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Abstract

In ultrarelativistic heavy-ion physics, one of the greatest remaining questions is the
interaction properties of the quark-gluon plasma (QGP), i.e. nuclear matter at ex-
treme temperatures. The dynamics of the QGP have been modeled by relativistic
hydrodynamics to an impressive level of success. Despite this the free parameter in
the theory, the shear viscosity to entropy ratio, is yet to be accurately constrained.
By the combined application of carefully constructed initial conditions and the hy-
drodynamical theory, one may constrain the viscosity to further understand the
evolution of the strongly interacting medium.

Traditionally, the constraints for the free parameter are given by a linear relation
of the theoretical initial state eccentricities to the experimentally obtainable final
state anisotropies. However, due to the large initial state uncertainty, such analysis
based on linear relations has been insufficient. Recently, the relation between the
higher order anisotropies has been shown to be non-linear. By decomposing the
response into linear and non-linear contributions, one obtains a series of coefficients
insensitive to the initial conditions and their fluctuations, enabling one to reduce the
uncertainties or at least tighten the constraints to theoretical models. In this thesis
I shall present the measurement of these coefficients in Pb–Pb at

√
sNN = 2.76TeV

from LHC/ALICE data. The results are compared to theoretical predictions from
various publications.
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Tiivistelmä

Ultrarelativistisissa raskasionitörmäyksissä syntyvän kvarkki-gluoniplasman (QGP)
dynamiikkaa on relativistisella hydrodynamiikalla kuvattu erittäin vakuuttavasti.
Teorian vapaa parametri, keskimääräinen viskositeetti-entropiasuhde, on kuitenkin
vielä tarkasti määrittämättä. Alustamalla törmäyksen alkutila teoreettisesti sekä so-
veltamalla relativistista hydrodynamiikkaa QGP:n evoluution mallintamiseen, saa-
daan viskositeettia tarkastelemalla käsitys QGP:n rakennesosien välisten vuorovai-
kutusten vahvuuksista, minkä lisäksi voidaan ymmärtää plasman evoluutioon vai-
kuttavia tekijöitä.

Tavanomaisesti QGP:n viskositeetti määritetään vertailemalla teoreettisen al-
kutilan eksentrisyyden lineaarista suhdetta kokeellisesti saatavan lopputilan anisot-
rooppisuuteen. Alkutilan tuoman teoreettisen virheen takia tämä lineaarisiin suhtei-
siin perustuva analyysi on kuitenkin ollut riittämätöntä. Uusien tutkimusten mukaan
vaste korkeammissa kertaluokissa on epälineaarinen. Muodostamalla lineaarisen se-
kä epälineaarisen vasteen hajotelma saadaan sarja alkutilasta ja sen fluktuaatiois-
ta riippumattomia kertoimia, joilla alkutilan epävarmuutta voidaan poistaa. Tässä
työssä esitän kertoimien mittaukset LHC/ALICE Pb–Pb

√
sNN = 2,76TeV datasta.

Mittauksia vertaillaan teoreettisiin tuloksiin useista eri julkaisuista.
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1 Introduction

1.1 Quark-Gluon Plasma

Background

A form of nuclear matter, where the elementary constituent quarks and gluons are no
longer confined into hadronic states, is known as the quark-gluon plasma (QGP). In
laboratory conditions its production relies on particle accelerators: at a sufficiently large
energy, the accelerated ions are collided with each other, after which the thermal energy
resulting from the collision is adequately high to transform the nuclear matter briefly
into a plasma state. Once the system has cooled down, the final state of the collision is
then observed by a detector as a hadronized particle spectrum, and the properties of this
spectrum are then used as the only available experimental probe for the behaviour of the
nuclear matter at extreme temperatures.

The experimental study of QGP, from the first attempts at existential evidence to the
detailed examination of its material properties, has been an active area of research ever
since the first heavy-ion capable accelerators started their operation at Lawrence Berkeley
National Laboratory (BEVALAC) [1] and the Joint Institute for Nuclear Research in
Dubna [2], accelerating ions up to energies of 1 GeV/nucleon pair. Followed by these
pioneering experiments, more progress was made when the Super Proton Synchrotron
(SPS) at CERN and the Alternating Gradient Synchrotron (AGS) at BNL, Brookhaven
were deployed almost simultaneously in 1986, providing center-of-mass energies of 18
and 5 GeV/nucleon pair [3], respectively. Due to low accelerator energies, none of the
experiments could bring any clear evidence about the existence of QGP.

Later in 1994 the first indication of the QGP phase was found, when the SPS was
brought to be capable of accelerating heavier lead (Pb) ions at 17 GeV/nucleon pair.
Especially the year 2000 was marked by significant developments, during which the first
“compelling evidence” of QGP formation from the SPS was reported [4]: the expansion
and the anisotropy of the expanded medium. Most notably this was also the year when
the Relativistic Heavy Ion Collider (RHIC) was brought online at BNL. The gold ion
(Au–Au) beams of RHIC at 200 GeV/nucleon pair further clearly verified the existence
of QGP in several experiments, while also allowing probing the behaviour of the said
strongly interacting matter [5, 6].

The most powerful accelerator to date remains the Large Hadron Collider (LHC),
which in 2010 started its lead ion (Pb–Pb) beams initially at center-of-mass energy 2.76
TeV/nucleon pair. Of the seven LHC experiments the ALICE (A Large Ion Collider
Experiment) is the most dedicated to heavy-ion physics and QGP research. The 2010
2.76 TeV data from the ALICE detector is also used for the research of this thesis. Since
2015, collision data in 5.02 TeV energies has also been available. At higher energies the
QGP state is expected to live for longer.

Research

One of the major questions is related to the strength and patterns of the interaction in
QGP, i.e. how the constituents interact by scattering depending on the general condi-
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tions of the matter. Experimental research can only provide information about the final
state of the collisions. For this reason to study the QGP itself, modern research relies
on theoretical model calculations, in addition to the experimental probing of the collision
events. Generally, the research is conducted by comparing the final states, the momentum
distribution of the observed particle spectrum or “response”, between the heavy-ion col-
lisions from real world experiments and theoretical model calculations, while also taking
the theoretically obtained initial state into account [7, 8].

Simulations of the collision events model the evolution of the QGP from the initial
state to the final state. The evolution in the model calculations is driven by a parameter
describing the interaction strengths of the QGP [9]. If the final states between the ex-
perimentally observed collisions and model calculations correspond to each other, further
assuming that the initial state was also correctly modeled, it should be reasonable to
expect the magnitude of the empirically constrained interaction parameter to better help
understand the actual physics behind the QGP. Because of this, a considerable effort in
QGP research is put in favor of constraining this parameter.

However, currently the required knowledge of the initial state is incomplete. The
uncertainty between the various initial state models is too large, rendering the current
methods based on parametric relations to the final state insufficient [10, 11]. This initial
state problem will be one of the motivational factors of this thesis, where I introduce
one of the recently proposed solutions to this issue, the non-linear response formalism
[12–14]. Although an adequately comprehensive introduction will be given, the main
purpose of this thesis is not to only review the details of the formalism, but to present the
measurements of the related observables, expected to significantly improve the current
constraints on the model interaction parameters.

In this thesis I begin by explaining the required background to our analysis. Assuming
some basic knowledge on general nuclear structure, I shall first give a short introduction
to experimental heavy-ion physics, while also explaining basic concepts of the necessary
experimental observables such as the collective flow. I shall also present a brief overview
of the crucial theoretical QGP evolution models, namely the fundamentals of relativistic
hydrodynamics and parton transport modeling. After this, a more formal definition of
the flow and methods to analyze it will follow. This is where I also explain the mechanism
of non-linear formalism and its related new observables. I will finally then present the
experimental setup and the analysis results and explain some observations.

1.2 Ultrarelativistic Heavy-Ion Physics

Heavy-Ion Collisions

As for the common ordinary substances, the state of the nuclear matter can be visualized
with a phase diagram. For this, one employs the equation of state, which couples the
different hypothetical state observables (pressure, temperature etc.) for a complete state
description. A schematic QCD (quantum chromodynamics) matter phase diagram is
shown in Fig. 1. At low temperatures T and the specific baryonic chemical potential
µ, the quarks are confined into hadrons, and the matter is in a state as it typically is
found in the universe. As the temperature increases, the confinement of the quarks and
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Figure 1: Phase diagram of the QCD, in a typical (µ, T )-representation, where µ is the
baryonic chemical potential describing the imbalance between quarks and antiquarks.
Based on the QCD lattice calculations [15], the critical point is around Tc ≈ 150 v
175 MeV, approximately 2 · 1012 K. Phase transformation paths that the colliding nu-
clei might take are sketched for the RHIC and LHC accelerators. After collision, the
nuclear matter quickly thermalizes passing the threshold conditions for the QGP state.
As the matter expands and eventually cools down, the hadronization begins. During the
hadronization process, the QGP and hadronic matter coexist for a brief period of time.
The resulting newly created hadrons are decoupled as opposed to the initial single nuclei,
also indicated by the significantly lowered chemical potential.

gluons starts to break, and the matter undergoes a phase transition to a plasma state.
A theoretical phase diagram and the corresponding equation of state are obtainable with
numerical lattice QCD calculations [5], where “lattice” is used to refer to a discretized
subsidiary of the QCD continuum gauge theory [16]. In heavy-ion experiments, the goal
is to induce the phase transformation to the plasma state, by colliding ions at relativistic
energies.

A heavy-ion collision can be modeled as a series of successive phases [17]. A standard
description consists of four different stages, as shown in Fig. 2. Immediately after the
collision event begins the pre-equilibrium stage (stage 1 in the figure). The time duration
of this stage is usually taken to be around 0.2 fm/c or more [18,19]. Stage 2 is the plasma
regime, lasting for about 5 to 10 fm/c. This is the thermalization1 stage dominated by
the physics of QGP. Stage 3 is the mixed-phase stage where the temperature has dropped
enough for the hadronization to begin and hadronic interactions take place. Once the
QGP matter has cooled down, the system is considered to have reached the freeze-out
stage (4). The particle production of the event is then shortly after observed by the

1A thermal equilibrium is assumed in the model calculations [17].
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Figure 2: Spacetime evolution of a collision event, showing the division between different
stages in an arbitrary (z, t)-representation. The straight lines intersecting at the center
portray the colliding nuclei at relativistic speeds. Stages of the collision can be roughly
separated by durations of proper time τ =

√
t2 − z2 [17]. Due to the Lorentz-contraction

of the detector frame, the collision duration is significantly less than the radius of the
nuclei divided by the speed of light. See text for discussion.
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Figure 3: A schematic view of a nuclear collision and the resulting anisotropic flow har-
monics (n ≥ 2), visualized as a polar plot around the participant region (grey). The
observed production particle spectrum follows the shape of the initial anisotropy distri-
bution. No symmetry plane fluctuations are considered, i.e. ψn = ψR∀n ≥ 2. Coordinate
system (x, y) is fixed to the detector’s reference frame.
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detector. The phase transformations that the matter undergoes is also visualized in the
phase diagram in Fig. 1.

A schematic representation of a collision event is presented in Fig. 3. Here two nuclei,
separated by the impact parameter ~b, undergo a peripheral (non-central) collision. The
beam direction defines a reaction plane ψR, which most of all expresses the symmetry of the
collision. The colliding region between the two nuclei is known as the participant region,
where the energy density-dependent initial state symmetry is given by the participant
planes Φm,n of increasing harmonic orders. In a non-central collision, this region has a
highly anisotropic almond-like shape. The greater the overlap, the greater the number of
participants taking part in the impact. For this reason the number of produced particles is
larger in central collisions, which combined with theoretical nuclear models can be utilized
in centrality determination [20,21].

To characterize the initial shape of this system, one defines a set of anisotropy param-
eters εn. The spatial eccentricity, or the coordinate space anisotropy, εm,n can be defined
as [22]

εm,neinΦm,n ≡ −〈r
mein(ϕ−Φm,n)〉
〈rm〉

≡ −
∫

Ω
drdϕrmein(ϕ−Φm,n)ρ(r, ϕ)∫

Ω
drdϕrmρ(r, ϕ)

, (1)

where ϕ and r are the spatial parameters, Φm,n the participant planes and ρ(r, ϕ) is the
initial transverse energy density profile. Here a radial weight m = n will be used, and
a shorthand notation εn ≡ εn,n is to be defined. The eccentricity is obtained from the
theoretical initial state models. A change in the second order eccentricity ε2 expresses
an anisotropic, radial pressure gradient driven expansion of the QGP matter. The initial
density profile is known to fluctuate event-by-event [23, 24], and due to the symmetry of
the system in Fig. 3, the third eccentricity ε3 “triangularity” is completely induced by
these initial state geometry fluctuations. As the system evolves, the spatial eccentricity
decreases while the transverse momentum shall increase. Most of the time the initial state
at the beginning of QGP stage is considered.

Two theoretical QGP evolution models are used in this thesis, the relativistic hydro-
dynamics and a multi-phase transport model (AMPT). The hydrodynamic model relies
on the conservation laws of fluid dynamics, treating the QGP matter as a near-ideal fluid.
One of the required assumptions of hydrodynamics is that the medium is in thermal
equilibrium. As such, the hydrodynamics is only applicable to the second stage of the
collision process. The AMPT on the other hand includes a parton cascade for the QGP
phase. Individual wounded nucleons are converted to partons, which are then scattered
from each other. The AMPT also extends the simulation further by including a model
for hadronic interactions, although such hadronic models have also been used to extend
the hydrodynamic treatment. In both of the models the initial conditions, i.e. the initial
density profile, centrality and such are given by a nuclear geometry model. Several differ-
ent models have been developed [19, 20, 25–27], of which some will be mentioned in later
discussion.

These models have shown remarkable success in describing the measured data, and
the simulations based on the hydrodynamic and partonic models are a substantial part of
QGP heavy-ion physics. Both of these models contain a fundamental parameter for the
strength of the QGP constituent interactions. For the hydrodynamic model, this comes
as the temperature-dependent shear viscosity to entropy ratio η/s(T ), while the partonic
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model requires the partonic two-body scattering cross section dσgg/dt. In this thesis,
the said parameter will be mostly referred as the η/s in the hydrodynamics. One of the
challenges is to find better ways to constrain these parameters. Some of the experimental
observables tend to be more sensitive to altered parameters than the others, while also
suffering from larger experimental or theoretical uncertainties.

Anisotropic Response

The final state of a collision event can be observed as a momentum distribution of the
particles. This collective, measurable response of the evolution process is known as the
flow. Depending on the collision geometry, the magnitude of the flow varies radially
indicated by the particle flux into that particular direction. In Fig. 3, a large pressure
gradient parallel to the reaction plane has induced an elliptic flow, resulting in (finally)
hadronized matter having a momentum distribution also focused in the direction of this
anisotropy. Traditionally the flow has been characterized by a set of coefficients vn, each
coming from the Fourier decomposition of the complete flow distribution:

dN

dφ
∝ 1

2π
(1 +

∞∑
n=1

2vn cos(n(φ− ψn)). (2)

The term “elliptic” refers to the second order flow harmonic v2, and is used to describe
the collective expansion in nuclear matter. Higher orders such as v3 “triangular”, v4

“quadrangular” and so on have their own significance in characterizing the response. In
Eq. (2), the reaction plane ψR in Fig. 3 has been generalized to several harmonic dependent
symmetry planes ψn2. As will be explained next, this is to consider the effects of the
initial geometry fluctuations. Historically, any possible initial geometry fluctuations were
assumed to be negligible, and as a result some of the older literature may prefer to use
the reaction plane ψR throughout the analysis.

An important aspect of the flow is its relation to the initial density profile, or ec-
centricity of the colliding nuclei. Firstly, it is believed that the final state anisotropy is
directly related to the QGP constituent interaction patterns [29]. A study of the complete
final state thus provides a way to examine the collective behaviour in the QGP during
the early thermalization stage. One of the key insights is the parametric relation between
nuclear eccentricities and the response flow magnitudes. Typically for the second and
the third order harmonics, a linear relation vn ∝ εn has been sufficient to describe the
response [30] (see Fig. 4). It has also been noted, that a higher shear viscosity reduces
the hydrodynamic response to the initial spatial anisotropies [8]. As a result, a ratio
vn/εn has been proposed as a constraint for the shear viscosity extraction [31,32]. Given
the initial state of the collision, a theoretical model is employed to simulate the pressure
driven evolution of the QGP as soon as it is formed. After the simulated evolution, the
resulting momentum space anisotropy can be compared with the experimental results,

2The term “event plane” has also been used to describe the symmetry planes. Because of the mixing
of various terminology for different concepts and methods, the “event plane” will be reserved for another
purpose (namely the symmetry planes reconstructed with the event-plane method explained later), and
“symmetry plane” will be used instead.

9



0.0 0.2 0.4 0.6 0.8

ε2

0.00

0.05

0.10

0.15

0.20

0.25

v 2

55−60%

LHC 2.76 TeV Pb+Pb
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ε2

0.00

0.05

0.10

0.15

0.20

v 2

35−40%

LHC 2.76 TeV Pb+Pb

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

ε2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

v 2

5−10%

LHC 2.76 TeV Pb+Pb

0.1 0.2 0.3 0.4 0.5 0.6
ε2

0.02

0.04

0.06

0.08

0.10

0.12

0.14

v 2

c(ǫ2 ,v2 ) = 0.979

C2 = 0.207

sBC η/ s = 0

20− 30 %

0.05 0.10 0.15 0.20 0.25 0.30 0.35
ε3

0.01

0.02

0.03

0.04

0.05

0.06

v 3

c(ǫ3 ,v3 ) = 0.893

C3 = 0.176

sBC η/ s = 0

20− 30 %

0.05 0.10 0.15 0.20 0.25 0.30 0.35
ε4

0.01

0.02

0.03

0.04

v 4

c(ǫ4 ,v4 ) = 0.199

C4 = 0.109

sBC η/ s = 0

20− 30 %

Figure 4: Hydrodynamic vn ∝ εn correlation studies from [19] (above) and [31] (below).
For low and mid centrality classes, the relation for n ≤ 3 is approximately linear.

after normalizing by the eccentricity given by the theoretically modeled initial state. As-
suming that the initial state was correctly modeled, and the assumptions regarding the
evolution model hold, the average interaction strength can be extracted by simply trying
out the best constants and parametrizations.

But as it turns out, there is a non-negligible uncertainty regarding the initial condi-
tions, making the analysis with vn/εn based observables insufficient. In addition to the
shear viscosity, the elliptic flow is also sensitive to the initial state fluctuations and the
variations between the theoretical models describing them. One solution proposed is to
use a combination of elliptic and triangular flow analysis, as the triangular flow removes
the large geometry-induced ε2 eccentricity dependence [8]. It is further expected that
because of larger viscous corrections, higher flow harmonics are also increasingly more
sensitive to shear viscosity, leading to even better constraints [8]. However, whereas the
v2 and v3 based observables were mostly limited by the theoretical uncertainties, the
higher harmonics are generally more troubled with the experimental precision. This also
comes with the fact that the higher order response (n > 3) is not linear, as found in the
recent studies [12].

Despite initially sounding like an issue, the non-linearity of the higher harmonics can in
fact be exploited. In the recently developed non-linear formalism, the non-linear response
of the higher n > 3 harmonics is decomposed into a linear and non-linear parts [12, 14].
Assuming the linearity holds for the lower harmonics, and the non-correlation of the two
contributions, a set of coefficients describing the relative magnitudes of the linear and
non-linear responses is obtained. The coefficients representing the ratio between the re-
sponses should then intuitively be free of the uncertainty. As opposed to the single vn
based observables, the new coefficients have all the prerequisites to constrain the inter-
action strength parameters of the evolution models. As always, constraining requires
experimental data. This in turn calls for the measurement of these coefficients, which is
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the main purpose of this thesis.
Some prior work exists to determine the non-linear coefficients [14]. This work, such

as the ATLAS and CMS event-plane measurements [33, 34], also involve studies of cor-
relations between varying flow magnitudes, which can be used to extract the non-linear
contributions. In the ATLAS analysis, the non-linearity of the higher orders were inves-
tigated based on a different, more complicated method that the one used in our analysis.

The results of this thesis have been produced as a preliminary analysis work for a
publication by the ALICE Collaboration. Our analysis has been carried out as follows.
From ALICE Pb–Pb

√
sNN = 2.76 TeV data, we compute the required moments which

we use for every flow quantity present. We acquire the required event plane observables
and study the correlations between coefficients with respect to various directions. Finally,
we use this new data to obtain the non-linear coefficients. As part of our analysis we
compare our results to simulations, investigate the pT -dependence and perform various
systematic checks to locate sources of potential errors.
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2 Theoretical Frameworks

2.1 Hydrodynamic Modeling

Relativistic Hydrodynamics

A successful description of the heavy-ion collisions is given by relativistic hydrodynamics.
The application of hydrodynamics in particle physics originates from the early attempts
at analyzing collective particle motion as a result of proton-proton collisions [35,36]. Most
of all the hydrodynamic model emphasized the importance of a transversely longitudinal,
anisotropic expansion of the system rather than an isotropic one expected from an ideal
gas [37]. Since the first experimental observations of the QGP matter evolving in a fluid-
like manner, the role of the hydrodynamics in heavy-ion physics has been significant. The
hydrodynamic treatment has since been refined to model the fluid-like (both ideal and
viscous) evolution of the QGP to impressive levels of accuracy.

A general hydrodynamic description relies on the energy and momentum conservation
laws of the fluid dynamics. In the case of relativistic hydrodynamics, the local energy-
momentum conservation can be expressed by [9, 38]

∂µT
µν(x) = 0, (3)

where T µν is a kinetically defined rank-two energy-momentum tensor and x = (t, ~x) a
position in spacetime. Note that for a complete fluid description, additional conservation
laws may be required, such as the charge conservation in the presence of charged currents.
In heavy-ion physics, the charge conservation is governed by the continuity equations for
the charged baryon density [9, 38]:

∂µJ
µ
B(x) = 0. (4)

Here JµB = nBu
µ is the net baryon current at the given location, a quantity defined by

the product of baryon density nB and its local four-velocity uµ.
The application of hydrodynamics comes down to a few well-defined assumptions. The

first assumption is the local thermal equilibrium, which allows us to decompose Eq. (3) in
terms of local energy density and pressure. Omitting the details, one can show [38] that

∂µT
µν = (ε+ p+ Π)uµuν − (p+ Π)gµν + πµν , (5)

where the energy density ε and pressure p quantities are both functions of position. Fur-
thermore, here gµν is the metric tensor, and Π, πµν are the bulk pressure and shear stress
tensor also involving the shear viscosity, respectively.

We may consider a case where Π and πµν are set to vanish. Eq. (5) is then the energy-
momentum conservation in case of ideal hydrodynamics, where all the dissipative effects
are considered to be negligible. However, generally the fluid behaviour is not ideal, and
according to theoretical calculations there is always some small but finite viscosity for
all substances [39]. The model calculations have suggested that the QGP behaves as a
nearly perfect fluid, with its η/s close to the universal minimum 1/(4π) ≈ 0.08 [40]. In
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Figure 5: Various parametrizations for the temperature dependence of the shear viscosity
to entropy ratio η/s [19]. The minimum is expected to be around the critical point,
approximately Tc ≈ 150 v 175 MeV [15].

some literature, both viscous and non-viscous hydrodynamical models are considered for
computational comparisons.

The η/s is known to be temperature dependent. Instead of a constant average value
(an average over the full thermalization stage), a temperature dependent parametrization
can be applied. Such parametrizations are presented in Fig. 5 [19]. It is worth noting,
that as for many other known fluids, the minimal η/s of the QGP can always be found at
the vicinity of the critical point [15]. While constraining, finding the minimal temperature
for η/s would also verify the location of the said point in the phase diagram.

Like many other theoretical models today, the application of the hydrodynamical
model also heavily relies on modern computer simulations. In computational hydrody-
namics, the time evolution of the system is obtained by e.g. iteratively time stepping the
discretized hydrodynamical equations. For numerical details on relativistic hydrodynam-
ics, the reader is referred to [41].

Equation of State

For the hydrodynamical model to be useful, certain constraints and conditions have to
be enforced. Together Eq. (3) – (5) and the possible relations for the bulk density and
shear stress define a system of equations. In order to give this system a closed form, the
number of equations must equal to the amount of independent variables. This is achieved
by involving an additional relation between the state observables, called the equation of
state (EoS) of the form

p = p(ε, nB). (6)

The purpose of the EoS is to complete the equations by relating the energy density ε,
pressure p and the baryon density nB in a thermally equilibratory system. The EoS is
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Figure 6: An MC-Glauber event for two colliding gold ions [20]. The participant nucleons
in the middle are drawn with more prominent red and blue colors.

Figure 7: Transverse plane initial density comparison between MC-Glauber, MC-KLN and
IP-Glasma (pre-smoothed τ ≈ 0 fm/c) models [27]. Units of length are mostly arbitrary.

obtainable with lattice QCD simulations [5].

Initial Conditions

Solving a set of differential equations also requires knowledge of the initial state, given in
the form of initial conditions. In this case, of particular interest is the state of nuclear
matter during the thermalization phase in the heavy-ion collision. Typically a Monte-
Carlo based method is used to generate the fluctuating initial conditions. One of such
is the Glauber model [20, 25] in which the initial conditions are obtained by randomly
sampling nucleons from measured density distributions. A result from such a model is
seen in Fig. 6. An initial geometry for the collision is modeled by placing and projecting
the two colliding nuclei apart from each other by some randomly chosen impact parameter.
Further steps involve computing the interaction probabilities and the calculation of the
energy density based on whether the participant nuclei collide or not.

Other extensively studied models include the color-glass-condensate based MC-KLN
(Kharzeev-Levin-Nardi) [26, 42] and IP-Glasma [27, 45] for the initial conditions. Com-
pared to the Glauber model, these models differ in the level of detail, and the results vary
from smoother energy densities to structurally finer where the color charge fluctuations
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have been considered. A comparison between energy densities produced by these models
is given in Fig. 7. Of the models shown here, the Glauber produces the smoothest initial
conditions. The finest structure is given by the IP-Glasma, although the Yang-Millis evo-
lution also smoothes much of the initial roughness. Compared to the smoother models,
this additional granularity also tends to induce larger fluctuation driven odd eccentrici-
ties [27, 28,45].

In Fig. 8, the effect of the different initial conditions on traditional vn/εn observables
is emphasized. As a reference data, the study [10,43] has used the flow from the gold ion
collisions measured by the STAR Collaboration [44]. Results from viscous hydrodynamics
with four different η/s are presented, and the data is shown as unconnected squares. Be-
tween the two initial state models, in both cases the hydrodynamical calculations capture
the correct centrality dependence of the observables. However, the initial state uncer-
tainty is clearly visible when normalizing the response by the eccentricities given by these
models. Determining the η/s with the Glauber initial conditions gives a slightly smaller
result compared to the models with more crude density profiles. Similar observations can
be made for Fig. 9 [11], where a comparison has been made for identified particles as a
function of transverse momentum. Based on these studies, it was concluded [10, 11] that
the resulting η/s varies within the range of 0.08 to 0.24.

Hadronization

To be able to do any comparisons between simulations and real experiments, the hydro-
dynamically evolved energy density has to be converted into a particle spectrum corre-
sponding to the measured distributions obtained in heavy-ion experiments. Once sufficient
evolution stopping conditions have been reached, the particle spectrum is obtained using
the Cooper-Fry formula [46]

E
dN

d3p
=

∫
σ

dσµp
µf, (7)

where σ is the surface of condensation and f a particle distribution function of thermody-
namical observables. Determination of the final state can be done by thresholding specific
observables (such as the freeze-out temperature), although more accurate methods based
on comparisons of expansion and scattering rates have also been proposed [47,48].

2.2 A Multi-Phase Transport Model

Cascade Simulation

An alternative method to QGP-modeling is to regard the collision as a series of par-
tonic interactions. Whereas the hydrodynamic modeling was based on the equations of
fluid dynamics, the so-called hadronic and partonic cascade simulations rely much more
on Monte-Carlo based simulations to dictate the individual processes between reaction
candidates. One collection of such steps for the initialization, interaction modeling and
termination is known as the AMPT, a multi-phase transport model.

In a multi-phase transport model the colliding nuclei undergo four different phases
[49, 50]. These are the generation of the initial conditions, the partonic interactions, the
conversion to hadronic matter and finally the hadronic interactions. The basic idea of the

16



partonic cascade phase of the AMPT is to simulate parton scattering events according to
interaction probabilities given by the cross sections of the pQCD, also directly related to
the shear viscosity used in hydrodynamics [50]. In a transport model, the parton interac-
tions are described by the equations of motion for parton density distributions fa(~x, ~p, t)
(for type a parton) [49]. These equations may be approximated by the Boltzmann equa-
tions

pµ∂µfa(~x, ~pb(i), t)

=
∑
m

∑
b(1),...,b(m)

∫ m∏
i=1

d3pb(i)
(2π)32Eb(i)

fb(i)(~x, ~pb(i), t)

×
∑
n

∑
c(1),...,c(m)

∫ n∏
j=1

d3pc(j)
(2π)32Ec(j)

|Mm→n|2

×(2π)4δ4

(
m∑
k=1

pb(k) −
n∑
l=1

pc(l)

)

×

[
−

m∑
q=1

δab(q)δ
3(~p− ~pb(q)) +

n∑
r=1

δac(r)δ
3(~p− ~pc(r))

]
,

(8)

or in the reduced two-body form

pµ∂µf(~x, ~p, t) ∝
∫
σggf(~x1, ~p1, t)f(~x2, ~p2, t) (9)

which the partonic cascade model attempts to solve. In Zhang’s parton cascade (ZPC)
[51], which currently is limited to gg → gg interactions, two partons scatter whenever
they reach the closest interaction distance. The interaction probability is determined by
the differential cross section

dσgg
dt

=
9πα2

s

2(t− µ2)2
, (10)

where t is a basic Mandelstam variable, αs the strong coupling constant and µ the Debye
screening mass in partonic matter. Scattering events are simulated for some specific
duration of time, until the scattering is considered to have stopped.

Initial Conditions

Initial conditions for the AMPT are produced with the HIJING (Heavy Ion Jet Interaction
Generator) model [52, 53]. These conditions include the soft string excitations (among
wounded nucleons, nucleons that underwent a collision) and the spatial and momentum
distributions of the produced partons. HIJING employs a binary collision model between
the two colliding nuclei. The number of binary collisions is determined by the Glauber
geometry, where the nuclear density profiles are assumed to have Wood-Saxon shaped
distributions.

For each binary collision HIJING uses the eikonal formalism to evaluate nuclear inter-
action probabilities for parton jet outputs [53]. After the jet producing hard scattering
processes have been modeled, the remaining energy is used for the soft string excitations.
The excited string system may then further experience more collisions.
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There are two variations of the AMPT model, the original default and the extended
string melting version. The main difference between the versions concerns how the remain-
ing excited strings are handled during the initial conditioning stage. In the string melting
version, non-projectile and nucleon targeting strings are converted into partons according
to the flavor and spin structures of their valence quarks [49]. This additional mechanism
attempts to correct the underestimated partonic effect associated with the excited strings
in high energy density regions [54]. In the absence of partonic and hadronic interactions,
the string melting version reduces to the default one, provided that the parton formation
time was correctly selected.

Similarly to the shear viscosity in the hydrodynamic model, one may attempt to
constrain corresponding parameters of the AMPT. One may write a relation between the
η/s and partonic model transport cross section. Considering the viscosity of the kinetic
theory, and the entropy density in terms of quarks and antiquarks, the relation is given
in [50] by

η

s
≈ 3π

40α2
s

[(
9 +

µ2

T 2

)
ln

(
18 + µ2/T 2

µ2/T 2

)
− 18

]−1

. (11)

Hadronization

The hadronization process begins already during the partonic cascade. This results in a
coexistence of newly produced hadrons and still scattering partons. Since the different
versions of the AMPT produce a different set of post-partonic conditions, some differences
are also present at the stage of hadronization. In the default version partons are combined
with their parent strings, the remainings of the original nuclei. These new excited strings
are then hadronized according to the Lund string fragmentation model [55]. In the Lund
model strings fragment into quark-antiquark pairs, which are further used to form hadrons
according to the model’s symmetric fragmentation function.

For the string melting version a quark coalescence model is used to perform the
hadronization [49]. Here two nearest partons are combined into a meson, and three
nearest (anti)quarks into some (anti)baryon according to the quarks’ flavor and invariant
mass. In both default and the string melting versions, newly created hadrons are given
a short additional formation time, during which they are not yet allowed to scatter with
other hadrons.

The AMPT model includes a model for hadronic interactions, ART (a relativistic
transport model) [56, 57]. During this hadronic cascade phase the final products of the
partonic simulation are allowed to scatter with each other, elastically and inelastically. For
interacting species baryon-baryon, baryon-meson and meson-meson pairs are supported.
The hadronic interactions stage of the simulation is commonly referred to as “rescattering”.
To study the effect of the rescattering, results will be provided with rescattering both
enabled and disabled.

Configurations

The AMPT model can be run in two main configurations, the default and the string
melting version. In both configurations, the dynamics of the subsequent hadronic matter
is described by ART. The third version used in this thesis is based on the string melting
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Table 1: The AMPT configurations.
Label String Melting Rescattering
Default N/A On
Str.m On On

Str.m w/o Rescattering On Off

configuration in which the hadronic rescattering phase is switched off to study its influence.
The different configurations for the model comparison are summarized in Table 1.
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3 Experimental Relations

3.1 Anisotropic Flow

Definition

A practical and standard way to characterize the anisotropic flow is to decompose its
azimuthal distribution in terms of a Fourier series [58,60]. The Fourier series for a periodic
function (period P = π) can be written as

f(φ) =
a0

2π
+

1

π
(
∞∑
n=1

an cos(nφ) +
∞∑
n=1

bn sin(nφ)), (12)

where an =
∫ π
−π f(φ) cos(nφ)dx and bn =

∫ π
−π f(φ) sin(nφ)dx. With a finite number of

particles, the integrals become sums. To write the series in terms of just one harmonic
flow coefficient, one defines

vn =
√
a2
n + b2

n, (13)

so that for Eq. (12) an = vn cos(nψn) and bn = vn sin(nψn). Substituting these one finally
gets

dN

dφ
∝ 1

2π
(1 +

∞∑
n=1

2vn cos(n(φ− ψn))), (14)

where the sine-terms have vanished due to ψn momentum symmetry: an integral over
sines of particle angles (with respect to the symmetry plane) equals to zero in the case
of equal probability for inverted φ → −φ emittance directions. An explicit expression
for the flow harmonics can be obtained by integrating over the normalized distribution.
Using trigonometric orthogonality relations, one can show that

vn = 〈cos(n(φ− ψn))〉, (15)

where the brackets denote an average over all particles in all events, potentially limited to
some event centrality class.3 Eq. (15) gives the definition of collective flow: a correlation
between the azimuthal angle φ of a particle to a symmetry plane of a non-central heavy-
ion collision. Due to low number of emitted particles per event, an average over all events
is preferred to reconstruct the underlying probability distribution.

An equivalent and also commonly used notation may be written with exponential
complex quantities. With complex quantities, Eq. (12) takes the form

dN

dφ
∝ 1

2π

∞∑
n=−∞

〈einφ〉︸ ︷︷ ︸
Vn

e−inφ, (16)

where Vn ≡ 〈einφ〉 = vneinψn corresponds to the definition in Eq. (15). An uppercase
Vn is used to denote a flow quantity, which in addition to its magnitude also includes its

3From here on, an implicit centrality class restriction will be assumed for all averages concerning event
groups.
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direction. Such a quantity will be useful in more complicated analysis such as the one
involving mixed harmonic event-plane correlations.

According to the formalism given by Eq. (14), only even harmonics should have a non-
zero flow amplitude. This is due to the fact that also the opposite directions φ→ φ+π have
an equal chance of having a particle emitted. In realistic situations however, as a result
of event-by-event initial geometry fluctuations, the average flow for the odd harmonics is
typically non-zero. Some details about the consequences of the initial fluctuations [59]
were given in section 1.2.

Harmonic Projection

It is possible to measure a flow quantity relative to another harmonic direction instead
of its own. To get the flow with respect to the direction of the other, one projects the
harmonic on to the desired symmetry plane.

Consider a generic projection of a flow vector Vn on to the direction of Vm, analogous to
a basic vector projection a1 = |a| cos(θab) = a ·b/|b|. Additionally, both of the directional
angles ψn and ψm have been scaled by some integer an and am, respectively:

vn{ψm}(an, am) = vn{ψn}〈cos(anψn + amψm)〉 =
Re〈V

an
n

n V
am
m

m 〉√
〈|Vm|2

am
m 〉

. (17)

A notation vn{ψm} is used to denote a flow coefficient projected onto other direction ψm.
To retain the harmonic symmetry properties for relative angles between the symmetry
planes, two conditions have to be satisfied [33, 61, 62]. Firstly, an lth-order l-folded sym-
metric harmonic has to be invariant under phase transformations ψl → ψl + 2π/l. This is
satisfied when an|n and am|m. The second condition requires the sum of the coefficients
to vanish: an + am = 0, i.e. am = −an. Both of the conditions are met when a least
common multiple (LCM) between the harmonic integers n and m is chosen for the angle
scaling:

anψn + amψm → k(ψn − ψm), (18)

where k = LCM(n,m). A symmetrically valid projection can then be written as

vn{ψm}(k,−k) = vn{ψn}〈cos(k(ψn − ψm))〉 =
Re〈V

k
n
n (V ∗m)

k
m 〉√

〈|Vm|2
k
m 〉

, (19)

where a complex conjugate (∗) is used to negate the exponent factor.
Eq. (19) is then used to obtain some projections of interest. By projecting the higher

harmonics on to the lower ones, one can for example analyze the fourth order flow with
respect to the direction of the second one [14]. For the sixth order the directions are those
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of second and third:

v4{ψ2} =
Re〈V4(V ∗2 )2〉√
〈|V2|4〉

=
〈v4v

2
2 cos(4ψ4 − 4ψ2)〉√

〈v4
2〉

,

v6{ψ2} =
Re〈V6(V ∗2 )3〉√
〈|V2|4〉

=
〈v6v

3
2 cos(6ψ6 − 6ψ2)〉√

〈v6
2〉

,

v6{ψ3} =
Re〈V6(V ∗3 )2〉√
〈|V3|4〉

=
〈v6v

2
3 cos(6ψ6 − 6ψ3)〉√

〈v4
3〉

.

(20)

Inserting the definition of Vn, one obtains the real valued counterparts on the right-hand
side.

From the required constraints it should be obvious that Eq. (19) can only be used
to generate projections of even harmonics, without involving any additional exponent
factors. For even harmonics the projection might be generalized to an arbitrary number
of symmetry planes:

vn{ψm}(c1, c2, . . . , cl) = vn{ψn}〈cos(
l∑

j=1

jcjψj)〉 =
Re〈V c1

1 V c2
2 . . . V cl

l 〉√
〈|V1|2c1|V2|2c2 . . . |Vl|2cl〉

, (21)

for which a constraint c1 + 2c2 + · · · + lcl = 0 is enforced [61], also satisfied by the two-
plane variation in Eq. (19). Using Eq. (21), projections of odd harmonics on to multiple
symmetry planes may be obtained:

v5{ψ23} =
Re〈V5V

∗
2 V
∗

3 〉√
〈|V2|2|V3|2〉

=
〈v5v2v3 cos(5ψ5 − 2ψ2 − 3ψ3)〉√

〈v2
2v

2
3〉

,

v7{ψ23} =
Re〈V7(V ∗2 )2V ∗3 〉√
〈|V2|4|V3|2〉

=
〈v7v

2
2v3 cos(7ψ7 − 4ψ2 − 3ψ3)〉√

〈v4
2v

2
3〉

.

(22)

Equations in (20) and (22) are used to study the correlations between event-planes, mea-
suring the contribution in higher order flow induced by the lower orders. Additionally,
the quantities will later be used in defining the non-linear coefficients. More details will
be given in sections 4.1 and 4.2.

Analytic Considerations

Although Eq. (15) is valid, its application in realistic heavy-ion experiments is severely
limited. One of the major reasons is its reliance on the symmetry plane quantity ψn.
Unlike in simulations, where this might be given by the Glauber model for example, this
quantity cannot be experimentally determined. Furthermore, the symmetry planes are
not constant over the collision events, so no common coordinate system between multiple
events exist.

An alternative approach is employed for data analysis on experimental data. Among
common possible solutions are the event-plane method [60, 66], its derivative scalar-
product variation [63, 66] and the multi-particle correlations [67, 68], which are used to
reconstruct the flow coefficients without knowledge of the reaction plane. The results of
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this thesis rely on the scalar product and multi-particle correlations, so the methods based
on these will be briefly explained next.

A common tool for many reconstruction methods is the flow vector [69], which is the
vector sum of all particle directions in a single event. Both scalar product and multi-
particle methods make extensive use of this quantity. The weighted flow vector, also
known as the Q-vector is defined as

Qn,p =
M∑
k=1

ωpke
inφk , (23)

where M is the number of particles in the event, ω an optional contribution weight and
p an implementation-related parameter. For ω the particle transverse momentum can
be used, which well approximates the ideal weight vn(pT ). Weighting may improve the
results in some cases, although in this study no weighting will be used, i.e. ω = 1.

Non-Flow Contributions

While discussing the methods for the reconstruction, an additional flow contribution
known as the non-flow [68, 70], denoted with δ, will also be mentioned. This unwanted
contribution from jet correlations, resonance decays and such not originating from the
collision anisotropies can be written as

〈QAQB〉 = 〈QA〉〈QB〉+ δ (24)

in the case of a correlator of two Q-vectors QA and QB. The non-flow will be considered
an experimental uncertainty, and methods to minimize the non-flow contributions will be
detailed.

3.2 Scalar Product Method

Event-plane Resolution

The event-plane (EP) and the scalar product (SP) methods are closely related, so it
suffices to introduce the concept of the former first. The original idea of the event-plane
method was to use the flow vector as an estimate for the true reaction plane [69]. The
large statistical error, coming from the low multiplicity, is corrected for by introducing
the concept of the event-plane resolution.

From here on, the symmetry planes reconstructed with the event-plane method will
be correspondingly called event-planes, to indicate a presence of an approximation. An
approximate flow is acquired as in Eq. (15), except that here the true reaction plane ψR

(or in this case the symmetry plane ψn) has been replaced with an estimate:

vobs
n = 〈cos(n(φ− ψ̃n))〉, (25)

where the estimate ψ̃n is obtained from the Q-vector:

ψ̃n =
1

n
arctan

(
Im(Qn,1)

Re(Qn,1)

)
. (26)
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The observed vobs
n is then corrected for by dividing it by the event-plane resolution:

vn =
vobs
n

Rn

. (27)

The resolution Rn is defined as the estimate’s deviation from the true reaction plane,

Rn = 〈cos(n(ψ̃n − ψn))〉 =

√
π

2
χe−

χ2

2

[
In−1

n

(
χ2

2

)
+ In+1

n

(
χ2

2

)]
, (28)

where χ = vn
√
M is a resolution parameter [29] for an event of multiplicity M and I the

modified Bessel function

In(z) =
1

π

∫ π

0

ez cos(θ) cos(nθ)dθ, n ∈ Z. (29)

Eq. (28) is not used due to the unavailable quantities in the middle part and the implicit
form of the right-hand side. Instead, a subevent method based on symmetrically identical
reference detectors is employed.

Subevents and Reference Detector

More formally the complete event-plane method can be derived with the help of Q-vectors.
By definition the event-plane method correlates a small group of particles of interest
(“POI”, identified particles, optionally further narrowed by a pT condition4, for example)
with a much larger group of background particles (unidentified reference detector par-
ticles) [66]. A correlation to a reference group is required to fight the larger statistical
fluctuation caused by the low event multiplicity. This correlation can be expressed as〈

Qn
Q∗nA
|QnA|

〉
= 〈Qne−inψn〉︸ ︷︷ ︸

vn

〈
QnA

|QnA|
e−inψn

〉
︸ ︷︷ ︸

RnA

∗

, (30)

where on the right hand side the correlation has been factorized by the assumption that
the particles of interest Qn and the reference QnA are uncorrelated, except for the flow
direction ψ̃n. On the right hand side one can also further identify the factors as the flow
coefficient and the reference detector event-plane resolution in terms of Q-vectors. Solving
this for vn a relation to Eq. (27) is obtained.

To estimate the resolution, the subevent method is used. In the subevent method, two
or more subsets are taken from the reference particles from the original event. Subevent
multiplicities should be equal.5 The flow vectors of these subevents are then correlated
with each other. In its simplest form, two subevents are used. A correlation between
these two can be written as〈

QnA

|QnA|
Q∗nB
|QnB|

〉
=

〈
QnA

|QnA|
e−inψn

〉〈
Q∗nB
|QnB|

e−inψn
〉∗

︸ ︷︷ ︸∣∣∣〈 QnA
|QnA|

e−inψn
〉∣∣∣2≡R2

nA

, (31)

4Correlating only selected particles with the reference allows one to obtain the flow as a function of
some property, such as the transverse momentum pT .

5Failure to match the subevent distributions will result in raised non-flow contributions, increasing
the variance of the results.
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where on the right side factorization has been used again. Since the subevent distributions
are supposed to be identical, the subevent resolutions can be combined, leaving us a
square of the final resolution. Particle selection for the subevents can be done randomly
(in a uniform manner), or by pseudorapidity η, separating the subevents around the
midrapidity [60] (ie. η-gap) to reduce the non-flow effects [64,65].

Explicit methods

Combining the results of equations (30) and (31), one finally gets an evaluable form for
the two-subevent event-plane method:

vn{EP} ≡
〈
Qn

Q∗nA
|QnA|

〉/√〈
QnA

|QnA|
Q∗nB
|QnB|

〉
. (32)

Typically an “EP” label is used to explicitly denote a coefficient extracted with the event-
plane method. By slightly modifying the above result, one can also obtain the scalar
product variation. Removing the normalizations by |Qn∗| in both numerator and denom-
inator, one gets

vn{SP} ≡ 〈QnQ
∗
nA〉/

√
〈QnAQ∗nB〉. (33)

By “scalar product” one refers to the complex product in the denominator. Derivation is
practically identical to the event-plane method. There are advantages of using the scalar
product method over the event-plane [66], especially in the presence of flow fluctuations,
where the factorizations used in equations (30) and (31) no longer applies.

If no differential analysis is required, the method may be reduced to consider the whole
spectrum of particles as POI. In the case of the scalar product method, the resulting
coefficient is calculated from just the two subevents:

vn{SP} ≡
√
〈QnAQ∗nB〉. (34)

The individual single vn{ψn} calculations in this analysis rely on Eq. (34). No differential
analysis is performed, rather the selection is restricted to a large, gradually narrowing
pT -cuts where good statistics can be preserved.

When calculating quantities with mixed event-plane angles, the scalar product method
needs to be generalized for the harmonic projections of the flow [79]. Using a generic
moment of the form

M =

〈∏
n

(Vn)kn(V ∗n )ln

〉
=

〈∏
n

(QnA)kn(Q∗nB)ln

〉
, (35)

one generalizes the scalar-product method for subevents of arbitrary harmonics [14, 79].
Using this to the results in (20) and (22), the explicit method becomes

v4{ψ2} =
Re〈Q4A(Q∗2B)2〉√
Re〈Q2

2A(Q∗2B)2〉
, (36)
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with k4 = 1, l2 = 2 and

v5{ψ23} =
Re〈Q5AQ

∗
2BQ

∗
3B〉√

Re〈Q2AQ3AQ∗2BQ
∗
3B〉

, (37)

with k5 = 1, l2 = l3 = 1 as an example. The rest of the correlations for non-differential
analysis are obtained similarly.

3.3 Multi-Particle Correlations

Two-Particle Correlations

In multi-particle correlations, instead of considering a distribution of single particles, pairs
or groups of multiple individuals are examined [68,71,77]. Here the emphasis will be put
on two-particle correlations. The analysis starts by forming a pair distribution from the
product of two single particle distributions (16) [71]. This leads to

〈ein(φa−φb)〉 = 〈einφa〉〈e−inφb〉 = 〈vanvbn ein(ψa,n−ψb,n)︸ ︷︷ ︸
≈0

〉 (38)

and
dNpair

d∆φ
∝ 1

2π
(1 +

∞∑
n=1

2 〈vanvbn︸ ︷︷ ︸
vn∆

〉 cos(n(φa − φb))), (39)

assuming ψa ' ψb in every case.6 Then, for a single event, a two-particle correlation is
obtained as

〈2〉 = vn∆ = 〈ein(φa−φb)〉 =

∑M
i 6=j wiwje

in(φi−φj)∑M
i 6=j wiwj

, (40)

where M is the event multiplicity.
The correlation in Eq. (40) is computed for every event that is to be considered in the

analysis. The correlations for the individual events are then averaged. The average for
the two-particle correlations is defined as the second order cumulant:

cn{2} = 〈〈2〉〉. (41)

Eq. (41) defines the two-particle cumulant for the reference flow, computed from the
unidentified background particles. A notation {k} is used to indicate a quantity that has
been calculated using multi-particle correlations. Here k is the order of the correlation.

As for the event-plane method, a correlation between the particles of interest and
the reference is required. The particles satisfying the desired conditions are selected and
labeled as POI. The reduced two-particle correlation for a single event is defined as

〈2′〉 =

∑mp
i=1

∑M
j 6=iwje

in(φi−φj)∑mp
i=1

∑M
j 6=iwj

, (42)

6There are some fluctuation considerations again, especially when paT 6= pbT . This is known as the
breaking of two-particle factorization, i.e. Vn∆(paT , p

b
T ) ≡ 〈ein(φa−φb)〉 6= vn(p

a
T )vn(p

b
T ). See [72, 73] for

discussion and tests.
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where mp is the number of POI. From this a differential cumulant is obtained as

dn{2} = 〈〈2′〉〉, (43)

which together with the reference flow cumulant cn{2} gives the final flow coefficient:

vn{2} =
dn{2}√
cn{2}

. (44)

Again, if no differential analysis is needed, one has dn{2} = cn{2}, and the result may
be reduced to vn{2} =

√
cn{2}. Comparing the components in Eq. (44) with the scalar

product method Eq. (33) one can see that the methods are essentially equivalent. Only
the methods to obtain the coefficients differ. The real advantage of the multi-particle
correlations is the inherent mechanism in suppressing the non-flow contributions. The
non-flow suppression based on the higher order cumulants will be reviewed next.

Many-Particle Correlations

To suppress the non-flow effects, the scalar product method relied on an η-gap to ensure
a proper separation of the subevents. Unlike with the scalar product method, no such
gap is applied with the multi-particle correlations. Rather, increasing orders of cumulants
reduced by the lower ones [68] is utilized:

cn{2} = 〈〈2〉〉,
cn{4} = 〈〈4〉〉 − 2〈〈2〉〉2,
cn{6} = 1/4(〈〈6〉〉 − 9〈〈4〉〉〈〈2〉〉+ 12〈〈2〉〉3),

· · · ,

(45)

with vn{2} =
√
cn{2}, vn{4} = 4

√
−cn{4} and vn{6} = 6

√
cn{6}/4.

In Eq. (45), each of the orders suppresses the non-flow of the previous one. To see
the mechanism behind this, one might write the non-flow explicitly in to the second order
cumulant. Redoing the two-particle factorization in Eq. (38) for the second order:

〈ein(φa−φb)〉 = 〈einφa〉〈e−inφb〉+ δ2 = vn∆ + δ2, (46)

where δ2 (non-flow) is the correlation term independent of the symmetry plane. The two
terms are assumed to be uncorrelated. A second order four-particle factorization can be
written as

〈ein(φa+φb−φc−φd)〉 = 〈einφa〉〈einφb〉〈e−inφc〉〈e−inφd〉
+ 〈ein(φa−φc)〉〈ein(φb−φd)〉
+ 〈ein(φa−φd)〉〈ein(φb−φc)〉+ δ4

= v2
n∆ + 2(vn∆ + δ2)2 + δ4.

(47)

Here angular symmetry between φa → φc and φb → φd has been used for combining the
factors. Forming the cumulants from equations (46) and (47), and inserting into Eq. (45),
one obtains the fourth order cumulant

cn{4} = 〈−v2
n∆ + δ4〉 ≈ 〈−v2

n∆〉 (48)
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where the non-flow of the second order has been suppressed, and the error in the mea-
surements thus reduced.

It is possible to show that the magnitude of the non-flow roughly follows a relation
δ2k ∝ M1−2k [68]. For a multiplicity M = 50 ∼ 400 typical for a heavy-ion collision, the
use of a fourth order cumulant as opposed to the second order can significantly reduce
the non-flow effects.

Lee-Yang Zeroes

For a reference, a method has been developed to calculate the cumulants to the limit of
the infinite order. In the Lee-Yang zeroes method [74, 75], one obtains the reference flow
by first computing the generating function

Gθ(ir) =

〈
M∏
j

[1 + irwje
in(φj−θ)]

〉
(49)

for a large number of different real valued r > 0 and 0 < θ < π/n. The flow is given by
the estimator

vn{∞} =
1

N

N∑
θ

j01

rθ0
, (50)

where N is the number of angular samples, j01 the first zero of the Bessel function J0 and
rθ0 the first positive minimum of the modulus |Gθ(ir)|.

Since only finite order cumulants are used in this analysis, further details will be
omitted. For complete details on the method, statistical uncertainty and the extension to
differential analysis, see [74,75].

Explicit methods

A general problem with multi-particle correlations is the required computational effort to
calculate the cumulants. Computing a {2}-correlation from definition (40) is a O(≈ n2)
operation. For higher orders {4}, {6} etc. the complexity is exponential. Given that
the number of events to be analyzed usually varies in the millions, the problem becomes
significant. Several ways of approximating Eq. (40) have been introduced over the years
[67, 74, 76], all attempting to provide good estimates while minimizing the non-flow and
autocorrelations (particles pairing with themselves).

More recently, however, analytical solutions have been presented [77], providing means
for fast correlation calculations. The analytical results for higher orders tend to be lengthy,
although for two-particle correlations the derivation is compact enough to be shown here.
An explicit solution is found by first identifying a relation between the definition Eq. (40)
and a Q-vector Eq. (23). By adding the autocorrelation to Eq. (40) one has

M∑
i 6=j

wiwj〈2〉+
M∑
k=1

w2
k ein(φk−φk)︸ ︷︷ ︸

=1

=
M∑
i,j=1

wiwje
in(φi−φj) = |Qn,1|2, (51)
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which is solved to get

〈2〉 =
|Qn,1|2 −

∑M
k=1w

2
k∑M

i 6=j wiwj
=
|Qn,1|2 − S1,2

S2,1 − S1,2

, Sb,p =

(
M∑
k=1

wpk

)b

. (52)

The cumulant for multiple events is then a weighted average

cn{2} = 〈〈2〉〉 =

∑N
g=1

(∑M
i 6=j wiwj

)
g
〈2〉g∑N

g=1

(∑M
i 6=j wiwj

)
g

=

∑N
g=1(|Qn,1|2 − S1,2)g∑N
g=1(S2,1 − S1,2)g

, (53)

where g → N loops through the relevant events. The quantity is calculated for the
reference particles only, which may also include particles labeled as POI.

The results for the differential cumulants can be derived similarly [77]. For the reduced
two-particle correlation

〈2′〉 =
pn,0Q

∗
n,1 − s1,1

mpS1,1 − s1,1

, pn,p =

mp∑
k=1

wpke
inφk , sb,p =

(
mq∑
k=1

wpk

)b

. (54)

Two additional quantities pn,p and sb,p were defined. Here pn,p is a vector for POI, which
may also belong to the reference particles. Only the reference exclusive particles should
have a potentially non-unit weight. The scalar quantity sb,p on the other hand is defined
for particles strictly both POI and reference. The corresponding cumulant is

dn{2} = 〈〈2′〉〉 =

∑N
g=1

(∑mp
i=1

∑M
i 6=j wj

)
g
〈2〉g∑N

g=1

(∑mp
i=1

∑M
i 6=j wj

)
g

=

∑N
g=1(pn,0Q

∗
n,1 − s1,1)g∑N

g=1(mpS1,1 − s1,1)g
, (55)

again where only the relevant events are accounted for. For the final flow coefficient,
Eq. (44) is then used.
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4 Non-Linear Response

4.1 Response Decomposition

Estimators of Flow

Up to this point the relation between the final state anisotropy and the initial state eccen-
tricities has been described as either linearly (approximate) or non-linearly proportional,
without any attempt to explicitly quantify this relation. A general leading-order expan-
sion of a flow observable can be written as a linear combination of nth order harmonic
moments, scaled by a set of unknown proportionality constants km so that

Vn ≡ vneinψn =
∞∑
m=0

kmε
m
n einΦn , (56)

also recalling the participant plane direction Φn from section 1.2. However, it has been
noted, that such linear combination is in fact not the best representation to describe
the relations between initial and final states, particularly concerning the higher harmonic
orders [7].

Eq. (56) may act as a starting point for an improved estimate, where in addition to the
first order moment an additional (potentially non-linear) term has been introduced [7]:

vneinψn = kεneinΦn + k′ε′neinΦ′n + E . (57)

Here k and k′ are scaling constants, which can be solved for, given the required observables
by theoretical simulations. Additionally, E is a complex error term and 〈|E|2〉 its mean-
square, which a good estimator should minimize for the lack of an exact relation. The
most suitable estimator for the hydrodynamic response may be chosen from the compatible
combinations of low and high order eccentricities in such way that the symmetry properties
described in [62] and section 3.1 are preserved. A qualitative analysis of several possible
estimators was done in [7].

The results of this analysis are shown in Fig. 10. In the two upper panels for v2 and v3,
three estimators based on Eq. (57) are presented. The estimators include the basic linear
relation vn ∝ εn, a relation or two to a projected harmonic vn{ψn} ∝ εm{Φn} of the same
direction, and a linear combination of these two. As expected, among the best estimators
for the elliptic v2 and triangular v3 remain the linear relations to the eccentricity of the
same harmonic order:

v2einψ2 = kε2einΦ2 , v3einψ3 = kε3einΦ3 . (58)

Any other possible alternatives produce no visible improvements. For the higher orders
on the other hand, in the two lower panels it is clearly seen that a mere linear relation
is insufficient to estimate the resulting flow. The most accurate estimate throughout the
whole range of centrality classes is achieved by using a combination of linear and non-linear
terms, shown as blue closed circles in Fig. 10. The best estimates for the quadrangular
v4 and pentagonal v5 (for which the symmetry properties hold) are thus

v4einψ4 = kε4e4iΦ4 + k′ε2
2e4iΦ2 ,

v5einψ5 = kε5e5iΦ5 + k′ε2e2iΦ2ε3e3iΦ3 ,
(59)
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Figure 10: Comparison of various flow estimators for different harmonic orders [7]. A
large ratio k

√
〈ε2
n〉/〈v2

n〉 close to unity indicates a low mean-square error, making it a
better estimate. The slight drop of v2 estimation at low centrality classes is due to larger
participant area, inducing more fluctuations.

which suggests a low-harmonic εn-induced higher order flow. Assuming that a linear
relation in Eq. (58) is indeed sufficient for the second and third harmonics, the forms in Eq.
(59) are readily presentable as linear and non-linear higher order harmonics decomposed
final state flow observables.

Non-Linear Coefficients

Based on the above studies, the hydrodynamic response of higher order eccentricities can
be expected to be a superposition of a linear and non-linear contributions. The former is
a linear response to the initial eccentricities vn ∝ εn, similarly as for the v2 and v3. The
non-linear contribution on the other hand is supposed to be induced by the lower order
harmonics. To formalize this hypothesis, one could write the high harmonics as a sum of
two or more terms [12,78] (by substituting the linear relations into equations in (59) and
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their respective higher harmonic counterparts):

V4 = V4L + χ4V
2

2

V5 = V5L + χ5V2V3

V6 = V6L + χ62V
3

2 + χ63V
2

3 + χ64V2V4L

V7 = V7L + χ7V
2

2 V3 + χ74V3V4L + χ75V2V5L

V8 = V8L + χ82V
4

2 + χ83V2V
2

3 + E(V4L, V5L, V6L)

· · ·

(60)

Here the χn are called the non-linear coefficients, with E the contribution from higher
order linear correlations. For the equations in (60) to be valid, it should hold that the
linear part and the non-linearity inducing low harmonic flow are uncorrelated with each
other. This correlation is expressed by

〈V4L(V ∗2 )2〉
〈V4L〉〈(V ∗2 )2〉

' 0,
〈V5LV

∗
2 V
∗

3 〉
〈V5L〉〈V ∗2 V ∗3 〉

' 0, · · · (61)

where a general test of Pearson correlation 〈fg〉
〈f〉〈g〉 has been used [79, 84]. Explicitly this

can be tested by requiring that

〈V4(V ∗2 )2v2
2〉

〈V4(V ∗2 )2〉〈v2
2〉

=
〈v6

2〉
〈v4

2〉〈v2
2〉
,

〈V5V
∗

2 V
∗

3 v
2
2〉

〈V5V ∗2 V
∗

3 〉〈v2
2〉

=
〈v4

2v
2
3〉

〈v2
2v

2
3〉〈v2

2〉
.

(62)

Simulation tests of these correlations were done in [79].
The uncorrelation requirements (Eq. (61)) uniquely define the non-linear coefficients.

To obtain the coefficients one projects the equations in (60) onto lower harmonics. In this
analysis, assuming that the contributions from the higher order linear terms (V4L,5L,...)
are small, only the coefficients for combinations of V2 and V3 are considered.

χ4 =
〈V4(V ∗2 )2〉
〈|V2|4〉

=
v4{Ψ2}√
〈v4

2〉
, χ5 =

〈V5V
∗

2 V
∗

3 〉
〈|V2|2|V 2

3 |〉
=
v5{Ψ23}√
〈v2

2v
2
3〉
,

χ62 =
〈V6(V ∗2 )3〉
〈|V2|6〉

=
v6{Ψ2}√
〈v6

2〉
, χ7 =

〈V7(V ∗2 )2V ∗3 〉
〈|V2|4|V 2

3 |〉
=
v7{Ψ23}√
〈v4

2v
2
3〉
,

χ63 =
〈V6(V ∗3 )2〉
〈|V3|4〉

=
v6{Ψ3}√
〈v4

3〉
, χ83 =

〈V8V
∗

2 (V ∗3 )2〉
〈|V2|2〉〈|V3|4〉

=
v8{Ψ23}√
〈v2

2v
4
3〉
,

χ82 =
〈V8(V ∗2 )4〉
〈|V2|8〉

=
v8{Ψ2}√
〈v8

2〉
, · · ·

(63)

Representing the ratio between the non-linear and linear contributions, the coefficients
(63) should theoretically be independent of any initial state models and the fluctuations
they produce in a given centrality class [12,14].
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4.2 Event-Plane Correlations

Measuring the Mode Coupling

As for the coordinate and momentum space anisotropy magnitudes, a similar relation
between their directions is also expected [25]. For low harmonic orders, notably when
vn ∝ εn, their respective symmetry planes ψn and participant planes Φn are found to be
aligned. However, for higher orders n > 3 and sufficiently large eccentricities, the relation
is violated. A measurement of correlations between the event planes can provide insight
on how the higher order directions may depend on those of the lower ones.

Having measured the flow with respect to other directions, the following correlations
also provide means to measure the relation between event plane directions and their
fluctuations. In order to measure these correlations, a Pearson correlation is calculated,
i.e. a ratio between the respective flow coefficients:

ρ4 =
Re〈V4(V ∗2 )2〉√
〈|V4|2〉〈|V2|4〉

=
v4{ψ2}
v4{ψ4}

, ρ5=
Re〈V5V

∗
2 V
∗

3 〉√
〈|V2|2|V3|2〉〈|V5|2〉

=
v5{ψ23}
v5{ψ5}

,

ρ62 =
Re〈V6(V ∗2 )3〉√
〈|V6|2〉〈|V2|6〉

=
v6{ψ2}
v6{ψ6}

, ρ7=
Re〈V7(V ∗2 )2V ∗3 〉√
〈|V2|4|V3|2〉〈|V7|2〉

=
v7{ψ23}
v7{ψ7}

,

ρ63 =
Re〈V6(V ∗3 )2〉√
〈|V6|2〉〈|V3|4〉

=
v6{ψ3}
v6{ψ6}

.

(64)

Generally, a value close to unity indicates a strong correlation, whereas a zero value
indicates the opposite. Despite the name “event-plane correlation”, it is worth noting
that the quantities are in fact correlations between different flow magnitudes, only with
respect to directions of lower harmonic event-planes. The maximum vn can be found
in the direction of its own event plane, which implies that vn{ψn} ≥ vn{ψm} always
when n 6= m. Generally, following the inequalities, ρn is always below unity, and for
uncorrelated quantities the correlation will be zero.

There have been previous event plane measurements [33, 34]. Measurement of these
quantities was also done in this analysis, but not as the focus of this thesis. Results for
the event plane correlations will be provided in appendix A.1.
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5 Measurements

5.1 Experimental Setup

Data Analysis

This analysis uses the experimental data recorded by ALICE in Pb–Pb collisions at the
center-of-mass energy

√
sNN = 2.76 TeV during the 2010 heavy-ion run at the LHC.

Detailed description of the ALICE detector can be found in [80–82]. See Table 2 for a
summary of default track selection and cut settings. Event triggering was done using
the V0 scintillator counters, the V0-A and V0-C arrays [80, 83]. A combination of Inner
Tracking System (ITS) [80] and Time Projection Chamber (TPC) [80] was used for the
track and primary vertex reconstruction. A distance less than 10 cm was required between
the primary vertex and nominal interaction point (Z-vertex cut of ±10 cm). Pile-up events
resulting from the detector dead time were rejected. For the centrality determination,
information from the V0 arrays was used. More details on centrality determination will
be given in the next section.

Only charged particles are used for the results. In order to avoid large contributions
from secondary vertices, the tracks reconstructed were required to have a distance of
closest approach to the primary vertex of less than 3.2 cm and 2.4 cm in the longitudinal
(z) and transverse directions, respectively. For each track at least 70 TPC space points
were required. A pseudorapidity gap |∆η| ≥ 0.8 was applied between the correlated
particles (scalar product subevents), suppressing the non-flow effects. In practical terms,
only tracks within the subset region η ∈ ±[0.4, 0.8] were accepted. Furthermore, the track
selection was limited to transverse momentum range 0.2 < pT < 5.0 Gev/c.

For the hydrodynamic comparisons, calculations from VISH2+1 [84] and IP-Glasma+MU-
SIC+UrQMD [85] featuring varying initial geometry models are used. Hydrodynamic cal-
culations are presented whenever available. The AMPT data was taken from the ALICE
simulation production. In each configuration, the AMPT uses the same global parameters
αs = 0.33 and a partonic cross section of 1.5 mb. For the Lund string fragmentation, the
respective parameters were αs = 0.5 and b = 0.9 GeV−2.

Centrality Determination

The centrality determination is based on the observed event multiplicity. Because the
actual details depend on the general experiment, a short introduction to centrality deter-
mination in the ALICE experiment [21] will be given here.

Table 2: Event selection
Data

Z-vertex cut −10 cm < Zvtx < 10 cm
Track selection bit TPC only
Subset region (η) −0.8 ∼ −0.4 and 0.4 ∼ 0.8
Particle selection All charged

pT -cut 0.2 < pT < 5.0 GeV/c
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Figure 11: The multiplicity distribution as a sum of V0 amplitudes [21], proportional
to the event multiplicity. Centrality classes are given by the participant count from the
Glauber model, after fitting the model calculations to the measured data. Some details
of the procedure are given in the text.

Experimentally the collisions are grouped into centrality bins, arranged by the amount
of overlap in the collision geometry. A high multiplicity in a collision event implies a
larger participant count, further translating into a large geometric overlap. In addition to
participant counts, the centrality is also expressed with a centrality percentile, with low
numbers indicating a high centrality.

The number of participants in a collision event can be estimated by fitting results
from Glauber model simulations to the real world measurements [21]. For each event, the
Glauber model gives the number of participants Np and binary collisions Nc. Together
these are parameterized to give a number of independently emitting particle sources, the
so called “ancestors”:

Na = fNp + (1− f)Nc, (65)

where f is a parameter obtained by fitting to experimental data. For each ancestor, the
contribution as a number of hits in the detector is estimated. The probability to count n
hits is given by the negative binomial distribution

Pµ,k(n) =
Γ(n+ k)

Γ(n+ 1)Γ(k)
· (µ/k)n

(µ/k + 1)n+k
, (66)

where µ and k are parameters to control the mean multiplicity per ancestor and the width
of the distribution, respectively. To get the total multiplicity of the collision event, the
distribution in Eq. (66) is sampled Na times.

A Glauber model fit to the data is presented in Fig. 11. The V0 amplitude, propor-
tional to the event multiplicity, defines the horizontal axis. By varying the parameters
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Table 3: Centrality classes for the impact parameter.
Centrality(%) b(fm)

0-5 0.00-3.50
5-10 3.50-4.94
10-20 4.94-6.98
20-30 6.98-8.55
30-40 8.55-9.81
40-50 9.81-11.04
50-60 11.04-12.09
60-70 12.09-

of the distribution, one may match the Glauber data to the measurements, giving the
number of participant nuclei. From the number of participants one may then get the
impact parameter b to be used in defining the centrality classes, also seen in Table 3.

5.2 Systematics

Non-Linear Coefficients

Several different analysis configurations were used to evaluate the systematics. For each
configuration, the default reference setup was modified to give an alternative set of results,
one set for each modification. The alternative results were then compared to the results
given by the default setup, yielding a table of relative errors. For the total systematic
error, the errors from the individual checks were quadratically summed. The systematic
checks for the non-linear coefficients are summarized in table 4.

In table 4, the systematic checks have been categorized to four different groups. Track-
ing related errors have been identified by comparing the selection of events from the two
magnetic field polarities. With both of the polarities, the number of events reconstructed
were nearly identical. Other checks include the efficiency correction for detector limita-
tions, and the track filtering in an attempt to reduce the unwanted background. In the
final analysis, only charged particles contribute to the results. To see how the correlation
of charge combinations induces non-flow contributions, another check was established.
Compared to the default setup where both negative and positive charges are considered,
individual combinations of the same charge signs were also analyzed.

The rest of the checks cover the event-related uncertainties. This includes the alter-
ation of the primary vertex reconstruction range (z-vertex cut) to ±8 cm and the centrality
determination using either SPD or TRK reconstruction (silicon pixel detector and TPC
tracking, respectively). The Z-vertex check was used to test the longitudinal detector ef-
ficiency. To observe the effect of the beam related background, another set was measured
with the high multiplicity outliers removed.

For the fourth harmonic coefficient χ4 the systematic uncertainties are generally small.
The most notable error here comes from the individual sets of events from magnetic
field polarities and charged particle sign restrictions. For the event-related uncertainties,
comparison between the different systematic configurations show practically no difference.
For the higher orders the pattern of uncertainties is roughly same, even if the error gets
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Table 4: Overall χn systematics. The overall total is a quadratic sum of all the individual
checks.

Type [%] χ4 χ5 χ62 χ63

Tracking
Track filter bit selection < 1 < 1 6.2 9.3
Efficiency correction < 1 < 1 < 1 3.6

Magnetic field polarization (+) 1.2 1.8 12.5 3.8
Magnetic field polarization (−) 1.5 1.7 4.5 4.1

Event Selection
Z-vertex cut < 1 < 1 3.4 3.2

High multiplicity outliers < 1 < 1 2.1 2.7
Correlations

Charge combination (−−) 2.5 9.9 7.7 11.9
Charge combination (+ +) 2.5 4.9 8.8 5.7

Centrality Determination
Centrality determination (SPD) < 1 < 1 2.2 6.0
Centrality determination (TRK) < 1 < 1 3.5 4.1

Overall (
∑

i δ
2
i )

1
2 4.2 11.3 19.6 19.4

slightly larger. The larger error is a result of a smaller vn, for which the results become
more sensitive to azimuthal modulation due to detector imperfections.

5.3 Results

Non-Linear Coefficients

The non-linear response coefficients χn are shown in Fig. 12. Looking at the data, one
may first note the centrality dependence of the coefficients. The centrality dependence is
especially evident for χ4 and χ62. For χ4, the non-linear contribution slightly peaks for
the lowest centrality class, proceeding to steadily decrease towards the higher centralities.
In the limits of the statistical error, the decrement of χ62 seems to be slightly stronger.
The centrality dependence does seem to hold also for χ5, although clearly only for the
mid-centrality classes.

Generally, all of the coefficients are observed to be decreasing for more peripheral
collisions. An exception to this is χ63, where the placement of the data points suggest
little to no variation over the centrality classes. However, the statistical fluctuations
prevent any definite conclusions. For each of the coefficients, the data points are above
one, indicating the non-linear response to be the dominant component. Furthermore, the
non-linear contribution is considerably higher for χ5 than the rest of the coefficients.

The data is then compared to viscous hydrodynamical calculations. Calculations from
two separate models are presented, with total of three different initial condition models. In
Fig. 13, the red and blue bands represent the VISH2+1 [84] calculations with MC-Glauber
and MC-KLN initial conditions, and with η/s = 0.08 and 0.20. IP-Glasma+MUSIC+UrQMD
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[85] with η/s = 0.095 is shown in yellow.
The data for χ4 in the first panel of Fig. 13 is clearly the best described by the cal-

culations using VISH2+1 MC-KLN and IP-Glasma+MUSIC+UrQMD. The calculations using
VISH2+1 MC-Glauber seem to overestimate the non-linear contribution. They also fail to
reproduce the centrality dependence in more central collisions. For χ5, in every model
the agreement with the data is slightly worse compared to χ4, although the centrality
dependence seems to be well captured with every calculation. In every case, the calcula-
tions have resulted in an overestimation in almost every centrality class. Only VISH2+1
calculations with η/s = 0.20 are still mostly within the systematic error limits.

Moving up to higher orders, the difference between the calculations for χ62 is larger.
On average, between all the centrality classes the calculations from VISH2+1 MC-KLN
show the best agreement. Meanwhile, calculations from the same model with MC-Glauber
completely fail to reproduce the data. In low centrality classes, IP-Glasma+MUSIC+UrQMD
overestimates the non-linear contribution. The agreement between the different models
becomes better for χ63. For χ63, higher viscosity seems to be preferred from the data
viewpoint. All of the calculations show a clear centrality dependence, with calculations
with lower viscosity yielding a larger non-linearity. In the data this centrality dependence
was not observed, although the large statistical error prevented any definite conclusions.

From the upper panels of Fig. 13, specifically the results from VISH2+1, one may also
observe the sensitivity of the coefficients to the initial conditions. Especially χ5 and χ63

seem to be independent of the initial conditions. While χ4 does not clearly show this
behaviour, it seems to be insensitive to viscous effects, making it in turn possibly useful
for constraining initial state related properties. On the third panel, one also observes that
χ62 is sensitive to both the initial conditions and shear viscosity. In every case whenever
there is a sensitivity to viscosity, more viscous calculations seem to reduce the non-linear
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0 20 40 0 20 40 0 20 40 0 20 40 60

χ4 χ5 χ62 χ63

Centrality [%]

χ
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Figure 12: Non-linear response coefficients, as a function of collision centrality. The
systematic errors are visualized as gray boxes, while the error bars represent the statistical
uncertainty.
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Figure 13: Data comparison to hydrodynamics and AMPT calculations. For the hydro-
dynamic comparisons two sources were used: VISH2+1 MC-Glauber and MC-KLN [84]
as the red and blue colored bands, respectively, and [85] for IP-Glasma+MUSIC+UrQMD in
yellow.

contribution.
As for the results obtained with AMPT, presented in the lower panel of Fig. 13, the

default and the string melting configurations with rescattering are generally seen to repro-
duce the data best. For χ4, the agreement is very good, except for the lowest centrality
class where the data is significantly underestimated. Looking at χ5, the magnitude of
non-linear contribution and centrality dependence are both well reproduced within the
error limits. Similar observations can be made for the χ62. Only for χ63 the calculations
remain unclear in mutual agreement. In every case it can be concluded that the hadronic
interactions are non-negligible as leaving out the rescattering phase seems to result in

39



0 20 40

1

1.5

2

> 0.8)ηΔ(SP,
4

χ
< 5.0 GeV/c

T
0.2 < p

< 5.0 GeV/c
T

0.3 < p
< 5.0 GeV/c

T
0.4 < p

< 5.0 GeV/c
T

0.5 < p
< 5.0 GeV/c

T
0.7 < p

< 5.0 GeV/c
T

0.8 < p
< 5.0 GeV/c

T
0.9 < p

< 5.0 GeV/c
T

1.0 < p
< 5.0 GeV/c

T
1.2 < p

< 5.0 GeV/c
T

1.5 < p

Centrality [%]

χ
4

Figure 14: The pT dependence of χ4. For statistical reasons the upper bound for the
pT -cuts are kept constant over the bins, while gradually increasing the minimum bound.

a large underestimation. However, rescattering does not seem to affect the centrality
dependence of the results.

Transverse Momentum Dependence

The transverse momentum dependence of χ4 has also been studied. No differential analysis
was performed, but rather restricting the particle selection by rejecting low-pT particles
from a gradually narrowed momentum subset region. By examining Fig. 14, it is clear that
the non-linear response is pT -dependent, at least for the lower pT -cuts. For higher cuts the
dependency is much less evident. Studying the pT -dependence of the observables can help
understand the viscous correction to the momentum distribution at the hadronic freeze-
out, which is among the least understood parts of the hydrodynamic calculations [12,19].
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Figure 15: Magnitudes of the linear and non-linear contributions (ALICE preliminary).

Flow Contributions

Finally, Fig. 15 shows the contributions of linear and non-linear response separately for
v4, v5 and v6. The non-linear contribution is low for the central collisions, especially in
case of v4, where the linear part makes up for most of the contribution. As the centrality
increases, the contribution of the non-linear response also increases significantly. It is also
worth noting that as is the case for odd harmonics, the non-linear part clearly dominates
in v5 for the majority of centrality classes, implying that this is mostly induced by the
low-order harmonics.
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6 Summary
The final state flow of the higher harmonics can be decomposed into linear and non-linear
contributions, with respect to the initial state eccentricities. The linear part is expected
to be directly proportional to the eccentricities of the same harmonic, while the non-
linear part emerges as a contribution induced by the lower harmonic flows. The resulting
decomposition could then be expressed with a set of non-linear coefficients, χn. One of
the major implications of this decomposition is that the resulting coefficients should be
less sensitive to the initial conditions.

A brief introduction was given to some of the relevant topics in the field of heavy-ion
physics. Among these topics two major theoretical models, AMPT and the hydrodynam-
ical model, were briefly reviewed. The experimental flow analysis and the details of the
non-linear decomposition were also discussed. However, the primary purpose of this thesis
was to present the first real measurements of these coefficients. The measurements were
carried out for several new observables with a wide range of systematic checks.

The non-linear coefficients were measured from ALICE lead-lead collisions at
√
sNN =

2.76 TeV. All of the results were obtained using the generalized scalar product method.
Comparisons to AMPT and hydrodynamical model calculations are provided. No perfect
agreement in the comparisons is observed, although some of the theoretical calculations
reproduce to the measurements quite well.

The non-linear coefficients are noted to be centrality dependent. Of these coefficients
χ4 and χ62 are shown to feature the largest dependence, while for the χ5 and χ62 centrality
dependence is less evident. The centrality dependence and the magnitude of these two
vary a lot depending on the chosen initial conditions and η/s. A clear transverse momen-
tum dependence is also observed for χ4. At low pT the dependence is more prominent,
while for the higher cuts this dependency vanishes. Transverse momentum studies might
further advance the understanding of viscous corrections to the hadronic freeze-out. Fur-
ther studies may also consider the other coefficients when measuring the relations to the
transverse momentum.

A comparison between various theoretical models, especially when considering their
initial states, has provided insight about different sensitivity of these coefficients to both
the initial conditions and/or η/s. For example, it was clearly observed that the χ5 and χ63

are indeed independent of the initial conditions. Given that the initial state uncertainty
can be removed, using the experimental data it is now possible to better constrain the
parameters relating to the QGP interaction strength and patterns.
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A Appendix
A.1 Additional Measurements

Event Plane Correlations

The correlation between event planes is measured with a Pearson ratio vn{ψm}/vn{ψn}.
Results of such a measurement is presented in Fig. 16. In all cases the ratio is below
unity, as expected. Generally, the closer to the peripheral region, the more the event
planes are correlated. In a peripheral collisions, the data for ρ4 (notated as ρ422 in the
ALICE preliminary results) suggests a high correlation between the directions ψ2 and ψ4.
This behaviour is also observed for ρ523 (ρ532) and ρ62 (ρ6222), even if the ψ62 correlation
isn’t as strong. As for the ρ63 (ρ633), there is no clear centrality dependence. The pattern
of uncertainties for the event plane correlations (results in the appendix) roughly follows
those of the non-linear coefficients. The measurements are seen to be compatible with the
previous event plane measurements [33].

Flow Coefficients

We test the correctness of our basic analysis by plotting and comparing our new flow
measurements. In Fig. 17, plots of individual flow coefficients are shown. These coefficients
have been compared to previous ALICE measurements from [86] where the experimental
setup is mostly identical. Two different methods were used to compute the coefficients,
the scalar product method (SP) and the multi-particle correlations (more specifically Q-
cumulants or QC). For all harmonics, we have calculated the ratio between the QC and SP
results. As expected from the equivalence of the two methods, no significant differences
are seen, apart from the statistical variations from correlations between likely different
particles. In our analysis, we mainly utilize the scalar product method, as explained in
previous sections.

The measured SP vn also presented in Fig. 18. Four different coefficients from v2

to v5 are shown. On the left panel (A)–(C), the centrality dependence is shown (as in
Fig. 17, excluding the fifth order harmonic). On the right side (a)–(c), the coefficients
are presented as a function of pT,min where for each successive bin the pT -cut has been
narrowed by some margin (similar to Fig. 14 in section 5.3).
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