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Abstract

This is a thesis consisting of seven publications and an introductory part on
theoretical studies on rare single beta decays.

Firstly, the theoretical framework is applied to the computation of partial
half-lives for few selected cases of rare single beta-decay transitions. This
includes the study on a possible ultra-low-Q-value decay branch of 115Cd
as well as the highly forbidden beta decays of 48Ca and 50V. The double
magic 48Ca is one of the few experimentally veri�ed nuclei that decay via the
two-neutrino mode of double beta decay. A theoretical study on the single
beta-decay branches was used to inspect the competition between the single
and double beta-decay channels. In the case of 50V the theoretical framework
is used to examine the detectability of the beta-minus decay branch that leads
to the �rst excited 2+ state of 50Cr.

To access the �ner details of the theory the usual analysis of beta-decay
transitions is extended by the introduction of the next-to-leading-order terms
of the beta-decay shape factor. A comparison between the leading-order and
the next-to-leading-order contributions is performed in the case of the fourth-
forbidden decay branches of 113Cd and 115In.

Finally, an overview on the recently introduced spectrum-shape method is
given. The spectrum-shape method (SSM) was developed for the extraction
of the e�ective values of the weak coupling constants as a complementary
approach to the usual partial half-life considerations. Highly encouraging
results are obtained when SSM is applied to the beta decay of 113Cd. In this
initial application of the method consistent values of the two coupling con-
stant were found when the calculations were performed using three di�erent
nuclear models.
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1 Introduction

The general features of nuclear single beta decay are usually regarded to
be relatively well-established and tested throughout the nuclear landscape.
Despite being somewhat overlooked for awhile there has recently been grow-
ing interest towards this decay process. Much of the present rediscovery is
explained, �rstly, by the application of the theory to the more rare types of
single beta decays (check e.g. Refs. [1, 2, 3, 4]) that were previously left aside
from scienti�c interest. Secondly, however, the surge of interest is linked to
the research on other �elds of nuclear physics. Most notable of these are the
studies performed on double beta decay (Refs. [5, 6, 7, 8]) and neutrinos
(Refs. [5, 9, 10, 11]).

The rare single beta decays are generally characterized by extensively
long partial half-lives. This leaves them prone to the hindrance of other
decay processes. The retardation of the rare beta decays follows essentially
from two unfavourable characteristics: (1) the Q-value of the decay is low,
leaving the transition phase space small, and/or (2) there is a large angular-
momentum change between the initial and �nal nuclear states. The extreme
cases of type (1) decays are called the ultra-low-Q-value transitions. Despite
lacking a thoroughly sound de�nition, the term "ultra-low" typically refers
to beta decays with Q-values less than 100 keV (see the discussion e.g. in
Ref. [12]).

Decays falling into the category (2) are called the highly forbidden tran-
sitions. A vast majority of the observable beta decays are either allowed or
transitions of low forbiddenness. Although these decays are strongly favoured
a suitable nuclear structure mismatch between the initial and �nal nuclear
states can sometimes leave only the higher-forbidden channels open. Such
decays are found e.g. in nuclei 113Cd and 115In (see Refs. [1, 13]). In both
cases the transition is fourth forbidden. However, due to the low decay prob-
abilities in general, the highly-forbidden transition are sometimes challenged
even by some higher-order processes. In the case of 48Ca (see Refs. [3, 14])
and 96Zr (e.g. Ref. [15]) the two-neutrino mode of double beta decay is, in
fact, found to be the stronger decay channel.

A well-recognized property related to the single beta decay is the mixing of
the vector and axial-vector parts in the hadronic current. The e�ective values
of the related coupling constants are not well known in atomic nuclei. Thus
any practical calculations are invariably plagued by uncertainties surrounding
the values the weak coupling constant. These constant, gV and gA, enter the
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2 CHAPTER 1. INTRODUCTION

theory of nuclear beta decay as means of renormalizing the hadronic current
[16, 17, 18]. In addition to the di�culties faced when trying to establish
well-de�ned values to these constants, the unknown value of gA, in particular,
casts a shadow also on the studies of double beta decay. While the decay rate
of a unique single beta-decay transition is proportional to the second power
of gA, this dependence is g4

A for double beta decays [5, 6]. Such a strong
dependence on the axial-vector coupling leaves the experiments aiming to
discover the neutrinoless mode of double beta decay highly susceptible to
the uncertainties associated with the values of these coupling constants.

The e�ective values of the weak coupling constants are usually probed by
the studies on single beta-decay and two-neutrino double beta-decay partial
half-lives (see the discussion in Sect. 3.4). However, the values of the weak
coupling constants a�ect also other beta-decay observables. In particular, a
strong e�ect on the shape of the electron (positron) spectrum, i.e. the beta
spectrum, was observed in the study performed in Ref. [1]. The discoveries
reported in Ref. [1] led to the introduction of the spectrum-shape method
(SSM) that was further studied in Refs. [2, 19]. Based on the encouraging
initial results, SSM seems to o�er an interesting complement to the usual
partial half-life considerations when extracting the e�ective values of the
weak coupling constants.



2 Theory of the nuclear beta decay

In nuclear beta-minus decay the binding energy of a neutron-rich nucleus is
increased by a conversion of a single neutron into a proton. The opposite
process, i.e. the beta-plus decay, can take place in a proton-rich nucleus. In
either case this conversion is associated with an emission of a lepton pair that
together carry away the di�erence ∆J between the angular momenta of the
initial and �nal nuclear states.1 The higher the required angular momentum
transfer ∆J , the longer the partial half-life of the corresponding transition
becomes.

The angular-momentum transfer and the relative parities of the initial and
�nal nuclear states are used to classify the beta-decay transitions. The decays
with ∆J = 0, 1 and no change of parity are called the allowed transitions.
When the value of ∆J is higher and/or there is a change of parity between
the initial and �nal nuclear states, the decays are called forbidden. The
categorization to the 1st-, 2nd-, 3rd-, etc. forbidden decays is done according
to the selection rules of Table 2.1.

Forbidden decays with a stretched angular momentum transfer ∆J = K+
1 are called unique transitions. The ones with unstretched angular momenta,
i.e. ∆J = K, are non-unique. An increase of the level of forbiddenness by
one unit typically corresponds to an increase of partial half-life by several
orders of magnitude.

Table 2.1: Selection rules for the forbidden beta decays. K is the level of
forbiddenness.

K 1 2 3 4 5 6

∆J 0,1,2 2,3 3,4 4,5 5,6 6,7
πiπf -1 +1 -1 +1 -1 +1

1The unit ~ = h/2π is usually omitted when referring to angular momentum or angular
momentum transfer. Therefore it is customary to write the angular momentum simply as
a positive integer or half-integer number L instead of L~.

3
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Figure 2.1: Feynman graphs depicting the beta-minus decay. The �avour
change of the d quark is presented in the lefthand �gure. The righthand �gure
shows the simpli�ed decay mechanism when the gauge-boson propagation is
neglected.

2.1 V-A structure of the weak currents

On the particle level (see Fig. 2.1) beta decay proceeds via the change of
quark �avour. This is a weak-interaction process mediated by a gauge boson
W . In beta-minus decay one of the u quarks of the decaying nucleon is
converted into a d quark, while in the beta-plus decay the opposite takes
place. To conserve the electric charge the gauge boson has to have a positive
electric charge in the beta-plus decay and negative charge in beta-minus
decay. When the gauge boson itself decays it is converted into a lepton pair.
Thus the decay process is associated with the emission of either an electron
and an electron anti-neutrino, or a positron and an electron neutrino.

The �rst successful attempt to lay out the beta-decay mechanism was
inspired by the structure of the electromagnetic interaction [20]. Both the
hadrons and leptons were treated on equal footing by constructing them from
vector-type currents γµ. An important step forward from this Fermi model
of the beta decay, named after its inventor, Enrico Fermi, was taken after the
discovery of parity violation. To account for the violation of parity conser-
vation an axial-vector component γ5γµ had to be added to the pure vector
current, i.e. γµ is replaced by a combination γµ(1− γ5). The consequence of
this vector minus axial-vector (V-A) structure is the right-handedness of the
electron anti-neutrino in beta-minus decay [20]. The corresponding electron
is always left-handed, and the opposite con�guration is never allowed.

When the decay process is described by the Feynmann graph of Fig.
2.1, and the V-A structure of the weak currents is taken into account, the
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invariant amplitude of the beta-minus decay is written as

Mβ− =

[
g√
2
ūpγ

µ1

2
(1− γ5)un

]
1

M2
W − p2

W

[
g√
2
ūeγµ

1

2
(1− γ5)uν̄e

]
. (2.1)

The quantitiesMW and pW are mass and momentum of the gauge bosonW−,
respectively. The quantity g/

√
2 is used to denote the coupling constants of

the weak-interaction vertices.
The Feynman graph of Fig. 2.1, as well as the invariant amplitude of Eq.

(2.1), describe a decay process with two interaction vertices. However, due
to the large mass of the gauge boson W (≈ 80 GeV/c2), this particle decays
in a time scale of 10−25 s. This represents an extremely narrow time window,
and thus the distance propagated by the gauge boson is short even compared
to the size of a single nucleon.

Since the energy release of any beta decay is typically less than few MeV,
we have p2

W �M2
W , and Eq. (2.1) then becomes

Mβ− =
GF√

2

[
ūpγ

µ(1− γ5)un(x)
][
ūeγµ(1− γ5)uν̄e

]
. (2.2)

The new coupling constant GF of Eq. (2.2) is called the Fermi coupling

constant, and it is de�ned as

GF√
2

=
g2

8M2
W

. (2.3)

The removal of the gauge-boson propagator between the two weak-interaction
vertices leads e�ectively to a point-like interaction. This structure is universal
also for other low-energy weak interaction processes [20, 16].

2.2 Renormalization of the hadron current

The V-A structure of the weak currents in Eq. (2.2) leads to a maximal
violation of parity due to the equal mixture of vector and axial-vector com-
ponents. This composition is well-suited for the Dirac leptons. The hadrons,
on the other hand, are constructed from individual quarks which in turn are
surrounded by a cloud of mesons. Due to the necessity to take into account
these additional complexities the hadron current has to be renormalized2:

Mβ− =
GF√

2

[
ūpγ

µ(gV − gAγ
5)un(x)

][
ūeγµ(1− γ5)uν̄e

]
. (2.4)

2Note that in many references (including Ref. [16]) the hadron current is renormalized
as γµ(1− λγ5), where λ = gA/gV.
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Instead of an equal mixture of vector and axial-vector components, the vector
and axial-vector parts of the hadron current in Eq. (2.4) are multiplied by
constants gV and gA. These constants are called the vector (V) and axial-
vector (A) coupling constants of the weak interaction.

The 'canonical' values of the weak coupling constants are gV = 1 and
gA = 1.27 [21]. The unity value of gV is derived from the conserved vec-
tor current (CVC) hypothesis of the standard model, and that of gA from
the partially conserved axial-vector current (PCAC) hypothesis of the stan-
dard model [18]. Both of these values are extracted from the decay of free
neutron. Hence, they are also called the 'bare nucleon' values. The CVC
hypothesis states that the vector currents (ψ̄pγ

µψn) and (ψ̄nγ
µψp) form an

isospin triplet with the electromagnetic current (ψpγ
µψp) [20]. The connec-

tion to the electromagnetic current is thought to protect the vector currents
inside the nuclear matter by similar means as the symmetries of the electro-
magnetic current give rise to the conservation of the electric charge.

Attempts to probe the value of gA by means of practical nuclear-structure
calculations (see the discussion in Sect. 3.4) have lead to suggest that some
adjustment of the bare nucleon value is needed when working inside the nu-
clear matter. Part of this quenching can be explained by the non-nucleonic
degrees of freedom (see Refs. [18, 22]). However, due to the shortcomings
stemming from the nuclear many-body e�ects (Refs. [23, 24]), the trun-
cations of the model space and/or the de�ciencies in the treatment of the
many-body quantum mechanics are also absorbed into this constant.

2.3 General theory of beta decay

The general theoretical formalism for the nuclear beta decay is described in
great detail in the book by Behrens and Bühring in Ref. [16]. The following
overview follows closely that discussion. This section complements the dis-
cussion of Ref. [2] that focused on the practical applications of the theory
without much insight into the underlying basis of the framework.

To derive a general expression for the beta-decay partial half-life, one must
�rst begin by writing the scattering matrix, or S-matrix. The S-matrix also
includes the probability of no interaction among the participating particles.
This end-result can be eliminated by de�ning the so called transition matrix,
T-matrix, through

Sfi = δfi + i(2π)4δ4(pf − pi)NTfi. (2.5)
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The function δ(p) of Eq. (2.5) is the four-dimensional delta function, and N
is a normalization factor dependent on the number of initial- and �nal-state
particles.

Starting from the Hamiltonian density

H(x) = −Gβ√
2
{ψ̄p(x)γµ(gV− gAγ5)ψn(x)ψ̄e(x)γµ(1−γ5)ψνe(x) +h.c.}, (2.6)

where Gβ = GF cos(Θ) with Θ being the Gabibbo angle, and following the
de�nition of Eq. (2.5), the T-matrix of the beta-minus decay can be expressed
as

T = −Gβ√
2

∫
〈f |Vµ(0)− Aµ(0) |i〉Lµ(q)d3q. (2.7)

Since the explicit form of the nuclear current is not known due to the nuclear
uncertainties, it is already substituted in Eq. (2.7) by

i〈ψ̄p(x)γµ(1− λγ5)ψn(x)〉 → 〈f |Vµ(x)− Aµ(x) |i〉
= ei(pi−pf )x〈f |Vµ(0)− Aµ(0) |i〉, (2.8)

where Vµ and Aµ denote the vector and axial-vector currents, respectively,
and |i〉 presents the initial and |f〉 the �nal nuclear state. The latter form of
Eq. (2.8) follows from translational invariance, where p is the total momen-
tum operator.

The function Lµ(q) of Eq. (2.7) is the Fourier transform of the lepton
current, i.e.

Lµ(q) =
1

(2π)3

∫
e−iq· ri ūee

−ipe· r γµ(1− γ5) vνe
−ipν · r d3r, (2.9)

where the quantity q = pf−pi = −(pe+pν) is the momentum transfer. The
lepton part of the T-matrix can then be treated by inserting the plane-wave
expansion

eiq· r = 4π
∑
LM

iLjL(qr)Y ∗ML (q̂)Y M
L (r̂) (2.10)

in Eq. (2.9). The functions jL and Y M
L are the Bessel function and the

spherical harmonics, respectively.
To treat the hadron part of Eq. (2.7) a more careful analysis is needed to

derive usable expressions for the practical application of the theory. A crucial
step in overcoming these complications is to divide the nuclear current into
space and time components, and then expand them through the multipole
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decomposition (here Ref. [16] points out another reference by Stech and
Schülke [25]):

〈f |V0(0)+A0(0) |i〉 =
∑
LM

(−1)Jf−Mf
√

2Jf + 1

×
(

Jf L Ji
−Mf M Mi

)√
4π Y ∗ML (q̂)

(qR)L

(2L+ 1)!!
FL(q2) (2.11a)

〈f |V(0)+A(0) |i〉 =
∑
KLM

(−1)Jf−Mf
√

2Jf + 1

×
(

Jf K Ji
−Mf M Mi

)√
4πY∗MKL(q̂)

(qR)L

(2L+ 1)!!
FKL(q2). (2.11b)

The form factors FL(q2) and FKL(q2) of Eq. (2.11) act as reduced matrix
elements that describe a transition between two nuclei with a relative mo-
mentum q = |q| and a relative angular momentum L. The total angular
momentum K of the factor FKL(q2) is the angular momentum L coupled
with the vector operator σ or p. The quantity R is the nuclear radius.

The functions Y ∗ML and Y∗MKL of Eq. (2.11), related to the momentum
transfer q, are the spherical harmonics and vector spherical harmonics, re-
spectively. These can be used to de�ne an irreducible tensor operator TMKLs
written as

TMLL0(q̂) = iLY M
L (q̂) (2.12a)

TMKL1(q̂) = (−1)L−K+1iLYM
KL(q̂) · α

=
∑
µ

C(1LK; µM − µ)iLγ5σµY
M−µ
L (q̂), (2.12b)

where the quantities C(l1 l2 j; m1m2) are the Clebsch-Gordan coe�cients.
By using the tensor operator TMKLs the decompositions of Eq. (2.11) can be
combined into a single equation:

(−i)〈f |Vµ(0)+Aµ(0) |i〉γ4γµ =
∑
KLMs

(−1)Jf−Mf+M(−i)L
√

4π
√

2Ji + 1

×
(

Jf K Ji
−Mf M Mi

)
T−MKLs(q̂)

(qR)L

(2L+ 1)!!
FKLs(q

2). (2.13)

The old form factors FL and FKL of Eq. (2.11) are related to FKLs by

FKLs =

{
FLδKL for s = 0

FKL for s = 1.
(2.14)
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It should be noted that γ4γµ is taken from the lepton matrix element. There-
fore the tensor operator TMKLs acts on the lepton spinors.

The treatment of the lepton part is further aided by the introduction
of a spherical basis for the lepton wave functions. Thus, by applying a
partial wave expansion φ(r) =

∑
κµ aκµφ

µ
κ to the electron and neutrino wave

functions (see the details e.g. in Ref. [16]), the corresponding spherical waves
are given by

φµκ(r) =

(
sign(κ)fκ(r)χ

µ
−κ(r)

gκ(r)χ
µ
κ(r)

)
, (2.15)

where
χµκ(r) = il

∑
m

C(l 1/2 j; µ−mm)Y µ−m
l (r)χm. (2.16)

The two-component spinor χm is the Pauli spinor, and the adopted sign
convention for the radial function (2.15) is taken to be

sign(κ) = (−1)j−l+1/2. (2.17)

The index κ, related to the values l and j of the orbital and total angular
momentum of the lepton, is de�ned as follows:

κ =

{
l for j = l − 1/2

−(l + 1) for j = l + 1/2.
(2.18)

The general expressions for the radial functions gκ(r) and fκ(r) of the
spherical lepton waves are given by

gκ(r) =

√
W +m

W
jl(pr) (2.19a)

fκ(r) = sign(κ)

√
W −m
W

jl̄(pr). (2.19b)

The quantity m is the lepton rest mass, and l̄ denotes the values l(κ) − 1
for κ > 0 and l(κ) + 1 for κ < 0. The coe�cients aκµ of the spherical-wave
expansion are taken from

aκµ =
4π√

2
C(l 1/2 j; µ−mm)Y ∗µ−ml (p̂). (2.20)

In order to assure the desired asymptotic behaviour for r → ∞ (check the
details in Ref. [16]), the radial functions of the electron are usually multiplied
by the electron momentum pe.With this choice the corresponding quantities
aκµ need to be divided by pe.
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It should be noted that the rest mass of the neutrino is usually assumed to
be zero when writing the radial functions of Eq. (2.19). This contradicts the
current understanding about the properties of neutrinos, but in practice the
e�ects stemming from this simpli�cation are negligible for most beta decays.
Essentially, the �nite rest-mass of the neutrino has any signi�cance only for
decays with ultra-low Q-values.

By adding Eqs. (2.9) and (2.11) together, the T-matrix of Eq. (2.7) can
be written as

Tβ− =
Gβ√

2

1

π3/2

∑
KLMs

∑
κeµeκνµν

(−1)Jf−Mf+je−µe(−1)L+M+jν+µν

×
√

2Ji + 1

(
Jf K Ji
−Mf M Mi

)(
je K jν
−µe −M −µν

)
× a∗κeµea

∗
κνµν

∫ ∞
0

q2dq

∫ ∞
0

r2dr
(qR)L

(2L+ 1)!!
jL(qr)FKLs(q

2) (2.21)

× 〈φκe||TKLs(1 + γ5) ||φκν 〉.

When the rest-mass of the emitted (anti-)neutrino is assumed to be zero, the
lepton matrix element is expressed as

〈φκe|TKLs(1 + γ5) |φκν 〉 = gκe(−Z){jl(κν)(pνr)GKLs(κe,−κν)
+ jl(−κν)(pνr)GKLs(κe, κν)− sign(κe)jl(κν)(pνr)GKLs(−κe, κν) (2.22)
+ jl(−κν)(pνr)GKLs(−κe,−κν)}.

The explicit expression for GKLs is given by

GKLs(κe, κν) = ile+lν+L(−1)je−jν

×
√

(2s+ 1)(2K + 1)(2je + 1)(2jν + 1)(2le + 1)(2lν + 1)

× C(le lν L; 0 0)


K s L
je 1/2 le
jν 1/2 lν

 . (2.23)

To simplify the above expressions for a more convenient application of the
theory, the integral of Eq. (2.21) is abbreviated as

2

π

1√
2K + 1

∑
Ls

(−1)K−L
∫ ∞

0

q2dq

∫ ∞
0

r2dr
(qR)L

(2L+ 1)!!
jL(qr)FKLs(q

2)

× {gκe(r)[jl(pνr)GKLs(κe, κν)− jl̄(pνr)GKLs(κe,−κν)]
+ sign(κe)fκe(r)[jl(pνr)GKLs(−κe, κν)− jl̄(pνr)GKLs(−κe,−κν)]}

= −sign(κν)ακe{MK(ke, kν) + sign(κe)mK(ke, kν)}, (2.24)
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where ακe are a set of normalization constants for the electron radial wave
functions (see the presentation of the radial functions and the associated nor-
malization constants in Ref. [16]). The functions MK(ke, kν) and mK(ke, kν)
are used to store the nuclear-structure information together with the various
other kinematical factors. Thus, the T-matrix can �nally be written more
compactly as

Tβ− =
Gβ

4π

1

π3/2

∑
KM

∑
κeµeκνµν

(−1)Jf−Mf+K+M+je−µe+µν−lν+1/2

×
√

(2Ji + 1)(2K + 1)

(
Jf K Ji
−Mf M Mi

)(
je K jν
−µe −M −µν

)
× a∗κeµea

∗
κνµνακe {MK(ke, kν) + sign(κe)mK(ke, kν)} . (2.25)

Using the T-matrix of Eq. (2.25) the probability for a beta particle to be
emitted in an energy interval from We to We + dWe is given by

P (We)dWe =

∑
f

∑
s |T |2

2π2
peWe(W0 −We)

2dWe, (2.26)

where universal factor peWe(W0 −We)
2 is the statistical energy distribution

of the beta particle which follows from the density of �nal states. Deviations
from the statistical shape are included into the T-matrix. These deviations
result from the properties of nuclear structure and from the coulomb inter-
action between the decay remnants.

2.4 The leading-order and next-to-leading-order

terms of the beta-decay shape factor

When only the beta spectrum, and no neutrino, is observed one must in-
tegrate over the direction of the emitted beta particle. Furthermore, if the
transition proceeds via non-orientated initial and �nal nuclear states, one
must also average over the initial substates Mi and sum over the �nal sub-
states Mf . In that case the beta spectrum of Eq. (2.26) can be simpli�ed
further and expressed as

P (We)dWe =
G2
F

2π3
C(We) peWe(W0 −We)

2 F0(Z,We)dWe. (2.27)

The function F0(Z,We) of Eq. (2.27) is the Fermi function, and it approxi-
mately takes into account the coulombic interaction between the beta parti-
cle and the daughter nucleus. The nuclear-structure information, previously



12 CHAPTER 2. THEORY OF THE NUCLEAR BETA DECAY

stored inside the T-matrix, is now included into the shape factor C(We) given
by

C(We) =
∑
kekνK

λke

{
M2

K(ke, kν) +m2
K(ke, kν)

− 2µkeγke
keWe

MK(ke, kν)mK(ke, kν)

}
, (2.28)

where λke and µke are the beta-decay coulomb functions. Typically (see Ref.
[16]), it is assumed that µke ≈ 1, and λke is taken to be

λke =
Fke−1(Z,We)

F0(Z,We)
. (2.29)

The function Fke−1(Z,We) is called the generalized Fermi function (see the
explicit expression e.g. in Ref. [2]). The quantity γke =

√
k2
e − (αZ)2, where

α is the �ne-structure constant and Z the proton number of the daughter
nucleus.

The decay rate of a beta decay transition is determined by simply inte-
grating Eq. (2.27) over the electron energies, i.e.

λ =

∫ W0

mec2
P (We)dWe. (2.30)

The upper limit W0 of the integral, called the end-point energy, corresponds
to the maximum electron (positron) energy. The partial half-life of the decay
branch is derived from the decay rate by t1/2 = ln2/λ.

Due to the complexity of the functions MK(ke, kν) and mK(ke, kν) in Eq.
(2.28), any practical calculations of the beta decay observables are performed
by concentrating only on the most signi�cant contributions of the shape fac-
tor. When the form factors FKLs(q2) of Eq. (2.11) are expressed in terms of
the form-factor coe�cients FN

KLs (see Ref. [16]), the leading contributions
come essentially from the few lowest non-zero coe�cients that correspond to
the least angular-momentum transfer between the initial and �nal nuclear
states. Further simpli�cation can, however, be attained due to the suppres-
sion stemming from the small quantities αZ, peR/~, qR/~, mecR/~ and
WeR/~c. Since various combinations of these quantities appear as prefactors
of the form-factor coe�cients, the contributions of the form-factor terms can
be arranged according to the powers of the small quantities involved (see
details in Refs. [1, 2]).

Following the order-of-magnitude considerations outlined e.g. in Refs.
[16, 17], the theoretical computations are typically performed using only the
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Table 2.2: The leading-order and next-to-leading-order nuclear matrix ele-
ments of beta decay. Note that ke takes integer values between 1 and K,
where K is the level of forbiddenness of the transition.

Vector (V) Axial-vector (A)

Leading order VM
(0)
KK−11

AM
(0)
KK1

VM
(0)
KK0

AM
(0)
KK1(ke, 1, 1, 1)

VM
(0)
KK0(ke, 1, 1, 1) AM

(0)
K+1K1

AM
(0)
000

AM
(0)
011

AM
(0)
011(ke, 1, 1, 1)

Next-to-leading VM
(1)
KK−11

AM
(1)
KK1

order VM
(1)
KK−11(ke, 1, 1, 1) AM

(0)
K+1K+10

VM
(1)
KK−11(ke, 2, 1, 1) AM

(0)
K+1K+10(ke, 1, 1, 1)

VM
(1)
KK−11(ke, 2, 2, 1)

VM
(1)
KK−11(ke, 2, 2, 2)

VM
(0)
KK+11

VM
(0)
KK+11(ke, 1, 1, 1)

VM
(0)
K+1K+11

VM
(0)
K+1K+11(ke, 1, 1, 1)

leading-order contributions (check e.g. Refs. [13, 12]). In Refs. [1, 2] the
theoretical formalism is expanded to the next-to-leading order. When the
next-to-leading-order terms of the shape factor are included, the number
of nuclear matrix elements increases from 2K + 4 to 9K + 9 for non-unique
decays, where K is the level of forbiddenness of the transition. A summary of
these elements is presented in Table 2.2. The explicit expression are given in
Ref. [2]. Note that the matrix elements AM

(0)
000,

AM
(0)
011 and AM

(0)
011(ke, 1, 1, 1)

are non-zero only for the �rst-forbidden decays with ∆J = 0.



3 Application and results

The theoretical description of rare beta decays is demanding due to the low
Q-values and/or high levels of forbiddenness. Low Q-values give rise to ad-
ditional e�ects that are typically neglected for the more usual type of transi-
tions. High forbiddenness, on the other hand, amounts to a drastic increase
in the number of nuclear matrix elements.

Low energy release, i.e. low Q-value, gives rise to a small transition
phase space. This, in return, leads to long partial half-lives. The interest
towards the nuclear single beta decays with ultra-low Q-values is mainly
explained by their application to experiments aiming to determine the mass
of neutrino. Although a lot of information about the relative masses and
mixing of neutrinos exists to date, the absolute mass scale remains unknown.

The partial half-lives of highly-forbidden transition are similarly long.
This is due to the reduced probability of emitting a lepton pair which has
a large enough angular momentum to overcome the angular-momentum dif-
ference between the initial and �nal nuclear states. Valuable information
on such decays can thus be achieved using theoretical frameworks to esti-
mate their partial half-lives and beta spectra. As a highlight of this thesis
an overview of the application of the spectrum-shape method (SSM) is also
made. This method was recently developed for the extraction of the e�ective
values of the weak coupling constants.

3.1 The possible ultra-low Q-value branch of
115Cd

The experiments that utilize single beta decays to probe the neutrino rest-
mass are focused on the high-precision measurements of beta-particle spectra.
In the presence of a neutrino with non-zero rest-mass an equal amount of
o�set is introduced to the value of the end-point energy. More notably,
however, the spectrum is also distorted near the end-point region. For non-
zero neutrino rest-mass the slope of the end-point spectrum is in�nite rather
than zero. To detect this slight distortion, Q-values as low as possible are
desirable.

The studies on beta particle spectra are currently used to determine the
electron-neutrino rest-mass in the KATRIN (see Ref. [10]) and MARE (Ref.

14
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[11]) experiments. These experiments concern the use of tritium (Q = 18.592
keV ± < 0.5 eV [26]) and 187Re (Q = 2.467(2) keV [26]), respectively, as
beta-particle sources. Since the need for low Q-values is a highly limiting re-
quirement for the sources, the search for suitable decays continues. Recently
a suitable ultra-low-Q-value candidate for the neutrino studies was identi�ed
in the nucleus 115In. There the 9/2+ ground state decays to the �rst excited
state 3/2+ of 115Sn with a world-record small Q-value of (0.173± 0.012) keV
[27, 28]. Up to date, the partial half-life of this decay branch is most accu-
rately measured to be (4.3±0.5)·1020 yr in Ref. [29] (note that partial half-life
quoted in Ref. [12] was taken from a slightly older study found in Ref. [30]).
Another potential ultra-low-Q-value decay branch can be identi�ed in 135Cs
(see Ref. [31]), but the Q-value is not resolved experimentally.

While the studies on single beta decay are direct searches of the electron-
neutrino mass, experiments that focus on the double beta decay are indirect.
Such experiments involve the measurement of the e�ective (Majorana) neu-
trino mass, and are highly sensitive to the uncertainties of the nuclear matrix
elements [5, 32, 33].

Aside from the attempts the explore the neutrino rest-mass, the studies
on ultra-low-Q-value beta decays can also increase our understanding on
the atomic e�ects that are usually neglected in decays with higher energy
release. These e�ects include the screening of atomic electrons, mismatch
between the initial and �nal atomic states, the atomic exchange e�ects as
well as the in�uence of the molecular or lattice structure. Since only few
studies exist (see e.g. Refs. [34, 35]) very little is known about these e�ects
in general.

In Ref. [12] nuclear-model calculations with the microscopic quasiparticle-
phonon model (MQPM) were used to analyse the various beta-decay branches
of 115Cd (see Fig. 3.1), and to test the performance of the nuclear model
itself. Due to the isomeric nature of the �rst excited state, 11/2−1 , both the
ground state and the �rst excited state can decay via beta decay. Among
the many available decay channels there exists also a possible ultra-low-Q-
value branch 1/2+

g.s. → 9/2+
3 which is a fourth-forbidden transition. The

Q-value (−2.8± 4.0) keV of this transition is derived from the ground-state-
to-ground-state Q-value (1446±4) keV [36], but accurate measurements, e.g.
with Penning-trap techniques (see e.g. Ref. [27]), are needed to verify the
precise value, and thus to judge the detectability of this decay branch.

The MQPM framework is well-suited to nuclear-structure studies of spher-
ical or nearly spherical odd-A medium-heavy nuclei with open-shell con�gu-
rations [37]. Details of the present MQPM calculations of the nuclei 115Cd
and 115In are summarized in Ref. [12]. Other applications of the framework
can be found e.g. in Refs. [1, 2, 13], where the framework was applied to the
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9/2⁺

1/2⁻

3/2⁻

3/2⁺
1/2⁺
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5/2⁻
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(9/2)⁺
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0.336
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0.864

0.934

1.041

1.133

1.291

1.418
1.4490.0

0.181

¹¹⁵Cd

¹¹⁵In

Figure 3.1: Beta-decay branches of 115Cd. Both the ground state and the
isomeric �rst excited state of 115Cd decay via beta decay. The ultra-low-Q-
value decay branch is indicated by a dashed line.

beta decays of 113Cd and 115In. A very recent and more extensive application
was carried out in Ref. [19], where a total of 26 beta-decay transitions was
studied using this nuclear model. The proton-neutron variant of MQPM, i.e.
the pnMQPM, for odd-odd nuclei is presented in Ref. [38].

Since there exists no experimentally measured Q-value for the 1/2+
g.s. →

9/2+
3 transition, the partial half-life of this decay branch is presented as a

function of the Q-value in Fig. 3.2. Based on the di�erent �ts of the under-
lying QRPA phonons (see details in Ref. [12]) a band of theoretical partial
half-life values is presented as a dark-shaded area. Due to the fact that most
of the uncertainties can be expected to be associated to the wave function
of the 9/2+

3 state, and that the transition 11/2−1 → 9/2+
3 was found to be an

order of magnitude too fast (see Table 3.1), a systematic error, represented
by the light-shaded area in the �gure, was assigned to the calculations. This
corresponds to a factor of 10 increase to the computed theoretical value. It
should further be noted that only the �rst-order terms of the beta-decay
shape factor were used to calculate the partial half-life.

In general, the results of Table 3.1 show a fairly satisfactory agreement
with the experimental data considering that the various decay branches span
a huge range of partial-half-life values. Deviations from the experiment
can, at least to a certain degree, be associated with the omission of the
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Table 3.1: Computed partial half-lives for the various beta-decay branches of
115Cd. Tabulation excludes the ultra-low-Q-value branch that is presented in
Fig. 3.2. No experimental partial half-life is available for the 1/2+

g.s. → 9/2+
2

branch.

Initial state (Jπ)i = 1/2+
g.s. (0.0 MeV)

(Jπ)f Q (MeV) t
(exp.)
1/2

Theoretical partial half-life

gA = 1.25 gA = 1.00

1/2−1 1.1097 3.56 d (3.9± 0.3) d (6.1± 0.6) d
3/2−1 0.8486 192.03 d (1.28± 0.09) d (1.48± 0.11) d
3/2+

1 0.6174 67.50 d (10.9± 0.4) h (17.1± 0.7) h
1/2+

1 0.5819 6.73 d (1.84± 0.06) h (2.85± 0.10) h
5/2−1 0.4046 7628.42 yr (3000± 400) yr (4700± 600) yr
9/2+

2 0.0277 - (1.0± 0.3)× 1025 yr (1.5± 0.5)× 1024 yr

Initial state (Jπ)i = 11/2−1 (0.181 MeV)

(Jπ)f Q (MeV) t
(exp.)
1/2

Theoretical partial half-life

gA = 1.25 gA = 1.00

9/2+
g.s. 1.6270 45.94 d (3.0± 0.3) h (2.3± 0.2) h

7/2+
1 0.6932 7.18 yr (1100± 400) yr (1800± 500) yr

11/2+
1 0.4944 203.47 yr (90± 50) yr (90± 50) yr

13/2+
1 0.3364 13.56 yr (25± 4) yr (26± 4) yr

9/2+
2 0.2087 40.69 yr (40± 30) yr (30± 20) yr

9/2+
3 0.1782 610.41 yr (60± 50) yr (50± 40) yr
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Figure 3.2: Partial half-life of the ultra-low-Q-value beta-decay branch of
115Cd as a function of the Q-value.

�ve-quasiparticle degrees of freedom. These e�ects are beyond the MQPM
framework since the wave functions are constructed from one- and three-
quasiparticle components.

3.2 Highly-forbidden beta-decay channels of 48Ca

and 50V

The two unstable nuclei 48Ca and 50V share a similar feature. That is, the
long half-life is attributed to the unfavourable nuclear structure mismatch
between the initial and �nal state nuclei. Consequently, in both cases the
available single beta decay channel is also overcome by a more competing
decay process. For 50V the stronger decay channel is the electron capture
(EC). For the 48Ca, however, this channel is the double beta decay.

In contrast to the large number of isotopes across the nuclear landscape
that decay via nuclear single beta decay, there exist much less veri�ed can-
didates of nuclear double beta decay. For two candidates, namely 48Ca (see
Refs. [14, 39, 40, 41, 42, 43, 44]) and 96Zr (Refs. [15, 45, 46]), the two-
neutrino mode of double beta decay competes with single beta decay. In
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Figure 3.3: Computed single and experimental double beta-decay half-lives
of 48Ca.

both cases the single beta decay is suppressed by a high level of forbidde-
ness. Currently the most up-to-date half-life of the 2νββ channel is analysed
to be T 2ν

1/2 = (4.4+0.6
−0.5)× 1019 yr for 48Ca, and T 2ν

1/2 = (2.3± 0.2)× 1019 yr for
96Zr [42].

In Ref. [3] the single beta decay channels of the double magic 48Ca were
examined using the nuclear shell model (NSM) (see e.g. Refs. [14, 47, 48]).
The one-body transition densities (OBTDs) were calculated for the full pf
shell using the GXPF1A interaction [49, 50]. The validity of this interaction
in the computation of beta-decay OBTDs has previously been tested e.g. in
Refs. [51, 52]. Applications to the computation of double-beta-decay matrix
elements of 48Ca have also been performed in Refs. [52, 53, 54]. This includes
both the two-neutrino and the neutrinoless modes of double beta decay.

Since the single-beta-decay half-life of 48Ca is not measured and only lower
limits of the individual beta branches exist (see Ref. [44]), the competition
between the two decay channels was investigated by comparing the computed
single-beta-decay partial half-lives with the experimental double-beta-decay
half-life. The computed beta-decay half-lives are presented in Fig. 3.3 and
Table 3.2. According to the results presented in Table 3.2, the dominant
decay branch is the fourth-forbidden unique to the 5+ �nal state, leading
to the predicted single-beta-decay half-life of T β1/2 = (5.2+1.7

−1.3) × 1020 g−2
A yr,

where gA is the value of the axial-vector coupling constant. This is a factor
2−3 times longer than the experimental lower limits of the single-beta-decay
branches, and approximately 12 times longer than the double-beta-decay
half-life.



20 CHAPTER 3. APPLICATION AND RESULTS

Table 3.2: Theoretical partial half-lives for the beta-decay branches of 48Ca.
Forbiddenness of the transition (K) is presented in the second column. Note
that the lower limits quoted in Ref. [3] were taken from Ref. [43].

Transition K t
(exp.)
1/2 (1020 yr)

Theoretical partial half-life

gA = 1.25 gA = 1.00

0+g.s. → 6+g.s. 6 > 1.6 (5.46+1.18
−0.96)× 1028 yr (5.18+1.11

−0.91)× 1028 yr

0+g.s. → 5+1 4u > 2.5 (3.36+1.08
−0.79)× 1020 yr (5.25+1.70

−1.24)× 1020 yr

0+g.s. → 4+1 4 > 1.9 (5.37+13.03
−3.47 )× 1023 yr (4.50+10.90

−2.91 )× 1023 yr

The single-beta-decay channels of 48Ca were previously studied in Ref.
[14] using NSM-based OBTDs. In that study the single-beta-decay half-
life was computed to be T β1/2 = (1.1+0.8

−0.6) × 1021 g−2
A yr. When comparing

the current theoretical prediction to the previous result, the current single-
beta-decay half-life is 53% shorter. This indicates a stronger competition
between the two decay channels, but it is not enough to change the �nal
outcome. As a conclusion, the double-beta-decay channel is still relatively
weakly challenged by the single-beta-decay. The fact that the single-beta-
decay half-life is dominated by the fourth-forbidden unique transition, and
not the non-unique one, follows from the smaller Q-value of the 4+ transition
and phase-space considerations that strongly favour unique decays over the
non-unique ones.

In Ref. [3] an additional study was made to examine the role of screen-
ing of the atomic electrons. To take these e�ects into account a screening-
corrected shape factor (see details in Ref. [55]) was used to calculate the
partial half-lives. In beta-minus decay this correction amounts to reduction
of the size of the transition phase-space at low energies. As a consequence
the higher-energy electrons are favoured and the decay probability is reduced
leading to longer partial half-lives. In the current study these corrections were
found to be practically negligible. The e�ect on the partial half-life was less
than 1%. This is surprisingly little, and the discrepancy between the present
calculations and those of Ref. [47] lends no easy explanation. In Ref. [47]
the screening corrections were reported to amount up to 11% e�ect.

The detectability of the 50V beta-minus decay channel was studied in Ref.
[4]. Similarly to the beta decay studies of 48Ca, the OBTDs were calculated
using the NSM with the GXPF1A interaction. The decay scheme is presented
in Fig. 3.4, including both the EC and the beta-minus decay branches. Since
the angular-momentum change in a ground-state-to-ground-state transition
would amount to a total of ∆J = 6, the nucleus 50V decays to the 2+ �rst
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Figure 3.4: The fourth-forbidden non-unique beta-decay and electron-
capture channels of 50V.

Table 3.3: Theoretical partial half-lives for the fourth-forbidden non-unique
beta-decay branches of 50V.

Transition t
(exp.)
1/2 (1017 yr)

Theoretical partial half-life (1017 yr)

gA = 1.25 gA = 1.00

50V(6+
g.s.)→ 50Ti(2+

1 ) 2.29± 0.25 3.63± 0.05 5.13± 0.07
50V(6+

g.s.)→ 50Cr(2+
1 ) > 17 200± 2 234± 2

excited states in both directions. As in the case of 48Ca, the reduction of the
level of forbiddenness from K = 6 to K = 4 lowers the partial half-lives by
several orders of magnitude.

Considerable care was taken to ensure that the spectroscopic properties
of 50Ti, 50V and 50Cr are well-reproduced using the NSM calculations (see
calculated level schemes, as well as the predicted B(E2) values and the elec-
tric quadrupole and magnetic moments in Ref. [4]). As a consequence, a
fairly good agreement between the experimental and theoretical partial half-
lives of the EC branch can be seen in the results of Table 3.3. The presented
theoretical prediction for the beta-decay partial half-life is also seen to agree
with the most recent experimental lower limit 1.7×1018 yr [56], although it is
an order of magnitude longer. Considering that the EC half-life was slightly
overshot, the current estimate for the beta-minus decay branch might also
indicate a bit too high suppression for the decay probability.

A claimed observation of the single-beta-decay branch of 50V was earlier
made in Ref. [57] with a half-life of tβ

−

1/2 = (8.2+13.1
−3.1 )×1017 yr. The experimen-

tally deduced value of that study is in a tension with the latest lower limit
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Figure 3.5: Summary of the lower limits of the 50V beta-minus-decay branch.
The graph includes the one positive claim made in Ref. [57] and the theo-
retical estimate computed in Ref. [4].

(see the discussion in Ref. [56]), and it is in a strong con�ict with the cur-
rent theoretical prediction. A comparison between the theoretical estimate
and the proposed experimental half-life shows that the theoretical value is
24 times longer.

A summary of the experimental lower limits obtained for the beta-decay
partial half-life of 50V, including the one positive claim, can be found in
Fig. 3.5. When assessing the experimental detectability of the beta-minus-
decay branch in terms of the latest lower limit, a new experiment with an
order of magnitude better sensitivity is in order. Details on how the required
improvement on the experimental set-up could be achieved is brie�y discussed
at the end of Ref. [4].

3.3 Comparison between the leading-order and

the next-to-leading-order contributions to

the 113Cd and 115In decays

Theoretical analysis of the beta-decay observables is usually performed with
the leading-order terms of the shape factor. This limits the number of nuclear
matrix elements, and thus simpli�es the application of the framework. A
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particularly useful simpli�cation is achieved with the unique decays where the
decay rate is dependent on a single leading-order matrix element only. This
results to the complete separation between the nuclear structure information
and the kinematics. This separation is not attained with non-unique decays.

Finer details of the theory can be accessed when the framework is ex-
tended to the next-to-leading order1. The next-to-leading-order matrix ele-
ments are essentially derived from the leading-order elements by extra factors
of (r/R)2N associated to the integrals of the single-particle matrix elements
[16, 17]. However, extra coulomb factors are also needed to take into account
the coulombic interaction (see details e.g. in Ref. [2]). These corrections
increase the number of nuclear matrix elements from 2K + 4 to 9K + 9
for non-unigue K-forbidden decays. For unique decays of the same level of
forbiddenness there is a total of 2K + 3 matrix elements involved in the cal-
culations. As a result, also the unique decays contain a mixture of vector
and axial-vector components.

A comparison between the leading-order and the next-to-leading-order
contributions to the beta-decay shape factor was performed in Refs. [1, 2]
using the fourth-forbidden non-unique beta decays of 113Cd and 115In. Both
decays have previously been studied e.g. in Ref. [38]. The experimental
partial half-lives of these channels are measured to be tβ1/2 = (8.04± 0.05)×
1015 yr and tβ1/2 = (4.41± 0.25)× 1014 yr, respectively [36]. The Q-values of
the two channels are (322 ± 1) keV and (497.489 ± 0.010) keV, respectively
[36].

To inspect the dependence on the nuclear structure framework, the OBTDs
of the beta-decay half-lives and spectra were calculated using two nuclear
models in Ref. [1]. The selected models were the microscopic quasiparticle-
phonon model (MQPM) and nuclear shell model (NSM). The e�ective inter-
action used in the NSM calculations was jj45pna [58, 59] which has recently
been applied to 122−126Ag nuclei in Ref. [59]. Due to large dimensions, the
NSM is prone to some truncation of the model space to ease the computa-
tional burden when applied to heavier nuclei. The details of the current NSM
calculations are discussed in Ref. [1].

In Ref. [2] the original study was extended by performing the same OBTD
calculations with the microscopic interacting boson-fermion model (IBFM-2,

1Other additional corrections that are beyond the usual application include e.g. the
radiative corrections. These are a set of corrections that stem from the �ner details of
coulomb interaction. The division between outer and inner corrections is explained in
Ref. [16]. The outer corrections that directly modify the shape factor are brie�y discussed
in Ref. [2].
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Figure 3.6: Partial half-life of the fourth-forbidden beta-decay branch of
113Cd as a function of the value of the axial-vector coupling constant. The
results calculated up to the next-to-leading-order (2nd) are compared with the
leading-order (1st) contributions. The value of the vector coupling constant
is gV = 1, and the experimental half-life is presented as a gray horizontal
line.

or simply IBM) [60, 61]. The parameters of the Cd core are taken from Ref.
[62] in the current calculations.

A summary of the dependence of the partial half-life on the next-to-
leading-order contributions is given in Figs. 3.6 - 3.9. All the three nuclear
models show very similar behaviour when inspecting these e�ects as a func-
tion of the value of the axial-vector coupling constant. At highest these
contributions can introduce an e�ect of around 20% to the partial half-life.
In general the next-to-leading-order terms tend to increase the partial half-
life at low values of gA and reduce it when approaching the bare nucleon
value. It is interesting to note that due to the very de�nite behaviour of the
half-life curves in Figs. 3.6 and 3.7 the contribution of the next-to-leading-
order terms can e�ectively be taken into account by a slight shift in the value
of gA.

Since the next-to-leading-order contributions a�ect also other beta-decay
observables, the e�ects on the electron spectra can be inspected in similar
ways. In general these contributions tend to be small, but at times there
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Figure 3.7: Partial half-life for the decay of 115In (see the description of Fig.
3.6).
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Figure 3.9: E�ects of the next-to-leading-order contributions as functions of
the value of the axial-vector coupling constant for the beta decay of 115In.
Relative corrections are extracted from the graphs in Fig. 3.7.

can be a fairly strong dependence on the values of the coupling constants.
Fig. 3.10 represents the maximal e�ects that were recorded with the studies
on the 113Cd beta decay. The selected values of gA are extracted from the
peak-points of Fig. 3.8. Even when the e�ects are maximized, the next-to-
leading-order contributions do not drastically alter the high-energy part of
the spectrum. Most e�ects are seen to occur in lower energies, and at this
energy range the contributions can amount up to 30%.

3.4 Spectrum-shape method

The usual method for the extraction of the e�ective values of the weak cou-
pling constants involves studies on beta-decay half-lives. Since the beta-decay
rate is a�ected by any adjustment of gV and/or gA, e�ective values of these
constants can be probed by matching the theoretical half-life with the ex-
periment. A particular interest is directed towards the e�ective values of
the axial-vector coupling constant, and such studies have previously been
performed in the context of the proton-neutron quasiparticle random-phase
approximation (pnQRPA) in Refs. [7, 8, 23, 24, 63, 64, 65], NSM in Refs.



CHAPTER 3. APPLICATION AND RESULTS 27

0
1
2
3
4
5
6
7
8

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

MQPM spectrum

gA = 0.89

(a)

2nd

1st

0
1
2
3
4
5
6

 0  50
 100

 150
 200

 250
 300

 350

gA = 0.89

(a)

gA = 1.04

(b)

2nd

1st

0

1

2

3

NSM spectrum

gA = 0.89

(a)

gA = 1.04

(b)

gA = 0.91

(c)

2nd

1st

0

1

2

3

 0  50
 100

 150
 200

 250
 300

 350

Electron kinetic energy (keV)

gA = 0.89

(a)

gA = 1.04

(b)

gA = 0.91

(c)

gA = 1.02

(d)

2nd

1st

0

1

2

3

4

5

IBM spectrum

gA = 0.89

(a)

gA = 1.04

(b)

gA = 0.91

(c)

gA = 1.02

(d)

gA = 0.86

(e)

2nd

1st

0
1
2
3
4
5
6

 0  50
 100

 150
 200

 250
 300

 350

gA = 0.89

(a)

gA = 1.04

(b)

gA = 0.91

(c)

gA = 1.02

(d)

gA = 0.86

(e)

gA = 1.26

(f)

2nd

1st

Figure 3.10: Extreme contributions of the next-to-leading-order terms of the
beta-decay shape factor on the electron spectra of 113Cd. The values of gA

(indicated in the �gures) are extracted from Fig. 3.8.

[66, 67, 68] and IBM in Refs. [69, 70, 71]. These studies include various
single- and double-beta-decay branches in medium heavy nuclei.

A complementary method for the extraction of the values of the weak
coupling constants was �rst introduced in Ref. [1]. This method, called
the spectrum-shape method (SSM), utilizes the information gained from the
shape of the beta spectra through its non-trivial dependence on the values
of gV and gA. Since the shape factor (2.28) of a non-unique decay (as well as
that of a unique decay in next-to-leading order) can be decomposed into

C = g2
VCV + g2

ACA + gVgACVA, (3.1)

where CV, CA and CVA are the vector, axial-vector and mixed components,
respectively (see e.g. Refs. [2, 16]), the shape of the beta spectrum is also
a�ected by the choice of these constants. Similar e�ect can also be observed in
the decomposition of the integrated shape factor (2.30) which can be written
as

C̃ =

∫ W0

mec2
C(We) peWe(W0 −We)

2 F0(Z,We)dWe

= g2
VC̃V + g2

AC̃A + gVgAC̃VA. (3.2)

Thus e�ective values of the gV and gA pairs can be found by performing a
comparison between theoretical and experimental beta spectra.
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Figure 3.11: Comparison of the computed electron spectra of 113Cd with
the experimental data. The areas under the curves are normalized to unity.
All calculations are performed using the next-to-leading-order contributions,
and the value of the gV was kept at unity. Note that the Q-value used in the
SSM computations is (343.1 ± 0.6) keV to enable the comparison with the
experimental data of Ref. [72].

In the pilot study of Ref. [1] SSM was applied to the non-unique fourth-
forbidden beta decays of 113Cd and 115In. However, due to the lack of ex-
perimental data on the electron spectrum of 115In, SSM was fully deployed
only for 113Cd. The electron spectrum of 113Cd was earlier measured at the
Gran Sasso National Laboratory using low-background CdWO4 crystal scin-
tillators [72]. The analysis performed in Ref. [1] with MQPM and NSM was
further extended in Ref. [2], where the nuclear-structure calculations include
also the use of IBM.

A comparison performed in Ref. [2] between the three nuclear models
is summarized in Fig. 3.11. A highly interesting outcome of this analysis
emerged: A consistent value of around gA = 0.92 can be used to reproduce
the experimental electron spectra with all the three nuclear models. Although
the MQPM-based �t shows some deviation from the experimental spectrum
shape, the match attained with both the NSM and the IBM is excellent.
Such a close agreement between all three nuclear models is a remarkable
result considering the di�erences between their theoretical frameworks.

The signi�cance of the results presented in Fig 3.11 is further emphasized
by two other aspects. Firstly, the e�ective value gA ≈ 0.92 is in a good
agreement with the e�ective values of many other studies. Secondly, while
the SSM value of gA represents a fairly typical quenching of the axial-vector
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Table 3.4: E�ective values of gA extracted from the beta decays of 113Cd
and 115In (see Figs. 3.6, 3.7). The electron spectrum measured in Ref. [72]
allows for the comparison between the partial-half-life-based and SSM-based
e�ective values of gA in the case of 113Cd. Next-leading-order terms of the
beta-decay shape factor were used to calculate all the results.

E�ective gA

Nuclear model 113Cd 115In

Half-life SSM Half-life

MQPM 0.63 1.29 0.92 0.75 1.15
NSM 0.60 1.32 0.90 0.57 1.23
IBM 0.14 1.89 0.93 0.11 1.84

coupling constant, the preferred value of the vector coupling constant gV

turned out to be unity. In every decay branch examined in Refs. [7, 8, 23,
24, 63, 64, 65, 66, 67, 68, 69, 70, 71] the e�ective value of gA was found to
be quenched, i.e. it was less than the bare nucleon value gA = 1.27. In
most cases the e�ective value was, in fact, found to be less than unity. The
second aspect is related to the validity of the CVC hypothesis. Although
quenched values of the vector coupling constant are extracted e.g. in Refs.
[73, 74] using shell-model studies on spin-dipole and other �rst-forbidden
beta transitions (an extension to these studies was more recently achieved in
Refs. [75, 76]), the SSM results seem to indicate the opposite. The preferred
value of gV was found to be its CVC value in the SSM studies using any of
the nuclear models.

Despite the intriguing results of Fig. 3.11, a contradiction was found when
the SSM results were compared with those of the partial half-life analysis
(see Fig.3.6 in Sect. 3.3). This comparison is presented in Table 3.4. As a
conclusion, it can be stated that the current SSM results do not agree well
with the values extracted from the partial-half-life analysis. Although the
discrepancies vary largely between the di�erent nuclear models, the general
trend is similar. In each case the SSM values lie in between the gA pairs
extracted from the partial half-lives.

It is important to understand that the beta decay of 113Cd (and 115In)
is a non-unique transition. The parabolic dependence of the decay rate on
gA thus yields a total of two e�ective values of the coupling constant that
correspond to the crossing points with the experimental partial half-life line
(see Fig. 3.6). Contrary to this, the single-beta-decay studies in Refs. [7, 8,
23, 24, 63, 64, 65, 66, 67, 68] concentrate on unique or allowed transitions.
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Both of these transitions yield only one e�ective value of gA. A further
remark about the results of Table 3.4 can be made when comparing the
values of gA based on the partial half-life calculations with the other similar
studies mentioned earlier. The lower values of gA in Table 3.4 represent a
fairly extreme quenching of the value of gA. The higher values, on the other
hand, approach the bare nucleon value. The only exception is the IBM-based
calculation that fails to produce any reasonable values at all.

The con�ict between the SSM and half-life methods is not easily explained
by any low-order corrections that are left out from the theoretical framework.
Thus, a priori, there is no reason why the results of Table 3.4 should not
converge when accurate nuclear matrix elements are used. The most obvious
way to rectify the disagreement between the two methods would be to �nd
a suitable set on nuclear matrix elements that brings the half-life curves of
Fig. 3.6 down. This would not only make the half-life- and SSM-extracted
values of gA commensurate, but also lead to a unique e�ective value of gA,
extracted from each half-life curve.

The fact that the two highly-forbidden non-unique decay transitions dis-
cussed in Ref. [2] are gA-sensitive inspires to speculate that this particular
feature is shared by similar transitions in other nuclei. According to a more
extensive study in Ref. [19] this expectation is not, however, entirely correct.
In that article a total of 26 single-beta-decay transitions of varying forbid-
denness were examined using the MQPM in connection with the SSM. Only
three experimentally interesting candidates were found in that study.

The studies performed in Ref. [19] seem to support the observation that
was already made in Refs. [1, 2]. Figs. 3.12 and 3.13, and Table 3.5 show
that the strong dependence on gA (or gV) is a result of the competition be-
tween the vector and axial-vector components of the shape factor in Eq.
(3.1). When these components are of the same order of magnitude any small
variation in the values of the weak coupling constants is able to change the
balance between these components. In Ref. [19] this feature (see the results
of Table 2 in Ref. [19]) was found from the decay transition 99Tc(9/2+) →
99Ru(5/2+) which is of a non-unique second-forbidden type. Other decays
with similar characteristics include the non-unique forth-forbidden transi-
tions 115Cd(1/2+) → 115In(9/2+), 117Cd(1/2+) → 117In(9/2+) and
119In(9/2+) → 119Sn(1/2+). All these decay branches would serve as highly
interesting candidates for further SSM studies if the electron spectra could
be measured experimentally.
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Figure 3.12: Decomposed electron spectra of the 113Cd beta decay
113Cd(1/2+) → 113In(9/2+). The vector (CV), axial-vector (CA) and mixed
term (CVA) of the shape factor are presented in the upper panels including
the next-to-leading-order corrections. The lower panels represent the sum,
i.e. the total shape factor. Comparison to the leading-order contributions
(abbreviated by 1st) is performed in each of the lower panels. Notice that
the sign of the mixed term CVA is negative.
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Figure 3.13: Decomposed electron spectra of the 115In beta decay
115In(9/2+)→ 115Sn(1/2+) (see the description of Fig. 3.12).
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Table 3.5: Comparison between the vector (C̃V ), axial-vector (C̃A) and mixed
(C̃V A) terms of the integrated shape factor (3.2). The sum of these three
terms (see the last row) is the total integrated shape factor for gV = gA = 1.
All the calculations are performed using the next-to-leading-order correc-
tions, and all the values are given in units of 10−20.

113Cd(1/2+)→ 113In(9/2+) 115In(9/2+)→ 115Sn(1/2+)

MQPM NSM IBM MQPM NSM IBM

C̃V 19.247 16.783 3.228 829.927 314.577 55.314
C̃A 20.940 18.254 3.007 916.121 385.083 54.438
C̃V A -40.019 -34.939 -6.106 -1735.4 -693.914 -106.501∑
C̃i 0.169 0.099 0.128 10.642 5.745 3.251



4 Summary

In this thesis a set of well-established and extensively tested theoretical
frameworks were used to gain information on speci�c cases of rare beta de-
cays. These studies included the investigation of the possible ultra-low-Q-
value beta-decay transition of 115Cd, and the highly-forbidden beta decays
of 48Ca, 50V, 113Cd and 115In. In addition to this direct application of the
theory, the aim of the thesis work was also to extend the established toolset.
This included studies of to the next-to-leading-order contributions to the
beta-decay shape factor, and the introduction of the spectrum-shape method.

Beta decay serves as a useful testbench for any nuclear models since these
decays are abundant all over the nuclear landscape. When examining the
performance of the three nuclear models, i.e. the microscopic quasiparticle-
phonon model (MQPM), the nuclear shell model (NSM) and the interacting
boson-fermion model (IBFM), used in the current work to describe the initial
and �nal nuclear states of the decay transitions, a fairly satisfactory agree-
ment between the theory and experiment was found in general. This concerns
both the spectroscopic properties of the nuclei as well as the resulting half-life
estimates.

The possible ultra-low Q-value of the transition 115Cd(1/2+
g.s.) →

115In(9/2+
3 ) is a highly desired feature when considering direct studies of

the neutrino rest-mass. However, the usability of this particular transition is
hampered by its extensively long partial half-life. Thus any practical use of
the transition for this purpose seems unlikely. Despite the very limited usage
for the neutrino studies, this and the other similar ultra-low-Q-value decays
can still serve as possible candidates for the studies of atomic interference
e�ects in nuclear decay.

The current theoretical studies of the highly-forbidden single beta-minus-
decay channels of 48Ca and 50V o�er reliable information on the experimental
detectability of these decays. In the case of 48Ca the computed partial half-life
of the single beta-decay channel was found to be 53% shorter than that of to
the previous study. This indicates a slightly stronger competition between
the single- and double-beta-decay channels, but con�rms that the double-
beta channel is still relatively weakly challenged by the single beta decay.
In the case of 50V the current computed estimate for the partial half-life of
the beta-minus decay seems to suggest that an improved experimental set-
up could be fairly easily devised for the veri�cation of this transition. At

33
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the same time the current prediction is in a strong con�ict with the single
claimed observation of this decay branch in the past.

The initial results obtained for the highly-forbidden beta decay of 113Cd
seem to suggest that the spectrum-shape method (SSM) o�ers highly inter-
esting potential for the studies of the e�ective values of the weak coupling
constants. This method complements well the usual partial-half-life consid-
erations due to the fact that the dependence between the shape of the beta
spectrum and the values of the weak coupling constants is directly linked
through the competition between the vector and axial-vector parts of the
shape factor. When the vector and axial-vector components are of the same
order of magnitude, any small adjustments of the values of the weak coupling
constants can result to a noticeable e�ect in the spectrum shape.

According to the studies on the 113Cd and 115In beta decays, SSM, as well
as any other calculations of the beta-decay observables, can bene�t from the
extension of the beta-decay formalism to the next-to-leading-order terms of
the shape factor. The e�ects of these contributions are generally moderate,
but they depend on the values of the weak coupling constants. The strongest
e�ects are seen in the low-energy part of the beta spectrum.
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