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Abstract:We consider an iterationmethod for solving an elliptic type boundary value problemAu = f , where
a positive definite operator A is generated by a quasi-periodic structure with rapidly changing coefficients
(a typical period is characterized by a small parameter ϵ). The method is based on using a simpler operator
A0 (inversion of A0 is much simpler than inversion of A), which can be viewed as a preconditioner for A.
We prove contraction of the iterationmethod and establish explicit estimates of the contraction factor q. Cer-
tainly the value of q depends on the difference between A and A0. For typical quasi-periodic structures, we
establish simple relations that suggest an optimal A0 (in a selected set of “simple” structures) and compute
the corresponding contraction factor. Further, this allows us to deduce fully computable two-sided a poste-
riori estimates able to control numerical solutions on any iteration. The method is especially efficient if the
coefficients of A admit low-rank representations and if algebraic operations are performed in tensor struc-
tured formats. Under moderate assumptions the storage and solution complexity of our approach depends
only weakly (merely linear-logarithmically) on the frequency parameter 1

ϵ .

Keywords: Elliptic Problems with Periodic and Quasi-Periodic Coefficients, Precondition Methods, Tensor
Type Methods, Guaranteed Error Bounds
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1 Introduction

Problems with periodic and quasi-periodic structures arise in various natural sciences models and technical
applications. Quantitative analysis of such problems requires special methods oriented towards their specific
features. For perfectly periodic structures, efficient methods are developed within the framework of the ho-
mogenization theory (see, e.g., [1, 3, 8] and other literature cited therein). However, classical homogenization
methods cover only one class of problems (all cells are self-similar and the amount of cells is very large). In
this paper, we use a different idea and suggest anothermodus operandi for quantitative analysis of boundary
value problems with periodic and quasi-periodic coefficients. It generates approximations converging (in the
energy space) to the exact solution and provides guaranteed and computable error estimates. The approach
is applicable to (see, e.g., Figures 1, 2)
(i) periodic structures, in which the amount of cell is considerable (e.g., 103–104) but not large enough to

neglect the error generated by the respective homogenized model;
(ii) quasi-periodic structures that contain cells with defects and deformations;
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(iii) multi-periodic structures where the coefficients reflect the combined effect of several functions with dif-
ferent periodicity.
In general terms, the idea of the method is as follows. We consider the problem P:

Au = f, f ∈ V∗, (1.1)

where V is a reflexive Banach spacewith the norm ‖ ⋅ ‖V , V∗ is the space conjugate to V (the respective duality
pairing is denoted by ⟨v∗, v⟩), andA : V → V∗ is a bounded linear operator. It is assumed that the operatorA
is positive definite and invertible, so that problem (1.1) is well posed. However, P is viewed as a very difficult
problem because A is generated by a complicated physical structure, which may contain a huge amount of
details. Therefore, attempts to solve (1.1) numerically by standard methods may lead to enormous expendi-
tures. Similar difficulties arise if we wish to verify the quality of a numerical solution.

Assume that the operator A is approximated by a simplified positive definite operator A∘ and the inver-
sion of A∘ is much simpler than the inversion of A. By means of A∘, we construct an iteration method based
on solving a “simple” problemP0:A∘u∘ = g. In other words, themethod is based on the operation g → A−1∘ g.
It also includes the operation v → Av, which can be performed very efficiently by tensor-type decomposition
methods provided that physical structures generated A have low-rank representations. We prove that iter-
ations generate a sequence of functions converging to the exact solution of (1.1) with a geometrical rate.
Furthermore, we deduce explicitly computable and guaranteed a posteriori error estimates adapted to this
class of problems. They evaluate the accuracy of approximations computed on each step of the iteration al-
gorithm. These estimates also use only inversion of A∘ and operations of the type v → Av. In the iteration
methods and error estimates inversion of the operatorA is avoided.

In this paper, we consider one class of problems associated with divergent type elliptic equations where
A = Q∗ΛQ andA∘ = Q∗Λ∘Q. Here Λ : Y → Y is a bounded operator induced by a complicated quasi-periodic
structure while Q : V → Y and Q∗ : Y → V∗ are conjugate operators, i.e.,

(y, Qw) = ⟨Q∗y, w⟩ for all y ∈ Y and w ∈ V,

where Y is a Hilbert space with the scalar product (⋅, ⋅) and the norm ‖ ⋅ ‖. The operators Q and Q∗ are induced
by differential operators or certain finite-dimensional approximations of them. Henceforth, it is assumed that
f ∈ V, whereV is a Hilbert space with the scalar product (⋅, ⋅)V. This space is intermediate between V and V∗,
i.e., V ∈ V ∈ V∗.

The operator A∘ = Q∗Λ∘Q contains the operator Λ∘ generated by a simplified structure. We assume that
the operators Λ and Λ∘ are Hermitian (i.e., (Λy, z) = (y, Λz) and (Λ∘y, z) = (y, Λ∘z)) and satisfy the conditions

λ∘⊖‖y‖2 ≤ (Λ∘y, y) ≤ λ∘⊕‖y‖2 for all y ∈ Y,
λ⊖‖y‖2 ≤ (Λy, y) ≤ λ⊕‖y‖2, λ⊖ < λ⊕.

Then, the structural operators Λ and Λ∘ are spectrally equivalent:

c1(Λ∘y, y) ≤ (Λy, y) ≤ c2(Λ∘y, y), (1.2)

where the constants are the minimal and maximal eigenvalues of the generalized spectral problem
Λy − μΛ∘y = 0. Obviously, they satisfy the estimates c1 ≥ λ⊖/λ∘⊕ and c2 ≤ λ⊕/λ∘⊖ (whichmay be rather coarse).

Concerning the operator Q, we assume that there exists a positive constant c such that

‖Qw‖ ≥ c‖w‖V for all w ∈ V.

Generalized solutions of the problems P and P0 are defined by the variational identities

(ΛQu, Qw) = ⟨f, w⟩ for all w ∈ V, (1.3)

and
(Λ∘Qu∘, Qw) = ⟨f̃ , w⟩ for all w ∈ V. (1.4)
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In Section 2, we show that a sequence {uk} converging to u in V can be constructed by solving problems (1.4)
with specially constructed right-hand sides f̃k generated by the residual of (1.3). In proving convergence, the
key issue is analysis of the spectral radius of the operator

Bρ := I − ρΛ−1∘ Λ, (1.5)

and selection of such relaxation parameter ρ that provides the best convergence rate. Moreover, iteration
procedures of such a type become contracting if the iteration parameter is properly selected. This fact is of-
ten used in proving analytical results (see, e.g., [20], where classical results on existence and uniqueness of
a variational inequality are established by contraction arguments). Also, these ideas were used in the con-
struction of various numerical methods (see, e.g., [7]). However, achieving our goals requires more than the
fact of contraction. We need explicit and realistic estimates of the contraction factor (which are used in error
analysis) and a practical method of finding Λ∘ with minimal q. The latter task leads to a special optimization
problem that defines the most efficient “simplified” operator Λ∘ among a certain class of “admissible” opera-
tors. This question is studied in Section 3. In general, Λ and Λ∘ can be induced by scalar, vector, and tensors
functions. We show that selection of the optimal structural operator Λ∘ is reduced to a special interpolation
type problem, which is purely algebraical and does not require solving a differential problem (therefore a
suitable Λ∘ can be found a priori). We discuss several examples and suggest the corresponding optimal (or
quasi-optimal) Λ∘, which guarantees convergence of the iteration sequence with explicitly known contraction
factor.

Now, it is worth discussing the main differences between our approach and the classical homogeniza-
tion method developed for regular periodic structures. This method operates with a homogenized boundary
value problem Q∗ΛHQuH = f , where ΛH is defined by means of an auxiliary problem with periodical bound-
ary conditions in the cell of periodicity. The respective solution uH contains an irremovable (modeling) error
depending on the cell diameter ϵ. Moreover, if ϵ tends to zero, then typically uH converges to u only weakly
(e.g., in L2). Getting a better convergence (e.g., in H1) requires certain corrections, which lead to other (more
complicated) boundary value problems in the cell of periodicity. The respective “corrected” solution ucH also
contains an error. Typically, the error is proportional to √ϵ and can be neglected only if the amount of cells
is very large. If our method is applied to perfectly periodical structures then setting Λ∘ := ΛH is one possible
option. In this case, the homogenized operator (defined without correction procedures) is used for a different
purpose: construction of a suitable preconditioning operator. The latter operator generates numerical solu-
tions converging to the exact solution in the energy norm (i.e., the method is free from irremovable errors)
and can be applied for a rather wide range of ϵ. In addition, the theory suggests other simpler ways of select-
ing suitable Λ∘. In this context, it is interesting to know whether or not the choice Λ∘ := ΛH always yields the
minimal value of the contraction factor. In Section 3, we briefly discuss this question and present an example
of that the best Λ∘ may differ from ΛH.

In Section 4, we deduce a posteriori estimates that provide fully computable and guaranteed estimates
of the distance to the exact solution u for any numerical approximation uk,h computed for an approximation
subspace Vh. These estimates are established by combining functional type a posteriori estimates (see [22,
25, 26] and references cited therein) and estimates generated by the contraction property of the iteration
method (see [24, 29]).

The second part of the paper is devoted to a fast solutionmethod for the basic iteration problem (2.1). The
key idea consists of using tensor-type representations for approximations, what is quite natural if both coef-
ficients of the respective quasi-periodic structure and the right-hand side admit low-rank tensor-type repre-
sentations.We notice that the amount of structures representable in terms of low-rank formats is much larger
than the amount of periodic structures covered by the homogenization method. The idea of tensor-type ap-
proximations of partial differential equations traces back to [9]. In computational mechanics this method is
known as the Kantorovich–Krylov (or extended Kantorovich) method. However, it is rarely used in modern
numerical technologies. In part, this is due to restrictions on the shape of the domain imposed by the Kan-
torovichmethod. Henceforth, we assume that the domain Ω satisfies these restrictions, i.e., it is a tensor-type
domain (e.g., rectangular) or a union of tensor-type domains. This assumption induces certain geometrical
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Figure 1. Examples of periodic and modulated periodic coefficients in 1D.

Figure 2. An example of modulated piecewise periodic coefficients in 2D.

limitations. However, they can be bypassed by such methods as coordinate transformation and domain de-
composition, which are widely used in modern computational mathematics (e.g., in iso-geometric analysis).

The recent tensor numerical methods (for steady state and dynamical problems) based on the advanced
nonlinear tensor approximation algorithmshave beendeveloped in the last ten years. Literature survey on the
modern tensor numerical methods for multi-dimensional PDEs can be found in [13, 14, 16]. In the context of
problems considered in the paper, we are mainly concerned with another specific feature: very complicated
material structure. In this case, direct application of standard finite element methods suffers from the neces-
sity to account huge information encompassed in coefficients (especially inmulti-dimensional problems).We
show that tensor-typemethods allowus to reduce computations to a collection of one-dimensional problems,
which can be solved very efficiently using low-rank representations with the small storage requests. Similar
ideas are applied for computing a posteriori error estimates.

Section 5 discusses numerical aspects of the method and exposes several examples. Typical behavior
of quasi-periodic coefficients is described by oscillation around a constant, modulated oscillation around a
given smooth function, or oscillation around a piecewise constant function.

Figure 1 (1D case) represents examples of highly oscillating (left) and modulated periodic coefficients
(right) functions. Figure 2 (2D case) illustrates the well-separable equation coefficient obtained by a sum of
step-type and uniformly oscillating functions, namely,

a(x1, x2) = C0 sign(x1) + C1 + sin(πωa (x1 + x2)),

where C0 = 5, C1 = 6, a = 10, and ω = 12.

Brought to you by | Jyväskylän Yliopisto University
Authenticated

Download Date | 7/18/17 1:04 PM



B. Khoromskij and S. Repin, Rank Structured Approximation Method | 461

Weshow that specially constructed FEM type approximations of PDEswith slightly perturbed or regularly
modulated periodic coefficients on d-fold n × ⋅ ⋅ ⋅ × n tensor grids in ℝd may lead to the discretized algebraic
equations with the low Kronecker rank stiffness matrix of size nd × nd, where n = O(1ϵ ) is proportional to the
large frequency parameter 1

ϵ . In this case, the rank decomposition with respect to the d spacial variables is
applied, such that the discrete solution can be calculated in the low-rank separable form, which requires
storage size of only O(dn) instead of O(nd) = O( 1

ϵd ) complexity representations which are mandatory for the
traditional FEM techniques (the latter quickly leads to the bottleneck in case of small parameter ϵ > 0).

The arising linear system of equations can be solved by preconditioned iteration with the simple precon-
ditioner Λ∘, such that the storage and numerical costs scale almost linearly in the univariate discrete problem
size n. Numerical examples in Section 5 demonstrate the stable geometric convergence of the preconditioned
CG (PCG) iteration with the preconditioner Λ∘ and confirm the low-rank approximate separable represen-
tation to the solution with respect to d spacial variables even in the case of complicated quasi-periodic
coefficients.

This approach is well suited for applying the quantized-TT (QTT) tensor approximation [15] to functions
discretized on large tensor grids of size proportional to the frequency parameter, i.e., n = O(1ϵ ), as it was
demonstrated in the previous paper [17] for the case d = 1. The use of tensor-structured preconditioned iter-
ationwith the adaptiveQTT rank truncationmay lead to the logarithmic complexity in the grid size,O(logp n),
see [14, 16, 23] for the rank-truncated iterative methods, [4, 10–12] for various examples of the QTT tensor
approximation to lattice structured systems, and [2] for tensor approximation of complicated functions with
multiple cusps inℝd.

In Section 6, we conclude with the discussion on further perspectives of the presented approach for 2D
and 3D elliptic PDEs with quasi-periodic coefficients.

2 The Iteration Method

Let v ∈ V and ρ ∈ ℝ+. Consider the problem: find uv such that

(Λ∘Quv , Qw) = ℓ∘v(w) − ρℓv(w) for all w ∈ V, (2.1)

where
ℓv(w) := (ΛQv, Qw) − ⟨f, w⟩ and ℓ∘v(w) := (Λ∘Qv, Qw).

Obviously, the right-hand side of (2.1) is a bounded linear functional on V, so that this problem has a unique
solution uv. Thus,we have amapping Tρ : V → V, which becomes a contraction if the parameter ρ is properly
selected. Indeed, for any v1 and v2 in V, we obtain

(Λ∘Qη, Qw) = (Λ∘Qζ − ρΛQζ, Qw) for all w ∈ V,

where u1 = Tρv1, u2 = Tρv2, ζ := v1 − v2, and η := u1 − u2. Hence

‖η‖2∘ := (Λ∘Qη, Qη) = (Λ∘Qζ, Qη) − ρ(ΛQζ, Qη)
= (Qζ, Λ∘Qη) − ρ(Λ−1∘ ΛQζ, Λ∘Qη) = (Qζ − ρΛ−1∘ ΛQζ, Λ∘Qη)
≤ ‖η‖∘(Λ∘Qζ − ρΛQζ, Qζ − ρΛ−1∘ ΛQζ)1/2. (2.2)

From (2.2) we find that

‖η‖2∘ ≤ (Λ∘Qζ, Qζ) − 2ρ(ΛQζ, Qζ) + ρ2(Λ−1∘ ΛQζ, ΛQζ)
= (Qζ, Λ∘Qζ) − 2ρ(Λ−1∘ ΛQζ, Λ∘Qζ) + ρ2(Λ−1∘ ΛΛ−1∘ ΛQζ, Λ∘Qζ)
= ((I − 2ρΛ−1∘ Λ + ρ2Λ−1∘ ΛΛ−1∘ Λ)Qζ, Λ∘Qζ ) = (Λ∘B2ρQζ, Qζ)

≤ (Λ∘B2ρQζ,B2ρQζ)1/2(Λ∘Qζ, Qζ)1/2, (2.3)
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where Bρ is defined by (1.5). If ρ is selected such that

(Λ∘B2ρQζ, Qζ) ≤ q2‖ζ‖2∘ for some q < 1, (2.4)

then (2.3) shows that Tρ is a contractive mapping.
It is not difficult to show that ρ satisfying (2.4) can be always found. Indeed, in view of (1.2),

(Λ∘B2ρQζ, Qζ) = (Λ∘Qζ, Qζ) − 2ρ(ΛQζ, Qζ) + ρ2(ΛΛ−1∘ ΛQζ, Qζ)

≤ (1 − 2ρc1)(Λ∘Qζ, Qζ) + ρ2(Λ−1∘ ΛQζ, ΛQζ). (2.5)

Since Λ and Λ∘ are invertible with trivial kernels, μ and yμ are an eigenvalue and the respective eigenfunction
of Λyμ = μΛ∘yμ if and only if they are an eigenvalue and the eigenfunction of the problem ΛΛ−1∘ Λyμ = μΛyμ.
This means that

c1(Λy, y) ≤ (ΛΛ−1∘ Λy, y) ≤ c2(Λy, y) ≤ c22(Λ∘y, y).

Hence
(Λ−1∘ ΛQζ, ΛQζ) ≤ c22‖ζ‖

2
∘

and (2.5) implies
(Λ∘B2ρQζ, Qζ) ≤ (1 − 2ρc1 + ρ2c22)‖ζ‖

2
∘ .

The minimum of the expression in round brackets is attained if ρ = ρ∗ := c1/c22. For ρ = ρ∗, we find that

q2∗ := 1 −
c21
c22

≤ q̂2 := 1 −
λ2⊖λ∘⊖

2

λ2⊕λ∘⊕
2 ∈ [0, 1).

Hence Tρ is a contractivemappingwith explicitly known contraction factor q∗. Well-known results in the
theory of fixed points (see, e.g., [29]) yield the following theorem.

Theorem 2.1. For any u0 ∈ V and ρ = ρ∗, the sequence {uk} ∈ V of functions satisfying the relation

(Λ∘Quk , Qw) = (Λ∘Quk−1, Qw) − ρ((ΛQuk−1, Qw) − ⟨f, w⟩) for all w ∈ V (2.6)

converges to u in V and ‖uk − u‖∘ ≤ qk∗‖u0 − u‖∘ as k → +∞.

Remark 2.2. From (2.3) we obtain

‖η‖2∘ ≤
1

λ0,min
‖B2ρQζ‖‖ζ‖∘ ≤

‖B2ρ‖

λ20,min
‖ζ‖2∘ .

This relation yields a simple (but not very sharp) estimate of the contraction factor.

For further analysis, it is convenient to estimate the right-hand side of (2.3) by a different method. Let ‖Bρ‖∘
denote the operator norm

‖Bρ‖∘ := sup
y∈Y

‖Bρy‖∘
‖y‖∘

. (2.7)

Then ‖Bρy‖∘ ≤ ‖Bρ‖∘‖y‖∘ and
(Λ∘B2ρy, y) ≤ ‖Bρ‖2∘ ‖y‖2∘ .

Hence (2.3) yields the estimate
‖η‖∘ ≤ ‖Bρ‖∘‖ζ‖∘,

which shows that Tρ is a contraction provided that

‖Bρ‖∘ < 1. (2.8)

In applicationsBρ is a self-adjoint bounded operator acting in a finite-dimensional space, so that verification
of this condition amounts to finding ρ which yields the respective spectral radius of Bρ (see Section 4).
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3 Selection of Λ∘
In this section, we discuss how to select Λ∘ in order to minimize q, which is crucial for two major aspects of
quantitative analysis: convergence of the iterationmethod and guaranteed a posteriori estimates.We assume
that V, V, and Y are spaces of functions defined in a Lipschitz bounded domain Ω (namely y(x) ∈ T for a.e.
x ∈ Ω where T may coincide with ℝ, ℝd, orMd×d) and the operators Λ and Λ∘ are generated by bounded
scalar functions, matrices or tensors. In this case,

(Λy, y) := ∫
Ω

Λ(x)y ⊙ y dx and (Λ∘y, y) := ∫
Ω

Λ∘(x)y ⊙ y dx,

where ⊙ denotes the respective product of scalar, vector, or tensor functions. In view of (2.7) and (2.8), the
value of ρ should minimize the quantity supy∈Y (Λ∘Bρy,Bρy)/(Λ∘y, y). This procedure yields the contraction
factor

q2 = Q(Λ, Λ∘) := inf
ρ
sup
y∈Y

∫Ω Λ∘(x)Bρ(x)y ⊙ Bρ(x)y dx
∫Ω Λ∘(x)y ⊙ y dx

,

whose computation is reduced to solving algebraic problems at a.e. x ∈ Ω, i.e.,

Q(Λ, Λ∘) := inf
ρ
sup
x∈Ω

sup
τ∈T

Λ∘(x)Bρ(x)τ ⊙ Bρ(x)τ
Λ∘(x)τ ⊙ τ

.

Let S be a certain set of “simple” operators defined a priori (e.g., it can be a finite-dimensional set formed
by piecewise constant or polynomial functions). Then, finding the best “simplified” operator amounts to solv-
ing the following problem: find Λ̂∘ ∈ S such thatQ(Λ, Λ̂∘) isminimal. In otherwords, the optimal Λ̂∘ is defined
by the problem

inf
Λ0∈S
ρ∈ℝ

sup
x∈Ω
τ∈T

Λ∘(x)Bρ(x)τ ⊙ Bρ(x)τ
Λ∘(x)τ ⊙ τ

= q2. (3.1)

Notice that (3.1) is an algebraic problem, which should be solved (analytically or numerically) before com-
putations. The respective solution Λ̂∘ defines the best operator to be used in the iteration method (2.6) and
yields the respective contraction factor. Below we discuss some particular cases, where analysis of this prob-
lem generates an optimal (or almost optimal) Λ∘.

Problem (3.1) is explicitly solvable if Λ∘ and Λ have a special structure, namely,

Λ∘ = a∘(x)I, Λ = a(x)I,

where I is the unit operator and a∘(x) and a(x) are positive bounded functions defined in Ω. Then,

Bρ(x) = (1 − h(x))I, h(x) := a(x)
a∘(x)

and
sup
τ∈T

(1 − ρh(x))2τ ⊙ τ
|τ|2

= |1 − ρh(x)|2 for all x ∈ Ω.

Define h⊖ := minx∈Ω h(x) and h⊕ := maxx∈Ω h(x). It is not difficult to show that

sup
x∈Ω

|1 − ρh(x)| = max{|1 − ρh⊖|, |1 − ρh⊕|}.

Minimization with respect to ρ yields the best value ρ∗ = 2
h⊖+h⊕

and the respective value

Q(Λ, Λ∘) = (
h⊕ − h⊖
h⊕ + h⊖

)
2
= (

1 − J(a, a∘)
1 + J(a, a∘)

)
2
< 1, J(a, a∘) =

h⊖
h⊕
. (3.2)

In accordance with (3.1), the identification of the optimal simplified problem is reduced to the problem

sup
a0∈S

J(a, a∘), (3.3)

where S is a given set of functions.
We illustrate the above relations by means of several examples.
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Example 3.1 (Constant Coefficients). In the simplest case, we set S = P0, i.e., a0 is a constant. From (3.3) it
follows that q = (a − a)/(a + a), where a := minx∈Ω a(x) and a := maxx∈Ω a(x). Then ρ∗ = 2a0/(a + a) and
the iteration procedure (2.6) with ρ = ρ∗ has the form

∫
Ω

Quk ⊙ Qw dx = ∫
Ω

(1 −
2a
a + a

)Quk−1 ⊙ Qw dx +
2

a + a
∫
Ω

fw dx.

From Theorem 2.1, it follows that

∫
Ω

|Q(uk − u)|2 dx ≤ C(
a − a
a + a

)
2k
.

Example 3.2 (Oscillation Around a Given Function). Consider a somewhat different example. Let a(x) be a
function oscillating around a certain mean function g(x) so that

a(x)
g(x)

∈ [1 − ϵ, 1 + ϵ], ϵ ∈ (0, 1).

If g is a relatively simple function, then it is natural to set a∘(x) = g(x). By (3.2), we find that h⊕ = 1 + ϵ,
h⊖ = 1 − ϵ, and q = ϵ. Hence the method is very efficient for small ϵ (i.e., if a oscillates around g with a rel-
atively small amplitude). Figures 1 and 2 illustrate three examples of quasi-periodic coefficients a and re-
spective a∘ corresponding to the case of oscillation around a constant with smooth modulation, oscillation
around a given smooth function, or oscillation around a piecewise constant function.

Example 3.3 (Piecewise Constant Coefficients). Consider a more complicated case, where Ω is divided into
N nonoverlapping subdomains Ωi and Λ∘(x) = ciI if x ∈ Ωi. Define the numbers

a(i)⊖ = min
x∈Ωi

a(x), a(i)⊕ = max
x∈Ωi

a(x),

h⊖ = min{a
(1)
⊖

c1
, a

(2)
⊖

c2
, . . . , a

(N)
⊖

cN
}, h⊕ = max{a

(1)
⊕

c1
, a

(2)
⊕

c2
, . . . , a

(N)
⊕

cN
}.

Since the constants ci are defined up to a commonmultiplier, we canwithout a loss of generality assume that

(N)
∑
i=1
λi = 1, where λi =

1
ci
. (3.4)

In accordance with (3.3), the maximum of Q(Λ, Λ∘) is attained if

min{λ1a(1)⊖ , λ2a
(2)
⊖ , . . . , λNa

(N)
⊖ }

max{λ1a(1)⊕ , λ2a
(2)
⊕ , . . . , λNa

(N)
⊕ }

→ max, (3.5)

where λi > 0 and satisfy (3.4). If N = 2, then problem (3.5) has a simple solution, which shows that the ratio
λ1/λ2 (i.e., c2/c1) can be any in the interval [ξ1, ξ2], where

ξ1 = min{a
(2)
⊖

a(1)⊖
, a

(2)
⊕

a(1)⊕
}, ξ2 = max{a

(2)
⊖

a(1)⊖
, a

(2)
⊕

a(1)⊕
}.

It is interesting to compare these results with those generated by homogenized models in the case of
perfectly periodic structures. For this purpose, we consider a simple one-dimensional problem

(au�)� − f = 0 in (0, 1)

with

a(x) = a(1)(x) in Ω1 = (0, β), β ∈ (0, 1),
a(x) = a(2)(x) in Ω2 = (β, 1),
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where a(1)(x) is a perfectly periodical function attaining only two values a(1)⊖ and a(1)⊕ . The Lebesguemeasure
of the set where a(x) = a(1)⊕ is κ1|Ω1|, κ1 ∈ (0, 1). Analogously, a(2)(x) is a periodical function attaining only
two values a(2)⊖ and a(2)⊕ . The Lebesgue measure of the set where a(x) = a(2)⊕ is κ2|Ω2|, κ2 ∈ (0, 1). We assume
that a(i)⊖ < a(2)⊕ , i = 1, 2 and the amount of periods is very large. Then, the homogenization method can be
successfully applied. The corresponding homogenized problem has the coefficients (see, e.g., [8])

a(1)H := (
1
β

β

∫
0

1
a(1)(x)

dx)
−1

in Ω1, a(2)H := (
1

1 − β

1

∫
β

1
a(2)(x)

dx)
−1

in Ω2.

It is easy to see that

a(1)H =
a(1)⊖ a

(1)
⊕

κ1a(1)⊖ + (1 − κ1)a(1)⊕
∈ (a(1)⊖ , a

(1)
⊕ ), a(2)H =

a(2)⊖ a
(2)
⊕

κ2a(2)⊖ + (1 − κ2)a(2)⊕
∈ (a(2)⊖ , a

(2)
⊕ ).

Hence
a(2)H
a(1)H

∈ (ξH1 , ξ
H
2 ), where ξH1 := a(2)⊖

a(1)⊕
< min{a

(2)
⊖

a(1)⊖
, a

(2)
⊕

a(1)⊕
} = ξ1, ξH2 := a(2)⊕

a(1)⊖
> ξ2

and (ξ1, ξ2) ⊂ (ξH1 ξ
H
2 ). Therefore, the coefficients a(1)H and a(2)H may not generate the best piecewise con-

stant a∘, which produces the smallest contraction factor in the iteration procedure (2.6).

4 Error Estimates

4.1 General Estimate

Since Tρ is a contractive mapping, we can use the Ostrowski estimates (see [24, 26, 29]) of the distance
between v ∈ V and u (the fixed point). The estimates state that

‖v − u‖∘ ∈ {
ϵ

1 + q(ρ)
, ϵ
1 − q(ρ)}

, where ϵ := ‖Tρv − v‖∘. (4.1)

This estimate cannot be directly applied because vρ := Tρv is generally unknown (it is the exact solution of a
boundary value problem). Instead, wemust use a numerical approximation ṽρ (in our analysis, we impose no
restrictions on the method by which the function ṽρ ∈ V was constructed). Thus, the difference ηρ := v − ṽρ
is a known function and the quantity δρ = ‖ηρ‖∘ is directly computable. It is easy to see that

δρ − ‖ṽρ − vρ‖∘ ≤ ‖vρ − v‖∘ ≤ δρ + ‖ṽρ − vρ‖∘. (4.2)

To deduce a fully computable majorant of the norm ‖ṽρ − vρ‖∘ we use the method suggested in [25, 26]. First,
we rewrite (2.1) in the form

(Λ∘Qvρ , Qw) = (Λ∘Qv, Qw) − ρ((ΛQv, Qw) − ⟨f, w⟩). (4.3)

For any y ∈ Y and w ∈ V0, we have

(Λ∘Q(vρ − ṽρ), Qw) = (Λ∘Q(v − ṽρ), Qw) − ρ((ΛQv, Qw) − ⟨f, w⟩) (4.4)
= (Λ∘Q(v − ṽρ) − ρΛQv + y, Qw) − ⟨Q∗y − ρf, w⟩.

We estimate the first term on the right-hand side of (4.4) as follows:

(Λ∘Q(v − ṽρ) − ρΛQv + y, Q(vρ − ṽρ)) = (Q(v − ṽρ) − ρΛ−1∘ ΛQv + Λ−1∘ y, Λ∘Q(vρ − ṽρ))

≤ (Λ∘Q(v − ṽρ) + τy , Q(v − ṽρ) + Λ−1∘ τy)
1/2‖vρ − ṽρ‖∘,
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where τy := y − ρΛQv. The second term meets the estimate

⟨Q∗y − ρf, vρ − ṽρ⟩ ≤ ‖Q∗y − ρf‖‖vρ − ṽρ‖ ≤
1

(λ∘⊖)1/2
‖Q∗y − ρf‖‖vρ − ṽρ‖∘,

where ‖w∗‖ = supw∈V⟨w∗, w⟩/‖w‖∘ is the dual norm. Hence

‖vρ − ṽρ‖∘ ≤ (Λ∘Qηρ + τy , Qηρ + Λ−1∘ τy)
1/2 +

1

√λ∘⊖
‖Q∗y − ρf‖ =: M⊕(ηρ , τy). (4.5)

Notice that
inf
y∈Y

M⊕(ηρ , τy) = ‖vρ − ṽρ‖∘.

Indeed, set y = Λ∘Q(vρ − v) + ρΛQv (in this case, τy = Λ∘Q(vρ − v)). In view of (4.3), ⟨Q∗y − ρf, w⟩ = 0, and
the majorant is equal to ‖vρ − ṽρ‖2∘ . Thus, estimate (4.5) has no irremovable gap and a properly selected y
yields a sharp upper bound of the error.

Remark 4.1. It is not difficult to show that the last term ofM⊕(ηρ , τy) can be estimated via an explicitly com-
putable quantity provided that y has the same regularity as the true flux (see [26]). However, in our sub-
sequent analysis Q∗y − ρf = 0 and these advanced forms of the majorant are not required. In this case, the
majorant has a simpler form:

M2
⊕(ηρ , τy) = (Λ∘Qηρ , Qηρ) + (Λ−1∘ τy , τy) + 2(Qηρ , τy).

It is important that the computationof themajorantM⊕ doesnot require inversionof theoperator Λ associated
with a complicated quasi-periodic problem.

Now, (4.1), (4.2), and (4.5) yield the following result.

Theorem 4.2. The error e = v − u is subject to the estimate

‖e‖∘ ∈ [max{0,
δρ −M⊕(ηρ , τy)

1 + q(ρ) },
δρ +M⊕(ηρ , τy)

1 − q(ρ) ], (4.6)

where M⊕ is defined by (4.5), τy := y − ρΛQv, and y is a function in Y.

Remark 4.3. Here ηρ and δρ are directly computable and q(ρ) is defined in accordance with relations pre-
sented in the previous section. Hence the cost of (4.6) is mainly related to the quantity M⊕(ηρ , τy), which is
an a posteriori error majorant of the functional type. The derivation of such estimates is performed by purely
functional methods and does not exploit special features of approximations (e.g., Galerkin orthogonality),
numerical method, and exact solution (e.g., extra regularity). Properties of the majorants are well studied
(see [25, 26] and the literature cited therein). Numerous tests performed for different boundary value prob-
lems have confirmed high practical efficiency of error majorants of the functional type. It was shown thatM⊕
is a guaranteed and efficient majorant of the global error and generates good indicators of local errors if y is
replaced by a certain numerical reconstruction of the exact dual solution. There are many different ways to
obtain suitable reconstructions with minimal expenditures (concerning this point we refer to [21] where the
reader will find a systematic discussion of computational aspects in the context of various boundary value
problems). Error majorants of this type can be also used for the evaluation of modeling errors (see [27, 28]).

Usually, the cost of a good estimate (with the efficiency index between 1 and 2) is comparable with the
cost of a numerical solution. However, the proportion essentially depends on the numerical method used.
For the classical FEM schemes the expenditures are maximal (because this method generates rather coarse
approximations of fluxes). For the dual mixed method, finite volume method, isogeometric approximations,
and other methods producing locally equilibrated fluxes, the expenditures may be two to three times smaller
than for the numerical solution.
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4.2 Examples

Nowwe shortly discuss applications of Theorem4.2 to problemswhereQ andQ∗ are defined by the operators
∇ and div, respectively, Λ∘ = a∘(x)I, Λ = a(x)I, x ∈ Ω, and V =

∘
H1(Ω).

d = 1. Let Ω = (0, 1). Equation (1.1) has the form (a(x)u�)� − f = 0. In this case, Qw = w�, Q∗y = −y�, and
(4.3) is reduced to

1

∫
0

a∘(vρ − v)�w� dx + ρ
1

∫
0

(av�w� + fw) dx = 0. (4.7)

In order to apply Theorem 4.2, we set y = ρ(g(x) + μ), where g(x) = −∫x0 fdx and μ is a constant. Then
−y� − ρf = 0 and τ = ρ(g(x) + μ) − ρav� = ρ(μ + g − av�). The best constant μ is defined by minimization of
M2
⊕(ηρ , τ), which has the form

1

∫
0

(a∘(η�ρ)2 + a−1∘ ρ2(μ + g − av�)2 + 2η�ρρ(μ + g − av�)) dx

Since ∫10 η
�
ρ dx = 0, the problem is reduced to minimization of the second term and the best μ satisfies the

equation
1

∫
0

a−1∘ (μ + g(x) − av�) dx = 0.

Hence

μ = μ̄ :=
∫10 a
−1
∘ (av� − g) dx

∫10 a
−1
∘ dx

,

and (4.6) yields the estimate

‖e‖∘ ∈ [max{0,
δρ − I⊕(v, ṽρ)
1 + q(ρ) },

δρ + I⊕(v, ṽρ)
1 − q(ρ) ], (4.8)

where

I2⊕(v, ṽρ) =
1

∫
0

a−1∘ (a∘(v − ṽρ)� + ρ(μ̄ + g − av�))2 dx.

Here v and ṽρ are two consequent numerical approximations (e.g., finite element approximations vk,h and
vk+1,h computed on a mesh Ih). Then

ηρ = ηk,h := vk,h − vk+1,h and δρ = δk,h := ‖vk,h − vk+1,h‖∘

are directly computable. Since a∘ is a “simple” function, the integrals

F1 =
1

∫
0

a−1∘ dx, F2 =
1

∫
0

a−1∘ gdx, F3 =
1

∫
0

a∘(η�k,h)
2 dx,

F4 =
1

∫
0

a−1∘ (μ̄ + g)2 dx, F5 =
1

∫
0

(μ̄ + g)η�k,h dx

are easy to compute. Other integrals

G1 =
1

∫
0

a−1∘ av�k,h dx, G2 =
1

∫
0

av�k,hη
�
k,h dx,

G3 =
1

∫
0

(μ̄ + g)a−1∘ av�k,h dx, G4 =
1

∫
0

a−1∘ a2(v�k,h)
2 dx
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contain a highly oscillating coefficient amultiplied by piecewise polynomial mesh functions. If a and f have
lowQTT rank tensor representations [15], then the integrals can be efficiently computed by tensor-typemeth-
ods discussed in [17] (see also Section 5 below). We have

I2⊕(v, ṽρ) = F3 + 2ρG2 + 2ρF5 + ρ2(F4 − 2G3 + G4) =: ε2k,h , μ̄ =
G1 − F2
F1

.

Notice that the quantity εk,h is the value of the majorant, where the flux has been selected in the best way. It
is not difficult to show that

a∘(v�ρ − v�) = ρ(g + μ̄) − av�

and, therefore,

I2⊕(v, ṽρ) =
1

∫
0

a∘(v�ρ − ṽ�ρ)2 dx.

In other words, this term coincides with the error of the Galerkin solution related to the simplified bound-
ary value problem (4.7), where v = vk,h. In accordance with Section 3, we set ρ = 2/(h⊖ + h⊕) and find that
q = (h⊕ − h⊖)/(h⊖ + h⊕). Now (4.8) yields easily computable lower and upper bounds of the error encom-
passed in vk,h:

δk,h − εk,h
1 + q

≤ ‖vk,h − u‖∘ ≤
δk,h + εk,h
1 − q

. (4.9)

Remark 4.4. It is worth adding comments on convergence properties of the quantities δk,h and εk,h entering
(4.9). If the mesh Th is fixed, then vk,h tends to the Galerkin approximation uh of problem (1.1) on this mesh.
This fact follows from Theorem 2.1 applied to the case where the iterations are performed on the respective
finite-dimensional space Vh (considered as the space V). Then, ‖vk,h − uh‖∘ ≤ qk‖v0,h − uh‖ and for any h the
term δk,h tends to zero with the geometric rate. The quantity εk,h is equal to the error of the Galerkin solution
to the simplified problem. It has different asymptotic properties. It mainly depends on Th, and for a given
mesh it does not tend to zero when k → +∞. However, for any given v (which in our example is defined
by vk,h) this term goes to zero if h → 0 provided that the mesh satisfies the standard regularity conditions.
The problem with a∘ is assumed to be much more regular than the problem with a. Therefore, in terms of h
the approximation error εk,h (associated with a∘) will decrease faster than the analogous error in the original
problem (e.g., for a∘ = const, the term εk,h is proportional to h).

Since both quantities δk,h and εk,h are explicitly known, estimate (4.9) (and other analogous estimates)
contains a very useful information unavailable in the context of purely asymptotic error analysis. Using this
information, we can organize the computational process in the best possible way by comparing iteration
and discretization errors. In this process, rapidly converging iterations with respect to k should be continued
until δk,h > εk,h. If δk,h ≈ εk,h, then further iterations on the mesh Th are unable to essentially improve the
numerical solution. Instead, we should refine Th, project uk,h on the refined mesh, and use it as a starting
point for a new series of iterations generated by problem (4.7). For each step, we compute the right-hand side
of (4.9) and stop the process when it becomes smaller than the desired tolerance.

d = 2. The computation of M⊕ for 2D problems can be also reduced to the computation of one-dimensional
integrals. Certainly, on the multidimensional case the amount of integrals is much larger. However, the basic
tensor decompositionmethods remain the same. Belowwebriefly discuss themwith the paradigmof a simple
case where

f = f (1)(x1)f (2)(x2) and a = a(1)(x1)a(2)(x2).

Assume that approximations are represented in the form of series formed by one-dimensional functions ϕ(1)
i

and ϕ(2)
j (which may be supported locally or globally), so that

v =
n1
∑
i=1

n2
∑
j=1
γijϕ(1)

i (x1)ϕ(2)
j (x2), ṽρ =

n1
∑
i=1

n2
∑
j=1
γ̃ijϕ(1)

i (x1)ϕ(2)
j (x2).
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In this case,

∇ηρ = (
n1
∑
i=1

n2
∑
j=1
ςij
∂ϕ(1)

i
∂x1

ϕ(2)
j ,

n1
∑
i=1

n2
∑
j=1
ςijϕ(1)

i
∂ϕ(2)

j

∂x2
), where ςij = γij − γ̃ij .

We define another set of one-dimensional functionsW(1)
k (x1) andW(2)

l (x2), which form the vector function

y = Υ0 +
m1

∑
k=1

m2

∑
l=1
σklΥkl , Υkl = {W(1)

k
∂W(2)

l
∂x2

; −
∂W(1)

k
∂x1

W(2)
l }. (4.10)

Here Υ0 is a given function, which can be defined in different ways. In particular, we set

Υ0 = {W(1)
0 (x1)W(2)

0 (x2); 0}, W(1)
0 (x1) =

x1

∫
0

f (1) dx1, W(2)
0 = −ρf (2).

The functions Υkl must satisfy the usual linear independence conditions in order to guarantee unique solv-
ability of the respective approximation problem. For any smooth function w vanishing on ∂Ω, we have

∫
Ω

(Υ0 ⋅ ∇w − ρfw) dx1 dx2 = 0 and ∫
Ω

Υkl ⋅ ∇w dx1 dx2 = 0.

Thus, ‖Q∗y − ρf‖ = 0 and we can use the simplified form of M⊕.
In the simplest case Λ∘ = a∘I, where a∘ is a constant. The best y minimizes the quantity

M2
⊕(ηρ , τ) = ∫

Ω

a∘∇ηρ ⋅ ∇ηρ dx + ∫
Ω

a−1∘ y ⋅ y dx + ρ2 ∫
Ω

a−1∘ a2∇v ⋅ ∇v dx

− 2∫
Ω

(ρa−1∘ a∇v + ∇ηρ) ⋅ y dx + 2ρ∫
Ω

a∇ηρ ⋅ ∇ηρ dx, (4.11)

which shows that y must satisfy the relation y = ρa∇v + a∘∇ηρ. We select σkl that defines the Galerkin ap-
proximation of this function, and we arrive at the system

m1

∑
k=1

m2

∑
l=1
σkl ∫

Ω

Υkl ⋅ Υst dx1 dx2 + ∫
Ω

Υ0 ⋅ Υst dx1 dx2

=
n1
∑
i=1

n2
∑
j=1

∫
Ω

(ρaγij + a∘ςij)(
∂ϕ(1)

i
∂x1

ϕ(2)
j , ϕ

(1)
i
∂ϕ(2)

j

∂x2
) ⋅ Υst dx1 dx2. (4.12)

Introduce the following matrices:

D(1) = {D(1)
kl }, D(1)

kl =
a

∫
0

∂W(1)
k

∂x1
∂W(1)

l
∂x1

dx1, W(1) = {W(1)
kl }, W(1)

kl =
a

∫
0

W(1)
k W(1)

l dx1,

D(2) = {D(2)
kl }, D(2)

kl =
b

∫
0

∂W(2)
k

∂x2
∂W(2)

l
∂x2

dx2, W(2) = {W(2)
kl }, W(2)

kl =
b

∫
0

W(2)
k W(2)

l dx2,

F(1) = {F(1)ik }, F(1)ik =
a

∫
0

∂ϕ(1)
i

∂x1
W(1)
k dx1, G(1) = {G(1)

ik }, G(1)
ik =

a

∫
0

ϕ(1)
i
∂W(1)

k
∂x1

dx1,

F(2) = {F(2)jl }, F(2)jl =
b

∫
0

ϕ(2)
j
∂W(2)

l
∂x2

dx2, G(2) = {G(2)
jl }, G(2)

jl =
b

∫
0

∂ϕ(2)
j

∂x2
W(1)
l dx2,

F̂(1) = {F̂(1)ik }, F̂(1)ik =
a

∫
0

a1(x1)
∂ϕ(1)

i
∂x1

W(1)
k dx1, Ĝ(1) = {Ĝ(1)

ik }, Ĝ(1)
ik =

a

∫
0

a1(x1)ϕ(1)
i
∂W(1)

k
∂x1

dx1,

F̂(2) = {F̂(2)jl }, F̂(2)jl =
b

∫
0

a2(x2)ϕ(2)
j
∂W(2)

l
∂x2

dx2, Ĝ(2) = {Ĝ(2)
jl }, Ĝ(2)

jl =
b

∫
0

a2(x2)
∂ϕ(2)

j

∂x2
W(1)
l dx2,
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and vectors

g(1) = {g(1)k }, g(1)k =
a

∫
0

W(1)
0 W(1)

k dx1, g(2) = {g(2)l }, g(2)l =
b

∫
0

W(2)
0
∂W(2)

l
∂x2

dx2.

Notice that all coefficients are presented by one-dimensional integrals, which can be efficiently computed
with the help of special (tensor-type) methods (see, e.g., [15–19]).

It is not difficult to see that

Yklst := ∫
Ω

Υkl ⋅ Υst dx = W(1)
ks D

(2)
lt + D(1)

ks W
(2)
lt

and

∫
Ω

Υ0 ⋅ Υst dx1 dx2 = ∫
Ω

W(1)
0 W(1)

s W(2)
0
∂W(2)

t
∂x2

dx1 dx2 = g(1)s g(2)t ,

where Y = {Yklst} is the fourth-order tensor. Hence the left-hand side of the system (4.12) has the form
Yσ + g(1) ⊗ g(2). In the right-hand side we have the term

∫
Ω

a∘ςij(
∂ϕ(1)

i
∂x1

ϕ(2)
j , ϕ

(1)
i
∂ϕ(2)

j

∂x2
) ⋅ Υst dx1 dx2 = a∘Hς,

where H = {Hijst}, Hstij = F(1)is F
(2)
jt − G(1)

is G
(2)
jt . Another term is

∫
Ω

ρaγij(
∂ϕ(1)

i
∂x1

ϕ(2)
j , ϕ

(1)
i
∂ϕ(2)

j

∂x2
) ⋅ Υst dx1 dx2 = Ĥγ,

where Ĥ = {Ĥijst}, Ĥstij = F̂(1)is F̂
(2)
jt − Ĝ(1)

is Ĝ
(2)
jt .

Now (4.12) implies
σ = Y−1(Ĥγ + a∘Hς − g(1) ⊗ g(2))

and the value of M⊕ is obtained by (4.6), (4.10), and (4.11).

5 Low-Rank Solution of the Discrete Equation

We consider the following elliptic diffusion equation with quasi-periodic coefficient a(x) > 0 (whose oscilla-
tions are characterized by the parameter ϵ):

Au = −div(a(x)∇u) = f(x), x = (x1, . . . , xd) ∈ Ω = (0, 1)2, u|Γ = 0, (5.1)

where the function f corresponds to themodified right-hand side inproblem (4.3). In this case Γ = ∂Ω, Λ = aI,
Qw = ∇w, and Q∗y = −div y.

In what follows we assume that f and a admit low-rank representation i.e.,

f =
Rf
∑
i=1
f i1(x1)f

i
2(x2), a =

Ra
∑
j=1
aj1(x1)a

j
2(x2),

where the parameters Rf and Ra are called the separation rank. Then one may assume that the exact FEM
solution can be well approximated by uK(x) = ∑K

j=1 u
j
1(x1)u

j
2(x2), where K depends on the separation rank

of f and a. In some cases this important property can be rigorously proven (e.g., for the Laplacian and other
closely related operators). Similar low-rank approximations can be observed for the QTT tensor approxima-
tions (see [17]). Existence of a low-rank solution means that for some moderate K we have uK ≈ u up to the
rank truncation threshold.
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First, we sketch the rank-structured computational scheme. In our set of examples the original problem
is to find u such that

∫
Ω

a(x)∇u ⋅ ∇w dx = ∫
Ω

fw dx for all w ∈ V0 := H1
0(Ω).

It is approximated by the following Galerkin problem for the low-rank representation uK:

∫
Ω

a(x)∇uK ⋅ ∇wK dx = ∫
Ω

fwK dx for all wK ∈ VK0 , (5.2)

where VK0 is a subset of V0 formed by functions of the type

wK(x) =
K
∑
j=1
ϕj1(x1)ϕ

j
2(x2).

Therefore, in terms of the general scheme exposed in the introduction, the problem P is now problem
(5.2) and we solve it by iterations with the help of the simplified (preconditioned) problem

∫
Ω

a∘(x)∇uKk ⋅ ∇wK dx = ∫
Ω

fk−1wK dx for all wK ∈ VK0 , (5.3)

where fk−1 depends on uKk−1 and a∘ is a simple function (i.e., it is representable by a sum of terms
a∘1(x1) . . . a

∘
2(x2) with very simple multipliers).

Given the right-hand side, problem (5.3) ismuch simpler than the initial problem and the stiffnessmatrix
associated with (5.3) is computed much easier and has a simpler (low Kronecker rank) form that allows a
rank-structured representation of its inverse.

5.1 Kronecker Product Representation of the Stiffness Matrix

Figure 3 illustrates a 2D example of the L × L periodic coefficient with L = 6 corresponding to the choice
ϵ = 1

L . In this example, the scalar coefficient is represented by the separable function

a(x) = C + a1(x1)a1(x2), C > 0,

where the generating univariate function a1(x1) has the shape of six uniformly distributed bumps of height 1
as shown in Figure 3, right. Figure 3, left, presents the oscillating part of a 2D coefficients function, which is
a1(x1)a1(x2). Here, the coefficient bumps are displaced on the coarse grid of size 8L × 8L in such a way that
bumps occupy the 4 × 4 central box in each of the 8 × 8 cells, which compose the whole L × L lattice-type
decomposition of Ω (we have L = 6 in Figure 3, i.e., the size of the coarse grid is 48 × 48, while L = 12 in
Figures 4 and 5, i.e., the size of the coarse grid is 96 × 96). Hence the axis scale 20, 40, 60, 80 denotes the
coarse grid in both x1 and x2 that describes the construction of coefficient in detail.

The examples of other possible shapes of the equation coefficient corresponding to the cases (i), (ii) and
(iii) specified in Section 1 are presented in Figures 1 and 2.

We apply the FEM Galerkin discretization of equation (5.1) by means of tensor-product piecewise affine
basis functions (instead of “linear finite elements”)

{φi(x) := φi1 (x1) ⋅ ⋅ ⋅φid (xd)}, i = (i1, . . . , id), iℓ ∈ Iℓ = {1, . . . , nℓ}, ℓ = 1, . . . , d,

where φik are 1D finite element basis functions (say, piecewise linear hat functions).
We associate the univariate basis functions with the uniform grid {νj}, j = 1, . . . , nℓ, on [0, 1] with the

mesh size h = 1/(nℓ + 1). In this construction we have N = n1n2 . . . nd basis functions φi. Notice that the
univariate grid size nℓ is of the order of nℓ = O(1ϵ ) designating the total problem size N = O( 1

ϵd ).
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Figure 3. Example of the 2D periodic oscillating coefficients (left) and the respective 1D factor a1(x1).

For ease of exposition we first consider the case d = 2, and further assume that the scalar diffusion coef-
ficient a(x1, x2) can be represented in the form

a(x1, x2) =
R
∑
k=1

a(1)k (x1)a(2)k (x2) > 0

with a small rank parameter R.
The N × N stiffness matrix is constructed by the standard mapping of the multi-index i into the N-long

univariate index i representing all degrees of freedom. For instance, we use the so-called big-endian conven-
tion for d = 3 and d = 2:

i Ü→ i := i3 + (i2 − 1)n3 + (i1 − 1)n2n3, i Ü→ i := i2 + (i1 − 1)n2,

respectively. Hence all matrices and vectors are defined on the long index i as usual, however, the special
Kronecker structure allows the low-storage and low-complexity matrix vector multiplications when appro-
priate, i.e., when a vector also admits the low-rank Kronecker form representation. In particular, the basis
function φi is designated via the long index, i.e., φi = φi.

First, we consider the simplest case R = 1 and let d = 2. We construct the Galerkin stiffness matrix
A = [aij] ∈ ℝN×N in the form of a sum of Kronecker products of small “univariate” matrices. Recall that given
p1 × q1 matrix A and p2 × q2 matrix B, their Kronecker product is defined as a p1p2 × q1q2 matrix C via the
block representation

C = A ⊗ B = [aijB], i = 1, . . . , p1, j = 1, . . . , q1.

We say that the Kronecker rank of the matrix A in the representation above equals 1. Now the elements of the
Galerkin stiffness matrix take the form

aij = ⟨Aφi , φj⟩ = ∫
Ω

a(1)(x1)a(2)(x2)∇φi(x)∇̇φj(x)dx

=
1

∫
0

a(1)(x1)
∂φi1 (x1)
∂x1

∂φj1 (x1)
∂x1

dx1
1

∫
0

a(2)(x2)φi2 (x2)φj2 (x2)dx2

+
1

∫
0

a(1)(x1)φi1 (x1)φj1 (x1)dx1
1

∫
0

a(2)(x2)
∂φi2 (x2)
∂x2

∂φj2 (x2)
∂x2

dx2,

which leads to the rank-2 Kronecker product representation

A = [aij] = A1 ⊗M2 +M1 ⊗ A2,
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where⊗denotes the conventional Kronecker product ofmatrices. HereA1 = [ai1 j1 ] ∈ ℝn1×n1 andA2 = [ai2 j2 ] ∈
ℝn2×n2 denote theunivariate stiffnessmatrices andM1 = [mi1 j1 ] ∈ ℝn1×n1 andM2 = [mi2 j2 ] ∈ ℝn2×n2 define the
corresponding weighted mass matrices, e.g.,

ai1 j1 =
1

∫
0

a(1)(x1)
∂φi1 (x1)
∂x1

∂φj1 (x1)
∂x1

dx1, mi1 j1 =
1

∫
0

a(1)(x1)φi1 (x1)φj1 (x1)dx1.

By simple algebraic transformations (e.g., by lamping of the tri-diagonalmassmatrices, which does not effect
the approximation order of the FEM discretization) the matrix A can be simplified to the form

A Ü→ A = A1 ⊗ D2 + D1 ⊗ A2, (5.4)

where D1, D2 are the diagonal matrices. The matrix A corresponds to the FEM discretization of the initial
elliptic PDE with complicated highly oscillating coefficients.

The simple choice of the spectrally equivalent preconditioner A∘ corresponds to the operator Laplacian.
In this case the representation in (5.4) is simplified to the discrete Laplacian matrix in the form of rank-2
Kronecker sum

A Ü→ A∘ = A1 ⊗ I2 + I1 ⊗ A2, (5.5)

where I1 and I2 denote the identitymatrices of the corresponding size. Here the simple tree-diagonalmatrices
A1 and A2 represent the FEM/FDM Laplacian in 1D. This matrix will be used in what follows as a prototype
preconditioner for solving the linear system of equations

Au = f . (5.6)

The matrix A is constructed in general for the R-term separable coefficient a(x1, x2) with R ≥ 1 which leads
to the rank-2R Kronecker sum representation

A =
R
∑
k=1

[A1,k ⊗ D2,k + D1,k ⊗ A2,k],

with matrices of the respective size.

5.2 On Existence of the Low-Rank Solution

In this paper we discuss the approach based on the low-rank separable ϵ-approximation of the solution to
equation (5.6) that is considered as the d-dimensional real-valued arrayu ∈ ℝn1×⋅⋅⋅×nd . In general, for the case
R > 1 this favorable property is not guaranteed by the low Kronecker rank representation to the Galerkin
system matrix A, discussed in Section 5.1.

Let R = 1 and d = 2. The existence of the low-rank approximation to the solution of equation (5.6) with
the low-rank right-hand side

f =
Rf
∑
k=1

f(1)k ⊗ f(2)k , f(ℓ)k ∈ ℝnℓ ,

and with the systemmatrix in the form (5.5) can be justified by plugging the representation (5.5) in the sinc-
quadrature approximation to the Laplace integral transform [5]

Λ−1∘ = ∫
ℝ+

e−tΛ∘dt ≈ BM :=
M
∑
k=−M

cke−tkΛ∘ =
M
∑
k=−M

cke−tkA1 ⊗ e−tkA2 , (5.7)

taking into account that the matrices A1 and A2 commute with I1 and I2, respectively. Hence equation (5.7)
represents the accurate rank-(2M + 1)Kronecker product approximation to the preconditioner Λ−1∘ which can
be applied directly to the right-hand side to obtain

u = Λ−1∘ f ≈ BMf =
M
∑
k=−M

ck
Rf
∑
m=1

e−tkA1f(1)m ⊗ e−tkA2f(2)m .
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Figure 4. Rank decomposition of the solution for the 12 × 12 periodic coefficient.

Figure 5. Rank decomposition of the solution for the 12 × 12 modulated periodic coefficient.

The numerical efficiency of the representation (5.7) can be explained by the fact that the quadrature
parameters tk , ck can be chosen in such a way that the low Kronecker rank approximation BM converges to
Λ−1∘ exponentially fast inM. For example, under the choice tk = ekh, ck = htk with h = π/√M there holds [5]

‖Λ−1∘ − BM‖ ≤ Ce−β√M‖Λ−1∘ ‖,

in the Frobenius norm, which means that the approximation error ϵ > 0 can be achieved with the number of
terms RB = 2M + 1 of the order of RB = O(| log ϵ|2).

Figures 4 and 5 demonstrate the singular values of the discrete solution on the n × n grid for n = 95, 143
and 191, indicating very moderate dependence of the ϵ-rank on the grid size n. As in the case of Figure 3, in
Figures 4 and 5 we only represent the oscillating part of the coefficients and omit the small constant C > 0.

Further enhancement of the tensor approximation can be based on the application of the quantized-TT
(QTT) tensor approximation which has been already applied in [17] to the 1D equations with quasi-periodic
coefficients. The power of the QTT approximation method is due to the perfect low-rank decompositions ap-
plied to the wide class of function-related tensors [15]. See [17] for a more detailed discussion and a number
of numerical examples.

One can apply QTT approximations to problems with quasi-periodic coefficients, which can be described
by oscillation with smoothmodulation around a constant value, oscillation around a given smooth function,
or oscillation around a piecewise constant function, see Figure 1 and examples in [17].

Let the vector x ∈ ℂN , N = 2L, be obtained by sampling a continuous function f ∈ C[0, 1] (or even piece-
wise smooth functions), on the uniform grid of size N. For the following examples of univariate functions the
explicit QTT-rank estimates of the corresponding QTT tensor representations are valid uniformly in the vector
size N, see [15]:
(A) r = 1 for complex exponentials, f(x) = eiωx, ω ∈ ℝ.
(B) r = 2 for trigonometric functions, f(x) = sinωx, f(x) = cosωx, ω ∈ ℝ.
(C) r ≤ m + 1 for polynomials of degree m.
(D) For a function f with theQTT-rank r0modulated by another function gwith theQTT-rank r (say, step-type

function, plain wave, polynomial) the QTT rank of a product fg is bounded by a multiple of r and r0,

rankQTT(fg) ≤ rankQTT(f) rankQTT(g).
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Figure 6. The right-hand side and solution for periodic oscillating coefficients shown in Figure 3.

Figure 7. Accuracy of the rank decomposition of the solution vs. rank parameter for the 8 × 8 periodic coefficient and
grid size n × n.

(E) Furthermore, the following result holds [11]: the QTT rank for the periodic amplification of a reference
function on a unit cell to a rectangular lattice is of the same order as that for the reference function.
The rank of the QTT tensor representation to the 1D Galerkin FEM matrix in the case of oscillating coef-

ficients was discussed in [4, 17].

5.3 Numerical Test on the Rank Decomposition of u

Figure 6 represents the right-hand side f1(x1, x2) and the respective solution for the discretization to equation
(5.1) (with the coefficient depicted in Figure 3) on a 400 × 400-grid, where

f1(x1, x2) = sin(2x1) sin(2x2).

The PCG solver for the system of equations (5.6) with the discrete Laplacian inverse as the preconditioner
demonstrates robust convergence with the rate q ≪ 1. The next example demonstrates the rank behavior in
the singular value decomposition (SVD) of a matrix representing the solution vector u ∈ ℝn1×n2 to equation
(5.6) with the 12 × 12 periodic coefficient shown in Figure 4, left. Figure 7 represents the rank behavior in
the SVD decomposition of the solution in the case of the 8 × 8 periodic coefficient.

Comparing Figures 4 and 7 indicates that the exponential decay of the approximation error in the rank
parameter is stable with respect to the size of the L × L lattice structure of the coefficient, i.e., the behavior of
the singular values remains almost the same for different parameters ϵ = 1

L .
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Our iterative scheme includes only the matrix-vector multiplication with the stiffness matrix A that has
the small Kronecker rank 2R, and the action of the preconditioner defined by the approximate inverse to the
Laplacian type matrix. The latter has low Kronecker rank of order RB = O(| log ε|2) as shown above.

Given rank-1 vector u = u1 ⊗ u2, the standard property of the Kronecker product matrices

Au = A1u1 ⊗M2u2 +M1u1 ⊗ A2u2

indicates that thematrix-vectormultiplication enlarges the initial rank by the factor of 2, and similar with the
action of the preconditioner. Hence each iterative step should be supplemented with certain rank truncation
procedure which can be implemented adaptively to the chosen approximation threshold or fixed bound on
the rank parameter.

Remark 5.1. Notice that for d = 3 the transformed matrix A∘ takes the form

A∘ = A1 ⊗ I2 ⊗ I3 + I1 ⊗ A2 ⊗ I3 + I1 ⊗ I2 ⊗ A3,

and it obeys the d-term Kronecker sum representation. Hence in the general case of d ≥ 2 and R ≥ 1 the
Kronecker rank of the matrix A∘ is given by

rankKron(A∘) = dR.

6 Conclusions

We present a preconditioned iterationmethod for solving an elliptic type boundary value problem inℝd with
the operator generated by a quasi-periodic structure with rapidly changing coefficients characterized by a
small length parameter ϵ. We use tensor product FEM discretization that allows to approximate the stiffness
matrix A in the form of a low-rank Kronecker sum. The preconditioner A∘ is constructed based on certain
averaging (homogenization) procedure of the initial equation coefficients such that the inversion of A∘ is
much simpler than the inversion of A. We prove contraction of the iteration method and establish explicit
estimates of the contraction factor q < 1. For typical quasi-periodic structures we deduce fully computable
two-sided a posteriori estimates which are able to control numerical solutions on any iteration.

We apply the tensor-structured approximation which is especially efficient if the equation coefficients
admit low-rank representations and algebraic operations are performed in tensor structured formats. Under
moderate assumptions the storage and solution complexity of our approach depends only weakly (merely
linear-logarithmically) on the frequency parameter 1

ϵ . Numerical tests demonstrate that the FEM solution
allows the accurate low-rank separable approximation which is the basic prerequisite for application of the
tensor numerical methods to the problems of geometric homogenization.

The approach allows further enhancement based on the quantized-TT (QTT) tensor approximationwhich
is the topic for future research work. Another direction is related to fully tensor structured implementation of
the computable two-sided a posteriori error estimates. The interesting question arises how far the presented
approach can be extended to the numerical analysis of elliptic equations with rather unstructured jumping
coefficients arising in stochastic homogenization, see, e.g., [6].
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