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ABSTRACT 

Tsatsishvili, Valeri 
Data-driven Analysis for fMRI during Naturalistic Music Listening 
Jyväskylä: University of Jyväskylä, 2017, 51 p. (+included articles) 
(Jyväskylä Studies in Computing 
ISSN 1456-5390; 268) 
ISBN 978-951-39-7239-4 (nid.) 
ISBN 978-951-39-7240-0 (PDF) 
Finnish summary 
Diss. 
 
Interest towards higher ecological validity in functional magnetic resonance 
imaging (fMRI) experiments has been steadily growing since the turn of 
millennium. The trend is reflected in increasing amount of naturalistic 
experiments, where participants are exposed to the real-world complex stimulus 
and/or cognitive tasks such as watching movie, playing video games, or 
listening to music. Multifaceted stimuli forming parallel streams of input 
information, combined with reduced control over experimental variables 
introduces number of methodological challenges associated with isolating brain 
responses to individual events.   

This exploratory work demonstrated some of those methodological chal-
lenges by applying widely used data-driven methods to real fMRI data elicited 
from continuous music listening experiment. Under the general goal of finding 
functional networks of brain regions involved in music processing, this work 
contributed to improvement of the methodology from two perspectives. One is 
to produce a set of representative features for stimulus audio that can capture 
different aspects of music, such as timbre and tonality. Another is to improve 
reliability and quality of separation of the observed brain activations into inde-
pendent spatial patterns. Improved separation in turn enables better differentia-
tion of stimulus-related activations from the ones originating from unrelated 
physiological, cognitive, or technical processes. 

More specifically, part of the research explored an application of a nonlinear 
method for generating perceptually relevant stimulus features representing 
high-level concepts in music. Another part addressed dimensionality reduction 
and model order estimation problem before subjecting fMRI data to source sep-
aration and offered few methodological developments in this regard.     
 
Keywords: fMRI, naturalistic experiment, ICA, CCA, PCA, kernel PCA 
dimension reduction 
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1 INTRODUCTION 

“The human brain has 100 billion neurons, each neuron connected to 10 thousand 
other neurons. Sitting on your shoulders is the most complicated object in the 
known universe” - Michio Kaku 

 
Mankind’s fascination towards human mind can be found throughout all its doc-
umented history. According to timeline of neuroscience provided in (Kandel & 
Squire, 2000), first steps in neuroscience dates back to 2nd century AD when brain 
was identified as an ‘organ of mind’.  The field, however, did not excel as well as 
some other areas of science over the centuries.  Fast forward almost two millennia 
to 19th century, and first strong evidence demonstrating localization of different 
mental processes in different areas of brain emerge from the lesion studies. 
Around the same period, first precursors leading to the development of func-
tional brain imaging appeared (Raichle, 2009). Invention of modern functional 
brain imaging techniques including positron emission tomography (PET) and 
magnetic resonance imaging (MRI) in the 20th century marked the new era in 
modern cognitive neuroscience as these methods opened the window in living 
and functioning human brain.   

Since its inception in early 1990s, functional magnetic resonance imaging 
(fMRI) quickly gained popularity due to superior temporal (1-3s) and spatial (1-
3mm) resolution, safety (no harmful exposure of ionizing radiation), and rela-
tively lower costs of experiment than PET. Soon after the first fMRI experiments 
on human subjects, as Hasson & Honey (Hasson & Honey, 2012) puts it, ‘age of 
exploration’ started to map different cognitive functions to cortical and subcorti-
cal regions of the brain. This traditional view on localized cognitive processing 
has been gradually updated by more modern ‘distributed processing’ view, sug-
gesting that a network of brain regions is involved in most of the cognitive pro-
cesses, and given anatomical region can have more than one function. As will be 
discussed later, traditional experimental design and analysis methodology ap-
plied in fMRI have limitations that in some cases hinder exploration of distrib-
uted processing. Naturalistic experiments are more recently emerged alternative 
to controlled experiments, aimed towards increasing an ecological validity. In
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the naturalistic experiments, brain responses are acquired while participants are 
performing complex cognitive or behavioral task they would do in real life. Such 
experiments can provide all needed leverages to observe and understand how 
different facets of complex sensory input are integrated and processed in the 
brain. This work explores an application of data-driven analysis methods to fMRI 
data from naturalistic music listening experiment in search of music-related brain 
activations, and focuses on certain aspects in analysis workflow.  

1.1 Structure of the Work 

The rest of the thesis is organized as follows. The remainder of this chapter de-
scribes origins of the fMRI signal, common experimental designs in fMRI and 
main methodological approaches. Chapter 2 overviews the methods employed 
in the included publications. Chapter 3 provides summaries of the included arti-
cles, and chapter 4 discusses the main contributions and limitations of this work.  

1.2 From Neurons to BOLD to fMRI 

Magnetic resonance imaging utilizes variations in magnetic properties of differ-
ent brain tissues, such as gray matter and white matter, to generate highly de-
tailed anatomical images of the brain. More specifically, large electromagnet in 
the MRI scanner produces very intense magnetic field that forces nuclei of all 
hydrogen atoms to align their spins to the same direction. An electromagnetic 
pulse excites the nuclei, causing their spins to temporarily tilt away from the 
magnetic field. The spins will eventually return to equilibrium and during this 
‘relaxation’ process, the hydrogen atoms emit electromagnetic wave. Emitted 
waves are detected by the receiver in the scanner and relaxation time is measured. 
Since concentration of hydrogen varies in different structures, contrasting be-
tween different tissues is possible based on the relaxation times. While very use-
ful for providing high resolution anatomical images, MRI does not provide in-
formation on dynamics of brain activity. 

Functional MRI relies on similar principles as MRI, but exploits the differ-
ence between magnetic properties of oxygenated versus deoxygenated blood, 
and repeated electromagnetic pulses to detect changes in blood oxygenation 
across different brain regions over time. More detailed explanation of physiolog-
ical mechanisms and operating principles of MRI and fMRI can be found in 
(Huettel, Song, & McCarthy, 2004). What will suffice to know for the purpose of 
this thesis is that fMRI measures blood-oxygen-level-dependent (BOLD) signal. 

How blood oxygenation relates to neuronal activity? Oxygen is one of the 
main ingredients involved in the cell metabolism, hence, a proper function of our 
every organ depends on its undisrupted supply. The supplier is cardiovascular 
system and the transport is blood. When the group of neurons start firing, there 
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is a local surge of blood providing oxygen and other vital ingredients. Based on 
the changes in the oxygen consumption in each voxel (a volumetric unit of the 
brain image, a three-dimensional equivalent of a pixel), activation state of it can 
be inferred.  

This relationship between neural activity and BOLD is known as neurovas-
cular coupling. The inner workings of process are still not fully understood, yet, 
progress has been made over the past decade (Mukamel et al., 2005; Nir et al., 
2007). The mathematical function characterizing dynamics of neurovascular cou-
pling is called hemodynamic response function (HRF). While HRF can consider-
ably differ between persons, in a generic form it is approximated by two com-
bined gamma functions. (Friston, Jezzard, & Turner, 1994). Hemodynamic re-
sponse is significantly slower than neuronal response. Accordingly, temporal 
resolution of fMRI relying to this indirect measure is lower than electrophysio-
logical methods such as Electroencephalography (EEG) directly measuring neu-
ronal activity. It is generally agreed that the hemodynamic response is linear and 
time invariant (Boynton, Engel, Glover, & Heeger, 1996; Dale & Buckner, 1997). 
In other words, superposition, scaling and time shifting the neural response will 
be linearly related to corresponding changes in BOLD signal. This enables con-
volving stimulus time courses to HRF in order to account for the lag and smooth-
ing effect of BOLD to neuronal activity. 

1.3 Experimental Design in fMRI 

Experimental design in fMRI studies is mainly bound to the temporal structure 
of stimulus presentation or the behavioral task performed in the MRI scanner. 
Block design and event-related design are most common types. In the block de-
sign experiments, stimulus trials are grouped by experiment condition and are 
presented as stimulus ‘blocks’ lasting 30-60 seconds. Entire experiment is struc-
tured as alternating blocks of different conditions. The simplest example would 
be a block of experimental condition (Task) followed a block of control condition 
(Rest). Then such experiment can have ‘Task-Rest-Task-Rest…’ structure, and the 
temporal course of stimulation can be characterized by boxcar function with ones 
representing task condition and zeros - rest.  Stimulus trials are spaced less than 
duration of HRF in time, leading HR to individual trials within the block to over-
lap. As a result, one long plateau of response in each block is produced. Such 
structure allows testing hypothesis about contrasting response during one block 
with respect to another (D'esposito, Zarahn, & Aguirre, 1999).  

Stimulus trials are not grouped in the event-related design. Instead, indi-
vidual stimulus trials or ‘events’ can be presented in an arbitrary order. This en-
ables examining signal changes associated with individual events rather than 
blocks of trials.  An intuitive explanation of application areas for each design is 
provided in (Poldrack, Mumford, & Nichols, 2011). Authors draw an interesting 
analogy between a trial in experiment and a granule of sand. A pile of sand is 
easy to detect from the distance, whereas spread around it is difficult to locate. 
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Similarly, in block design experiment, trials are grouped as the grains in a pile of 
sand and thus response to the stimulus block is easy to detect. However, it is 
difficult to model responses to individual trials. On the other hand, as closer look 
at spread out sand provides better information on the shape of individual gran-
ules, event-related design allows modelling responses to individual trials. Natu-
rally then, choice of the experiment design depends on the goal of the experiment. 
Both block and event-related designs allow repeatedly presenting stimulus trials 
and averaging responses across trials. This is an important advantage, because 
BOLD signal is much weaker compared to the artifacts and noises originating 
from the imaging hardware as well as from the human body. Various physiolog-
ical processes, including muscle activities related to heartbeat and respiration, 
blood pulses in veins, or simply slight head movements are strong contaminators 
of fMRI data. Averaging across trials eliminates much of the random sources and 
increases signal-to-noise ratio (SNR). Mixed design experiments have also been 
conducted where block and event-related paradigms are combined within one 
experiment. 

Another type of fMRI experiments examines intrinsic brain activity when 
person is not engaged in any goal-oriented task. In these so called resting state 
experiments, brain images of a person resting in the scanner (eyes closed or 
simply fixating to a blank screen) are obtained. Brain activity in resting state, also 
called default mode network has been subject of growing interest since turn of 
the millennium. An extensive discussion about its importance and applications 
can be found in (Raichle & Snyder, 2007). 

Finally, there is an evident increase of interest towards of naturalistic exper-
iments in neuroimaging. Naturalistic experiments aim to increase ecological va-
lidity at the expense of less control over independent variable. In fMRI, this usu-
ally means that stimulus timing or behavioral task are not controlled and com-
plex real-world input (such as motion picture, or music) are not simplified to iso-
late variables of interest. Complex stimulation makes it very difficult to separate 
stimulus-related responses from the ones originating from other sources due to 
and the fact that trial-based averaging is frequently not possible, and SNR is low. 
Nevertheless, there is an ongoing discussion and emerging evidence that tradi-
tional controlled experiments with simplified stimulation might not always re-
veal complete information on how multiple streams of information – as experi-
enced in real world- are processed and integrated in the brain. Hasson & Honey  
(Hasson & Honey, 2012) point out that in traditional block, or event-related ex-
periments individual events are assumed to be processed in isolation. Authors 
argue that processing of complex continuous phenomena is not necessarily a su-
perposition of separate event processing. This is relevant to music as well. In or-
der to isolate the attribute of interest, music stimulus is usually simplified (e.g. 
melody can be composed by pure sine tones rather than by musical instrument 
to eliminate timbre as a variable). While understanding neural processing mech-
anisms of separate musical attributes is important, in real life they are rarely pro-
cessed in isolation. Indeed, in line with (Hasson & Honey, 2012), growing evi-
dence suggests that the functional network involved in music processing is not a 
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simple integration over networks associated to isolated attributes (Abrams et al., 
2013; Alluri et al., 2012). Therefore, studying neural correlates of musical features 
in naturalistic music listening context can extend existing knowledge on how 
brain processes music, which will have implications in range of fields outside 
neuroscience, including therapy and education.  

To summarize, early stages of neuroimaging research was focused on local-
ization of brain functions with strictly controlled paradigms to maintain control 
over variables of interest. In light of accumulated theoretical and empirical foun-
dations from those studies, there is a growing interest towards how networks of 
brain regions integrate information in more natural environment. It should be 
noted that the term ‘functional network’ in this work refers to the set of active 
regions in response to stimulus, and is not related to functional connectivity.  

1.4 Methodology: A Brief Overview 

Before analysis, fMRI images are typically subjected to preprocessing routine. 
Complete preprocessing pipeline might considerably vary according to specific 
needs of the collected data, but typical routines include: timing correction for 
separate brain slices, compensating for mismatch of voxels in different images 
due to the head movement, spatial normalization to account for size and shape 
differences between brains, and spatial smoothing to increase SNR. More de-
tailed description of preprocessing can be found in any fMRI textbook, e.g. 
(Poldrack et al., 2011).  

Methodology for fMRI analysis has been expanding and improving to in-
crease signal-to-noise ratio, provide more reliable statistical inference, and to ad-
dress specific needs of new experimental designs. Existing methods have been 
categorized in multiple ways in the literature: based on statistical approach they 
use, application areas, etc. Exhaustive review would require a separate disserta-
tion. Here, I briefly overview more established as well as relatively new ap-
proaches in functional neuroimaging community.  

The most common methodological approach has been statistical parametric 
mapping, where activation maps are built by testing the hypothesis about tem-
poral dynamics of each voxel separately. The simplest method is correlation anal-
ysis between individual voxel time courses in hypothesized ROI and stimulus 
time course (typically boxcar function representing task and rest conditions), 
convolved with HRF (Bandettini, Jesmanowicz, Wong, & Hyde, 1993). Subse-
quently, statistically significant correlations are selected, and a binary spatial 
map is produced where active voxels (significant correlations) will be visible.  

More advanced method is general linear model (GLM). GLM is essentially 
multiple regression in which measured voxel time series are represented as linear 
combination of predictor variables that are hypothesized to be contributing fac-
tors, and some residual error. Advantage of this method over simple correlation 
described above is that here multiple variables contributing to the observed acti-
vations can be considered in the model. If the measured data matrix is denoted 
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by  with   time points and  voxels, and  is the matrix con-
taining  predictor time courses, then the measured responses can be modeled 
by: 

where  are weights and indicate contribution of each predictor to a given voxel, 
and 

re
 is some residual error. The weights of the predictor variables are optimized 

to model each voxel response accurately (i.e. minimize 

red
r va

) in least square sense. 
The obtained weights are then tested for statistical significance, typically with 
standard statistical parametric tests, such as t-test. In statistical parametric map-
ping and related methods, each voxel is treated as an independent measure and 
statistical testing is repeated across all voxels. Such methods are understandably 
referred as ‘massive univariate analysis’. Shortcoming of massive univariate ap-
proach, however, is that it overlooks existing interaction between voxels and 
raises multiple comparison issues. Furthermore, prior hypothesis on contrib-
uting predictor variables and their temporal dynamics is important for the out-
come of the model (this is where another label ‘hypothesis-driven’ stems from). 
Experiments, where temporal structure of the independent variable is known, 
are main application area for GLM and other hypothesis-driven methods.  

In naturalistic and resting state experiments, as well as in many clinical 
studies, it is usually difficult to build a regressor time courses due to the complex 
nature of the input, or complete absence of it. Data-driven methods are more 
suitable alternative for such cases. These are typically multivariate exploratory 
methods, that do not require any prior knowledge of temporal models for stim-
ulus or noise. Independent Component Analysis (ICA) (Hyvärinen & Oja, 2000; 
McKeown & Sejnowski, 1998) is arguably the most commonly applied data-
driven method in functional neuroimaging. Typical ICA approach decomposes 
fMRI responses in statistically independent spatial activation patterns and corre-
sponding temporal courses with no prior information about the data or stimulus, 
apart from a few statistical assumptions. It has been evidenced in numerous ap-
plications that ICA is very powerful method for uncovering brain activation pat-
terns from noisy fMRI data, frequently hidden from the massive univariate anal-
ysis (e.g. PIV). A good review of exploratory techniques is provided in (McIntosh 
& Miši , 2013). 

 Inter-subject correlation (ISC) is more recently developed data-driven 
method (Hasson, Nir, Levy, Fuhrmann, & Malach, 2004; Kauppi, Jaaskelainen, 
Sams, & Tohka, 2010). The method essentially measures synchrony by correlating 
corresponding voxel time series across different subjects. Consequently, it re-
veals regions with high inter-subject similarity in terms of temporal dynamics. 
Underlying assumption is that the responses should be highly consistent be-
tween participants exposed to the same stimulation or performing the same task, 
whereas the responses unrelated to the experimental condition will most likely 
show high variation. Therefore, activations of high inter-subject consistency can 
be regarded as reliable task-related responses.  
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A common drawback of most of the standard data-driven methods is that 
they look for patterns in brain responses independently from the experiment con-
ditions or underlying cognitive processes. As a result, the obtained activation 
patterns are not as explicitly linked to experimental variables as in GLM, which 
makes them difficult to interpret.  Perhaps slightly biased but still interesting dis-
cussion on limitations of both hypothesis-driven and data-driven exploratory 
methods can be found in (O'Toole et al., 2007) .  

During the last decade, application of machine learning classifiers for brain 
decoding gained popularity. Classifier is an algorithm that predicts class mem-
bership for an input data point based on the discrimination function learned from 
the pre-labeled training data. In fMRI settings, a classifier links voxel activity pat-
terns to the different categories of the experimental variables, such as pictures of 
faces versus objects (Cox & Savoy, 2003) or spoken words and speaker 
(Formisano, De Martino, Bonte, & Goebel, 2008). In other words, sensory input 
or cognitive states of the brain can be inferred or ‘decoded’ from the elicited neu-
ral responses. For continuous variables, regression instead of classification can be 
used. For example, Toiviainen et al. (Toiviainen, Alluri, Brattico, Wallentin, & 
Vuust, 2014) applied principal component regression to predict six stimulus fea-
tures from the brain responses. The approach that direction of inference is re-
versed is encoding. Above described GLM can be viewed as simplified encoding 
model that predicts one voxel time series from the stimulus time course. Princi-
ples, application, and limitations of the encoding and decoding models are dis-
cussed in (Haynes, 2015; Naselaris, Kay, Nishimoto, & Gallant, 2011).   

Connectivity studies look at the synchrony of the regions within the brain. 
Connectivity studies consider brain as a complex network of interconnected 
nodes. Nodes can be any neural elements of interest such as cell, voxel, or ana-
tomical region, and can be connected biologically or in terms of dynamics of in-
teraction. Sporns (Sporns, 2010) defines structural, functional, and effective con-
nectivity. Structural connectivity refers to the anatomical or structural connection 
between nodes. Functional connectivity is defined as synchronous covariation 
between remote regions. Effective connectivity implies stronger directed causal 
relationships. Correlation-based measure of connectivity has been used in resting 
state studies describing intrinsic functional connectivity (e.g. (Fox et al., 2005)). 
Correlation does not provide information on how information flows through the 
network, or whether the connection between nodes is direct or indirect (e.g. if 
two nodes are linked by the third node). Granger causality is common measure 
for estimating effective connectivity based on time lags between the two nodes. 
In the essence, the node X of a network is considered to ‘drive’ the node Y, if the 
past values of X can predict the future values of Y, better than the past values of 
Y itself. A good introduction to the field can be found in (Rubinov & Sporns, 2010) 
informative review of the methodology and associated challenges can be found 
in (Smith et al., 2011; Sporns, 2014).   
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1.5 Aims  

Importance of studying neural correlates of complex real-world input through 
naturalistic experiments has been discussed in Section 1.3. This work attempts to 
apply and improve existing exploratory methods to the fMRI images elicited 
from naturalistic music listening experiment. Under the general goal of linking 
brain responses to timbral, tonal and rhythmic aspects of music information, 
data-driven methodology is explored from two perspectives: one part focuses on 
stimulus representation, by means of generating features from music stimulus 
that capture the mentioned perceptual dimensions of music. Another part 
searches for alternative ways of dimension reduction before subjecting data to 
independent component analysis (ICA) in order to improve extraction of stimu-
lus-related brain activation patterns. 

The dataset employed in all publications except for PIV originated from the 
experiment where 11 participants with formal music training listened to 8.5-mi-
nute-long recording of modern Argentinian tango by Astor Piazzolla in the fMRI 
scanner without any specific task other than to listen attentively. Detailed de-
scription of the demographics of the sample as well as initial preprocessing of the 
elicited fMRI images can be found in (Alluri et al., 2012). This dataset represents 
complex stimulation, where multiple interconnected perceptual dimensions of 
music form the concurrent continuous streams. Therefore, it is the perfect plat-
form for exploring data-driven methods and methodological challenges associ-
ated to analyzing naturalistic experiments.  

Figure 1 depicts the overall setup of the studies PI-PIV. Entire analysis 
workflow can be divided into two parts. The first part deals with the feature gen-
eration, i.e. problem of finding the representative set of features capturing per-
ceptual dimensions of stimulus (left side of Figure 1). The problem is addressed 
in PII and PV. Both studies employed nonlinear method to generate sets of high-
level features. Neural correlates of these new features were compared to the neu-
ral correlates of the stimulus features designed by Alluri and colleagues in (Alluri 
et al., 2012). By employing the two stimulus representations in our ICA-based 
analysis framework (will be described in Section 2.4.5), study PII compared stim-
ulus-related consistent independent components. General aim was to test 
whether nonlinear features provide an advantage in finding music-related net-
works of activation. Study PV also explored neural correlates of nonlinear stim-
ulus features, under the methodological design proposed in (Alluri et al., 2012). 
Application of the same methods on the same data also enabled comparison of 
the results. In addition, perceptual correlates of the features were examined.   

The second part is related to finding stimulus-related activation patterns 
from the observed fMRI images (right side of Figure 1). The analysis framework 
in studies PI-PIV was based on ICA. In this framework, a set of statistically inde-
pendent activation patterns were obtained by ICA decomposition, of which a 
subset of the independent components (IC) were selected that were temporally 
related to the stimulus features and consistent across subjects. When SNR is small, 
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as is the case for complex naturalistic fMRI data, ICA is likely to have reliability 
and stability issues. This problem is typically addressed by dimension reduction 
of the input data before prior source separation. However, ‘correct’ or intrinsic 
dimensionality (also referred as model order) of the input data is usually un-
known. When the model order is under- or overestimated, ICA model assump-
tions are violated and consequently, subdivision or merging of several sources 
(i.e. brain activation patterns) might occur. These issues were addressed from 
different perspectives in PI, PIII and PV.  In PI and PIII standard two-set canoni-
cal correlation analysis (CCA) and the multiset extension were employed for re-
ducing dimensionality before ICA. In addition, PIII addressed model order esti-
mation problem and offered a heuristic solution. Study PIV offers an innovative 
methodological development that eliminates the need of model order estimation. 
Furthermore, hypothesis-driven ROI selection is applied to improve ICA decom-
position.  

 

FIGURE 1 Overall setup of the study    

  

 

 



 
 

2 METHODOLOGY BACKGROUND 

This chapter overviews the methods applied in publications. After the general 
and concise introduction of methods, Section 2.4.5. will detail ICA analysis 
framework applied throughout this work.   

2.1 Principal Component Analysis 

Principal component analysis (PCA) is widely applied tool for exploratory data 
analysis. It finds transformation of the input data into a new basis where projec-
tion to each successive axis will have the next largest variance. It enables reducing 
number of variables in the data, yet preserving most of the variance. It is com-
monly assumed that signal of interest has largest variance, therefore, PCA reduc-
tion can also be seen as separating signal and noise subspaces. PCA is achieved 
by diagonalizing covariance matrix, while variances on diagonal elements will 
be maximized. In practice this method is usually implemented by eigen decom-
position of the covariance matrix of the centered data. For the centered data ma-
trix 
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the following eigenvalue problem: 

  2.1-1 

where  is an orthonormal matrix containing eigenvectors as columns, i.e. 
the new basis, and 

an orto hthhonnonono
 is the diagonal matrix of eigenvalues, i.e. variances 

corresponding to each eigenvector. Principal components are obtained by pro-
jecting the input data to the new basis: 

  2.1-2 

Dimension reduction using PCA can be achieved by selecting a subset of 
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produce  principal components. Due to its relative simplicity, PCA is very pop-
ular tool for data exploration, reduction, and compression. 

2.2 Kernel Principal Component Analysis 

Relationship between variables is not always linear and the linear methods are 
blind to nonlinear patterns in the data. One way to use linear method for learning 
nonlinear patterns is by mapping the data to a higher dimensional space, where 
the pattern becomes linear. The straightforward way to use PCA for exploiting 
nonlinear relationships is to introduce a nonlinear function 
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iance matrix in the new space and solve the eigenvalue problem as in linear PCA. 
However, nonlinear mapping to the higher dimensional space and estimation of 
covariance matrix is often computationally expensive or even infeasible. An ele-
gant solution is to use ‘kernel trick’. In essence, kernel trick is a way to directly 
estimate of dot product in the 

g
onall
In es

 space by kernel function 

le. 
to

A
d
A
ir

A
i

A
di
An

re
n e
ec

n
e

n
e

le
tl

el
ct

e-
ly 
e
lga

es
an
sti

t
m

nt
im
n
i

so
at
s

ma
lut
e
l
e

tiont nonn isn to s uo 
p

use ‘kernel k’
roduct in he

u
pp

ker
uct

nel
i

rn
t i

p
l tr
n

ick
th

ri
h

.k .
e

e k
odu

k
odduoduuudu

, without explicitly calculating the nonlinear 
mapping 

of dfff otdodot ppt

. For the methods that depend only on dot products, such as 
PCA, calculating kernel function for input data directly provides an estimate of 
the covariance matrix (or Gram matrix produced by outer product here precisely, 
but they have same eigenvalues in our case). With kernel function, eigenvalue 
equation for linear PCA in eq. (2.1-1) can be rewritten: 

 2.2-1 

It can be showed that all solutions  lie in the span of : 

  2.2-2 

Substituting (2.2-2) into (2.2-1) and a few operations we get: 

where  ,  and  denote eigenvalues and eigenvec-
tors, respectively. Principal components can be obtained by projecting sample to 
whe
tors

, i.e. to the eigenvectors of covariance matrix in 
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btain
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  2.2-3 

More detailed derivation can be found in (Muller, Mika, Ratsch, Tsuda, & Schol-
kopf, 2001). Gaussian kernel was applied in PV, calculated by: 

                        ) 2.2-4 
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where  are elements of the kernel matrix,  are column vectors of , and  
is the parameter, estimated by: 

 2.2-5 

Polynomial kernel of third degree, applied in PII, is given by: 

For simplicity, the parameter  was set to . Dimension reduction is achieved 
similarly as in linear PCA, by selecting a subset of eigenvectors based on the ex-
plained variance. 

2.3 Canonical Correlation Analysis 

Canonical correlation analysis (CCA) has been developed by Hotelling (Ho-
telling, 1936). While PCA reduces data by finding the subspace of maximum var-
iation, CCA finds the subspace of shared covariation between two datasets. In 
other words, for each of the two multidimensional vectors 
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 are maximized. This can be achieved by solving the following ei-

genvalue equations (Borga, 2001): 

  2.3-1 

 
where  are within-set and between-set covariance 
matrices, respectively. Eigenvalues 

araa
 are squared canonical correlation and ei-

genvectors are normalized basis vectors. If the input data are whitened before-
hand, 2.3-1 reduces to singular value decomposition of the covariance matrix: 

  2.3-2 

where   and  are orthogonal matrices containing basis vectors, and 

2.3

 is a rec-
tangular diagonal matrix that contains canonical correlations on the main diago-
nal. Canonical components are rank ordered by canonical correlations, i.e. by cor-
relations between corresponding 
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reduction can be achieved by setting the threshold on canonical correlations and 
retaining only canonical components correlated above the threshold.  

Multiset CCA (MCCA) extends CCA to multiple datasets. MCCA optimizes 
an objective function that maximizes overall correlation between multiple canon-
ical components. Kettenring (Kettenring, 1971) proposed five measures to calcu-
late overall correlations. Here, sum of correlations is applied to measure overall 
correlation between 

tten
ons

-th set of canonical components: 
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  2.3-3 

where  is the number of datasets. Several approaches have been proposed to 
solve MCCA problem (Karhunen, Hao, & Ylipaavalniemi, 2012a; Vía, Santamaría, 
& Pérez, 2007). Here an implementation offered in (Li, Adali, Wang, & Calhoun, 
2009) was employed, which follows the algorithm proposed in the original pub-
lication (Kettenring, 1971). In this algorithm, canonical components are estimated 
recursively such that each of 

follo
n this

 iterations produce set of components maximizing  
lica
re

t
u

ca
ecu

 function: 
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After each step, the obtained components are removed from the data and estima-
tion procedure is repeated. Similar to two set CCA, estimated canonical compo-
nents are subjected to the following constraints: 

1. canonical components 
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 are uncorrelated within each dataset and 
have zero mean and unit variance: 
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2. canonical components between datasets have nonzero correlations 
only on corresponding indices, i.e. 
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As a result of this optimization, a set of basis vectors and canonical components 
are obtained for each dataset (fMRI data from one subject). Dimensions are re-
duced by retaining canonical components with average canonical correlation 
above predefined threshold.    

2.4 Independent Component Analysis 

2.4.1 ICA Model 

Initially developed for solving cocktail party problem, ICA established itself as a 
multi-purpose tool for wide range of problems including feature extraction and 
source separation of signals in various domains. The idea behind ICA is very 
nicely illustrated by the cocktail party problem - a situation where people are 
speaking simultaneously, and several microphones record the signal (Hyvärinen 
& Oja, 2000). Each microphone picks up voices of all speakers with different in-
tensity, depending on their relative position. The aim is to recover each speaker’s 
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voice from the recorded mixtures with no prior information but a few assump-
tions about mixing or sources. In a matrix form this process is expressed by: 

  2.4-1 

where  is the matrix containing the observed signals,  contains the mixing co-
efficients or weights, and 
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  2.4-2 

Not having any information about two members makes Equation 2.4-1 an ill-de-
fined problem. However, estimation of 

membem
 and 

s m
 is possible with few assump-

tions on sources. These assumptions are: 
a) Sources are non-gaussian (except possibly one) and mutually inde-

pendent  
b) Sources are mixed linearly; the mixing matrix is square and inverti-

ble.  
With these assumptions, estimation of the mixing matrix can be achieved using 
central limit theorem, according to which the sum of independent random vari-
ables are distributed more closely to gaussian than the individual variables. In 
the Equation 2.4-1, 
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 is a linear combination of non-gaussian sources, i.e. 
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 will be maximally non-gaussian when it is equal 
to one of the sources. Therefore, ICA estimation can be defined as an optimization 
problem, where weights in 
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is maximized.  There are more than one ways to measure gaussianity and there-
fore several cost functions can be used for the mentioned optimization. More ex-
tensive presentation of different ICA algorithms and cost functions is provided 
in (Hyvärinen & Oja, 2000). 

Here we applied FastICA algorithm (Hyvarinen, 1999) with an approxima-
tion of negentropy as the cost function, due to its efficiency and speed. 
Negentropy as a measure of non-gaussianity stems from the link between gauss-
ianity and entropy in the information theory. Namely, it is proven that among all 
variables with equal variance, gaussian variable will have the largest entropy 
(Hyvärinen & Oja, 2000). Negentropy is the function that considers entropy of 
any variable in relation to the entropy of a gaussian variable: 
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 2.4-3 

where  is an entropy of the variable ,   is the entropy of a gauss-
ian variable with the same variance as 

le 
.  In practice, estimation of 

py of
 from the 

formulation in 2.4-3 is difficult due to the need of probability density function 
estimate. An approximation that has been used throughout this work is given by:  
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  2.4-4 

 is a nonlinear function with constant term  

2.4 44-4

, and 
 is the standardized gaussian variable. 

One consequence of simultaneously solving mixing coefficients and sources 
in ICA is that there exists more than one solution satisfying Equation 2.4-1. For 
example, having an independent component scaled by some scalar will not 
change outcome of the equation as long as corresponding weight in the mixing 
matrix is divided by the same scalar. Similarly, the sign and the order of the esti-
mated independent component are arbitrary.  

2.4.2 Reliability of the Decomposition 

Optimization of the above-mentioned objective function is done by starting with 
random initial condition and there is no guarantee that it will converge to the 
global optimum. In other words, multiple runs of ICA can converge to different 
solutions, hence producing different estimates of the demixing matrix and IC-s. 
Therefore, reliability of ICA decomposition needs to be assessed. Few approaches 
have been proposed to assess reliability, such as RAICAR (Yang, LaConte, Weng, 
& Hu, 2008), ARABICA (Ylipaavalniemi & Soppela, 2009) and ICASSO (Himberg, 
Hyvarinen, & Esposito, 2004). The latter has been selected to assess reliability of 
decomposition here. The main principle behind ICASSO reliability assessment is 
that reliable estimates of the sources will appear frequently in the multiple runs 
of ICA.  To estimate reliability of IC-s, ICA is run many times and estimates of 
ICs produced from different rounds are clustered. Finally, the software offers few 
parameters and visualization tools for quantifying and exploring the clustering 
results.  

In order to better demonstrate ICASSO operation, consider the prepro-
cessed and reduced fMRI dataset 
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number of sources. After setting the parameters of FastICA algorithm, ICA is run 
100 times, each round producing
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 ICs are subse-
quently clustered using simple hierarchical agglomerative clustering with aver-
age linkage strategy. Distance between the estimates is calculated by 
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 represents an absolute value of correlation. The most reliable 
components are expected to appear repeatedly in the majority of rounds and be 
highly similar to each other, which means they will be clustered together in a 
compact and well separated cluster. ICASSO offers a measure for quantifying 
compactness and separation of a given cluster. Following the author’s definition 
(Himberg et al., 2004) cluster quality index 
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 2.4-5 

where  contains source estimates within -th cluster, whereas  denotes 
the estimates outside of it.   

stimti atmaat
 and 
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 denote number of elements within 
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and outside the -th cluster respectively. Ranking the clusters by   index pro-
vides an indirect measure of reliability. Finally, the best IC estimate from the clus-
ter, or cluster ‘centrotype’, is an element in the cluster 

e c
t ICIC

 with the highest overall 
similarity with others: 

  2.4-6 

Combined with visualization tools, cluster quality is useful measure for explor-
ing the reliability of IC estimates. ICASSO also features an index that assists in 
estimating optimal number of clusters. However, it has not been employed here 
since number of clusters equal to number of sources has been the best solution 
for our data.   

It should be noted that reliability of ICA result does not necessarily mean 
validity. Even the most reliable components can be related to artifact rather than 
the task of interest. Therefore, ICASSO does not provide means for finding inter-
esting task-related components.     

2.4.3 Model Order Selection (MOS) 

In the simple ICA model (Equation 2.4-1)   represents the observed fMRI 
images, organized as 
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rows. This model assumes determined mixture, where the number of fMRI im-
ages is equal to the number of sources. In practice, however, few hundred images 
are acquired in fMRI experiments and with such number of sources in the model, 
ICA algorithm typically does not converge, and the estimated sources are not 
reliable. Therefore, to conform with the determined mixing assumption, dimen-
sionality of the input data is typically reduced using PCA prior subjecting to ICA 
decomposition. The problem is that ‘true’ number of sources (also referred as in-
trinsic dimensionality and model order) of the data is not known.  

Number of solutions for estimating intrinsic dimensionality has been sug-
gested in the literature, including model order estimation techniques from infor-
mation theory, such as Akaike information criterion (AIK), Minimum distance 
length (MDL) and Bayesian information criterion (BIC).  The former two have 
been very popular in the field and reportedly produced good results (Calhoun, 
Adali, Pearlson, & Pekar, 2001). However, they do not always work. Indeed, 
Cordes & Nandy (Cordes & Nandy, 2006) demonstrated in simulations as well 
as in real resting state fMRI data that none of the mentioned methods estimated 
model order correctly. Authors argue that existence of strong autocorrelations in 
noise and low SNR renders the methods relying on eigenspectrum for model or-
der estimation (including AIK and MDL) unreliable. Further evidence was pro-
vided by Cong and colleagues (Cong, Nandi, He, Cichocki, & Ristaniemi, 2012), 
who showed in their simulations that both AIK and MDL tend to underestimate 
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number of sources when the SNR is low. Finally, unreasonable model order esti-
mations by AIK and MDL were observed in experiments on real fMRI data in 
PIII and also in (Cong et al., 2014).  

In PI and PII, model order was estimated by the method proposed in (He, 
Cichocki, Xie, & Choi, 2010). This method, referred as SORTE, relies on the sec-
ond order statistics of the eigenvalues to find a large gap in eigenspectrum. For-
mally, SORTE is defined as: 

  2.4-7 

where ;  and  
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SORTE provided reasonable estimate under single subject ICA approach only if 
the fMRI data were filtered by band-pass filter with 8mHz and 100mHz cutoffs. 
For group ICA approaches in PIII and PIV, however, none of the tested MOS 
methods worked.  

In summary, none of the model order estimation techniques are universally 
suited to all settings. Real data rarely comply with all assumptions of the estima-
tors, and no ground truth is available for the model order. Some heuristics have 
been proposed for robust estimation and repeatability (Onton & Makeig, 2006; 
Särelä & Vigário, 2003), but these estimates are higher limits of reasonable model 
order that can also be detected if reliability testing of ICA results are conducted. 
Studies PIII and PIV offer two different approaches to address model order se-
lection problem.    

2.4.4 Overview of ICA Approaches in Neuroimaging 

ICA has become one of the standard data-driven method for fMRI since its first 
applications in 1990-s (McKeown et al., 1998). There are several workflows for 
decomposing multisubject fMRI data and drawing group inferences, summa-
rized in Figure 2. At the highest level of the flowchart is the most general subdi-
vision: spatial ICA and temporal ICA. Even though in practice difference be-
tween the two is mere orientation of input matrix, assumptions on mixing model 
are different. In spatial ICA, each of 
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is assumed to be a linear mixture of statistically independent activation patterns 
(sources), i.e. 
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 is the number of dimensions in the data. In temporal ICA, each 
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courses. The latter approach is not widely used in fMRI because very large spatial 
dimension of the whole brain image - 
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 makes it computationally ex-
pensive without substantial data reduction. EEG and MEG are more natural do-
main for temporal ICA, since it is applied in the sensor space and the number of 
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electrodes or squid sensors are three orders of magnitude smaller compared to 
fMRI voxels.  

Spatial ICA is further divided by how data from multiple subjects are inte-
grated (Figure 2). Each subject’s data are decomposed separately in single subject 
ICA, and source estimates are combined for group analysis afterwards. However, 
such unconstrained ICA solution, combined with associated permutation and 
sign ambiguity (see Section 2.4.1), makes matching of IC estimates across subjects 
challenging. Multiple ways for making group inferences for single subject ICA 
has been proposed in literature (Calhoun et al., 2001; Esposito et al., 2005). Our 
approach for drawing group inferences will be detailed in summaries of PI and 
PII, where single subject ICA was employed. 

Group ICA (GICA) approach is a popular alternative where instead of indi-
vidual decomposition, data from all subjects are concatenated before subjecting 
to ICA. As depicted in Figure 2, data can be concatenated across temporal or spa-
tial dimensions. Temporal concatenation strategy assumes common activation 
patterns across all subjects, but allows spatial maps to have subject specific time 
courses. Conversely, spatial concatenation assumes common temporal courses 
and allows unique spatial maps. When necessary, contributions of individual 
subjects into common activation maps or temporal courses can be reconstructed. 
Both single subject and group ICA have advantages and limitations that can be 
tailored for specific purposes. For instance, unconstrained decomposition in sin-
gle subject ICA can reveal sources that are present only in a subset of subjects, 
whereas such sources will be challenging to detect for group ICA approaches, 
especially with temporal concatenation strategy.  

More generally, single subject ICA is not affected by high inter-subject var-
iability across temporal or spatial dimensions, at the expense of challenges asso-
ciated with integration of ICs across subjects. Group ICA, on the other hand, dra-
matically simplifies group inferences. Moreover, possibility to reconstruct subject 
specific parts of a common map dramatically simplifies comparisons between 
subjects or different groups. Calhoun and colleagues in (Calhoun, Liu, & Adal , 
2009) reason that assumption of common spatial maps in temporal concatenation 
approach is better suitable to fMRI because temporal variation in signal is much 
larger than spatial variation. This is in line with the simulation study by 
Schmithorst & Holland (Schmithorst & Holland, 2004). Authors simulated a sce-
nario where some of the sources are present only in a subset of subjects, and 
found that temporal concatenation approach outperformed spatial concatenation. 
Indeed, the former allows subject-specific temporal courses (i.e. weights of 
sources in the mixture), which means absence of a source in a given subject can 
be easily handled by having corresponding weights in the mixing matrix close to 
zero. The list of approaches is not exhaustive, but these are arguably the most 
commonly applied ones in modern neuroimaging. For more extensive review see 
(Calhoun et al., 2009). 
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FIGURE 2 ICA approaches commonly employed in neuroimaging 

2.4.5 ICA-based Methodology Applied in this Work  

This section overviews single subject and group ICA analysis workflows em-
ployed in PI, PII, and PIII. Individual ICA framework is depicted in Figure 3. 
Each participant data was first reduced by PCA, followed by ICA decomposition 
within ICASSO framework to produce a set of ICs and corresponding time 
courses. In order to be qualified as task-related consistent activation map, the 
produced ICs are subjected to the two constraints: 

1. Correlation between temporal course of the given IC and at least one stim-
ulus feature should be statistically significant.   

2. Spatial map should be observed in more than 5 (half) of the participants’ 
responses.    

Statistical significance of the correlations was estimated by permutation 
tests where phase scrambled features were correlated with randomly selected IC 
time course. The process was repeated 100 000 times and from the distribution of 
the computed correlations, significance threshold at the level p<0.01 was selected. 

After selecting the subset of ICs satisfying the first constraint, group-level 
consistency analysis was conducted. To this end, similar stimulus-related activa-
tion maps from different participants were grouped together and the ones pre-
sent in over half of the subjects are retained. In PI grouping of similar spatial 
maps was achieved simply by visual examination.  This laborious process of com-
ponent grouping was automated in PII by applying diffusion map to cluster ICs 
(Sipola et al., 2013). Finally, the components satisfying both criteria are reported 
as stimulus-related common spatial maps.   

General workflow of conventional GICA, as proposed in (Calhoun et al., 
2001),  is depicted in Figure 4. The method consists of two stage dimensionality 
reduction: first, each subject data is reduced separately by PCA. Next, the re-
duced data from all subjects are concatenated and reduced again by second stage 
PCA. The output of the second stage reduction defines number of sources in ICA 
model and thus has significant effect to decomposition results. After the source 
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separation, a set of ICs and mixing matrix is estimated. The set of spatial maps is 
common to all subjects, whereas aggregate mixing matrix combines all subject- 
specific temporal courses for each component. The process of finding consistent 
stimulus-related activations is similar to single subject ICA approach: for each 
group IC, 11 subject-specific temporal courses are correlated to the stimulus fea-
tures. The component is retained if more than half of its subject-specific time 
courses are significantly correlated with the given stimulus feature.  

Figure 5 illustrates schematic view of the MCCA extension proposed in PIII. 
Here, additional dimensionality reduction is introduced between the two PCA 
stages of the conventional technique. While MCCA combines data from all sub-
jects for computing correlated subspace, canonical components are produced for 
each dataset. The third stage reduction consists of concatenation and PCA reduc-
tion followed by ICA, as described above. More details on how this addition is 
implemented and how it effects the reconstruction of images and time courses is 
provided in PIII. Once the set of common ICs and aggregate time courses are 
estimated, rest of the analysis is identical to standard GICA.  

 

 

FIGURE 3 Single subject ICA framework 
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FIGURE 4 Group ICA with temporal concatenation 

 

FIGURE 5 Group ICA with MCCA extension  

PC
A

 
PC

A
 

PC
A

 

IC
A

 

 

 

  

 
 

PC
A

 
PC

A
 

PC
A

 

IC
A

 
 

 

  

 
 

M
C

C
A

 



 
 

3 STUDY SUMMARIES  

3.1 Contribution of the Author 

The author had an active role in all stages of research presented in this thesis. He 
was the main contributor in data analysis, interpreting results, and writing the 
manuscripts in PI, PII, PIII, and PV. Together with Fengyu Cong the author was 
an active contributor to the methodological design of studies PI and PII, and PIII. 
In PIV, the author contributed to the methodological design of the study, per-
formed dimension reduction, conducted preliminary ICA analyses, and revised 
the manuscript. Besides the author, Iballa Burunat and Petri Toiviainen also con-
tributed to the methodological design of PV. 

3.2 Study PI 

Aims: In this study CCA was applied for reducing data before subjecting to ICA 
decomposition. In contrast to more commonly applied PCA, which selects the 
subspace of maximal variance, CCA selects common (correlated) subspace be-
tween two datasets. It is widely accepted in neuroimaging community that task-
related signal in fMRI is much weaker than noise originating from physiological 
processes or other sources. Therefore, retaining most of the variation might not 
necessarily mean retaining the signal of interest, especially for low SNR. On the 
other hand, common subspace between brain responses of participants exposed 
to the same stimulation is more likely to be linked to the stimulus itself. Further-
more, benefits of CCA has been shown in simulations and real fMRI data 
(Karhunen, Hao, & Ylipaavalniemi, 2012b). We tested CCA and PCA reduction 
before ICA and compared the results.  
 
Methods: Methodological design is shown in Figure 6: fMRI data were reduced 
by both PCA and CCA, following which ICA was applied. One additional step 
before dimension reduction was bandpass filtering of fMRI voxel time series. The 
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filter cutoffs were set at 0.008Hz-0.05Hz, corresponding to the frequency band 
where most of the energy of stimulus features were located. Benefits of the filter-
ing step is discussed in (Cong et al., 2011).  Three model orders were tested for 
each method: 20 and 30 were predefined by us and 46 was estimated by SORTE 
(He et al., 2010). The predefined model orders were added to qualitatively exam-
ine optimality of SORTE estimate. All six datasets were subsequently subjected 
to individual ICA framework (see Section 2.4.5.) to find stimulus-related con-
sistent spatial maps.  

Performance of each method was assessed by examining reliability of ICA 
results and produced spatial maps. Primary interest was to find out whether 
CCA helps finding more stimulus-related activations (i.e. the sources whose tem-
poral course significantly correlated with at least one acoustic feature).  
 
Results: Reliability of ICA, measured by cluster quality index (see Section 2.4.2), 
was not significantly different between the two methods at any model order. Dif-
ference was also subtle in terms of the stimulus-related common activation maps 
produced by the two methods under model order of 46. Common map was ob-
served in seven and nine subjects’ responses for CCA and PCA respectively. In-
terestingly, the produced stimulus-driven activation maps by PCA+ICA declined 
for model orders below the SORTE estimate. The trend, however, was not prom-
inent for CCA+ICA model. A possible explanation is that over-reduction forces 
PCA to retain only few components accounting for the largest portions variance. 
These components are likely to be related to the artifacts rather than stimulus due 
to the fact that stimulus-related signal energy is lower. Consequently, signals of 
interest can be discarded even before source separation. CCA, on the other hand, 
finds the subspace of shared variance between a pair of datasets, which is more 
likely to be related to the experimental manipulation. Thus, even at suboptimal 
model orders, canonical components are likely to contain stimulus-related 
sources, while noisy components will be discarded.  

To summarize, while CCA reduction did not provide a large gain in ICA 
performance according to our criteria, observed results suggest that CCA-based 
reduction might lead to more stable results for suboptimal model orders. Fur-
thermore, there were several limitations that could blur the contrast between the 
outcomes. First, comparison criteria were overly general for observing large dif-
ferences under very narrow range of tested model orders, given the dimension-
ality of the input data (231 dimensions). Such restricted range was mainly conse-
quence of the bandpass filtering step, which smoothed voxel time series and sig-
nificantly reduced the rank of the data matrices. In the following study, we wid-
ened the pass band of the filter to 0.008 – 0.1Hz in order to avoid excessive 
smoothing and the associated collinearity problems.  

Another issue that can affect the outcome is that CCA operates on two da-
tasets. Therefore, dimensions of 11 datasets was reduced in randomly selected 
pairs in this study. Common subspace can vary across different pairs, which cer-
tainly affects the subsequent source separation step. In PIII, multiset extension of 
CCA was employed in order to extract common subspace from all datasets.  
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FIGURE 6 Flowchart of the study design 

3.3 Study PII 

Aims: While study PI explored the role of the dimension reduction in improve-
ment of ICA decomposition, PII focused on stimulus representation. As men-
tioned above, (Alluri et al., 2012) extracted a set of 25 acoustic descriptors com-
monly used in music information retrieval field and transformed those into nine 
principal components, retaining over 95% variance in the data. By examining 
contributions of the initial descriptors to each principal component, Alluri and 
colleagues labeled them by the musical dimension they represent.  The applied 
labels were subsequently validated in the perceptual experiment. Finally, six 
high-level features were retained. Four features including Fulness, Brightness, 
Timbral Complexity, and Activity, represent polyphonic timbre of music; Key 
Clarity represents clarity of the key, and Pulse Clarity represents clarity of the 
main beat in music.  

 Aim of this study was to explore an alternative set of stimulus features, 
generated by applying KPCA to the same acoustic descriptors that were em-
ployed in (Alluri et al., 2012). As a nonlinear method, KPCA can exploit nonlinear 
patterns in the data and generate novel stimulus features, which can subse-
quently help finding interesting brain activations.   
 
Methods: Figure 7 depicts the process of kernel PCA feature generation. The in-
itially extracted raw descriptors went through the same preprocessing routine as 
in (Alluri et al., 2012). Namely, the sampling rates of the descriptors were 
matched and convolved with HRF in order to account for the lag produced by 
hemodynamic response. The features were band-pass filtered with cut offs at 
0.008 and 0.1Hz. After the preprocessing, KPCA was applied with third degree 
polynomial kernel, producing 14 nonlinear features. The generated features and 

PCA PCA

fMRI data 

MOS  estimate 20 PC 30 PC 

ICA 

0 PC 30 PC MOS esti

CCA 

MOS  estimate 20 CC 30 CC 0 CC 300 CC MOS esti

ICAAICA
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their neural correlates were compared with the six PCA features designed in (Al-
luri et al., 2012). Single subject ICA approach (see Section 2.4.5.) was employed 
for finding consistent activation maps related to each set of features.  
 
Results: Results revealed 53 ICs from all 11 subjects were significantly correlated 
with KPCA features. In the Table 1 (top row) number of the components linked 
to each stimulus feature is shown. As can be seen from the table, more than one 
components from each subject can be associated with each stimulus feature. For 
example, 

imu
nts fs f

 is correlated to time courses of 11 components from seven subjects. 
However, due to large variation in activation patterns across participants, major-
ity of the spatial maps did not satisfy our group-level consistency criterion (being 
present in responses of at least six subjects) and were discarded from the subse-
quent analyses. Figure 8 demonstrates spatial variability of the stimulus-related 
responses across subjects by showing averaged (left half) versus combined 
thresholded maps (right half), associated to each of the features. Averaged spatial 
maps associated to KPCA tend to consist of smaller clusters with relatively strong 
presence in frontal areas, whereas in averaged PCA maps activations are more 
concentrated in the auditory areas. Visual examination of averaged and com-
bined spatial maps shows that PCA maps tend to be more consistent across sub-
jects than KPCA counterparts. The reason behind this phenomenon is difficult to 
pinpoint. 

 Overall, brain correlates of the two stimulus representations feature similar 
and unique areas. Namely, presence of large clusters of activation in the frontal 
areas of averaged 

n co
Namam

 and 

ates 
y, prepr

 maps is absent in PCA maps. On the other hand, 
we see significantly larger auditory areas in all PCA maps. In addition, activa-
tions in the parietal and occipital areas in Timbral Complexity map only partly 
overlaps with averaged 

err aau
ppocccii
 and 

p
ory a

areare
 responses. Nevertheless, group-level con-

sistency criterion was not fulfilled by majority of the features. Common activa-
tion patterns were found only for 

r
d byby

 from KPCA features (see Figure 9, left half), 
and for Brightness and Activity from PCA (Figure 9, right half). Both spatial maps 
show activations predominantly in bilateral auditory cortices. Additional activa-
tion clusters in left inferior frontal gyrus and left precentral gyrus are visible in 
responses to 

ions
in len le

 feature.  
KPCA features showed low to moderate correlation to PCA features (see 

Figure 10). Feature 

ture
s shsh

 is moderately correlated to Brightness (r=0.52), and Tim-
bral complexity feature (r=0.39), while not correlated to Activity. Temporal 
course of 

). Fee
plexiex

tends to capture significant changes in temporal courses of Bright-
ness and Timbral complexity, but otherwise exhibits less dynamics than the two.  

To conclude, nonlinear mapping between initial descriptors produced new 
interesting stimulus features. However, to interpret neural correlates of 

n the 
uceded

, find-
ing its perceptual correlates is needed. Such analysis was out of scope of this 
study. As in the case of linear PCA features, common activation pattern was not 
observed for majority of the features. This might be attributed to excessively strict 
constraints for group-level consistency for source estimates. Study PV offers 
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more extensive analysis of both perceptual and neural correlates of nonlinear fea-
tures. However, the results are not comparable since the generated features as 
well as the employed methodology was different. 

 

FIGURE 7 KPCA feature generation process 

TABLE 1 Source estimates related to the selected stimulus features 

 Ful. Bri. T.C. Act 
stimulus-related components 
(components/subjects) 11/7 28/10 14/8 9/7 17/11 6/6 15/8 

Common map (subjects) - 9 - - 10 - 7 

 

FIGURE 8 Averaged and combined functional networks 
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FIGURE 9 Common spatial maps for  and Brightness  

 

FIGURE 10 Correlation between KPCA and PCA features 

3.4 Study PIII 

Aims: This study presents an extension of group ICA by adding multiset CCA 
(MCCA) to the conventional two-stage PCA reduction. MCCA addressed the 
limitations of standard two set CCA discussed in Section 3.2. In addition, single 
subject ICA framework in PI was replaced by group ICA in order to simplify 
group-level analysis.     
 
Methods: General design of study PIII was similar to PI, conventional GICA and 
our extension were tested on fMRI data from music listening experiment and the 
results were compared. However, criteria for comparison according were ex-
tended. In addition to ICA decomposition stability, here quality of the produced 
independent components was assessed. Decomposition stability was measured 
by three variables monitoring convergence of ICA and reliability of IC-s. Quality 
of the separated sources was characterized by another three variables: number of 
stimulus-related components produced, number of consistent maps across sub-
jects, and the size of the stimulus-driven activation maps.  

One additional problem we faced was that MOS methods failed to provide 
reasonable estimates of dimensionality for the second stage dimension reduction. 
For example, for the concatenated data consisting of 80*11=880 dimensions, 
SORTE estimated model order of 878. Other MOS methods were also tested but 
without success (Cong et al., 2014). Such high estimate is unreasonable if we con-
sider the rate of decline of ICA convergence as a function of model order, pro-
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vided in Figure 11 (left). Clearly, regardless of the output of the first stage reduc-
tion (denoted as ‘indPCA’ in the figure), ICA virtually does not convergence for 
model orders above 100. This is in line with the heuristic for estimating upper 
limit of model order, proposed in (Onton & Makeig, 2006), which states that for 
number of voxels (samples) 
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 parameters (sources) is 
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 voxels in our data, 
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 corresponds to model order of 

eters
ger t

, at which ICA 
convergence rate is low (see Figure 11, left).   

In order to estimate optimal model order, experiments on conventional 
GICA was conducted by consecutively fixing output of the first stage reduction, 
while varying the model order (i.e. the output of the stage two). Outputs from all 
combinations were evaluated by the six variables mentioned above. Conse-
quently, dimensionality for stage 1 and stage 2 PCA reductions in standard GICA 
were fixed to 80 and 40 respectively.  

In extended GICA there are three stages of reduction. Output dimensions 
of the two PCA stages were matched to those in standard GICA, to make results 
comparable. Next, different output of MCCA stage were tested and the one 
providing the best result was selected. Finally, after determining outputs of di-
mension reduction, results of the two methods were compared.   
 
Results: One outcome of this study was the proposed heuristics for evaluating 
ICA results. As mentioned above, ICASSO indices are useful to quantify reliabil-
ity and stability of ICA decomposition. Here, those indices were combined with 
the three additional variables that provide quality measure for the estimated 
sources. Although initially developed for comparing results of two methods, the 
proposed variables can also serve as useful heuristic for estimating number of 
sources when MOS methods fail.  

Our extension of GICA outperformed conventional GICA according to our 
criteria. While the improvement is in the results was not significant, it was sys-
tematic throughout extensive testing under multiple parametrizations. For exam-
ple, it can be seen from Figure 11 (right) that convergence of GICA with MCCA 
extension (blue line) was better than conventional GICA at all model orders up 
to 90. 

 

FIGURE 11 ICA convergence as a function of model order 
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3.5 Study PIV 

Aims: Study PIV examined functional networks involved in the processing of the 
perceived beat in music. The dataset analyzed originated from the experiment, 
where brain responses to 18 musicians and 18 non-musician controls were ac-
quired while continuously listening to three pieces of music. Pulse Clarity feature, 
modelling perceived clarity of the main beat, was extracted from stimulus audio. 
Brain correlates of the feature were computed by ICA. In addition, responses of 
musicians and control group were compared in order to examine effect of music 
training on the brain circuitry involved in rhythm processing. What is more rel-
evant to this thesis, PIV also offered an interesting methodological development 
that addresses challenges associated with MOS.  
 
Methods: The methodological approach was semi data-driven: first, hypothe-
sized regions of interest (ROI) involved in processing of musical rhythm were 
selected based on the existing knowledge. Next, data-driven GICA with temporal 
concatenation was applied to the selected ROI (comprising roughly 10% of voxels 
in the entire brain) to identify stimulus-related activation maps. As in PIII, GICA 
was tested under several model orders, but instead of selecting the ‘correct’ 
model order, here ICs were selected from different model orders. Specifically, 
one IC per model order was selected that best correlated with the stimulus fea-
ture.  
 
Results: Results revealed auditory and motor areas activated in response of Pulse 
Clarity feature. Interestingly, non-musicians’ neural responses were better pre-
dicted by Pulse Clarity feature than musicians’ responses. It can be explained by 
the fact that computational model of pulse clarity is built solely on acoustic fea-
tures of music. While non-musicians may also rely on the same acoustic features 
of music to estimate main beat, better understanding of metric structure allows 
musicians to have more advanced models, which use additional high-level fea-
tures to identify and follow the beat.  

To the methodological end, we observed that estimated ICs under different 
model orders were different: at low model orders, stimulus-related components 
contained larger networks of activation, while at higher model orders the com-
ponents maps were split into smaller sub-networks. This finding is in line with 
results of previous studies (Abou Elseoud et al., 2010; Särelä & Vigario, 2003). 
Such hierarchical organization of networks would not be possible to observe if 
one ‘correct’ model order was selected for ICA.   

As mentioned above, GLM was also applied to the data. Results were in 
concordance with the ones produced by GICA. However, only part of the signif-
icant activations was uncovered and only in non-musicians’ responses, adding to 
the existing evidence that data-driven methods frequently outperform traditional 
massive univariate approaches in finding neural correlates of complex natural-
istic stimulus.   
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3.6 Study PV 

Aims: In this study, perceptual and neural correlates of KPCA features were ex-
plored and the results were compared to (Alluri et al., 2012). For simplicity (Al-
luri et al., 2012) will be referred as original study. In spite of similarities in main 
research goals, PV is different from PII in three aspects. First, gaussian kernel was 
selected for kernel PCA, while PII featured polynomial kernel. Therefore, the 
generated stimulus features are different. Second, methodological design is dif-
ferent: instead of single subject ICA, here the method proposed in the original 
study was employed to find neural correlates of the generated features. Third, 
PV investigated perceptual relevance of the nonlinear features.  
 
Methods: Apart from the choice of the kernel, feature generation process was 
similar to the one presented in PII (see Figure 7). First part of the work focused 
on finding perceptual correlates of the KPCA features.  

Perceptual validation procedure in the original study is illustrated schemat-
ically in Figure 12. Average feature values over 6 second frames with 1 second 
step size were first calculated, producing several hundred frames per feature. 
The obtained frames were rank ordered according to average feature values, 
from which 30 frames were equidistantly sampled under the constraint that the 
selected frames captured entire dynamic range of the feature. Audio excerpts cor-
responding the sampled 30 frames were presented to 21 musicians, who rated 
perceived levels of the musical feature on nine-point scale.  

Data from the described experiment were employed here. Average KPCA 
values from all 
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 frames were estimated and were subsequently 
correlated to corresponding 
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 ratings (see Figure 12). Significance of correla-
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Neural correlates of the two sets of features were first compared at global 

level by finding an overlap between combined activation maps. Next, similarity 
between the individual activation maps were assessed by correlations.   
 
Results: Half of the KPCA features showed significant correlations with the per-
ceptual ratings. Among the ratings Rhythmic Complexity and Event Synchronic-
ity, which PCA features failed to predict.  Interestingly, some parts of frontal and 
visual areas were present in the activation maps of the new features, which were 
not observed in the original study. More detailed analysis of behavioral and neu-
ral correlates of the KPCA features are presented in the article.   

To summarize, main contribution of PV was to demonstrate that KPCA has 
a potential to capture high-level musical percepts. For increased reliability of the 
results, the limitations of the study stemming from methodological issues as well 
as from insufficient perceptual rating data will need to be addressed in the future 
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investigations. These limitations are discussed in the article and solutions to are 
proposed. 

 

FIGURE 12 Perceptual validation procedure in (Alluri et al., 2012)  
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4 DISCUSSION 

This exploratory work contributed to the development of data-driven methodol-
ogy for naturalistic fMRI experiment. Complex continuous stimulation in natural 
music listening settings makes finding functional networks involved in pro-
cessing of various aspects of music challenging. This thesis approaches the chal-
lenge from two perspectives. First is to improve source separation quality by re-
ducing complexity and noisiness of fMRI data prior subjecting ICA decomposi-
tion. Second is to explore whether generation of a new features as the way of 
forming alternative representation of stimulus can unveil additional brain areas 
involved in music processing. Following is the summary of the main contribu-
tions and limitations of this work:  
 
This work demonstrated that model order estimation for ICA on theoretical 
grounds is not always possible for noisy fMRI data. It has been shown that model 
order has significant influence on the decomposition results. Specifically, under-
estimation of model order can cause merging of multiple functional network into 
one IC or omit some of the weaker activations, whereas overestimation produces 
unpredictable subdivisions of networks, and the model suffers from overfitting 
(cf. PIV, also (Abou Elseoud et al., 2010; Beckmann & Smith, 2004)). Based on 
existing evidence, Burunat (Burunat, 2017) argues that in neuroimaging notion 
of correct model order is inadequate. Instead, the choice of the model order can 
be guided by the specific aims and research questions of the study. I share this 
view and add that in exploratory work when required level of ‘magnification’ for 
functional networks is not known in advance, examining source estimates under 
several model orders is the most appropriate approach. Certainly, analyzing all 
components can become prohibitively expensive, especially when data dimen-
sionality is large. One way to address this is proposed in PIV, where one (or more) 
IC from each model order were selected based on criteria that suits the aim of the 
study.  
 
An extension of conventional GICA was proposed that integrates MCCA in the 
two-stage dimension reduction process. The method produced promising results 



43 
 
in our tests. However, comparison of results from our extension and the conven-
tional approach proved challenging due to the scarcity of the ICs satisfying 
group-level consistency criteria.  
 
Multiple studies, including PI - PIII, and also (Cong et al., 2014; Puoliväli et al., 
2013),  where ICA-based method was applied to naturalistic music listening data, 
common activation maps have been usually observed for only one or two of the 
six stimulus features, even though the number of stimulus-related source esti-
mates varied considerably. There are several possible contributing factors to this 
issue. Sub-optimal model order selection can be one reason. However, MOS can 
only be a part of the issue since in most cases at least one IC has been found for 
each stimulus feature, but those usually did not satisfy group-level consistency 
criterion (to be present in responses of over 5 subjects) and discarded.  

 Another likely contributor might be the group-level consistency constraint 
itself (See section 2.4.5.) that rejected some of the stimulus-related components. 
This constraint assumes virtually identical functional networks processing 
higher-level concepts in music information. Combined with inevitable station-
arity assumption for source estimates in ICA context, the assumption of homo-
geneity across responses of different brains are not likely to hold for all features, 
especially for Key Clarity and Pulse Clarity. The stimulus piece was fairly dy-
namic and complex musically, and depending on the background (such as genre 
preferences, main instrument) musicians can have different models and expecta-
tions for musical structure, tonality, rhythm, and other high-level concepts. This 
can affect the cognitive processes involved in analysis of different sections of mu-
sic. Therefore, there can be significant variability in functional networks and 
more importantly, significant changes in those across time. In support of this ar-
gument, (Alluri et al., 2012) also found that neural correlates of Key Clarity fea-
tured substantial inter-subject variability. Furthermore, responses to Pulse Clar-
ity and Key Clarity did not replicate well in the follow up study (Burunat et al., 
2016). Perhaps relaxing group-level consistency constraint in our ICA framework, 
which requires similar activation patterns to be present across majority of sub-
jects, could prevent rejection of potentially interesting task-related components.  
 
Two studies included in this work demonstrated that nonlinear methods can also 
generate perceptually relevant interesting musical features. In my opinion, gen-
eration of high-level features based on statistically motivated criteria (e.g. pre-
serving most of the variance as was the case for linear PCA features) is valid but 
not optimal solution for finding relevant neural representations. For instance, in 
(Alluri et al., 2012) part of the activations with high inter-subject consistency were 
not predicted by any of the stimulus features. Authors attributed this to the in-
complete representation of stimulus and concluded that more acoustic compo-
nents are needed to explain all stimulus-driven activations. Defining and produc-
ing an exhaustive list of stimulus features and their perceptual validation would 
be very challenging if not impossible. A better solution would be supervised fea-
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ture generation, e.g. by involving fMRI responses in production of stimulus fea-
tures and then find perceptual correlates. My approach to this issue is in its early 
development phase. Conceptually the idea is to extract wide range of low-level 
descriptors from the stimulus audio (as has been done throughout this thesis), 
but instead of finding linear combination that retains most of the variance, find 
the combinations that maximize correlation to brain responses. One example 
would be applying CCA to a set of acoustic descriptors and spatially reduced 
representation of brain responses. CCA will find linear combination of acoustic 
descriptors and linear combination of fMRI features such that correlations be-
tween them are maximized. By selecting a subset of the most significant contrib-
utors, stimulus features and relevant spatial maps can be obtained. There are, 
however, multiple methodological considerations still to be resolved. For exam-
ple, due to high dimensionality and sparsity of fMRI image space, voxel time 
series cannot be directly used in the model. Thus, spatial reduction is necessary, 
e.g. by using time courses of ICs instead of voxels, or by applying spatial PCA to 
ROIs. Nevertheless, this can be an interesting topic for the future research.      
 
SUMMARY 

Under the general goal of finding functional networks involved in music pro-
cessing, this work contributed to improvement of data-driven methodology for 
naturalistic fMRI studies. By analyzing fMRI data collected from continuous mu-
sic listening experiment, certain challenges in methodology were demonstrated 
and addressed. From the broader point of view, source separation using ICA is 
well suited tool for exploratory analysis of fMRI. However, discarding redun-
dancies and increasing SNR is crucial to be in accordance with the model and 
assumptions of this source separation method. Moreover, absence of any prior 
information about true number of sources renders the results dependable to the 
heuristics for selecting model order.  

Part of this work tested an application of CCA for data reduction and 
showed comparable results to more widely applied reduction method. In line 
with other scholars, I advocate the benefits of testing multiple model orders for 
finding stimulus-driven functional networks in complex naturalistic experiments, 
even in the cases where model order selection method seemingly works.   

Another part explored stimulus feature generation process. In search of the 
novel features capturing high-level musical percepts, nonlinear kernel PCA was 
tested as opposed to liner PCA in the previous studies. Results turned out prom-
ising, even though finding perceptual correlates to nonlinear features proved 
more challenging than for linear counterparts.  

Presented findings are relevant not only to fMRI elicited from music listen-
ing experiments. Rather, these can be generalized also for naturalistic studies in 
general, where continuous multifaceted stimulation requires exploratory ap-
proaches such as ICA to be involved.  
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YHTEENVETO (FINNISH SUMMARY) 

Datalähtöisiä menetelmiä jatkuvan musiikin kuuntelun aikana kerättyihin 
fMRI-signaaleihin 

 
Kiinnostus todellisuutta vastaaviin toiminnallisiin magneettikuvantamiskokei-
siin on kasvanut tasaisesti vuosituhannen vaihteen jälkeen. Tämä trendi on hei-
jastunut kasvavaan määrään todellisuutta jäljitteleviä kokeita, joissa koehenkilöt 
prosessoivat monimutkaisia ärsykkeitä tai suorittavat vaikeita kognitiivisia teh-
täviä kuten elokuvien katsomista, pelien pelaamista tai musiikin kuuntelua. Täl-
laiset kokeet kuitenkin johtavat lukuisiin metodisiin haasteisiin koeasetelmaan 
vaikuttavien muuttujien hallinnassa.  

Tässä eksploratiivisessa työssä osoitettiin joitakin näistä haasteista sovelta-
malla usein käytettyjä datalähtöisiä menetelmiä jatkuvan musiikin kuuntelun ai-
kana kerättyihin fMRI-signaaleihin. Työn yleisenä tavoitteena oli löytää musiikin 
prosessointiin osallistuvia toiminnallisia aivoverkkoja, jonka osalta edistettiin 
nykyistä metodologiaa kahdesta eri näkökulmasta. Ensimmäisenä ärsykkeinä 
käytetyistä audiosignaaleista pyrittiin eristämään piirteitä, jotka kuvaavat musii-
kin erilaisia ominaisuuksia, kuten sointiväriä tai tonaalisuutta. Toisena tavoit-
teena oli edistää aivosignaaleiden purkamista luotettaviin ja laadukkaisiin riip-
pumattomiin alueellisiin aktivaatiokarttoihin. Tämä erittely mahdollisti musiik-
kiärsykkeestä ja muista fysiologisista, kognitiivisista ja teknisistä prosesseista 
lähtöisin olevien aktivaatioiden aiempaa paremman jaottelun.

Yksityiskohtaisemmalla tasolla tutkimuksessa kartoitettiin epälineaarisen 
menetelmän avulla musiikkiärsykkeen korkeatasoisia piirteitä. Toisessa osassa 
keskityttiin fMRI-signaalien dimension pienennyksen ja mallikompleksisuuden 
arviointiin ja saavutettiin metodisia parannuksia. 
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Abstract. Group independent component analysis (ICA) with special assumptions
is often used for analyzing functional magnetic resonance imaging (fMRI) data. 
Before ICA, dimension reduction is applied to separate signal and noise subspaces.
For analyzing noisy fMRI data of individual participants in free-listening to 
naturalistic and long music, we applied individual ICA and therefore avoided the 
assumptions of Group ICA. We also compared principal component analysis 
(PCA) and canonical correlation analysis (CCA) for dimension reduction of such 
fMRI data. We found interesting brain activity associated with music across 
majority of participants, and found that PCA and CCA were comparable for 
dimension reduction.

Study of brain activations elicited by natural continuous auditory and visual stimuli is 
relatively new and a promising domain in the field of fMRI research[1-3].Generated 
brain responses by such stimuli are of much more complex nature than in commonly 
utilized controlled design (block or event-related) experiments. This yields to 
adopting more data-driven approaches rather than holding on more traditional 
methods following to the hypothesis-driven models[4]. Group ICA has been used for 
analyzing fMRI during real-world experiences [4,5]. Assumptions for Group ICA 
require at least the number of sources and their order to be invariant for different 
subjects [6]. However, it is unknown whether these assumptions are met in real life. 
Therefore, in this study we apply individual ICA to each participant’s fMRI dataset 
elicited by naturalistic, continuous and long piece of music. 

* This work was financially supported by TEKES (Finland) under grant40334/10
“Machine Learning for Future Music and Learning Technologies”. A.K. Nandi would
like to thank TEKES for their award of the Finland Distinguished Professorship.



  Before subjecting fMRI to ICA decomposition, dimension reduction using PCA 
with model order selection is a common pre-processing routine that helps in 
identifying and separating signal and noise subspaces. 

Although fairly old method, CCA [7] has only been recently employed for pre-
processing [8] or post-processing [5] fMRI data. It finds correlated and uncorrelated 
subspaces from two datasets using second order statistics [8,9]. In an experiment to 
collect brain data, it is often expected to find the common information across different 
participants belonging to the same group. Therefore, CCA theoretically matches this
goal, and its strength in the dimension reduction for ICA has been shown through the 
analysis of simulated and real fMRI data obtained during the controlled design
experiment[8]. However, it is unknown whether CCA can also work well as the pre-
processing step for ICA to decompose very noisy fMRI data elicited during real-
world experiences. Present study compares performances of CCA, implemented 
according to [8], and more widely used PCA for dimension reduction for ICA. 

2. Method

2.1. Data description 

Dataset here consists of continuous fMRI scans (time resolution was 2 seconds)
obtained from eleven healthy musicians (mean age: 23.2 ± 3.7 SD; 5 females) while 
they listened to the tango 'Adios Nonino' by Astor Piazzolla with duration of 8 
minutes and 32 seconds. Six high-level musical features including Fullness, 
Brightness, Timbral Complexity, Key Clarity, Pulse Clarity, and Activity were
extracted from the stimulus. Detailed information about the fMRI data can be found 
in [1]. 

2.2. Dimension Reduction

2.2.1 PCA

If we denote the matrix of observed centered (zero mean) signals by 
, then the goal of PCA is to find orthogonal transform diagonalizing the covariance 

matrix of , . This is achieved e.g. by eigenvalue decomposition:

where is a matrix whose each column contains eigenvectors and is a 
diagonal matrix of eigenvalues ranked decreasingly. 

2.2.2 CCA

While PCA analyses one dataset at a time, CCA analyses two datasets to measure 
linear relationships between them. It finds two bases and for two 
centered data matrices and , such that correlations between the 
projections and are mutually maximized. According to [8]
CCA can be calculated by singular value decomposition of cross-covariance matrix of 
two whitened and normalized datasets: 

, 



where is the cross-covariance matrix, and are two orthogonal 
bases, one for each input dataset, and contains singular values representing the 
canonical correlations. 

2.2.3 Dimension reduction

In the both methods described above, dimension reduction is achieved in similar 
fashion. For PCA first k eigenvectors are selected from basis, such that it 
becomes , and then input dataset is projected onto it: . The 
procedure is similar for CCA where and are projected onto and .

Neither of the presented methods estimates target dimensionality of the input 
data automatically. In fact, evaluating the number of sources (i.e. target dimensions) 
is one of the challenges in fMRI analysis, which is frequently solved by empirical 
approaches [10]. Nevertheless, several methods for estimation of number of sources 
from the data have been proposed [11,12]. We employed model order selection 
method Gap proposed in [13] and previously employed for EEG data due to its 
computing efficiency [14]. With different numbers of sources experimented, the 
strength of Gap was examined for dimension reduction.

2.3. ICA decomposition 

In this study we decompose each participant’s fMRI dataset separately using spatial 
ICA, as opposed to the group-level approach where the data is concatenated first. The 
model of spatial ICA is , where is a matrix of fMRI scans (n 
denotes time points and l - voxels), is the mixing matrix containing 
respective time courses of the sources in , and is the source matrix 
containing spatial activation patterns. If we denote dataset after dimension reduction 
by then the above model will become determined by , where 

is dimension reduction matrix obtained from the dimension reduction 
method, and becomes the mixing matrix of the determined ICA
model. The goal is to learn unmixing matrix such that: . After the 
decomposition, original time courses of extracted sources are reconstructed by 
projecting extracted sources back to the scan field [15] via .  

As a stochastic algorithm ICA is not intrinsically stable and therefore, it can 
provide different results if run several times. A software package Icasso [16] analyzes
the stability and robustness of ICA decomposition. The idea of Icasso is to run ICA 
repeatedly N times (N=100 in this study), each time with randomly initialized 
unmixing matrix and to cluster extracted independent components into the predefined 
number of clusters. In this study, FastICA algorithm with the nonlinear function tanh
was selected as the separation algorithm. For the clustering, the agglomerative 
hierarchical clustering with average-linkage criterion was used. The number of 
clusters was the same to the number of components extracted by ICA. For 
characterizing decomposition stability, cluster quality index was calculated, which 
is a parameter estimating compactness of each cluster and degree of separation from 
others [16]. It is calculated by: 



where denotes the set of estimated independent components in the cluster , 
is the size of the cluster, is the set of indices outside the cluster , and is an 
absolute value of mutual correlations between estimated independent components.  It 
is a good measure for estimating stability of the extracted component as well as 
detecting possible overfitting. Therefore, is a suitable parameter for performance
comparison of employed dimension reduction algorithms.

2.4. Individual-level data processing

Obtained fMRI images went through the pre-processing procedure described in [1]. 
Next, temporal course of each voxel in the dataset was filtered using digital filter
based on Fourier transform. The cut-off frequencies of the band-pass filter were set to 
0.008Hz and 0.05Hz, determined by power spectrum of stimulus feature time series. 

Dimension of the filtered data was reduced using two different methods. First, 
PCA and Gap were employed, where Gap estimated 46 sources. Next, CCA was 
performed on six pairs of subjects. We implemented CCA according to the algorithm 
proposed in [8]. However, for dimension reduction authors in [8] rejected CCA 
components with correlations below an arbitrary threshold of 0.5. Here we employed 
Gap method again that determined different number of sources for different pairs of 
datasets, varying between 43 and 45. To test if Gap performance was optimal we also 
experimented with different numbers of sources (k=20 and k=30). 

Resulted six datasets (three for each dimension reduction method) were 
separately decomposed using Icasso [16]. 

2.5. Group-level data analysis

Obtained time courses of independent components were correlated with time courses
of stimulus features. Significance thresholds of the correlations were set using Monte-
Carlo simulation presented in [1] and only significant correlations at the significance 
level p<0.01 were considered for further analysis. Finally, spatial maps with 
significant correlations were visually examined to find common stimulus-related brain 
activations. We considered common activation map only if it was shared between 
more than five (half of all) participants.

3. Results

For compactness of representation we denote CCA and PCA-based ICA results as 
PCA+ICA and CCA+ICA. Experiments showed that ICA decomposition stability is
affected little by employed dimension reduction method. In the Fig.1 quality indexes 
for CCA and PCA are provided. Indeed, for all numbers of components the difference 
between two methods for mean ICA decomposition stability is subtle. 

Visual examination of activation maps significantly correlated with one or more 
musical features (p<0.01) revealed one common map showing activation in Auditory 
cortex, shared between more than five participants. Table 1 summarizes the observed 



common map for PCA and CCA. In overall, the spatial map was detected in 
activations of nine subjects for PCA+ICA and seven subjects for CCA+ICA. Due to 
the space limitation, spatial maps are not shown.

Manually reducing dimensionality to 20 and 30 resulted in less stable ICA 
decomposition for CCA as well as PCA. However, desired common map was still 
observed for both methods: for PCA+ICA among seven and six participants 
respectively. For CCA+ICA the common map was found in 7 participants’ activations 
regardless of the number of sources.

      

4. Conclusions

In order to study fMRI during real-world experiences, we proposed an individual-
level data processing and group-level analysis approach mainly based on ICA and 
correlation. Meanwhile, two different methods for dimensionality reduction were 
tested for ICA in processing such challenging data.
 We found similar spatial maps with corresponding temporal courses 
significantly correlated with musical features among individual participants. For 
dimension reduction in processing fMRI during real-world experiences, we found 
both PCA and CCA performed reasonably well.

In addition, we repeated the process with two different numbers of sources to 
check whether the employed model order selection was optimal in estimating number 
of target dimensions. We found that the number of sources suggested by model order 
selection was optimal for ICA decomposition stability for both methods. Interestingly,
in production of stimulus-related spatial maps CCA was less sensitive to lower
dimensions than PCA in our experiment. 

It should be noted that CCA was implemented according to [8], which does not 
precisely follow the conventional CCA definition [7]. In the future we will investigate 
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the conventional CCA and Partial least squares [17] for dimension reduction of fMRI 
during real-world experiences.
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ABSTRACT 
 
In contrast to block and event-related designs for fMRI 
experiments, it becomes much more difficult to extract 
events of interest in the complex continuous stimulus for 
finding corresponding blood-oxygen-level dependent 
(BOLD) responses. Recently, in a free music listening fMRI 
experiment, acoustic features of the naturalistic music sti-
mulus were first extracted, and then principal component 
analysis (PCA) was applied to select the features of interest 
acting as the stimulus sequences. For feature generation, 
kernel PCA has shown its superiority over PCA in various 
applications, since it can implicitly exploit nonlinear rela-
tionship among features and such relationship seems to exist 
generally. Here, we applied kernel PCA to select the musi-
cal features and obtained an interesting new musical feature 
in contrast to PCA features. With the new feature, we found 
similar fMRI results compared with those by PCA features, 
indicating that kernel PCA assists to capture more properties 
of the naturalistic music stimulus.       

Index Terms— kernel PCA, ICA, Polynomial kernel, 
naturalistic music, fMRI 
 

1. INTRODUCTION 
 
Traditionally, fMRI experiments have been conducted in 
controlled environment where stimulus sequences or onset 
and offset times are strictly defined. Typically, stimuli are 
simplified or artificially generated to isolate features of 
interest as much as possible.  It has been questioned whether 
the results of such controlled experiments are generalisable 
to much more complex real-world experiences [1-3]. Con-
sequently, interest towards studying brain activations in real 
world experiences, involving natural continuous stimuli, is 
quickly growing [1, 2, 4, 5]. In such real-world experimental 
setups where brain responds to continuous stream of com-

plex stimulus, we need to extract the features to segregate 
neural responses to various concurrently occurring stimulus 
events, which might be difficult for certain type of stimuli. 
Moreover, conventional analysis methods that rely on block 
or event-related experimental design are not easily applica-
ble in such naturalistic paradigm [3, 6]. Recently, several 
approaches have been reported that overcome limitations of 
traditional analysis methods. Hasson et al. [1] proposed 
pairwise inter-subject correlations and reverse correlation 
method for analyzing fMRI during free watching movie. 
From machine learning field supervised classification and 
regression algorithms were adopted for brain encoding and 
decoding models (see review in [7]). The encoding model 
maps stimulus representation to the voxel activity in se-
lected region of interest (ROI) in the brain. Usually, stimu-
lus features in encoding/decoding studies consist of categor-
ical constructs or individual representations of many stimuli. 
The encoding model is built upon learning the differences 
between corresponding brain responses to the different cate-
gories or stimuli. Trained model, can then predict the voxel 
activations for a new stimulus. The decoding model has an 
opposite aim - to predict the stimulus from the voxel activi-
ties.  

We employed data-driven approach based on indepen-
dent component analysis (ICA) decomposition of fMRI and 
correlating temporal courses of the obtained independent 
components with stimulus features. It should be noted that 
the method is different from supervised enco-ding/decoding 
methods mentioned above; it does not need construction of 
stimulus categories, or to have preliminary assumptions on 
responses to define regions of interest. Benefits of our ap-
proach in the analysis of data obtained from naturalistic 
experiment have been addressed in [8].  

  In spite of the availability of the growing body of re-
search on fMRI responses to natural stimuli, most of the 
studies to our knowledge are focused on visual, virtual reali-
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ty settings [1, 3, 4, 9, 10] or speech [11]. However, in one 
recent study brain responses during passive music listening 
environment were explored in [2]. Authors employed inte-
grated analysis approach involving computational extraction 
and perceptual validation of stimulus features, and then 
finding corresponding activations in brain by correlating 
stimulus features with voxel time courses. The dimensio-
nality of the initially extracted 25 acoustic descriptors was 
reduced using PCA to obtain compact stimulus representa-
tion expressed by six high-level features. As a linear me-
thod, PCA is blind to nonlinear inter-relationships between 
variables, should such relationships exist. This issue was 
addressed here. To assess possible nonlinear relationships 
among initial acoustic descriptors, we employed kernel PCA 
(KPCA) [12] to generate a new set of high-level features. 
Kernel PCA has been very extensively used for feature 
selection and dimension reduction in the field of machine 
learning and has shown its superiority over PCA [13-15]. 
Therefore, it is worth examining whether KPCA can assist 
to find better stimulus features from the extracted acoustic 
descriptors for analyzing fMRI data during real-world expe-
riences. 

Usually, one objective in fMRI studies is to find natu-
ralistic stimulus-related brain activations that are consistent-
ly present across different participants’ responses. In our 
paradigm, the objective translates in finding similar ICA 
components (spatial maps) among subjects such that the 
time courses of these components are significantly corre-
lated with the time courses of stimulus features. This was 
the main evaluation criterion for comparing KPCA and PCA 
performances in search of better stimulus representation. 

 
2. DATA DESCRIPTION 

 
The dataset analyzed in this study consists of fMRI scans of 
eleven healthy musicians (mean age: 23.2; SD: 3.7; 5 fe-
males), who listened to a 512 second-long piece of modern 
tango Adios Nonino by Astor Piazzolla. The fMRI mea-
surements were made in 3T scanner at sampling frequency 
of 0.5 Hz. Obtained fMRI scans went through conventional 
preprocessing routine. Detailed description of preprocessing 
steps can be found in [2].  

The preprocessed fMRI data were first band-pass fil-
tered with FFT-based digital filter. Benefits of applying 
such filter to fMRI data is discussed in [8]. The pass-band 
was set between 0.008 and 0.1 Hz [8]. Lower limit of the 
pass-band was in accordance to the filter applied during the 
preprocessing, while higher limit was set to match the fre-
quency range where most of the power of acoustic features 
was contained. Overall, 231 fMRI scans corresponding to 
stimulus between 21 to 480 seconds were used for analysis.  

Next, PCA and model order selection method SORTE 
[16] was applied to further remove noise and estimate num-
ber of sources. Selected PCA components of each partici-
pant were decomposed using independent component analy-
sis (ICA). FastICA [17] was employed as part of the 

ICASSO [18] software package, which addresses the stabili-
ty of ICA decomposition.  For each subject 94 independent 
components (ICs) were obtained. From the temporal courses 
of all the ICs, those significantly correlated (p < 0.01) with 
musical features were selected for further analysis. Signific-
ance thresholds for correlations were set for each feature via 
Monte Carlo simulation [2].  

From the set of selected components we rejected those 
with normalized kurtosis less than 5 to avoid artifacts. As a 
result, for each stimulus feature a set of significantly corre-
lated spatial maps from each subject were obtained. Finally, 
six sets of spatial maps corresponding to each feature were 
clustered separately to find common activations among 
different subjects. We employed diffusion map first to re-
duce dimensions and then clustered data using simple spec-
tral clustering. Detailed description of this method is pro-
vided in [19]. Two clusters are usually produced where 
similar activation maps (common map) from different sub-
jects formed one dense cluster, whereas dissimilar maps 
formed sparse cluster. The features were considered as in-
teresting if the common map in associated dense cluster 
included contribution from more than five (half of all) par-
ticipants.    

Described analysis scheme was employed twice - with 
PCA and KPCA descriptors, and therefore two large sets of 
BOLD responses corresponding to each feature set was 
obtained. 
 

3. STIMULUS FEATURE EXTRACTION AND 
SELECTION  

 
3.1 Acoustic feature preprocessing 
 
The feature extraction procedure follows already well-
established window-based extraction scheme employed in 
music information retrieval [20, 21].  Overall, 25 features 
representing timbral, tonal, and rhythmic information were 
extracted from the stimulus. The features were extracted 
from the overlapping windows of two different lengths. The 
shorter window length of 25 ms with 50% overlap was se-
lected for so called low-level features capturing timbral 
characteristics of the sound. These features usually are of 
high temporal resolution and reflect fast changes in music. 
The longer 3s windows with 67% overlap were employed 
for features that depict higher level concepts in music, such 
as tonality and rhythm. Hereafter we will refer these two 
subsets as short-term and long-term features based on the 
window length employed for their extraction. For the fea-
tures and their descriptions, the reader is referred to [2]. 

The features were centered and normalized with re-
spect to their standard deviation, after which long term fea-
tures were up-sampled to match the sampling rate of short-
term features. Next, all features were convolved with double 
gamma HRF (hemodynamic response function) to consider 
the hemodynamic lag. Following the convolution, 21 to 480 
seconds were extracted from feature time courses to syn-
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chronize with fMRI scans. The final step of the preprocess-
ing was the high-pass filtering with cutoff frequency at 
0.008 Hz, in accordance with the low cutoff of band-pass 
filter applied on fMRI voxel series. 

 
3.2 PCA-based musical features 
 
PCA is a widely used method to reduce dimensionality [22]. 
It is an orthogonal transformation of the centered matrix 

, where  is the number of dimensions and  is the 
number of samples. This is achieved by solving the follow-
ing eigenvalue problem: 

where  is a covariance matrix: 

 

Eigenvectors  of  represent the directions to 
largest variances sorted in decreasing order and eigenvalues  

 are variances across eigen-directions. The common heuris-
tic to reduce dimensions is to select the first  eigenvectors 
explaining most of the variance (usually 95%) in the data. 
Finally, data are projected onto the principal components to 
get its representation in the principal component space: 

This scheme was used for reducing dimensions of 25 
preprocessed features. Initially nine principal components 
were selected explaining 95% of variance in the data. The 
principal component axes were rotated using varimax rota-
tion [2]. Perceptual labels of principal components were 
applied based on loadings from raw features. The perceptual 
labels were validated through the experiment where 21 
musicians rated the excerpts of the stimuli in which the 
labels were exhibited in varying degrees. Finally, a set of six 
features including Activity, Fullness, Brightness, Timbral 
Complexity, Key Clarity and Pulse Clarity were selected for 
further analysis. First four of the six features characterize 
polyphonic timbre of music. Key Clarity represents tonal 
clarity, and Pulse Clarity is an estimate of clarity of per-
ceived pulse [2]. 
 
3.3 Kernel PCA features 
 
Kernel PCA is a nonlinear extension of PCA for nonlinear 
data distributions where mapping into linear subspace is not 
useful [12, 23]. To introduce kernel PCA, let us consider the 
data matrix consisting of  column vectors with  dimen-
sions: , The basic way to do nonlinear extension of 
PCA is to introduce nonlinear mapping to a (generally) 
higher dimensional feature space : 

 
Then calculate covariance using inner product  
in , and apply linear PCA as described above. Usually, 
this will quickly blow up computational complexity with 
increasing dimensionality of the data.  It is possible to avoid 
mapping  by introducing kernel function:  

, which replaces the inner 
product in feature space. It can be shown that eigenvectors 
of covariance matrix in  can be represented as linear com-
binations of data vectors:  . Coefficients  
can be found to solving the following eigenvalue problem:  

          
where  is a Gram matrix that 
is used for centering the kernel matrix,  
represent -th eigenvectors and eigenvalues. The projections 
of points in the feature space  onto the eigenvectors 
are given by: 

 

A polynomial kernel of third degree was selected in 
this study: 

 
where  is the kernel matrix and  matrix of 
features. For simplicity we set the slope parameter  to 1. 
To select , we tested the method on several sample values 
from wide range. Thus, the final form of our polynomial 
kernel was: . We selected the first 14 ei-
genvectors explaining 95% of variance in the data to reduce 
dimensions. Hence, 14 new features were obtained. 

 
4. MUSICAL FEATURES AND FMRI DATA 

ANALYSIS 
 

Overall, 14 kernel PC scores were generated from the initial 
set of 25 features. We explored similarities between kernel 
and linear PCA features by finding Pearson correlations 
between their temporal courses. For the simplicity, we will 
refer to kernel PC scores as 'new features' and linear PC 
scores as 'old features' hereafter. Several new features 
showed moderate to moderately high correlations with old 
features, while some features were very weakly correlated 
with linear PC scores (Fig. 1). Therefore, polynomial kernel 
was able to find new stimulus features that are moderately 
or not at all correlated with the old ones. 

Another interesting fact was that few combinations of 
the old features were submerged into first few KPCA fea-
tures (e.g. Fullness, Brightness, and Activity are represented 
with different weights in the first KPCA feature). It can be 
explained by existence of inter-correlations between men-
tioned PCA features, introduced by varimax rotation applied 
on principal components (see section 3.2). For example, 
absolute value of the correlation between Fullness and Ac-
tivity is 0.92. As described in section 2, the fMRI data were 
analyzed for two cases, involving six old and 14 new feature 
sets as stimulus sequences. The features for which we failed 
to find significantly correlated (associated) ICs from more 
than half of the participants were eliminated from further 
analysis. After the elimination, four old (Fullness, Bright-
ness, Timbral Complexity, and Activity) and three new 
features (features 2, 3, and 12) were left for further analysis. 
Next, we were interested in finding common spatial activati- 
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on maps among ICs associated with each
features from each set. To this end, we a
maps and spectral clustering [19]. 

For the old features, two common sp
revealed by spectral clustering of the associ
for Brightness and Activity. Both commo
large bilaterally activated areas predominan
tory cortices. For Brightness, the common m
from ten subjects and for Activity - from se
the remaining two features common map
served [8].  

The common map was also found for
KPCA #3. The common map showed th
patterns as found by PCA-based musical f
observed in eight subjects' ICs. Furthermor
showing common activation maps were su
selected by PCA features. In other words, 
section between the sets of ICs correspondi
feature set, while the two musical featur
kernel PCA are not very similar. The tem
KPCA #3, Brightness, and Activity are d
The common map consisting of averaged e
from eight subjects is shown in Fig. 3.   

We also tested Gaussian kernel for K
parameters outside certain range, for which
reasonable amount of eigenvectors, generat
highly correlated with old features in so
pattern as in Fig. 1. However, we did not f
map for those features. Due to the space l
not report results of Gaussian kernel in this 

 
5. DISCUSSION 

 
We aimed to exploit possible nonlinear rela
initial set of descriptors by employing kerne
degree polynomial kernel. The set of gener
tures were employed in our individual IC
work to analyse real fMRI dataset from fre
riment. We found similar brain responses as
used PCA stimulus sequences and the sam
should be noted that the analysis framew
this study was tested and shown to be pro
agreement with previous findings from th
obtained from other established models [8]. 

  Two interesting points can be high
results: First, one of the three selected 
namely KPCA #3, was highly correlated w
courses of spatial maps from majority of su
ing only moderate-level correlations betwe
ture and Brightness (Fig.1), both showing s
lation with the same brain responses is an 
ing. It indicates PCA features as a repre
auditory stimulus are not the unique solutio
ping between initial descriptors and stimulu
can be nonlinear. Second, two KPCA fe
contributions from several PCA features. S

h of the selected 
applied diffusion 

patial maps were 
iated components 
on maps showed 
ntly within audi-

map was obtained 
even subjects. For 
ps were not ob-

r one new feature 
he same activity 
features, but was 
re, the set of ICs 
ubset of the ones 
there is an inter-

ing to each of the 
res by PCA and 

mporal courses of 
depicted in Fig.2.  
eight components 

KPCA. For kernel 
h we could select 
ted features were 
omewhat similar 
find the common 
limitation, we do 
paper. 

ationships among 
el PCA with third 
rated KPCA fea-
CA-based frame-
ee listening expe-
s with previously 
me fMRI data. It 

work presented in 
oducing results in 
he same dataset, 
   

hlighted from the 
KPCA features, 

with the temporal 
ubjects. Consider-
een this new fea-
significant corre-
interesting find-

esentation of the 
on, and the map-
us representation 
eatures exhibited 
Such aggregation 

seems to be useful as it enables com
considering the existing inter-corre
features, reduces redundancies. 

From the perspective of findi
sistent brain responses, both sets of
parable results. Both PCA and KPC
mon activations.  

To summarize, despite the f
clearly outperform PCA in our ex
new stimulus representation that co
responses is a positive result. Mor
mon map for most of the features m
tations of our analysis method. Ind
thod and group ICA-based method
naturalistic settings are discussed in
explore kernel-based or other non-li
stimulus representation further (e.g
possible limitations introduced by 
validate our results, we plan to com
within different analysis method. 
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Abstract—An extension of group independent component 
analysis (GICA) is introduced, where multi-set canonical 
correlation analysis (MCCA) is combined with principal 
component analysis (PCA) for three-stage dimension reduction. 
The method is applied on naturalistic functional MRI (fMRI) 
images acquired during task-free continuous music listening 
experiment, and the results are compared with the outcome of 
the conventional GICA. The extended GICA resulted slightly 
faster ICA convergence and, more interestingly, extracted more 
stimulus-related components than its conventional counterpart. 
Therefore, we think the extension is beneficial enhancement for 
GICA, especially when applied to challenging fMRI data.     

Keywords—Group ICA; temporal concatenation; naturalistic 
fMRI; dimension reduction; Multiset CCA; PCA  

I. INTRODUCTION  

Naturalistic neuroimaging experiments are increasingly 
utilized by neuroscience community to study cognitive brain 
function [1-6]. In such experiments real-world experiences  
are reproduced in laboratory conditions, enabling more 
ecologically valid stimulation than in common controlled 
experimental paradigms. From the methodological pers-
pective, analysis of naturalistic functional magnetic resonance 
imaging (fMRI) data involves new challenges associated with 
less control over stimulus and response timing, and lack of 
predefined models for such complex brain responses. That 
makes data-driven analysis approaches preferable over 
traditional hypothesis-driven ones due to their flexibility and 
few assumptions on the nature of data and noise. Independent 
component analysis (ICA) is arguably the most widely applied 

data-driven method to fMRI data. The ICA model assumes the 
observed fMRI data to be a linear mixture of several 
independent and non-Gaussian sources, and extracts them 
from observations. Various extensions of ICA exist 
nowadays. 

Group ICA (GICA) is commonly applied ICA variant on 
fMRI due to its advantage in drawing group inferences from 
multi-subject datasets. Within Group ICA, several approaches 
with different assumptions and data grouping strategies have 
been developed [1]. In this study, GICA with temporal 
concatenation was selected [7], since it was shown to 
outperform other strategies through the simulation study in 
[8]. Conventional GICA method [7] consists of three main 
stages: first, the dimensionality of data from each subject is 
reduced using principal component analysis (PCA). Second, 
the reduced datasets are concatenated across time dimension 
and PCA is applied again to further reduce dimensions. Third, 
the thus reduced dataset is subjected to ICA decomposition. 
As a result, one mixing matrix is estimated containing 
partitions corresponding to each subject, and one set of 
independent components (i.e. spatial maps) - that are common 
to all subjects. Spatial maps for each subject can also be 
reconstructed for exploring between-subject differences 
within each aggregate component. Although the described 
model has been successfully applied on fMRI before (see e.g. 
[1] for review), it does not always perform well, as 
demonstrated on our naturalistic fMRI data in the present 
study as well as in [9].  

In this work we extended the described conventional 
GICA model by integrating multiset canonical correlation 



analysis (MCCA) as an additional pre-processing step before 
subjecting data to ICA decomposition. Multiset CCA is the 
multiset generalization of standard two-set CCA introduced in 
[10], which finds correlated subspace from different but 
related datasets using second-order statistics [11]. In fMRI 
experiments finding common brain activation patterns among 
different subjects is important. Therefore, finding correlated 
subspace in the data before applying ICA is well justified for 
our purposes. The extension of blind source separation (BSS) 
by first finding correlated subspace was proposed in [12] and 
was reported to be significantly better than ICA alone in 
separating simulated mixtures. It should be noted, however, 
that the model we introduce here is not identical with the one 
applied in [12]. The main difference is in the ICA approaches 
employed. We selected group ICA with temporal 
concatenation strategy, whereas in [12] ICA was applied on 
each dataset separately. Furthermore, MCCA implementation 
in the present study is from [13], which in turn follows the 
original publication [11]. On the other hand, authors in [12] 
offered their own implementation of MCCA (or generalized 
CCA, as referred in the article). Nevertheless, the main 
principle of finding the correlated subspace in the data prior 
subjecting to ICA decomposition is the same. Interestingly, 
even though Karhunen et al. also included experiments on real 
fMRI data in [12], only two-set CCA was applied as source 
separation method rather than as a preprocessing of ICA. In 
this study, the developed GICA extension was applied on 
challenging fMRI data acquired during task-free continuous 
music listening experiment and the results were compared 
with outcome of conventional GICA. 

A crucial question for any ICA-based approach is how 
many sources should be extracted from the observed data. 
Estimation of number of sources has tremendous influence on 
the success of the decomposition. The authors in [7] 
recommended commonly applied heuristics (such as selecting 
number of components explaining most of the variance in the 
data) as well as information-theoretic criteria for estimation of 
number of sources from the aggregate dataset. However, in the 
recent study Cong et al. [14] showed through simulations that 
popular information-theoretic methods, such as Akaike’s 
information criterion [15] and minimum distance length [16]  
fail to accurately estimate number of sources when the SNR is 
low. In fact, the suboptimal performance of estimators was 
later demonstrated in practice, where model order selection 
methods failed to estimate reasonable number of sources for 
GICA with temporal concatenation on the same naturalistic 
fMRI data as here [9]. To address this issue, we took a simple 
empirical approach for estimating the number of sources. 
Specifically, we examined GICA results for different number 
of sources to find the most appropriate number. Two general 
criteria were used for evaluating and comparing the results 
from different trials: first, the stability and reliability of ICA 
decomposition, and second, quality of the produced 
independent components. We devised six parameters, which 
provide concise description of ICA decomposition results 
according to the two criteria. The parameters, detailed in the 
section II.D, are simple and straightforward to compute from 
ICA decomposition results. The proposed evaluation 
heuristics can be adapted for testing and comparison of 
different ICA parametrizations in any application.         

To summarize, we developed an extension of conventional 
GICA, where correlated subspace from all subject data is 
found prior concatenating and separating sources. The model 
was applied to challenging naturalistic fMRI data, and the 
results were compared to conventional GICA. In addition, we 
proposed a set of parameters that enables evaluation and 
comparison of different parametrizations in terms of the two 
criteria.     

II. METHOD 

A. Data description 

The dataset analyzed in this study consists of fMRI scans 
of eleven healthy musicians (mean age: 23.2; SD: 3.7; 5 
females), who listened to a 512 second-long piece of modern 
tango. The fMRI measurements were made in 3T scanner at 
sampling frequency of 0.5 Hz. Obtained fMRI scans went 
through common preprocessing routine, which is described in 
[6]. Overall, 231 fMRI scans corresponding to stimulus 
between 21 to 480 seconds were used for analysis. Six high-
level features were obtained from stimulus audio, capturing 
timbral rhythmic and tonal information in music. The feature 
set, consisting of fullness, brightness, timbral complexity, 
pulse clarity, key clarity, and activity, were generated as a 
linear combination of 25 long-term and short-term features via 
PCA. The multi-stage process of their extraction and 
perceptual validation is described in [6]. 

B. Group ICA extension 

In this section, extension of GICA is introduced. For 
description of the conventional GICA algorithm with two-
stage PCA reduction refer to [7]. The entire model can be 
divided into three-stage dimensionality reduction, followed by 
source separation by ICA. First, PCA separates signal and 
noise subspaces in each dataset. Next, MCCA is applied to 
select correlated subspace across all subjects’ responses. 
Particularly, it extracts an orthogonal set of canonical 
components from each subject data such that the canonical 
components are correlated across different datasets only on 
corresponding indices. Subsequently, the correlated subspace 
is extracted by selecting the canonical components that are 
correlated above the predefined threshold. The third stage 
dimensionality reduction is applied on concatenated data 
using PCA. The main reason is that number of signals in the 
concatenated data are commonly assumed to be larger than 
number of sources. In other words, we have the 
overdetermined data model, where the number of sources in 
the mixture is less than number of signals (or samples, 
statistically speaking). Therefore, prior subjecting to source 
separation, dimension reduction needs to be applied in order 
to produce determined mixtures with equalized sources and 
samples. Finally, BSS is achieved by ICA, extracting 
statistically independent sources in the concatenated data. The 
approach consists of the following steps:  

Dimensionality reduction: 

1. Reduce dimensionality of each dataset using 
PCA 

2. Apply MCCA to select correlated subspace from 
each dataset 

3. Concatenate reduced data from all subjects  



4. Reduce dimensionality of concatenated data 
using PCA 

Blind source separation: 

5. Apply ICA and get sources and unmixing matrix 

6. Reconstruct time courses and spatial maps 

Fig.1 depicts more detailed view of the entire processing 
chain. In the figure dimensionalities of data matrices after 
each step are shows for more clarity.    

More formal description of the model is as follows. Let us 
denote dataset from each subject by , where 

 denotes number of subjects,  is number of fMRI 
scans and  is number of voxels. First, dimensions of each 
dataset is reduced using PCA. If we denote dimension 
reduction matrix (i.e. selected  eigenvectors) as , 
then the reduced data for each subject (i.e. projection of data 
vectors to a new space) can be expressed as: 

                                          (1) 

Note that pseudoinverse will be assumed in the cases when a 
matrix to be inverted is not square. Now  becomes an input 
for MCCA. Solving MCCA problem can be considered as 
finding orthogonal matrix  and canonical components are 
obtained by projecting the input data to : 

                 (2) 

where,  and contains components, such 
that the canonical correlations, or correlation between 
corresponding components among different subjects are in 
decreasing order. The dimensions are reduced from  to  by 
selecting canonical components showing  highest mean 
correlations. Subsequently, datasets from all subjects are 
concatenated. The concatenated dataset  consists 
of  samples and is an overdetermined mixture. Then, 
dimensionality of the data is reduced using PCA to make the 
mixture determined:  

                                              (3) 

where,  is a dimension reduction matrix. Finally, 
 is subjected to ICA decomposition to find sources of 

activations as independent components (IC) and mixing 
matrix, or temporal courses of IC-s. The model ICA follows 

is . In practice, ICA algorithm estimates the unmixing 
matrix  and IC-s such that: 

                                           (4) 

According to ICA model applied here, aggregate unmixing 
matrix containing partitions unique to each subject, while the 
independent components are common. Reconstruction of 
temporal courses in the reduced data space is done by simply 
inverting the estimated unmixing matrix. However, we are 
interested in time courses in the original scan space. It can be 
achieved by inserting (3) in (4), partitioning aggregate data for 
each subject, and then inserting (2): 

                      (5) 

Here,  denotes reconstruction of subject-specific spatial 
maps. Then, temporal courses can be estimated by: 

                             (6) 

For ICA calculation FastICA algorithm was used [17].  

C. Analysis of extracted components by ICA 

Within the temporal concatenation approach, each 
extracted common activation pattern may feature different 
temporal dynamics among subjects. The aim is to find the 
common maps temporally correlated with the stimulus. To 
this end, we first correlate subject-specific temporal courses 
of each IC with the time courses of the six stimulus features. 
The significance thresholds for correlations are estimated 
using Monte-Carlo simulation presented in [6] and the level 
of significance selected throughout this study is p<0.01. If 
majority of the subject-specific temporal courses of a given IC 
are significantly correlated with the temporal course of any of 
the stimulus features, then the IC is considered to be stimulus-
related and is selected for further analysis. At this point we 
reconstruct subject-specific spatial maps of the selected IC-s 
in order to observe individual differences in activation 
patterns. Ideally, we would have one or more similar 
activation patterns from all the subjects per acoustic feature. 
However, in practice similar spatial patterns from different 
subjects are not synchronized in time and show heterogeneous 
correlations with acoustic features, which makes them 
difficult to interpret. 
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Fig. 1. Schematic view of the extended GICA model. Dimensions of data matrices after each stage are shown.  



D. Evaluation of different parametrisations 

Two general criteria were used for evaluation and 
comparison of the results from different trials. The first 
criterion is stability and reliability of ICA decomposition. 
Stochastic nature of ICA-based decomposition renders direct 
comparison of results unreliable. To address the issue the 
software package ICASSO [18] was utilized. This tool has 
been designed for analysis of the stability and robustness of 
ICA decomposition. Essentially ICASSO runs ICA repeatedly 
N times (N=100 in this study), each time with randomly 
initialized unmixing matrix, clusters the extracted 
independent components, and provides multiple parameters 
for observing and visualizing the clustering and separation 
results.  

One interesting parameter in our list is ICASSO cluster 
quality index: 

 

where  denotes the set of estimated independent 
components in the cluster ,  is the size of the cluster, 

  is the set of indices outside the cluster , and  is an 
absolute value of mutual correlations between estimated 
independent components extracted in different runs. Cluster 
quality index characterizes compactness and separation of 
clusters and is a good measure for estimating stability of the 
extracted component as well as detecting possible overfitting. 

 We propose three parameters for assessing the stability 
and reliability of ICA decomposition: 1. number of converged 
runs (out of N=100). If ICA decomposition does not converge, 
the estimation of mixing matrix is not reliable. 2. 
mean/standard deviation of convergence rate across N runs. 
Convergence rate is the number of steps required for 
convergence. 3. Cluster quality index.  

Since a stable ICA decomposition does not guarantee good 
quality of produced independent components, it is necessary 
to quantify the quality of the output in order to make 
comparison between different ICA decompositions possible. 
Last three of the six parameters assess the quality of produced 
components and consist of: 4. Number of the selected 
components, 5. Number of the common maps, and 6. Number 
of the active voxels in a common map(s). 

III. RESULTS 

For simplicity we denote conventional group ICA as 
simply GICA, and the extension introduced in this study - as 
MCCA+GICA. Furthermore, to differentiate between the two 
stage PCA reductions, the term individual PCA will be applied 
to the reduction of each subject’s data, while group PCA will 
refer to dimension reduction of concatenated data. 

We first investigated different parametrizations of GICA 
in order to select appropriate number of sources.  To this end, 
the number of dimensions was consecutively fixed for one of 
the two PCA stages while varying the other, and examined the 
GICA output. For individual PCA we wanted to retain most 
of the variance data and reduced the dimension from 231 to 
80, explaining about 88% of variance in average over all 
subjects. As the tests involving different numbers of 
dimensions showed, individual PCA did not have as major 
influence on ICA decomposition as group PCA. It is expected 
because individual PCA does not define number of sources to 
be extracted by ICA. However, it increases SNR by separating 
signal and noise subspaces, and therefore, intuitively will have 
more influence on quality of independent components. For 
group PCA, conversely, significant influence on ICA 
decomposition was observed. Intuitively, it is probably related 
to the fact that it directly determines the number of sources in 
the mixture and suboptimal estimation of sources has 
devastating effect on ICA decomposition. Indeed, in our 
experiments ICA decomposition always failed above certain 
number of sources, regardless of the settings of individual 
PCA, or MCCA. For GICA, none of the tested number of 
dimensions for each PCA stage led to finding common spatial 
maps. Hence, it was difficult to evaluate quality of the 
produced independent components except counting the 
number of selected ones. Nevertheless, the first three 
evaluation parameters were helpful for dramatically 
narrowing down the range of all possible number of sources 
to a few. As a result, we reduced data to 80 and 40 dimensions 
after individual and group PCA respectively. Next, the 
developed MCCA+GICA extension was applied and different 
sizes of correlated subspace were tested. Throughout the tests, 
individual and concatenated PCA reduction outputs were 
fixed to 80 and 40 respectively, since this parametrization 
produced the best results and we wanted any other parameters 
except MCCA to be similar among GICA and MCCA+GICA.    
Average canonical correlations corresponding to the selected 

TABLE 1. Evaluation parameters for MCCA+GICA vs conventional GICA (last entry in the table). The output dimensionalities of the first and the third 
stages (PCA) are fixed to 80 and 40 respectively, while the output of the second stage (i.e. MCCA) is varied from 10 to 60  

MCCA 
dimensions 

Converged 
runs  

Convergence 
rate 

(mean/SD ) 
Cluster quality 

index 
(Mean/SD) 

Selected  
independent 
components 

Common maps 
(feature/sub) 

Active voxels in 
common map 

(left/right 
hemisphere) 

MCCA-10 66 82/11 0.64/0.21 37 - - 
MCCA-20 72 74/13 0.78/0.19 27 - - 
MCCA-40 96 64/17 0.9/0.09 24 - - 
MCCA-60 100 59/14 0.89/0.1 31 1 (Bright./6 sub) 2317/2283 
No MCCA 99 65/14 0.9/0.11 29 - - 



number of canonical components are shown in Fig.2. As 
depicted in the figure, the examined correlated subspace sizes 
(see Table 1) correspond to a wide range of thresholds for 
canonical correlations varying from fairly strict (above 0.5) to 
very liberal (above 0.1). In Table 1, six parameters 
summarizing MCCA+GICA output for different sizes of 
correlated subspace are shown. For comparison, GICA results 
for the same PCA outputs are also provided (labelled as ’No 
MCCA’). In terms of ICA stability, it is evident that increasing 
the size of correlated subspace improves ICA convergence 
(see Table 1). However, the rate of improvement quickly 
decreases, and for 40 and 60 components (MCCA-40 and 
MCCA-60 in the table) first three evaluation parameters are 
very similar. And yet, the parameters related to quality show 
more contrasting picture. For  MCCA-40, none of the stimulus 
features were selected and common maps were not extracted, 
whereas for MCCA-60 two acoustic features including 
Brightness and Activity were selected, and common map 
related to Brightness was found with six contributing subjects. 
The common map in Fig.3 shows large clusters of bilateral 
auditory cortex activations, which is in line with previous 
findings [6, 9].  

To summarize, the empirically selected parametrization of 
GICA after multiple tests was the following: individual PCA 
reduced dimensions from 231 to 80 and group PCA reduced 
aggregate data from 880 to 40. For MCCA+GICA: individual 
PCA reduced data from 231 to 80, MCCA reduced each 
dataset from 80 to 60, and group PCA – from 660 to 40.  Based 
on our evaluation parameters (see Table 1), it can be seen that 
MCCA+GICA shows improvement over conventional GICA 
both in ICA convergence and quality of produced 
components.  

IV. DISCUSSION 

In this study we introduced MCCA-based extension of 
GICA, applied it on challenging fMRI data and compared the 
obtained results with the outcome from the conventional 
GICA. Interestingly, the latter failed to extract stimulus-
related common spatial maps for any of the tested 
parametrizations.  

The reason behind improved results by MCCA+GICA is 
that finding correlated subspace reduces complexity of 

sources and therefore, has positive effect on inter-subject 
variability in terms of the temporal courses. As a result, for a 
given component, temporal courses from more than half of the 
subjects showed significant correlations with acoustic 
features. Reduced complexity of sources also explains faster 
convergence of ICA decomposition observed for the extended 
GICA model. In favour of this argument, Karhunen et al. [12] 
indicated that CCA alone already provides separation of 
sources at some degree using second-order statistics. 
Subsequently, in the next stage, partly separated sources form 
the new mixture of less complex sources in turn is 
decomposed further by ICA using higher-order statistics. 
Hence, benefits of introduced extension is expected and 
justified.   

In addition, we proposed means for quantifying output of 
ICA-based method, in order to: a) estimate reasonable number 
of sources for ICA-based methods, should an automatic model 
order selection method fail. b) compare results from multiple 
different ICA parametrizations. A somewhat intuitive 
explanation of why evaluation parameters are useful for 
estimating number of sources stems again from the fact that 
suboptimal estimation of number of sources has strong 
influence on ICA decomposition. Over-estimated number of 
sources leads to complete failure of ICA decomposition, 
which will be easily reflected in first three evaluation 
parameters. Under-estimated number of sources, on the other 
hand, is primarily exhibited in reduced quality of produced 
independent components, and will probably be detected by 
last three parameters. It should be noted that the proposed set 
of evaluation parameters is still under the development. For 
example, parameters such as convergence rate and converged 
rounds can be improved by normalizing with respect to the 
number of sources.  

  Temporal concatenation approach assumes common 
spatial maps and individual time courses among subjects. The 
reconstructed subject-specific spatial activation patterns were 
very similar as expected, but within the standard model only 
part of the corresponding temporal courses were significantly 
correlated with the stimulus features. Large variability in 
temporal dynamics among subjects’ responses elicited from a 
complex stimulation is presumably the major contributing 
factor to the failure of the conventional temporal 

 
Fig. 2. Average correlations between canonical components  

 
Fig. 3. Common spatial map, averaged across six contributing subjects 



concatenation approach. In light of this, and with the 
supporting evidence in [9], perhaps spatial concatenation 
approach with the constraint of common mixing matrix for all 
subjects would be more appropriate for the specific cases such 
as the one considered here, although the opposite has been 
suggested previously [8]. We are planning to test the extension 
of spatial concatenation strategy with MCCA. 

V.   ACKNOWLEDGMENT 

 
This work was financially supported by TEKES (Finland) 
under grant 40334/10, Department of Mathematical 
Information Technology at the University of Jyvaskyla, 
Academy of Finland (project 272250), the Fundamental 
Research Funds for the Central Universities 
[DUT14RC(3)037], XingHai Scholar in Dalian University of 
Technology in China, and National Natural Science 
Foundation of China (Grant No. 81471742). The first and the 
second author contributed equally to this work. The authors 
would also like to thank to Elvira Brattico and Asoke Nandi 
for their contribution.  
 

VI. REFERENCES 

[1] V. D. Calhoun, J. Liu and T. Adalı, "A review of group ICA for fMRI 
data and ICA for joint inference of imaging, genetic, and ERP data," 
Neuroimage, vol. 45, pp. S163-S172, 2009.  

[2] K. N. Carvalho, G. D. Pearlson, R. S. Astur and V. D. Calhoun, 
"Simulated Driving and Brain Imaging," CNS Spectr, vol. 11, pp. 52-62, 
2006.  

[3] E. Formisano, F. De Martino, M. Bonte and R. Goebel, ""Who" is 
saying "what"? Brain-based decoding of human voice and speech," 
Science, vol. 322, pp. 970-973, Nov 7, 2008.  

[4] U. Hasson, Y. Nir, I. Levy, G. Fuhrmann and R. Malach, "Intersubject 
synchronization of cortical activity during natural vision," Science, vol. 
303, pp. 1634-1640, Mar 12, 2004.  

[5] K. N. Kay, T. Naselaris, R. J. Prenger and J. L. Gallant, "Identifying 
natural images from human brain activity," Nature, vol. 452, pp. 352-355, 
2008.  

[6] V. Alluri, P. Toiviainen, I. P. Jaaskelainen, E. Glerean, M. Sams and E. 
Brattico, "Large-scale brain networks emerge from dynamic processing of 
musical timbre, key and rhythm," Neuroimage, vol. 59, pp. 3677-3689, Feb 
15, 2012.  

[7] V. Calhoun, T. Adali, G. Pearlson and J. Pekar, "A method for making 
group inferences from functional MRI data using independent component 
analysis," Hum. Brain Mapp., vol. 14, pp. 140-151, 2001.  

[8] V. J. Schmithorst and S. K. Holland, "Comparison of three methods for 
generating group statistical inferences from independent component 
analysis of functional magnetic resonance imaging data," Journal of 
Magnetic Resonance Imaging, vol. 19, pp. 365-368, 2004.  

[9] F. Cong, T. Puoliväli, V. Alluri, T. Sipola, I. Burunat, P. Toiviainen, A. 
K. Nandi, E. Brattico and T. Ristaniemi, "Key issues in decomposing fMRI 
during naturalistic and continuous music experience with independent 
component analysis," J. Neurosci. Methods, vol. 223, pp. 74-84, 2014.  

[10] H. Hotelling, "Relations between two sets of variates," Biometrika, pp. 
321-377, 1936.  

[11] J. R. Kettenring, "Canonical analysis of several sets of variables," 
Biometrika, vol. 58, pp. 433-451, 1971.  

[12] J. Karhunen, T. Hao and J. Ylipaavalniemi, "A generalized canonical 
correlation analysis based method for blind source separation from related 
data sets," in Neural Networks (IJCNN), the 2012 International Joint 
Conference On, 2012, pp. 1-9. 

[13] Y. Li, T. Adali, W. Wang and V. D. Calhoun, "Joint blind source 
separation by multiset canonical correlation analysis," Signal Processing, 
IEEE Transactions On, vol. 57, pp. 3918-3929, 2009.  

[14] F. Cong, A. K. Nandi, Z. He, A. Cichocki and T. Ristaniemi, "Fast and 
effective model order selection method to determine the number of sources 
in a linear transformation model," in Signal Processing Conference 
(EUSIPCO), 2012 Proceedings of the 20th European, 2012, pp. 1870-1874. 

[15] H. Akaike, "A new look at the statistical model identification," 
Automatic Control, IEEE Transactions On, vol. 19, pp. 716-723, 1974.  

[16] J. Rissanen, "Modeling by shortest data description," Automatica, vol. 
14, pp. 465-471, 1978.  

[17] A. Hyvärinen and E. Oja, "A fast fixed-point algorithm for 
independent component analysis," Neural Comput., vol. 9, pp. 1483-1492, 
1997.  

[18] J. Himberg, A. Hyvarinen and F. Esposito, "Validating the 
independent components of neuroimaging time series via clustering and 
visualization," Neuroimage, vol. 22, pp. 1214-1222, Jul, 2004.  

  
 

 
 
 



PIV  

COUPLING OF ACTION-PERCEPTION BRAIN NETWORKS DUR-
ING MUSICAL PULSE PROCESSING: EVIDENCE FROM REGION- 
OF-INTEREST-BASED INDEPENDENT COMPONENT ANALYSIS  

by 

Iballa Burunat, Valeri Tsatsishvili, Elvira Brattico, & Petri Toiviainen, 2017 

Frontiers in Human Neuroscience, 2017, vol.11 



ORIGINAL RESEARCH

published: 09 May 2017

doi: 10.3389/fnhum.2017.00230

Frontiers in Human Neuroscience | www.frontiersin.org 1 May 2017 | Volume 11 | Article 230

Edited by:

Stephane Perrey,

Université de Montpellier, France

Reviewed by:

Alessandro Tavano,

Max Planck Institute, Germany

Fabiana Mesquita Carvalho,

University of São Paulo, Brazil

Anne Danielsen,

University of Oslo, Norway

*Correspondence:

Iballa Burunat

iballa.burunat@jyu.fi

Received: 09 October 2016

Accepted: 21 April 2017

Published: 09 May 2017

Citation:

Burunat I, Tsatsishvili V, Brattico E and

Toiviainen P (2017) Coupling of

Action-Perception Brain Networks

during Musical Pulse Processing:

Evidence from

Region-of-Interest-Based

Independent Component Analysis.

Front. Hum. Neurosci. 11:230.

doi: 10.3389/fnhum.2017.00230

Coupling of Action-Perception Brain
Networks during Musical Pulse
Processing: Evidence from
Region-of-Interest-Based
Independent Component Analysis

Iballa Burunat 1*, Valeri Tsatsishvili 2, Elvira Brattico 3 and Petri Toiviainen 1

1 Department of Music, Arts and Culture Studies, Finnish Centre for Interdisciplinary Music Research, University of Jyväskylä,

Jyväskylä, Finland, 2 Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland,
3 Department of Clinical Medicine, Center for Music in the Brain, Aarhus University and The Royal Academy of Music

Aarhus/Aalborg, Aarhus, Denmark

Our sense of rhythm relies on orchestrated activity of several cerebral and cerebellar

structures. Although functional connectivity studies have advanced our understanding

of rhythm perception, this phenomenon has not been sufficiently studied as a function of

musical training and beyond the General Linear Model (GLM) approach. Here, we studied

pulse clarity processing during naturalistic music listening using a data-driven approach

(independent component analysis; ICA). Participants’ (18 musicians and 18 controls)

functional magnetic resonance imaging (fMRI) responses were acquired while listening

to music. A targeted region of interest (ROI) related to pulse clarity processing was

defined, comprising auditory, somatomotor, basal ganglia, and cerebellar areas. The ICA

decomposition was performed under different model orders, i.e., under a varying number

of assumed independent sources, to avoid relying on prior model order assumptions. The

components best predicted by a measure of the pulse clarity of the music, extracted

computationally from the musical stimulus, were identified. Their corresponding spatial

maps uncovered a network of auditory (perception) and motor (action) areas in an

excitatory-inhibitory relationship at lower model orders, while mainly constrained to the

auditory areas at higher model orders. Results revealed (a) a strengthened functional

integration of action-perception networks associated with pulse clarity perception hidden

from GLM analyses, and (b) group differences between musicians and non-musicians in

pulse clarity processing, suggesting lifelong musical training as an important factor that

may influence beat processing.

Keywords: functional magnetic resonance imaging (fMRI), Independent Component Analysis (ICA), rhythm

perception, musicians, naturalistic, prediction

INTRODUCTION

Pulse may be defined as an endogenous periodicity, a series of regularly recurring, precisely
equivalent psychological events that arise in response to a musical rhythm (Cooper and Meyer,
1960; Large and Snyder, 2009). Although rhythms in music do not hold one-to-one relationships
with auditory features (Kung et al., 2013), humans are able to effortlessly perceive the pulse
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in music. This phenomenon keeps challenging cognitive
scientists, who pursue understanding of its underlying brain
processes (Gabrielsson, 1987; Clarke, 1989; Palmer, 1989; Repp,
1990). This unique ability to perceive pulse allows us to
coordinate motor movements to an external auditory stimulus
(such as in music-induced foot tapping or dancing). Moving
in synchrony with the beat (i.e., the predictive, perceived
pulse in music; Patel, 2014) is in fact one of the most
intriguing effects of music and a spontaneous behavior which
has long puzzled scientists (Zentner and Eerola, 2010; Repp
and Su, 2013). Furthermore, rhythm perception is fundamental
to the experience of music and thus key for explaining
musical behavior (Large and Palmer, 2002; Large and Snyder,
2009).

Beat perception in auditory rhythms is underpinned by
interactions between activity in the auditory and motor systems
(Zatorre et al., 2007; Grahn, 2009; Kung et al., 2013), which in
particular may drive the temporal predictions involved in rhythm
perception (Zatorre et al., 2007; Patel and Iversen, 2014). Recent
fMRI evidence indicates that listening to salient rhythms in the
absence of any overt movement recruits a cortico-subcortical
functional network consisting of auditory cortex, premotor
cortex (PMC), putamen (PUT), and supplementary motor area
(SMA; Grahn and Rowe, 2009). In addition to the SMA and PMC,
the cerebellum (CER) has been found to be active while listening
to rhythms (Chen J. L. et al., 2008). Moreover, musical training
seems to enhance auditory-motor coupling at the cortical level
during rhythm processing (Chen et al., 2006; Grahn and Rowe,
2009), which is in line with evidence indicating that musicians
show better rhythm synchronization than controls (Chen J. et al.,
2008), likely due to a stronger internal representation of the beat
or enhanced workingmemory abilities (Zatorre et al., 2010; Kung
et al., 2011).

Connectivity studies have thus provided insights by exploring
internal brain dependencies related to rhythm perception as
modulated by musical training. They have, however, exclusively
examined this phenomenon within the General Linear Model
(GLM) approach, which allows studying brain activity as
modeled by the researcher. In contrast, data-driven analyses
require no explicit model of the temporal course of the brain
activations, allowing for a more open, and comprehensive
understanding of the brain mechanisms underlying rhythm
processing. A well-studied data-driven approach is Independent
Component Analysis (ICA), a blind source separation technique
for studying networks on which we have no prior information.
ICA is intrinsically a multivariate approach, i.e., it considers
the relationships between all voxels simultaneously. Thus,
it can provide an alternative and complementary approach
to voxel-wise analyses. ICA can separate fMRI data into
independent components (ICs), each of which represents
spatially independent but functionally connected brain networks.
What is special and interesting about ICA is that (a) it allows us to
study connectivity and find networks without the need to rely on
seed-based analysis, (b) it is a completely data-driven approach
able to identify brain activity without a-priori assumptions of
its dynamics; and (c) it has been applied reliably in naturalistic
approaches stimuli (Bartels and Zeki, 2004, 2005; Malinen et al.,

2007; Wolf et al., 2010), so complex naturalistic data can be
analyzed reliably with consistent results.

In the current study, we aimed to identify the brain networks
that respond to clarity of the pulse during music listening.
The clarity or salience of the pulse is considered a high-level
musical dimension that conveys how easily listeners can perceive
the underlying metrical pulsation in a given musical piece
(Lartillot et al., 2008). To study this phenomenon, we used a
region-of-interest-based ICA (ROI-based ICA) approach. ROI-
based ICA improves the separation and anatomical precision
of the identified components that represent sources of interest,
since (a) the brain volume does not affect the number of
obtained components, and (b) informative signals with respect
to potentially interesting sources are included in the analysis,
thus excluding contributions otherwise used to separate non-
interesting processes (e.g., artifacts; Formisano et al., 2004; Sohn
et al., 2012; Beissner et al., 2014). To this end, we presented
listeners (professional musicians and controls) with three pieces
of music in randomized order while their fMRI responses
were recorded. A targeted, hypothesis-driven subset of regions
related to rhythm processing was included in the analysis,
comprising cerebral and cerebellar areas: cortical auditory, motor
and somatosensory regions of the cerebrum, cerebellar regions
and, subcortically, the basal ganglia. Following a two-stage
dimensionality reduction approach, ICA was applied in order
to decompose participants’ brain responses into spatially ICs.
The ICA decomposition was performed under a range of model
orders (e.g., dimensionality levels), namely, assuming different
numbers of sources. The justification for this approach is that
different choices of model order lead to the identification
of different networks or subdivisions of networks (Abou-
Elseoud et al., 2010; Kalcher et al., 2012). Component selection
was based on the highest correlation coefficient between the
associated temporal course and a continuous measure of the
pulse clarity of the music. Additionally, GLM analyses of the data
were performed as a complementary approach for comparison
purposes. We expected to observe group differences in pulse
clarity processing as a result of musicians’ improved models
of beat induction, evidenced in previous work using tapping
paradigms (Drake et al., 2000; Aschersleben, 2002; Hove et al.,
2007; Repp and Doggett, 2007; Krause et al., 2010; Repp, 2010).
Because signal sources tend to merge into individual ICs in
low models whereas they split into several subcomponents at
high model orders (Abou-Elseoud et al., 2010), we additionally
hypothesized that large-scale networks underpinning pulse
clarity would be observed at low model orders, reflecting a
scattered functional network previously reported in studies
investigating rhythm processing. Accordingly, subcomponents of
the large-scale networks that respond to pulse clarity would be
observed at high model orders.

MATERIALS AND METHODS

Participants for the fMRI Experiment
Thirty-six healthy participants with no history of neurological
or psychological disorders participated in the fMRI experiment.
The participants were screened for inclusion criteria before
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admission to the experiment (no ferromagnetic material in their
body; no tattoo or recent permanent coloring; no pregnancy
or breastfeeding; no chronic pharmacological medication; no
claustrophobia). The participant pool was selected to include an
equal number of professional musicians (n = 18, age = 28.2 ±
7.8, females = 9) and non-musicians (n = 18, age = 29.2 ± 10.7,
females = 10, left-handers = 1). The criteria for musicianship
was having more than 5 years of music training, having finished
a music degree in a music academy, reporting themselves as
musicians, and working professionally as a performer. As for
the type of musicians, there were classical (n = 12), jazz (n =
4), and pop (n = 2) musicians. The instruments played were
strings (violin = 4; cello = 2; double bass = 1), piano (n = 8),
winds (trombone = 1; bassoon = 1), and mixed (n = 1). The
musicians’ group was homogeneous in terms of the duration
of their musical training, onset age of instrument practice, and
amount of years of active instrument playing. These details
were obtained and crosschecked via questionnaires and HIMAB
(Gold et al., 2013; Helsinki Inventory for Music and Affect
Behavior). Both groups were comparable with respect to gender,
age distribution, cognitive performance, socioeconomic status,
and personality and mood questionnaire. The experiment was
undertaken with the understanding and written consent of all
participants. The study protocol proceeded upon acceptance by
the ethics committee of the Coordinating Board of the Helsinki
and Uusimaa Hospital District. The present dataset was part of
a broad project (“Tunteet”) investigating different hypotheses
related to auditory processing and its dependence on person-
related factors by means of a multidimensional set of paradigms
and tests, involving several experimental sessions, brain and
behavioral measures as well as questionnaires. The findings
related to the various hypotheses investigated appear in separate
papers (cf. Alluri et al., 2015, 2017; Burunat et al., 2015, 2016;
Kliuchko et al., 2015).

Stimuli
Themusical pieces used in the experiment were the following: (a)
Stream of Consciousness by Dream Theater; (b) Adios Nonino
by Astor Piazzolla; and (c) Rite of Spring (comprising the first
three episodes from Part I: Introduction, Augurs of Spring, and
Ritual of Abduction) by Igor Stravinsky. These are a progressive
rock/metal piece, an Argentinian New Tango, and an iconic
twentieth century classical work, respectively, thus covering
distinct musical genres and styles. All three selected pieces are
instrumental and have a duration of about 8 min. The recording
details, musical excerpts used, and Spotify links to the musical
stimuli can be found as Supplementary Material.

fMRI Experimental Procedure
Participants’ brain responses were acquired while they listened to
each of the musical stimuli in a counterbalanced order. For each
participant the stimuli loudness was adjusted to a comfortable
but audible level inside the scanner room (around 75 dB).
In the scanner, participants’ only task was to attentively listen
to the music delivered via high-quality MR-compatible insert
earphones while keeping their eyes open.

fMRI Scanning and Preprocessing
Scanning was performed using a 3T MAGNETOM Skyra whole-
body scanner (Siemens Healthcare, Erlangen, Germany) and a
standard 20-channel head-neck coil, at the Advanced Magnetic
Imaging (AMI) Centre (Aalto University, Espoo, Finland). Using
a single-shot gradient echo planar imaging (EPI) sequence, 33
oblique slices (field of view = 192 × 192mm; 64 × 64 matrix;
slice thickness = 4mm, interslice skip = 0mm; echo time =
32 ms; flip angle = 75◦) were acquired every 2 s, providing
whole-brain coverage. T1-weighted structural images (176 slices;
field of view = 256 × 256 mm; matrix = 256 × 256; slice
thickness = 1mm; interslice skip = 0mm; pulse sequence
= MPRAGE) were also collected for individual coregistration.
Functional MRI scans were preprocessed on a Matlab platform
using SPM8 (Statistical Parametric Mapping), VBM5 for SPM
(Voxel Based Morphometry; Ashburner and Friston, 2000);
Wellcome Department of Imaging Neuroscience, London, UK),
and customized scripts developed by the present authors. For
each participant, low-resolution images were realigned on six
dimensions using rigid body transformations (translation and
rotation corrections did not exceed 2mm and 2◦, respectively),
segmented into gray matter, white matter, and cerebrospinal
fluid, and registered to the corresponding segmented high-
resolution T1-weighted structural images. These were in turn
normalized to the MNI (Montreal Neurological Institute; Evans
et al., 1994) segmented standard a priori tissue templates using
a 12-parameter affine transformation. Functional images were
then blurred to best accommodate anatomical and functional
variations across participants as well as to enhance the signal-to-
noise by means of spatial smoothing using an 8mm full-width-
at-half-maximum Gaussian filter. Movement-related variance
components in fMRI time series resulting from residual motion
artifacts, assessed by the six parameters of the rigid body
transformation in the realignment stage, were regressed out from
each voxel time series. Next, spline interpolation was used to
detrend the fMRI data, followed by temporal filtering (Gaussian
smoothing with kernel width= 4 s).

Brain responses to the three stimuli were concatenated
making a total of ∼24min worth of data. The rationale behind
this was to combine stimuli representing a wide range of
musical genres and styles in order to cancel out effects that the
specific kinds of music may have on the phenomenon under
investigation. The final time series had 702 samples after the four
first samples of each of the three runs were removed to avoid
artifacts due to magnetization effects.

Region of Interest (ROI) Selection
Because a ROI-based ICA approach improves the separation
and anatomical precision of the identified spatial components
(Formisano et al., 2004; Sohn et al., 2012; Beissner et al., 2014),
we only included in the analysis regions that have been identified
in previous research as relevant in pulse processing. Previous
studies show substantial overlap of neural substrates underlying
rhythm processing, namely auditory cortices, PMC, SMA, CER,
and the BG (Schubotz and von Cramon, 2001; Mayville et al.,
2002; Ullén et al., 2002; Lewis et al., 2004; Grahn and Brett,
2007; Chen J. L. et al., 2008; Bengtsson et al., 2009; Grahn,
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2012). Those ROIs were consequently included in the analysis
with the addition of other potentially interesting areas, such
as the primary motor cortex (M1), primary and secondary
somatosensory cortices (S1 and S2, respectively), and rolandic
operculum (ROper). The cerebellar regions included were lobules
V, VI, and VIII (lobV, lobVI, lobVIII, respectively), previously
associated with motor control (Penhune et al., 1998; Salmi et al.,
2010; Bernard and Seidler, 2013) and rhythm processing (Grahn
and Brett, 2007; Chen J. L. et al., 2008; Bengtsson et al., 2009;
Grahn and McAuley, 2009). The ROI contained a total of 25,047
voxels (see Figure 1 for a map of selected ROI).

Dual PCA Reduction
Multi-subject ICA approaches are generally used in combination
with dimensionality reduction methods in order to reduce the
complexity for the subsequent ICA decomposition and avoid
overfitting (Calhoun et al., 2001; Beckmann and Smith, 2005).
Typically, dimension reduction is applied at both the individual
and group levels. Performing subject-level principal component
analysis (PCA) has the computational advantage of both reducing
the dimensions of the data and denoising due to projecting the
data onto their principal subspace. A second PCA at the group
level is necessary prior to ICA to reduce the dimension of the data
to the number of desired components estimated via ICA (Erhardt
et al., 2011). This is required because the high dimensionality
of the data from all subjects violates the ICA assumption of
the determined mixture, where the number of fMRI images
(mixtures) and sources match. Let Yi denote the preprocessed,
spatially normalized T -by- V data matrix for subject i out of M
subjects, where T = time points (fMRI scans collected during the
course of the experiment) andV = voxels. Yi is subjected to PCA,
resulting in the L-by-V PCA reduced data,

Y*
i = F−i Yi, (1)

where F−i is the L-by-T reducing matrix of L number of principal
components retained per subject. L is preferably chosen as a
common value for all F−i , i = 1, ..., M rather than separately

for each F−i . The reason for this is that once in the back-
reconstruction stage of subject-specific ICs, each subject has the
same number of components determined by the ICA parameters.

Accordingly, the first 80 eigenvectors were retained in the
subject-level PCA (L = 80), which preserved ∼93% of the
variance for each participant. The subject-level dimensions were
thus reduced from 702 to 80 time points per participant.
Following this, the PCA-reduced subject data were concatenated
in the temporal domain for all 36 participants into an LM-by-

V aggregate data matrix Y∗ = [Y∗T
1 , . . ., Y∗T

M ]
T
, which for

our dataset was 2,880-by-25,047 (LM = 80 × 36 = 2, 880
concatenated time dimensions). The aggregate data were further
reduced in a second PCA (group PCA) prior to ICA to N, the
number of components to be estimated. Thus, theN -by-V group
PCA-reduced matrix X was obtained,

X ≡ G−Y* = [GT
1 , . . . , G

T
M]

⎡
⎢⎣
F−1 Y1

...

F−MYM

⎤
⎥⎦ (2)

where G is the LM-by-N group PCA reducing matrix, and
G− denotes its pseudo-inverse (see Figure 2 for the variance
as a function of number of principal components retained for
both subject and group-level PCAs; and Figure 3 for overall ICA
pipeline).

The Question of Optimal Model Order

Selection
The selection of the optimal N or ICA model order to analyze
fMRI data is not an easy problem and is still a subject of ongoing
debate (Manoliu et al., 2013). This is because of the lack of
a priori knowledge about the ground truth of the underlying
components for brain imaging data and their modulation profiles
across subjects. Several rules of thumb on an upper bound
for model order estimation have been suggested for robust
estimation of number of sources (ICs; Särelä and Vigário, 2003;
Onton and Makeig, 2006), which suggest that model orders
above a certain upper bound are expected to deteriorate ICA

FIGURE 1 | Map of selected ROI related to rhythm processing. LAT, lateral view; POS, posterior view; SUP, superior view; L, left; R, right.
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FIGURE 2 | Dual PCA reduction. (A) Cumulative variance explained as a function of principal components (PCs) retained for the subject-level and (B) group-level

PCA.

FIGURE 3 | Pipeline of the ICA approach. M, number of participants; L,

size of subject-level PCA reduced time dimension; K, number of fMRI time

points; V, number of voxels; N, number of estimated ICs (model order).

decomposition quality. According to the first of these rules
(Särelä and Vigário, 2003), for robust estimation ofN parameters
(ICs) one needs V = 5 × N2, where V = samples (voxels).

According to this rule of thumb, the upper limit in our dataset
(V = 25, 047) corresponds to 70 ICs, explaining ∼70% of the
variance. However, the second rule (Onton and Makeig, 2006)
suggests that the number of data points needed to find N stable
ICs from ICA is typicallyV = kN2, where k is a multiplier with a
recommended value of k ≥ 25. Accordingly, the decomposition
quality in our dataset would start to deteriorate above a model
order of ∼35 ICs. It should be noted, however, that these
upper limit rules do not guarantee the prevention of overfitting.
Conversely, if the number of components were to be estimated
based on the conventionally used 90–95% threshold of explained
variance, the model order would have to be set to several 100 (see
Figure 2B). Such a large estimate of model order will most likely
lead to overfitting problems. Recent research (Abou-Elseoud
et al., 2010; Allen et al., 2011) indicates that a model order
around 70 components may represent an good heuristic estimate
of model order to detect between-group differences and to avoid
false positive results.

In order to avoid relying on prior model order assumptions
given the divergent findings on model order estimation and the
disparate model order selection approaches that currently exist,
we aimed at decomposing our data into a varying number of
assumed ICs, ranging from 10 to 100 in steps of 10, and examined
the ensuing ICs derived from each decomposition.

Independent Component Analysis (ICA)
ICA in its most general, noise-free form assumes that

X = AS, (3)

where the measured signal X = [x1, x2 . . . xn]
T ∈ R

n is a linear
mixture ofN statistically independent, non-normal, latent source
signals S = [s1, s2 . . . sn]

T ∈ R
n which are indirectly observed

and called the independent components (ICs), where A, referred
to as the mixing matrix, is unknown. ICA attempts to find an
unmixing matrixW ≈ A− to recover all source signals, such that

WX = Ŝ ≈ S, being the source signals optimized to be maximally
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independent. The rows of Ŝ are the recovered ICs, each of which
represents temporally coherent functional networks, i.e., brain
regions with synchronized source signals.

According to the above noise-free model (Equation 3), in
our current dataset, X denotes the N-by-V group PCA-reduced
matrix with V signals (voxels), and thus there are N instances
of each signal. A is an N-by-N mixing matrix and S is a N-
by-V matrix containing the N independent components. The
rows of S are spatially independent images, and the columns of
A are spatially independent time courses associated with those
images. ICs were estimated via ICASSO, a robustness analysis
tool that ensures stability of the estimated components (Himberg
and Hyvärinen, 2003; Himberg et al., 2004). It accomplishes
this by running the same ICA algorithm several times under
different random initial conditions and bootstrapping, after
which it performs clustering on the obtained estimations. ICA
was run 100 times using the FastICA algorithm (Hyvärinen,
1999), known to yield consistent results for fMRI data analysis
(Correa et al., 2007), with a maximum number of 100 different
randomly initialized unmixing matrices up to convergence. The
decorrelation approach used was symmetric, i.e., the estimation
of all ICs was run in parallel, with hyperbolic tangent (tanh) as the
set non-linearity. The rest of parameters were left as their defaults
specified in FastICA. ICASSO was run for each model order. This
yielded a set of group ICs consisting of a spatial map reflecting
the ICs’ functional connectivity pattern across space and their
associate temporal courses reflecting the ICs’ activity across time.
The spatial maps were scaled by z-scoring and thresholded at p
< 0.001 by means of a one-sample Wilcoxon signed rank test
(N = 36, p < 0.001, cluster-wise corrected, FEW = 0.05) to test
their mean values against the null hypothesis of no significant
difference from zero. These group-level IC maps defined relevant
networks at the group level for the whole participant pool.

Subject-specific IC temporal courses (R̃i ) were then estimated
via the back-reconstruction algorithm GICA3 (Erhardt et al.,
2011), whereby the aggregate mixing matrix A ≈ W− was
back-projected to the subject space based on the PCA reducing
matrices, such that

R̃i = Fi(G
T
i )

−
A, (4)

where R̃i is the T-by-N matrix of IC temporal courses
corresponding to subject i, Fi is the T-by-L PCA reducing matrix
corresponding to subject i, and GT

i is the i th subject partition of
the transpose of LM-by-N group PCA reducing matrixG. GICA3
in combination with PCA reduction has been shown to produce
accurate and robust results with the most intuitive interpretation
in comparison to other back-projection procedures (Erhardt
et al., 2011).

Identification of Pulse Clarity-Related

Components
To identify the components of interest, i.e., those associated
with the stimulus’ pulse clarity, a model of the pulse clarity of
the musical stimuli implemented in MIR Toolbox (Lartillot and
Toiviainen, 2007) was used. It is based on the autocorrelation of
the amplitude envelope of the audio waveform, and conveys how

easily the underlying pulsation in music can be perceived by the
listeners (Lartillot et al., 2008). Lartillot et al. (2008) evaluated
this model of pulse clarity by means of a perceptual test where
participants rated the pulse clarity of musical excerpts. Thus,
it is perceptually grounded, representing the clarity of the beat
as perceived by listeners, where low pulse clarity denotes that
the metrical pulsation cannot be perceived easily because it is
not strong or clear enough. The relevant components were then
selected based on the highest correlation coefficient between the
ICs’ associated time courses (derived from Equation 2) and the
predicted waveform of the stimulus’ pulse clarity. Spearman’s
rank correlation coefficient was chosen as the suitable non-
parametric measure of statistical dependence since the potential
relationship between pulse clarity and neural time courses may
be monotonic, but not necessarily linear. The significance of the
correlation coefficients had to be estimated due to the intrinsic
serial correlation between adjacent fMRI samples, which reduces
the effective degrees of freedom in the data. These were estimated
by computing the cross-correlation between the participants’
IC time course and pulse clarity (Pyper and Peterman, 1998).
The estimate of effective degrees of freedom was averaged
across participants per model order and subsequently used to
compute the significance by dividing the Fisher Z-transformed
correlation coefficients by the standard error 1√

df−3
, where

df represents the effective degrees of freedom. Z-transformed
correlation coefficients were corrected for multiple comparisons
within each model order using the false discovery rate (FDR)-
criterion (q = 0.05). The most significant component with
a significance of at least p < 0.001 was retained per model
order (Figure 6A shows the 10 most significant correlations
per model order). Following this, Fisher’s combined probability
tests (Fisher, 1950; musicians and non-musicians combined,
FDR corrected, q < 0.05) were performed to identify, for each
model order, the best predicted IC by pulse clarity for the whole
participant pool (see Figure 6B). The identification of one pulse
clarity-driven IC per model order for the combined pool of
musicians and non-musicians has the advantage of enabling
statistical inferences to be drawn from group comparisons.
Once the best predicted ICs were identified, two extra analysis
were performed: (a) Fisher’s combined probability tests for
each group to determine whether significance was reached
for both groups separately, and (b) non-parametric t-tests
performed on the individual Z-scores (two-sample Wilcoxon
signed rank tests) to test for significance differences between
groups.

To assess the reliability of the pulse clarity-driven ICs,
their ICASSO stability indices were retrieved. ICASSO stability
(quality) index (Iq; Himberg et al., 2004) is a criterion to validate
the reliability and stability of ICA decomposition. It reflects
the compactness and isolation of a cluster, which agglomerates
similar ICs found in each ICASSO run. The Iq index scores the
reliability of each extracted IC between zero and one. As the Iq
approaches zero, it indicates that the IC is not reliable because its
estimates from different ICA runs are not similar to each other. If
it approaches one, the IC is reliably extracted, and therefore stable
and robust.
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IC Spatial Maps Associated with Pulse

Clarity Processing
The spatial maps associated with each IC temporal course were
obtained by means of a one-sample Wilcoxon signed rank test (p
< 0.001). To account formultiple comparisons, a non-parametric
cluster-wise correction approach was used, whereby participants’
IC spatial maps were bootstrap resampled with replacement from
the pool of back-projected IC maps within a given model order
(i.e., for model orderN, 36 IC spatial maps were randomly drawn
from a total of 36∗N IC maps). The sample was then t-tested
and thresholded (one-sample Wilcoxon signed rank test; p <

0.001). By running a sufficiently large number of iterations, a
empirical distribution of cluster sizes was generated per model
order. Bootstrap resampling within a given model order ensures
not only that the spatial maps are uncorrelated, but also that the
spatial autocorrelation structure is consistent among them. The
maps were cluster-wise corrected using a FWE= 0.05.

GLM Analyses
For the purposes of comparing results between ICA and GLM,
a voxelwise correlation analysis within the selected ROI was
performed with pulse clarity separately for musicians and
non-musicians to identify regions predicted significantly by it
(Spearman’s rho, p < 0.001, cluster-wise corrected, FWE= 0.05).
We followed the same procedure of estimating the effective
degrees of freedom explained in the previous section to correct
the significance of the correlation coefficients, followed by a
Fisher’s combined probability test for each group (p < 0.001,
cluster-wise corrected, FWE= 0.05).

RESULTS

IC Spatial Maps Associated with Pulse

Clarity Processing
The spatial maps (one-sample Wilcoxon signed rank test, p
< 0.001, cluster-wise corrected, FWE = 0.05) corresponding
to the pulse clarity-driven ICs are shown in Figure 4. Their
ICASSO Iq indices showed an Iq > 0.90, except for IC90,
with an Iq = 0.72, thus indicating that the ICs were reliably
extracted. Overall, pulse-clarity networks were highly consistent
across model orders in terms of polarity and topography, with
auditory areas [Heschl’s gyrus (HG), planum temporale (PT),
and anterior and posterior superior temporal gyrus (aSTG
and pSTG, respectively)] and somatomotor (M1, S1, S2, SMA,
PMC, ROper) and CER areas exhibiting an inverse relationship.
Generally auditory areas were positively associated with pulse
clarity, whereas somatomotor areas and CER showed a negative
association. Different sections of the ROper showed however
both positive and negative relationships within the same IC
spatial maps. The areas that were present in all ICs were the
auditory cortices, ROper and S2, whereas large somatomotor
areas were observed only in lower model orders. BG and CER
were largely recruited only in low model order IC20.

GLM Analyses
Results from the GLM analyses (Spearman’s rho, p < 0.001,
cluster-wise corrected, FWE = 0.05) yielded significant results

only for non-musicians and only for auditory areas (HG, PT,
pSTG; see Figure 5). Results overlapped with those from the ICA
analyses.

Pulse Clarity Processing in Musicians and

Non-musicians
Figure 6A shows the first 10 most significant correlations per
model order between the temporal courses from each extracted
spatial IC and pulse clarity for the whole participant pool (Fisher’s
combined probability test, FDR corrected, q < 0.05). For the
purposes of group comparisons, we focused only the most
significant IC driven by pulse clarity within model order that
yielded a significance of at least p< 0.01 for the whole participant
pool (in the following, IC10, IC20,..., IC100). Overall, for all ICs
non-musicians’ brain responses were notably better predicted by
the pulse clarity of the music than musicians’. Non-musicians
showed highly significant correlations at the group level for all
pulse clarity-driven ICs (p < 0.0001) except for IC50 (p = 0.06),
whereas musicians exhibited significant correlations only for the
four highest model orders [IC70 (p < 0.05), IC80 (p < 0.01),
IC90 (p < 0.001), and IC100 (p < 0.005); see Figure 6B]. Finally,
the between-group comparisons (two-sample Wilcoxon signed
rank tests) revealed significantly higher correlations for non-
musicians compared to musicians for IC10 (p < 0.01), IC20 (p <

0.005), IC30 (p < 0.005), IC40 (p < 0.005), IC60 (p < 0.05), IC70

(p < 0.05), IC80 (p < 0.05), IC100 (p = 0.05), with IC90, showing
a higher non-significant trend also in favor of non-musicians.

DISCUSSION

The aim of this study was to investigate the processing of
an aspect of rhythm, namely clarity of the pulse (extracted
computationally), during naturalistic music listening, and
potential differences in pulse clarity processing between
professional musicians and non-musicians. To this end, ICA was
used to decompose participants’ brain responses into ICs in a
targeted hypothesis-driven ROI related to rhythm processing. An
advantage of using a ROI-based ICA approach is that it improves
the separation and anatomical precision of the identified spatial
ICs as it includes in the analysis informative signals with respect
to potentially interesting sources. The ICA decomposition was
performed under a range of model orders, i.e., assuming a
different number of sources (ranging from 10 to 100 in steps of
10) in order to avoid relying on prior model order assumptions.
A total of 10 ICs (one per model order) were selected based on
the highest correlation coefficient between IC temporal courses
and a continuous measure of the pulse clarity of the music,
obtained from the stimulus using computational acoustic feature
extraction. Additionally, the associated spatial networks across
model orders were examined.

IC Spatial Maps Associated with Pulse

Clarity Processing
Because non-musicians’ brain responses at all model orders
were overall significantly better predicted by pulse clarity than
musicians’ (see Section Pulse Clarity Processing in Musicians

Frontiers in Human Neuroscience | www.frontiersin.org 7 May 2017 | Volume 11 | Article 230



Burunat et al. Musical Pulse Processing and Musicianship

FIGURE 4 | Group-level IC spatial maps corresponding to IC temporal courses with maximal correlation with pulse clarity per model order

(one-sample Wilcoxon signed rank test, N = 36, p < 0.001, cluster-wise corrected, FWE = 0.05). + (plus), positive correlation; – (minus), negative correlation;

LAT, lateral view; POS, posterior view; SUP, superior view; L, left; R, right; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; HG, Heschl’s

gyrus; PT, planum temporale; ROper, Rolandic operculum; pSTG, superior temporal gyrus (posterior); aSTG, superior temporal gyrus (anterior); PMC, premotor cortex.
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FIGURE 5 | Spatial map resulting from the GLM analysis (only non-musicians). Regions predicted by pulse clarity (Spearman’s rho, p < 0.001, cluster wise

corrected (FWE = 0.05). + (plus), positive correlation; – (minus), negative correlation; LAT, lateral view; POS, posterior view; SUP, superior view; L, left; R, right;

HG, Heschl’s gyrus; PT, planum temporale; pSTG, superior temporal gyrus (posterior).

and Non-musicians), the associated spatial maps here discussed
reflect to a higher degree the brain networks underpinning pulse
clarity processing in non-musicians than in musicians.

The spatial maps associated with pulse clarity processing
during continuous, real-world music listening revealed
consistent action-perception networks across model orders.
This observed consistency supports the idea that they respond
to the same phenomenon (i.e., pulse clarity processing). The
observed networks at lower model orders comprised auditory-
motor areas, while at higher model orders they recruited mainly
auditory areas. One feature of the observed networks was their
consistent polarity for all decompositions. Positive sign was
largely found for the auditory areas, whereas negative sign was
observed for somatomotor and CER areas. This polarity may be
construed as an action-perception functional network during
pulse clarity processing, denoting an excitatory-inhibitory
relationship. A tentative interpretation of this polarity may be
that when the pulse is stable and clear in the music, auditory
cortices engage as motor areas disengage, and when the pulse
is less clear, the major engagement of the motor system, as
auditory areas disengage, could respond to the demand to
organize temporally complex auditory information. Although
the question of this polarity remains unresolved, it is a relevant
question and remains open for further study.

Interestingly, an aspect of this polarity, namely the activation
of motor areas with decreasing pulse clarity, seems to be in
disagreement with previous neuroimaging results on rhythm
perception, which found increased regional activity in motor
areas as rhythmic saliency increased (i.e., high pulse clarity).
For instance, Bengtsson et al. (2009) found cortico-motor
areas to be activated when listening to metrically less complex
rhythm (isochronous sequence) compared to more complex
sequences (non-metric and random) during a listening task.
Similarly, Grahn and Brett (2007) observed that a simple
rhythmic sequence elicited increased activity in BG and SMA
to a greater extent than complex or non-metric rhythmic

sequences. Moreover, in their study complex metric and non-
metric sequences did not statistically differ in terms of their
activation in all areas, which could mean that the contrast
between these two conditions was not sufficient to observe
significant differences.

We argue that previous studies assume motor-related activity
to be a direct linear, or at least monotonic, function of
complexity. However, the extent to which pulse prediction
is engaged may exhibit an inverted U-shape as a function
of rhythmic complexity, and such a continuum may not be
captured by the stimuli used in controlled experiments. This
is in line with previous work on groove (Witek et al., 2014)
on movement propensity vs. rhythmic complexity (Burger
et al., 2013), and more generally with aesthetic experience
as a function of complexity (Berlyne, 1971, 1974; Nasar,
2002; Akalin et al., 2009). Thus, previous work may lack
conditions that account for different degrees of rhythmic
complexity (from simple to random sequences) that allow
for increasingly challenging sequences. For instance, random
sequences designed to represent highly complex rhythms are
unpredictable. This may explain less involvement of BG or
corticomotor activation than in simpler rhythms in previous
work, as no predictions are available. A condition that represents
a compromise between high predictability and unpredictability
could show perhaps an increased activation of the motor
system in response to increasing compared to decreasing
complexity.

In addition, non-temporal aspects of the musical structure
(i.e., melody, harmony, timbre, pitch) can impact the perception
of pulse (Temperley, 1963; Dawe et al., 1993; Parncutt, 1994;
Huron and Royal, 1996). This becomes relevant in real
music, as it presents higher variability in a higher number
of dimensions (i.e., dynamics, timbre, harmony, melody) than
simple, controlled auditory stimuli. This characteristic of real
music may facilitate the prediction of subsequent beats, even
in highly complex sequences. Because this multidimensionality
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FIGURE 6 | (A) Ten most significant correlations per model order resulting from the Fisher’s combined probability test for the whole participant pool (musicians and

non-musicians combined; Spearman’s rho, FDR corrected, q = 0.05, within model order). (B) Musicians’ and non-musicians’ results from the Fisher’s combined

probability test (Spearman’s rho, FDR corrected, q = 0.05, within model order). Additionally, significant between-group differences are indicated as a result of a

nonparametric t-test performed on the individual Z-scores (Wilcoxon signed rank test).

is missing in controlled stimuli, pulse tracking in controlled
auditory conditions in may pose an additional challenge. Thus,
the use of real music and a continuous measure of pulse clarity
in our study may be one of the reasons for this discrepancy of
results.

Furthermore, in contrast to previous work on rhythm
processing based on mass-univariate analyses (GLM) targeted
at findings regionally specific effects, ICA is a multivariate
approach, which explicitly accounts for inter-regional
dependencies. This makes multivariate inference more powerful
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than mass-univariate topological inference, because it does not
depend on focal responses that survive a given threshold (Friston
et al., 2008). Additionally, ICA seems to have a higher sensitivity
for detecting task-related changes in fMRI signal compared
to the widely used mass-univariate GLM-based approach as
a consequence of a stricter criterion for spatial independence
between spatial maps (ICs), which reduces noise in the final
solution by separating artifactual and other physiological
fluctuations from the fMRI signal of interest (McKeown et al.,
1998). Similarly, because GLM-based approaches cannot
segregate the signal mixture from each voxel into source signals,
they are not suited to detect overlaps of functional networks
and their temporal course modulation by cognitive tasks.
ICA methods, conversely, are capable of disentangling signal
mixtures. In this regard, how functional networks overlap with
different temporal courses and their modulation by cognitive
tasks is critical for understanding brain functional organization
(Quintana and Fuster, 1999; Fuster, 2009).

If we consider the aforementioned observations, the
discrepancy of our findings in view of previous work may
be reconcilable as it may result from a combination of
methodological factors. However, further research is required to
determine the reason for this inconsistency of results.

Disregarding the polarity issue, previous research on rhythm
processing found a similar network including BS areas, PMC,
SMA, and auditory cortices responding to salient rhythms, which
was observed in the current study at the model orders of 20
and 30 (see Figure 4) among other areas (such as S1, S2, ROper,
M1, and CER). Conversely, at higher model orders, networks
were mainly constrained to the auditory areas with minor
encroachments into the S2 and ROper. This can be explained by
the fact that at low model orders, signal sources tend to merge
into singular ICs, which then split into several subcomponents at
higher model orders (Abou-Elseoud et al., 2010). Thus, different
choices of model order lead to the identification of different
networks or subdivisions of networks (Kalcher et al., 2012).

There is a lack of knowledge on the neurophysiological
reasons as to why some components tend to branch into
more fine-tuned components while others remain stable. It is
speculated that low model orders may group larger networks
which are sparsely connected (van den Heuvel et al., 2008),
whereas higher order would seem to group non-branching
components which are more functionally independent from each
other. Thus, low model orders may provide a general picture
of large-scale brain networks (Abou-Elseoud et al., 2010). This
hierarchical structure of functional brain networks would be
organized in a highly efficient small-world manner (Sporns and
Zwi, 2004; Stam, 2004; Achard et al., 2006), i.e., with a dense
neighborhood clustering sensible to local information processing
and sparse, long-distance connections in order to both target and
integrate global communication across the network. At very high
model orders, however, ICs’ repeatability is known to decline
(Abou-Elseoud et al., 2010). In the current study, the high quality
index (Iq) of all the pulse clarity-driven ICs guaranteed their
stability and robustness, suggesting relatively good repeatability
for all model orders. Moreover, between-group differences in
functional connectivity measured with ICA might be affected
by model order selection (Abou Elseoud et al., 2011). This was

apparent in the current analyses, as group differences were more
striking in low model orders (IC10–40) than in higher model
orders (IC60–100; see Figure 6B). A hypothetical explanation
of these results would be that, at low model orders, large-scale
networks emerge which represent the functional footprint for
pulse clarity processing specific of a particular population (e.g.,
musicians or non-musicians). Conversely, high model orders
may uncover small-scale networks, which would constitute
subcomponents or main functional hubs of the broader low
model order networks. Accordingly, these main hubs may
be conceived as more universal and hence characteristic of a
wider population, common to individuals with and without
professional musical training. In the current study, the auditory
cortex would act as the main hub of the networks subserving
pulse clarity processing, common to both musicians and
non-musicians.

Given the trade-off between number of ROIs and resolution
of the ICA solution, the current work was focused only on
how action-perception networks sustain pulse clarity. Future
work will use current findings to include additional regions, e.g.,
cortical areas associated with exogenous temporal expectation, so
as to investigate top-down aspects of rhythm processing.

Finally, a key strength of the present approach was the
inclusion of results from a continuum of model orders, rather
than assuming a fixed number of sources, whereby different
hierarchies are exposed in the functional brain organization of
pulse clarity processing during continuous, real-world music.

Comparison with GLM
The complementary GLM analyses were only significant for non-
musicians, indicating that only non-musicians’ brain responses
to pulse clarity fitted the pulse clarity model used in the
analyses. Thus, similarly to the ICA results, GLM results could
be explained by the idea that musicians possess different models
for predicting the pulse of the music. Furthermore, functional
brain correlates underlying pulse clarity processing from the
GLM approach evidenced a positive relationship between the
stimulus’ pulse clarity and non-musicians’ auditory cortical
activity, a result consistent with ICA analyses, especially at
the higher model orders (see previous Section IC Spatial
Maps Associated with Pulse Clarity Processing. IC spatial maps
associated with pulse clarity processing). In sum, extra GLM
analyses provided a framework against which to compare and
validate the reliability of the ICA findings, and thus convergence
of results denoted the robustness of the ICA approach. The
complementary GLM analysis served as an additional reliability
check, by demonstrating the power of the ICA approach, which
enabled the detection of networks undetectable through GLM.

Pulse Clarity Processing in Musicians and

Non-musicians
Examination of the IC time courses across model orders
indicated that non-musicians’ brain activity was overall
significantly better predicted by the stimulus’ pulse clarity
than musicians’ (see Figure 6). Thus, the computational model
of pulse clarity based on acoustical descriptors alone was
insufficient in predicting the temporal evolution of activations
to pulse clarity in musicians compared to non-musicians. These
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results would be in line with the notion that non-musicians’
internal model of pulse clarity relies on the acoustical content
of the stimulus to a greater extent than musicians’, whose pulse
clarity model would rely more on cognitive processes and
top-down rules of metricality, facilitating enhanced internal
beat generation. Tapping experiments indicate an advantage
in synchronization abilities for musically trained individuals
as opposed to controls (Drake et al., 2000; Hove et al., 2007;
Repp and Doggett, 2007; Krause et al., 2010; Repp, 2010).
These experiments indicate that musicians show smaller mean
negative asynchrony (MNA; the tendency for taps to precede
the pacing tones) than untrained individuals (Aschersleben,
2002). Supporting this, previous evidence highlights intense,
lifelong musical training as an important factor influencing
beat processing, either by enabling better predictions due to
a stronger internal representation of the beat, via enhanced
working memory abilities (Zatorre et al., 2010; Kung et al., 2011),
or by creating a richer internal model stemming from explicit
knowledge of musical rules (Grahn and Rowe, 2013). In sum,
significant between-group differences may be attributed to the
musicians’ improved accuracy to internally keep the temporal
regularities in the music. As such, this is a post-hoc explanation
of the present results which would need further support from
future experiments to determine its validity.

CONCLUSION

The present study used a novel approach in the study of
musical pulse processing by combining ROI-based ICA, a
naturalistic auditory stimulation paradigm (free-listening to
continuous real-world music), and acoustic feature extraction.
The approach of relating brain responses during continuous
music listening to computationally extracted acoustic features
has been first applied by Alluri et al. (2012), replicated by
Burunat et al. (2016) for fMRI, and by Poikonen et al.
(2016a,b) for electroencephalography. Here, data decomposition
at different assumed dimensionalities revealed the hierarchical
organization of the functional networks subserving pulse
clarity processing, hidden from GLM analyses. This networks
exposed a strengthened functional action-perception network
(auditory cortices, motor-related areas, BG and CER) consistent
with previous neuroimaging work on rhythm processing.
In addition, the fact that the associated spatial maps were
spatially consistent across dimensionalities further supported the
reliability of the approach. Results additionally revealed that
non-musicians’ internal model of pulse clarity relies on the

acoustical content to a greater extent than musicians’, which may
be explained by musicians’ improved predictive models of beat
induction. These inferences are in line with evidence stressing
intense musical training as a crucial factor that shapes beat
processing.
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