, the semistable cycle transforms into a pair of cycles, a stable and an
unstable one. As the control parameter is varied in the opposite direction, two cycles meet each
other, forming the semistable cycle, and then disappear, while the large-size limit cycle emerges in
the domain of the above-mentioned loop containing helical coils in the phase space region of the
former limit cycle pair (Fig. 1a). Conditions and mechanisms of birth of limit cycles through the
blue sky catastrophe are described in detail in [2–8].

According to the analysis developed in [2], it is natural to consider actually a family of such
bifurcations distinguished by an integer index m. Indeed, in general, if a phase trajectory with
some angular coordinate ϕ departs from the saddle-node cycle, then after a travel along the large-
size loop and subsequent return it will be characterized by this angular coordinate expressed by a
relation containing an additive term of form mϕ (Fig. 1b). For three-dimensional phase space (the
minimal dimension where the blue-sky catastrophe may take place) the integer m may be either 0
or 1. However, at higher dimensions, any integer can occur. In particular, m = 2 will correspond
to the birth of a hyperbolic strange attractor represented by a classical Smale–Williams solenoid
in a Poincaré section, and m > 2 to solenoids of larger rates of increase in the number of loops at
successive stages of their geometric construction [3] (Fig. 2).
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Fig. 1. Phase space structure in the case of the blue sky catastrophe in the simplest case of three dimensions
(a) and schematic representation of the situation where the Smale–Williams attractor can appear in a phase
space of dimension 4 and higher (b).

Fig. 2. Formal geometric construction of the Smale-Williams solenoids associated with the indices m = 2,
3, and 4: initial toroidal domain in the state space, results of its transformation in the first iteration of the
mapping, and the solenoid obtained after a large number of repetitive applications of the procedure.

In a series of works, different applications were discussed in relation to the blue sky catastrophes.
Remarkably, a lot was done in connection with biological models and neurons. For instance, some
results demonstrating a transition between tonic-spiking and bursting in a model of leech neuron
are presented in reference [9]. Also, in [10–12] it was mentioned that this kind of bifurcation can be
considered as the main mechanism for the onset of the burst-spike dynamics, and it was observed in
other neuron-like models. Such approaches were applied for relaxation systems with fast and slow
variables, and for modeling the cardiac rhythms [13, 14]. In a recent paper [15] the authors suggest
that the interaction of technology and economic policy regulations in the energy sector may be
described by slow-fast systems, where the blue sky catastrophes are possible. In [16] the bifurcation
associated with the blue sky catastrophe was considered as one of scenarios for the birth of chimera
states in ensembles of phase oscillators, which are used for description networks of neurons and for
other biological models of interaction.

In [17] the bifurcation of the blue sky catastrophe has been found in a binary mixture contained
in a laterally heated cavity at small Prandtl numbers. In [18–20] the blue sky catastrophes are
discussed in relation to astrophysics, in the context of the restricted four-body problem. In [21]
results are presented concerning maps describing the Josephson junction, where such kind of
bifurcation was observed. In [22] a blue sky catastrophe of limit cycles of van der Pol system
with noise (fuzzy disturbance) was studied.

Also, theoretical investigations of the blue sky catastrophes continue to develop [23–26]. Most
of these studies relate to the simplest case of the limit cycle birth in the bifurcation (index m = 0
according to the classification of reference [2]).

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 5 2017
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However, no concrete examples relating to the emergence of hyperbolic chaos have been
considered, although recently a number of models and experimental electronic circuits manifesting
this phenomenon have been proposed [27–29, 32, 33].

In the context of the present study, the most important is the four-dimensional system, in which
an attractor of Smale –Williams type appears as a result of the blue sky catastrophe with the
Turaev – Shilnikov index m = 2, which was suggested and studied numerically in reference [33]. By
modifying this system, it is possible to construct models with other integer indices m representing
various types of the blue-sky catastrophes; particularly, in reference [34] we considered the case
m = 1 associated with the birth of quasi-periodicity.

In the present work we suggest a generalized model representing a family of four-dimensional
dynamical systems, in which the blue sky catastrophes of different classes outlined by Turaev and
Shilnikov [2, 3] take place. In Section 2 we introduce a model manifesting the blue sky catastrophes
containing an index m as an integer parameter, depending on what kinds of attractors can arise due
to the bifurcations. In Section 3 we review possible dynamical regimes of the model and discuss the
structure of the space of control parameters. In Section 4 we consider a generalized model in the
case of emergence of quasi-periodic dynamics m = 1. In Section 5 results of numerical simulation
of the generalized model with m = 2, 3, 4 are presented, and the occurrence of hyperbolic chaos is
demonstrated. In Section 6 we present results of verification of hyperbolicity based on analysis of
statistical distributions of the angles of intersection of stable and unstable manifolds of orbits on
the attractors.

1. FAMILY OF SYSTEMS WITH THE BLUE SKY CATASTROPHES

In order to construct a generalized model, let us start with a two-dimensional predator–prey
system with instant state specified by two nonnegative variables r1, r2:

ṙ1 = 2

(
1 − r2 +

1

2
r1 − 1

50
r21

)
r1,

ṙ2 = 2

(
r1 − μ +

1

2
r2 − 1

50
r22

)
r2.

(1.1)

Fig. 3. Phase portraits of the system (1.1); diagrams from (a) to (c) correspond to increase in parameter μ.

These equations differ from those in reference [29] with additional nonlinear terms in the second
(“predator”) equation, and contain a control parameter μ. If the value of μ is slightly less than

μ0 = 31
8 , the picture of orbits on the phase plane (r1, r2) looks like that shown in Fig. 3a. There

are four fixed points here, an unstable focus F , saddles S1 and S2, and a node N1. With increasing
μ, the fixed points S1 and N1 move to meet each other at μ = μ0, and then disappear (see panels
(b) and (c), respectively). Instead of the former pair of fixed points, a domain of relatively slow
motion appears there, while the attractor is a limit cycle, which passes close to the origin and to
the saddle S2.
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Following [29], let us consider the quantities r1 and r2 as squared absolute values of complex
amplitudes for two oscillators of some frequency ω0, namely, r1,2 = |a1,2|2. One can write down a
set of differential equations for the complex variables a1 and a2 and add terms of a certain form,
which introduce an additional coupling between the oscillators in the following way:

ȧ1 = −iω0a1 +

(
1 − |a2|2 +

1

2
|a1|2 − 1

50
|a1|4

)
a1 +

1

2
ε Im am2 ,

ȧ2 = −iω0a2 +

(
|a1|2 − μ +

1

2
|a2|2 − 1

50
|a2|4

)
a2 + εRe a1.

(1.2)

Here ε is a coupling coefficient and m is an integer index. At ε = 0, the equations for r1,2 = |a1,2|2 =

x21,2 + y21,2 derived from (1.2) coincide precisely with Eqs. (1.1). At ε small enough, and at values of

μ notably less than μ0, the sustained dynamics presented graphically on the plane (r1, r2) is located
close to the node N1. For nonzero ε, this is a limit cycle of such kind that the second oscillator has
some notable amplitude, while for the first one the amplitude is very small. Besides, there is an
unstable limit cycle close to S1. With gradual increase of the parameter, both cycles come closer,
meet together and coincide at some μ = μc(ε) ≈ μ0, forming a semistable limit cycle. At μ > μc(ε)
it disappears. Now the motion of a representative point on the plane (r1, r2) follows approximately
a closed large-scale path, as in Fig. 3c, visiting again and again a neighborhood of the origin.
Qualitatively, for each such passage, the following stages may be specified: excitation of the first
oscillator (i), excitation of the second oscillator (ii), damping of the first oscillator (iii), and slower
damping of the second oscillator (iv). Activation of the second oscillator occurs in the presence of
driving from the partner, due to the coupling term proportional to ε in the second equation, so it
inherits the phase from the first oscillator. During the damping stage of the second oscillator, its
residual oscillations initiate the activation of the first one. The corresponding term proportional to
ε in the first equation contains complex amplitude in the power of m, so this transfer of excitation
is accompanied with multiplication of the argument of the complex variable that is the phase of
the oscillations. Then the process repeats again and again. So the transformation of the phase at
each next cycle of the excitation exchange corresponds to the circle map,

ϕn+1 = mϕn + const, (1.3)

which is expanding for m � 2. At m = 2 it is commonly referred to as the Bernoulli map. Then let
us analyze dynamical regimes in the model (1.2) for different m.

2. DYNAMICAL BEHAVIOR OF THE GENERALIZED MODEL

One of the well-known techniques for studies of dynamical systems is the method of charts of
dynamical regimes [30, 31], which reveals the disposition of dynamical regimes depending on control
parameters visualizing the parameter plane topography. Let us consider the system (1.2) using this
method. As the control parameters we choose the basic frequency of the self-oscillations ω0 and
the parameter μ responsible for the transition through the blue sky bifurcation. We note that the
index m is not regarded as a control parameter in the classical sense, since the differential equations
are modified if we change m. Undertaking the computations, for each value of m we deal with a
concrete four-dimensional set of differential equations (In the Appendix full representations of the
equations are collected with different values of m).

Figure 4 shows the charts of dynamical regimes for m = 1 (a), m = 2 (b), m = 3 (c), and
m = 4 (d). In the course of plotting the charts, for periodic regimes we evaluate the number of
discrete points in the Poincaré section by a surface Re(a1) = 0 after excluding transients. (The
legend for correspondence of the periods and colors is given in the bottom part of Fig. 4). In the
case of the number of discrete points larger than 120, we regard the regime as nonperiodic (which
may be either chaotic or quasi-periodic), and the respective point of the parameter plane is colored
by a certain gray color tone.

For all values of m from 1 to 4, on the parameter planes of Fig. 4 one can observe two kinds of
characteristic bifurcation lines, at which complex dynamics emerge. The first line μBS

c ≈ 31
8 is that

corresponding to the bifurcation of the blue sky catastrophe. The second line μNS
c ≈ 16.5 is that
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Fig. 4. Charts of dynamical regimes for the generalized model (1.2) at (a) m = 1, ε = 1; (b) m = 2, ε = 0.5;
(c) m = 3, ε = 0.1; (d) m = 4, ε = 0.02.

of the Neimark – Sacker bifurcation. Arrangements of the parameter plane for all discussed values
of m look similar: for μNS

c < μ < μBS
c periodic self-oscillations take place; inside the band between

μBS
c and μ < μNS

c there is a complex structure including resonance tongues and nonperiodic self-
oscillations.

Fig. 5. Two-dimensional projections of phase portraits and Lissajous figures for the model (1.2) before the
bifurcation of the blue sky at μ = 3.1, ω0 = 2π, (a) m = 1, ε = 1; (b) m = 2, ε = 0.5; (c) m = 3, ε = 0.1;
(d) m = 4, ε = 0.02.
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Periods of the regimes occurring before the blue sky catastrophe (μ < μBS
c ) differ depending on

the index m. In Fig. 5 we show the corresponding two-dimensional projections of phase portraits on
the plane of real and complex parts of the amplitude of the first oscillator

(�(a1), �(a1)
)

and two-
dimensional projections of Lissajous figures on the planes of real parts of amplitudes of the first and
the second oscillators

(�(a1), �(a2)
)
. On the projections of phase portraits the observed numbers

of rotation for the orbits correspond to the index m. On the projections of the Lissajous figures
with increase of the index m one can see the appearance of self-intersections of the trajectory; the
number of self-intersections is equal to m− 1.

Inside the area between the bifurcation lines μBS
c and μNS

c sets of synchronization tongues occur
on the parameter plane, and among them one can distinguish main tongues of period 1. The upper
bases of the tongues are placed along the Neimark – Sacker bifurcation line; the last tongue of
period-1 is located on the parameter plane at frequency ω0 = 4.8π, other tongues at ω02 = ω0/2,
ω03 = ω0/3, ω04 = ω0/4, ω05 = ω0/5, ω06 = ω0/6; the frequencies of the successive tongues decrease
geometrically. Between the period-1 tongues, narrower tongues of higher order are observed. The
bottom base of the main diagonal line of period-1 (ω0 = 4.8π) leans on the line of bifurcation
associated with the blue sky catastrophe; to the right of this only resonances of higher orders are
observed, but to the left of this the same repeating structures of tongues are observed, which lean
on the main diagonal tongue of period-1 instead of the line of blue sky catastrophe.

Apart from that, we discuss quasi-periodic and chaotic oscillations (domains of gray color on

the parameter planes). As mentioned above, the horizontal line μNS
c ≈ 16.5 corresponds to the

Neimark – Sacker bifurcation; as a result of this bifurcation a two-dimensional torus emerges for any
m as we go downward in the parameter plane. Tongues of synchronization with different winding
numbers lean on the line of the Neimark – Sacker bifurcation. With decreasing μ the synchronization
tongues overlap, and chaotic dynamics develops. Inside several tongues one can observe transition
to chaos via period-doubling bifurcation cascades.

The structure of the parameter plane near the line of bifurcation of the blue sky catastrophe
differs essentially for different m. The synchronization tongues at the bottom bifurcation line
tighten at one point. Note that the formation of complex dynamics in the course of the blue
sky bifurcation has specific features for different values of index m. For example, for m = 1 one
can see that the synchronization tongues of high order approach very close the bifurcation line and
tend to one point along this line (Fig. 4a). It was checked in [34] that for this case, as a result
of the blue sky catastrophe, a two-frequency torus is born; see also Section 4. For m = 2, 3, 4 one
can see homogeneous domains of chaotic dynamics (gray color) on the parameter planes above
the bifurcation line of blue sky catastrophe in several intervals of ω0, which correspond to robust
hyperbolic chaos (Figs. 4b–4d). In Section 5 we consider in detail the features of formation of
hyperbolic chaos. In Section 6 we present results of computer verification of the hyperbolicity.

3. QUASI-PERIODIC DYNAMICS

Quasi-periodic oscillations are typical of systems of coupled oscillators. As one can see from
Fig. 4, quasi-periodic dynamics take place in the generalized model (1.2), arising as a result of the

Neimark – Sacker bifurcation for μNS
c ≈ 16.5. The topography of the parameter plane has a specific

characteristic structure manifesting sets of tongues of synchronization on multiple frequencies
embedded in the area of quasi-periodicity.

In Fig. 6 two-dimensional projections (gray color) and Poincaré sections (black color) of typical
phase portraits for the generalized model (1.2) are presented for different values of index m.
Projections of the attractors are projections of tori. In the Poincaré section an invariant curve
is visualized1).

Quasi-periodic oscillations in the model (1.2) with index m = 1 occur as a result of the blue sky
catastrophe. Figure 7 shows a two-dimensional projection of phase portrait (a), and its Poincaré
section formed by the intersection with the surface Re(a1) = 0 (b). In the Poincaré section we
observe a smooth invariant curve. The diagram in panel (c) demonstrates the evolution of phases
at successive crossings of the surface |a1| = |a2| corresponding to the Poincaré section in the correct

1)For this case we realized the Poincaré section by the surface Re(a1) = 0.
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Fig. 6. Two-dimensional projections (gray) and Poincaré sections formed by the intersection with the plane
Re(a1) = 0 of two-frequency quasi-periodic oscillations born as a result of the Neimark – Sacker bifurcation,
(a) m = 1, ε = 1, ω0 = 3π, μ = 16; (b) m = 2, ε = 0.5, ω0 = 2π, μ = 16; (c) m = 3, ε = 0.1, ω0 = 2π, μ = 16;
(d) m = 4, ε = 0.02, ω0 = 2π, μ = 16.

Fig. 7. Two-dimensional phase portrait (a) and its Poincaré section (b) for a quasi-periodic regime; (c) map
of phases for the first oscillator in the Poincaré section formed by the intersection with the plane |a1| = |a2|,
for m = 1, ε = 1, ω0 = 3π, μ = 3.15.

direction of increase of |a2|. The phase ϕn relates to the first oscillator at t = tn, which is the nth
crossing. In computations, it is determined as ϕn = arg

(
a1(tn)

)
. The plot for the map of phases

contains two almost parallel lines, without intersection with the bisector, and it looks like the
map (1.3) for m = 1.

4. HYPERBOLIC CHAOS AND OTHER PHENOMENA

According to the theory of Shilnikov and Turaev, for m � 2 hyperbolic chaos is expected in the
system. Now we consider some features of formation of the hyperbolic chaotic attractors.

As mentioned above, in Figs. 4b–4d nearly above the boundary line of the blue sky catastrophe
bifurcation line one can observe chaotic dynamics that correspond at m � 2 to regimes of hyperbolic
chaos. Consider some illustrations of this kind of dynamics.

Figure 8 shows two-dimensional projections of phase portraits in the regime of hyperbolic chaos
for m from 2 to 4 (top row) together with the respective iterative diagrams for phases at successive
passages of the Poincaré section formed by the intersection with the surface |a1| = |a2|. Observe
that for m = 2 topologically the discrete-step evolution of the phases corresponds to the Bernoulli
map: one full revolution for the preimage ϕn gives rise to two revolutions for the image ϕn+1.
For m = 3 and m = 4 the transformation of the phases corresponds to the triple and quadruple
expanding circle map (1.3): one full revolution for the preimage ϕn gives rise to three and four
revolutions for the image ϕn+1, respectively. It supports the qualitative arguments that the case
m � 2 occurs here, associated with the presence of the Smale –Williams solenoid in the Poincaré
map according to the Shilnikov – Turaev theory.

Figure 9 shows, for the same values of parameters, the waveforms produced by two oscillators
constituting the system. Here we observe the process of exchange of excitation between the
subsystems according to its description in Section 2. The waveforms of the second subsystem are
smooth enough, and those of the first one have small-scale oscillations near zero, while the second
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Fig. 8. Two-dimensional projections of phase portraits and the map of phases of the generalized model (1.2)
in the regime of hyperbolic chaos for different values of index m: (a) m = 2, ε = 0.5, ω0 = 2π, μ = 3.15; (b)
m = 3, ε = 0.1, ω0 = 2π, μ = 3.15; (c) m = 4, ε = 0.02, ω0 = 2π, μ = 3.15.

subsystem has a large amplitude. They correspond to oscillations on the helical coils, which occur
in the vicinity of the small-scale limit cycles before the blue sky catastrophe. These fluctuations
are well seen in two-dimensional projections of phase portraits in Fig. 8.

Let us consider in detail each case of different values of index m. Firstly, we turn to a one-
parameter analysis. In Fig. 10a bifurcation diagrams for m = 2 and ω0 = 3π are shown. In Figs. 10b
and 10c magnified fragments are presented for vicinities of critical values of control parameters μBS

c

and μNS
c . As in the case m = 1, near the Neimark – Sacker bifurcation a soft birth of a torus takes

place. In the vicinity of the blue sky bifurcation, a hard birth of a two-frequency torus occurs.

Figure 10d–10i shows two-dimensional projections of phase portraits in the Poincaré section
formed by the intersection with the plane Re(a1) = 0. As one can see, at μ = 3.15 in the Poincaré
section the phase portrait is close to a smooth invariant curve, but it has a small loop extending from
the invariant curve. With increasing μ this loop grows, but in the diagrams for phases corresponds
topologically to the Bernoulli map (Figs. 10e and 10j, μ = 4.3). When we observe the transition to
nonhyperbolic chaos in the bifurcation diagram, in the Poincaré section this loop becomes larger,
and the map of phases becomes more complex and ceases to correspond to the Bernoulli map
(Figs. 10f and 10k, μ = 6.3). As one goes up to the Neimark – Sacker bifurcation line, this loop
in the Poincaré section disappears gradually. For the quasi-periodic regime (μ = 12) the iterative
diagram of phases tends to a straight line of unit slope.

Now let us turn to two-parametric analysis and consider in more detail the structure of the
parameter plane in the domain where hyperbolic chaos takes place. Figure 11 shows magnified
fragments of the chart of dynamical regimes of the model (1.2) for values of index m from 2
to 4. A wide homogeneous domain of gray color corresponds to hyperbolic chaos. Thus, with
increasing parameter μ, at μBS

c hyperbolic chaos emerges. With further increase of μ tongues of
synchronization appear on the charts, which gradually become wider and start to overlap. This
process accompanies the destruction (collapse) of hyperbolic chaos.

In [35], one of possible scenarios of birth and collapse of strange hyperbolic attractors associated
with Smale –Williams solenoids was suggested. The outlined mechanism of transition, as the control
parameter is varied, consists in merging orbits belonging to the attractor with orbits belonging to
the unstable invariant set, which are in one-to-one correspondence, in some parameter interval
of finite width through saddle-node bifurcations. The same type of behavior is observed in the
generalized model (1.2) for values of index m from 2 to 4.
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Fig. 9. Waveforms produced by the generalized model (1.2) in regimes of hyperbolic chaos for different values
of index m: (a) m = 2, ε = 0.5, ω0 = 2π, μ = 3.15; (b) m = 3, ε = 0.1, ω0 = 2π, μ = 3.15; (c) m = 4, ε = 0.02,
ω0 = 2π, μ = 3.15.

5. LYAPUNOV EXPONENTS AND VERIFICATION OF HYPERBOLICITY

Consider Lyapunov exponents for the flow system (1.2) at different m, employing the standard
algorithm [36, 37]. The computed values of the exponents λi, i = 1, . . . , 4 are collected in Table 1.
Note that for all three cases m = 2, 3 and 4 there is only one positive Lyapunov exponent. The
second one is zero within a numerical error. Using the Lyapunov exponents, we can estimate the
attractor dimension via the Kaplan –Yorke formula [38], see column DKY in Table 1. Observe that
the dimensions are remarkably close to each other for all three cases.

Table 1. Lyapunov exponents and Kaplan – Yorke dimension for the system (1.2) and the correspond-
ing Poincaré map.

m λ1 λ2 λ3 λ4 DKY Λ1 T λ1T

2 0.0439 −0.0001 −8.7588 −8.8606 2.0050 0.6793 15 0.6590

3 0.0810 −0.0001 −5.9709 −6.3186 2.0136 1.0729 14 1.1346

4 0.0817 −0.0003 −4.6255 −5.0960 2.0176 1.3635 17 1.3890

To perform the hyperbolicity test, a Poincaré map is required that represents the states of the
flow system at successive excitation stages. We define this map in the same way as it was done
previously, when the iteration diagrams for phases were plotted, with the section surface |a1| = |a2|.
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Fig. 10. Bifurcation diagrams and their magnified fragments in the vicinity of bifurcation lines of the
generalized model (1.2) for m = 2, ω0 = 3π (a)–(c); two-dimensional projections of phase portraits in the
Poincaré section formed by the intersection with the plane Re(a1) = 0 for different values of parameter μ:
(d) μ = 3.15, (e) μ = 4.3, (f) μ = 6.1, (g) μ = 8.8, (h) μ = 12.0, (i) μ = 16.0; and the corresponding map of
phases (j) μ = 4.3, (k) μ = 6.1, (l) μ = 8.8, (m) μ = 12.0.

The comparison of the Lyapunov exponents for the map with exponents for the original flow
system requires an average time T between the excitation stages, or, which is the same, between the
Poincaré section crossings. We have computed it by analyzing the trajectories of the flow system;
see the corresponding column in Table 1. Observe that the product λ1T equals approximately the
corresponding Λ1.

The first Lyapunov exponent for the Poincaré map, see column Λ1 of Table 1, equals
approximately lnm.

Let us now turn to the numerical test of hyperbolicity. The fast method of angles will be
applied, see reference [39] for details. In reference [40] the theoretical background for this method
is formulated.

All trajectories on a chaotic hyperbolic attractor are known to be of saddle type. This means
that their manifolds, i.e., expanding, contracting and neutral, if any, always intersect transversally,
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Fig. 11. Magnified fragments of the charts of dynamical regimes for the model (1.2) with m = 2 (a), 3 (b),
and 4 (c), which contain the areas of hyperbolic chaos and their vicinities.

and no tangencies between them can occur. The method of angles consists in testing for this
property: moving along a trajectory, we compute the angles between the subspaces tangent to
the trajectory manifolds. The hyperbolicity is confirmed if the angles never vanish, while for
nonhyperbolic attractors zero angles are encountered with a nonzero probability.

The fast method of angles [39] consists in passing forward and back in time along the same
trajectory. The forward-time pass is identical with that performed for the Lyapunov exponents
computation. The equations under consideration are integrated simultaneously with a required
number, say K, of copies of the corresponding variation equations. Periodically, the orthonormal-
ization of a matrix whose columns are solutions of the variational equations is performed. But
unlike the routine for Lyapunov exponents, the matrices after the orthonormalizations are saved
for further use.

For the backward-time pass, an adjoint variational equation has to be derived. For the system
under consideration we merely have to transpose the Jacobian matrix and invert its sign. The
adjoint variational equations are integrated in backward time. The number of equations is the
same as on the forward pass, i. e., K. In quite the same way solutions of the adjoint equations
provide columns of the matrix, which have to be periodically orthonormalized. This has to be done
exactly at the same trajectory points as on the forward pass. The resulting orthogonal matrices
together with the corresponding matrices saved on the forward pass are used for computation of
the angles. A matrix of pairwise inner products of their columns is built; then for each of its top
left submatrices the smallest singular value σi is computed, where i = 1, . . . ,K, and the angle is
computed as θi = π

2 − arccos(σi) [39].

As discussed above, the flow systems with m = 2, 3, 4 exhibit chaotic regimes with one positive
Lyapunov exponent, and due to the invariance under time shifts the second exponent is zero,
see Table 1. This means that the respective trajectories have one-dimensional expanding and
one-dimensional neutral manifolds. As we deal with the Poincaré map, we exclude the neutral
manifold from consideration. Thus, testing the hyperbolicity, we need to compute the angle between
expanding and contracting manifolds only. However, to actually exclude the neutral manifold in
the course of computations, we should project the solutions of the variational and adjoint equations
onto the Poincaré section surface, which complicates the routines. Instead we check if the original
flow system on the section surface fulfills the conditions imposed on Anosov flows [41, 42]. This
automatically implies hyperbolicity for the corresponding Poincaré map.

Thus, we need to compute two angles for the flow system: θ1 between the expanding subspace
and a direct sum of the neutral and contracting subspaces, and θ2 between a direct sum of the
expanding and neutral subspace and the contracting subspace. This means that K = 2, i. e., we
need to solve two copies of the variational as well as the adjoint equations. The hyperbolicity will
be confirmed if both of these angles never vanish.

Figures 12a–12c show the distributions of angles θ1 and θ2 computed for the system (1.2) m = 2, 3
and 4, respectively. In all three cases the distributions are well separated from the origin, which
confirms the hyperbolicity of the corresponding attractors.
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Fig. 12. Distributions of angles between subspaces tangent to trajectory manifolds of the system (1.2). Panels
(a), (b) and (c) correspond to m = 2, 3 and 4, respectively. The parameters correspond to those given in the
caption of Fig. 9. Angles are computed on the Poincaré section surface. The clear separation of the distributions
confirms the hyperbolicity of the corresponding Poincaré map in all three cases.

6. CONCLUSIONS

We have introduced a family of systems governed by ordinary fourth-order differential equations
in which, depending on an integer index m, different variants of the blue sky catastrophe occur. The
latter is a bifurcation event consisting in the appearance of a large-scale attractor after merging and
disappearance of a pair of small-scale stable and unstable limit cycles, when a control parameter
is varied. In accordance with the Shilnikov –Turaev theory, the type of the resulting attractor is
determined by the index m; its role is that it determines the m-fold expansion for an angular
variable acquired by the trajectory at the entrance to the region of spiral movements in the
phase space, where the former missing pair of limit cycles existed, in comparison with its initial
value at the exit from that region. The cases m = 1, 2, 3, 4 are discussed in some detail. For m
= 1, the result of bifurcation is the emergence of an attractive torus, and for m � 2 the result
is the appearance of hyperbolic chaos associated with the attractor corresponding to a Smale –
Williams solenoid in the Poincaré map. The topological type of the solenoid is determined by
the index m, which characterizes the rate of increase in the number of loops of the solenoid
winding for successive iterations of the Poincaré map. Results of a numerical study of the dynamics
are discussed and illustrated in detail, including the parameter plane charts of dynamic regimes,
bifurcation diagrams, portraits of the attractors of the flow system and of the Poincaré map. On the
charts of dynamical regimes, various nontrivial dynamical behaviors take place in a band between
the line corresponding to the blue sky catastrophe and the line associated with the Neimark –
Sacker bifurcation. Hyperbolic chaos occurs over the entire areas near the blue sky catastrophe
line. The destruction of hyperbolic chaos upon departure from these areas in other directions is
associated with the emergence of periodic dynamics represented by synchronization tongues in the
parameter plane. It is believed possible to implement systems representing the introduced family
of dynamical systems as electronic devices. This may be of interest when it comes to constructing
electronic generators characterized by insensitivity to variation of parameters, manufacturing errors,
interferences etc., since a fundamental attribute of hyperbolic chaos is its property of roughness
(structural stability).

APPENDIX

Full systems of ODE which were used in numerical experiments for different values of index m.
m = 1

ẋ1 = ω0y1 +
[
1 − (x22 + y22) +

1

2
(x21 + y21) −

1

50
(x41 + 2x21y

2
1 + y41)

]
x1 +

1

2
εy2,

ẏ1 = −ω0x1 +
[
1 − (x22 + y22) +

1

2
(x21 + y21) −

1

50
(x41 + 2x21y

2
1 + y41)

]
y1,

ẋ2 = ω0y2 +
[
(x21 + y21) − μ +

1

2
(x22 + y22) −

1

50
(x42 + 2x22y

2
2 + y42)

]
x2 + εx1,

ẏ2 = −ω0x2 +
[
(x21 + y21) − μ +

1

2
(x22 + y22) −

1

50
(x42 + 2x22y

2
2 + y42)

]
y2.

(A.1)
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m = 2

ẋ1 = ω0y1 +
[
1 − (x22 + y22) +

1

2
(x21 + y21) −

1

50
(x41 + 2x21y

2
1 + y41)

]
x1 + εx2y2,

ẏ1 = −ω0x1 +
[
1 − (x22 + y22) +

1

2
(x21 + y21) −

1

50
(x41 + 2x21y

2
1 + y41)

]
y1,

ẋ2 = ω0y2 +
[
(x21 + y21) − μ +

1

2
(x22 + y22) −

1

50
(x42 + 2x22y

2
2 + y42)

]
x2 + εx1,

ẏ2 = −ω0x2 +
[
(x21 + y21) − μ +

1

2
(x22 + y22) −

1

50
(x42 + 2x22y

2
2 + y42)

]
y2.

(A.2)

m = 3

ẋ1 = ω0y1 +
[
1 − (x22 + y22) +

1

2
(x21 + y21) −

1

50
(x41 + 2x21y

2
1 + y41)

]
x1 +

1

2
ε(3x22y2 − y32),

ẏ1 = −ω0x1 +
[
1 − (x22 + y22) +

1

2
(x21 + y21) −

1

50
(x41 + 2x21y

2
1 + y41)

]
y1,

ẋ2 = ω0y2 +
[
(x21 + y21) − μ +

1

2
(x22 + y22) −

1

50
(x42 + 2x22y

2
2 + y42)

]
x2 + εx1,

ẏ2 = −ω0x2 +
[
(x21 + y21) − μ +

1

2
(x22 + y22) −

1

50
(x42 + 2x22y

2
2 + y42)

]
y2.

(A.3)

m = 4

ẋ1 = ω0y1 +
[
1 − (x22 + y22) +

1

2
(x21 + y21) −

1

50
(x41 + 2x21y

2
1 + y41)

]
x1 + 2εx2y2(x

2
2 − y22),

ẏ1 = −ω0x1 +
[
1 − (x22 + y22) +

1

2
(x21 + y21) −

1

50
(x41 + 2x21y

2
1 + y41)

]
y1,

ẋ2 = ω0y2 +
[
(x21 + y21) − μ +

1

2
(x22 + y22) −

1

50
(x42 + 2x22y

2
2 + y42)

]
x2 + εx1,

ẏ2 = −ω0x2 +
[
(x21 + y21) − μ +

1

2
(x22 + y22) −

1

50
(x42 + 2x22y

2
2 + y42)

]
y2.

(A.4)

ACKNOWLEDGMENTS

The work of SPK and NVS including the model formulation and its qualitative and numerical
analysis (Sections 2–5) was supported by RSF grant No 17-12-01008. The work of PVK on Lyapunov
analysis and hyperbolicity verification (Section 6) was supported by RFBR grant No 16-02-00135.

REFERENCES

1. Palis, J. and Pugh, C. C., Fifty Problems in Dynamical Systems, in Dynamical Systems: Proc.
Sympos. Appl. Topology and Dynamical Systems (Univ. Warwick, Coventry, 1973/1974): Presented
to E.C. Zeeman on His Fiftieth Birthday, Lecture Notes in Math., vol. 468, Berlin: Springer, 1975, pp.
345–353.

2. Turaev, D. V. and Shil’nikov, L.P., Blue Sky Catastrophes, Dokl. Math., 1995, vol. 51, pp. 404–407; see
also: Dokl. Akad. Nauk, 1995, vol. 342, no. 5, pp. 596–599.

3. Shil’nikov, L.P. and Turaev, D. V., Simple Bifurcations Leading to Hyperbolic Attractors: Computa-
tional Tools of Complex Systems: 1, Comput. Math. Appl., 1997, vol. 34, nos. 2–4, pp. 173–193.

4. Shilnikov, L. P. and Turaev, D. V., A New Simple Bifurcation of a Periodic Orbit of ¡¡Blue Sky
Catastrophe¿¿ Type, in Methods of Qualitative Theory of Differential Equations and Related Topics,
Amer. Math. Soc. Transl. Ser. 2, vol. 200, Providence,R.I.: AMS, 2000, pp. 165–188.

5. Gavrilov, N. and Shilnikov, A., Example of a Blue Sky Catastrophe, in Methods of Qualitative Theory
of Differential Equations and Related Topics, Amer. Math. Soc. Transl. Ser. 2, vol. 200, Providence,R.I.:
AMS, 2000, pp. 99–105.

6. Shilnikov, A. L., Shilnikov, L.P., and Turaev, D. V., Blue-Sky Catastrophe in Singularly Perturbed
Systems, Mosc. Math. J., 2005, vol. 5, no. 1, pp. 269–282.

7. Shilnikov, A. and Turaev, D., Blue-Sky Catastrophe, Scholarpedia, 2007, vol. 2, no. 8, p. 1889.
8. Shilnikov, L. P., Shilnikov, A. L., and Turaev, D. V., Showcase of Blue Sky Catastrophes, Internat.

J. Bifur. Chaos Appl. Sci. Engrg., 2014, vol. 24, no. 8, 1440003, 10 pp.

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 5 2017



564 KUPTSOV et al.

9. Shilnikov, A. and Cymbalyuk, G., Transition between Tonic Spiking and Bursting in a Neuron Model
via the Blue-Sky Catastrophe, Phys. Rev. Lett., 2005, vol. 94, no. 4, 048101, 4 pp.

10. Shilnikov, A., Complete Dynamical Analysis of a Neuron Model, Nonlinear Dynam., 2012, vol. 68, no. 3,
pp. 305–328.

11. Barnett, W., O’Brien, G., and Cymbalyuk, G., A Family of Mechanisms Controlling Bursting Activity
and Pulse-Triggered Responses of a Neuron Model, in Proc. of the 29th Southern Biomedical Engineering
Conference (SBEC), 2013, pp. 53–54.

12. Barnett, W. H. and Cymbalyuk, G. S., A Codimension-2 Bifurcation Controlling Endogenous Bursting
Activity and Pulse-Triggered Responses of a Neuron Model, PLoS ONE, 2014, vol. 9, no. 1, e85451.

13. Glyzin, S. D., Kolesov, A. Yu., and Rozov, N. Kh., The Blue Sky Catastrophe in Relaxation Systems
with One Fast and Two Slow Variables, Differ. Equ., 2008, vol. 44, no. 2, pp. 161–175; see also: Differ.
Uravn., 2008, vol. 44, no. 2, pp. 158–171, 285.

14. Glyzin, S. D., Kolesov, A. Yu., and Rozov, N. Kh., Blue Sky Catastrophe As Applied to Modeling of Car-
diac Rhythms, Comput. Math. Math. Phys., 2015, vol. 55, no. 7, pp. 1120–1137; see also: Zh. Vychisl.
Mat. Mat. Fiz., 2015, vol. 55, no. 7, pp. 1136–1155.

15. Bondarev, A. A. and Weigt, H., Sensitivity of Energy System Investments to Policy Regulation Changes:
Application of the Blue Sky Catastrophe, https://ssrn.com/abstract=2968230 (May 11, 2017), 23 pp.

16. Maistrenko, Yu. L., Vasylenko, A., Sudakov, O., Levchenko, R., and Maistrenko, V. L., Cascades
of Multiheaded Chimera States for Coupled Phase Oscillators, Internat. J. Bifur. Chaos Appl. Sci.
Engrg., 2014, vol. 24, no. 8, 1440014, 17 pp.

17. Meca, E., Mercader, I., Batiste, O., and Ramı́rez-Piscina, L., Blue Sky Catastrophe in Double-Diffusive
Convection, Phys. Rev. Lett., 2004, vol. 92, no. 23, 234501, 4 pp.
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Classification of the dynamical mechanisms that support bistability between bursting oscillations

and silence has not yet been clarified in detail. The purpose of this paper is to demonstrate that the

coexistence of a stable equilibrium point with a state of continuous bursting can occur in a slightly

modified well-known biophysical model, which describe the dynamics of pancreatic beta-cells. To

realize this form of coexistence, we have introduced an additional voltage-dependent potassium

current that is activated in the region around the original equilibrium point. It is interesting to note

that this modification also leads the model to display a blue-sky catastrophe in the transitions region

between chaotic and bursting states. Published by AIP Publishing.
https://doi.org/10.1063/1.4986401

19 Multistability is a characteristic feature of many types of

20 cells, neural networks, and other forms of oscillatory bio-

21 physical systems. This feature is particularly significant

22 in connection with the study of interacting ensembles of

23 many, nearly identical subsystems. It is well-known that,

24 for instance, a variety of unusual phenomena that emerge

25 in ensembles of coupled oscillators can lead to significant

26 reconstructions of an oscillator population, and the pres-

27 ence of coexisting states can significantly influence on the

28 dynamics of all ensemble. In this paper, we introduce a

29 modified version of the well-known model describing

30 dynamics of pancreatic beta-cells obtained by introduc-

31 ing a new type of potassium-like ion channel with a char-

32 acteristic set of channel parameters selected in

33 accordance with a standard Hodgkin-Huxley formalism.

34 The suggested modification is designed to be local and

35 small enough to allow for the existence of an attracting

36 state inside the regime of stable bursting dynamics. This

37 provides for the presence of multistability in the modified

38 beta-cell model and, at the same time, serves as an exam-

39 ple of a biophysical system that allows for the coexistence

40 of a stable equilibrium point with large amplitude

41 bursting.

42

43 I. INTRODUCTION

44 Multistability, or coexistence of dynamical regimes,

45 is a characteristic feature of many types of cells, neural

46 networks,1–4 and other forms of oscillatory biophysical sys-

47 tems.5–11 This feature is particularly significant in connec-

48 tion with the study of interacting ensembles of many, nearly

49identical subsystems. It is well-known that, for instance, a

50variety of unusual phenomena that emerge in ensembles of

51coupled oscillators can lead to significant reconstructions of

52an oscillator population or to its total collapse. It is broadly

53accepted that, for instance, synchronization plays an impor-

54tant role in the pathogenesis of neurological diseases such as

55Parkinson’s disease and essential tremor10–12 and, more

56specifically, Parkinson’s disease is associated with asynchro-

57nous pacemaker activity involving a population of many

58thousands of neurons in the basal ganglia.13,14 Another funda-

59mental phenomenon that can emerge in ensembles of coupled

60system is oscillator quenching.15 The biomedical significance

61of this phenomenon again hinges on the fact that the suppres-

62sion or disruption of oscillations is involved in the treatment

63of a variety of neuronal disorders such as Alzheimer’s and

64Parkinson’s disease.

65In this context, the coexisting states of the single ele-

66ment of the system play a significant role. Special attention

67should be paid to hidden or rare attractors. In line with the

68recent survey papers by Leonov and Kuznetsov et al.,16–18

69an attracting state may be classified as either “hidden” or

70“self-excited,” with hidden attractors representing all those

71attractors that do not connect to a stable equilibrium state.

72The presence of hidden or rare attractors in a system leads to

73multistability, and in some cases finding of hidden or rare

74attractor may be a challenging task, but it can influence the

75dynamics as of the single subsystem, as in ensembles.

76At present, the mechanisms that allow bistability, such as

77the coexistence of tonic spiking and silence or the coexis-

78tence of tonic spiking and bursting, appear to be relatively

79well described. On the other hand, the dynamical mechanisms

80that support bistability between bursting and silence have not

81yet been examined to the same extent.4 Classification of

82mechanisms that support the coexistence of oscillatory and

a)Author to whom correspondence should be addressed: stankevichnv@

mail.ru
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83 silent regimes is so far incomplete, and this remains a chal-
84 lenge both in relation to the progress of dynamical systems
85 theory and in relation to important issues in neuroscience. An
86 example of a system that displays coexistence of silence and
87 bursting oscillations was presented in the recent paper by
88 Malashchenko et al..4 Yet, further attention to this problem is
89 clearly desirable.
90 This study takes a point of departure in the classic
91 Sherman model that has been widely used to describe the
92 spiking and bursting dynamics of insulin-secreting pancre-
93 atic beta-cells,19,20 and also this model is widely used for
94 description of the dynamics of neuron. Experimentally, one
95 can observe, for instance, how the secretion of insulin
96 increases with the fraction of time that the cells spend in the
97 spiking state. On the other hand, the duration of the silent
98 phase between two bursts is regulated by the rate at which
99 calcium is removed from the interior of the cell. The spiking

100 oscillations typically display a period of 1–10 s, whereas the
101 duration of the bursting period typically varies from 0.2 to
102 5.0min. It is interesting to note that, however, individual

beta-cells do not burst.21–23 The opening probability for the
104 potassium channels is too small for the individual cell to pre-
105 sent a regular spiking signal and, only in the form of clusters
106 of 30–100 synchronized cells, a regular spiking oscillations
107 will occur. Both electrical coupling and so-called glucose
108 sensing are involved in the cellular synchronization.
109 We have previously performed a variety of one- and
110 two-dimensional bifurcation analyses21 for the considered
111 beta-cell model20,21 and demonstrated how the dynamics of
112 this system after an initial Hopf bifurcation may display an
113 unusual structure of overlapping resonance tongues. We
114 have also outlined the main bifurcation structure for a model
115 of two coupled, identical pancreatic cells24 and we have
116 described an interesting form of phase synchronization that
117 can occur when the uncoupled oscillators can synchronize in
118 a variety of different configurations.25 Most recently, we
119 have contributed to a study of the co-existence of hidden
120 attractors in a variety of different systems,26 and we used
121 fluorescence microscopy to demonstrate how externally
122 forced glucose oscillations can induce distinct 1:1 and 1:2
123 entrainment of oscillations in islet Ca2þ concentrations and
124 mitochondrial membrane potential.27

125 In this paper, we introduce a modified version of the
126 Sherman model obtained by introducing a new type of
127 potassium-like ion channel with a characteristic set of chan-
128 nel parameters selected in accordance with a standard
129 Hodgkin-Huxley formalism. The suggested modification
130 is designed to be local and small enough to allow for the
131 existence of an attracting state inside the regime of stable
132 bursting dynamics. This provides for the presence of multi-
133 stability in the modified beta-cell model and, at the same
134 time, serves as an example of a biophysical system that
135 allows for the coexistence of a stable equilibrium point with
136 large amplitude bursting. Besides the possibility of observing
137 hidden attractors in a type of beta-cell like model, our inter-
138 est in the considered system originates from the possibility
139 of observing processes such as the intracellular dynamics of
140 Ca2þ-sensitive Kþ-channel dynamics28 or the effect of alter-
141 native controls on the cell dynamics.29 We first present the

142structure of the original model and describe some of the

143characteristic bifurcation structure of that model. Hereafter
144follows a description of the modified cell model and the
145associated characteristic phenomena. Finally, in the last sec-

146tion, we discuss the modified beta cell model in the light of
147its underlying biological mechanisms.

148II. PRESENTATION OF THE BURSTING MODEL

149It is well known that the electrical activity of pancreatic
150beta-cells and other biological cells relies on a number of
151different types of voltage- and ligand-gated ion channels that
152are permeable to inorganic ions such as sodium, potassium,
153chloride, and calcium. Increasing evidence suggests that ion
154channels not only regulate membrane potential, ion homeo-
155stasis, and electrical signaling of these cells but also play an
156important role in cell proliferation, migration, apoptosis, and
157differentiation. Recently, the role of ion channels in different
158oncogenic processes was demonstrated.30–32

159Over the years, studies of complex pancreatic systems
160have been performed on individual beta-cells from mice, on

161small and larger groups of interacting beta-cells, and on clus-
162ters of interacting islets. Together these studies have contrib-
163uted significantly to a better understanding of the role of the

164inhomogeneity that exists at different levels of the interac-
165tion including, for instance, the more or less random mix of
166different cell types across the pancreatic tissue, the anisot-

167ropy associated with the preferential arrangement of the
168beta-cells along the pancreatic blood vessels, and the varia-
169tion of the tissue properties along the edges of the islets.

170However, as mentioned above, only reasonably large and
171uniform clusters of pancreatic beta-cells display the charac-
172teristic bursting dynamics with its alternation between of
173rapid spiking and periods of silence.
174As the starting point for our analysis, let us use the
175following simplified pancreatic beta-cell model based on the
176Hodgkin-Huxley formalism as suggested by Sherman
177et al.:20

s _V ¼ �ICaðVÞ � IKðV; nÞ � ISðV; SÞ;
s _n ¼ rðn1ðVÞ � nÞ;
sS _S ¼ S1ðVÞ � S: (1)

178Here, V represents the membrane potential, n may be inter-
179preted as the opening probability of the potassium channels,
180and S accounts for the presence of a slow variable in the sys-
181tem. As previously noted, the precise biophysical interpreta-
182tion of this variable remains unclear. The variables ICa(V)
183and IK(V,n) are the calcium and potassium currents,
184gCa¼ 3.6 and gK ¼ 10.0 are the associated conductances, and
185VCa¼ 25mV and VK ¼�75mV are the respective Nernst (or

186reversal) potentials. Together with IS(V, S), the slow calcium
187current ICa and the potassium current IK define the three
188transmembrane currents of our basic system

ICaðVÞ ¼ gCam1ðVÞðV � VCaÞ; (2)

IKðV; nÞ ¼ gKnðV � VKÞ; (3)

ISðV; nÞ ¼ gSSðV � VKÞ; (4)

000000-2 N. Stankevich and E. Mosekilde Chaos 27, 000000 (2017)



189 with the gating variables for m, n, and S representing the
190 opening probabilities of the fast and slow potassium
191 channels

x1ðVÞ ¼ 1þ exp
Vx � V

hx

� ��1

; x ¼ m; n; S: (5)

192 Table I lists the parameter values corresponding to the
193 observed bursting dynamics for the model (1). In principle,
194 the characteristic time constant for the membrane potential is
195 determined by the membrane capacity and the corresponding
196 electrical conductance. In accordance with the original for-
197 mulation of the model,20 there is no electrical capacitance in
198 Eq. (1), and the conductances are all dimensionless. To elim-
199 inate the dependence on cell size, the conductances have
200 thus been scaled relative to some appropriate conductance.
201 With time constants of s¼ 0.02 s and sS¼ 35 s, the ratio
202 kS¼ s/sS is quite small, and the model is numerically stiff.
203 Figures 1(a) and 1(b) show typical examples of the time
204 series obtained for the fast variable V and slow variable S.
205 Calcium functions as an essential part of a double-sided
206 feedback loop that controls the bursting process and involves
207 modulations of both electrical activity and hormonal secre-
208 tion.19 Calcium removal leads to depolarization and controls
209 the silent phase through deactivation of calcium activated
210 potassium channels. This depolarization activates both the
211 voltage-gated calcium channels and the Hodgkin-Huxley

212like potassium channels until a renewed influx of calcium
213takes place and the spiking dynamics is initiated again.
214Following Izhikevich,3 the bursting attractor in the
215model (1) is born through simultaneous Hopf and saddle-
216node bifurcations. As long as VS<�44.7mV, the equilib-
217rium point is stable [examples of fast and slow manifolds are
218presented in Fig. 1(d)]. For VS¼�44.7mV, a Hopf bifurca-
219tion has occurred, the equilibrium point has turned unstable,
220and the bursting attractor exists [Fig. 1(e)]. The parameter VS

221only controls the slow manifold, and with increasing values
222of this parameter, the slow manifold moves upwards rela-
223tively to the fast manifold. The bursting attractor is born in
224the vicinity of the equilibrium point, but after the bifurcation
225that occurs for increasing values of VS, the equilibrium point
226moves far away from the bursting attractor. Finally, at
227VS¼�33.7mV, the bursting attractor turns into the spiking
228attractor as shown in Fig. 1(f).
229An interesting feature of the biological bursting system
230is the large variation one often observes for the bursting
231period. We have already referred to this variability in rela-
232tion to the discussion of slow and fast bursters. Besides var-
233iations associated with differences in clusters size, the most
234obvious reason for variations to occur is inhomogeneity in
235the cell clusters. This has inspired a number of authors19,20

236to propose a so-called phantom burster model that allows
237fast and slow bursting to occur simultaneous, i.e., by replac-
238ing the original equation for the slow potassium current by a
239set of two (or more) parallel potassium currents. The idea
240has been to use a multiple degree-of-freedom approach to
241generate a broader range of interacting bursting oscillators
242while maintaining the overall structure of the system. If the
243conductance is large, the bursting that results from this feed-
244back will be fast. On the other hand, if the conductance is
245small, this feedback has little influence, and the bursting that
246results from it will be slow. In this way, it has been possible

TABLE I. Parameters for model (1).18

s¼ 0.02 s sS¼ 35 s r¼ 0.93

gCa¼ 3.6 gK¼ 10.0 gS¼ 4.0

VCa¼ 25.0 mV VK¼�75 mV

hm¼ 12.0 mV hn¼ 5.6 mV hS¼ 10.0 mV

Vm¼�20.0 mV Vn¼�16.0 mV VS¼�35 mV

FIG. 1. Time series of the fast (a) and

slow (b) variables; (c) fast (blue) and

slow (red) manifolds together with a

two-dimensional projection of phase

portrait for the original Sherman

model.18 During the spiking phase,

Ca2þ-ions flow into the cells and, dur-

ing the silent phases, Ca2þ-ions are

pumped out. The fast (spiking) dynam-

ics is related to the flow of Kþ-ions.
(d) VS¼�45mV; (e) VS ¼�44.7mV;

and (f) VS ¼�33.7mV.
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247 to account for a range of biomedical phenomena, including

248 the ubiquitous tri-phase response to a step increase in glu-

249 cose, the response to perturbations of intra-cellular Ca2þ

250 stores, and different intracellular functions of potassium.20,29

251 III. MODIFICATION OF THE MODEL

252 Figure 1(c) shows the two-dimensional projection of the

253 phase portrait (brown color) together with the fast and slow

254 manifolds for VS¼�35mV. For these parameters, the (peri-

255 odic) trajectories do not intersect the neighborhood of the

256 equilibrium point, but the bursting state terminates in a

257 homoclinic bifurcation as the trajectory hits the slow mani-

258 fold at some other point. Hence, it appears possible to reor-

259 ganize the conditions around the equilibrium point in such a

260 way that this point is stabilized while the bursting trajectory

261 continues to exist. Between the stable equilibrium point and

262 the bursting state, we expect to find some rejecting structure

263 and, under these conditions, the bursting state represents a

264 hidden attractor.

265 To achieve stabilization of the equilibrium point, we

266 propose a form of the voltage-dependent potassium current

267 that varies strongly with the membrane potential right near

268 this equilibrium point and, hence, its stability can exist with-

269 out affecting the global flow in the model. The suggested

270 form of the potassium current is specified by the equation:

IK2ðVÞ ¼ gK2p1ðVÞðV � VKÞ; (6)

271 where the function

p1ðVÞ ¼ exp
V � Vp

hp
þ exp

Vp � V

hp

� ��1

(7)

272represents the opening probability for the suggested new

273type of potassium channel. The same probability functions

274for the normal channels are represented by sigmoidal func-

275tion (5) [see Figs. 2(a) and 2(b)]. When the membrane volt-

276age reaches a threshold voltage, the potassium channel will

277open with probability n1(V) ¼ 1.0. For the new channels,

278the opening function never equals to 1.0. When the mem-

279brane voltage reaches a threshold voltage, the opening proba-

280bility will be equal only to 0.5 [this probability function is

281presented in Fig. 2(c)]. From the physiological point of view,

282such situation can be interpreted as some dysfunction of ion

283channel, for instance, like blocking of potassium channel or

284inactivation.33 Also we have to remind that for the individual

285potassium channels of pancreatic beta-cell the opening prob-
286ability is very small.21,22

287Thus, the modified model has the form

s _V ¼ �ICaðVÞ � IKðV; nÞ � IK2ðVÞ � ISðV; SÞ;
s _n ¼ rðn1ðVÞ � nÞ;
sS _S ¼ S1ðVÞ � S; (8)

288with IK2(V) and p1(V) as given by (6) and (7).
289All the parameters of the original model (1) still apply.

290However, the modified model has three additional parame-

291ters gK2, Vp, and hp, which can be used to characterize the

292new ion channel. Figure 2(e) shows the null-clines of the
293modified model (8). These curves illustrate how one can

FIG. 2. Dependence of the membrane potential on the different ions: (a) calcium channel; (b) potassium channel; (c) probability function of new ion channel;

(d) current of Ca2þ (2) (red) and sum of current Ca2þ (2) and current of new channel (6) (blue); (e) fast (blue) and slow (red) manifolds of the modified model

(8). Supplementing parameters for the new ion channel: gK2¼0.14, hp¼1mV, and Vp¼�46mV.
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294 introduce new types of ion channels to the model, each lead-

295 ing to the appearance of new pairs of extreme points (min-

296 ima and maxima) on the fast manifold without affecting the

297 slow manifold. By changing the parameter Vp, one can deter-

298 mine the extreme points or the range of voltage where the

299 system is most sensitive. The parameter hp¼1 controls the

300 voltage range in which the new ion channel is active in

301 dependence of the membrane potential V. In this situation,

302 the equilibrium point can be stable, but bursting dynamics

303 can develop on the same branch of manifold as in the origi-

304 nal model (1). Figure 2(d) illustrates the variation of Ca2þ-
305 current (red) and of the sum of the Ca2þ-currents and the

306 current associated with new ion channel. One can see that,

307 however, changing of the current can only be local, very

308 small, and without major changes of the system. Figure 2(e)

309 shows the fast (blue) and slow (red) manifolds of the modi-

310 fied Sherman model (8).

311 IV. DYNAMICAL REGIMES

312 Let us now consider the mode distribution across a plane

313 spanned by the parameters Vp and gK2 that characterize the

314 new ion channel in the model. Figure 3 shows charts of

315 dynamical modes for the modified system (8) with different

316 initial conditions and different magnifications. These charts

317 were constructed in the following way: Using a standard

318 Poincar�e section technique, the parameter plane was scanned

319 in small steps. The dynamical state was determined by using

320 a sufficiently long transient for each point in the Poincar�e
321 section defined by n¼ 0.02. The distribution of points in the

322 Poincar�e section and the corresponding number/colors in

323 Fig. 3 are shown below. If the number of points exceeded

324 120, the corresponding region was considered to represent a

325 chaotic mode. Charts (a) and (b) were constructed with dif-

326 ferent initial conditions. Chart (c) is a magnified part of chart

327 (b). In Figs. 3(a) and 3(b), the line of Hopf bifurcation of the

328 equilibrium point is indicated by blue color. This curve was

329 obtained by the use of the software package XPP AUTO.

330 As the control parameters, we have used the parameter

331 gK2 that characterizes the conductance of the new ion chan-

332 nel and parameter Vp that determines the point on the fast-

333 slow manifold where the transition occurs. By varying Vp,

334 we can move the fast manifold relatively to the slow mani-

335 fold, and in this way we can shift the equilibrium point. In

336the original model, the unstable equilibrium point falls in the

337point EP0(V0, n0, S0)¼ (�48.578, 0.0029663, 0.2046). In the
338following, we will vary parameter Vp in the vicinity of V0. In
339Fig. 3, the vertical green line is the line that corresponds to
340line Vp¼V0.
341For small values of the conductance gK2 ¼ (0–0.05), one

342observes a broad range with different shades of purple. This
343color represents bursting dynamics in our model. Different
344shades of purple reflect different number of spikes per burst.
345For vanishing supply of gK2, one can see bursting regime
346with a few spikes per burst. This implies that the influence of
347the new ion channel on the dynamic of the model (8) is still
348of limited significance, and the overall dynamics is practi-
349cally similar to that of the original model (1). When parame-

350ter gK2 increases, one can observe an increasing number of
351spikes per burst. The equilibrium point may become unstable
352under such variations.
353Finally, to the left in the chart of modes, where
354gK2>0.05, one observes a cascade of period-doubling bifur-

355cations. Green represents a limit cycle of period-1. Period
356doubling bifurcations take place with decreasing parameter
357gK2 and increasing parameter Vp. This dynamical regime

358represents only spiking dynamics. Figure 4(a) shows the
359corresponding bifurcation diagram. With increasing values
360of the parameter Vp, the spiking limit cycle is transformed
361into a period-2 cycle via a period-doubling bifurcation. In
362the chart of modes, we can hereafter follow the mode lines
363for the period-doubling bifurcations. Figures 4(b)–4(e)
364show the examples of spiking attractors, and via projections
365on the plane (S, V), we can follow how the equilibrium

366point moves and how the spiking attractor is placed in rela-
367tion to the form of the fast-slow manifolds. With the
368increasing values of parameter Vp, the fast manifold moves

369upwards relatively to slow manifold, and equilibrium point
370is shifted into a position between the two extrema.
371Lines of period-doublings converge onto individual
372points located in a corner of the area of a stable equilibrium
373point. Such regions of parameter space are characteristic for

374the formation of bursting dynamics associated with a blue
375sky catastrophe.34 A similar phenomenon was observed in a
376model of a heart interneuron from the medical leech.34 We
377should also notice that the formation of bursting attractor
378according to this type of scenario is possible only for values
379of parameter Vp less than V0 (Vp<V0).

FIG. 3. Charts of dynamical modes for

the modified model (8). All parameters

from Table I remain unchanged and

hp¼1mV. Initial conditions for charts:

(a) V0¼�50mV, n0 ¼ 0.002, and S0
¼ 0.1984 and (b) V0 ¼�40mV, n0
¼ 0.02, and S0 ¼ 0.1. (c) Magnified part

of Fig. 3(b). In part of the region above

the Hopf bifurcation (blue curve), the

system displays coexistence of the sta-

ble equilibrium point and a variety of

periodic and chaotic solutions.
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380 On the right hand side of the chart of modes (Vp>V0),

381 one can observe a broad region with different shades of pur-

382 ple representing bursting dynamics. The bifurcation diagram

383 for the bursting and spiking areas is depicted in Fig. 5(a),

384 and Figs. 5(b) and 5(c) show examples of phase portraits for

385 this form of regime. On the fast-slow manifold, we can see

386 that, when the equilibrium point moves to the maximum, the

387 upper branch of fast manifold becomes unstable, the attractor

388 is shifted to the lower branch, and a long period of oscilla-

389 tions occur. As mentioned above, this transition from spiking

390 to bursting dynamics is associated with a blue-sky catastro-

391 phe that occurs at Vp��49.47mV. This transition take

392 place in accordance with the description presented by

393 Shilnikov and Cymbalyuk.34 For such kind transformation of

394 the dynamics, the multistability with silent state is possible

395 for larger values of parameter gK2, but there is no coexis-

396 tence between spiking and bursting.

397 The bifurcation diagram in Fig. 4(a) is a magnified part

398 of the diagram in Fig. 5(a). Due to the transition associated

399 with blue-sky catastrophe, the areas of spiking and bursting

400 have different scales in respect to variable V. In the simplest

401 version, a blue sky catastrophe occurs in three-dimensional

402 phase space. At the bifurcation, a saddle-node limit cycle

403 takes place, whose two-dimensional unstable manifold

404 returns to the periodic orbit making infinitely many rotations

405 in the node region. With a shift of a value of the control

406 parameter in one direction, the saddle-node cycle disappears

407and a long large-scale stable periodic orbit containing helical
408coils near the former saddle-node cycle is born. In Fig. 5(b),
409one can see helical coils on the place of spiking attractors.
410With further increase of parameter gK2, one can see line
411of Hopf bifurcation. This line corresponds to stabilization of
412equilibrium point. In Sec. V, we describe in detail the forma-

tion of coexistence of regime bursting and regime of silent.

414V. COEXISTING (HIDDEN) ATTRACTORS

415Let us now focus on the coexistent regimes of bursting
416and of silence (stable equilibrium) as they appear in our
417modified model. In the charts of dynamical modes (Fig. 3),
418the red area, representing a region of stable equilibrium, and
419the purple area, representing a region bursting dynamics,
420overlap. Hence, depending on the initial conditions, either
421the stable equilibrium point or the bursting oscillator may be
422the final state.
423In Fig. 6(a), we have plotted the trajectories for a pair of
424coexisting attracting states in three-dimensional phase space.
425The purple trajectory represents the stable bursting attractor
426and the pink curve represents a phase space trajectory that
427goes to the silent regime. Hence, we conclude that the burst-
428ing oscillator (for a range of initial conditions) can operate
429with a stable equilibrium state in its middle.
430Figure 6(b) shows a two-dimensional section of the
431basin of attraction for the attractors depicted in Fig. 6(a).
432The section covers the (S0, V0) plane while the third variable
433n0 was fixed near the equilibrium point at n0¼0.00275. The
434dynamical regimes was obtained by Poincare section at the
435plane n0¼0.02. Red color represents initial conditions that
436lead to the stable equilibrium point and purple represents
437initial conditions that lead to the bursting state. The black
438curves in Fig. 6(b) represent the lines of the fast and slow

FIG. 4. (a) Bifurcation diagram for the modified model (8) for gK2¼ 0.12

and hp¼ 1. Two-dimensional projections of phase portraits on the V-S plane

demonstrating the transition to chaos through period doubling bifurcations.

Only spiking oscillations occur: gK2¼ 0.12 and hp¼ 1. (b) Vp¼�50mV; (c)

Vp¼�49.9mV; (d) Vp¼�49.7mV; and (e) Vp¼�49.5mV.

FIG. 5. (a) Bifurcation diagram for the modified model (8) for gK2¼0.12

and hp¼ 1. Two-dimensional projections of phase portraits on the V-S plane

demonstrating the transition from chaos to stable bursting dynamics. (b)

Vp¼�49.4mV and (c) Vp¼�49mV.
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439 manifolds. In this way, we can demonstrate that the basin of
440 attraction for the bursting oscillator surrounds a three-
441 dimensional region in which the dynamics is controlled by
442 the stable equilibrium point. This island of stable equilibrium
443 dynamics is located between two extrema of null-clines,
444 which occur as a result of the introduction of the new ion
445 channel.
446 We suppose that the boundary of the basin of attraction
447 for the stable equilibrium point involves an unstable limit
448 cycle together, presumably, with other structures. In order to
449 detect this unstable cycle, we have used numerical bifurca-
450 tion analysis. In Fig. 6(c), the bifurcation diagram is obtained
451 with XPP AUTO using gK2 as a bifurcation parameter. Red
452 and black lines mark stable and unstable equilibrium point.
453 Blue and green circles mark stable and unstable auto-
454 oscillations. As we can see from Fig. 6(c), at small values of
455 gK2, there is an unstable equilibrium point together with an
456 unstable cycle (C2

us).
457 This unstable cycle associates with the bursting attractor
458 of the original model. At small values of the conductivity
459 gK2, the influence of new ion channel is insignificant and
460 does not change the dynamic of the model. At gK2¼0.1137,
461 this point is stabilized as a result of Hopf bifurcation. This
462 bifurcation is supercritical, and the result of bifurcation is
463 the birth of an unstable and stable limit cycle birth in the
464 vicinity of equilibrium point, but hereafter limit cycle
465 became unstable (C1

us).AQ4 Thus, the island of regime of silent
466 is limited by unstable cycle (C1

us), which occur as a result of
467 Hopf bifurcation by adding the new ion channel, but another
468 unstable orbit (C2

us) which correspond to original bursting
469 attractor persists. At certain value of the parameter gK2
470 (gK2� 0.3), a collision of the two unstable orbits take place
471 to leave only a regime of silent.

472VI. CONCLUSIONS

473The qualitative theory of dynamical systems provides a

474rigorous description of the scenarios that produce multi-

475stability of regimes in nonlinear dynamical systems. Early

476studies by Rinzel35 and by Guttman et al.36 have formulated

477and answered a number of questions that describe the basic

478scenario of bistability between tonic spiking and silence. The

479answer provided is based on the presence of a repelling peri-

480odic orbit separating the basin of attraction of the tonic spik-

481ing periodic orbit from the state of equilibrium that

482represents the silent regime. The same scenario also

483describes the modulation of the neuron dynamics in response

484to the variations of a bifurcation parameter. According to

485this scenario, the unstable limit cycle emerges through a sub-

486critical Andronov-Hopf bifurcation and disappears through a

487saddle-node bifurcation for periodic orbits. These bifurca-

488tions define the boundaries of bistability.

489In this paper, we have used a modified well-known bio-

490physical model, which describe dynamics of pancreatic beta-

491cells to demonstrate the coexistence of a bursting regime and

492a silent regime. For the considered modification of the

493model, this type of bistability occurs at the introduction of an

494additional voltage-dependent potassium current that is acti-

495vated in the region around the original unstable equilibrium

496point. The mechanism of bistability is associated with the

497birth of an unstable cycle as the result of a subcritical Hopf-

498bifurcation inside the bursting attractor. From the point of

499view of hidden attractors, the bursting regime is a hidden

500attractor that cannot be reached from initial conditions in the

501vicinity of the equilibrium point. At the same time, we have

502shown that the transition from spiking dynamics to bursting

503dynamics occurs as a result of a blue sky catastrophe. 504

FIG. 6. (a) Three dimensional phase

portrait of the modified model (8), gK2
¼ 0.2, Vp¼�47mV, and hp¼ 1. The

figure shows the co-existence of the

bursting dynamics and the stable equi-

librium point; purple and red trajectories

have different initial conditions: red

[V0¼�40mV, n0¼ 0.02, and

S0¼ 0.187] and purple [V0¼�40mV,

n0¼ 0.02, S0¼ 0.181]; (b) basin of

attraction for co-existing bursting attrac-

tor (purple) and stable equilibrium point

(red), gK2¼ 0.2, Vp¼�47mV, hp¼ 1,

and n0¼ 0.00275; (c) bifurcation dia-

gram in dependence on the parameter

gK2, Vp¼�47mV.
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