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First edition 2006. These notes are written up after my lectures at the Summer
School in Jyvéskyld in August 2005. I am grateful to Xiao Zhong for his valuable
assistance with the practical arrangements. Juan Manfredi has read the entire orig-
inal manuscript and contributed with valuable comments and improvements. I also
want to thank Karoliina Kilpeldinen for the typsetting of my manuscript.

The most important partial differential equation of the second order is the cele-
brated Laplace equation. This is the prototype for linear elliptic equations. It is less
well-known that it also has a non-linear counterpart, the so-called p-Laplace equa-
tion, depending on a parameter p. The p-Laplace equation has been much studied
during the last fifty years and its theory is by now well developed. Some chal-
lenging open problems remain. The p-Laplace equation is a degenerate or singular
elliptic equation in divergence form. It deserves a treatise of its own, without any
extra complications and generalizations. This is my humble attempt to write such
a treatise. Perhaps the interested reader wants to consult the monograph Nonlinear
Potential Theory of Degenerate Elliptic Equations by J. Heinonen, T. Kilpeldinen
and O. Martio, when it comes to more advanced and general questions.

Second edition 2017. Two new chapters have been added, one about viscosity
solutions and one about the Asymptotic Mean Value Property. Some misprints and
discrepancies have been corrected. Yet, a good account of the implications from
Stochastic Game Theory is a missing chapter. I thank Fredrik Hoeg, Erik Lindgren,
and Eero Ruosteenoja for help with proofreading.



1. Introduction

The Laplace equation Au = 0 or

82u+82u+ +82u_0
0x?  Ox3 or2

is the Euler-Lagrange equation for the Dirichlet integral

/\vu\ dx—/ /{ axl ~+(§:Zl)1dx1..

If we change the square to a p* power, we have the integral

tor= [reuras= [ [[(52) Voo (2] e

The corresponding Euler-Lagrange equation is

div(|Vu[P~?Vu) = 0.

.dx,, .

.dx, .

This is the p-Laplace equation and the p-Laplace operator is defined as

Ayu = div(|VulP~2Vu)
ou ou O%u
81‘,‘ (%j axlé)x]

= |VulP~ 4{|Vu| Au—+ (p—2) Z

Usually p > 1. At the critical points (Vu = 0) the equation is degenerate for p > 2

and singular for p < 2. The solutions are called p-harmonic functions.

There are several noteworthy values of p.

p=1 Au dlv(|gz|) —H,

where H is the Mean Curvature Operator. In only two variables we have the

familiar expression

2 2
Uy Uy — 2Ug Uy Uy + U Uy

H= 3
(2 + u2)?

The formula Ajp(u) = Aju holds for general functions ¢ in one variable,

indicating that solutions are determined by their level sets.



p=2 We have the Laplace operator

"L 9%u
Agu = Au = —.
2 N C— Jx?
=1 v
pPp=n The borderline case. When n is the number of independent variables,

the integral

/|Vu|ndx:/.../{<§_;>2+..-+(;—;;)2}gdx1...dxn
Q

Q

is conformally invariant. The n-harmonic equation A,u = 0 in n variables is
therefore invariant under Mobius transformations. For example, the coordinate
functions of the inversion (a Mdbius transformation)

I xr —a
= Qa —_—
’ @ —af?

are n-harmonic. The borderline case is important in the theory of quasicon-
formal mappings.

p = o0 As p — oo one encounters the equation A, u =0 or
—~ Ou du u 0
=1 Oxz 8mj 8x,8xj -

This is the infinity Laplace equation. It has applications for optimal Lipschitz
extensions and has been used in image processing.

The case p > 2 is degenerate and the case 1 < p < 2 is singular'. In the classical
theory of the Laplace equation several main parts of mathematics are joined in a
fruitful way: Calculus of Variations, Partial Differential Equations, Potential Theory,
Function Theory (Analytic Functions), not to mention Mathematical Physics and

!The terminology comes from fluid dynamics. An equation of the type

0

5 = div(p(IVe) Vo)
is called singular, when it so happens that the diffusion p = co and degenerate when p = 0. Notice
also the expansion

p(IV0]) = [VolP2 (e1 + cal Vo] + o Vol ).



Calculus of Probability. This is the strength of the classical theory. It is very
remarkable that the p-Laplace equation occupies a similar position, when it comes
to non-linear phenomena. Much of what is valid for the ordinary Laplace equation
also holds for the p-harmonic equation, except that the Principle of Superposition
is naturally lost. Even the Mean Value Formula holds, though only infinitesimally
in small balls. A non-linear potential theory has been created with all its requisites:
p-superharmonic functions, Perron’s method, barriers, Wiener’s criterion and so
on. In the complex plane a special structure related to quasiconformal mappings
appears. Last but not least, the p-harmonic operator appears in physics: rheology,
glacelogy, radiation of heat, plastic moulding etc. Some advances indicate that even
the Brownian motion has its counterpart and a mathematical game "Tug of War”
leads to the case p = oco. For finite p a sophisticated stochastic game is a counterpart
to the Brownian motion.

Needless to say, the equation A,u = 0 has numerous generalizations. For example,
one may start with variational integrals like

/|Vu|pwdx, /|Vu(x)]p($)dx,

/ Z a (9u 8U gdq;

i )
=1 (‘3% 81‘]

ou |? ou |?
/(a—xl * "*‘axn )i

and so on. The non-linear potential theory has been developed for rather general

equations
divA,(z,Vu) =0.

However, one may interpret Polya’s Paradox® as indicating that the special case
is often more difficult than the general case. In these lecture notes I resist the
temptation of including any generalizations. Thus I stick to the pregnant formulation
Ayu=0.

The p-harmonic operator appears in many contexts. A short list is the following.

e The non-linear eigenvalue problem

Apu+ MulP7?u =0

e The p-Poisson equation
Apu = f(x)

2”The more ambitious plan may have more chances of success”, G.Polya, How to Solve It,
Princeton University Press, 1945.




e Equations like
Apu+ |ul*u =0,

which are interesting when the exponent « is "critical”.

e Parabolic equations like

ov
— =Ayv,
ot P
where v = v(x,t) = v(z1,. .., T, 1)
e So-called p-harmonic maps u = (uq, ug, . .., u,) minimizing the ”p-energy”

[1purar= [ {32 (52)} a,

2%
perhaps with some constraints. A system of equations appears.

e The fractional p-Laplace operator

(—Ap)su(:v) _ CZLS/ ‘u<y) _ u(:v)]p_2(u(y) _ u(x)) dy

o =y

These additional topics are very interesting but cannot be treated here.

The reader is supposed to know some basic facts about LP-spaces and Sobolev
spaces, especially the first order spaces WP(Q) and W, (). The norm is

1
|l wir) = {/|u!pdx+/!Vu]pdx} .
QO 0

) is always a domain (= an open connected set) in the n-dimensional Euclidean space
R"™. Text books devoted entirely to Sobolev spaces are no good for our purpose.
Instead we refer to [GT, Chapter 7], which is much to the point, [G, Chapter 3]
or [EG]. The reader with an apt to estimates will enjoy the chapter ”Auxiliary
Propositions” in the classical book [L.U].



2. The Dirichlet problem and weak solutions

The natural starting point is a Dirichlet integral

(2.1) I(u) :/|Vu|pdx

with the exponent p, 1 < p < oo, in place of the usual 2. Minimizing the integral
among all admissible functions with the same given boundary values, we are led to
the condition that the first variation must vanish, that is

(2.2) /(]Vu]pZVu, Vn)dx =0

Q

for all n € C§°(€2). This is the key to the concept of weak solutions. Under suitable
assumptions this is equivalent to

(2.3) /ndiv(|Vu|p_2Vu)dx =0.
Q

Since (2.3) has to hold for all test functions 7, we must have

(2.4) Ayu = div(|VulP"2Vu) = 0

in . In other words, the p-Laplace equation is the Euler-Lagrange equation for the
variational integral I(u).

It turns out that the class of classical solutions is too narrow for the treatment of
the aforementioned Dirichlet problem. (By a classical solution we mean a solution
having continuous second partial derivatives, so that the equation can be pointwise
verified.) We define the concept of weak solutions, requiring no more diffenrentiabil-
ity than that they belong to the first order Sobolev space W?(Q). Even the local

17p 3
space W, . 7(€2) will do.



2.5. Definition. Let Q be a domain in R”. We say that u € WL?(Q) is a weak
solution of the p-Laplace equation in €, if

(2.6) / (|Vu[P2Vu, Vn)dz = 0

for each n € C§°(€2). If, in addition, w is continuous, then we say that u is a
p-harmonic function.

We naturally read |0[P720 as 0 also when 1 < p < 2. As we will see in section
3, all weak solutions are continuous. In fact, every weak solution can be redefined

in a set of zero Lebesgue measure so that the new function is continuous. When
appropriate, we assume that the redefinition has been performed.

We have the following basic result.

2.7. Theorem. The following conditions are equivalent for u € WhP(Q):
(i) w is minimizing:

/]Vu]pda: < /|Vv]pd:1:, when v —u € WyP(Q).

(ii) the first variation vanishes:

J4uP 290, Va)ds =0, when n € W37(@).

If, in addition, Apu is continuous, then the conditions are equivalent to the pointwise
equation Apu =0 in Q.

Remark. If (2.6) holds for all n € C$°(€2), then it also holds for all € W, (Q), if
we know that u € W'?(Q). Thus the minimizers are the same as the weak solutions.

PrROOF: ”(i) = (ii)”. We use a device due to Lagrange. If u is minimizing, select
v(z) = u(x) +en(z),

where € is a real parameter. Since



attains its minimum for € = 0, we must have J’(0) = 0 by the infinitesimal calculus.
This is (ii).
"(ii) = (i)” The inequality

bl > lal” + p(lal"~?a,b — a)

holds for vectors (if p > 1) by convexity. It follows that

/|Vv|pdx > /|Vu|pdx+p/<|Vu|p_2Vu,V(v—u))dx.
Q Q Q

If (ii) is valid, take 7 = v — u to see that the last integral vanishes. This is (i).

Finally, the equivalence of (ii) and the extra condition is obtained from (2.3). O

Before proceeding, we remark that the operator

2
Aju = quyp4{|vu|2Au+ -2y Ou u_Ou }

is not well defined at points where Vu = 0 in the case 1 < p < 2, at least not for
arbitrary smooth functions. In the case p > 2 one can divide out the crucial factor.
Actually, the weak solutions u € C?(Q) are precisely characterized by the equation

ou Ou  O*u
2. A -2 — =
for all p in the range 1 < p < oo. The proof for p < 2 is difficult, cf | ]. The

reader may think of the simpler problem: Why are the equations |Vu|Au = 0 and
Au = 0 equivalent for u € C? ?

Let us return to Definition 2.5 and derive some preliminary estimates from the
weak form of the equation. The art is to find the right test function. We will often
use the notation

Br = B(l’o,?") s B27‘ = B(iCo,ZT)

for concentric balls of radii r and 2r, respectively.



2.9. Lemma. (Caccioppoli) If u is a weak solution in €, then
(2.10) /gp|vuv>dx gpp/|u|p|vg|pdx

QO Q
for each ¢ € C3°(Q2), 0 < ¢ < 1. In particular, if By, C §2, then
(2.11) / VulPdz < pPr? / ufPdz

B Bar
PROOF: Use

n=Cu,
Vn = (PVu + pPtuV( .

By the equation (2.6) and Holder’s inequality

/Cp|Vu|pdx: —p/§p1u<|Vu\p2Vu, V()dx
Q

Q

<p / CVul |uvC|de
Q

1-1 1
Sp{ <p|w|pdx} { |u|p|vapdas}”.
/ /

The estimate follows.

Finally, if By, C €2, we may choose ¢ as a radial function satisfying ¢ = 1 in
B,, [V(¢| < r7! and ¢ = 0 outside By,. This is possible by approximation. This
concludes the proof. O

Occasionally, it is useful to consider weak supersolutions and weak subsolutions.
As a mnemonic rule, "Ayv < 0” for supersolutions and "A,u > 0” for subsolutions.

2.12. Definition. We say that v € W,2P(Q) is a weak supersolution in §, if

(2.13) /(|W|p—2w, Vn)dxr > 0
Q

for all nonnegative n € C§°(Q2). For weak subsolutions the inequality is reversed.



In the a priori estimate below it is remarkable that the majorant is independent
of the weak supersolution itself.

2.14. Lemma. Ifv > 0 is a weak supersolution in €2, then

/gpyv1ogv|Pd;cg( P 1)?/|V<|de
p_
Q Q

whenever ¢ € C§°(¢), ¢ > 0.

PROOF: One may add constants to the weak supersolutions. First, prove the esti-
mate for v(z) + € in place of v(z). Then let € — 0 in

¢P[VulP P o ,
Q/(v+€)pdx§(p_1) Q/yvq dr.

Hence we may assume that v(x) > & > 0. Next use the test function n = (Pv!=?.
Then

Vn =pl" ' PVE = (p — 1)¢Po PV
and we obtain

(p— 1)/vap\Vv|pdx < p/(plvlp<|VU|p2Vv,V§)dx
)

Q

<p / P10 Vo V| da
Q

1—1 1
Sp{ cpv—pwpda:} { |V¢|pda:}”,
/ /

from which the result follows. O

The Comparison Principle, which in the linear case is merely a restatement of the
Maximum Principle, is one of the cornerstones in the theory.

2.15. Theorem. (Comparison Principle) Suppose that w and v are p-harmonic
functions in a bounded domain Q. If at each ¢ € 02

limsup u(z) < liminfo(z),
z—( z—¢

excluding the situation oo < oo and —oo < —o0, then u < v in €.



PROOF: Given ¢ > 0, the open set
D. = {x|u(x) > v(x) + ¢}

is empty or D, CC €2 . Subtracting the equations we get

/<|Vv|p_2Vv — |VuP2Vu, Vn)dz = 0
Q

for all n € Wy P(Q) with compact support in Q. The choice
n(x) = min{v(z) — u(z) +¢,0}

yields
/<|Vv|p_2Vv — |Vu[P?Vu, Vo — Vu)dr = 0.

D,

This is possible only if Vu = Vv a.e. in D, because the integrand is positive when
Vu # V. Thus u(x) = v(x) 4+ C in D, and C' = ¢ because u(z) = v(z) + ¢ on dD..
Thus u < v+ ¢ in Q. It follows that u < v. O

Remark. The Comparison Principle also holds when u is a weak subsolution and
v a weak supersolution. Then v < v is valid a.e. in €.

The next topic is the existence of a p-harmonic function with given boundary
values. One can use the Lax-Milgram theorem,but I prefer the direct method in the
Calculus of Variations, due to Lebesgue in 1907. The starting point is the variational
integral (2.1), the Dirichlet integral with p.

2.16. Theorem. Suppose that g € WP(Q), where Q is a bounded domain in R™.
There exists a unique u € WHP(Q) with the boundary values u — g € Wol’p(Q) such

that
/|Vu|pd:1: < /|Vv]pd:r
Q Q

for all similar v. Thus u is a weak solution. In fact, u € C(Q) after a redefinition.

If, in addition, g € C(QQ) and if the boundary OS2 is regular enough, then u € C(£2)
and u|@Q = g|ag.

10



PROOF: Let us begin with the uniqueness, which is a consequence of strict convexity.
If there were two minimizers, say u; and uy, we could choose the competing function
v = (u; + ug)/2 and use

P < |VU1’p+ |Vu2\p
— 2 .

‘ Vlbl + VUQ
2

If Vu, # Vusy in a set of positive measure, then the above inequality is strict there
and it would follow that

/|Vu2|pdx < /‘w
Q Q

1
<3 /|Vu1|pd:r + /|Vu2|pdx = /|Vu2|pd:v,
0 0 0

which is a clear contradicition. Thus Vu; = Vus a.e. in Q and hence u; =
us+Constant. The constant of integration is zero, because uy — u; € VVO1 P(Q).
This proves the uniqueness.

p p p
da g/'vuﬂ ;W“?l dz
Q

The existence of a minimizer is obtained through the so-called direct method, see

[D] and [G]. Let
Iy = inf/ |VolPdr < /\Vg[pdx < 00.
Q Q

Thus 0 < Iy < oo. Choose admissible functions v; such that

1
(2.17) /|ij\pda:<lo+—_, i=1,2,3,...
j
Q

We aim at bounding the sequence ||v;||w1.rq). The inequality
[wlizr@) < Cal[ Vol Lo
holds for all w € VVO1 ?(€), and in particular for w = v; — g. We obtain

v = gllzr) < CalllVvjlize@) + [IVallzr@)}
1
< Co{(lo+ 1) + VgL }

Now it follows from the triangle inequality that

(2.18) ol oy <M (j=1,2,3,...)

11



where the constant M is independent of the index j. Together 2.17 and 2.18 consti-
tute the desired bound.

By weak compactness there exist a function u € W'?(€) and a subsequence such
that
v, = u, Vu;, = Vu weakly in LP(Q) .

We have u — g € VVO1 (1), because this space is closed under weak convergence.
Thus u is an admissible function. We claim that « is also the minimizer sought for.
By weak lower semicontinuity

/|Vu|pdx < lim /|iju|pda::_fo
V—r00
Q Q

and the claim follows. (This can also be deduced from

/|ijy|pdx > /|Vu|pdx +p/<|Vu|p_2Vu, Vu;, — Vu)dz
Q Q Q

since the last integral approaches zero. Recall that
bP > |a]” + p{laf~?a,b—a), p>1,

holds for vectors.) We remark that, a posteriori, one can verify that the minimizing
sequence converges strongly in the Sobolev norm.

For the rest of the proof we mention that the continuity will be treated in section
3 and the question about classical boundary values is postponed till section 6. O

A retrospect of the previous proof of existence reveals that we have avoided some
dangerous pitfalls. First, if we merely assume that the boundary values are contin-
uous, say g € C(9), it may so happen that I(v) = oo for each reasonable function
v € C(Q) with these boundary values g. Indeed, J. Hadamard has given such an

example for p = n = 2. If we take () as the unit disc in the plane and define

| ,
o(r.0) = Z 7t C(;S.Q(]!H)
j=1
in polar coordinates, we have the example. The function g(r, ) is harmonic when
r < 1 and continuous when r < 1 (use Weierstrass’s test for uniform convergence).
The Dirichlet integral of ¢ is infinite. —Notice that we have avoided the phenomenon,
encountered by Hadamard, by assuming that g belongs to a Sobolev space.

12



The second remark is a celebrated example of Weierstrass. He observed that the
one-dimensional variational integral

1

I(u) = / 22 (2)2dz

-1

has no continuous minimizer with the "boundary values” u(—1) = —1 and u(+1) =
+1. The weight function z? is catastrophical near the origin. The example can be
generalized. This indicates that some care is called for, when it comes to questions
about existence.

We find it appropriate to give a quantitative formulation of the continuity of the
weak solutions, although the proof is postponed.

2.19. Theorem. Suppose that u € Wlif(Q) 15 a weak solution to the p-harmonic
equation. Then

u(z) —uly)] < L]z —y|*

for a.e. x,y € B(xo,r) provided that B(xq,2r) CC 2. The exponent o > 0 depends
only on n and p, while L also depends on ||ul|r(,,)-

We shall deduce the theorem from the so-called Harnack inequality, given below
and proved in section 3. We write B, = B(xo,r).

2.20. Theorem. (Harnack’s inequality) Suppose that u € W.P(Q) is a weak
solution and that uw > 0 in By, C ). Then the quantities

m(r) =essinfu, M(r)=esssupu
B, B,

satisfy
M(r) < Cm(r)

where C'= C(n,p).

The main feature is that the same constant C' will do for all weak solutions.

Since one may add constants to solutions, the Harnack inequality implies Holder
continuity. To see this, first apply the inequality to the two non-negative weak
solutions u(z) — m(2r) and M (2r) — u(x), where r is small enough. It follows that

(m(r) —m(2r))

M(r) —m(2r) ,
r (M(2r) — M(r)).

C
M(@2r)—m((r) < C

IA A

13



Hence

Cc—-1
C+1

where w(r) = M(r) — m(r) is the (essential) oscillation of u over B(zg,7). It is
decisive that -1

T O+1
Iterating w(r) < Aw(2r), we get w(27%r) < A w(r). We conclude that

w(r) < w(2r)

A <1.

w(o) <A(=)w(r), 0<p<r

for some o = a(n,p) > 0 and A = A(n, p).

Thus we have proved that Harnack’s inequality implies Holder continuity®, pro-
vided that we already know that also sign changing solutions are locally bounded.
The possibility w(r) = oo is eliminated in Corollary 3.8.

Finally, we point out a simple but important property, the Strong Maximum
Principle.

2.21. Corollary. (Strong Maximum Principle) If a p-harmonic function attains
its maximum at an interior point, then it reduces to a constant.

PrOOF: If u(xy) = max u(x) for xy € Q, then we can apply the Harnack inequality
Te

on the p-harmonic function u(z) — u(z), which indeed is non-negative. It follows
that u(z) = u(zg), when 2|z — zo| < dist(xg,92). Through a chain of intersecting
balls the identity u(z) = u(zo) is achieved at an arbitrary point x in 2. m

Remark. Of course, also the corresponding Strong Minimum Principle holds.
However, a strong version of the Comparison Principle is not known in several di-
mensions, n > 3, when p # 2.

3 "Was it Plato who made his arguments by telling a story with an obvious flaw, and allowing
the listener to realize the error?”

14



3. Regularity theory

The weak solutions of the p-harmonic equation are, by definition, members of
the Sobolev space WL?(Q). In fact, they are also of class Cf (€2). More precisely,
a weak solution can be redefined in a set of Lebesgue measure zero, so that the
new function is locally Hélder continuous with exponent o« = a(n,p). Actually, a
deeper and stronger regularity result holds. In 1968 N.Ural’tseva proved that even
the gradient is locally Holder continuous; we refer to [Ur], [Db1], [E], [UhL], [Le2],
[To] for this C% result.

To obtain the Holder continuity of the weak solutions one had better distinguish
between three cases, depending on the value of p. Recall that n is the dimension.

1) If p > n, then every function in W1P(2) is continuous.

2) The case p = n (the so-called borderline case) is rather simple, but requires a
proof. We will present a proof based on "the hole filling technique” of Widman.

3) The case p < n is much harder. Here the regularity theory of elliptic equations

is called for. There are essentially three methods, developed by

— E. DeGiorgi 1957

— J. Nash 1958

— J. Moser 1961
to prove the Holder continuity in a wide class of partial differential equations.
While DeGeorgi’s method is the most robust, we will, nevertheless, use Moser’s
approach, which is very elegant. Thus we will present the so-called Moser
iteration, which leads to Harnack’s inequality. A short presentation for p = 2
can be found in [J]. See also [Mo2]. The general p is in [I'l]. DeGiorgi’s

method is in [Dg], [G] and [LU]. For an alternative proof of the case p > n —2
and p > 2 see the remark after the proof of Theorem 4.1.

3.1. The case p >n

In this case all functions in the Sobolev space V[/lif(Q) are continuous. Indeed, if
p>n and v € W?(B) where B is a ball (or a cube) in R", then

(3.1) [o(y) — v(@)] < Cilz =y~ (| Vol o)

15



when z,y € B, cf [GT, Theorem 7.17]. The Holder exponent is o« = 1 — g. If uis a
positive weak solution or supersolution, Lemma 2.14 implies

(3.2) IV 1og ul|op,) < Cor' 7

assuming that u > 0 in By,. For v = logu we obtain

(3.3) ‘ log %‘ < 010y

This is Harnack’s inequality (see Theorem 2.20) with the constant C'(n, p) = e“1¢2.

In the favourable case p > n a remarkable property holds for the Dirichlet problem:
all the boundary points of an arbitrary domain are reqular. Indeed, if €2 is a bounded
domain in R™ and if g € C(Q)NW'P(Q) is given, there exists a p-harmonic function
u € C(Q)NWH(Q) such that u = g on Q. The boundary values are attained, not
only in Sobolev’s sense, but also in the classical sense. This follows from the general
inequality .

[0(y) —v(@)| < Calz =y #||Vo]| ooy

valid for all v € W, ?(Q). Hence v € C*(Q) and v = 0 on 9Q. The argument is to
apply the inequality to a minimizing sequence. See also section 6.

3.2. The case p=n

The proof of the Holder continuity is based on the so-called hole filling technique
(due to Widman, see [Wi]) and the following elementary lemma. We do not seem
to reach Harnack’s inequality this way.

3.4. Lemma. (Morrey) Assume that u € WH(Q2), 1 < p < co. Suppose that

(3.5) /|Vu|pdx < Kpnoptee
B

whenever Bs, C €. Here 0 < a < 1 and K are independent of the ball B,. Then
u € Cp.(Q). In fact,

loc



PRrROOF: See [LU, Chapter 2, Lemma 4.1, p.56] or [GT, Theorem 7.19].

For the continuity proof, we let By, = B(x,2r) CC €. Select a radial test
function ¢ such that 0 < ¢ <1, ( = 1in B,, ¢ = 0 outside By, and |V(| < r7 L.
Choose

n(x) = ¢(x)"(u(r) — a)

in the n-harmonic equation. This yields

/C"|Vu|"da: = —n/(”l(u —a){|Vu|"*Vu, V()dx
0 Q

<n [ [¢Vu]" (u - a)V(|dz
/

1-1 1
Sn{/(”|Vu]"dx} {/|u—a|”|V(|”daz} )
) Q
/|Vu|”dx§n"7’_” / lu — al"dz.

By BZT‘\BT

It follows that

The constant a is at our disposal. Let a denote the average

o [

a=—- u(x)dx
|[H (r)]
H(r)
of u taken over the annulus H(r) = By, \ B,. The Poincaré inequality

/ lu(z) — al*dx < Cr" / |Vu|"dx

H(r) H(r)

yields
/|Vu|”dx§0n" / |Vu|"dz .
B,

H(r)

Now the trick comes. Add Cn" [ B, |Vu|™dz to both sides of the last inequality.
This fills the hole in the annulus and we obtain

(1+C’n")/\Vu\”dx§ Cn”/|Vu|”d;1:.
B,

Bar

17



In other words

holds for the Dirichlet integral

with the constant

By iteration
D27 r)y < ND(r), k=1,2,3,...

A calculation reveals that

D(o) < 25(5)50(@ C0<o<r,

with § =log(1/)) : log2, when By, C . This is the estimate called for in Morrey’s
lemma. The Holder continuity follows. |

Remark. A careful analysis of the above proof shows that it works for all p in a
small range (n — ¢, n], where € = ¢(n, p).

3.3. Thecasel<p<n

This is much more difficult than the case p > n. The idea of Moser’s proof is to
reach the Harnack inequality

esssupu < C'essinfu
B B

through the limits

1
esssupu = lim {/uqda:}q
B q—o0
B
{/uqu}q

B

essinfu = lim
B q——00

18



The equation is used to deduce reverse Holder inequalities like

{/umdm};2 < K{/upldx}pll

B, Br

where —0o0 < p; < py < oo and 0 < r < R. The "constant” K will typically blow up
as r — R, and, since one does not reach all exponents at one stroke, one has to pay
attention to this, when using the reverse Holder inequality infinitely many times.

Several lemmas are needed and it is convenient to include weak subsolutions and
supersolutions. In the first lemma we do not assume positivity, because we need it
to conclude that arbitrary solutions are locally bounded.

3.6. Lemma. Letuc W,.P(Q) be a weak subsolution. Then
1
(3.7) esssup(u,) < C ! /Bd ’
. up(u ——— [ uldx
s ST @y )
Br
for f > p—1 when Br CC ). Here u; = max{u(x),0} and Cs = C(n,p, ).

ProOF: The proof has two major steps. First, the test function n = qui_(p_l) is

used to produce the estimate

(Jurw)® <o (5o07) Gt o)

B R

where kK = n/(n —p) and > p — 1. Second, the above estimate is iterated so that
the exponents k3, k23, k3f3, ... are reached, while the radii shrink.

Write « = 8 — (p— 1) > 0. We insert
Vi = pl? V¢ + aul PV ug

into the equation. This yields

oz/(pui_l\Vu+|pdx: —p/Cp_lui<]Vu+|p_2Vu+,V§>dx
Q Q

since Vu, = Vu a.e. in the set where u > 0.

19



For simplicity we write u instead of u, from now on. Use the decomposition

aolo=D-1 atp-l

p p

to factorize u® in Holder’s inequality. We obtain
a/(pual\vmpdx
Q

< p/ gpflu(afl)(pfl)/p|vu‘p*1 'uﬁ/p|V§|dx
Q
1—1 1
Sp{/(pua_1|Vu|pda:} p{/u5|VC|pdx}p.
Q Q

Divide out the common factor (an integral) and rise everything to the p!* power.

We arrive at
/ Pyt VulPdr < <§>p / PV,
Q

Q

which can be written as

p|p ﬁ P p p
Q/|CVUB/ Pdx < (m> Q/M/ V(|Pdx .

Use
V(M) < [CVulP] 4+ [ufrv g

and Minkowski’s inequality to obtain

28 —p+1\”
|V (CuP/P)|Pdx < (_—) [u?/PN¢|Pda .

According to Sobolev’s inequality (for the function ¢ ug) we have

{ [1wrpal” <s [1vmpa
Q Q

20



where S = S(n,p). Recall, that, as usual |V({|] < 1/(R—7r)and ( = 1in B,. It

follows that
o 28—p+1 1 \» 5
KB < B
{/U(m} _{@6—p+1R—»(/um}

B, Br

We have accomplished the first step, a reverse Holder inequality.
Next, let us iterate the estimate. Fix a 3, say By > p — 1 and notice that
26—p+1 _260—p+1 _,
B-p+1 = fo—p+1
when 8 > fy. Start with fy and the radii r = R and 1 = r + (R — r)/2 in the
place of R and r. This yields

b

2 \7
lllagor, < (507 (=) ullsn

with the notation )

nww:{/mw}-

By

Then use r; and ry = r + 272(R — r) to improve k3 to k?8. Hence

p 4 o
lull s s < (55)7 (=) " ullusor,
P 2p
p P 280 " KB
< (Sh)Ro TR —— |y
= ( ) (R B T)%Jr% H “5077“0

Here we can discern a pattern. Continuing like this, using radii r; = r +277(R—r),
we arrive at

Sb \pBy ' T RF -1 ok
) 20" 0 | g

|’qu‘€j+1BO’Tj+1 < (R —

where the index k is summed over 0,1,2,...,5. The sums in the exponents are
convergent and, for example,

1— k1
St
1—x1

as j — 0o. To conclude the proof, use

n
p

Hu||,‘~§j+16077‘ < Hquéjﬂﬁoﬂ“jH

and let j — oo. The majorant contains (R — r) to the correct power n/ . m
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3.8. Corollary. The weak solutions to the p-harmonic equation are locally
bounded.

PRrROOF: Let g = p and apply the lemma to u and —u. O

The next lemma is for supersolutions. It is decisive that one may take the exponent
£ > p — 1, which is possible since x > 1. Hence one can combine with Lemma 3.6,
because of the overlap.

3.9. Lemma. Letve Wi)’f (Q) be a non-negative weak supersolution. Then

(3.10) {ﬁt}/v%}é < C(a,ﬁ){ﬁ/v%w}i,

T R

when 0 <e < <k(p—1)=n(p—1)/(n—p) and Bg CC Q.

PROOF: We may assume that v(x) > o > 0. Otherwise, first prove the lemma for
v(x) + o and let 0 — 0 at the end. Use the test function

n= vaﬁf(pfl)

This yields

=

{/%} =¢ (p—p:6>g(R—lrw{/”ﬁdx}é

B, Br

for 0 < B < p—1. Notice that we can reach an exponent k8 > p—1. The calculations
are similar to those in Lemma 3.6 and are omitted.

An iteration of the estimate leads to the desired result. The details are skipped.
|

In the next lemma the exponent g < 0.

3.11. Lemma. Suppose thatv € VVlif(Q) is a non-negative supersolution. Then

1

3.12 ! fax\” < Cessint
(. ) {m/v I’} S eSSBinv

Br

when 3 < 0 and Br CC Q. The constant C' is of the form c(n,p)~*/5.
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PRrROOF: Use the test function n = (Pv?~®=1 again, but now 3 < 0. First we arrive

at
Q/ vicwpar < (=2 Q/ V|Vl

after some calculations, similar to those in the proof of Lemma 3.6. The constant is
less than 2P. Using the Sobolev inequality we can write

{/Cnpvmﬁdx}“ < (28)p/vﬁ|v<'|pdw
Q Q

where S = S(n,p) and K =n/(n — p). The estimate

{/v“ﬁdx}i < <R2§r>p/”ﬁdx

B, Br

follows. An iteration of the estimate with the radiirg = R, 1y = r+2"'(R—7r), ry =
r+2"2(R—r),... yields, via the exponents 3, k3, K23, ..

~ w 25 \pPLrF L
Wi < p S (k1) 3
{/U dx} - (R—T’> 2 /U dx

Br

)

where ‘
Zm_k =14rx 14 40D,

As j — oo we obtain

25 \" _n2
By « 2% ﬂd
essBiup(v ) < (R—r) /’U x

Bgr

Taking into account that 5 < 0 we have reached the desired estimate. |

Combining the estimates achieved so far in the case 1 < p < n, we have the
following bounds for non-negative weak solutions:

1 :
<C —_ °d
essBiupu < l(a,n,p){(R_T)n /u x} ,

1
1 —z
essBiTnfu > Cg(a,n,p){m /uEdaz}
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for all e > 0. Take R = 2r. The missing link is the inequality

{]/ uad:p}ESC{J[ u_de} E
Br Bpr

for some small ¢ > 0. The passage from negative to positive exponents is delicate.
The gap in the iteration scheme can be bridged over with the help of the John-
Nirenberg theorem, which is valid for functions in L'. Its proof is in [JN] or [G,
Section 2.4]. The weaker version given in [GT,Theorem 7.21] will do.

3.13. Theorem. (John-Nirenberg) Let w € Lj, (2). Suppose that there is a
constant K such that

(3.14) ]/ w(x) — wp, |dz < K

T

holds whenever Ba,. C Q. Then there exists a constant v = v(n) > 0 such that

(3.15) ]/ e/v@—ws /K gy < 9

T

whenever Bs,. C ). (It also holds when B, C Q.)

The notation

fBrw(:c)d:c i
wpg, = W —frw x

was used.

The two inequalities
][ e:tu(w(x)—wBT)/Kdl, S 2

r

follow immediately. Multiplying them we arrive at
(3.16) ][ e”w(x)/Kd:c][ e @/ Ky < 4

trwg, /K

since the constant factors e cancel.

Next we use w = log u for the passage from negative to positive exponents. First
we show that w = logu satisfies (3.14). Then we can conclude from (3.16) that

][ u”/Kda:-/u_”/degél.

By

24



Writing ¢ = v/K we have "the missing link”

(3.17) {][Tugdx}i < 42{/1{8(13:}_1

r

when B,y, CC Q.

To complete the first step, assume to begin with that v > 0 is a weak solution.
Combining the Poincaré inequality

/|log u(z) — (logu)pg, [Pdr < C’lr”/ |V log u|Pdx
B,

By

with the estimate

/|V10g ulPdr < Cor™™?

B,

from lemma 2.14, we obtain for By, CC {2

]/ lw —wg, |Pdr < C1Cow, ' = K .

T

This is the bound needed in the John-Nirenberg theorem. Finally, to replace u > 0
by uw > 0, it is sufficient to observe that, if (3.17) holds for the weak solutions
u(z) + o, then it also holds for u(x).

We have finished the proof of the Harnack inequality

M(r) < Cm(r), when By, C Q.

Remark. It is possible to avoid the use of the John-Nirenberg inequality in the
proof. To accomplish the zero passage one can use the equation in a more effective
way by a more refined testing. Powers of logu appear in the test function and an
extra iteration procedure is used. The original idea is in [BG]. See also [5C], [HL,
Section 4.4, pp. 85-89] and [12].

We record an inequality for weak supersolutions.
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3.18. Corollary. Suppose that v € I/Vﬁ)f(Q) is a non-negative supersolution.
Then

1
B -1
(3.19) {][ vﬁdx} < C(n,p,B)essinfv, fB< M,
- B'r n — 1
whenever By, C ).
Proor: This is a combination of (3.10), (3.12), and (3.17). o

In fact, weak supersolutions are lower semicontinuos, after a possible redefinition
in a set of measure zero. They are then pointwise defined.

3.20. Proposition. A weak supersolution v € WIP(Q) is lower semicontinuous
(after a redefinition in a set of measure zero). We can define

v(xz) = essliminf v(y)
y—T
pointwise. This representative is a p-superharmonic function.

PRroOOF: The case p > n is clear, since then the Sobolev space contains only contin-
uous functions (Morrey’s inequality). In the range p < n we claim that

v(z) = essliminfo(y)
Y—T
at a.e. every x in ). The proof follows from this, since the right-hand side is always
lower semicontinuous. For simplicity, we assume that v is locally bounded. Suppose

that p > 2n/(n + 1) so that we may take ¢ = 1 in the weak Harnack inequality
(3.19). Use the function v(z) — m(2r), where

m(r) = esséinfv.
We have

0 S/ vdxr — m(2r)
Bar

= ][ (v(z) —m(2r)) dz < C(m(r) —m(2r)).
Bay
Since m(r) is monotone, m(r) — m(2r) — 0 as r — 0. It follows that

essliminfv(y) = limm(2r) = lim v(z)dx
Y—T0 (y) r—0 ( ) r—0 B(zo,2r) ( )
at each point xy. Lebesgue’s Differentiation Theorem states that the limit of the
average on the right-hand side coincides with v(zg) at almost every point z.

If we are forced to take ¢ < 1 in the weak Harnack inequality, a slight modification
of the above proof will do. |
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4. Differentiability

We have learned that the p-harmonic functions are Holder continuous. In fact,
much more regularity is valid. Even the gradients are locally Holder continuous. In
symbols, the function is of class CL:%(2). More precisely, if u is p-harmonic in Q and
if D CC Q, then

|Vu(x) — Vu(y)|* < Lplz — y|

when z,y € D. Here a = «(n,p) and Lp depends on n, p, dist(D,09Q) and ||u||o-
This was proved in 1968 by N. Uraltseva, cf. [Ur]. We also refer to [IX], [Uh], [L.e2],
[Db1] and [To] about this difficult regularity question?. Here we are content with a
weaker, but much simpler, result:

1) If1 < p < 2, then u € W2P(Q); that means that u has second Sobolev
derivatives.

2) If p > 2, then |Vu|®~2/2Vy belongs to W,2(Q). Thus the Sobolev derivatives

92y
i

D10z, is very difficult at the critical points (Vu = 0).

exist, but the passage to

According to Lemma 5.1 on page 20 in | ] the second derivatives exist when
the Cordes Condition®

2
l<p<3+——=
n—2

holds. Then u € W?(Q). To this one may add that u is real analytic (=is repre-
sented by the Taylor expansion) in the open set where Vu # 0, cf. [Lel, p.208].

4The second Russian edition of the book [I.U/] by Ladyzhenskaya and Uraltseva includes the
proof.

For the equation
9%u
Zaij(x,u,Vu) Db ag(z,u, Vu)
10T

the Cordes Condition reads

ajj>2 > (n—1+9) Z afj.

1 i,j=1

(

J

n n
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We begin with the study of
F(z) = |Vu(z)| P22 Vu(z)

in the case p > 2. It is plain that

/|F|2d:p:/|Vu|pdx.
Q Q

4.1. Theorem. (Bojarski - Iwaniec) Let p > 2. If u is p-harmonic in 2, then
F e W(Q). For each subdomain G CC Q,

C(n,p)

4.2 DF
(+2) IDFllsc) <

WHFHLZ

PROOF: The proof is taken from [BI1]. It is based on integrated difference quotients.
Let ¢ € C5°(92) be a cutoff function so that 0 < ¢ < 1, (|G = 1 and |V(] <
C,/ dist(G,09). (If required, replace 2 by a smaller domain Q;, G CC Q; CC Q.)
We aim at difference quotients. Take |h| < dist(supp ¢, 012). Notice that also uj =
u(z + h) is p-harmonic, when = + h € Q, h denoting a constant vector. The test
function

n(z) = ¢(@)*(u(z + h) — u(z))

will do in the equations

/ (V)P Vu(z), Vo())dz = 0.

Q

/ (|Vu(z + h) P *Vu(z + h), Vn(z))dr = 0.
Q

Hence, after subtraction,

(4.3) /(\Vu(x + h)[P2Vu(z + h) — |Vu(z) P> Vu(z), Vi(z))dr = 0.

It follows that

/ C@)([Valz + B)P-2Vu(z + h) — |Vu(@)P-2Va(z), Va(z + h) — Va(z))dz
_ / ()l + B — u(@)) (Ve + WF2Vu(z + h) — [Vu()P->Vu(z), Ve())da

<2 / C(z)|u(x + h) — u(x)\HVu(a: + h)|P*Vu(z + h) — \Vu(x)\p’ZVu(:c)‘\VC(&:)\dm
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To continue we need the "elementary inequalities”
2||b| b= o af” < (b2 — |a"a,b— a),
Hb\p % — |a"a| < (p = 1)(Jal "= + 6|7 )[1b]*7 b — |a| "7
given in section 12. We obtain

> / C@)|Fa+h) = F(o)fdo

<2(p—1) /Iu (z+ h) = u@)|[V¢(@)|(IVul@ + )7 + | Vu(@)|"? )((@)|F( + h) = F(z)|dx

{ / C@IF (e + 1) - Flo)de

2p

<20~ 0{ [ lute + 1)~ u@PIVe@Pis)
Q

{ / (|vu(x+h)|1722+|VU($)|Z722)P%2dm}

supp ¢

At the last step Holder’s inequality with the three exponents p, 2 and 2p/(p — 2)
was used; indeed, they match

p 2 2p

as required. The last integral factor is majorized by

(/yvu (x + h) ]pdx> </yvu de)2 -
<2</yvu \de) B _2(/\F\ dx) B

according to Minkowski’s inequality, when |A| is small. Dividing out the common
factor (=the square root of the integral containing F'(z + h) — F(x)) we arrive at

s i)
(4.4) B
u(x + h})L —u(z)|”

<p-1){ [1FPda}”
{ fierar}"{

a;+h) F(z)

3=

@)z
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Recall the characterization of Sobolev spaces in terms of integrated difference
quotients (see for example section 7.11 in [G'T] or [LU, Chapter 2, Lemma 4.6,

p.65]). We conclude that
() Pda V. < G / Vu(z)Pde L
— dist(G, 090)
0

\

Hence (4.3) yields

{/‘ "Hh Flz) dx}é<dlst {/IF 2dx}

This is sufficient to guarantee that F' € W?(G) and the desired bound follows. O

u(x +h) —u(z)?
h

Remark. A pretty simple proof of the Holder continuity of u is available, when
p>mn-—2and p > 2. It is based on Theorem 4.1. The reasoning is as follows.
Since the differential DF belongs to L .(2) by the theorem, Sobolev’s inbedding
theorem assures that F € L2/ "2(Q), that is Vu € L7/~ 2)(9). This summability
exponent is large. Indeed

np
n—2

>n whenp>n-—2.

We conclude that u € CZ.(2), with & = 1 — (n — 2)/p, since it belongs to some

WL*(Q) where s is greater than the dimension 7.

This was the case p > 2.

In the case 1 < p < 2 the previous proof does not work. However, an ingenious
trick, mentioned in [G, Section 8.2], leads to a stronger result. We start with a
simple fact.

4.5. Lemma. Let f € L} (Q). Then

1

/gp(:v)ﬂx i he;;) — f<x>d:v = — / g—i(/f(x + thek)dt) dx

Q 0

holds for all ¢ € C§ ().
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PRrROOF: For a smooth function f the identity holds, because

hew) —
/f:z:+thek f(l’+ er) — f(z)
8xk h
by the infinitesimal calculus. The general case follows by approximation. |

Regarding the xj-axis as the chosen direction, we use the abbreviation

f(z + hex) — f(x)

AMf = AMf(z) = .
By the lemma the formula
1
AM(|Vu|P2Vu) = / |Vu(x + they)|P *Vu(x + they,)dt
0

can be used in Sobolev’s sense.

4.6. Theorem. Let 1 < p < 2. If u is p-harmonic in Q, then u € W2P(Q).

loc
Moreover
D

p

9%u
Gx,;(?a:j

dx < CD/]VuV”d:c
)

when D CC ).

ProOOF: Use formula (4.1) again. In our new notation the identity next after (4.1)
can be written as

/ (A Va2V ), AN (Va))de

=2 / CAM (A" (|Vu|P2Vu), V) dx
1
=2 /(/ |Vu(x + they)|P2Vu(x + they)dt, %(Ahu -CV())dx

The last equality was based on Lemma 4.5. This was "the ingenious trick”. We have

0

5 (A" (VO = (VA g + AMu(( VE+ (V)
L
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by direct differentiation. Let us fix a ball Bsgg CC () and select a cutoff function (
vanishing outside Bog, ( =1 in Bgi, 0 < ¢ < 1 such that

V¢l <R, ID*| < CR™

For simplicity, abbreviate

= / |Vu(x + they) P dt .
Bar
The estimate
C(AM(|Vu|P72Vu), AM(Vu))da
(4.7)

;U|L\3{O\

/Y|Ahuxk|dx+ /|Ahu|de
0

follows. Since 1 < p < 2, the inequality
(o772 — [a"2a,b — a) > (p— D|b— al*(1 + |al* + [b]*) "=

is available, see VII in section 10, and we can estimate the left hand side of (4.7)
from below. With the further abbreviation

W(z)? =1+ |Vu(z)]* + |Vu(x + hey)|?

we write, using also |A"(Vu)| > |Ahu,, |,

(p—1) /CQWP_2|Ah(Vu)|2dx < %/§Y|Ah(VU)|d:v
Q

c
—l—ﬁ/mhuwdac
Bar

The first term in the right hand member has to be absorbed (the so-called Peter-
Paul Principle). To this end, let € > 0 and use

2R™ICY |AM (V)| = 2W P22 Al (V) |[W P2y 1
< WP ANV P + e RTPWEPY 2,

32



For example, € = (p — 1)/2 will do. The result is then

1 2
pT / WP=2| AR (V) 2de < FR—Z / W2PY2(dy
Br Bagr

+ cR™2 / |Aru|Y da .

Baor

Incorporating the elementary inequalities

|AM(Vu) [P < WP2AMNVu) P + WP,
Wery? < WP+ y»/(p=1) ,
|Ahu|y S |Ahu|P + YP/(P_l) ,

the estimate takes the form

/|Ah(Vu)|pdx§cl/Wpda:+62/Yz>p1dx+03/|Ahu|pdx
2R

Bgr Bagr Baor

where the constants also depend on R. It remains to bound the three integrals as
h — 0. First, it is plain that

/WpdngR”+C/|Vu|pdx.

Bagr Bsgr

Second, the middle integral is bounded as follows:

1 .
/ngldq;: / (/\Vu(x—i—thekﬂpldt)p dx
0

Bor Bagr

1
< //|Vu(x+thek)]pdtdx§ |Vu|Pdx
3R

Bog O B

for h small enough. For the last integral the bound

/|Ahu|pd:c§ / \VulPdx
Bsr Bsr
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follows from the characterization of Sobolev’s space in terms of integrated difference
quotients.

Collecting the three bounds, we have the final estimate

/ |AM(Vu)|Pdr < C(n,p,R) [ |Vul|Pdx
Br :

Bsgr

and the theorem follows. |
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5. On p-superharmonic functions

In the classical potential theory the subharmonic and superharmonic functions
play a central role. The gravitational potential predicted by Newton’s theory is
the leading example. It is remarkable that the mathematical features of this lin-
ear theory are, to a great extent, preserved when the Laplacian is replaced by the
p-Laplace operator or by some more general differential operator with a similar
structure. Needless to say, the principle of superposition is naturally lost in this
generalization. This is the modern non-linear potential theory, based on partial
differential equations. —This chapter is taken from [1.2].

5.1. Definition and examples

The definition is based on the Comparison Principle. (In passing, we mention that
there is an equivalent definition used in the modern theory of viscosity solutions and
the p-superharmonic functions below are precisely the wviscosity supersolutions, cf.

[JLM].)
5.1. Definition. A function v: Q — (—o0, 00| is called p-superharmonic in Q, if

(i) v is lower semi-continuous in 2
(ii) v # oo in Q

(iii) for each domain D CC € the Comparison Principle holds: if h € C(D) is
p-harmonic in D and h|0D < v|0D, then h < v in D

A function u : Q — [—00, 00) is called p-subharmonic if v = —u is p-superharmonic.

It is clear that a function is p-harmonic if and only if it is both p-subharmonic
and p-superharmonic, but Theorem ?? is needed for a proof.

For p = 2 this is the classical definition of F. Riesz. We emphasize that not even
the existence of the gradient Vv is required in the definition. (A very attentive
reader might have noticed that the definition does not have a local character.) As
we will learn, it exists in Sobolev’s sense. For sufficiently regular p-superharmonic
functions we have the following, more practical, characterization.

5.2. Theorem. Suppose that v belongs to C(€2) N Wl}xp(Q) Then the following
conditions are equivalent
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1) [pIVolPde < [, |V(v+ n)[Pde whenever D CC Q and n € C§°(D) is non-
negative

(ii) [(|Vo|P=2Vu, Vn)dz > 0 whenever n € C§°(§2) is non-negative

(iii) v is p-superharmonic in €.

PRrOOF: The equivalence of (i) and (ii) is well-known in the Calculus of Variations.
If (ii) is valid, so is (i) because

V(v +n)l” = [VolP +p(|Vol~*Vo, V).

If (i) holds, then the function

J(e) = / IV (0() + ena)) Pde

D

satisfies J(0) < J(g), when € > 0. Here the domain D CC € contains the support
of . By the infinitesimal calculus J/(0) > 0. This is (ii).

It remains to show that (ii) and (iii) are equivalent. First, suppose that (ii) holds.
Let D CC € and suppose that h € C(D) is p-harmonic in D and h < v on dD. The
test function

n = max{h —v,0}

produces the inequality

/|Vv|pdx§ /(|Vv|p_2Vv,Vh>dx

v<h v<h

1—1 1
§{/|Vv|pdx} {/|Vh|pdx} .
v<h v<h
/\Vv|pd:c§ / |\Vh|Pdzx .

v<h v<h

Hence

In other words, v is a minimizer in (each component of) the open set {v < h}. The
boundary values are v = h. The minimizer is unique and so v = h in this set. This
contradiction proves that v > h. Thus (ii) or (i) implies (iii).

The proof of the sufficiency of (iii) seems to require the introduction of an obstacle
problem. It will be given in Corollary 5.8, which does not rely on "(iii) = (ii)” when
it comes to its proof. O
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Remark. The continuity of v is not needed for the equivalency of (i) and (ii).
The whole theorem holds for lower semicontinuous functions in the Sobolev space.
More could be said about this.

It is instructive to consider some examples. The one-dimensional situation is
enlighting. The p-harmonic functions in one variable are just the line segments
h(z) = ax + b. Now p has no bearing. The p-superharmonic functions are exactly
the concave functions of one variable. The comparison principle is the familiar
“arc above chord” condition. — In several dimensions, the concave functions are
p-superharmonic, simultaneously for all p, but there are many more of them.

The leading example of a p-superharmonic function is

(n—p)lz|=1 (p#£n), —loglz| (p=n),

usually multiplied by a positive normalizing constant. Outside the origin the func-
tion is p-harmonic. Notice that the function is not of class W'?(Q), if Q contains the
origin. Therefore it is not a weak supersolution in the sense of Definition 2.12! We
cannot resist mentioning that, although the principle of superposition is not valid,
the function

(5.3) (x) = / - 5?33—%/@—” (1<p<n)

is, indeed, p-superharmonic for o(y) > 0. This follows from an interesting calculation
by Crandall and Zhang done for the corresponding Riemann sums, cf [('Z]. Of course,
this remarkable representation formula cannot directly give all the p-superharmonic
functions.

It is useful that the pointwise minimium of two p-superharmonic functions is again
p-superharmonic as a direct consequence of the definition.

Before going further we had better make a simple comment. Assumption (ii) in
Definition 5.1 means that v is finite at least at one point. In fact, it follows easily
that the set {v < oo} is dense in Q. (As we will later see, v < oo a.e..)

5.4. Proposition. If v is p-superharmonic in ), then the set where v = 0o does
not contain any ball.

PROOF: Suppose to begin with that v > 0 in €. Assume that v = 4oc in some
ball B, = B(xg,r) and that B = B(xo, R) CC Q, where R > r. We claim that
v = 400 also in the larger ball Bg. The function

f‘R t—(n=1)/(p=1) g4

x—xo|

er +—(n=1)/(p=1) g¢

h(z) =
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is p-harmonic when x # x(, in particular it is p-harmonic in the annulus r <
|z — xo| < R. It takes the boundary values 0 on dBg and 1 on 0B,. Consider
the p-harmonic function kh(z). The comparison principle shows that

v(x) > kh(z), k=1,2,3,...
in the annulus. We conclude that v = oo in the annulus. In other words v = oo in

Bp.

To get rid of the restriction v > 0, we consider the function v — inf v instead of v.
Again the conclusion is that v|Br = oo if v|B, = 0.

Repeating the procedure through a suitable chain of balls, we finally arrive at the
contradiction v = oo in 2. O

5.2. The obstacle problem and approximation

As we have seen, the p-harmonis functions come from a minimization problem in
the Calculus of Variations. If one adds a restriction on the admissible functions,
when minimizing, weak supersolutions of the p-harmonic equation are produced.
The restrictive condition is nothing more than that the functions have to lie above
a given function, which acts as a fixed obstacle.

Suppose, as usual, that € is a bounded domain in R". Given a function ¢ €
C(Q2) N WP(Q) we consider the problem of minimizing the integral

/ \VolPdx
Q
among all functions in the class
Fp() = {v e C(ONWP(Q)|v > in Qand v — ¢ € WyP(Q)}.
This is the obstacle problem with ¢ acting as an obstacle from below. Also the

boundary values are prescribed by 1. (One could also allow other boundary values,
but we do not discuss this variant.)

5.5. Theorem. Given ¢ € C(Q)NW'P(Q), there exists a unique minimizer vy in

the class F(2), i.e.
/|VU¢|pd$§/|Vv|pda:
Q Q
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for all similar v. The function vy is p-superharmonic in 2 and p-harmonic in the
open set_{vw > o} If in addition, Q is regular enough and ¢ € C(2), then also
vy € C(2) and vy, =1 on 0.

PROOF: The existence of a unique minimizer is easily established, except for the
continuity; only some functional analysis is needed. Compare with the problem
without obstacle in section 2. It is the continuity that is difficult to prove in the
case 1 < p <n. We refer to [\MZ] for the proof of the continuity of vy.

Next we conclude that

(5.6) / ([Vou P2V, Vi)dz > 0

Q
when n € C3°(2), n > 0, according to Theorem 5.2, which also assures that Uy 18
p-superharmonic in €.

We have come to the important property that vy is p-harmonic in the set where
the obstacle does not hinder, say

S ={z € Quy(z) > ¢(x)}.

In fact, we can conclude that (5.6) is valid for all n € C§°(Q2), positive or not,
satisfying

vy () + en(z) = ¢(x)
for small € > 0. Consequently, we can remove the sign restriction on 7 in the set S.
Indeed, if n € C§°(S) it suffices to consider ¢ so small that

elinllee < min(vy — )

the minimum being taken over the support of 1. Here n can take also negative
values. We conclude that v is p-harmonic in S.

For the question about classical boundary values in regular domains we refer to

[F]. ]

I take myself the liberty to hint that it is a good excercise to work out the previous
proof in the one-dimensional case, where no extra difficulties obscure the matter,
and pictures can be drawn.

Remark. More advanced regularity theorems hold for the solution. If the obsta-

cle is smooth, then v, is of class C2%(Q). Of course, the regularity cannot be any
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better than for general p-harmonic functions. We refer to [C'L], [S] and [L.3] about
the gradient Vuy,.

In the sequel we will use a sequence of obstacles to study the differentiability prop-
erties of p-superharmonic functions. The proof that an arbitrary p-superharmonic
function v has Sobolev derivatives requires several steps:

1) v is pointwise approximated from below by smooth functions ;.

2) The obstacle problem with v; acting as an obstacle is solved. It turns out that
() < vy, (2) < o(x).

3) Since the vy,’s are supersolutions, they satisfy expedient a priori estimates.

4) The a priori estimates are passed over to v = lim vy, first in the case when v
is bounded.

5) For an unbounded v one goes via the bounded p-superharmonic functions
min{v(z), k} and an estimate free of k is reached at the end.

To this end, we assume that v is p-superharmonic in 2. Because of the lower
semicontinuity of v, there exists an increasing sequence of functions ¢; € C'*°(Q)
such that

Uale) < vale) - S 0l@), i vy(e) = o)
at each z € €. Next, fix a regular bounded domain D CC €. Let v; = vy, denote
the solution of the obstacle problem in D, the function ¢; acting as an obstacle.
Thus v; € Fy, (D) and v; > ¢; in D. We claim that

v<v <., Y <v;<w

pointwise in D. To see that v; < v, we notice that this is true except possibly in the
open set A; = {v; > 1;}, where the obstacle does not hinder. By Theorem 5.5 v,
is p-harmonic in A; (provided that A; is not empty) and on the boundary 0A; we
know that v; = 1;. Hence v; < v on 0A; and so the comparison principle, which v
is assumed to obey, implies that v; < v in A;. This was the main point in the proof,
here the comparison principle was used. We have proved that v; < v at each point
in D.

The inequalities v; < vj41, 7 = 1,2,3,..., have a similar proof, because v,
satisfies the comparison principle according to Theorem 5.5.

We have established the first part of the next theorem.
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5.7. Theorem. Suppose that v is a p-superharmonic function in the domain
Q2. Gwen a subdomain D CC Q there are such p-superharmonic functions v; €
C(D) N WhP(D) that

vy <wvy < ... and v = lim v,

Jj—00

at each point in D. If, in addition, v is (locally) bounded from above in 2, then also
v e Wli’cp(Q), and the approximants v; can be chosen so that

lim [ |V(v—v;)|Pdz =0.
Jj—o0
D

Proor: Fix D and choose a regular domain Dy, D CC Dy CC €). By the previous
construction there are p- superharmonic functions v; in Dy such that v; < v, < ...
v; — v pointwise in Dy and v; € C(Dq) N WHP(Dy).

For the second part of the theorem we know that

C =sup v—inf 91 < o0
Dy Dy

if v is locally bounded. Theorem 5.2 and a simple modification of Lemma 2.9 to
include weak supersolutions lead to the bound

/|ij]pdx gppCp/]VC\pdx:M (1=1,2,3,...).

D Dy

By a standard compactness argument v € W'?(D) and ||Vov||»py < M. For a
subsequence we have that Vv, — Vv weakly in LP(D). We also conclude that
v € Wl ().

To establish the strong convergence of the gradients, it is enough to show that

lim [ [Vv— Vu;[Pdz =0
J—00
B,

whenever B, is such a ball in D that the concentric ball By, (with double radius) is

comprised in D;. As usual, let ¢ € C§°(B2-), 0 < (¢ <1and ¢ =1 in B,. Next, use
the non-negative test function n; = {(v — v;) in the equation

/(lVUHPZVUj?Vde >0

B27‘

41



to find that

Jj = /UV’UVDZVU — [V P72V, V(C(0 = v))))da

Bay

< / (IVoP=2Y0, V(C(0 — v,))dz

132r

By the weak convergence of the gradients

limsup J; < 0.

Jj—o0
We split J; in two parts:

5= [ C4velr 290 = Va9, Vo - Voy)da

Bay

+ /(v —v)){(|VuP2Vv — |V, [P~2Vu;, V() da

132r
The last integral is bounded in absolute value by the majorant

{ [oupay {( [roma) " ( [1onrar) ™ Lmaciva

2r 2r 2r

< oM maX\Vd{ /(v — vj)pdx}

Bar

P

and hence it approaches zero as j — oo. Collecting results, we see that

lim [ (|VolP2Vv — |V [P~*Vv;, Vo — Vu;)dz <0
J—00
132T

at least for a subsequence. The integrand is non-negative. For p > 2 we can use the
inequality

(| Vo[P2 Vo — |V, [P 2V, Vo — V) > 2277| Vo — Vo, P

in B, to conclude the proof. The reader might find it interesting to complete the
proof for 1 < p < 2. ]
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With this approximation theorem it is easy to prove that bounded p-superhar-
monic functions are weak supersolutions. Also the opposite statement is true, pro-
vided that the issue about semicontinuity be properly handled.

5.8. Corollary. Suppose that v is p-superharmonic and locally bounded in (2.
Then v € W,5P(Q) and v is a weak supersolution:

/(|Vv|p_2Vv,Vn>d:B >0
0

for all non-negative n € C§°(Q).

Proor: We have to justify the limit procedure
/<|Vv|p_2Vv, Vn)dx = leTo/<|ij|p_2ij, Vn)dz >0
Q Q

where the v’s are the approximants in Theorem 5.7. By their construction they

solve an obstacle problem and hence they are weak supersolutions (Theorem 5.2).
In the case p > 2, one can use the inequality

“VU|p_QVU — |V’Uj|p_2V’Uj‘ S
(p = 1)|[Vo = Vo |([Vo]P=2 + [V, [P72)

and then apply Holder’s inequality. In the case 1 < p < 2 one has directly that
||Vv|p_2Vv — |ij|p_2ij’ <~(p)|Vv — ij|p_1 )

The strong convergence in Theorem 5.7 is needed in both cases. |

We make a discursion and consider the convergence of an increasing sequence of
p-harmonic functions.

5.9. Theorem. (Harnack’s convergence theorem) Suppose that h; is p-harmonic
and that

0§h1§h2§, h:hmhj

pointwise in 2. Then, either h = oo or h is a p-harmonic function in Q.
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PROOF: Recall the Harnack inequality (Theorem 2.20)
h](l') SCh]’([EQ), ]: 1,2,3,...

valid for each x € B(x,7), when B(xg,2r) CC 2. The constant C' is independent
of the index j. If h(zg) < oo at some point xg, then h(z) < oo at each = € €.
This we can deduce using a suitable chain of balls. It also follows that h is locally
bounded in this case.

The Caccioppoli estimate

/|th|pdx§0r_p/ |hj|pdx§07‘_p/|h|pdx
Br BQT‘ BQT
< 1 CPr" " Ph(xy)?

allows us to conclude that h € W,"?(Q). Finally,

loc

/ (IVh|P~2Vh,Vn)dr = jlggo / (|Vh;[P~2Vh;, Vn)dz = 0
Q Q

for each n € C§°(2) follows from a repetition of the corresponding argument in the
proof of Theorem 5.7. |

5.3. Infimal convolutions

Instead of using the approximation with solutions of obstacle problems, as in the
previous subsection, one can directly use so-called infimal convolutions. They inherit
the comparison principle. See [ ].

Suppose that v is lower semicontinuous and bounded in €2 :

0<w(z)<L
and define
. |z — yl2}
(5.10) ve(z) = ;Ielsf){v(y) + 5 , e>0.
Then
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e v.(z) Sfu(xr) ase — 0+

e v.(x) — |x|*/2¢ is locally concave in R"

e v, is locally Lipschitz continuous in §2

e The Sobolev gradient Vv, exists and belongs to L2 ()

loc

e The second derivatives D?v, exist in Alexandrov’s sense. See Section ?

The assertion about the Sobolev derivatives follow from Rademacher’s theorem
about Lipschitz functions, see [XGG]. A most remarkable feature is that the infi-
mal convolutions preserve the property of p-superharmonicity.

5.11. Lemma. Ifwv is a p-superharmonic function in €2 and 0 < v < L, the infimal
convolution v, is a p-superharmonic function in the open subset of ) where

dist(x,0Q) > V2Le.
Similarly, the local weak supersolutions of the p-Laplace equation are preserved.

PROOF: We assume that v is p-superharmonic in
0. = {x € Q| dist(z, 0Q) > 2L5} .

First, notice that for z in ()., the infimum is attained at some point y = x* com-
prised in 2. The possibility that z* escapes to the boundary of € is hindered by the
inequalities

jz— 2P _ | — 2"
2e 2e
|z — x*| < V2Le < dist(z, 092).

IN

+o(z") = v.(z) > v(z) < L,

This explains why the domain shrinks a little.

We have to verify the comparison principle for v. in an arbitrary subdomain
D ccC Q.. Suppose that h € C(D) is a p-harmonic function such that v.(z) > h(z)
on the boundary dD or, in other words,

|z —y|?
2e

+o(y) > h(z) when z€dD,ye.
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Thus, writing y = « + 2z, we have

2
w(x) Ev(x+z)~l—% > h(xz), x€dD

whenever z is a small fixed vector. But also w = w(z) is a p-superharmonic function
in Q.. By the comparison principle, w(z) > h(x) in the whole D. Given any point
in D, we may choose z = x§ — xo. This yields v.(x¢) > h(xg). Since z was arbitrary,
we have verified that

ve(x) > h(z) when =z € D.

This concludes the proof of the comprison principle.

The statement about (weak) p-supersolutions is immediate. m

5.4. The Poisson modification

This subsection, based on | |, is devoted to a simple but useful auxiliary
tool, generalizing Poisson’s formula in the linear case p = 2. The so-called Poisson
modification of a p-superharmonic function v is needed for instance in connexion
with Perron’s method. Given a regular subdomain D CC € it is defined as the
function

V = P(v,D) = {” in D
hin D
where h is the p-harmonic function in D with boundary values v on dD. One verifies
easily that V' < v and that V' is p-superharmonic, if the original v is continuous.
Otherwise, the interpretation of h = v on dD requires some extra considerations.

In the event that v is merely semicontinuous one goes via the approximants v; in
Theorem 5.7 and defines

V =1limV; = lim P(v;, D)

where we have tacitly assumed that v; — v in the whole 2 (here this is no re-
striction). Now we use the Harnack convergence theorem (Theorem 5.9) on the
functions h; to conclude that the limit function h = limh; is p-harmonic in D.
(Since h; < v; < v the case h = oo is out of the question. Also the situation h; > 0
is easy to arrange by adding a constant to v.) With this A it is possible to verify that
V' is p-superharmonic. It is the limit of an increasing sequence of p-superharmonic
functions.
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5.12. Proposition. Suppose that v is p-superharmonic in  and that D CC €.
Then the Poisson modification V' = P(v, D) is p-superharmonic in ), p-harmonic
m D, and V < wv. Moreover, if v is locally bounded, then

/|VV|pdx§/|Vv|pdx
G G

for D C G CccC .

PROOF: It remains to prove the minimization property. This follows from the ob-
vious property

/|VVj|pdx < /|ij\pdx.

G el

In fact, the case G = D is the relevant one. |

5.5. Summability of unbounded p-superharmonic functions

We have seen that the so-called polar set
E={reQv(r) =00}

of a p-superharmonic function v cannot contain any open set (Proposition 5.4).
Much more can be assured. = is empty, when p > n, and it has Lebesgue measure
zero is all cases. The key is to study the p-superharmonic functions

vp = vg(x) = min{o(z),k}, k=1,2,3,....

Since they are locally bounded, they satisfy the inequality

/ (Vopl™ 20y, Vidz > 0
Q

for each non-negative n € C5°(2) and so the estimates for weak supersolutions are
available.
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5.13. Theorem. If v is p-superharmonic in §2, then

/|U|qu < 00

D

whenever D CC Q and 0 < ¢ <n(p—1)/(n—p) in the case 1 <p < n. In the case
p > n the function v is continuous.

PROOF: Because the theorem is of a local nature, we may assume that v > 0 by
adding a constant. Then also v > 0.

First, let 1 < p < n. According to Corollary 3.18

1
{]/ vgdx} < C(p,n,q)essinfuy
B, By

whenever ¢ < n(p —1)/(n — p) and By, CC Q. The constant is independent of the
index k. Since v, < v we obtain

1

<][ qua:) ' < C’(p,n,q)essBinfv

essinfv < oo

r

It remains to prove that

This is postponed till Theorem 5.14, the proof of which does not rely upon the
present section.

Next, consider the case p > n. Here the situation v(z) = oo for a.e. = will be
excluded without evoking Theorem 5.14. The estimate

/ ¢P|V log vy Pdz < / Ve |Pda

in Lemma 2.14 yields, as usual,
|V 1og vkl Le(s,) < Cyr(n=p)/p
if By, C Q. According to (3.1)

| log vy, () — log vy, (y)| < Colz — y|*™/7||V log vy || 1o (5,
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when z,y € B,. It follows that vg(z) < Kuvg(y) and
v(z) < Ko(y)

when z,y € B, and By, C Q; K = €2, Thus we have proved the Harnack
inequality for v.

We can immediately conclude that v(z) < 0o at each point in €2, because there is
at least one such point. As we know, the Harnack inequality implies continuity. In
fact, v € C2.(Q).

loc

Finally, we have the borderline case p = n. It requires some special considerations.
We omit the proof that v € L (£2) for each ¢ < oo. o

Remark. The previous theorem has been given a remarkable proof by T. Kilpelai-
nen and J. Maly, cf | ]. The use of an ingenious test function makes it possible
to avoid the Moser iteration.

5.6. About pointwise behaviour

Although we know that v < co in a dense subset, the conclusion that essinf v < oo
requires some additional considerations. We will prove a result about pointwise
behaviour from which this follows. In order to appreciate the following investigation
we should be aware of that in the linear case p = 2 there exists a superharmonic
function v defined in R™ such that v(z) = 400 when all the coordinates of x are
rational numbers, yet v < oo a.e.. (Actually, the polar set contains more points,
since it has to be a Gs-set.) The example is

Cq
U(I):ZW’
q

where the ¢, > 0 are chosen to create convergence. It is astonishing that this function
has Sobolev derivatives! — A similar "monster” can be constructed for 1 < p < n.

Recall that a p-superharmonic function v is lower semicontinuous. Thus

v(x) <liminfo(y) < essliminfo(y)

Y= Yy—T

at each point x € ). "Essential limes inferior” means that any set of n-dimensional
Lebesgue measure zero can be neglected, when limes inferior is calculated. The
definition is given in [Brelot, I1.5]. In fact, the reverse inequality also holds.
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5.14. Theorem. If v is p-superharmonic in §2, then

v(x) = essliminfo(y)
y—x

at each point x in Q.

The following lemma is the main step in the proof. A pedantic formulation cannot
be avoided.

5.15. Lemma. Suppose that v is p-superharmonic in . If v(x) < X\ at each point
x in  and if v(z) = X for a.e. x in ), then v(x) = X\ at each x in .

PrROOF: The idea is that v is its own Poisson modification and for a continuous
function the theorem is obvious. Therefore fix a regular subdomain D CC €2 and
consider the Poisson modification V' = P(v, D). We have

V<<

everywhere. We claim that V' = X\ at each point in D. Since v is locally bounded it
is a weak supersolution and as such it belongs to I/Vl(l)f(Q) According to Proposition

5.12
/]VVV’dx < /|Vv|”dx:/|V)\|pda::0
G G G

for D C G CC Q. Hence VV =0 and so V is constant in G. It follows that V = A
a.e. in G. But in D the function V' is p-harmonic. It follows that V' (z) = A at each
point x in D. Since D was arbitrary, the theorem follows. O

5.16. Lemma. Ifv is p-superharmonic in § and if v(x) > X for a.e. z in €, then
v(x) > A for every x in (.

ProoOF: If A = —oo there is nothing to prove. Applying Lemma 5.15 to the p-
superharmonic function defined by

min{v(x), \}

we obtain the result in the case A > —oo. O
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Proof of Theorem 5.14: Fix any z in €. We must show that

A =essliminfu(y) <ov(z).

Yy—x

Given any € > 0, there is a radius § > 0 such that v(y) > A\ — ¢ for a.e. y € B(z,9),
where 0 is small enough. By Lemma 5.16 v(y) > A — ¢ for each y € B(x,6). In
particular, v(z) > A —e. Because ¢ > 0 was arbitrary, we have established that
A < o(z).

5.7. Summability of the gradient

We have seen that locally bounded p-superharmonic functions are of class VVIECP(Q)
They have first order Sobolev derivatives. For unbounded functions the summability
exponent p has to be decreased, but it is important that the exponent can be taken
> p — 1. The following fascinating theorem is easy to prove at this stage.

5.17. Theorem. Suppose that v is a p-superharmonic function defined in the

domain Q in R™, p > 2 — % Then the Sobolev derivative

v v
Vo= |—=—,..., —
v <8Il ’ ’ Gxn)
exists an the local summability result

/|Vv|qda:<oo, D ccQ,
D

holds whenever 0 < g < n(p —1)/(n — 1) in the case 1 < p < n and g = p in the
case p > n. Furthermore,

/(le|”2Vv,V¢> dr > 0

Q

whenever ¢ > 0 ¢ € C§°(R).

Remark. The fundamental solution
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shows that the exponent ¢ is sharp. — The case p = 2 can be read off from the Riesz
representation formula. — The restriction p > 2 — % is not essential but guarantees
that one can take ¢ > 1. The interpretation of Vv would demand some care if
l<p<2-—-2.

PROOF: Suppose first that v > 1. Fix D cC Q and ¢ < n(p —1)/(n —1). The
cutoff functions

vy =min{v,k}, k=123, ...,

are bounded p-superharmonic functions and by Corollary 5.8 they are weak super-
solutions. Use the test function n = (Pv,*, a > 0, in the equation

/ (Vo P2V, Vinhda > 0
Q

to obtain

/f%gkﬂvwwmx;GQp/vﬁkﬂvqwm.
Q

Q

Here ¢ € C§°(22), 0 < ¢ <1 and ¢ =1in D. By Hoélder’s inequality

/\Vvk\qu _ /vl(clm)q/p‘vk(1+a)/pvvk’qu
D D

1-4 g
< {/v£1+a)q/(p—q)dm} {/v,;l‘o‘lvmpda?}
D D
1-3 »
< (B)Q{ /U(1+a>q/(p—q>dx} {/vp—l—a|vg|de}
(6%
D Q

for any small @ > 0. A calculation shows that

-1
q <n@ )
p—q n—p

and hence we can fix o so that also

(1+a) _nlp—1)
pP—q n—p
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Inspecting the exponents we find out that, in virtue of Theorem 5.13, the sequence
|VkllLa(py, & = 1,2,3,... is bounded. A standard compactness argument shows
that Vo exists in D and

/]Vv|qu < lim /\Vvk\qu.
k—o00
D D

Since D was arbitrary, we conclude that v € W,5(Q).

Finally, the restriction v > 1 is locally removed by adding a constant to v. This
concludes our proof. O

The equation with measure data. The equation
V-(|Vo]P*Vo) = —C,, 6
is satisfied by the fundamental solution

2|/ ED(p £y log(lz]),  (p=n)
in the distributional sense:
Juwerve voyae = o00)
Rn

whenever ¢ € C§°(R™). Thus Dirac’s delta is the right-hand side for the funda-
mental solution. Theorem 5.17 enables us to produce a Radon measure for each
p-superharmonic function:

V-(|Vu[P2Vv) = —p.

Recall that the summability exponent ¢ > p — 1 for the gradient. This is decisive.

5.18. Theorem. Let v be a p-superharmonic function in §2. Then there exists a
non-negative Radon measure p such that

/<|Vv|p_2Vv,V¢) dr = Q/gbdu

Q

for all p € C°(R™).
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PrOOF: We already know that v and Vo belong to L¥_'(Q). In order to use Riesz’s

loc
Representation Theorem we define the linear functional

Ay C(Q) - R,
Au(d) = / (VP2 Tv, V) da.

Q

Now A,(¢) > 0 for ¢ > 0 according to Theorem 5.17. Thus the functional is positive
and the existence of the Radon measure follows from Riesz’s theorem, cf. [EG, 1.8].
o

Some further results can be found in | |. See also | ] and [KM].
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6. Perron’s method

In 1923 O. Perron published a method for solving the Dirichlet boundary value
problem

Ah=01in Q,
h = g on 0f)

and it is of interest, especially if 02 or g are irregular. The same method works
with virtually no essential modifications for many other partial differential equations
obeying a comparison principle. We will treat it for the p-Laplace equation. The
p-superharmonic and p-subharmonic functions are the building blocks. This chapter
is based on | ].

Suppose for simplicity that the domain €2 is bounded in R™. Let g : 000 —
[—00, 00| denote the desired boundary values. To begin with, g does not even have
to be a measurable function. In order to solve the boundary value problem, we will
construct two functions, the upper Perron solution h and the lower Perron solution
b. Always, h < f and the situation h= b is important; in this case we write b for
the common function h = b.

These functions have the following properties:

) h<h

) b and b are p-harmonic functions, if they are finite
3) b= b, if ¢ is continuous

)

If there exists a p-harmonic function A in €2 such that

lim (x) = 9(¢)

r—E

at each £ € 0€), then h ZQZH-

5) If, in addition, g € W1P(Q) and if h is the p-harmonic function with Sobolev
boundary values h — g € W, ?(Q), then h = h=h.

There are more properties to list, but we stop here. Notice that 5) indicates that
the Perron method is more general than the Hilbert space method.

We begin the construction by defining two classes of functions: the upper class
and the lower class £,. The upper class 41, consists of all functions v : 2 — (—o0, 00|
such that
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(i) v is p-superharmonic in §2,
(ii) v is bounded below,

(iii) liminfv(z) > g(§), when & € 0.

z—E

The lower class £, has a symmetric definition. We say that u € £, if

(i) w is p-subharmonic in €2,
(ii) u is bounded above,

(iii) limsupu(z) < g(€), when & € 9.

r—E -

It is a temptation to replace the third condition by limv(x) = g(§), but that does
not work. Neither is the requirement liminfv(x) = g(§) a good one. The reason is
that we must be able to guarantee that the class is non-empty.

Notice that if v, va, ..., v, € Uy, then also the pointwise minimum
min{vy, vg, ..., g}
belongs to ;. (A corresponding statement about max{us,us,...,u;} holds for

£,.) This is one of the main reasons for not assuming any differentiability of p-
superharmonic functions in their definition. (However, when it comes to Perron’s
method it does no harm to assume continuity.) It is important that the Poisson
modification is possible: if v belongs to the class 4, so does its Poisson modification
V', recall subsection 5.4.

After these preliminaries we define at each point in €

the upper solution b (z) = inuf v(x),
ve g

the lower solution [jg(l’) = sup u(z).
- ucly

Often, the subscript ¢ is omitted. Thus we write § for Eg. Before going further, let
us examine an example for Laplace’s equation.

Example. Let € denote the punctured unit disc 0 < r < 1, r = /22 + 2, in the
xy-plane. The boundary consists of a circle and a point (the origin). We prescribe
the (continuous) boundary values

9(0,0)=1; g=0whenr=1.
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We have
0 < bz, y) <blz,y) <elog(1/y/a? +y?)

for e > 0, because 0 € £, and elog(1/r) € £, and always h < b. Letting ¢ — 0, we
obtain

h=h=0.
Although the Perron solutions coincide, they take the wrong boundary values at the

origin! In fact, the harmonic function sought for does not exists, not with boundary
values in the classical sense. However, h — g € VVO1 2(Q) if g is smoothly extended.

A similar reasoning applies to the p-Laplace equation in a punctured ball in R,
when 1 < p < n. — In the case p > n the solution is

1 — |x|(p—N)/(p—1)

and now it attains the right boundary values.

The next theorem is fundamental.

6.1. Theorem. The function b satisfies one of the conditions:

(i) b is p-harmonic in ,

A similar result holds for b.

The cases (ii) and (iii) require a lot of pedantic attention in the proof. For a
succinct presentation we assume from now on that

(6.2) m < g(&§) < M, when £ € 09).

Now the constants m and M belong to £, and i, respectively. Thus m < h < h<
M. If v € 8, so does the cut function min{v, M}. Cutting off all functions, we may
assume that every function in sight takes values only in the interval [m, M]. The
proof of the theorem relies on a lemma.

6.3. Lemma. If g is bounded, Hg and Qg are continuous in ).
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PROOF: Let 29 € Q and B(zg, R) CC Q. Given ¢ > 0 we will find a radius r > 0
such that
15(z1) — h(a2)| <26 when x1, 29 € B(zo,7).

Suppose that x1, 25 € B(xg,r). We can find functions v; € 4 such that

lim v;(z1) = ha1), lim vy(za) = h(as).
1—00 1— 00

Indeed, if v} (z1) — b(z1) and v?(x3) — h(z2) we can use v; = min{v},v?}. Consider
the Poisson modifications

‘/; = P(Uz‘, B(Io, R)) .
It is decisive that V; € 4. By Proposition 5.12 E < V; <w; in Q. Take 7 so large that

Uz‘(l’l) < h(l’l) + €, Ui(l'g) < h(l’g) + €.

It follows that _ _

b(z2) — b(z1) < Vi(w2) — Vi(21) + ¢

< osc V;+e.

B(zo,r)

Recall that V; is p-harmonic in B(zg, R). The Holder continuity (Theorem 2.19)
yields
T\« T\«
Vi< L(—= V. <L(=) (M —
o050, Vi S LR) jome, Vi< L) (M =m)

when 0 < r < R/2. Thus

h(zy) —h(x1) < e+e=2¢

when 7 is small enough. By symmetry, h(z;) — h(z2) < 2¢. The continuity of b
follows.

A similar proof goes for b. O

PROOF: of Theorem 6.1. We claim that b is a solution, having assumed (6.2) for
simplicity. Let ¢1,¢2,...,q,,... be the rational points in 2. We will first construct
a sequence of functions in the upper class 4 converging to b at the rational points.
Given g, we can find v}, vy, ... in Y such that

1
h(qy)svéj(%/)<h(qu)+;, 1=1,2,3,....
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Define

I B | 1,2 2 2 i i
w; = min{vy, vy, ..., U5, VT, Vg, ooy VS o, U], Vg oo, U}

Then w; € U, wy > wy > ... and

b(a) <wi(q) <v/(q,) wheni>wv.

Hence lim w;(q,) = h(g,) at each rational point, as desired.

Suppose that B CC 2 and consider the Poisson modification

Since also W; € 4, we have

h< W <w;.

Thus lim W;(g,) = b(g,) at the rational points. In other words, WW; is better than w;.
We also conclude that W7 > Wy > W3 > ... According to Harnack’s convergence
theorem (Theorem 5.9)
1—00

is p-harmonic in B. By the construction W > b and W(g,) = h(q,) at the rational
points. We have two continuous functions, the p-harmonic W and b (Lemma 6.3),
that coincide in a dense subset. Then they coincide everywhere. The conclusion is
that in B we have h = the p-harmonic function W. Thus b is p-harmonic in B. It
follows that b is p-harmonic also in Q.

A similar proof applies to b. |

We have learned that the Perron solutions are p-harmonic functions, if they take
finite values. Always

=
IA

—00<h < o

but the situation b # b is possible. When b = b we denote the common function

with b.

6.4. Theorem. (Wiener’s resolutivity theorem). Suppose that g : 0Q — R s
continuous. Then Qg =b, in (L
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PROOF: Our proof is taken from [L)M]. For the proof we need to know that there is
an exhaustion of 2 with regular domains D; CC (2,

Q=|Jp;, DicDycC...
j=1

The domain D; can be constructed as a union of cubes or as a domain with a smooth
boundary.

We first do a reduction. If we can prove the theorem for smooth ¢’s, we are done.
Indeed, given € > 0 there is a smooth ¢ such that

(&) —e < g(€) < (&) + ¢, when € € 99.

Thus,
hcp_ggbgo—aSggghgébg@—i—a:hgo“'fa

if E(p = E@. Since ¢ > 0 was arbitrary, we conclude that Eg = Hg. Thus we can

assume that g € C=(R"). What we need is only g € W'(Q) N C(Q).

The proof, after the reduction to the situation g € C*°(R™), relies on the unique-
ness of the solution to the Dirichlet problem with boundary values in Sobolev’s sense.
In virtue of Theorem 2.16 there is a unique p-harmonic function h € C(Q)NW1P(Q)
in Q with boundary values h — g € W,”(€). Nothing has to be assumed about
the domain 2, except that it is bounded, of course. We claim that h > h and
h < b, which implies the desired resolutivity h = h. To this end, let v denote the
solution to the obstacle problem with ¢ acting as obstacle. See Theorem 5.5. Then
v—g € WyP(Q) and v > g in Q. Since v is a weak supersolution, v € ,. (The
reason for introducing the auxiliary function v is that one cannot guarantee that h
itself belongs to the upper class! However, the obstacle causes v > g¢.)

Construct the sequence of Poisson modifications

%:P(UaDl)a %:P(UaDQ):PG/laDQ)a
V3 = P(v,D3) = P(Va, D3), . ..

Then Vi > Vo > V3 > ... and V; € 4,. Alsovj—geWol’p(Q) and

(6.5) /|V‘/}|pdx§/|Vv|pdx§/|Vg|pda:.
0 0 0
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We have Hg < V. Using Harnack’s convergence theorem (Theorem 5.9) we see that

V =limV;

Jj—o0

is p-harmonic in Dy, in Dy, ..., and hence in Q. But (6.5) and the fact that V; —g €
Wy P (Q) shows that V — g € W, ?(Q). Thus V solves the same problem as h. The
aforementioned uniqueness implies that V' = h in 2.

We have obtained the result
h, <limV; =h,

as desired. The inequality Eg > h has a similar proof. The theorem follows. O

As a byproduct of the proof we obtain the following.

6.6. Proposition. If g € W'?(Q) N C(Q), then the p-harmonic function with
boundary values in Sobolev’s sense coincides with the Perron solution b,.

The question about at which boundary points the prescribed continuous boundary
values are attained (in the classical sense) can be restated in terms of so-called
barriers, a kind of auxiliary functions. Let €2 be a bounded domain. We say that
€ € 09 is a regular boundary point, if

lim b () = g(£)

r—E&

for all g € C(09).

Remark. There is an equivalent definition of a regular boundary point £&. The
equation
Apu = —1

has a unique weak solution v € W,?(Q) N C(€). The point & is regular if and only
if

limu(z) =0.
T—E€

The advantage is that only one function is involved. The proof of the equivalence
of the definitions is difficult.

6.7. Definition. A point &, € 0N has a barrierif there exists a function w : 2 — R
such that
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(i) w is p-superharmonic in €,
(ii) liminf, ,e w(z) > 0 for all £ # &, § € 09,

(iii) lim, ¢ w(z) = 0.

The function w is called a barrier.

6.8. Theorem. Let ) be a bounded domain. The point & € OS2 is reqular if and
only if there exists a barrier at &g.

ProoOF: The proof of that the existence of a barrier is sufficient for regularity is
completely analogous to the classical proof. Let ¢ > 0 and M = sup |g|. We can use
the assumptions to find 6 > 0 and A > 0 such that

9(€) — 9(&)| <&, when [ — & <6
Aw(x) > 2M, when |z — &| > 4.

This has the consequence that the functions g(&y) + ¢+ Aw(z) and g(&) —e — Aw(z)
belong to the classes i, and £, respectively. Thus

9(6) — e = dw(z) < b (x) < by(2) < g(&) + e+ Aw(w)

or

[bg(2) — 9(&)| < &+ duw(x)

Since w(x) — 0 as x — &y, we obtain that h,(z) — ¢(&) as © — &. Thus & is a
regular boundary point.

For the opposite direction we assume that &, is regular. In order to construct the
barrier we take

9(x) = |z — &7

An easy calculation shows that A,g(z) is a positive constant, when z # &. We
conclude that ¢ is p-subharmonic in €. Let Eg denote the corresponding upper
Perron solution, when ¢ are the boundary values. By the comparison principle
Eg > ¢ in ). Because &, is assumed to be a regular boundary point, we have

lim B, () = g(&) = 0.

33*)60

Hence w = b, will do as a barrier. O
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Example. 1 < p < n. Suppose that () satisfies the well-known ezterior sphere
condition. Then each boundary point is regular. For the construction of a barrier
at & € 0N we assume that B(zg, R) N = {&}. The function

|z—z0|

w(x) = / £ dt
will do as a barrier.

Example. p > n. Without any hypothesis

P

w(z) = | — &=

will do as a barrier at &. Thus every boundary point of an arbitrary domain is
regular, when p > n.

An immediate consequence of Theorem 6.6 is the following result, indicating that
the more complement the domain has, the better the reqularity is. If 1 C 9 and if
&o € 0021 N OS)y, then, if & is regular with respect to €25, so it is with respect to §2;.
The reason is that the barrier for ) is a barrier for €2;.

The concept of a barrier is rather implicit in a general situation. A much more
advanced characterization of the regular boundary points is the celebrated Wiener
criterion, originally formulated for the Laplace equation in 1924 by N. Wiener. He
used the electrostatic capacity. We need the p-capacity.

The p-capacity of a closed set E CC B, is defined as

Cap,(E, B,) = irglf/\Vdpdz

By

where ( € C3°(B,), 0 < ¢ <1and ¢ =1in E. The Wiener criterion can now be
stated.

6.9. Theorem. The point & € OS2 is reqular if and only if the integral

1

/ {Capp(mm E, B(§,2t) 177 dt _

— (0. 9]

Cap, (B(&, ), B(&,2t)) t

diverges, where E = R™\(Q.
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The Wiener criterion with p was formulated in 1970 by V. Mazja. He proved the
sufficiency, [Ma]. For the necessity, see | ]. The case p > n — 1 has a simpler
proof, written down for p = n in [.M]. The proofs are too difficult to be given here.

One can say the following when p varies but the domain is kept fixed. The greater
p is, the better for regularity. If &, us pi-regular, then &y is po-reqular for all ps > py.
This deep result can be extracted from the Wiener criterion. The Wiener criterion is
also the fundament for the so-called Kellogg property: The irregular boundary points
of a given domain form a set of zero p-capacity. Roughly speaking, this means that
the huge majority of the boundary points is regular.

It would be nice to find simpler proofs when it comes to the Wiener criterion!
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7. Some remarks in the complex plane

For elliptic partial differential equations it is often the case that in only two
variables the theory is much richer than in higher dimensions. Indeed, also the
p-Laplace equation

0 Ju 0 ou
_ K; p_2— _— K; p_2— —
(7.1) Oz (| u 8$) i oy <| u 8y) !

in two variables, x and y, exhibits an interesting structure, not known of in space. It
lives a life of its own in the plane! Among other things a remarkable generalization
of the Cauchy-Riemann equations is possible. The hodograph method can be used
to obtain many explicit solutions.

In the plane the advanced theory of quasiconformal mappings is available for
equations of the type

o (e0vugt) + o (vanGe) <o

and is described in the book "Mathematical Aspects of Subsonic and Transonic Gas
Dynamics” by L. Bers. The p-Laplace equation presents some difficulties at the
critical points (Vu = 0). It was shown by B. Bojarski and T. Iwaniec in 1983 that

_Ou Ou 9
f_ax_zay (Z - 1)

is a quasiregular mapping (=quasiconformal, except injective). The most important
consequence is that the zeros of f, that is, the critical points of the p-harmonic
function wu, are isolated. Thus they are points, as the name suggests.

7.2. Theorem. (Bojarski-Iwaniec) Let u be a p-harmonic function in the domain
(2 in the plane. Then the complex gradient f = u, — iu, is a quasireqular mapping,
that 1s:

(i) f is continuous in 2
(i) e, u, € WE2H(Q)

loc

(iii) |8L] < [1—2[|5E] ae. in Q.
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Remark. It is essential that |1 —2/p| < 1. The notation

o_1/fo 0N 9 _179 .0
9. 2\ar ‘ay) oz 2\a0z  ‘ay

is convenient. The proof is given in [BI1] where also the formula
or _ (1 _1\(1or 1 (of
0z \p 2)\foz TF\0z

By the general theory, the zeros of a quasiregular mapping are isolated, except
when the mapping is identically zero. We infer that the critical points

is established.

S ={(z,y)| Vu(z,y) = 0}

of a p-harmonic function wu are isolated, except when the function is a constant.
Outside the set S the function is real-analytic. According to a theory due to Y.
Reshetnyak an elliptic partial differential equation is associated to a quasiregular
mapping, cf [Re] and [B12]. In the plane this equation is always a linear one. In the
present case u,, u, and log|Vu| are solutions to the same linear equation. However,
this equation depends on Vu itself! A different approach to find an equation for
log |Vu| has been suggested by Alessandrini, cf [Al].

Next, let us consider a counterpart to the celebrated Cauchy-Riemann equations.
If w is p-harmonic in a simply connected domain €2, then there is a function v, unique
up to a constant, such that

Vyp = —|Vu|p’2uy, vy = |Vu|p’2ux
or, equivalently,
Uy = |Vv|q_21)y, Uy = —| V|12,

in Q. For smooth functions this is evident from (7.1) but the general case is harder.
In particular, |Vul|P = |Vo|? and 1/p + 1/q = 1. The conjugate function v is g-
harmonic in ), g being the conjugate exponent:

1 1
-+-=1.
P q
A most interesting property is that
(Vu,Vov) =0.
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Therefore the level curves of u and v are orthogonal to each other, apart from the
singular set S. A good example is

1. .
utiv="_ 2(\z]pf§—1)+iargz,

where z = x + iy and € is the complex plane (with a slit from 0 to co). We refer to
[AL] for this kind of function theory.

A lot of explicit examples are given in [A5]. The optimal regularity of a p-harmonic
function in the plane has been determined by T. Iwaniec and J. Manfredi.

7.3. Theorem. (Iwaniec-Manfredi) Every p-harmonic function, p # 2, is of class
CEQ) N WEUQ), where the integer k > 1 and the exponent a, 0 < o < 1, are

loc loc
determined by the formula

Fra=1+ (14 24 12, 1
o= - — .
6 p—1 p—1 (p—1)

The summability exponent q is any number in the range

1<g< 2
>~4q 9o

PROOF: The proof is based on a hodograph representation, see [ M]. O

Remark.

1) Notice that always u € W' (Q). Therefore u has Sobolev derivatives of order
three.

2) As p — oo, the above formula does not produce the correct regularity class
for the limit equation. The reason is subtle.

3) As p — 1, k — oo. However ”1-harmonic functions” are not of class C°.

There are several properties that have been established in the plane but, so far as
we know, not in space. A few of them are:

The Principle of Unique Continuation. Suppose that u is a p-harmonic func-
tion in 2 and that « =0 in a ball B C 2. Then v =0 in (2.

The Strong Comparison Principle. Suppose that u and v are p-harmonic func-
tions and that v < v in Q. If u(xg) = v(zg) at some point zy € Q, then u = v
in . — For a proof we refer to [M1].
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8. The infinity Laplacian

The limit equation of the p-Laplace equation as p — oo is a very fascinating one.
In two variables it is the equation

2 2
Uy Uz + 2UgUyUzyy + Uy Uyy =0,

which was found in 1967 by G. Aronsson, cf [A1]. It provides the best Lipschitz
extension of given boundary values and has applications in image processing. It
requires the modern concept of viscosity solutions, originally developed for equations
of the first order (Hamilton-Jacobi equations). The equation has a connection to
Stochastic Game Theory.

The oo-Laplace operator

ou du  &%u 1 N
Aoctt = Z 8951 8% 81’2895] §<VU’V‘VU| )

comes from the following consideration. Start with
Apu = [Vul | Vul? Au+ (p — 2)Agu} =

divide out the factor [Vu|[P~, and let p — oo in

A
|Vul*Au AL
p—2
This leads to the equation
Au=0.

However, this derivation of the co-Laplace equation leaves much to be desired. Nev-
ertheless, the equation is the correct one.

For a finite p the equation Ay,u = 0 is the Euler-Lagrange equation for the varia-

tional integral
val, ={ [ 1vupac)’
Q

Hence one may expect the equation A, u = 0 to be the Euler-Lagrange equation for
the "functional”
IVulloo = lim ||Vu||, = esssup|Vu(zx)].
pP—00 zeN
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Thus the minimax problem
min max |Vu(x)|

is, as it were, involved here. All this can be done rigorously.

The equation has an interesting geometric interpretation, though valid only for
rather smooth functions. To explain it via the "gradient flow” we consider the curve
r = z(t) = (x1(t),...,2,(t)) in R". Follow |Vu|* along the curve. Differentiating
|Vu(x(t))[* we obtain

d : ou 0*u dz;
— =2 - — 9

We observe that if the curve is a solution of the dynamical system (the so-called

gradient flow)

dx
%~ Vu(a(t)

ou

dl‘j Ou_
d Ox;’

we obtain, replacing —* by

%|Vu|2 =2Au

taken along the curve. So far, u is arbitrary. Thus, if the original u was a solution of
Asu = 0, we conclude that |Vul is a constant along the curve. Since Vu represents
the normal direction to the level surfaces of u, we have the following interpretation.
Along a stream line |Vu| is constant. However, different stream lines usually have
different constants. This property is useful for applications to image processing.

The oo-Laplacian also appears in an amusing formula. In the Taylor expansion
1
u(x + h) = u(z) + (Vu(x), h) + §(h, D*u(x)h) + ...
we take h = tVu(z). We arrive at

(e + V(@) = ulz) + | Va(@)[? + %tQAoou(x) b

to our pleasure. The t2-term contains the co-Laplacian. The resulting formula

u(z 4+ tVu(z)) — 2u(x) + u(x — tVu(z))
12

= Aju(z) + ...

can be utilized in a numerical scheme.
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A few explicit solutions are

ay/xi+-+ai+b (1<k<n)

axy + -+ apx, + b
azy a3 dd=0)

as well as all angles in spherical coordinates like

arctan (ﬁ) , arctan ( 3 )

T Vi + a3

Expressions in disjoint variables like

5\/%%+ZE%+3\/IE§+$Z+(ZL‘§/3—JZ§/3>

can be added to the list. Finally, we mention the solutions of the eikonal equation
|Vul?> = 1. — Many examples in two variables are constructed in [A3].

The Dirichlet problem is to find a solution to

Acu =01in Q,
u = g on Jf)

in a bounded domain €. (In two variables the equation is formally classified as a
parabolic one but the boundary values are prescribed as for elliptic equations!) The
difficulty here is the concept of solutions, because u is not always of class C2. We
will return to the concept of solutions later. Suppose now that g : 92 — R is a
Lipschitz continuous function, that is

19(&1) — 9(&2)| < LI — &

when &1, & € 0€). We may extend g to be defined in 2 using one of the formulas

9(x) = max (9(&) = Llz — &]) or g(z) = min (9(&) + Llz —¢]) .

The extended function has the same Lipschitz constant L. By Rademacher’s theorem

Vg exists a.e. and |Vg| < L. Therefore we may assume that g € C(Q) N Wh=(Q).
Now we want to construct the solution by letting p — oco. Let p > n. As we know,
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there is a unique p-harmonic function u, € C(Q) NWP(Q) such that u, = g on 9.
(Since p > n, the regularity of Q plays no role now.) We have

{]/ |Vup|sdm}s < {][ |Vup|pdx}p
Q Q
<{fiwapac} <porie

as soon as p > s. Using some compactness arguments we can conclude the following.

8.1 Proposition. There is a subsequence u,, and a function us, € C(Q)NWH2(Q)
such that u,, — us uniformly in Q and Vu,, — Vu. weakly in each L*(2). In
particular, U = g on OS).

The so obtained u., is called a variational solution of the equation. Several ques-
tions arise. Is u, unique or does it depend on the particular subsequence chosen?
How is u related to the limit equation A u = 07 Is it a "solution”™? At least it
follows directly from the construction that u., has a minimizing property:

8.2. Lemma. If D C ) is a subdomain and if v € C(D)NW'*°(D) has boundary
values v = Uy on 0D, then

IVttoo || oo () < IV 0] o0 (D) -

In view of the mean value theorem in the differential calculus, the lemma says
that the Lipschitz constant of u., cannot be locally improved. It is the best one.

Let us discuss the concept of solutions. In two variables the theorem below easily
enables one to conclude that there are ”solutions” not having second continuous
derivatives.

8.3. Theorem. (Aronsson) Suppose that u € C*(Q2) where Q is a domain in R™.
If Asou =0 in 2, then Vu # 0 in €2, except when u reduces to a constant.

PROOF: See [A2] for n = 2. The cases n > 2 are in [Y]. m

It turns out that the oo-Laplace equation does not have a weak formulation with
the test functions under the integral sign. Indeed, multiplying the equation with a
test function and integrating leads to

/nAooud:v =0,
Q
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an expression from which one cannot eliminate the second derivatives of u. Actually,
integrations by part seem to make the situation worse!

The way out of this dead end is to use viscosity solutions as in | ]. Tt has to
be written in terms of viscosity supersolutions and subsolutions.

8.4. Definition. We say that the lower semicontinuous function v is oo-
superharmonic in €, if whenever zy € Q and ¢ € C*(Q) are such that

(i) @(zo) = v(wo)
(i) ¢(x) < wv(z), when x # xg

then we have A,,p(zq) < 0.

Notice that each point zy needs its own family of test functions (which may be
empty) and that A, is evaluated only at the point of contact. By the infinitesimal
calculus V(o) = Vu(xg), provided that the latter exists at all. It is known that
v € () and that could have been incorporated in the definition.

The definition of an oco-subharmonic function is similar. A function is defined
to be oo-harmonic if it is both oco-superharmonic and oo-subharmonic. Thus the
oo-harmonic functions are the viscosity solutions of the equation.

Example. The function v(z) = 1 — || is co-harmonic when = # 0. It is oco-
superharmonic in R"™. At the origin there is no test function touching v from below.
Thus there is no requirement to verify.

Example. The interesting function
23 g4/
in two variables belongs to a family of solutions discovered by G. Aronsson [A3].

The reader may verify that it is co-harmonic, indeed. This function belongs to
01’1/3(R2) and to I/Vli’cg/z_E(Rz) for each € > 0. It does not have second continuous

loc
derivatives on the coordinate axes. See also [5a].

We have now three concepts of solutions to deal with: classical solutions, varia-
tional solutions and viscosity solutions. The inclusions

{classical solutions} C {variational solutions} C {viscosity solutions}

are not very difficult to prove. — In fact, all solutions are variational solutions. This
follows from R. Jensen’s remarkable uniqueness theorem.
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8.5. Theorem. (Jensen) Let Q) be an arbitrary bounded domain. Given a Lipschitz
continuous function g : Q) — R there exists one and only one viscosity solution

Uso € C(2) of the equation Ay us = 0 in Q with boundary values us, = g on OS).

ProOF: The existence is essentially Proposition 8.1. The uniqueness is proved in
[J]. Jensen’s uniqueness proof uses several auxiliary equations and the method of

doubling the variables. Another proof is given in [B3]. In [AS] a simple proof based
on comparison with cones is given. O
We mention a characterization in terms of comparison with cones, cf | ] and

[C'7Z]. For smooth functions the property follows from Taylor’s expansion.

8.6. Theorem. (Comparison with Cones) Let v be continuous in Q2. Then v is an
oo-superharmonic function if and only if the comparison with cones holds: if D C )
is any subdomain, a > 0 and xo € R"\D, then v(§) < al — zo| on OD implies that
v(x) < alz — x| in D.

The apex z( is outside the domain. The oco-harmonic functions are precisely
those that obey the comparison with cones, both from above and below! This
property has been used by O. Savin to prove that oo-harmonic functions in the
plane are continuously differentiable. In higher dimensions co-harmonic functions
are, of course, differentiable at almost every point. In fact, they are differentiable at
every point. The proof of this property in [[£5] is of an unusual kind: no estimate
giving continuity is produced.

We cannot resist mentioning that the function

V(z) = / = — ylo(y)dy

is oo-subharmonic for ¢ > 0, cf [('Z].6 Tt is a curious coincidence that the funda-
mental solution of the biharmonic equation AAu = —¢§ in three dimensional space
(n =3)is k‘g—:ol so that AAV (x) = —8mp(x). Given V, this tells us how to find a
suitable o.

Finally, we mention that the property of unique continuation does not hold. There
is an example with a domain 2 and two oco-harmonic functions u; and us in €2, such
that u; = us in an open subset of €2 but u; #Z uy in 2. We do not know, whether
this phenomenon can occur for u; = 0.

6This result due to Grandall and Zhang has the consequence that the "mysterious inequality”

r—clPlr—a,z—b —(z—azx—c{xr—bx—c
Jf[ ezt 2 Sl 0t Z9EZ B2 ) ofv)fedadbae > 0

|z — al|lz — b]|x — ¢|3

has to hold for all compactly supported densities p.
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Tug-of-War. A marvellous connection between the oo-Laplace Equation and
Stochastic Game Theory was discovered in 2009 by Y. Peres, O. Schramm, S.
Sheffield, and D. Wilson. A mathematical game called Tug-of-War lead to the
equation. We refer directly to | | about this fascinating discovery. See [[Ro] for
an introductory account. We shall only give a sketch”, describing the game without
proper mathematical terms, naturally without laying claim to any exactness.

Recall the Brownian Motion for the ordinary Laplace Equation. Consider a
bounded domain €2, sufficiently regular for the Dirichlet Problem. Suppose that
the boundary values

1, when xz€e(C
g(x) =
0, when z€9Q\C

are prescribed, where C' C 92 is closed. Let u denote the solution of Au = 0 in
) with boundary values g (one may take the Perron solution). If a particle starts
its Brownian motion at the point z € €, then u(x) = the probability that the
particle (first) exits through C. In other words, the harmonic measure is related to
Brownian motion. One may also consider more general boundary values. So much
about Laplace’s Equation.

Let us now describe "Tug-of-War”. Consider a game played by two players. A
token is placed at the point x € (2. One player tries to move it so that it leaves the
domain via the boundary part C, the other one aims at the complement 92\ C. The
rules are:

A fair coin is tossed.

The player who wins the toss moves the token less than € units in the most
favourable direction.

Both players play optimally.

The game ends when the token hits the boundary 0f2.
Let us denote
us(x) = the probability that the exit is through C.

Then the ‘Dynamic Programming Principle’

1
us(z) = §(sup u.(z + ce) + inf u.(z + ce))

le]<1 le]<1

"This is taken from my lecture notes in [I.4]
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holds. The abbreviation is DPP. At a general point = there are usually only two
optimal directions, viz. £Vu.(x)/|Vu.(z)|, one for each player. The directions are
opposite, whence the name 'Tug-of-War’. The reader may consult [Ro]. As the step
size € goes to zero, one obtains a function

u(z) = }:1_1}(1) u(x).

The sequence converges almost surely. The spectacular result is that the so obtained
function u is the solution to the co-Laplace Equation with boundary values g.

While the Brownian motion does not favour any direction, the Tug-of-War does.
There is also a stochastic game for the p-harmonic Equation, though the rules are
more complicated, cf. | ]. See | | for p < 2.
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9. Viscosity solutions

The modern theory of viscosity solutions was developed by Crandall, Evans,
Jensen, Ishii, Lions, and others. First, it was designed for first order equations.
Later, it was extended to second order equations. The solutions must obey a Com-
parison Principle. We refer to [I<] and [('IL] for some background.® For the oo-
Laplacian the concept appeared in [ |. The viscosity solutions of the p-Laplace
Equation are the same as the p-harmonic functions, which was established in | ].
We shall give a simple proof of this fact, based on [JJ], though only for p > 2.

We begin with some infinitesimal calculus. Suppose that v : 2 — R is a given
function. Assume that ¢ € C?(Q) is touching v from below at some point x¢ € € :

{qs(xo) = v(zo),

v
¢(x) <wv(xr) when z # xg.
If v happens to be smooth, then
Vo(zo) = Vo(xg), D*¢(x) < D?v(x)

by the infinitesimal calculus. Here

[ P*o(x0)
D (a0) = (W)

is the Hessian matrix evaluated at the touching point zy. For symmetric real matrices
we use the ordering

X<Y = Zl‘z‘jfiﬁj < Zyz‘jfifj for all &= (£1,&0,-++ ;&)

In particular, it follows that

0?v(xg) S 02 (x0)

Vou(zg) = Vo(zo), a7 2 a? =1,2,---,n,
and so
Av(zo) > Ad(x0),  Accv(w0) > Acc(0),  Apv(z0) > App(0).
8A few chapters from [IK] are enough for our purpose.
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If v is a p—superharmonic function and v € C%*(Q), then A,v < 0 and hence
App(z9) <0, if p>2.

Notice carefully that the last inequality makes sense, even if v does not have any
derivatives! The function ¢ has. The next definition is based on this important
observation.

9.1. Definition. Let p > 2. We say that v : Q@ — (—o00,00] is a wiscosity
supersolution of the p-Laplace Equation, if

(i) v is finite in a dense subset
(ii) v is lower semicontinuous

(iii) whenever ¢ € C?(Q) touches v from below at the point zg € 2, we have

APQS(CC()) < 0

9.2. Definition. Let p > 2. We say that v : Q — [—00,00) is a wiscosity
subsolution of the p-Laplace Equation, if

(i) w is finite in a dense subset
(ii) w is upper semicontinuous

(iii) whenever 1) € C*(2) touches u from above at the point zy € 2, we have

Ap¢(I0) 2 O

9.3. Definition. We say that h € C(Q) is a viscosity solution in 0 if it is both a
viscosity subsolution and a viscosity supersolution.

Remark.

e The operator A,¢ or A, is evaluated only at the point xy of contact (the
touching point). Each point has its own family of test functions. If there is
no test function touching at zy, then there is no requirement to be verified;
the point passes for free. (It is not difficult to prove that the possible touching
points are dense in €2.)
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e The strict touching ¢(z) < v(z), x # xo, can be replaced by ¢(x) < v(x).

e The viscosity solution” is assumed to be continuous, a property that required
a proof for weak solutions!

If 1 < p < 2, the operator
App = VoAb + (p — 2)|VO[" Aty

is undefined at the critical points, the points where V¢ = 0. For this equation the
theory works, if one adds the requirement that V¢(xg) # 0 at the point of contact,
cf. | ]. Thus there is no condition to be verified at the critical points. For p > 2
this amendment is of no influence, since A,¢(zg) = 0 now.

The definition is consistent. If v € C?(2) is a viscosity supersolution then it is
also a weak supersolution. This is clear if p > 2 since v itself then can serve as a
test function.

9.4. Theorem. A p-superharmonic function is a viscosity supersolution.

PRrROOF: Let v be a p-superharmonic function in the domain 2. In order to prove
that it satisfies Definition 9.1 we use an indirect reasoning. Assume that there is a
test function ¢ touching v from below at the point zy and satisfying A,¢(zg) > 0.
By continuity

App(r) >0 in B(xz,9)

for some small 6. We may also assume that the touching is strict: v(z) > ¢(x) when
x # xo. Now ¢ is a p-subharmonic function in B(zg,0) and by adding the constant

1
= > mi — 0
G

we obtain the p-subharmonic function ¢(z) + m satisfying
o(x) +m <wv(x) on 0B(x,J).

By the Comparison Principle ¢(z)+m < v(x) in B(z,d), but this is a contradiction
at the point z = x,. O

9Here the word "viscosity” is only a label. It comes from the method of vanishing viscosity.
In our case one would replace A,u = 0 by Ayu. + Au., = 0 and send ¢ to zero, so that the
artificial viscosity term eAwu. vanishes. So limwu. = wu is reached. Properly arranged, this is the
same concept.
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Jets. We shall need an equivalent formulation for viscosity solutions, using so-
called jets. We say that a pair (£, X), where £ is a vector in R™ and X is a symmetric
n X n-matrix, belongs to the subjet J* v(x) if

o(y) 2 (@) + (€y — ) + 5y — . X(y — ) + olly — )

as y — z. See [I], section 2.2, p. 17. If it so happens that v has continuous second
derivatives, then we can take ¢ = Vo(z), X = D?v(z) = the Hessian matrix. In
other words,

(Vo(z),D*(z)) € J> v(x), if ve C*Q),

and the polynomial in y is Taylor’s. As we shall see later, it is important that
the second Alexandrov derivatives will do as members of the subjet. We need a
necessary'? condition for subjets.

9.5. Lemma. Letp > 2. If A,v <0 in the viscosity sense, then
|€P? Trace(X) + (p — 2) |76, X¢) < 0

when (£,X) € J> v(z) and x € Q.

Infimal Convolutions. Assume that the function v is lower semicontinuous and
that

0<w(z)<L.

Define again the infimal convolution

o= ot + 52

and recall its properties in Section 5.3. We prove Lemma 5.11 again, but this time
for viscosity supersolutions.

9.6. Theorem. Assume that 0 < v < L in Q. If v is a viscosity supersolution in
Q, so is the infimal convolution v, in the open set

Q. = {x € Q| dist(z,0Q) > 2L€}.

107t is also sufficient provided that the closures J2~v of the subjets are evoked. See [I<]
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PrOOF: If x belongs to ). then the infimum in the definition of v. is attained at
some point z* € ). That z* cannot escape to the boundary was shown in the proof
of Lemma 5.11.

Fix z¢ € .. Assume that the test function ¢ touches v. from below at xy. Then
xg is in §2. Using

P(wo) = ve(w0) = % + v(wg)
o) < (o) < o4 o)

we can verify that the test function

|z — g

Y(r) = ¢z + 20 — ) — 90

touches the original function v from below at ;. At this interior point Ayp(zf) <0
by assumption. Because

Vip(z5) = Vo(zo), D h(ag) = D*)(wo)

we also have

Apdln) = Agi(ag) < 0.

Thus v fulfills the requirement in Definition 9.1. O

We aim at proving that the viscosity supersolution v is a p-superharmonic func-
tion. The key step is to achieve the following result in the shrunken domain €2, for
the infimal convolution v,.

9.7. Proposition. If v is a viscosity supersolution and 0 < v(z) < L in ), then
Ve 1S a weak supersolution in §)., 1.e.

(9.8) /|VUEIP_Q<VUE,V77)dx >0
Qe

when n € C§°(€), n > 0.

The proof in [JJ] relies on the fact that the infimal convolutions possess second
derivatives in the sense of Alexandrov, which can be used in the testing with subjets.
We turn to the preparations for the proof, which we shall provide only for p > 2.

80



9.9. Theorem (Alexandrov). A concave function f: R™ — R has second deriva-
tives in the sense of Alexandrov: at a.e. point x there is a symmetric n X n-matrix
A = A(x) such that the expansion

fy) = f@) +{V[f(z),y —x)+ e (y — 2, A(2)(y — 2)) + oy — )

2
15 valid as y — x.
PROOF: We refer to [[1(5], Section 6.4, pp. 242-245. Some details in [G7], Lemma
7.11, p. 199, are helpful to understand the singular part in the Lebesgue decompo-
sition. O

The first derivatives are Sobolev derivatives and V f € LS. The problem is with

loc*
the second ones. We use the notation D?f = A, although the Alexandrov deriva-

tives may contain a singular Radon measure (for example, Dirac’s measure) so that
integration by parts can fail. The proof in [X(i] establishes that a.e. we have

A =1im(D*(f  p.))

e—0

where p. is Friedrich’s mollifier. This is an important ingredient in the proof. Alexan-
drov’s Theorem is applicable to the concave function

i

(9.10) fe(x) = v () 5

which is defined in the whole space (although the infimum is only over a subset).
The quadratic part has no influence. Thus

(9.11) D*v.(x) = (1721%)(1[)2(1)5 * po)(2))

a.e. in R™.

We learned that the Alexandrov derivatives D*v.(x) exist at a.e. z. It follows
that
(Vo.(z),D*0-(2)) € J* v.(z)

almost everywhere. By Lemma 9.5 the inequality

Ay (z) = |V () P2 Av.(z)
+(p — 2)[ Vo (@) Ave ()
<0
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is valid a.e. in .. Here Av. = Trace(D?v,).

We need a further mollification of the function f; in (9.10). Define the convolution

C, —e2
_neXp<m>7 lz| < g
f€7j:fg*p€j, paj(x): £j J

0, otherwise.

The smooth functions v, ; = v. % p, satisty
/<|Vve,j|p_2Vv5,j,V7]> dv = /n(_APUEJ) dx
Qe Qe

when n € C§°(€2). Keep n > 0. We want to extend this to v.. Notice that the
functions v, ; are not viscosity supersolutions themselves. By (9.11)

lim D%*v, j(z) = D*v.(x)

j—00
almost everywhere. Thus also

lim Ayve () = Apve(z)

Jj—0o0

at almost every z in .. The convolution has preserved the concavity so that D?f, ; <
0. Since D?|x|? = +21,,, we obtain

I n
2
]D) /U&j < zn, A’UEJ S -,

g

where I,, = (0;;) is the unit matrix. It is immediate that
Vil < [V, = C-

in the support of 7.
Together these inequalities yield the bound

n+p—2
—Apve; > _05_2 ];
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valid almost everywhere in the support of n. This lower bound justifies the use of
Fatou’s Lemma below:

JUTedr Ve Vi) do = lin (Vo2 Vo, Vi) da

Q. e
= jm n(=Apve;) do
Qe
> /lijrgg)lf (U(_APUEJ')) dx
Qe

- / n(—Ap.) de

Qe

2/7)de = 0.

Qe

In the very last step we used the pointwise inequality —Aj,v. > 0, which we recall
that needed Alexandrov’s Theorem for its proof.

Now the proof of Proposition 9.7 is accomplished. It remains to pass to the limit
as € — 0.

9.12. Theorem. Suppose that v is a bounded viscosity supersolution of A,v < 0
in ). Then the Sobolev gradient Vv exists and v € VVlif(Q) Furthermore,

/(|Vv|p_2Vv, Vn)dx >0
0

for alln >0, n e C ().

PROOF: Choose ¢ > 0, ¢ € C§°(£2). We can assume 0 < v(z) < L in the support of
¢. Use

n(x) = (L —v=(x))C(x)"

in Proposition 9.7. When ¢ is small enough for the inclusion supp(n) C Q. we
proceed as in the proof of Theorem 5.7. The Caccioppoli estimate for v. now reads

/ IV dr < (pL)? / VP dr.
Q Q
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By a compactness argument (at least for a subsequence) Vo, — w weakly in L} ().

Since v. ' v we can identify w = Vwu. The conclusion is that Vv exists and by weak
lower semicontinuity of convex integrals also

/<p|vv|p dr < (pL)p/|V(|p dz.
0 0

To conclude the proof we show that the convergence Vv, — Vw is strong in
LP () so that one may pass to the limit under the integral sign in (9.8). The

loc
procedure is almost a repetition of the proof of Theorem 5.7. To this end, fix a

function 6 € C§°(Q2), 0 < 6 < 1, and use the test function n = (v — v.)f in the
equation for v.. Then

/(\Vv|p2VU — [V PV, V (v — v.)0)) dx
Q
< /(\Vv|p2Vv, V((v—w.)0)dx — 0,
Q
where the last integral approaches zero due to the weak convergence.

We split the first integral into two parts

/9 (|Vv[P2Vu — |Vu P2V, Vv — Vu,) dx
)
+ /(v — v ){|Vo[P 2V — |V [P * V., V) dx

Q

and notice that the second integral approaches zero, because its absolute value is
less than

-1 -1
o = vellzaoy (IV01E ) + IVl ) 19761

where D contains the support of 6 and ||[v—v.||z»(py — 0. Recall also that ||Vv.||r»(p)
is uniformly bounded.

Thus we have established that

lir% /0 (|Vo|P2Vv — |V [PV, Vo — Vo) de  — 0
E—
Q

at least for a subsequence. Now the strong convergence of the gradients follows.
Indeed, the case p > 2 follows from inequality (I) in Section 12. The singular case
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p < 2 requires some work.!! Therefore we can proceed to the limit under the integral
sign in (9.8). m

Unbounded Viscosity Solutions. Let v(x) > 0 be a viscosity solution. So is
the function
vp(x) = minf{wv(z), L}

cut at height L. The point is that vy is bounded. Now Theorem 9.12 is applicable
and we conclude that vy, is a p-superharmonic function. So is v itself as a limit of an
increasing sequence: v = limvy,. Indeed, to verify the Comparison Principle for v, we
take D CC © and assume that h € C(D) is a p-harmonic function with boundary
values hlgp < v|gp. Take L > max{h}. Then v, > h on dD. By the Comparison
Principle, which is valid for vy, one has vy, > h in D. Since v > vy, we conclude that
v > hin D. This proves the Comparison Principle for v.

We assumed that v > 0 but since the theorem is local, this is no restriction. We
have now proven the converse of Theorem 9.4.

9.13. Theorem. A wviscosity supersolution of A,v < 0 is a p-superharmomic
function.

The Theorem has an interesting consequence. A viscosity supersolution v has a
gradient Vv in Sobolev’s sense and Vv € Lj . for some exponent s described in
Theorem 5.17. This gradient was not mentioned in Definition 9.1!

11

/|Vv — Vve|P dx

:/|V'U_V’U5|p(l+ ‘V'U|2+|VU5|2)p(p_2)/4(1—|—|V’U|2+ |VU5|2)p(2_p)/4dx

: -
S{/W” — Vo2 (1+ [Vl + Vo) P72 {/(1 + Vol + Vo) e}

2—p

<{ﬁ/<|vv\p*2V’uf|Vv€|p*2Vv€,Vvvas>dx}§{/(1+\Vv|2+|V’u5|2)p/2dx} ?

where inequality (VII) in Section 12 was used at the last step.
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10. Asymptotic mean values

The celebrated Mean Value Property, discovered by Gauss for harmonic func-
tions, has a sophisticated replacement for p-harmonic functions. Naturally, a non
linear extra term is needed. Furthermore, the new formula is valid in a particular
asymptotic (infinitesimal) sense. The mean values

1
u(y)dy = ———7 / u(y) dy
]/;3(112,5) |B($a E)|B(x 0

are taken over balls with radii € shrinking to 0. W. Blaschke observed in 1916 that
a continuous function u is harmonic in € if and only if

u(x) :]/ u(y)dy +o(e?) as -0
B(z,)

when z € Q. Here e 20(?) — 0. (We deliberately ignore the fact that here the error
term o(e?) = 0 a posteriori.)

The Fundamental Asymptotic Formula

sup v+ inf u

P — 2 Blze) B(z) 24+ n / :
10.1 u(x) = + u(y)dy + o(e
(10.1) (@) = L e e ARG
was given by Manfredi, Parviainen, and Rossi in | ].12 As we shall see, properly

interpreted in the viscosity sense, it characterizes the p-harmonic functions. The first
term counts for the nonlinearity and the second one (the mean value) is linear. When
p = oo one should read

1
(10.2) u(z) = —( sup v+ inf u) + o(e?).
B(z,) B(w,e)

For an interpretation in Stochastic Game Theory it is essential that the coefficients

sum up to 1, i.e.
p—2 24n

p+n p+n

=1.

They represent probabilities, at least for p > 2.

12This Section is based on [ .
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Smooth Functions. Let us first derive some formulas for sufficiently smooth func-
tions, say ¢ € C?%(Q). Integrating the Taylor formula

o) = b(x) + V() - ( Z“ (s — )y — ;)

= < 0,0
+o(lz —y/*)

with respect to y over B(z,e) we get

0?P(x)
]/B<x,e>¢(y) W )+ 3 Z 9:@8%7[ (@ 8)(% — i) (g — ;) dy + of<%).

By symmetric cancellation the integrals vanish for ¢ # j, and for ¢ = j we have

2

1 3
][ (i — @:)’dy = —/ ly — al’dy = :
B(z,e) nJ B(z,e) n+2

Thus we have arrived at the asymptotic formula in the lemma below. (It is a
truncated version of the Pizzetti formula from 1909.)

10.3. Lemma. Let ¢ € C?*(Q2). When z €

2

) Ag(x) + o(e?)

(10.4) olz) = ]/B Lo -

as e — 0.

In the next lemma the critical points must be avoided. There the normalized
oo-Laplacian appears:

Vo Vo >

Al p = |V 2Asp = (D*p—— ——
86 = 19612000 = (Do oo

Later the normalized p-Laplace operator
AYo = [VOPPA0 = A¢ + (p—2)A%0

will be useful.'?

13Clarification: In some recent literature, careless use of the traditional symbol A, also for the
normalized operator creates confusion about the proper meaning! Often Aév or Ag are used to
distinguish the normalized operator.
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10.5. Lemma. Let ¢ € C*(Q). If z € Q and V¢(z) # 0, then

1 < . _ Ascp(z) 2
106 o) = 5ot 30) e o

ase — 0.
PROOF: Let g € Q with Vo(zg) # 0. Choose € > 0 so small that
Vo(y) #0 when |y — xo| <e.

The extremal values are attained at points z on 0B(zo, ) where

V()

(10.7) r = xoiSWa

|z — 20| = €.

The plus sign corresponds to the maximum and the minus sign to the minimum. To
see this, use Lagrange multipliers. They are approrimatively opposite endpoints of
a diameter'?. It follows from

¢wj (y) = ¢33j (z0) + O(e)
that

Voly) _ Vo(x)
VoWl ~ Volao)

+ O(e), when |y —uxo| <e.

Let z, x* € OB(x, ) be exactly the endpoints of a diameter, i.e.

z+ z*
2

= Xp-

Add the two Taylor expansions
1
o(y) = ¢(wo) + (Vé(xo),y — o) + §<D2¢($0)(3/ — Z0),y — To)
+o(ly — aol*)
for y = x and y = x*. The first order gradient terms cancel so that

¢(x) + ¢(wo) = 2¢(w0) + (D*é(x0)(y — z0),y — 7o) + ol|y — wo|*).

14The notation hides the dependence on ¢, i.e. x = x°.
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In the quadratic term we substitute

Volr) _ V()
V@]~ Vo)

r—1xy = *e + O(&?).

It follows that

O(x) + ¢(m9) = 20(x0) + 2 AL B(x0) + 0(£?),

where x + 2* = 2z and z satisfies (10.7).

First, let  be the maximum point:

¢(r) = max ¢.
B(zo,e)
Then
‘max ¢ + mlngb ¢(r) + min ¢
B(zo,e) B(zo,e) B(zo0,e)
<o(x) + o(7)

<2¢(wo) + *ALp(w0) + o(€?).

We can derive the opposite inequality by selecting x as the minimum point, since
now

max ¢ + min ¢ > ¢(z*) + ¢(x).

B(Io €) B(Z'O €)

This proves formula (10.6) with zy in the place of z. O

10.8. Lemma. Let ¢ € C*(Q). If Vp(z) # 0 at the point x € ), then the
asymptotic expansion

max¢ + min ¢

p— 2 B(z,e) B(z,¢) 2 —|—7’L][
+ d
oa) = L2 ] oy
1
(10.9) — §€2A§¢(w) + o(?)

is valid as € — 0.

ProOF: Combine the asymptotic formulas (10.4) and (10.6) in a suitable way to
see this. O
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Mean values in the viscosity sense. We can read off from formula (10.9) that
a function v € C?(Q) such that Vu # 0 in  is p-harmonic in  if and only if the
fundamental asymptotic formula (10.1) holds in €2. Unfortunately, in the presence of
critical points (i.e. zeros of the gradient) the above calculation is not valid. Recall
that Ayu = 0 in the viscosity sense if and only if

|Vul?Au + (p—2)Asu = 0

in the viscosity sense. No testing is needed at the critical points of touching test
functions. On the other hand, we know that the p-harmonic functions are exactly
the viscosity solutions of the p-Laplace Equation. This suggests to interpret also the
fundamental asymptotic formula (10.1) in the viscosity sense.

10.10. Definition. A function w satisfies the formula

maxu + minu
Y S 2 B(x,¢) B(z,e) I 24n

p+n 2 p+n

u(x) ]fB ) dy o)

in the viscosity sense, if the two conditions:

o If 7y € Q and if ¢ € C*(Q) touches u from below at xq, then

5 max¢ -+ min ¢ 5
¢($> > P — B(z,) B(z,) 4 +n

“ p+n 2 p+n

]/B( )¢(y) dy + o(e?)

as € — 0. Furthermore, if it so happens that V¢ (xy) = 0 then the test function
must obey the rule D?¢(xq) < 0.

o If 25 € Q and if v € C*(Q) touches u from below at xg, then

5 maxy + miny 5
w(l') < P — 2 B(ze) B(z,) I +n

T ptn 2 pt+n

][B( )w(y) dy + o(€”)

as ¢ — 0. Furthermore, if it so happens that Vi(xy) = 0 then the test function
must obey the rule Dy (zq) > 0.

hold.
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Remark. The extra restrictions on the test functions at critical points are used
to conclude that

> 0.

lim o(y) — d(x0) <0, lim Y(y) — ¥(x0)

y—zo |y — xo|? y—zo |y — xo|?

10.11. Theorem (Manfredi - Parviainen -Rossi). Let u € C(Q2). Then A,u =0 in
the viscosity sense if and only if the Asymptotic Mean Value Formula (10.1) holds
in the viscosity sense.

PROOF: Let us consider the case of subsolutions. Thus we assume that ¢ € C?(Q)
touches u from above at the point xy € Q. If Vi)(xy) # 0, then the desired conclu-
sions are contained in Lemma 10.8.

In the situation V(o) = 0 we proceed as follows. First, we assume that A,u > 0
in the viscosity sense. We have to verify that

max ¢ + min
p— 2 B(x0,e) B(zo0,e) X 2+n

(1012)  wlm) < L2200 -

][ U(y)dy + o(e?).
B(zo,e)

Now only the situation D%(x¢) > 0 is permissible. In particular, A (zg) > 0 and
hence

(10.13) (o) < / by + o)

by (10.4). The extra condition

is at our disposal. Denoting

Y(xe) = min Y)
ly—zo|<e
we have
hren_gglf—{% Brgeotﬁ v+ I(Iglclona)fb) W%)}

1

= hrargonf—{é max ) (o)) + 5( nin 3 w@co))}
1

> 111611_351f—{§ Bl{lx%)il/f ¢($0))}

- —hminf(w(xs) w(x0)> (‘xe — xO‘Q)

e—0 ‘iL‘ — iL‘o|2 g2
>0
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since |x. — xo|*/e? < 1. This shows that

(10.14) P(xy) < %(max ¥+ min w> + o(e?).

B(zo,e) B(zo,e)

Combining (10.13) and (10.14) we see that (10.12) is valid, as desired.

Second, assume that (10.12) holds. But the mere fact that Vi(zy) = 0 means
that there is nothing to prove in Definition 9.2 concerning Api(zg) < 0, since
critical contact points of the test function pass for free. (Therefore the Asymptotic
Mean Value Formula was not even used at this step.) This concludes the case of
subsolutions.

Finally, the case when the test functions touch from below is similar. |

Comments. In the case p = oo the Asymptotic Mean Value Formula is not valid
pointwise. The example with the oo-harmonic function

PUES
ks

u(r,y) = x5 —y
exhibits this fact, see | | for the calculations. However, in the cases 1 < p < 0o
the Asymptotic Mean Value Formula holds pointwise in the plane (n = 2), cf. [LilM]
and [ALl]. The proofs in the plane are based on the hodograph method. To the best
of my knowledge the situation in higher dimensions n > 2 is an open problem.

Dynamic Programming Principle. An interpretation in Stochastic Game The-
ory comes from the Dynamic Programming Principle or DPP that is satisfied by the
function of the game:

u(z) = g( sup u. + inf ug(:lj)> + B ue(y) dy
2 B(z0,¢) B(zo.¢) B(z,e)

where the 'probabilities’ are

p—2 _ 2+n

a = , = .
p+n p+n

The set up and how wu. approaches a p-harmonic function is described in | ].
See also | | for p < 2. Actually, the Stochastic Game was found first, then came
the Asymptotic Mean Value Formula.
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11. Some open problems

As a challenge we mention some problems which, to the best of our knowledge,
are open for the p-Laplace equation, when p # 2. In general, the situation in the
plane is better understood than in higher dimensional spaces.

The Problem of Unique Continuation. Can two different p-harmonic functions
coincide in an open subset of their common domain of definition? The most pregnant
version is the following. Suppose that u = u(x1, z2, x3) is p-harmonic in R? and that
u(zy, z2,x3) = 0 at each point in the lower half-space x3 < 0. Is u = 0 then? The
plane case n = 2 is solved in [BI1]. In the extreme case p = oo, the Principle of
Unique Continuation does not hold.

The Strong Comparison Principle. Suppose that u; and us are p-harmonic func-
tions satisfying us > uy in the domain €. If us(xg) = uq(zo) at some interior point
xo of €, does it follow that us = u1? The plane case is solved in [M]. The Strong
Comparison Principle does not hold for p = co. One may add that, if one of the
functions is identically zero, then this is the Strong Maximum Principle, which,
indeed, is valid for 1 < p < o0.

Very Weak Solutions. Suppose that u € W'?~1(Q) and that

/(|Vu]p_2Vu, V)de =0

Q

for all ¢ € C§°(€2). Does this imply that u is (equivalent to) a p-harmonic function?
Please, notice that the assumption

/|Vu|p_1dx < 00
Q

with the exponent p — 1 instead of the natural exponent p is not strong enough
to allow test functions like (Pu. When p = 2 a stronger theorem (Weyl’s lemma)
holds. T. Iwaniec and G. Martin have proved that the assumption u € WHP=¢(Q) is
sufficient for some small € > 0, cf [I]. J. Lewis has given a simpler proof in [l.¢3].

Second Deriwatives. For 1 < p < 2 the second derivatives of a p-harmonic function
are locally summable, i.c. u € W2P(Q). Indeed, even u € W2*(Q). What is the
situation for p > 2 7 The two dimensional case n = 2 was settled in Section 7. The

range 1 < p <3+ %, in which the Cordes condition is valid, was settled in | ].

The C'-regularity for p = co. Does an co-harmonic function belong to CiL_.? What

about C’ﬁ)’?? Recently, O. Savin proved that in the plane all co-harmonic functions
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have continuous gradients, cf [Sa]. An educated guess is that the optimal regularity
class is Cﬁ)’cl/ ®in the plane. The Holder exponent 1/3 for the gradient is attained
for the function z*/® — y*/3. In space Evans and Smart have proved in [I25] that the
oo-harmonic functions are (totally) differentiable at every point. The proof provides

no modulus of continuity.

The Asymptotic Mean Value Property. Does the Asymptotic Mean Value Property
hold pointwise in space? It holds in the viscosity sense. In the plane it is known to
be valid pointwise, cf. [ALl] and [LiM].

High regularity as p is close to 1. In the plane case a p-harmonic function is of
some differentiability class C{Z(Cp ) where k(p) = oo as p — 14+ 0. (However, solutions
of the limit equation are, in general, not of class C*.). Does the regularity increase
also for n > 3 when p — 1+ 07?

There are many more problems. "Luck and chance favours the prepared mind.”*

15Dans les champs de I'observation le hasard ne favorise que les esprits préparés. LOUIS PASTEUR.
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12. Inequalities for vectors

Some special inequalities are helpful in the study of the p-Laplace operator. Ex-
pressions like

(|Vv[P~2Vv — |Vul[P~2Vu, Vo — Vu)

are ubiquitous and hence inequalities for
(bP~2b — [al"%a,b — a)

are needed, a and b denoting vectors in R". As expected, the cases p > 2 and p < 2
are different. Let us begin with the identity

bp72 p—2
(bIP=2b — |alP~2a,b — a) = ] ‘g |al
(16"~ = [a["~>)(]b]* = |al®)

2 )

b — al®

+

which is easy to verify by a calculation. We can read off the following inequalities

(B0 = Jal"*a,b — a) = 27 ([ + [al" ) |b — al*
= 22—p|b - a|p7

(61720 — la"~*a,b — a) < S (1" + |al"~*)[b — af?,

DN | —

if p<2.

However, the second inequality in (I) cannot be reversed for p < 2, as the first one,
not even with a poorer constant than 22=?. Nevertheless, we have

(I11)
(0P~2b — [al"?a,b — a) < y(p)b—al”,  p<2,
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according to [Db2].16

The formula

1
d
[bP~%b — |a|P "% = / la+tb—a)(a+1(b—a))dt
0

b[P~2b — |a|P~%a = (b /ya+t a)|P~2dt
p—2) /|a+t O)P~Ha+ (b — a), b— a)(a + t(b— a))dt

and consequently we have

1
{bP~2b — |aP%a,b — a) = |b — af? / la 4+ t(b — a)|P~2dt

0

=2 [la4 10— P+ 10— a)b - 0

6By conjugation (III) follows from (I). To see this, let 1 < p < 2 and write ¢ = p/(p — 1) > 2.
By (I)
2279|B — A|? < (|B|972B — |A|""?A, B — A).

Use a = |A|772A, A = |aP"2a and the same for B to obtain
2274 Hb\p*Qb — |a|p*2a|q < {(|b]P~2%b — |a|P"%a,b—a) < |b—q ||b|p*2b - |a|p*2a’ .

It follows that
2274 [|pP~2h — [a?~2a|"" < |b—al.

Thus, since (p —1)(¢— 1) =1,

16726 — |a]P~%a] < 22 Plb—alP~!, 1<p<2.

This directly implies (III) with ~(p) = 22-P.
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To proceed further, we notice that the last integral has the estimate
1
—4 2
0< /|a+t(b—a)|p ((a+t(b—a),b—a)) dt
0
1
<|b—af / la+t(b— a)P2dt .
0
We begin with p > 2. First we get
1
{6P~2b — |aP2a,b —a) > |b — a? / la+t(b—a)[P~2dt
0

and hence

1
16"~ — |a[""*a| > [b — / la+t(b— a)[P~2dt
0

by the Cauchy-Schwarz inequality. We also have
1
162~ ol 0] < (= )b —al [ Jo+t(b - a)pat,
0
where p > 2. Continuing, we obtain replacing p by (p + 2)/2:

1
2
1750 = ol < G of ([ la 10— )"t
0
1
< (5)’b—aP / la-+t(b—a)l"2dt < (5)*(|bl" — |aP?a,b — a)
0

We have arrived at

(V) 2
[161°7°5 = [a]*%a|* < (5) (1% = |a]"a,b — a)

ifp>2
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This is one of the inequalities used by Bojarski and Iwaniec (see Chapter 4). We
also have, keeping p > 2,

1
16726 — [al?"2a| < (p— Db —af / la+ (b — a) P2t

<(p-1b—al(p]'T +a"T) [ la+tb—a)= dt

o\
= o

< (p—1)(II"7 +al"7) |67 b—|a] 7 a| .
At the intermediate step |a + ¢(b — a)|P~2 was factored and then
la+t(b—a)|*T < la|T + b7
was used. We have arrived at

(VI)
167726 — |alP~%a| <

(p—1)(1b"7 + a7 ) [|o|"T b— a7 a

, ifp>2

Also this inequality was used by Bojarski and Iwaniec in their differentiability proof.

Let us return to the formula below IV and consider now 1 < p < 2. We obtain
1
(B2~ fap b= a) = (p= Do~ af [ Ja+t(b - @)t
0

A simple estimation, taking into account that now p — 2 < 0, yields

(VII)
(b2 — |a]*"2a,b — a) > (p — 1)|b— a*(1 + |af? + b]*) "=
if1<p<o2.
Recall
(VIII)
‘|b|p_2b — |a]p_2a} < 22_”\6 — a\p_l
if1<p<2.
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We remark that for many purposes the simple fact
(|6]P~2b — |a|P~%a,b—a) >0, a#b,

valid for all p, is enough.

Finally we just mention that the inequality
b > |al” + p(laf’a,b—a), p=>1,
expressing the convexity of the function |z|P can be sharpened. In the case p > 2

the inequality
o] > [af’ + p(lal*"a,b — a) + C(p)|b — af?

holds with a constant C'(p) > 0. The case 1 < p < 2 requires a modification of the
last term.
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