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Abstract

Aim Understanding the relative contribution of different species interactions in shaping community
assembly has been a pivotal aim in community ecology. Biotic interactions are acknowledged to be
important at local scales although their signal is assumed to weaken over longer distances. We
examine the relationship between positive, neutral, and negative pairwise bird abundance
distributions and the phylogenetic and functional distance between these pairs after first controlling

for habitat associations.

Location France and Finland.

Methods We used results from French and Finnish land bird monitoring programs from which we
created three independent data sets (French forests, French farmlands, Finnish forests). Separately
for the three data, we fitted linear mixed-effects models for pairwise abundance values across years
per point count station to infer the association between all common species pairs while controlling
for geographic distribution and habitat associations, and saved pairwise regression coefficients for
further analyses. We used a null model approach to infer whether the observed associations (effect
sizes) differ from random. Finally, using quantile regression we analyzed the relationships between

functional dissimilarity/phylogenetic distance and effect sizes.

Results Our results show both negative and positive species interactions although negative
interactions were twice as common as positive interactions. Closely-related species were more likely
to show strong associations, both negative and positive, than more distant species across broad

spatial scales. For functional dissimilarity the results varied across data sets.

Main conclusions Our results emphasize the potential of functional and phylogenetic proximity in
generating both negative and positive species associations, which can produce pervasive patterns
from local to geographical scales. Future assembly studies should refrain from strict dichotomies
such as compensatory dynamics versus environmental forcing and instead consider the possibility of

positive interactions.
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Introduction

A fundamental and long-standing goal in community ecology has been to understand the complexity
of dependencies among species, and thereby the mechanisms by which communities are assembled.
Since the 1950’s (MacArthur, 1958; Hutchinson, 1959) interspecific competition and niche
partitioning have been the focus of explanations for species coexistence and community assembly
patterns (Diamond, 1975; Connor & Simberloff, 1983; Cornell, 1985; Cornell & Lawton, 1992).
Experimental evidence also shows that competition is undeniably an important factor for community
assembly (Connell, 1983; Schoener, 1983; Goldberg et al., 1992; Gurevitch et al., 2000). However, it
is not the only one. A growing body of literature demonstrates the importance of facilitative or
positive non-trophic interactions (Bertness & Callaway, 1994; Cardinale et al., 2002; Bruno et al.,
2003). Moreover, interactions often result from combinations of positive, negative and neutral
relationships (Seppéanen et al., 2007) potentially generating asymmetric interactions (Monkkénen et
al., 1999). Indeed, Gross (2008) concluded that the joint effects of different interactions may be the
most important factor for community assembly, the key-question being the relative contribution of

each interaction.

Species interactions may affect species abundances in communities leading to patterns in space,
which are independent of habitat characteristics. Negative interactions, such as competition, are
predicted to cause segregated distributions (Gotelli et al., 2010). Positive interactions, predicted to
result in aggregated distributions, are well known among plants and sessile animals (Bertness &
Callaway, 1994; Bruno et al., 2003), but in mobile animals, the prevalence and mechanisms of
positive interactions are poorly known. Recent findings about information use in animals imply a
likely mechanism. While assessing the best site or resources for reproduction, individuals may use
the presence, behavior or success of, not only conspecifics (Danchin et al., 2004), but also competing
heterospecific individuals (Seppéanen et al., 2007) as cues to decide where to settle. Heterospecific

information use and attraction to heterospecifics and potential competitors has been demonstrated
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from ants to apes (Seppéanen et al., 2007), including in breeding site choices of birds (Ménkkdnen et
al., 1990; Thomson et al., 2003; Seppanen & Forsman, 2007; Loukola et al., 2013; Kiveld et al., 2014).
Another source producing positive species associations is the benefits of certain keystone species,
such as beavers and woodpeckers, which free or create new resources for other species and result in

positive species spatial associations (Heikkinen et al., 2007; Belmaker et al., 2015).

Although biotic interactions, and particularly competition, have a long history in the study of
community patterns their importance is often neglected at broad spatial scales where speciation,
extinction and geographic dispersal are expected to be the main driving processes (Gaston &
Blackburn, 2000). Recently, Aratjo and Rozenfeld (2014) modelled spatial consequences of all types
of species interactions (continuum from positive to negative) and concluded that, in particular,
positive species interactions can be manifested from local to larger scales. Indeed, a few empirical
studies have revealed both aggregated and segregated distribution patterns among ecologically
similar species, likely resulting from both competitive and positive interactions, independent of

habitat characteristics, at broad spatial scales (Gotelli et al., 2010; Ricklefs, 2012).

The strength of species associations may depend on functional and phylogenetic similarity of species
involved. Both heterospecific information use and the limiting similarity principle predict that
species associations are most intense, but in opposite directions, among functionally similar species
(Fig. 1). Heterospecific information use predicts positive associations between species that use
similar resources, i.e. are functionally similar, because the information value decreases with
increasing ecological distance (Seppanen et al., 2007), while limiting similarity predicts mutual
avoidance between similar species due to costs of competition (MacArthur & Levins, 1967).
However, it is likely that both competition and heterospecific information use are context
dependent and the net outcome of an association between similar species depends on the costs of
competition and benefits of information use (Mdnkkénen et al., 1999; Seppanen et al., 2007).
Therefore, associations between functionally similar species may be strong, either positive or

negative and the strength of the association may decrease with decreased species similarity. The
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likelihood of finding such a relationship depends, however, on the traits considered (Trisos et al.,
2014). Using phylogenetic information can be a relevant approach to avoid a priori trait selection.
Similar patterns are indeed also likely for phylogenetic distance providing that trait conservatism
renders closely related species also ecologically more similar (Mouquet et al., 2012). In this case,
phylogenetically closely related species should also show both the strongest positive and negative
associations, and phylogenetically distant species should show neutral associations. So far, however,

empirical tests of this hypothesis have yielded mixed results (Violle et al., 2011; Godoy et al., 2014).

Earlier research on general mechanisms of community assembly commonly separated the effects of
competitive interactions from environmental forcing causing positive covariation among species
abundances and provided support for environmental variation rather than competition driving the
variation in species abundances (Houlahan et al., 2007; Mutshinda et al., 2009; Ricklefs, 2012).
However, some of the positive covariation may be due to positive interactions between species,
over and above habitat filtering and productivity. Moreover, even if environmental forcing generally
prevails over competitive interactions, negative interactions may not be trivial. Thus both negative
and positive interactions can leave a signature on community assembly that affects both historical
and ecological distribution patterns. In this article, we study (i) whether there are positive or
negative associations among bird species in local communities, independently of habitat
characteristics, and consequent community patterns at large geographical scales, and (ii) whether
these positive or negative associations are related to functional similarity and/or phylogenetic
distance of the species. We predict that functional dissimilarity/phylogenetic distance and the
strength of the associations form a ‘funnel plot” where the strongest associations, either positive or
negative, are between functionally similar or phylogenetically close species whereas the associations
grow weaker with increasing dissimilarity/distance (Fig. 1). We use comprehensive bird census data
from French forests and farmlands as well as Finnish forests, and analyze the three datasets
separately to test for consistency of results across habitat types and geographic areas. Using these

three datasets separately offers a possibility to test the same question on the same group of species
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originating from quite different kinds of landscapes and climatic conditions. Consistent patterns

would imply generality and call for further scrutiny of underlying mechanisms.

Material and methods

Data

Data were extracted from two independent datasets from France and Finland. They are very well
suited for the study because together they cover a wide extent (with a relatively small grain size) and
consequently also a wide spectrum of climatic and environmental conditions, and they are both of
high quality gathered over multiple years and multiple sites. The French Breeding Bird Survey is a
large-scale, multi-year and multi-plot monitoring program of the French avifauna. The program
followed a standardized protocol from 2001 to 2012 (Jiguet et al., 2012) where 2x2 km sampling
plots are randomly selected within 10-km radius areas, which ensures a representative sampling of
existing habitats. In each plot, 10 point count stations were evenly distributed. At each station, the
observer recorded all birds heard and seen during 5 minutes, in two sessions during the breeding
season. For each species in each point count station and each year, the maximum number of
individuals recorded during the two sessions is retained as a proxy for the local abundance of that

species in that plot and year.

In Finland, point counts have been conducted as part of the national common bird monitoring
scheme between 1984 and 2011 (Laaksonen & Lehikoinen, 2013). Each census route included 20
point count stations located in the habitat that is uniform within 50-m radius of the station. The
habitat of each point was classified into 17 different habitat categories. Stations within a route were
at least 250 m apart in forested habitats and 350 m apart in open habitats to avoid pseudo-
replication. Due to very short and synchronized breeding season of boreal birds, a route was
censused only once per season. At each station, an observer counted, for 5 mins, all the observed

land birds during late spring — early summer (May 20 — June 20 in south-central Finland, May 30 -
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June 30 in northern Finland). In both monitoring projects, surveys were conducted early in the
morning (typically between sunrise and 10 am), which is when the birds were most active, and only

on days with good weather conditions (no rain or heavy wind).

Data handling

Original French data included plots sampled for at least two years, i.e. 1,914 plots and 19,140 point
count stations. Finnish data included 286 routes and 5,760 stations. From these data we first created
three independent data sets by selecting the point count stations situated in forests or in farmlands
only (French farmlands, French forests, Finnish forests; Finnish farmland data were too small for the
analysis). The aim was to remove most of the variation in bird abundances resulting from habitat
structures (habitat filtering). Indeed, one of the obvious sources of species segregation or
aggregation is the main habitat type in which a given plot is monitored. A negative association
between farmland birds and forest birds would be interpreted as a signal of competition although
those two groups simply do not co-occur. The three datasets contain about 2,900-9,000 point count
stations but a rather narrow range of habitats (Table 1). We analyzed the three datasets separately

to test for the consistency of results across habitat types and geographic areas.

We excluded all waterbirds and birds of prey since point count census at the local point count
station level provides reliable information on species abundances only for land birds with relatively
small home ranges. We also excluded very rare species that were present in less than 2% of the
point count stations. After filtering, our data included 43,000-206,000 observations for 76-83 species
(Table 1), for which we calculated average abundance values across years per point count station.
The same species occurred in multiple data sets: the number of shared species was 67 in French
forest and farmland data, 51 in French and Finnish forest data, and 45 in French farmland and

Finnish forest data.
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The matrix of pairwise functional distances was produced from 22 functional traits (Appendix S1 in
Supporting Information) using methods described in Devictor et al. (2010). These traits encompassed
life-history traits and feeding habits (Petchey et al., 2007) and were identified as being important in
determining the response of bird species to environmental change and in determining the
contribution of bird species to ecosystem functions (Sekercioglu, 2006). From these traits, we
calculated the Gower distance to represent pairwise trait distances estimated from the species trait
matrix (Legendre & Legendre, 1998). As we aim to remove habitat-induced distances between
species we calculated a separate matrix for each set of species (French farmlands, French forests,
Finnish forests). Gower distance accounts for both continuous and qualitative traits (Mouchet et al.,
2008) and were measured with the function ‘daisy’ of the R package ‘cluster’ (Maechler et al., 2016).
All pairwise distances were standardized by dividing original distance values with the range of

values.

We extracted pair-wise phylogenetic distances directly from a dated molecular phylogenetic tree
assembled by Thuiller et al. (2011) and then used ultrametric distances from this tree representing
relative phylogenetic distances among species using the function ‘cl_utrametric in the R package
‘clue’ (Hornik, 2005). Phylogenetic information was not available for 7 species in Finnish forest

dataset, and thus we performed analyses of phylogenetic distance on 69 species.

Statistical analyses

We adopt the pairwise approach to analyze species effects on each other’s abundance, i.e., consider
a species pair as the fundamental unit in interactions. The procedure has advantages over the matrix
method i.e. where a target of interest is the whole community i.e. presence-absence matrix that has
been used since the beginning of the studies of co-occurrence patterns (Diamond, 1975; Connor et
al., 2013). Most communities contain many potential species pairs each of which may exhibit
positive, negative or random associations. Therefore, single metrics that summarizes an entire

assemblage can mask the type and strength of pairwise interactions and it is therefore instructive to
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analyze individual pairs of species (Boulangeat et al., 2012; Veech, 2013; Blois et al., 2014). We
relate species abundances against each other to reveal signals of positive, neutral and negative
associations, after controlling for variation in bird abundances due to geographic distribution and
corollary climatic variation as well as finer habitat associations, beyond the main habitat type (i.e.
forest and farmland). We fitted a linear mixed-effects model for each species pair to infer the
association between species; and species; while controlling for geographic distribution and finer
habitat associations within the main habitat type (forest or farmland; see Appendix S2 for a detailed
flowchart of the analyses). First, the biogeographic zone was entered into the model as a random
factor to control for large scale variation in climatic conditions. In each dataset, we assigned the
point count stations to biogeographical zones according to information from European
Environmental Agency (2015) for France and Jarvinen & Vaisanen (1980) for Finland (see Table 1 for
zones). Second, we included site (a dummy variable for a point count plot or route) nested within
the biogeographic zone, to control for small scale variation in environmental conditions among plots
or routes. We then added a second-order trend surface (X + Y + X2 + Y2 + XY; X = longitude and Y =
latitude) to control for the geographic (e.g. temperature and precipitation related) variation in
species abundances. Although a minimum of third order trend surface is generally recommended
(Legendre & Legendre, 1998) random effects (zone and site) already control for spatial
autocorrelation at the scale of biogeographic zone and at very small spatial scales. Moreover, the
models with a third-order trend surface tended to be over-parameterized leading to model
convergence problems. Including second-order trend surfaces ensures that our pairwise regression
analysis operates on local scale variation in species abundances. Fourth, we entered habitat type of
the point count station (Table 1) to further control for species habitat preferences. Because we
analyzed forest and farmland data separately (i.e. narrowed down the variation in habitat structures
prior to analysis) and entered farmland type (ploughed meadow, unploughed meadow, mixed
farmland, open field, permanent crop) or forest type (e.g. deciduous, coniferous or mixed forests in

France; spuce, pine, deciduous or mixed forests in Finland) as a random factor, our analysis
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effectively controls for fine scale habitat filtering. Fifth, we entered community size (summed
abundances of all species, excluding species; and species)) as a fixed effect controlling for the
possibility that species abundances may covary with total community size because of independent
responses to productivity. Finally, we added the abundance of species; as a fixed effect. We log-
transformed (log(n+1)) all abundances prior to analyses and saved pairwise regression coefficients
for further analyses. Estimating pairwise associations using Poisson distribution yielded too many
convergence problems and was not feasible due to a very high number of models. Note that using
Poisson distribution should not change the general conclusions derived from our framework based

on log-transformed abundances (lves, 2015).

To infer whether the observed associations differ from what could be observed on the basis of
randomly distributed individuals we used a null model approach. First, we defined a regional species
pool as all observed species and their abundances, separately for each habitat in each
biogeographical zone. Next, we randomly sampled the observed number of individuals from the
regional species pool while preserving the abundance of each species and observed total abundance
in each point count station. In other words, we kept the size of the regional habitat-specific species
pools and the size of the local communities fixed, and within these constraints we randomized the
composition of local communities at point count stations (see Crist et al., 2003, for a similar
approach). This type of randomization makes a plausible assumption that species habitat
associations, their relative abundances in regional pools and local community size are real ecological
properties worth retaining while relaxing deterministic pairwise associations. Then we fitted the
linear mixed-effect model described above for the randomized datasets. We repeated this
procedure 1000 times and calculated the standardized effect size as the difference between
observed pairwise regression coefficient and mean expected coefficient, divided by the standard
deviation. Thus, the effect size measures the direction (positive or negative) and strength of species

interactions in the datasets, independent from what one expects by chance and sampling artefacts.
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Because the effect sizes within species pairs (effect of species; on species;, and vice versa) were
strongly correlated (Spearman’s rho = 0.943, n = 3,403, P < 0.001; Spearman’s rho = 0.956, n = 2,926,
P < 0.001; Spearman’s rho = 0.960, n = 2,850, P < 0.001; in French farmlands, French forest, and
Finnish forests, respectively) we used the mean of the effect sizes of each species pair (ESmean) as an
observation unit in the analysis. Given that these observations are not independent (every species is
represented in multiple species pairs) we used bootstrap method to calculate standard errors

(Koenker, 2013).

We considered pairwise species effect sizes “strong” when absolute effect size values were >2 (i.e.
observed association deviated more than two standard deviations from the expected) and “weak”
when effect size values were <2. We predicted a relationship between the magnitude of the effect
sizes, both positive and negative, and functional dissimilarity/phylogenetic distance. The magnitude
should decrease with increasing dissimilarity/distance. To test this, we used quantile regression
(Cade & Noon, 2003) for all quantiles from 1 to 99% quantiles (t ranges from 0.01 to 0.99) at
intervals of 1%. We predicted that the regression between effect size and dissimilarity/distance
would result in a negative coefficient in the upper (>50%) quantiles (reflecting smaller positive effect
sizes with increasing dissimilarity/distance) and a positive coefficient in the lower (<50%) quantiles
(reflecting smaller negative effect sizes with increasing dissimilarity/distance). If these predictions
are verified, the shape of the relationship should be a ‘funnel plot’ with higher numbers of positive
and negative associations for lower values of functional dissimilarity or phylogenetic distance (Fig.
1). To infer whether this is truly the case we plotted the coefficient of each of the quantile regression
as a function of the quantile (t) in question, and expect to see a negative relationship. As we do not
have a specific hypothesis about the overall relationship in the data we do not concentrate on the
general tendency, i.e. 50% quantile, but on upper vs lower quantiles. We performed linear mixed-
effect models with package ‘Ime4’ (Bates et al., 2014) and quantile regression with ‘quantreg’
(Koenker, 2013) in R Version 3.0.3 (R Development Core Team, 2014), and the iterations for the null

model approach with Taito supercluster provided by CSC - IT Center for Science Ltd
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(https://research.csc.fi/research-home). The R script for calculating the effect sizes is provided as

Appendix S3. Other analyses we performed with IBM SPSS Statistics 22.0 (IBM, Armonk, New York,

USA).

Results

We observed both positive and negative regression coefficients among species pairs tested in all
three datasets. The means of the observed coefficients were positive (0.02) and the distribution of
coefficients were highly similar in the three datasets (see Appendix S4). Likewise, the effect sizes
(ESmean) Were centered close to zero. A large proportion of pairwise species effect sizes can be
considered strong as absolute effect size values larger than two (i.e. observed association deviated
more than two standard deviations from the expected) constituted 83, 63 and 41% of all pairwise
effect sizes in French farmland (n=6,806), French forest (n=5,852) and Finnish forest dataset
(n=5,700), respectively. In all three datasets, strong negative associations were approximately twice
as common as strong positive associations: 57 vs 26% in French farmland, 39 vs 23% in French forest,
and 27 vs 15% in Finnish forest data. Thus, birds are not distributed randomly with respect to each
other in local communities, when controlling for habitat filtering and productivity, and we found

asymmetry between positive and negative associations with prevalence of the latter.

The relationship between functional dissimilarity and the mean of the effect sizes for species pairs
(ESmean) showed differences among the three datasets. In French farmlands there was no
relationship in the lower quantiles but a negative relationship in the upper quantiles whereas in
French forests there was only a trend in both lower and upper quantiles (Fig. 2a,b). By contrast, in
Finnish forests there was a positive relationship in the lower quantiles and a negative relationship in
the upper quantiles (Fig. 2c). Thus, in French farmlands the level of aggregation increased with
decreasing functional similarity, in Finnish forests both the level of segregation and aggregations

increased with decreasing functional similarity, while in French forests there were no relationships.
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Phylogenetic distance and ESmean Showed significant relationships in both ends of the quantile
spectrum in French farmlands and forests (Fig. 3a,b). Thus, both aggregated and segregated
distributions of species abundances increased as a function of decreasing phylogenetic distance. In
Finnish forests, there was a positive relationship between phylogenetic distance and ESmean in the

lower quantiles but no relationship in the upper quantiles (Fig. 3c).

Discussion

Bird species showed both spatial aggregation and segregation in their abundances, independently of
habitat structures. Even though overall mean effect sizes of species associations in the local
communities were centered on zero, we found the majority of species were relatively strongly
associated with each other. This highlights the importance of both negative and positive biotic
interactions in affecting community assembly. Our study using natural communities across a wide
geographic area yielded results that are consistent with the results of the local manipulative
experiments: negative associations are common but also positive associations frequently occur
(Bertness & Callaway, 1994; Gurevitch et al., 2000; Forsman et al., 2002; Martorell & Freckleton,
2014; but see Gotelli & Ulrich, 2010). Moreover, our results suggest that high functional and
phylogenetic similarities can be important determinants increasing the probability of both negative
and positive associations. Also, we found that in bird communities strong negative associations were
twice as common as strong positive associations. This is in line with empirical results of Gotelli et al.
(2010) who showed strong predominance of spatially segregated over aggregated distributions

within foraging and congeneric guilds in Danish avifauna.

Species abundance is affected by a multitude of factors, such as habitat, productivity and
geographical position. Our pairwise approach controlled for the effects of habitat, first, by restricting
the analysis only to a limited set of habitat classes (Table 1) and, second, by entering habitat class as

a factor in the model. Moreover, we entered biogeographic zone, sampling site, and second order
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trend surface in abundances to control for the effects of geographic factors such as species
geographic distributions and climate related variation. Finally, we controlled for the community size,
i.e. species independent responses to productivity. Yet our analysis revealed strong signals of
positive abundance associations. Thus, species abundances were probably affected also by positive
biotic interactions between species, and these interactions were strong enough to show up as
aggregated distributions. The recurrent finding that species abundances in natural communities tend
to covary positively rather than negatively has commonly been attributed to environmental forcing
(Houlahan et al., 2007; Mutshinda et al., 2009; Ricklefs, 2012). Our results suggest that a proportion
of this positive covariation is likely due to positive interactions. Therefore, dominance of positive
covariation over compensatory dynamics in community dynamics does not necessarily imply low
frequency of species interactions. Future studies testing assembly theories should therefore refrain
from using strictly dichotomist approaches such as compensatory dynamics versus environmental
forcing, but also consider the possibility of positive interactions and underlying processes such as

conspecific or heterospecific information use.

In all three datasets, closer species pairs with respect to phylogenetic distances are those showing
stronger segregation in their abundances. Neutral associations, however, were found throughout
the phylogenetic distance spectrum. Thus, a part of phylogenetically close bird species indeed seem
to compete more strongly than distantly related species which plausibly leads to avoidance of such
species in habitat selection. In Finnish forest bird assemblages, but not in the two French datasets,
the signal of spatial segregation increased also with increasing functional similarity. In concordance
with the prediction of heterospecific information use (Seppéanen et al., 2007), the signal of spatial
aggregations was stronger for pairs consisting of similar species and grew weaker with increasing
dissimilarity. However, whether the pattern was detected for phylogenetic distance, functional
dissimilarity or both showed variation among datasets: in French forests aggregation was related to

phylogenetic distance, in Finnish forests to functional dissimilarity, and in French farmlands to both.
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In summary, segregated abundances were related to phylogenetic distance in all of the three cases,
to functional dissimilarity in only one, whereas aggregated abundances were related both to
phylogenetic distance and functional dissimilarity in two cases. Thus, the phylogenetic signal in
segregated abundances was stronger than that of functional (ecological) similarity. This suggests that
the traits we used for functional dissimilarity might not be those that actually affect species
competitive environment but more relevant in terms of heterospecific information use, whereas
phylogenetic signal encompass traits of direct relevance in both respects. This result also raises the
issue of trait selection in trait-based analysis. It is likely that a part of the results is dependent on the
particular combination of trait used. A finer examination of pairwise associations i.e. whether
segregated versus aggregated associations are influenced by a specific combination of traits,
whether there is any specific trait enhancing coexistence or whether aggregations are

phylogenetically clustered, would be an interesting extension of our approach.

Another reason why species pairs consisting of phylogenetically closely related species showed
strong segregation in their abundances could result from allopatric speciation. Phylogenetic
overdispersion, which is often attributed to negative biotic interactions, may instead be consistent
with a neutral model of allopatric speciation (Pigot & Etienne, 2015). If allospecies rarely co-occurred
in the bird assemblages we studied, and differ somewhat in their functional traits, one could see a
pattern where phylogenetic distance is more directly driving negative abundance associations than
functional similarity. Allopatric speciation does not, however, provide an explanation for
phylogenetic and functional patterning of positive abundance associations. It is possible, and even
probable, that for some species pairs the costs of competition and benefits of information use adds
up to show as a neutral association. Hence, it is important to bear in mind that small effect sizes in

our study do not necessarily indicate no or weak interactions.

Our approach where we simultaneously addressed both negative and positive interactions, and
provided support for both, may help to understand why earlier work has found mixed results

concerning the role of phylogenetic and ecological distance in species interactions (Violle et al.,
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2011; Godoy et al., 2014). Our results support a common expectation in the community assembly
literature that due to competition, close relatives and functionally similar species should show
segregated patterns in abundance (Webb et al., 2002). But more interestingly, our results suggest
that close relatives and functionally similar species also may also aggregate, which is reflected as
positive associations among species’ abundances. The likely mechanism is the use of social
information (Seppéanen et al., 2007) and/or facilitative interactions among species (Bruno et al.,
2003). It is evident that both clustering and overdispersion of co-occurring species within
communities may occur simultaneously. Our results challenge the implicit assumption pertinent to
community phylogenetics that assembly through positive associations decreases with increasing
assembly by competition (see Gerhold et al., 2015). Thus, the relative balance of positive and
negative interactions in community assembly cannot be quantified by a single parameter of

phylogenetic (or functional) dispersion.

We acknowledge the fact that only experimental set-ups can truly prove the strength and the sign of
the interaction between a species pair. It is clear that the data used here do not capture all the small
scale habitat characteristics which may affect species aggregation and segregation patterns. Indeed,
a detailed data of environmental conditions might attenuate the coefficients we found. On the other
hand, it has been shown that even when modeling forest bird species distributions with a very
detailed forest structure data the density of a bird species remains a significant predictor of the

density of a close relative (Kosicki et al., 2015).

Social information use and subsequent aggregated distribution in local communities result in
variation in local species diversity at a given site that deviates from diversity predicted by
environmental factors only, creating both hot and cold spots of species diversity in the landscape
(Seppanen et al., 2007). Interspecific competition resulting in segregated distribution may also
create similar deviations from predictions. Our results suggest that such diversity anomalies should
carry phylogenetic/functional signal. Species” interactions may render a proportion of suitable

habitat patches unoccupied by the species also because dispersal among patches in the landscape
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may be affected by the presence of close relatives and/or functionally similar species. Consequently,
colonization and extinction in fragmented landscapes is no longer a sole function of landscape
patterns and species dispersal abilities but hinges also on other species’ ability to persist in
fragmented landscapes. Given that interspecific social information use is widespread (Seppénen et
al., 2007), from the point of view of species’ conservation, it is important to keep in mind that the

effect of close relatives and ecologically similar species may also be positive.

Predicting species responses to various global changes has become crucial due to the ongoing
biodiversity crisis. Our results accompany earlier literature (e.g. Aradjo & Rozenfeld, 2014)
suggesting that a failure to incorporate species interactions may account for the mixed results of

earlier species distribution modeling efforts that ignore interactions.
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Table 1 Biogeographic zones, habitat types, and number of point count stations, observations and species

included in each of the three datasets (French farmlands, French forests, Finnish forests)

25

Data set Biogeographic zone Habitat type # point count stations  # observations # species
French farmlands Alpine Ploughed meadow 60 1,291 74
Unploughed meadow 70 1,372 75
Mixed farmland 91 1,963 76
Open field 122 2,485 76
Permanent crop 380 7,358 78
Atlantic Ploughed meadow 496 11,930 81
Unploughed meadow 595 14,666 82
Mixed farmland 1,168 28,456 82
Open field 1,759 34,626 82
Permanent crop 259 6,306 80
Continental Ploughed meadow 506 12,228 82
Unploughed meadow 1,306 33,795 82
Mixed farmland 859 21,436 82
Open field 976 19,763 81
Permanent crop 128 3,125 79
Mediterranean Ploughed meadow 37 726 67
Unploughed meadow 134 2,637 73
Mixed farmland 49 1,095 70
Open field 6 177 55
Permanent crop 25 538 60
Total 9,026 205,973 83
French forests Alpine Deciduous woodland 94 1,543 69
Coniferous woodland 113 1,806 61
Mixed woodland 161 2,952 67
Atlantic Deciduous woodland 1,136 25,670 77
Coniferous woodland 216 4,537 74
Mixed woodland 274 6,715 74
Continental Deciduous woodland 1,519 33,458 75
Coniferous woodland 311 6,144 76
Mixed woodland 440 9,227 75
Mediterranean Deciduous woodland 181 3,054 71
Coniferous woodland 138 2,490 71
Mixed woodland 187 3,282 75
Total 4,770 100,878 77
Finnish forests Hemi- and south boreal Spruce forest 592 9,288 76
Pine forest 563 9,322 76
Deciduous forest 320 5,325 75
Mixed forest 900 15,289 75
Mid-boreal Spruce forest 51 737 56
Pine forest 134 1,887 68
Deciduous forest 30 437 55
Mixed forest 90 1,262 64
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North boreal

Spruce forest

26

30 427 48

Pine forest 109 1,081 50

Deciduous forest 21 328 43

Mixed forest 77 936 53

Total 2,917 46,319 76
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Figure captions

Figure 1 Schematic figure of the relationship between increasing functional dissimilarity/phylogenetic distance
(x-axis), and the sign [positive (+), neutral (0), negative (-)] and the strength (increases with increasing symbol

size) of the association of a species pair (y-axis). Every black dot represents an imaginary pair of species. Both
heterospecific information use (black dashed line) and the limiting similarity principle (solid line)
predict that species associations are most intense among functionally and phylogenetically similar
species, but in opposite directions. Heterospecific information use predicts positive association
between functionally/phylogenetically similar species. Since the information value decreases with
increasing functional similarity/phylogenetic distance so does the strength of the association. The
limiting similarity predicts functionally/phylogenetically similar species to have negative association
whereas functional dissimilar/phylogenetically distant species show neutral associations. The net
outcome of an association between similar species depends on the costs of competition and benefits
of information use and may thus result in a neutral association, and altogether they form a ‘funnel

plot’.

Figure 2 Left-hand panels show the relationship between increasing functional dissimilarity and the strength
and the sign of an association of the abundances of each species pair in French farmlands (a), French forests
(b), and Finnish forests (c). The strength and the sign of an association of the abundances is measured as the
mean of the standardized effect sizes (the difference between observed pairwise regression
coefficient and mean expected coefficient, divided by the standard deviation) between a species pair
(see text for further information). In a case of statistically significant relationship the regression line
for the quantile regressions in lower (t = 0.05) and/or upper (t = 0.95) quantiles are shown. Right-
hand panels show the relationship between all quantiles (1) at intervals of 0.01 and the coefficient
from the quantile regressions (standard errors are shown in grey). Positive coefficients denote a
positive relationship in a given quantile between increasing functional dissimilarity and the strength

of an association of the abundances whereas negative coefficients denote a negative relationship.
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Figure 3 Left-hand panels show the relationship between increasing relative phylogenetic distance and the
strength and the sign of an association of the abundances of a species pair in French farmlands (a), French
forests (b), and Finnish forests (c). The strength and the sign of an association of the abundances is measured
as the mean of the standardized effect sizes (the difference between observed pairwise regression
coefficient and mean expected coefficient, divided by the standard deviation) between a species pair
(see text for further information). In a case of statistically significant relationship the regression line
for the quantile regressions in lower (t = 0.05) and/or upper (t = 0.95) quantiles are shown. Right-
hand panels show the relationship between all quantiles (1) at intervals of 0.01 and the coefficient
from the quantile regressions (standard errors are shown in grey). Positive coefficients denote a
positive relationship in a given quantile between increasing relative phylogenetic distance and the
strength of an association of the abundances whereas negative coefficients denote a negative

relationship.
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