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Abstract: In this master’s thesis the Knowledge Discovery in Databases (KDD) process and

its usage with physical activity data are discussed. The KDD process has multiple steps,

including preprocessing, transformation, and data mining. Clustering is used as the data

mining technique and is introduced in detail. A large set of different Cluster Validation

Indices (CVAIs) and their implementations are tested with the k-means clustering and the

best performing ones further generalized. In the empirical part, physical activity data from

Finnish seventh-grade students is assessed following the KDD process and using multiple

different transformations with different clustering methods. The aim is to find out, whether

unsupervised data mining can help detect novel and useful information from this data.

Keywords: Knowledge discovery, physical activity, cluster validation index

Suomenkielinen tiivistelmä: Tässä pro gradu -tutkielmassa käydään läpi Knowledge Dis-

covery in Databases (KDD) -prosessi ja sen soveltamismahdollisuuksia fyysiseen aktiivisu-

uteen liittyvän datan kanssa. KDD-prosessi koostuu monesta eri vaiheesta, sisältäen esikäsit-

telyn, datan muunnoksen ja tiedonlouhinnan. Tässä tutkielmassa tiedonlouhinnan menetelmänä

käytetään klusterointia, joka käydään läpi yksityiskohtaisesti. Vertailemme myös laajan

joukon eri klusterointi-indeksejä (CVAIs) sekä niiden eri toteutuksia k-means klusteroinnin

kanssa ja esittelemme parhaat näistä yleisemmässä muodossa. Tutkielman empiirisessä os-

assa seitsemäsluokkalaisten koululaisten aktiivisuusdataa tutkitaan KDD-prosessia seuraten

i



ja hyödyntäen monia eri datan muunnoksia ja klusterointimenetelmiä. Tarkoituksena on

selvittää, voiko ohjaamattoman tiedonlouhinnan avulla löytää uutta ja hyödyllistä informaa-

tiota datasta.
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1 Introduction

Physical activity can be defined as "any bodily movement produced by skeletal muscles

that requires energy expenditure" (Caspersen, Powell, and Christenson 1985). The amount

and form of daily physical activity, over the whole life span, can greatly affect individuals

health and quality of life, which makes the assessment of it very important. Active lifestyle

can, for example, reduce the risk of coronary heart disease, hypertension, diabetes, some

cancers, and premature mortality in general (Health and Services 1996). According to the

World Health Organization (WHO), physical inactivity is the fourth biggest global risk for

mortality, responsible for 5.5% - over 3 million - of all deaths (WHO 2009).

As the technical abilities to measure activity’s different components and recognize its dif-

ferent forms have advanced, many applications and studies in a variety of domains have

emerged. For example in gerontology, monitoring the activity of elderly people can be used

to detect if they fall (Mubashir, Shao, and Seed 2013) or if they have chest pain or headache

(Khan and Sohn 2011). This nondiscruptive monitoring can be done from outside their free-

living conditions, which improves the quality of their lifes and saves elderly care resources

by supporting home care. In sports the foot-ground contact time and the stride ratecadence

can be analysed when running and utilized in maximizing the performance (Morin et al.

2007; Weyand et al. 2000). Heart rate monitoring has also become very general and can give

a lot of information about, for example, the intensity of physical activity (Vesterinen 2016).

There are many different components of human activity that can be measured with a variety

of devices such as accelerometers or heart rate monitors. For example, the total physical

activity, the duration, frequency and intensity of physical activity, energy expenditure, as

well as number of steps, speed and distance when walking (Butte, Ekelund, and Westerterp

2012) can be determined from the raw sensory measurements. Furthermore, the locomotive

activities (e.g. walking, jogging, running) can be classified into their own categories (Bao

and Intille 2004; Kwapisz, Weiss, and Moore 2011).

Measuring of these components of human activity can be done objectively with many sensors

which can be divided into external and wearable ones (Lara and Labrador 2013). Firstly,
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inertial sensors are wearable sensors based on inertia, with accelerometers being the most

widely used example (Avci et al. 2010). Acceleration data can be used to estimate, e.g., the

intensity of physical activity over time (Chen and Bassett 2005).

Secondly, sensors for physiological signals can be used in measuring the activity. These

are normally wearable sensors. Heart rate monitors, for instance, have developed rapidly in

recent years and are today very common in sports and training. They are mainly used to

determine the exercise intensity (Achten and Jeukendrup 2003), but heart rate variability can

also be used to analyze how well an athlete is adapting to endurance training (Vesterinen

et al. 2013) or in prevention and detection of overtraining (Achten and Jeukendrup 2003).

Thirdly, vision sensors are external sensors used, for example, in gait analysis and other

machine vision applications (Poppe 2007).

With the increase of different human activity sensors and monitors, massive streams of data

about our lives are being created continously. This has led to suggestion of the concept

Internet of Humans (Arbia et al. 2015), in connection with the Internet of Things (IoT). While

IoT is the general term referring to the things and devices being connected to the internet,

IoH can be thought as humans being connected to internet by using different monitors and

loading data about themselves to the internet. This personal data can also be referred to as

MyData (Poikola and Honko 2010). An emerging trend is to talk about so called quantified-

self (QS), which has been definded "as any individual engaged in the self-tracking of any

kind of biological, physical, behavioral, or environmental information" (Swan 2013). As the

amount of data grows, new approaches are needed to utilize it more effectively.

Knowledge Discovery in Databases (KDD) is a process of finding valid and novel informa-

tion from large amounts of data (Fayyad, Piatetsky-Shapiro, and Smyth 1996b). It has many

steps, beginning from preprocessing the data, transforming it and finally by using data min-

ing techniques in order to find patterns that can be interpreted into knowledge. Compared

to the more traditional analysis techniques, data mining is rather about finding novel and

unexpected information from the data than about confirmation of some existing hypothe-

ses (Hand, Mannila, and Smyth 2001). KDD’s potential to utilize the large datasets, that are

now common in the field of physical activity, makes it a natural framework for the knowledge

discovery from such sources.

2



As people become more inactive and the sedentary time increases (Owen et al. 2010), pos-

sible dangers of sedentariness have been recognized lately (Helajärvi et al. 2013; Rezende

et al. 2014). Sedentary time can be defined as activities with a very low energy expendi-

ture (e.g., 1.0–1.8 metabolic equivalents (METs) (Jans, Proper, and Hildebrandt 2007)) or

as time spent sitting/supine (Chastin and Granat 2010). The physical activity and sedentary

behaviour of children has become a concern (Hillman, Kamijo, and Scudder 2011) and a

very current research topic. According to a Finnish study (Husu, Vähäpyä, and Vasankari

2016), 7-13 year-old children spend more than half of their waking hours sedentary, mainly

sitting. It is important to recognize the reasons behind and ways to decrease the sedentari-

ness. Clustering has the potential to bring out conjunctive factors in groups, that might be

related to the sedentary behaviour of the students in that group.

In this study, the activity behaviour of Finnish seventh-grade students is being assessed. The

aim is to, by following the KDD process and using clustering as the data mining technique,

find out different activity profiles amongst the students. These profiles are constructed based

on both the activity and sedentary behaviour separately. Therefore, the research question is

as follows:

• Can we find novel and useful information from students activity data using unsu-

pervised data mining?

For finding the number of clusters present in the data, we tested and further developed many

existing Cluster Validation Indeces (CVAIs), as well as developed our own index (Jauhiainen

and Kärkkäinen 2017). Our further generalization of the CVAIs enables their easy usage with

many distance measures.

The structure of this thesis is as follows: in Chapter 2, the KDD process and its steps are

introduced and in Chapter 3, clustering in more detail. Ways for measuring and quantifying

physical activity through a variety of sensors and some example applications in the field of

physical activity are presented in Chapter 4. The empirical part of the thesis is stated in

Chapters 5 and 6, evaluation of the CVAIs for clustering the students activity behaviour and

the schoolchildren’s activity study, respectively. Finally, conclusions and some discussion

about potential future work are given in Chapter 7.
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2 The KDD process

Knowledge discovery in databases (KDD) was originated in the 1990s, after the increase of

large, ubiquitous databases (Piatetsky-Shapiro 1990). As this growing amount of data was

of very little value in its raw form and becoming unmanagable for the existing data analysis

techniques, new methods for knowledge extraction were well needed. The original KDD pro-

cess was introduced by Fayyad et. al (Fayyad, Piatetsky-Shapiro, and Smyth 1996a; Fayyad,

Piatetsky-Shapiro, and Smyth 1996b; Fayyad, Piatetsky-Shapiro, Smyth, et al. 1996) and de-

fined as "the nontrivial process of identifying valid, novel, potentially useful, and ultimately

understandable patterns in data". So data itself is not knowledge, but after identifying these

patterns, information, from data, they can be interpreted into knowledge.

Even thought data mining and knowledge discovery are nowadays often used as synonyms

(Piatetsky-Shapiro 2000), in this thesis the KDD process is used to refer to the overall process

of discovering useful knowledge, while data mining is a specific step in the process where

an algorithm is applied to the data for pattern discovery (Piatetsky-Shapiro 1990).

The KDD process is iterative and interactive, having multiple steps with, as stated above,

data mining being one of them. Before the actual mining, data selecting, preprosessing and

transforming can be done, while afterwards interpretation of patterns is required for gaining

knowledge. The steps of KDD process are outlined in Figure 1.

Figure 1. The original KDD-process. From Fayyad, Piatetsky-Shapiro, and Smyth 1996b.
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2.1 Data matrix

Data is most often represented in the form of a matrix, where observations are as row vectors

and their attributes on the columns. Let the i:th observation be xi = {xi, j}, where its attributes

j = 1, . . . ,n, for i = 1, . . . ,N. So data with N observations having n attributes could be

represented in an N×n matrix

X =



x1,1 x1,2 . . . x1, j . . . x1,n

x2,1 x2,2 . . . x2, j . . . x2,n
...

... . . . ... . . . ...

xi,1 xi,2 . . . xi, j . . . xi,n
...

... . . . ... . . . ...

xN,1 xN,2 . . . xN, j . . . xN,n


∈ RN×n.

The rows, observations, can also be referred as points, objects, or feature vectors. The at-

tributes of the observation in turn can be called as features, variables, or dimensions. The

number of columns, n, is considered as the dimensionality of the data whereas the number

of observations, N, is considered as the amount of the data. Throughout this work we denote

a vector with the notation x and a matrix with X.

The attributes can be of many different forms, of which one usually distinguish the following

types (Bramer 2007; Zaki and Meira Jr 2014):

• Categorical

– Nominal: Categories with no order. These can be represented also in numerical

form, but have no mathematical interpretation (e.g., blue/red/green).

– Ordinal: Similar to nominal, but with an order (e.g., child/adult/elderly).

– Binary: Special case of the nominal variable, with only two classes represented,

for example, by 0 or 1, true or false (e.g., pregnant/not pregnant).

• Continuous

– Integer: Variables that are integers and have arithmetic meaning (e.g., number of

students).
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– Interval-scaled: Numerical values with equal intervals from zero or other origin

point (e.g., temperature in Celsius).

– Ratio-scaled: Similar to interval-scaled but zero represents the absence of mea-

surement (e.g., temperature in Kelvin).

2.2 Preprocessing

First step in the knowledge discovery process is the selection of the target datasets, accord-

ing to the goal and utilizing background information about the application domain (Fayyad,

Piatetsky-Shapiro, and Smyth 1996b). After the target set has been chosen some data clean-

ing is often needed, as raw data can be noisy and messy. For example, missing values,

corrupted values, or improper sampling can exist.

As nowadays’ large, often sparse datasets have a lot of missing values due to variety of

reasons, the decision on how to handle these missing points is important. Missing points can

occur as a result of human errors in measuring, but most often the values just are unavailable

(e.g., sensor has not been worn during shower or one has no answer to a certain question

(Dixon 1979)). These missing data values can be divided into three categories (Roderick JA

Little and Rubin 2014):

• Missing completely at random (MCAR) – the missingness does not depend on the data

values, either missing or observed

• Missing at random (MAR) – missingness depends only on the data components that

are observed, not on those that are missing

• Not missing at random (NMAR) – missingness depends on the missing values in the

data.

The missing points can be handled, for example, by replacing them using imputations based

on either statistics (e.g. mean, median) or predictive modelling (Batista and Monard 2003).

Some other options are to omit the whole observation including missing values or just to use

data as it is with techniques that are able to handle these missing points (Roderick JA Little

and Rubin 1989).
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The data can also include incorrect, corrupted, and even impossible datapoints, that can

be caused either by human errors or by sensors giving erroneous measurements (Hammer

1976). These points could include very large values, outliers, that violate common sense

(e.g., age 167 years, temperature 140 celcius degrees), or impossible combinations (e.g.

gender: male, pregnant: yes). These datapoints can be replaced similarly as missing values or

set to missing values (Äyrämö 2006). Whichever strategy for missing and spurious variable

handling is chosen, the impacts on the further process should also be considered carefully

(Bramer 2007).

Data filtering is an important step in the preprocessing, but it can mean different things and

be done very differently in different application areas. For example, in web usage mining it

can be the identification and removal of robots’ requests (Tanasa and Trousse 2004), or with

textual data stopwords (Nieminen, Pölönen, and Sipola 2013) can be filtered out. When con-

sidering accelerometer data there is almost always some high frequency noise and the data

itself consists of two components, gravitational and body acceleration (Yang, Wang, and

Chen 2008). The high frequency noise can be removed, for example, using median (Karan-

tonis et al. 2006) or Gaussian (Luo and Hu 2004) filtering. In addition, the components of

gravitational and body acceleration can be separated using high pass (Yang, Wang, and Chen

2008), low pass (Karantonis et al. 2006), or band pass filtering.

2.3 Transformation

Data transformation can include, for instance, scaling, normalization, data projection, or

dimension reduction. It can also include the forming of different transformed representations

of the data. These representations can be made by summing or otherwise conducting new

variables or by arranging and combining the data in novel ways (Han, Pei, and Kamber

2011). Summing can be done, for example, over time summing observation per second to

observations per minute etc. All these transformed representations can enable the finding

of new, unexpected structures and patterns from data, compared to the raw form (Hand,

Mannila, and Smyth 2001).

Manipulation of the distribution of variables might be an useful transformation. For exam-
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ple, taking a logarithmic transformation of the data is very common for skewed data (Hand,

Mannila, and Smyth 2001). This makes the distribution more symmetric, smoothing differ-

ences between large and small values and so the larger ones do not dominate in data mining.

For more evenly distributed data (i.e. not skewed) the distribution can be transformed by

normalizing it to follow the standard normal distribution:

x′i, j =
xi, j− x̄ j

σ j
, (2.1)

where i = 1 . . . ,N, j = 1 . . . ,n, and x̄ j is the mean and σ j the standard deviation of the jth

column.

Range normalization can also be done by min-max scaling (Zaki and Meira Jr 2014), which

is particularly handy when dealing with distances. The data can be scaled into the range

between [0,1] by

x′i, j =
xi, j−mn
mx−mn

, (2.2)

where i = 1, . . . ,N, j = 1, . . . ,n, and mn and mx are the minimum and maximum values of

the jth column:

mn = min({(xi) j}N
i=1), mx = max({(xi) j}N

i=1). (2.3)

In general, the normalization of data between the range [a,b] can be done with the following

x′i, j = (b−a)
xi, j−mn
mx−mn

+a. (2.4)

2.3.1 Dimension reduction

The importance of dimension reduction originates from the information overload that is a

result of advances in data collection and storage capabilities during past decades (Verleysen
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and François 2005). This increase in the amount of data is caused both by samples collected

over time and the number of attributes that can be measured and stored.

The purpose of dimension reduction is to reduce the number of variables under considera-

tion by attaining a set of principal variables (Fayyad, Piatetsky-Shapiro, and Smyth 1996b),

which then makes further processing easier. Dimension reduction can be divided into feature

selection, which aims to finding a subset of original variables that best represents the original

data, and feature extraction (Liu and Motoda 1998).

Feature selection is a technique where a subset of the original features is selected for further

processing (Hand, Mannila, and Smyth 2001) so that the selected subset represents the data

as accurately as possible. The most simple feature selection technique is to choose features

based on intuition and domain expertise, but also many methods for the selection have been

developed. For example, LASSO (Friedman, Hastie, and Tibshirani 2001) is a regression

analysis method that can be used in variable selection. Another technique, based on integrat-

ing the derivative of the feedforward mapping with respect to inputs over the training data,

was introduced in (Kärkkäinen 2015).

Principal component analysis (PCA) is a common feature extraction based dimension reduc-

tion teqhnique invented in the beginning of 1900s (Pearson 1901). The main goal of PCA is

to find a subset of attributes, principal components, from the data so that the most relevant

information can still be represented with it and no important information is lost. It tries to

find these components so that they cover as much as possible of the overall variance of the

data.

Following the notation in (Kärkkäinen and Saarela 2015), as we have the original data, a set

of N vectors {xi} in Rn, the aim is to transfer these to a new set, {yi} in Rm, so that m < n.

We are looking for a set of orthonormal basis vectors [u1u2 . . .un] and with zk = uT
k x, we can

denote x = ∑
n
k=1 zkuk.

Considering a new vector x̃ = ∑
m
k=1 zkuk +∑

n
k=m+1 bkuk, where the last term is the residual

error x− x̃ = ∑
n
k=m+1(zk−bk)uk, we have the least-squares-error (LSE):
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1
2

N

∑
i=1
‖xi− x̃i‖2 =

1
2

N

∑
i=1

n

∑
k=m+1

(zi,k−bk)
2 =

1
2

n

∑
k=m+1

uT
k Cuk. (2.5)

Here C is the sample covariance matrix of the data

C =
N

∑
i=1

(xi− x̄)(xi− x̄)T , (2.6)

where x̄ is the mean vector. Let {λk,uk} be the kth eigenvalue and eigenvector of the sym-

metric matrix C. Hence, the eigenvalues and eigenvectors satisfy the following eigenvalue

problem

Cuk = λkuk, k = 1, . . . ,n. (2.7)

Utilizing the equation 2.5 and the orthogonality of uks we can write the LSE of equation 2.3

as

1
2

n

∑
k=m+1

λk. (2.8)

So, the m eigenvectors that correspond to the m largest eigenvalues of C form the basis for

the transformed representation. Then we have the transformed data points as yi = uk(xi− x̄),

where i = 1, . . . ,m and u1 is the basis vector corresponding to the largest eigenvalue, u2 to

the second largest and so on.

2.4 Data mining

Data mining is the technical step of the KDD process where patterns are being discovered

from the preprocessed and transformed data by applying some specific algorithms. It has

been defined as "the analysis of (often large) observational data sets to find unsuspected

relationships and to summarize the data in novel ways that are both understandable and

useful to the data owner" (Hand, Mannila, and Smyth 2001). So, while more traditional
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data analysis techniques often aim at confirmation of predefined hypotheses, data mining is

more about finding novel, unexpected information from the data. Also, as massive databases,

with data of various forms and qualities, grow in number, these traditional techniques might

become insufficient.

Data mining techniques can be either predictive or descriptive. The purpose of a descriptive

model is to summarize and describe the whole data (Hand, Mannila, and Smyth 2001). This

can be done, for example, with statistics, using mean, median, mode, or standard deviation.

Descriptive techniques focus on understanding the underlying features and processes in data

to get insight on how to approach the future.

Predictive techniques, in turn, use the data to make predictions about unknown future events.

With data, the value of a particular variable (output) can be predicted from the values of

the known variables (input). The nature of predictive modeling is probabilistic and it often

uses statistical techniques. So the purpose is not to predict what will happen in the future

but rather what might happen. Usually both descriptive and predictive techniques are used

together in data mining applications.

Data mining can also be divided into supervised and unsupervised (Bramer 2007). In super-

vised learning the aim is to use labelled data to predict a value for unseen observation, while

in unsupervised learning the labels are inferned from the data itself (Bramer 2007). Exam-

ples of supervised learning are classification and regression while clustering and exploratory

data analysis are unsupervised.

According to the KDD process by Fayyad et. al (Fayyad, Piatetsky-Shapiro, and Smyth

1996a; Fayyad, Piatetsky-Shapiro, and Smyth 1996b), data mining algorithms are a specific

mix of the following three components:

• Model. Discoverable patterns containing parameters determined from the data.

• Preference criterion. Criteria for how well a particular pattern meets the goal of the

KDD process. Basis for preference of one model or set of parameters over another.

Can be based, for instance, on the accuracy, novelty, utility, or understandability of the

model.
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• Search algorithm Definition of an algorithm for (i) parameter search and (ii) model

search. After the specification of the model and preference criterion, the job of the

search algorithm is purely an optimization task.

Next the data mining tasks adapting Zaki (Zaki and Meira Jr 2014) are introduced, with

clustering in more detail in its own chapter.

2.4.1 Exploratory data analysis

In exploratory data analysis (EDA) the purpose is to explore the data to find interesting and

unexpected structures from it, often using statistical methods (Hand, Mannila, and Smyth

2001). It was first promoted in 1970’s, encouraging statisticians to explore the data and

formulate hypotheses that could spring new data collections and experiments (Tukey 1980).

So, as statistical methods are often used for the confirmation of predefined hypoteses, EDA

tries to analyze the data so that new hypotheses can be suggested based on it. It is an approach

for analyzing data to summarize the main characteristics in it and the detection of structures

is most often done using visualization methods such as box plots (see Fig. 2), histograms,

different charts and scatter plots.

With high-dimensional data the visualization has to be done for few dimensions at a time

or do dimension reduction first. In fact, as data mining often deals with excessively high-

dimensional data sets, another goal of exploratory analysis can be to reduce the amount of

data.

The numeric attributes in data can be analyzed with basic statistical methods. These include

univariate, bivariate, and multivariate analysis, considering one, two, or more attributes at a

time. In the univariate analysis, measures of central tendency (sample mean, expected value,

median, mode) and measures of dispersion (range, variance and standard deviation, variance

of the sample mean) are calculated and analyzed. In the bivariate analysis, as the focus is on

two attributes at the same time, the association and dependence between them is of special

interest. Measures of location and dispersion (mean, variance) and measures of associations

(covariance, correlation) are used. In the multivariate analysis, similar measures as in the
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Figure 2. With box plot one can get a quick overview of the data. The upper and lower

bounds of the box are the third and first quartile, the line inside the box is the median, the

whiskers represent max and min values, and the plus signs stand for outliers. This box plot

is derived from the sedentary data of students in Chapter 6.

bivariate analysis are used, but with more attributes at a time (Zaki and Meira Jr 2014). With

bivariate and multivariate analysis data normalization is often necessary, especially if the

values are different in scale. Data can be normalized by scaling it so that all values are inside

a certain range, e.g., [−1,1] or by manipulating it to be normally distributed (see Section

2.3).

2.4.2 Frequent pattern mining

Frequent pattern mining is a task where informative, interesting, and useful patterns are ex-

tracted from large and complex datasets (Zaki and Meira Jr 2014). A pattern can be interest-

ing if it, for example, appears frequently, or in turn is more rare but with higher confidence.

The main goal is to find hidden and novel trends and behaviours from the data to understand

it better.

There are two main types of patterns that can be discovered from a database, frequent item-

sets and sequential rules (Bramer 2007). Frequent itemsets consist of co-occurring attributes

and a common example of frequent itemset mining is market basket analysis (Aggarwal and
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Han 2014). Market basket analysis tries to find out what items are often purchased together

and after mining and analyzing these itemsets, associations rules can be extracted. These

rules can then be exploited by the shop owners, for example, by placing the items bought

together close to each other in the store.

Adapting the notation in (Goethals 2003), let I = {i1, i2, ..., in} be an itemset containing n

items and D = {t1, t2, ..., tm} a database with m transactions, where transactions contain a

subset of items from I. A rule is defined as X → Y , where X ,Y ⊂ I and X ∩Y = /0. In

the itemset mining, these rules are extracted from the databases with the help of constraint

values, called support (sup) and confidence (conf). Here the support value indicates how

often a certain item or itemset occurs in a database and the confidence value, defined as

con f (X → Y ) = sup(X ∪Y )/sup(X), indicates how often a certain rule is fulfilled

Table 1. An example database with five transactions containing five items.

Transaction ID Milk Bread Coffee Beer Apples

1 1 1 0 0 1

2 0 0 1 0 1

3 1 0 1 1 0

4 0 0 1 0 0

5 0 1 0 1 0

To demonstrate this with an example, a sample database has been defined in Table 1. In the

market basket analysis a rule can be, for example, that "if people buy milk and bread, they

also buy apples", marked as {Milk,Bread}⇒ {Apples}. So here the itemset {Milk,Bread}

occurs in one of the five transactions and the support value is therefore 1/5 = 0.2. Con-

sidering a rule {Milk,Bread} ⇒ {Apples} the confidence is defined as sup{Milk,Bread}/

sup{Apples} so conf({Milk,Bread}⇒ {Apples}) = 0.2/0.2 = 1. This means that in all the

cases in the database that a customer bought milk and bread, he also bought apples and the

extracted rule is that if someone buys milk and bread they will also buy apples with 100%

certainty.

In mining, a minimum support value is given by the user and if the support of certain itemset
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is greater than the minimum support, then this itemset is frequent. The most used algorithm

for itemset mining is Apriori (Agrawal, Srikant, et al. 1994). Apriori algorithm starts with

identifying frequent individual items in the database and proceeds by extending the item into

a set of items that often occur together with the individual item.

Sequential rule mining in turn is about discovering frequent subsequences, from a sequence

database (Mabroukeh and Ezeife 2010). In sequential rules the attributes in a sequence have

some relationships, for instance, temporal or positional, with each others. It is used in many

real-world applications, such as, text mining (sequence of letters) or bioinformatics (DNA

or protein sequences). There are many methods for sequence minining of which some allow

gaps between the elements of a sequence and some do not.

Frequent sequence mining can be demonstrated by string mining. String mining deals with a

limited number of characters or symbols and a sequence or a string is defined as an ordered

list of these characters. A sequence containining k characters is often called k-sequence

and a substring is a part of sequence, having less than k characters. With a database of

N sequences the support of a certain subsequence is defined as the total number of se-

quences containing this subsequence. In an example database containing seven sequences,

{milk,carrot,bread,avocado,apples,cake,beer}, the subsequence ’ca’ is found in three of

them and hence the support sup(ca) = 3. The relative support in turn is the fraction of se-

quences containing a subsequence, in this case rsup(ca) = 3/7. Again, if the support is

greater than an user-defined minimum, the subsequence is discovered as frequent.

2.4.3 Classification

Classification is a task of predicting the class of a given point based on known points (Tan and

Steinbach 2006). It is a supervised data mining method as the classes for classification are

given a priori. A classical example of a classification problem is the Fisher’s Iris data (Fisher

1936), including 150 flowers/observations and having their sepal length, sepal width, petal

length, and petal width as variables. There are three classes, Iris setosa, Iris versicolor, and

Iris virginica, and the classes for all 150 flower are known. The classes can be distinguished

with a linear discriminant model based on the combination of the four features.
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There exists a variety of different classification methods, such as probabilistic classifiers, de-

cision trees, linear discriminant analysis, support vector machines, and so on (Zaki and Meira

Jr 2014). Of probabilistic classifiers the naive Bayes (Bramer 2007) and nearest neighbors

(Hand, Mannila, and Smyth 2001) classifiers are the most well known. The key idea of these

classifiers is to assess the class of a certain point based on the classes of close observations.

With naive Bayes the closeness is measured by probability based on the Bayes’ theorem and

with nearest neighbor it is measured with distance. So if the most of the observations close

to the point belong to a certain class, it is probable that this point also belongs to the same

class. A simple example data is given in Fig. 3, having two classes that are quite separable.

The black circle in the figure would be classified into class one and the square into class two,

based on the classes of near observations.

Figure 3. Data with two classes, black circle and square are to be classified.

Decision trees use tree-like graphs consisting of decisions and their possible consequences

(Han, Pei, and Kamber 2011). In classification the leaves represent class labels and the

branches represent rules that lead to a certain class label (Rokach and Maimon 2014). For

example, the classification of unknown fruits can be seen in Fig. 4. Note that the decision

tree can also be probabilistic if the tree provides the posterior class probability distribution

at each note (Hand, Mannila, and Smyth 2001).
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Figure 4. Fruit classification using decision tree

In linear discriminant analysis (LDA) the goal is to find a vector w that maximizes the sepa-

ration between classes when projected onto w (Xanthopoulos, Pardalos, and Trafalis 2013),

while in support vector machines (SVM) we try to find a hyperplane that maximizes the sep-

aration, or margin, of classes (Cortes and Vapnik 1995) (see Fig. 5). While other classifiers

consider all data points, SVM focuses on the points that are closest to the separating plane

(called support vectors) and so the most difficult to tell apart.

Figure 5. On the right LDA with vector w and on the left SVM, where grey markers are the

support vectors and 1
‖w‖ is the margin. Adapted from (Zaki and Meira Jr 2014)
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2.4.4 Regression

Regression analysis is a statistical process for estimating the relationships between variables

in data (Montgomery, Peck, and Vining 2015). It is similar to classification but, while in

classification the aim is to predict a discrete class label, in regression the aim is to predict a

continuous value based on the data (Tan and Steinbach 2006).

In simple linear regression the goal is to fit a straight line to the data (Montgomery, Peck,

and Vining 2015). The equation for this is

y = β0 +β1x, (2.9)

where β s are unknown coefficients, x denotes the independent variables and y the dependent

variables whose values are predicted. As an example, the delivery time of a product can be

predicted based on the delivery volume (see Figure 6).

Figure 6. A line fitted to descripe the relationship between delivery time and delivery volume.

Adapted from Montgomery, Peck, and Vining 2015
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2.5 Summary

In this chapter, the KDD process and its steps were introduced. KDD is "the nontrivial pro-

cess of indentifying valid, novel, potentially useful, and ultimately undestandable patterns in

data" (Fayyad, Piatetsky-Shapiro, and Smyth 1996b). It consists of multiple steps, including

data mining where the actual discovering of patterns and new information from data is done.

Before data mining the data needs to be preprocessed to handle missing and spurious data

values and filter out any noise. Often also transformations are done and the transformed form

of data can enable the finding of new interesting patterns compared to the raw form.

Data mining is the step in KDD where the patterns and information are being discovered

from the preprocessed and transformed data. Data mining technique can refer, for example,

to exploratory data analysis, frequent pattern mining, classification or clustering, which is in-

troduced in the next chapter. The data mining technique should be chosen case dependently,

as well as the preprosessing and transformation that is done.
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3 Clustering

Clustering is unsupervised classification of observations, data items, or feature vectors into

groups (Jain, Murty, and Flynn 1999). These groups are called clusters and constructed

by the clustering algorithm during the procedure. The purpose is to form these clusters so

that "patterns within a valid cluster are more similar to each other than they are to a pattern

belonging to a different cluster" (Jain, Murty, and Flynn 1999). There exists many measures

for this similarity as the concept of ’cluster’ cannot be precisely defined (Estivill-Castro

2002) and, as a consequence, also variety of clustering algorithms exist.

3.1 What is a cluster

A common problem is the desicion of how many clusters there are in the data and as said

in (Estivill-Castro 2002), the ”clusters are, in large part, on the eye of the beholder”. As

demonstrated in Fig. 7, the amount of clusters is not always clear and many ’right’ answers

exist. In the figure, with Gaussian distribution the number of clusters could be claimed to

be for instance three or seven and with the Laplacian distribution even four or six because

there is more noise making the case ambiguous. In this case, the number of clusters can also

depend on the resolution, i.e., are the similarities within and between clusters considered

locally or globally.

Figure 7. On the left, data drawn from Gaussian distribution and on the right from Laplacian

distribution. From Äyrämö 2006, pp. 56
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The most common measure for similarity is distance, suitable with cases where the observa-

tions in cluster are close to each other, as in Fig. 7. Distance itself can also be defined with

different measures, and the p-norm of a vector x is defined as (adapted from Kärkkäinen and

Heikkola 2004)

‖x‖p =

( N

∑
i=1
|xi|p

)1/p

. (3.1)

Now, if p = 1 we have the so-called cityblock distance and for p = 2 the euclidean distance.

Consider the following optimization problem

minJq
p(x), where Jq

p(x) =
N

∑
i=1
‖x−xi‖q

p. (3.2)

Now, if both p = q = 2, we end up with the data mean, if p = q = 1 the median, and if

p = 2q = 2 the spatial median. The data mean always has a unique value while the median

value is unique for odd N (Kärkkäinen and Heikkola 2004) but not for even N. For spatial

median, the existence and uniqueness in the case of non-collinear data is proved in (Äyrämö

2006, Theorem 4.6.1 and 4.6.2).

Figure 8. Density-based dataset with two non-linearly separable clusters. From

https://en.wikipedia.org/wiki/DBSCAN.
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The distance measure as well as the measure for similarity has to be chosen case dependently,

based on the nature of the data to be clustered. For instance, another popular measure for

similarity is density, suitable in cases such as in Fig. 8, where the points in same cluster are

of similar, higher, density.

3.2 Hierarchical clustering methods

Hierarchical clustering creates a sequence of nested partitions that can be visualized by a

tree or a dendrogram (Zaki and Meira Jr 2014). These methods try to find a hierarchy of

clusters either with an agglomerative or divisive strategy (Jain and Dubes 1988). In the

agglomerative approach, each data point is separate at the beginning and by merging these

together the clusters are formed. The merging is done to the two closest clusters until all

points are members of the same cluster or if specified, when there are exactly k clusters

remaining. The number of clusters is decreased by one in every step, resulting in a sequence

of nested clusterings. Divisive methods in turn start with one cluster and perform recursive

splitting for the increased number of clusters.

3.3 Density-based clustering methods

In density-based datasets, for example in Fig. 8, the clusters are not of linear shapes and two

points from different clusters can have smaller distance than two points in the same cluster.

The areas with higher density are considered as clusters whereas the more sparse areas are

considered as border points and noise (Kriegel et al. 2011).

The most widely used density-based clustering method is Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) (Ester et al. 1996). With DBSCAN a data point is

defined as a core point, if it has at least a minpts number of neighbors within the distance of

ε , so in its so called ε-neighborhood. Those points that do not meet the minpts treshold, but

belong to the ε-neighborhood of some core point, are defined as border points. Points that

are neither core or border points are considered as noise or outliers. The ε-neighborhood of

a point x can be defined as follows:
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Nε(x) = {y | d(x,y) ≤ ε}, (3.3)

where d(x,y) is the distance between x and y. A simple example of the determination of

points can be seen in Fig. 9.

Figure 9. The DBSCAN algorithm when minpts = 3, where the black circles are core points,

white ones are border points and the black square is noise. The lines implicate a distance

less than or equal to ε .

3.4 Prototype-based clustering methods

The goal of prototype-based clustering methods is to partition the data directly into given

amount of clusters, which are represented by the prototypes (Zaki and Meira Jr 2014). When

dividing the data into k clusters, the process can be outlined as follows (see, e.g., Aldenderfer

and Blashfield 1984):

1. Initialize k cluster prototypes

2. Assign each observation in data into closest of the k prototypes

3. Recompute the prototypes

4. Repeat steps 2 and 3 as long as the prototypes change or an user-defined maximum

number of iterations is reached

The repeated steps 2 and 3 are done so that they minimize the within-cluster error, also

referred to as clustering error. So, in other words they resolve the following (Friedman,
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Hastie, and Tibshirani 2001):

argmin
{bk}K

k=1

J({bk}), (3.4)

where

J({bk}) =
K

∑
k=1

∑
xi∈Ck

‖xi−bk‖q
p =

K

∑
k=1

Jk. (3.5)

K is the number of clusters, x j is an observation assigned to cluster k and (i.e., bk is the

closest prototype). Jk is the clustering error of cluster k and J is the sum of these, so the total

clustering error being minimized. Also, let {ck}= {b∗k} be the local minimizer of (3.4) and

J({ck}) = J∗ the local minimum with J∗k the within-cluster final error.

For the whole data, let argmin J(b0), where J(b0) = ∑
N
i=1 ‖xi− b0‖q

p, be the corresponding

problem and thus c0 = b∗o the global minimizer and J(c0) = J∗0 the global minimum for this

problem.

In this study partitional clustering methods, namely k-means (MacQueen et al. 1967) and

k-medians, have been used. K-means is a very popular and simple partitional method that

aims to dividing the data into k clusters such that each observation belongs to the cluster with

nearest mean. It is obtained from Equation 3.5 by choosing p = 2 and q = 2. The k-medians

method in turn follows from selections p = 1 and q = 1 and k-spatialmedians from p = 2

and q = 1 (Äyrämö 2006) (see Section 3.1).

3.4.1 Cluster initialization

In prototype-based clustering, the initial placement of cluster prototypes has a significant

effect on the clustering as with different initializations, different results can be obtained

(Celebi, Kingravi, and Vela 2013) and there is no guarantee of a converge to a global mini-

mum of the clustering error (Celebi, Kingravi, and Vela 2013; Jain 2010).

Many methods for cluster initialization have been developed, but a general strategy is to
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use random initialization with several runs (Xu and Wunsch 2005). However, the way of

computing the initial prototypes should be chosen case-dependently (Saarela and Kärkkäinen

2015), so that the solution will be good also globally. For example, choosing the initial

prototypes as far away from each other as possible might result into a good solution with

respect to the between-cluster-error, i.e., the members in a cluster will be dissimilar to the

members in other clusters(Arthur and Vassilvitskii 2007).

Because the initialization effects the obtained results so much and the converge is only local,

multiple repetitions are used. The clustering method is being repeated with different initial-

ization and the best, i.e., smallest, value for (3.4) is then chosen as the global minimum.

3.5 Robust clustering

In statistics, robustness means that a technique has a good performance with data from a

wide range of different distributions. Robust techniques are insensitive to small deviations

in the assumptions (Huber 1981). With modern large datasets the distributions are often not

normal and the data can contain a lot of missing values and outliers. As normal methods and

measures are unfavorably affected by these, robust methods provide an alternative.

For example, with the k-means method, the prototype of a cluster is represented by the

cluster mean and mean can be affected a lot by outliers. Therefore, more robust and reliable

prototype-based methods are sometimes needed, such as k-medians. In general a robust

prototype-based method can be obtained from Equation 3.5 by choosing q = 1 (Äyrämö

2006). Moreover, a straightforward approach referred as available data strategy, introducing

no extra assumptions to deal with missing values, was proposed and thoroughly tested in

(Roderick J Little and Rubin 1987; Äyrämö 2006).

3.6 Cluster validation

As clustering is an unsupervised data mining technique, with no predefined classes, the re-

sults have to be somehow validated. The validation task is to find the partition that fits best

the nature of data. Cluster validation indices (CVAIs) are measures used for determining the
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number of clusters in the data. These indeces can be approached based either on external or

internal criteria (Halkidi, Batistakis, and Vazirgiannis 2002). The external criteria is based

on previous knowledge about the data (Rendón et al. 2011) while the internal criteria is based

on the information from the clustering solution. In this thesis, only the internal CVAIs are

considered.

The internal CVAIs are based on measures of within-cluster (intra) and between-cluster (in-

ter) separability, taking into account either one or both of these measures. Proper CVAIs

measure how well the general goal of clustering - high similarity within clusters, i.e., small

intra, and low similarity between clusters, i.e., large inter - is reached, when the iterative

relocation algorithms (see Chapter 3.4) only greedily decreases the clustering error locally.

Generally indices measuring both intra and inter are taken as their division – if intra is as

numerator, the best index value is at the minimum, while for inter as numerator it is at the

maximum.

There exists a lot of different internal CVAIs and even several forms of them. For example, a

well known CVAI, Davies Bouldin, was first introduced in (Davies and Bouldin 1979), a new

version, Davies Bouldin∗, was introduced in (Kim and Ramakrishna 2005), and a slightly

different version is also implemented in MATLAB (Documentation 2015). In Chapter 5, we

present our results for comparing 43 different CVAIs with 12 synthetic data sets, and in this

chapter we will present the ones that were found to work best.

Some of the simplest CVAIs are based only on the intra measure. These include, for example,

the Ball Hall (BH) (Ball and Hall 1965) and so-called knee-point/elbow methods (Thorndike

1953). The elbow methods are based on choosing the number of clusters based on the point

where the within-cluster error bends. The elbow point can be determined either by plotting

the values and visually observing the plot or by finding the maximum difference between

two points.

Ball Hall defines intra as the mean of clustering error, Jk, divided by the size of the cluster:

BH = Intra =
1
K

K

∑
k=1

1
nk

J∗k , (3.6)
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where nk is the size of cluster k and the optimal solution is to minimize this within-cluster

separation.

kCE (Jauhiainen and Kärkkäinen 2017) is an index based on the clustering error J and the

number of clusters, so it only considers the intra measure. The index is defined as

kCE = K× J∗. (3.7)

This measures if adding the number of clusters by one pays off or not. So having two

prototypes should reduce the clustering error by two, having three should decrease it by

three etc. The optimal number of clusters is found at the minimum index value.

The Ray Turi (RT) index (Ray and Turi 1999) is based on both intra and inter measures. The

intra is defined as mean of the clustering error J, inter as the minimum comparative distances

(with respect to the clustering error, see (3.5)) between prototype centers and the index as

RT =
Intra
Inter

, (3.8)

where

Intra =
1
N
× J∗

Inter = min(‖ck− ck′‖
q
p)

(3.9)

and k,k′ ∈ {1, ...,K}, k 6= k′. The optimal solution is achieved by minimizing this index –

the smaller the within-group and the larger the between-group separability, the better the

clustering results.

Another popular index, Calinski Harabasz (CH) (Caliński and Harabasz 1974), defines the

intra with the clustering error J and the inter with the sum of lq
p-distances between the pro-

totype centers and the whole data center, weighted with the size of the cluster. The index is

defined as

27



CH =
Inter
Intra

, (3.10)

where

Intra = (K−1)× J∗

Inter = (N−K)×∑
K
k=1 nk‖ck− c0‖q

p

(3.11)

and nk is the size of cluster k and c0 is the center of whole data. The optimal solution here

is, on the contrary to Ray Turi, the maximum value. Notice the close relation of this intra

measure with the kCE index given in (3.7).

Davies Bouldin (DB) is based on a ratio of the intra and inter measures. The inter is defined

as the distance between two cluster centers, ck and ck′ , and intra as sum of the average

distances between each point in clusters k and k′ to its cluster center. The index considers

the worst ratio between the measures, and the actual value is taken as average sum over these

ratios:

DB =
1
K

K

∑
k=1

max
k 6=k′

Intra(k,k′)
Inter(k,k′)

, (3.12)

where


Intra =

1
nk

J∗k +
1

nk′
J∗k

Inter = ‖ck− ck′‖
q
p.

(3.13)

The optimal solution with Davies-Bouldin index is found in the minimum value with respect

to K.

The PBM index (acronym from Pakhira, Bandyopadhyay, and Maulik) (Pakhira, Bandy-

opadhyay, and Maulik 2004) defines the intra measure with the clustering error J and the

inter with the lq
p-distances between cluster centers and distances between data points and the

center of the whole data. The index is defined as following
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PBM =
( Inter

Intra

)2
, (3.14)

where

Intra = K× J∗

Inter = max(‖ck− ck′‖
q
p)×D

(3.15)

and D = ∑
N
i=1 ‖xi− c0‖q

p, so the sum of distances of all points to the lq
p-center of the whole

data. The maximum value of the index indicated the best number of clusters. Again notice

that intra of PBM is exactly the definition kCE in (3.7).

Wemmert-Gançarski is another index based on the ratio of intra and inter measures. It defines

the intra measure as the distance between the point xi and the center of the cluster it belongs

to. The inter is defined as the minimum distance of the point to the centers of all the other

clusters. The ratio between these measures is considered and the actual index is the weighted

mean of the mean ratios in each cluster. If the mean ratio in a cluster is greater than 1, it is

ignored, otherwise its complement to 1 is considered:

WG =
1
N

K

∑
k=1

max
(

0, nk−∑
i∈Ik

Intra(i)
Inter(i)

)
, (3.16)

where Ik is the set of point that belong to cluster k and the intra and inter values are defined

as


Intra(i) = ‖xi− ck‖q

p

Inter(i) = min
k 6=k′
‖xi− ck′‖

q
p.

(3.17)

Silhouette (Rousseeuw 1987) index is based on silhouette values, measuring the similarity

of a point, xi, to points in the same cluster, when compared to points in other clusters. The

intra measure is the lq
p-distance between points in cluster and inter is the minimum average

lq
p-distance from a point in cluster to points in a different cluster:
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
Intra(i) =

1
nk−1

∑ j,i∈Ik,i 6= j ‖xi−x j‖q
p

Inter(i) = min
k 6=k′

( 1
nk

∑i∈Ik, j∈Ik′
‖xi−x j‖q

p

) (3.18)

Then, for each point xi, a value s(i), indicating the silhouette width of the point, is formed as

follows:

s(i) =
Intra(i)− Inter(i)

max(Inter(i), Intra(i))
. (3.19)

The silhouette value, s(i), ranges from−1 to 1. A high value indicates that xi is well-matched

to its own cluster, but poorly to the neighboring clusters. If most points have a high value,

the clustering partition is appropriate. So finally, the actual index value is taken as the mean

of the mean silhouettes through all clusters:

SILH =
1
K

K

∑
k=1

1
nk

∑
i∈Ik

s(i). (3.20)

The maximum index value proposes the number of clusters. Compared to other CVAIs,

silhouette is a lot slower to calculate. It goes through the data twice and so the performance

is O(N2). Generalized Dunn indices (GDI) (Bezdek and Pal 1998), generalizations from the

original Dunn index (Dunn 1974), are another example of CVAIs that go through the data

more than once, and therefore are more complex than most of the CVAIs.

3.7 Summary

Clustering is unsupervised classification, where the possible classes are not known in prior,

but are determined from the data. The purpose is to form the clusters such that the members

in a cluster as as similar to each other as possible and as dissimilar to the members in other

clusters as possible (Jain, Murty, and Flynn 1999). The similarity can be measured by, for

example, distance or density. The clustering task can be very ambiguous due to different

similarity measures, noise in data and the decision whether the clustering is considered lo-

cally or globally. Therefore, there is no clear definition for a cluster and the ”clusters are, in
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large part, on the eye of the beholder” (Estivill-Castro 2002). The amount of clusters present

in the data can be evaluated with CVAIs and some best known and well working ones were

introduces in this chapter. Note that the introduction here is novel, because the original

definitions of the cluster indices have been given only in relation to the squared Euclidean

distance, i.e., in the context of k-means-type of algorithms for p = q = 2.
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4 Measuring and quantifying physical activity

Caspersen et al. define physical activity as "any bodily movement produced by skeletal

muscles that requires energy expenditure" (Caspersen, Powell, and Christenson 1985). It is

related to the whole span of individuals life and it commonly changes its form and decreases

with age (Hallal et al. 2012). It can happen at school, at work, during transportation or during

free time. The activity at free time can be further divided into housework, sports, and other

activities (Caspersen, Powell, and Christenson 1985). Another division is to separate activity

into voluntary and compulsory.

For data generation about the form, intensity and amount of physical activity, many sensors

and other techniques have been developed and utilized. Different activity monitors have

nowadays become very common and capable of measuring different components of physical

activity, as well as sleep and recovery from training (Evenson, Goto, and Furberg 2015). As

a growing number of people own even multiple monitors and sensors, an emerging trend,

quantified self, has been born (Swan 2013). According to Swan, quantified self denotes

any individual measuring biological, physical, behavioral, or enviromental information of

themselves by self-tracking. As this measured information creates vast streams of data and

many monitor manufactures and activity applications enable loading these to the internet, the

consept of Internet of Humans (IoH) has been recognised as a part of the Internet of Things

(IoT) (Arbia et al. 2015).

The way of activity measuring has to be selected case dependently – according to the physical

activity component assessed, characteristics of the target population, and feasibility of the

sensor in terms of, e.g., cost (Butte, Ekelund, and Westerterp 2012). Next we introduce

some components of physical activity that are often considered and following some well

known and widely used sensors for measuring.

Energy expenditure:

Energy expenditure is measured in kilocalories (Caspersen, Powell, and Christenson 1985).

The total daily energy expenditure (TDEE) consists of basal energy expenditure (BEE),

diet-unduced thermogenesis (DIT) and activity-related energy expenditure (AEE) (Bonomi
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2010). TDEE can be measured with indirect calorimetry, such as the doubly labeled water

method (Schoeller and Van Santen 1982), that is considered as a gold standard technique

(Bonomi 2010).

Activity intensities:

The intensity of activity is often divided into categories of sedentary, light, moderate and

vigorous. These are commonly defined based on the energy expenditure expressed as METs

– light < 3 METs, moderate 3-6 METs, vigorous > 6 METs (Ainsworth et al. 2000). The

division into these categories is also often made by the counts per minute (CPM). Freedson

et. al. classified the activity into four intensity levels by counts per minute. Upper limits

were 1951 for light, 5724 for moderate, 9498 for hard and counts that were greater than 9498

corresponded to very hard intensity level (Freedson, Melanson, and Sirard 1998). Also, the

time spent in moderate to vigorous physical activity (MVPA) is a measure used lot in the

research of activity.

Similar categories have been constituted separately for children, for example using Acti-

Graph by Evenson et al. (Evenson et al. 2008). In their study the upper limits were 100 for

sedentary, 2292 for light, 4008 for moderate and counts that were greater corresponded to

vigorous intensity activity.

4.1 Accelerometers

Accelerometers are devices that measure body movements in terms of acceleration (Chen

and Bassett 2005). Most of the accelerometers are small Micro-Electro-Mechanical Sensors

(MEMS). There is a small proof mass in the MEMS accelerometers and it measures acceler-

ation from the displacement of the mass (Yang and Hsu 2010). Acceleration can be measured

in one, two, or three orthogonal axes and is quantified often in terms of standard gravity (g).

The bandwidth of the accelerometer is measured in Hertz (1/s) and it denotes the frequency

of how often readings are stored in a second.

With human activity recognition, meaning the classification of different activities, triaxial

accelerometers are one of the most broadly used sensors (Lara and Labrador 2013). Infor-
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mation about the intensity of activity can also be gained from acceleration data, which is a

factor in accelerometers becoming so widely used in the field of physical activity.

Accelerometers can be build upon many different technologies, capacitive, piezoelectric and

piezoresistive ones being the most popular.

Piezoelectric

Piezoelectric accelerometers are relatively small, lightweight, and used in most accelerometry-

based physical activity monitors (Chen and Bassett 2005). These accelelerometers can not

detect the orientation of body parts or static activities because they are equipped with piezo-

electric sensors that measure acceleration due to movement and cannot measure static forces

(Bonomi 2010).

There are two main types of piezoelectric accelerometer; one with a cantilever beam and

an other with integrated circuit (IC) chip. The first kind has a beam, piezoelectric element,

and a seismic mass, and the second kind has an integrated chip sensor instead of the beam.

When seismic mass detects acceleration it causes bending to the beam or tension and com-

pression to the integrated chip sensor which in turn is sensed by the piezoelectric element as

deformation (Chen and Bassett 2005).

Capacitive

Capacitive sensors have become popular because they offer high sensitivity, good long term

stability, and are low power (Bao 2000). They output a voltage dependent on the distance

between planes. When one of these planes is moved it changes the electical capacity of

the system. With capacitive accelerometers it is possible to detect static postures like lying

down, sitting, and standing, that can be important components in studies, which for one has

made them more popular in human activity research (Bonomi 2010).

Piezoresistive

Piezoresistive accelerometers measure the electrical resistance of a material when mechani-

cal stress is applied to it. Similarly to piezoelectric sensors it has a beam and when accelera-

tion is directed to it, the inertial force of the mass bends the beam (Bao 2000). This bending
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causes change in the resistance of the piezoresistor. Piezoresistive sensors are sensitive and

also have the ability to detect static postures like capacitive accelerometers (Bonomi 2010).

4.1.1 ActiGraph and counts

ActiGraph (Pensacola, FL) is an activity monitor based on a three axis accelerometer, that

can be worn on the wrist, waist, ankle, or thigh. They have been widely used in the research

of physical activity (Sasaki, John, and Freedson 2011) and on their homepage it is said

that "ActiGraph accelerometry monitors are among the most widely used and extensively

validated devices of their kind" 1.

The initial voltage signals from most accelerometry sensors are, after filtering and amplifing,

sampled at a fixed frequency and converted from analog signal to digital numbers, which

are called "raw counts" (Chen and Bassett 2005). These are however not the same counts

that most of the current physical activity monitors output. These "raw counts" are further

processed with different approaches, for example, one of the most common is to integrate

over a time interval, usually one minute (Bonomi 2010).

ActiGraph uses counts that are defined on their support page2 as "a result of summing post-

filtered accelerometer values (raw data at 30Hz) into epoch "chunks." The value of the counts

will vary based on the frequency and intensity of the raw acceleration."

4.2 Gyroscopes

Gyroscopes are rotation sensors that measure the angular velocity, position, and orientation

of a moving object. Similarly to accelerometers, most used gyroscopes are Micro-Electro-

Mechanical Sensors (MEMS) because they are small, inexpensive, reliable, and low power

(Avci et al. 2010). They can be integrated together with accelerometers to estimate the ori-

entation of a device better and can hence increase the accuracy of human activity recognition

(Ustev, Durmaz Incel, and Ersoy 2013).

1. http://actigraphcorp.com/
2. https://actigraph.desk.com/customer/en/portal/articles/2515580-what-are-counts-
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4.3 Pedometers

Pedometers are small, inexpensive devices that can count steps and estimate distances as well

as energy expenditure. The effect of steps can be detected with a switch mechanism like a

spring-loaded mass inside the device (Yang and Hsu 2010). Pedometers are quite accurate

at step counting but other measurements can vary a lot between different pedometers. One

major disadvantage is that the intensity of the activity can’t be quantified using pedometers.

Some pedometers allow one to enter the stride length and those work reasonably accurately

with step counting at normal walking speeds but overestimate the steps at slow speeds and

underestimate them at high speeds (Butte, Ekelund, and Westerterp 2012).

4.4 Heart rate monitors

Heart rate sensors are widely used for measuring the human activity. Heart rate is relatively

easy to measure and the monitors are of reasonable cost. Compared to accelerometers, they

can give more precise information about the intensity of activities where the speed does not

reflect the intensity (Achten and Jeukendrup 2003). A good example is exercising with a

stationary bicycle when the accelerometer might detect almost no activity at all, especially if

placed on the wrist, so the heart rate sensor becomes very useful in getting more appropriate

information about the intensity.

Heart rate sensors are often also used together with accelerometers. Because an accelerome-

ter measures only the movement it detects, heart rate sensors can give very useful additional

information. Especially the estimation of energy expenditure and the intensity of the physi-

cal activity are more valid with the combined usage of accelerometers and heart rate sensors.

Intille et al., (2012) recommend that the engineers and device developers should combine

heart rate monitoring with other sensing technologies more in the future.

4.5 Vision sensors

Vision sensors have been used commonly by researchers in the past (Pentland 2000). They

are especially suitable for security and interactive applications (Lara and Labrador 2013),
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as well as for human activity recognition and detecting and identifying people. In sports,

cameras can be exploited for team sports to track and measure how much and in what ways

the players are moving in the field or rink, and that information can then be further used for

optimizing and creating new tactics (D’Orazio and Leo 2010).

Using vision sensing has its problems – privacy and maintaining issues, especially if they are

being used in individuals free-living conditions. Cameras need a lot of technical support and

the attaching of the devices is not unambiguous. As other sensor concurrently progress and

increase, the visions sensor are becoming less used in some fields of human activity, such as

activity recognition. On the other hand, they are also becoming more general in other field,

such as physical activity games.

4.6 Global Positioning System

Global Positioning System (GPS) can provide information on a person’s location, enviro-

ment, mode of transportation, and speed with a satellite-based system (Butte, Ekelund, and

Westerterp 2012). The information about the location can be helpful with activity recogni-

tion (Lara and Labrador 2013). GPS has been integrated in many sports applications and

activity monitors, but can technically be used only in outside activities since the satellites do

not work properly without a clear access. Some other downsides are that the GPS can be

computationally expensive and can violate ones privacy.

4.7 Physical activity data applications

Multiple applications utilizing the above sensors have been developed. These applications

are from a variety of domains, for example, medical or sports. The data derived from the

sensors can be processed following the KDD process - preprocessing is almost always nec-

essary with any kind of data, while transformation can refer to summing up the accelerometer

counts over time, dimension reduction, or scaling of the data. With data mining the actual

information, that the application needs, is derived.
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4.7.1 Human activity recognition

In activity recognition the goal is to recognize common human activities in real life settings

(Kim, Helal, and Cook 2010). The process of recognizing can be summarised as "determin-

ing a target set of activities, collecting sensor readings, and assigning sensor readings to the

appropriete activites" (Incel, Kose, and Ersoy 2013). These sensor readings can be from, for

instance, vision sensors, accelerometers, or gyroscopes. The assignment of a reading is most

often done by classification and due to the supervised nature of the process, training dataset

with acitivity labels is required (Preece et al. 2009).

The steps of the activity recognition process can be divided into data collecting, segmenta-

tion, feature extraction, and classification (Preece et al. 2009; Duda, Hart, and Stork 2012).

Data collecting is the stage where the data about physical activity is being collected by a

monitor and then labeled with the corresponding category labels. Also, many datasets for

human activity recognition are available, such as " Activity Recognition system based on

Multisensor data fusion (AReM) Data Set"3.After the data is collected and labeled, usu-

ally some preprocessing is done, e.g., for noise removal (Incel, Kose, and Ersoy 2013). In

classification, corresponding to the data mining step of the KDD process, the activity is clas-

sified into different predefined categories, for example running, walking, sitting, gardening

or driving a car, using classification methods (see Chapter 2.4.3). Segmentation and feature

extraction correspond the transformation step in the KDD process and are introduced next.

Segmentation

Segmentation is needed because finding meaningful and useful information from a continu-

ous stream of data can be difficult (Avci et al. 2010). The purpose is to identify those seg-

ments of the preprocessed data streams that are likely to contain information about activities

(Bulling, Blanke, and Schiele 2014).

Windowing techniques are the most used segmenation methods with activity classification

Preece et al. 2009) and, of those, sliding windows are the most widely used, because they

are simple, intuitive, and easy to implement (Avci et al. 2010). Data inside a window with

3. http://archive.ics.uci.edu/ml/datasets/Activity+Recognition+system+based+on+Multisensor+data+fusion

+%28AReM%29
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certain length is a segment and this window is being moved over the data to get the segments

for further processing. The step size that the window is being moved has to be selected case

dependently as well as the window length. Some comparisons with different window lengths

with human activity recognition have been made in (Mannini et al. 2013; Bulling, Blanke,

and Schiele 2014;Huynh and Schiele 2005).

Feature extraction

The purpose of feature extraction is to find the informative characteristics of a data segment

that accurately represent the original data (Incel, Kose, and Ersoy 2013). The signals are

being reduced into features that distinguish the activities as well as possible (Bulling, Blanke,

and Schiele 2014) and, in an ideal situation, the feature extraction works so that it makes the

job of a classifier trivial (Duda, Hart, and Stork 2012).

The most simple features are signal statistics, such as mean, variance, or root mean square,

that can be extracted quite easily and automatically from the data. Other widely used features

are the frequency-domain features that focus on the periodic properties in the data (Avci et

al. 2010). These can be derived using, for instance, Fast Fourier transformations or wavelet

analysis.

4.7.2 Gait analysis

Walking is one of the most common forms of physical activity and it has a necessary role in

our everyday lifes (Rueterbories et al. 2010). The term gait is used to describe the way of

walking and gait analysis is the examination of the pattern of walking (Whittle 2014). With

gait analysis, a lot of useful health related information can be gained.

Gait analysis has been approached in many different ways. The most ordinary way is to go

to a clinic, where a healthcare professional, for example physiotherapist, visually observes

the gait. Laboratory testing in turn is usual among top athletes, but not widespread in the

research of locomotor disorders (Simon 2004). However, many wireless systems have been

developed to be used outside laboratories, using, for example, vision sensors (Stone and

Skubic 2011), gyroscopes (Tong and Granat 1999), accelerometers (Hartmann et al. 2009),

and the combination of multiple sensors (Bamberg et al. 2008).
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4.7.3 Monitoring and medical diagnosis

Increasing health-care costs of the aging population have become a concern in many coun-

tries and the potential of human activity recognition in eldery care has been a subject of

interest (Jiang et al. 2008; Tapia, Intille, and Larson 2004; Najafi et al. 2003). Monitoring

of elderly and their activity with different sensors from outside their free-living conditions

makes it possible for them to stay at their homes more safely. With monitoring and activity

recognition techniques, any abnormal behaviour could be detected and, furthermore, based

on recognized activities, reminders for necessary activities could be included if needed (Avci

et al. 2010). Moreover falling, a great risk for the old people, can be detected by someone

from without and if no movement follows the falling, help can be alerted. In addition to

human activity recognition, also gait analysis can be used when trying to detect falling. For

example, foot clearance is an important gait parameter when considering the risk of falling

and algorithms for estimating it have been developed (Morales Gonzalez 2015). These sim-

ilar monitoring principles could be used with disabled people or even with children.

Human activity monitoring and gait analysis can also be used for diagnosing diseases such

as dementia or Parkinson’s disease. In addition, some information about the phase and pace

of the conditions can be gained. In Parkinson’s disease the most common sympton is tremor,

occuring in almost every patient (Jankovic 2008). The disase and its pace can be recognised

by it and a system for diagnosing and predicting the pace of the Parkinson’s disease has

been developed (Atif and Serdaroglu 2012). Gait abnormalities in turn have been linked

with potential dementia (Marquis et al. 2002; Davis 1988) and on that account a system to

analyse the gait process has been presented by Lofti et al. (Lotfi, Nguyen, and Langensiepen

2015).

4.7.4 Activity and sports

Another popular field for utilizing the physical activity monitors is sports. This can be con-

sidering competitive sports or just daily sport activities by non-athletes. Many commercial

monitoring systems have been developed specifically for sports and even for certain kinds,

such as running or cycling. They give useful information during the exercise (heart rate,
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stride ratecadence when running, or speed and distance), as well as over a longer time span

by tracking e.g. ones sleep, training, and general activity.

In competitive sports, optimizing the performance is very important and for example run-

ning performance and foot-ground contact have been analysed in a study by Gasser (Gasser

2014). In addition the heart rate variability has been under an increasing interest by re-

searchers. Overtraining in athletes can be prevented and detected (Achten and Jeukendrup

2003) and adaption to endurance training can be assessed (Vesterinen et al. 2013) with heart

rate variability.

4.8 Activity monitors

The MEMS accelerometers and gyroscopes can be used e.g in mobile phones, computers,

tablets, or in devices designed specifically for physical activity measuring. These small

devices often include the accelerometer, battery, some memory, and a channel for transferring

the data and sometimes the gyroscope. They write down the accelerometer readings and

those can be further used in researches.

Modern mobile phones have many sensors in them including accelerometers and gyroscopes.

Also the GPS can be utilized for measuring the speed and distance traveled with mobiles.

A variety of free and commercial applications have been developed for getting information

about activity with mobile phones. The advantage with using mobiles is that most people

already carry those with them almost all the time. Many studies have been made about ac-

tivity recognition from the mobile phone accelerometer data. Baya et al. (2014) studied six

physical activity patterns: slow walking, fast walking, running, stairs-up, stairs-down, and

aerobic dancing using an Android smartphone (Bayat, Pomplun, and Tran 2014), reaching

an overall accuracy rate of 91.15% for recognition. Bremez et. al. used Nokia N95 for clas-

sifying walking, stairs-up, stairs-down, standing-up, sitting-down, and falling and got results

that were quite accurate, between 70 to 90% for different activities (Brezmes, Gorricho, and

Cotrina 2009).
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4.8.1 Consumer-based physical activity monitors

Multiple commercial activity monitors have been developed, becoming very affordable and

common for the masses. Some well known manufacturers are Fitbit, Nike, BodyMedia,

Polar, Garmin, Jawbone, and ActiGraph, having multiple models for different uses. While

some models are developed more for general activity monitoring, some are specialised in

monitoring certain sports. Polar for example has monitors developed specifically for running

and cycling, Garmin has ones developed for swimming and golf. While most of commer-

cial monitors are worn on the wrist, some are meant to be worn on the hip, for example,

ActiGraph and Fitbit One, and some can be worn on the ankle or around the neck.

4.8.2 Validity of consumer-based physical activity monitors

The validity of physical activity monitors can vary and the subject has been studied a lot. It

has been found that many accelerometer based monitors tend to underestimate the energy ex-

pendidure both during exercise and in free-living conditions (Crouter, Churilla, and Bassett

Jr 2006; Hendelman et al. 2000; Carmines and Zeller 1979).

The validity of nine different monitors (Fitbit One, Fitbit Zip, Jawbone UP, Misfit Shine,

Nike Fuelband, Striiv Smart Pedometer, Withings Pulse, BodyMedia SenseWear, and Acti-

Graph GT3X+) was examined by Fergunson et. al. (Ferguson et al. 2015). They had 21

healthy adults wearing the monitors for 48 hours in their free-living conditions. The monitors

showed strong validity for measuring steps and sleep duration but only moderate validity for

moderate to vigorous physical activity (MVPA) time. All devises in the study underestimated

the total daily energy expenditure (TDEE), compared to the reference device (SenseWear).

Nelson et al., (2016) tested the accuracy of the Fitbit One, Zip, and Flex and Jawbone UP24

for estimating the energy expenditure and steps for specific activities. All monitors in their

study severely underestimated energy expenditure during cycling. They also concluded that

the measurement for steps was accurate but that the monitors should be used cautiously for

estimating the energy expenditure.

In their study Lee et al. (Lee, Kim, and Welk 2014) examined the validity of energy ex-

penditure from variety of monitors, under free-living conditions. BodyMedia FIT armband
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was worn on the left arm, DirectLife monitor around the neck, Fitbit One, Fitbit Zip, and

ActiGraph worn on the belt, and Jawbone Up and Basis B1 Band monitor on the wrist. Sixty

healthy adults wore the monitors and completed a routine including 13 different activities.

For overall group comparisons, the mean absolute percent error values were 9.3%, 10.1%,

10.4%, 12.2%, 12.6%, 12.8%, 13.0%, and 23.5% for the BodyMedia FIT, Fitbit Zip, Fitbit

One, Jawbone Up, ActiGraph, DirectLife, NikeFuel Band, and Basis B1 Band, respectively.

The results clearly favored the BodyMedia FIT armband, but promising results were also

observed with the Fitbit Zip.

Nowadays most commercial activity monitors do combine the accelerometer and heart rate

monitor to improve the accuracy in measuring both physical activity and the energy expen-

diture.

4.9 Summary

Physical activity and its different components can be measured with a variety of different

sensors, that have become very accessible and widely used. People measuring and sensoring

themselves, their sleep, heart rate etc., with different activity monitors has lead to an emerg-

ing trend, quantified self. As this data is more often uploaded to the internet, the concept of

Internet of Humans has arisen (Arbia et al. 2015). Multiple sensors for measuring the phys-

ical activity were introduced in this chapter, including accelerometers, heart rate sensors,

pedometers, and gyroscopes. As more and cheaper customer-based physical activity moni-

tors are coming to the markets, their validity was also discussed. In general, many of these

monitors tend to underestimate the energy expenditure, but the validity also varies a lot be-

tween different monitors. Therefore the monitor should always be chosen case-dependently

- in recreational sports the validity does not need to be as good as with, for example, medical

use.
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5 CVAI tests

This chapter recapitulates the work already presented in (Jauhiainen and Kärkkäinen 2017),

where a set of CVAIs and their different available implementations for R and MATLAB plat-

forms were compared to choose the most suitable ones for the clustering of students activity

and sedentary behaviour in Chapter 6. The performance of the indeces was tested with noisy

datas as well as datas of different dimensions, densities, and distributions. Altogether 43

CVAIs were tested with 12 synthetic datasets. The best performing CVAIs out of these were

introduced in Chapter 3.6.

5.1 Test datas

The comparisons were run with 12 synthetic datasets, of which four were self simulated.

These included four 2D S-datasets (see Fig. 10), described in (Fränti and Virmajoki 2006),

and four higher dimensional Dim-datasets from http://cs.uef.fi/sipu/datasets/. The S-sets

have 15 known centers with increasing noise so that S4 data has the most noise. The Dim-

datasets are of dimension 32, 64, 128, and 256 and have 16 known centers.

Figure 10. The S-datasets with 15 clusters and increasing noise.

Additional simulated datasets were also created to test the CVAIs with some more specific

cases. For example, S1D2 is a dataset having clearly just one cluster, while S2D2 (see Fig

11) has two clusters close to each other, with some additional noise. The third simulated

data, S5D2 (see Fig. 11), was implemented so that it has 10% additional noise with five

clusters of which two are harder to detect being smaller, more sparse, and situated close to a

bigger cluster. S5D10 is similar to this but in 10D.
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Figure 11. From left to right: S1D2, S2D2, and S5D2.

5.2 Methods

First of all, we tried to identify the most actively used or recent CVAI packages from R and

Matlab platforms. To this end, CVAI implementations from five different packages were

used, including threeR packages, NbClust1 (P1), cclust2 (P2), and clusterCrit3

(P3) with 30, 15, and 27 implemented CVAIs, respectively. In MATLAB’s function eval-

clusters (P4) we applied three CVAIs (Davies-Bouldin, Calinski-Harabasz, and Silhouette),

while 10 CVAIs from the Cluster Validity Analysis Platform, CVAP (P5),

downloaded from MATLAB’s file exchange center, were tested.

The datas were first min-max scaled into the range of [−1,1] and then clustered using the

k-means algorithm. This clustering was done beforehands in MATLAB with all packages but

the NbClust, because with it the clustering had to be done in R at the same time as the

CVAIs were calculated. The k-means algorithm in MATLAB was repeated 1000 times and

the solution with smallest clustering error was selected as the final result. The CVAIs were

computated for K =2–20.

5.3 Results

The suggested number of clusters highly varied between different CVAIs and even between

their implementations. The results for 17 best CVAIs can be seen in Table 2. Hyphen in

the table means that there was no implementation of that CVAI in the package or that the

1. https://cran.r-project.org/web/packages/NbClust/NbClust.pdf
2. https://cran.r-project.org/web/packages/cclust/cclust.pdf
3. https://cran.r-project.org/web/packages/clusterCrit/clusterCrit.pdf
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calculation failed (producing NaN, inf etc.). Row ”Correct” measured the difficulty of a

data by counting the number of correctly determined number of clusters with at least one

implementation. The number of correct propositions from an implementation of an index

is given in column ”Correct”, where next to the last shell provides the median of correct

propositions over all packages.

We noticed that the clustering in MATLAB improved the performance of the CVAIs in the

two R-packages P2 and P3 compared to if the clustering was also done in R. That might be

one of the reasons why the P1 was by far the worst package – with it the clustering had to

be done with k-means built in R. Also the clustering with this package was done with fewer

repetitions, the default in R being 10.

Overall the CVAIs of MATLAB worked a lot better, but few ones in R’s P3 also performed

well. These include the Pakhira-Bandyopadhyay-Maulik (PBM), Wemmert-Gançarski, and

Calinski Harabasz. In addition to these three indeces in P3, the best CVAIs include Davies

Bouldin in P4 as well as Silhouette and Calinski Harabasz in P3 and P4. All in all P4 was

the best performing package, with the median on correct propositions being nine out of 12

datasets. This is probably due to carefully selected CVAIs in the first place, since it is a

commercial package. Calinski Harabasz performed well with all packages but the worst, P1.

The only index that suggested the right number of clusters in all the cases, was kCE.

5.4 Conclusion

Usually when new CVAIs are introduced, the paper also includes an experimental evalution

of multiple indices, typically concluding the proposed index as the best one. In addition,

some methods that execute both the clustering and the analysis of the number of clusters

have been developed, such as the Viral Clustering (VA) algorithm in (Petrosyan and Proutiere

2016), where it was compared to seven CVAIs and concluded as the best performing one.

Moreover, eight CVAIs were compared in (Liu et al. 2010). Most suggested the correct

number of clusters with 5% additional noise, different densities, and skewed distributions,

while only three of them were able to recognize closed subclusters. Sdbw was the only CVAI

that suggested the right number of clusters for all data sets. Often no single CVAI dominates
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Table 2. Numbers of clusters suggested by the CVAIs
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in every context in the experiments, but each CVAI suits a certain kind of data. This was

the conclusion in (Arbelaitz et al. 2013), where a comparison of 30 different indices with

720 synthetic and 20 real datasets was made. In this study, Silhouette was nominated as the

best index in general. Also the chosen clustering algorithm and initialization vary between

experiments and affect the results.

The datasets tested in this study were all quite nicely distributed, including clear Gaussian

clusters, with moderately low dimensions. This makes the job of the CVAIs a lot easier but

in real life datas are seldom this straightforward. Nowadays, huge datasets can have tremen-

dously many dimensions and often no clearly distinct groups. Therefore, the evaluation and

comparison of the CVAIs should also be done with more complex a higher dimensional

datasets.
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6 Knowledge discovery from the activity of Finnish school

children

This study consists of two parts. Both parts have been executed following the KDD pro-

cess and using clustering as the data mining method. The goal of the first part is to find

different activity profiles for the students on the weekly basis. From these profiles one can

see, for example, at what times certain students have been the most active, does the activity

behaviour differ between boys and girls etc. The second part deals with sedentary periods

found in the data. The downsides, especially longer continuous periods, of sedentariness

have been recognized even more lately as at the same time, especially amongst older chil-

dren, the sedentariness has increased habitually (Hill et al. 2003). With clustering we can

find a grouping based on the sedentary behaviour, try to find out conjunctive factors between

the students in certain group, and by assessing these factors, try to find out ways to reduce

the sedentariness in that cluster.

6.1 Recommendations and the Finnish schools on the move program

Many recommendations for the amount, kind, and intensity of physical activity at different

ages have been made in different countries by the researchers (Organization 2010; Blair,

LaMonte, and Nichaman 2004). In Finland, for instance, the UKK Institute has made rec-

ommendations for the age groups of 0-6, 7–18, 18–64, and over 651.

In Finland it is recommended (Varhaisvuosien fyysisen aktiivisuuden suositukset 2016),

based on international recommendations, that children under six-year-old should have, at

least, two hours of brisk activity a day. For children between the ages of seven and 18, 1-2

hours is recommended, so that seven-year-olds have two hours and then it evenly decreases

so that 18-year-olds have an hour (Opetusministeriö & Nuori Suomi 2008). Out of this ac-

tivity, half should be more intense. In addition, sedentary periods of longer than two hours

should be avoided and screen time with entertainment media should be restricted to two

hours.

1. http://www.ukkinstituutti.fi/ammattilaisille/terveysliikunnan-suositukset
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The national Finnish Schools on the Move-programme2, funded by the Ministry of Educa-

tion and Culture and organised by the Board of Education, supports schools with promoting

physical activity at school (Haapala et al. 2014). The goal is to encourage children to be

physically active at school or immediately before or after (Tammelin, Laine, and Turpeinen

2012). The programme is being coordinated and evaluated by LIKES, Research Centre for

Physical Activity and Health.

6.2 Study population and data collecting

The activity data was collected from 418 seventh-grade-students (age 13.7± 0.4), from nine

different schools in the Jyväskylä school district in Finland. The collection was carried out

during spring 2013 with 194 boys and 223 girls. Out of the students, 75 (18%) were on an

exercise class, meaning that they had more physical education at school.

Physical activity was measured objectively using an accelerometer, ActiGraph GT3X (Acti-

Graph, Pensacola). The students were advised to wear the monitors on their waist for seven

consecutive days, during waking hours, except when bathing, swimming, or participating

in other water activities, since the accelerometer was not water-resistant. The time span for

collected measurements varied a lot. Few students had worn the accelerometer for only a

day whereas someone had recordings from 48 days.

Table 3. Distribution of the measurement days.

Days in Jan Days in Feb Days in Mar Days in Apr Days in May

763 (11.35%) 590 (8.77%) 3408 (50.68%) 1402 (20.85%) 561 (8.34%)

As metadata the gender of the student and information whether she or he was on an exercise

class or not were considered. This background data was missing from one student. Also the

amount of measurement days in certain month was calculated to see if the activity behaviour

differed according to the time of the year. Table 3 shows the overall distribution of measure-

ment days. In Section 6.6, we also used a categorical index indicating whether the student is

of normal weight, overweight or obese, as metadata.

2. http://www.liikkuvakoulu.fi/
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6.3 Preprocessing

The ActiGraph monitor stored activity counts for three axes once in a second (see Section

4.1.1). Since these counts are already band-pass filtered, no further filtering was done. In this

study, only the counts from vertical axis were used for assessing the physical activity, because

this direction provides the most significant deviator in the school environment. These counts

per second were summed into counts per minute (CPM) for further transformation, in order

to utilize the common limits for activity types defined using CPM (Evenson et al. 2008;

Freedson, Pober, and Janz 2005; Trost et al. 2011). Periods of at least 30 minutes of zero

counts were defined as nonwearing time as in (Syväoja et al. 2013).

6.4 Weekly physical activity of the students

6.4.1 Transformation

The activity counts from each student were transformed into a calendar form, resulting to a

7x24 table (see Figure 12), with rows representing the seven days of the week and columns

the 24 hours of each day. The counts in certain hour were taken as the average of counts

per minute over the 60 minutes. If the sensor had been worn for less than 30 minutes during

that certain hour, it was marked as a missing value. This was done due to the assumptions in

robust statistics – more than half of the measurements are needed for getting reliable results

(Sprent and Smeeton 2016).

Figure 12. Average counts per minute for hours of the week from one student

These transformations were done separately for the entire time and for school time. To

uncover more information about the activity during school, the time was divided into half

hour periods, resulting into a 7x48 table. In Finland school classes normally start at quarter

past and last for 45 minutes. Therefore, to find out if there was more activity during the
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breaks between classes, the half hour periods were chosen to be from quarter past to quarter

to and from quarter to, to quarter past. Again the average counts per minute over the 30

minute period were used for forming the table and if the sensor had been worn for less than

15 minutes, that certain half hour was marked as a missing value.

The transformed data, as well as the original data, had a lot of missing values due to the great

amount of non-wearing time, especially during nights. The number of available observations

for the hour and half-an-hour periods can be seen from Figures 13 and 14. Out of all 168

hours and 336 half-hours of the week, only the ones that had enough available measurements

were chosen for the actual clustering (see Table 4). This selection was done manually so that

with entire time 77% of the observations were available for the whole data and at least 40%

for each separate variable and with school time 75% of observations were available for the

whole data and at least 30% for each separate variable, as the robust spatial median is able

to handle a great amount of missing values (Äyrämö 2006).

Figure 13. Available data for the one hour periods.
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Figure 14. Available data for the half-an-hour periods.

Table 4. Variables chosen for clustering

School time Entire time

Hours 7-21 Mon-Fri

11-21 Sat-Sun

Half-hours 8.15-15.15 Mon-Thu

8.15-14.45 Fri

6.4.2 Data mining

Data mining was done using robust clustering with the k-spatialmedians method (see Section

3.5). As a platform for this, MATLAB was used. Missing values were treated using the

available data strategy, described in (Äyrämö 2006).

The number of clusters, K, was determined using multiple CVAIs – Ray Turi, both the origi-

nal Davies Bouldin and its variation Davies Bouldin*, and robust Silhouette (Äyrämö 2006).

Also the knee-point of the clustering error was considered, and the final number of clusters

was defined according to majority voting – K suggested by most of the indeces was selected.

All the CVAIs were tested with K = 1−10.
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6.4.3 Results

To begin with, the cluster prototypes were ordered in an ascendant order with respect to the

amount of overall activity (i.e., sum of the activity over all variables/times of the week). So

the first cluster is always the one with the least activity whereas the last one has the most

activity.

The mostly separating variables between clusters were determined utilizing non-parametric

Kruskal-Wallis statistical test, as suggested in (Cord, Ambroise, and Cocquerez 2006; see

also Saarela, Hämäläinen, and Kärkkäinen 2017). The results were then plotted with spatial

median for each variable on the x-axis and the χ2-value of Kruskal-Wallis on the y-axis (see,

e.g., Figure 17 in Section 6.4.4). Then the most separating variables were visually observed

and determined from the plots.

6.4.4 Entire time with one hour periods

Three groups, from now on referred as C1, C2 and C3, were found when clustering the 90

chosen hours considering the entire time. The prototypes for clusters can be seen in Figure

15 and as discussed before, they are ordered so that the students in C3 have the most overall

activity and students in C1 have the least.

Figure 15. Cluster prototypes with one hour periods considering entire time. Cluster one is

dark blue, cluster two is light blue and cluster three is red.
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The most separating times between clusters, according to the Kruskal-Wallis χ2-test, are on

Sunday, Tuesday and Wednesday nights. These can be seen in more detail in Figure 16. As

decribed before, these were determined from the plot in Figure 17 by visually observing.

Figure 16. Cluster prototypes for the most separating times.

Figure 17. Spatial median for each variable on the x-axis and the χ2-value of Kruskal-Wallis

on the y-axis. The line was manually inserted and variables above it are the most separating.

Metadata for these clusters is described in Table 5. C1 is by far the biggest cluster (n=258),

including more than half of the students. These students are clearly the least active through-

out the week and concluding from the activity profile, the low activity is quite evenly dis-

tributed along the whole week, with no higher peaks. However, during weekdays some

more activity can be seen during evenings compared to morning and afternoons. This cluster

probably includes students that don’t belong to any sports clubs or really do any sports at all.

They spend majority of their time, over 96%, in sedentary or light activities. The distribution
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of measurement days between different months is very similar to the original distribution of

the months.

Table 5. Metadata for clusters with one hour periods considering entire time. Total activity

is the sum of all activity over the week.

Cluster 1 Cluster 2 Cluster 3

Size 258 138 22

Total activity 29522 50897 63462

Boys/Girls 41.1%/58.9% 52.2%/47.8% 72.7%/22.7%

Exercise class 12.8% 26.1% 18.2%

Part sedentary 66.0% 57.9% 63.6%

Part light 30.2% 34.8% 29.9%

Part moderate 2.7% 4.7% 3.8%

Part vigorous 1.0% 2.5% 2.6%

Days in Jan 10.2% 15.5% 0.0%

Days in Feb 6.0% 14.6% 3.4%

Days in Mar 59.5% 32.8% 63.7%

Days in Apr 18.9% 23.3% 26.2%

Days in May 5.4% 13.9% 6.6%

C2 is also a quite big cluster (n=138) having more than one-fourth of students on an exercise

class. This cluster seems to have a lot more overall activity than C1. If only looking at the

parts that the students in this cluster spend in different intensity activities, they would seem

the most active ones. They have almost as much vigorous activity as students in C3 (2.5%

vs. 2.6%) and the most moderate and light activity, when in turn the sedendary time is the

smallest. However, their total activity is clearly smaller than in C3, due to not having as high

peaks of activity. The activity is quite evenly distributed throughout the week (see Fig. 15),

with some more activity in the evenings and on the weekends, so on their free time. In this

cluster, the measurement days are distributed more evenly between different months, with

respect to the original distribution of months. In practice, less measurements are taken in

March and more during the other measurement months.
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C3 is a small cluster (n=22) that has far more boys (72.7%) than girls in it. The activity

profile shows that while during daytime at school these students are often the most sedentary,

in the evenings they have overwhelmingly more intense activity compared to the other two

clusters. This cluster probably includes students that have sport practices after school and/or

on the weekends. However, outside these intense activity times they are quite sedentary,

spending over 93% of their time in sedentary and light activities. Interestingly, the most

active cluster C3 is not characterized by the students belonging to the exercise class. Majority

of the measurements (90%) in this cluster are taken during March and April. In the original

distribution, March and April cover less than 72% of the measurement days.

6.4.5 School time with half-an-hour periods

When half-an-hour periods from the school time were considered, four clusters, C1, C2, C3,

and C4, were found. The prototypes, again ordered based on the overall activity, can be seen

in Figure 18.

Figure 18. Cluster prototypes with half hour periods considering school time. Cluster one is

dark blue, cluster two is light blue, cluster three is orange and cluster four is red.

The most separating times between these clusters can be seen in Figure 19. These include

Monday and Tuesday mornings (9:45 - 10:15) and afternoons (14:45 - 15:15) and Tuesday

11:45-12:15. These were again determined based on the plot in Figure 20.
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Figure 19. Cluster prototypes for the most separating times.

Figure 20. Spatial median for each variable on the x-axis and the χ2-value of Kruskal-Wallis

on the y-axis. The line was manually inserted and variables above it are the most separating.

Metadata for these clusters can be seen in Table 6. C1 is the cluster with the least overall

activity, having 137 students in it. The activity in this cluster is quite evenly distributed

between all school days. There are two peaks, on Tuesday and Thursday afternoons, that

are probably physical education classes at school. Otherwise, they are quite passive during

school and have the most sedentary time. Therefore, it is no surprise that this cluster has

very little exercise class students, since they should be having more activity during school.

This cluster had almost no measurements in January and February, but clearly more in April

and May.
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Table 6. Metadata for clusters with half-hour periods considering school time. Total activity

is the sum of all activity over the week.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Size 137 51 198 32

Total activity 13716 15888 24787 27826

Boys/Girls 46.7%/52.6% 45.1%/54.9% 44.9%/55.1% 56.3%/43.7%

Exercise class 2.0% 26.1% 26.3% 3.1%

Part sedentary 68.1% 64.3% 65.5% 67.2%

Part light 28.9% 31.1% 30.5% 28.8%

Part moderate 2.3% 3.3% 2.9% 2.8%

Part vigorous 0.6% 1.3% 1.0% 1.2%

Days in Jan 0.0% 15.7% 19.6% 3.3%

Days in Feb 1.1% 0.0% 16.9% 0.0%

Days in Mar 51.8% 60.5% 44.8% 77.3%

Days in Apr 26.4% 23.8% 16.5% 19.4%

Days in May 20.6% 0.0% 2.2% 0.0%

C2 is a smaller cluster (n=51), with a little bit more exercise class students. The activity

in this cluster is very evenly distributed and it is the only cluster without any clear activity

peaks. This is again a surprise, because the students on exercise classes should be having

more physical education at school.

C3 is the biggest cluster (n=198) that also has the most exercise class students. Similarly to

C1, the activity is quite evenly distributed, with a few peaks. The highest peak is on Monday

afternoon and a few lower peaks are on Tuesday and Wednesday afternoons. These are again

probably the times when the students have physical education classes at school.

The overall most active cluster, C4, is a small cluster (n=32) with not many exercise class

students. They have the most activity peaks during schooldays but most of these peaks are

a little bit lower than the peaks of other clusters. One of the peaks is also very high. These

lower peaks could be either physical education or breaks during lessons. The high peak is
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probably a physical education class. A lot of the measurements in this cluster were taken in

March (77%) and most of them during March and April (97%).

6.4.6 Conclusion

With clustering we obtained different groupings for the students based on their activity be-

haviour. In the results, the metadata between clusters was not significantly different. Boys

and girls were generally evenly distributed between the clusters, while just a few clusters

had clearly more students from the exercise classes. The measurement days from different

months also distributed quite evenly to the clusters, so no clear conclusions could be made

based on them. Therefore, with clustering we found a new grouping for the students, that

was not explained by the metadata behind them. This approach has potential in recogniz-

ing certain kind of activity behaviour and this way making more suitable and personalized

actions when trying to encourage the students to be more active.

We found that the overall behaviour in the study population was quite sedentary, which

supports many previous findings (Salmon et al. 2005; Tammelin et al. 2007; Pate et al. 2011).

Interestingly, the majority of exercise class students were not in the most active clusters, not

even when just school time was considered, even thought they are supposed to have more

physical education at school.

As the students in this study are from the same region, schools and even classes, the activity

behaviour and the grouping are, at least partly, explained by their common physical education

classes and sport exercises. However, in a case where the subjects do not have this much

common background, this approach has even more potential to discover novel and interesting

information about activity behaviour.

6.5 Sedentary behaviour of the students

6.5.1 Transformation

The sedentary behaviour of the students was examined during their free time, because during

school hours a lot of sedentary time exists due to the classes. Times between 16 and 23 were
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considered from all days, during both weekend and week. The counts were already summed

to CPM during preprocessing and a limit of 100 CPM was chosen for sedentary activity

(Evenson et al. 2008). In Figure 21, the sedentariness can be seen as CPM less than 100. If

there is even one CPM that exceeds the limit, the sedentary period ends. The non-wearing

time is defined as 30-minutes of zero counts, and not taken into consideration when observing

sedentary behaviour.

Figure 21. Part of activity counts form a student. CPM less than 100 is considered sedentary

time.

A table of sedentary periods was formed so that the amount of sedentary periods of length

n minutes is given in the corresponding column n (See Table 7). Each row represent a day

from a student and the two last columns include metadata, i.e., the number of the student and

the day of the week for that row.

After the table was formed columns and rows that did not have any observations were

dropped out. So if none of the students had any sedentary periods of, e.g., length 200 min-

utes, column 200 was dropped and if certain day from a student had no sedentary periods on

any length, the sensor was probably not worn on that day and the row was dropped. When

first considering the whole data, i.e., taking all available measurements instead of the seven
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Table 7. Example table of sedentary periods of the students.

1 2 3 4 ... 360 Student Weekday

5 8 18 6 ... 0 1 1

13 12 3 4 ... 0 1 2

7 24 14 13 ... 0 1 3

15 8 3 24 ... 0 1 4

21 10 23 4 ... 0 1 5

9 8 13 14 ... 0 1 6

4 9 5 16 ... 0 2 3
...

...
...

... ...
...

...
...

15 8 3 4 ... 0 417 7

16 22 15 4 ... 0 418 2

27 8 3 18 ... 0 418 3

5 25 13 0 ... 0 418 4

23 8 3 8 ... 0 418 5

official measurement days, this led to a data with 3836 observations and 141 variables, so

approximately nine days from each student (transformation 1).

Next, exactly the same transformation was done so that instead of considering the all avail-

able data, only the seven official measurement days were considered. This resulted into a

data with 2888 observations and 116 variables (transformation 2).

Different scaling methods were also tested to see how they affect the data mining. The

distribution of the data was very skewed in both transformations, because there were always

more short sedentary periods than the longer ones. Therefore, logarithmic scaling was tested

in order to smooth the distribution. Min-max scaling to range [−1,1] was also done to even

the differences in general and because it had been found to work well with our test dataset

when evaluating CVAIs in Chapter 5.
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In (Kim et al. 2015) only sedentary periods longer than 10 minutes were associated with

increased health risks. As we were also interested in these longer, harmful sedentary periods

and did not want the shorter ones to rule too much in data mining, we also tested leaving the

first ten columns, i.e., sedentary periods of length 1−10 minutes, out.

From the transformation 2, three new transformations were formed. The purpose was to form

a week and weekend observation for each student. The weekday observation was obtained by

combining all the weekday observations (mon-fri) from the student and weekend observation

by combining the weekend observations (sat-sun).

• The weekday observation for a student was taken as mean of all weekday observations

from him/her, weekend days similarly. This resulted into 799 observations and 116

variables (transformation 2.1).

• The weekday observation for a student is taken as maximum of all weekday observa-

tions from him/her, weekend days similarly. This resulted into 799 observations and

116 variables (transformation 2.2).

• Similar idea as in the above cases, but first min-max scaling the data to the range

of [−1,1] and then taking the mean over students weekdays and weekends. From

this data, sedentary periods shorter than 10 minutes were dropped out and a 799×106

dataset was obtained. To this end, principal component analysis (see Section 2.3.1) was

done and by choosing components that explain more than 95% of the total variance, a

dataset of size 799×57 was obtained (transformation 2.3).

So altogether five different transformed representations were formed. Notice that when com-

bining the week and weekend observations the use of maximum value resulted into a more

informative representation with reasonable sized integers, while the use of mean resulted into

much smaller values in general. However, the mean more accurately represents the overall

behaviour of a student, while taking the maximum of the sedentary periods probably makes

the student seem more passive than he/she actually has been.
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6.5.2 Data mining

Data mining of sedentary periods was done using MATLAB’s k-means++ algorithm. The

number of clusters was defined with a set of evaluated CVAIs. This set consisted of the

seven CVAIs that worked best in our tests with multiple datasets (See Chapter 5), includ-

ing Silhouette, Calinski Harabasz, Davies Bouldin, PBM, Wemmert Gançarski, Generalized

Dunn, and Ray Turi. Own implementations of these indices were made in MATLAB, some

slightly differing from the implementation in packages used in testing. Also for CVAIs that

proposed the number of clusters at the maximum index value, an inverse was taken so that

the results between CVAIs would be easier to compare. The CVAIs were tested with number

of clusters K = 2−20.

For transformation 1 the number of clusters was chosen as 5 based on the values of CVAIs.

Those CVAIs that best supported this K = 5 can be seen in Figure 22. The Davies Bouldin

index suggests K = 20 as first, but a clear knee-point can be seen in the curve at K = 5.

Figure 22. CVAIs for transformation 1 that support the number of clusters being 5. In y-axis

the value for CVAI and in x-axis the number of clusters, K. From left to right the CVAIs are

Silhouette, Wemmert Gançarski, and Davies Bouldin. The proposed number is the minimum

index value.

When these five clusters were formed with k-mean clustering, two of them were significantly

larger. For these two larger clusters the same process was hierarchically performed as in

(Wartiainen and Kärkkäinen 2015). For the first bigger cluster the CVAIs suggested that six

subclusters could be found and for the other five. See the result of clustering in Figure 23. So

when the k-means was hierarchically done to transformation 1, altogether 16 clusters were

obtained.
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Figure 23. The results from hierarchical prototype-based clustering. First five cluster were

formed and then the two largest ones were clustered again to find subgroups (Wartiainen and

Kärkkäinen 2015; Saarela and Kärkkäinen 2015). The sizes of clusters are marked on the

figure as well as the indices proposing the number of subclusters found.

No data mining was done for transformation 2, but only for further processed transformations

2.1, 2.2, and 2.3. With transformations 2.1 and 2.2, the CVAIs all proposed a different

number of clusters and the number of clusters could not be defined even when investigating

the plotted curves of their values. This happened also when logarithmic transformation, min-

max scaling, and dropping out the first ten columns were tested. So no results were obtained

from these transformations.

For transformation 2.3, the number of clusters, K, was chosen as ten based on the values of

CVAIs. Those CVAIs that best supported K = 10 are illustrated in Figure 24. The Ray Turi

index proposed eight for K but as can be seen from the plotted values, K = 10 is also very

close to the minimum.
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Figure 24. CVAIs for transformation 2.3 that support the number of clusters being 10. In

y-axis the value for CVAI and in x-axis the number of clusters, K. From left to right the

CVAIs are Wemmert Gançarski, Ray Turi and Davies Bouldin. The proposed number is the

minimum index value.

6.5.3 Results

The cluster prototypes are ordered from the most passive to the least passive. So the first

cluster has the largest overall amount of sedentary time and the last has the smallest amount.

The most separating variables between the clusters were simply defined with the total dif-

ference of sedentary time between the prototypes, generalizing the approach proposed in

(Saarela and Kärkkäinen 2015). This was done so that the prototypes for each variable were

first ordered into ascending order and then the difference between the ordered values was

computed and summed up. This created the total difference for that variable, and when these

were ordered into descending order, the most separating variables were found.

6.5.4 Transformation 1

With transformation 1 each day from a student is an observation and 16 clusters were found

when hierarchically applying the k-means method. The metadata for these clusters can be

seen in Table 8. The column "Students" indicates from how many different students the ob-

servations come, column ">60" is the percentage of sedentary time that comes from periods

longer than 60 minutes, and column "<10" is the percentage that comes from short, less than

ten minutes, periods. The prototypes for the ten most separating variables can be seen in

Figure 25 and the parts of certain weekdays in the clusters in Figure 26.

When the separating variable is mostly present in one cluster (high peaks in the figure), it can
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Figure 25. Transformation 1, 10 most separating variables. For example, the most separating

variable is a sedentary period of length 65 minutes, mostly present in cluster 11. This variable

can be considered characterizing this cluster, since it is the one mostly separating it from the

others.

Figure 26. Transformation 1, portion of a weekday in a cluster.

be thought as a characteristic variable for that cluster. That variable is the one separating this

cluster from the others, as it is not as present in other clusters. Most of the metadata is quite

evenly distributed between the clusters, and does not provide explanation of the clusters.

However, there were some exceptions. Cluster 15 has a lot (70%) boys, clusters 3,8, and 11

in turn have a lot of their sedentary time coming from periods longer than 60 minutes, which

is a concern. Some clusters also had significantly more certain weekdays as seen in Figure

26. For example, 61% of the days in C2 and 79% in C8 are Wednesdays, while 70% in C15

are Tuesdays.
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Table 8. Metadata for clusters obtained with transformation 1

Size Students Boys Ex Class >60 <10

Whole data 3836 418 46% 19% 6% 44%

C1 345 235 41% 14% 3% 41%

C2 89 81 49% 22% 8% 20%

C3 887 347 52% 12% 33% 22%

C4 287 210 43% 17% 3% 44%

C5 136 110 38% 13% 1% 45%

C6 39 39 36% 21% 4% 40%

C7 732 338 46% 18% 3% 50%

C8 28 26 32% 7% 51% 13%

C9 141 123 43% 11% 3% 45%

C10 425 235 45% 14% 1% 67%

C11 153 127 48% 23% 25% 13%

C12 318 211 48% 23% 9% 36%

C13 90 83 46% 9% 4% 35%

C14 65 61 43% 20% 16% 18%

C15 23 23 70% 30% 12% 7%

C16 78 72 37% 17% 2% 35%

The size of the cluster indicated the amount for days assigned to that cluster and as stated

before, "students" tells from how many different students these days come from. Looking

at these numbers, we can see that the days from certain student did not all go into the same

cluster but rather divided between many clusters. Also the bigger the cluster the more stu-

dents there were that had a day in it. It means that a lot of the students have this kind of

similar days. For example, more than 80% of the students have a day in C3 and 33% of the

sedentary time in it comes from periods longer than 60 minutes. By taking a closer look at

this cluster, ways to intervene these periods might be found.

As there were multiple days from each student and they were scattered between the clusters

and did not go into the same one, they can be deduced to be very different between each
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other. This indicates that when doing any kind of studies about the activity of children,

multiple days should always be considered in the measuring process.

6.5.5 Transformation 2.3

With transformation 2.3 the interest was on students week vs. weekend observations and ten

clusters were found. The metadata for these clusters can be seen in Table 9. The prototypes

for the ten most separating variables can be seen in Figure 27. Here again, when observing

the size of the cluster and from how many different students these days come from, we can

see that the observations from one student mostly did not go into the same cluster.

Table 9. Metadata for clusters obtained with transformation 2.3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Size 61 46 24 51 237 28 222 24 91 15

Students 58 45 24 51 179 28 192 24 80 15

Boys (46%) 43% 37% 29% 39% 57% 43% 40% 46% 48% 47%

Exercise class 8% 20% 38% 16% 24% 4% 16% 8% 16% 7%

Weekdays (51%) 49% 80% 4% 33% 54% 32% 67% 17% 40% 13%

Overweight (11%) 16% 13% 25% 10% 12% 7% 6% 17% 11% 7%

Obese (2.5%) 1.6% 0% 0% 5.9% 2.1% 0% 3.6% 8.3% 2.2% 0%

The metadata does not differ much between the clusters. It is again interesting how the

exercise class students seem to be just as sedentary as all the other students. Cluster 2 has

clearly the most weekday observations (80%), while cluster 3 has almost only weekend

observations (96%). Cluster 3 also has some other interesting characteristics – it has the

most exercise class students but also the most overweight students. It also has clearly the

most girls in it.

As the observations from each student were scattered between clusters, we can again con-

clude that the sedentary behaviour of a student differs between week and weekend.
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Figure 27. Transformation 2.3, 10 most separating variables. For example, the most sepa-

rating variable is a sedentary period of length 31 minutes, mostly present in cluster 4. This

variable can be considered characterizing this cluster, since it is the one mostly separating it

from the others.

6.6 Sedentary behaviour of the students 2

6.6.1 Transformation

In the previous transformation, all sedentary periods with the accuracy of one minute were

considered. However, there is no significant difference in, for example, sedentary periods of

45 or 46 minutes. Therefore it might be more reasonable to investigate combined periods.

Also instead of clustering the week and weekend observations from students, we might want

to cluster just the students, so a combination of these observation is needed.

Beginning with the same representation as in the previous section (see Table 7 in Section

6.5.1), the week and weekend observations were again formed by taking the mean of stu-

dent’s week and weekend observations. This resulted into similar form as transformation 2.1

in the previous Section 6.5.1, with 799 observations and 116 variables. Next the sedentary

periods were combined into ten different categories – 10-15, 16-20, 21-25, 26-30, 31-35,

36-40, 41-50, 51-60, 61-90 and 91-181 minutes. Sedentary periods shorter than ten minutes

were again ignored. So now there were ten variables instead of 116.

The combination of student’s week and weekend observations was done in a way that these
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would still be separable and the comparison of sedentary behaviour during week and week-

end was possible. So, the weekend row was joined together with the week row, resulting into

20 variables for each student. The students that were missing either of these observations,

for example, due to not wearing the sensor during weekend, were ignored. This resulted into

386 observations (students).

6.6.2 Data Mining

The data mining was again done using MATLAB’s k-means++ algorithm. This time, however,

the variables were median values, instead of mean, so the city-block distance was used. This

corresponds to the k-medians method, i.e., for p = q = 1 in Section 3.4.

The number of clusters was defined with our own implementations of the CVAIs found

best in our comparisons. This set of indices consists of Silhouette, Davies Bouldin, PBM,

Wemmert Gançarski, Generalized Dunn, and Ray Turi in their previously presented forms

(see Section 3.6), also run with p = q = 1. For the CVAIs that proposed the number of

clusters at the maximum index value, an inverse was taken so that the results between CVAIs

would be easier to compare. The CVAIs were tested with number of clusters K = 2−20.

6.6.3 Results

The CVAIs indicated that the data contains three clusters. Metadata for these clusters can be

seen in Table 10. In Figure 28, the difference between the whole data median and the proto-

types can be seen. According to the Kruskal-Wallis test, the three groups were significantly

different (p < 0.01) with all the variables, i.e., sedentary periods.

Table 10. Metadata for clusters.

Size Boys Ex Class Overweight Obese

C1 210 51% 22% 11% 3%

C2 145 37% 12% 10% 3%

C3 31 52% 26% 13% 0%

The first cluster, C1, is the biggest cluster (n=210), including more than half of the students.
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Figure 28. The difference between prototypes and the whole data median. C1 is blue, C2 is

green, and C3 is yellow.

It is a cluster where the students have less sedentary time compared to the whole population

and also they have almost no longer periods. Their behaviour is very similar through the

week and weekend days.

The second cluster, C2, is quite similar to C1, mainly just shorter sedentary periods. How-

ever, they have a little bit more sedentary time when compared to the whole population and

some longer periods during the weekdays.

The most interesting group is the third cluster, C3, that is a small cluster (n=31) with a very

different sedentary behaviour than the other clusters. During the weekdays these students

have less sedentary time compared to the whole population, but during weekends they have

significantly more and longer sedentary periods than the population in general. Especially the

amount of these long sedentary periods is a concern and this behaviour should be intervened.

It is again interesting how this most sedentary cluster has the largest proportion of exercise

class students.

Again, with clustering we have achieved a new grouping, which could not have been achieved

utilizing the metadata, since it is fairly evenly distributed between the clusters. Also, we have

found a very interesting group of students, C3, whose sedentary behaviour and reasons be-

hind it should be further researched. Furthermore, if some common factors for this behaviour

are found they can lead to novel and very useful information that can be utilized by domain
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experts when making general recommendations or trying to come up with ways to intervene

this kind of behaviour.

6.7 Summary

In this chapter, we applied between-method triangulation to students activity data. In gen-

eral, triangulation is an approach where the same research objective is studied with either

different datas, theories, researchers, or, as in between-method triangulation, analysis meth-

ods (Denzin 1970). We investigated both the active and sedentary time of the students, both

with many different transformations and amany clustering and cluster validation approaches.

To asses the activity behaviour on a weekly basis, we first formed a calendar form represen-

tation in Section 6.4. The activity was studied in one hour and half-an-hour periods. With the

former, three groups were found and with the latter four groups. We found that the general

activity behaviour in the whole population was quite sedentary, most of the time was spent

in sedentary or light activities.

Next we studied the sedentary behaviour of the students, forming multiple different repre-

sentations of it in Section 6.5. First, when having each day from each student as an observa-

tion and using hierarchical prototype-based clustering (Wartiainen and Kärkkäinen 2015) we

found 16 clusters. Second, the days were combined so that we obtained a week and a week-

end observation for each student by taking the mean over their weekdays and weekend days.

This way we found ten clusters. As in both of these cases the observations from a certain

student did not go into the same cluster, but rather scattered along them, we can conclude

that the daily activity of a student is different on each day. Therefore, when measuring the

activity, multiple days should always be considered and included in the measurement period.

In Section 6.6, we formed just one observation for each student, including information from

both the week and weekend. Three clusters were found, and one them was particularly

interesting due to their sedentary behaviour during weekends. Even though during weekdays

the behaviour was quite similar among the whole population, on the weekends cluster 3

contained overwhelmingly more and longer sedentary periods than the others. This group

should be further investigated in order to find possible reasons behind this behaviour and
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trying to intervene it.

In all the results, the metadata of the students did not explain the found clusters, so a set of

novel profiles was obtained. Also, surprisingly, the students on an exercise class did not seem

to be more active, but on the contrary, the least active and most sedentary clusters often had

the largest proportion of those students. However, this matter should be further researched

before any general conclusions can be made.

Also common for all the results, was that they included different kind of activity and seden-

tary profiles. For example, some students had a moderate amount of total activity that was

divided very evenly over the week, whereas some students had some very high peaks of

activity and otherwise they spent their time quite sedentary. Both of these groups could be

approached in a different way in order to optimize their activity behaviour and its health

benefits. For the first group, some more intense activity could be organized and encouraged

while the students in the second group could benefit from some more light activity in addi-

tion to the higher peaks. This could also have potential in preventing injuries, as their activity

could become more versatile instead of possibly just certain sport specific training.

Also the sedentary profiles have a large potential in providing a novel and useful way to inter-

vene the sedentariness. A new way of grouping was obtained solely based on the sedentary

behaviour that enables planning more personalized ways to affect the students.
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7 Conclusion

The importance of physical activity has become an undisputed fact, but at the same time

the amount of it has continuously decreased, while the sedentary time has increased (Owen

et al. 2010). This, among other things, has lead to physical activity being a very current and

interesting study field. The advancing technical abilities to measure different components of

physical activity have lead to large amount of available data and many new applications

This thesis is focused on the KDD process and its utilization with physical activity data and

applications. KDD’s potential to utilize very large datasets, that are becoming more common

in the field of physical activity, makes it a natural framework for this domain. With multiple

transformations of the data and between-method triangulation we obtained many results that

all both brought some novel information while also supporting each others findings.

Throughout the empirical part of the thesis, we followed the KDD process, using clustering

as the data mining method. To validate the number of clusters present in each transformation

of the student data, many CVAIs were used. These were chosen based on our tests with

a extensive set of different indices and their implementations for the k-means clustering in

MATLAB and R. These results have also been published in (Jauhiainen and Kärkkäinen 2017)

and the best performing CVAIs were further generalized in this work and used also with the

k-means and k-spatialmedians methods.

As we tried to represent the data with many versatile transformations, we ended with different

measures and sparsities of data. It was very important to choose the data mining methods,

missing data handling strategies, and distance measures case dependently. When the data

was very sparse, having a lot of missing values, we used robust clustering – spatial median

with available data strategy. With the k-means method, the used distance measure had to be

chosen carefully. With discrete variables, e.g., median, we used the cityblock distance, while

with continuous, e.g., mean, we used the euclidean distance. The used distance had to be

considered also when validating the number of clusters with the CVAIs.

Our first approach was to form a calendar form of the activity of students and with this trans-

formation we were able to access the division of activity along the week. We investigated
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different time slots, hour and half-an-hour, considering both the entire time and only the time

at school. We found a new grouping based on only the amount of activity at certain times

of the week and this has the potential to provide a new way to affect the students activity

behaviour in a more personalized way. For example, some students could benefit consider-

ably from adding a few more intense activities to their week, while other could benefit from

having more light activity throughout the week.

Second approach was to, by clustering, find different profiles based on the sedentary be-

haviour of the students. The sedentariness of children has become a concern (Tammelin et

al. 2007) and the aim was to, through clustering, find different sedentary profiles and some

habitual factors behind their sedentary periods. Many different transformations and mea-

sures were tested and finally novel representations and groupings were found that have a lot

of potential in helping to recognize harmful sedentary behavior of students. Particularly, we

found a group of students that are extremely sedentary during their weekends. In further

research, if some reasons behind this sedentariness are found, they can be very useful in

recognizing and preventing similar behaviour in other students.

With all the approaches and transformations, the metadata of the students did not explain

the grouping and therefore with clustering, new and useful groups were found. This proves

that clustering has a huge potential in offering new ways to access the activity and sedentary

behaviour of the students and finding more personalized and effective ways to affect in it.

Also, surprisingly, the students on exercise classes did not stand out as the most active or

least passive in any of our results. This matter might need some further research, so that

their behaviour and its health benefits could also be optimized more. Another important

finding was that the days of a student were very different from each other throughout the

week and therefore, when measuring activity of students in the future, multiple days should

always be covered. So to summarize and answer the research question:

Unsupervised data mining, clustering in this case, can enable the finding of novel and

very useful information from students activity data. Moreover, the use of different

approaches and transformations provides also multiple different results. Finally, uti-

lization of all this new information should happen together with domain experts.
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