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Tiivistelmä

Parhaiten tunnettu suprajohtavuuden syntymekanismi perustuu fononien välittämään ve-
tovoimaan elektronien välillä. Tässä tutkielmassa tutkin fononien välittämää suprajohta-
vuutta systeemeissä, jossa elektronivyöt ovat tasomaisia. Tasovyöllä elektronien dispersio
on erittäin heikko, jolloin tilatiheys on tavanomaista suurempi. Tämän takia suprajohta-
vuus tasovyöllä on tavanomaista voimakkaampi silloin kun elektronien välinen vetovoima
on heikko.

Eliashbergin teoria on elektroni–fononi-suprajohtavuuden teoria, joka ottaa luonnol-
lisella tavalla fononien äärellisen nopeuden huomioon elektronien välisessä vuorovaiku-
tuksessa. Pohjustuksena tasovyösuprajohtavuuteen perehdyn Eliashbergin teoriaan ensin
Fermi-pinnalla. Tarkastelen myös Coulombin vuorovaikutuksen sekä fononispektrin vai-
kutusta Fermi-pinnan suprajohtavuuteen. Ratkon Eliashbergin teorian integraaliyhtälö-
ryhmää eri tapauksissa numeerisesti.

Tutkielmassa sovellan Eliashbergin teoriaa tasovyömallille ja johdan uusia tuloksia täs-
sä mallissa. Redusoimalla Eliashbergin teorian staattisen vuorovaikutuksen rajalle saan
selville tasovyön BCS-vuorovaikutusparametrin mikroskooppisten suureiden avulla ilmais-
tuna. Huomaan kriittisen lämpötilan olevan heikolla kytkennällä kytkinvakion suhteen li-
neaarinen, mikä vastaa aiempaa BCS-teorian ennustetta. Tämä lineaarisuus säilyy myös
äärellisen litteillä dispersioilla. Tarkastelen myös tasovyöllä fononispektrin ja Coulombin
vuorovaikutuksen vaikutusta suprajohtavuuteen.

Konkreettisena esimerkkinä tasovyösysteemistä tutkin romboedrisen grafiitin pintati-
loja. Romboedrisen grafiitin elektronista rakennetta tarkastelen matalan energian rajalla
ja esittelen pintatilojen matemaattisen johdon. Muotoilen Eliashbergin teorian itsekonsis-
tenssiyhtälöt romboedriselle grafiitille matriisimuodossa, mikä on myös uusi tulos.

Avainsanat: suprajohtavuus, elektroni-fononi-vuorovaikutus, Eliashbergin teoria, tasovyö,
romboedrinen grafiitti, pintatilat
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Abstract

The best-known mechanism for superconductivity is the phonon-mediated attractive in-
teraction between electrons. In this thesis, I study phonon-mediated superconductivity in
systems containing flat electronic bands. In the flat band, the electronic dispersion is very
weak, which corresponds to a high density of states. For this reason, superconductivity
in the flat band is stronger than in the Fermi surface when the attractive interaction is
weak.

The Eliashberg theory is a rigorous theoretical framework of electron-phonon super-
conductivity, which takes naturally into account the finite speed of the phonons in the
interaction between the electrons. As a preparation for the study of the flat band su-
perconductivity, I review the Eliashberg theory for the Fermi surface. I also consider
the effects of the Coulomb interaction and of different phonon spectra to superconductiv-
ity in the Fermi surface. I solve the self-consistency equations of the Eliashberg theory
numerically.

I apply the Eliashberg theory to a flat band model, in which I obtain novel results.
By reducing the Eliashberg theory to a limit of a static interaction, I find the flat-band
BCS interaction constant in terms of microscopic parameters. I also find the critical
temperature to be linear with respect to the interaction constant, which agrees with the
earlier results based on the BCS theory. I examine the effects of the different phonon
spectra and the Coulomb interaction on superconductivity also in the flat band.

As a concrete example of a flat band system I study the surface states of rhombohedral
graphite. I present the electronic structure of rhombohedral graphite within the low-
energy approximation and contruct the surface states. I obtain some new results by
formulating the self-consistency equations of the Eliashberg theory for the rhombohedral
graphite in an matrix form.

Keywords: superconductivity, electron-phonon interaction, Eliashberg theory, flat band,
rombohedral graphite, surface states
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1 Introduction
In this thesis, I study superconductivity in condensed matter systems with the flat-band
electronic dispersion. Specifically, I consider the electron-phonon interaction in these
systems.

Superconductivity is a state of matter in which the electronic resistance is exactly
zero. Superconductivity was discovered experimentally in 1911, but it took more than
forty years before its microscopic origin was understood. A clue to understanding super-
conductivity was found in 1950, when two separate experiments with isotopes of mercury
provided evidence that the temperature above which superconductivity vanishes depends
on the choice of the isotope[1, 2]. This was taken to imply that lattice vibrations, or more
formally, phonons, are involved in superconductivity[3]. It was then shown by Fröhlich[4]
and Pines[5] that an exchange of a virtual phonon may cause an attractive force between
two electrons. Finally, in 1957 John Bardeen, Leon Cooper and Robert Schrieffer pub-
lished a theory which showed that such an attractive interaction makes pairs of electrons
form bound states and condense into a superconducting state[6]. This theory is commonly
known as the BCS theory, and for it, Bardeen, Cooper and Schrieffer received the 1972
Nobel prize in physics.

In the BCS theory, the precise form of the interaction between electrons and phonons
is not utilized. The BCS theory is more focused on the consequences of the attractive
interaction than the details of the interaction mechanism itself. After the publication of
the BCS theory, the details of the interaction were worked out by a number of people,
and the electron-phonon superconductivity theory was laid on a rigourous foundation. In
1958 Migdal developed the perturbation theory to handle the electron-phonon interac-
tions in the normal state[7] and in 1960 Eliashberg[8] and Nambu[9] extended it to the
superconducting state. The Coulomb interaction was included by Bogoliubov et al.[10]
and Morel and Anderson[11]. This whole theoretical framework of the electron-phonon
superconductivity is referred in this thesis as the Eliashberg theory.

Based on the BCS theory, we can examine which properties of the material determine
if it is a good superconductor, with a high critical temperature. In particular, we learn
that the strength of the superconductivity in metals depends on the electronic density of
states at the Fermi level. The density of states is determined by the shape of the electronic
dispersion. The flatter the dispersion, the higher the density of states. The extreme case
is when the dispersion vanishes completely and a flat-band spectrum is obtained. The
BCS theory on flat bands has been recently studied and it indeed was found that the
superconductivity is enhanced on them compared to the case with an ordinary Fermi
surface[12].

The purpose of this thesis is to study the flat-band superconductivity from the point
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of view of the Eliashberg theory; to see if the enhanced superconductivity is present also
in this formulation and if it depends on the specific form of the interactions. To my
knowledge, this has not been done analytically before, so I obtain some novel results.
I begin by reviewing the Eliashberg theory first in the metallic systems with the Fermi
surface. After that, I apply the theory to the flat band. I find that the BCS results for
the flat band are replicated in the Eliashberg theory when the interactions are weak and
that the BCS interaction parameter can be obtained by reducing the theory to the BCS
limit. I also take into account the Coulomb interaction and find that it can be included
in the flat band by using a pseudopotential in a same way as for the Fermi surface. The
Coulomb interaction opposes superconductivity, but I find that its effect is reduced with
the increasing size of the flat band.

The flat-band spectrum is obtained on many graphene-based systems. In this the-
sis, we choose to study surface states of rhombohedral graphite as an example. This is
partly motivated by the experimental signs of high-temperature superconductivity found
in graphite[13, 14] and partly by the interesting topological properties of the rhombohe-
dral graphite[15]. In this case the Eliashberg theory cannot be reduced into a simple set
of equations, but I present a numerical scheme for the solution.

In nature, graphite occurs in a somewhat disorganized state and its electronical prop-
erties do not usually match the pure rhombohedral graphite studied in this thesis. One
can then ask how relevant the study of the electronic properties arising from such specific
arrangement is. The answer is that with the rapidly developing microfabrication tech-
niques, graphite with purely rhombohedral stacking can be artificially made[16] and thus
the possible advantages of the flat-band dispersion are becoming realizable.
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2 Superconductivity in the BCS theory
As I study Eliashberg theory as a way of going beyond and clarifying the approximations
of BCS theory, it is natural to first describe the basic structure of the simpler BCS
theory. However, before doing even that, a brief introduction to the physics of electrons
and phonons is given.

2.1 Electrons and phonons
In the energy scales typically studied in solid state physics, matter is composed of atomic
nuclei and electrons, the number of which are fixed. In this situation, the only interaction
of importance is the Coulomb interaction. Schematically, we can then take as our start-
ing point the Hamiltonian which describes the Coulomb interaction between these basic
constituents,[17]

Ĥ = Ĥn + Ĥe + Ĥn-n + Ĥn-e + Ĥe-e, (2.1)

where Ĥn and Ĥe are the kinetic energy operators of the nuclei and the electrons. Ĥe-e,
Ĥn-n and Ĥn-e describe the electron–electron, nucleus–nucleus and nucleus–electron Coulomb
interactions, respectively.

In this work, the Planck and Boltzmann constants are set to unity,

~ = kB = 1, (2.2)

so that both frequency and temperature have the unit of energy. In some equations the
Boltzmann constant kB is written to make a connection with the conventional form of the
equation.

To separate the Hamiltonian (2.1) into bite-size components, we notice that the proton
mass is 1800 times larger than the electron mass and consequently, that the nuclei move
much slower than electrons. For this reason we can use the Born-Oppenheimer approxi-
mation, according to which the electrons react instantly to the changes in the potential
caused by the nuclei. In other words, the potential created by the nuclei changes adia-
batically with respect to the electronic system. With the nuclei effectively stationary, the
Schrödinger equation can be solved independently for the electrons and the electronic en-
ergy of the system can be calculated for the nuclei in different positions. The equilibrium
positions of the nuclei can then be found by minimizing the total energy. In this thesis,
the equilibrium positions of the nuclei are assumed to form a periodic lattice.

With the nuclei at their equilibrium positions, the electrons see them as a periodic
potential, and the electronic band structure can be calculated with help of Bloch’s the-
orem[18]. Assuming only one band with dispersion εp, the grand canonical Hamiltonian
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for the electrons is
He =

∑
pσ

(εp − µ)c†
pσcpσ, (2.3)

where cpσ and c†
pσ are the annihilation and creation operators for electrons with momen-

tum p and spin σ, respectively. As electrons are fermions, they obey the anticommutation
relation: {

cpσ, c
†
p′σ′

}
= δ(p−p′)δσσ′ . (2.4)

The chemical potential µ determines the electron number, which is fixed. As the electron
dispersion will always appear together with µ, we also define a shifted dispersion

ξp = εp − µ. (2.5)

Allowing the nuclei to move, the total energy of the nuclei-electron system can calcu-
lated with the nuclei slightly shifted from their equilibrium positions. The total energy
can then be expanded up to a harmonic approximation with respect to the positions of of
the nuclei. The nuclei thus become a set of coupled harmonic oscillators. The correspond-
ing system of equations can be diagonalized as a set of independent harmonic oscillators.
These independent oscillators represent the lattice vibrations with well-defined (crystal)
momentum and are known as phonons. The Hamiltonian for them is

Hph =
∑

q
ωqb

†
qbq, (2.6)

where ωq is the phonon dispersion and the sum is cut off at some maximum frequency
qM . Annihilation and creation operator for a phonon with (crystal) momentum q are bq

and b†
q. There is also an implicit summation over the different branches of the phonon

dispersion. Phonons are bosonic and obey the commutation relation,[
bq, b

†
q′

]
= δ(q − q′). (2.7)

The branches of the phonon dispersion can be divided into two categories, optical and
acoustic. The energy of the optical phonons doesn’t depend much on their momentum and
can be represented by the Einstein model, ωq = ωE, in which the energy of the phonon
ωE is completely independent of its momentum. For the acoustic phonons the energy
depends linearly on q with small q. In this thesis, acoustic phonons are represented by
the Debye model ωq = cq, with c the speed of sound in the material. The cutoff energy
in the Debye model is ωD.

If the Born-Oppenheimer approximation is relaxed, so that the electrons do not re-
spond instantly to the movements of the ions, we must add a coupling between electrons
and phonons described by the term

He–p =
∑
pσq

gq
(
bq + b†

−q

)
c†

p+qσcpσ, (2.8)
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where gq is electron-phonon coupling constant. This term accounts for the fact that when a
phonon is introduced into the system, the periodic potential seen by the electrons changes,
and the electrons originally on their eigenstates have a finite propability of scattering to
a different state. The energy difference between the incoming and outgoing electrons is
released into or absorbed from the phonon system, depending on the sign. Because this
coupling only arises as a correction to the adiabatic approximation, it is usually small
enough to be treated as a perturbation.

Combining the above terms, we arrive at the Hamiltonian

Ĥ = Ĥe + Ĥph + Ĥe-ph + Ĥe-e, (2.9)

which should be contrasted with the Hamiltonian we began with. The ions are not
present in this Hamiltonian anymore, but their properties are reflected in the phononic and
electronic dispersion relations. There is also the average Coulomb attraction between the
electrons and positively charged nuclei, which is not described by the above Hamiltonian.
However, the system is assumed to be electronically neutral, so the attraction between ions
and the electrons will balance with the average repulsion between the electrons. Thus this
term can be included by modifying the repulsive term Ĥe-e. This problem is considered
briefly in Sec. 5.4.

2.2 Interactions in BCS theory
Superconductivity is a state of the electronic system, so we are interested in interactions
between two electrons, not with one electron and a phonon as in (2.8). We would like to
obtain the form of an effective interaction between the electrons, mediated by phonons. It
is possible to work within the second quantization formalism to obtain this interaction in
the lowest order by doing a Schrieffer-Wolff transformation. In the Schrieff-Wolff transfor-
mation, the system is rotated in a such a way that in the first order in coupling g, electrons
and phonons become non-interacting with each other[19]. After this transformation, the
interaction between an electron and a phonon gets translated as an interaction between
two electrons:

Hint =
∑

pσp′σ′q
|gq|2 2ωq

(εk+q − εp)2 − ω2
q
c†

p′−qσ′c
†
p+qσcpσcp′σ′ . (2.10)

The denominator of the potential is negative if

|εp − εp′ | < ωq, (2.11)

meaning that the phonons create an attraction between the electrons with similar energies
and the attractive region is determined by the Debye frequency ωD.

The details of the attractive interaction are not used in the BCS theory. Furthermore,
we are only interested in the effects near the Fermi surface, and for that purpose we can
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approximate the interaction with a double step potential of the form

Vpp′ = −V Θ(|εp − εF| − ωD) Θ(|εp′ − εF| − ωD), (2.12)

where Θ is the Heaviside step function, and the interaction strength is determined by a
parameter V > 0. This simple form still manages to capture the most important details
of the interaction; it is attractive between electrons of similar energies and has a cutoff
at Debye energy. It is also confined to act only near the Fermi surface. The repulsive
part of the phonon-mediated interaction is omitted, as it doesn’t change the qualitative
situation.

If we add the Coulomb interaction to Eq. (2.10), the attraction is weakened a bit,
but the total interaction still remains attractive when the inequality (2.11) is satisfied.
Coulomb interaction is difficult to handle in a satisfactory way within the BCS theory,
but it will be considered in more detail with the Eliashberg theory. For now the Coulomb
interaction can be considered just to reduce the strength of the effective interaction V ,
and thus be included in the effective BCS interaction.

2.3 Superconducting mean field
With the simplified interaction model Eq. (2.12), the electronic Hamiltonian can be writ-
ten as

H =
∑
p,σ

εpc
†
pσcpσ +

∑
p,p′,q,σ,σ′

Vpp′c†
p′−qσ′c

†
p+qσcpσcp′σ′ . (2.13)

The task now would be to obtain the ground state wavefunction and the excitation spec-
trum. The difficulty is that the interaction is quartic in field operators. Usually the only
Hamiltonians that can be diagonalized in system with many particles are the ones with
quadratic (one-particle) interactions. Therefore, we need to do a mean field approximation
and decompose the quartic term into a sum of quadratic terms.

In the mean field approximation, we also choose which combinations of the operators
obtain a non-vanishing expectation value. Therefore, the form of our ansatz determines
the for example the ensuing symmetry of the superconducting order parameter. For s-
wave (isotropic) superconductivity, the order parameter connects the states with opposite
momenta and spin, and the approximate interaction Hamiltonian is

Hint =
∑

p,p′,σ

Vpp′

{
〈cp′σc−p′σ̄〉 c†

−pσ̄c
†
pσ −

〈
cp′σc−p′σ̄

〉∗
cpσc−pσ̄

}
, (2.14)

where a constant (non-operator) term has been omitted, as it is usually relevant only in
comparing the total energy of the superconducting state to other phases.

The gap function is then defined as

∆k =
∑
k′
Vkk′ 〈cp′↑c−p′↓〉 . (2.15)
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The pair amplitude ∆ is the order parameter in the superconducting state. It is zero
above the critical temperature. The interaction part of the Hamiltonian can be written
with ∆ as

Hint =
∑
pσ

{
∆pc

†
−pσ̄c

†
pσ − ∆∗

pcpσc−pσ̄

}
, (2.16)

where the strength of the mean-field interaction now depends on ∆.

2.4 Solving the mean-field Hamiltonian
To diagonalize the Hamiltonian with the interaction (2.16), it is useful to group operators
with opposite spin and momentum in a pseudospinor structure

Ψp =
(
cp↑

c†
−k↓

)
, Ψ†

p =
(
c†

p↑ c−k↓
)
, (2.17)

known as the Nambu spinor. With this notation, the Hamiltonian can be written as

H =
∑

p
Ψ†

p

(
ξp −∆p

−∆∗
p −ξp

)
Ψp. (2.18)

The Hamiltonian is almost diagonal, as the Nambu spinors with different momenta do
not mix. We can then diagonalize these 2×2-blocks quite independent from each other.
Diagonalizing the Hamiltonian with Bogoliubon γ-operators means that it can be written
as

H =
∑
pσ

Epγ
†
pσγpσ, (2.19)

with some yet undetermined dispersion Ep. The γ-operators obey the anticommutation
relation {

γ, γ†
}

= δpp′ , (2.20)

and they can be written as a linear mix of two time-reversed electron operators,(
γp↑

γ†
p↓

)
=
(
up −vp

v∗
p u∗

p

)(
cp↑

c†
−p↓

)
. (2.21)

The coefficients u and v can be determined by solving the Bogoliubov–de Gennes-
equation (

ξp ∆p

∆∗
p −ξp

)(
up

vp

)
= Ep

(
up

vp

)
, (2.22)

which has the structure of an eigenvalue equation. The dispersion can then be read from
(2.22) as the determinant:

Ep = ±
√

(εp − µ)2 + ∆2
p, (2.23)
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where the positive-energy solution corresponds to the states γp |G〉 and the negative-
energy solution corresponds to the states γ†

p |G〉, where |G〉 is the ground state of the
superconducting phase.

Coefficients u and v can also be solved from the Bogoliubov-de Gennes equation. For
the positive energy Ep > 0, the solution is

up = 1√
2

√√√√1 + ξp

Ep
, and vp = 1√

2

√√√√1 − ξp

Ep
. (2.24)

When ∆ � ξp, the magnitude of u is close to 1 and the magnitude of v is of the order
of ∆p/Ep. For the negative-energy solution the roles of u and v are switched and their
complex phases are different.

2.5 Self-consistency equation
In doing the mean field approximation we define ∆ in Eq. (2.16) as a sum of some ex-
pectation values. Having diagonalized the Hamiltonian, we are now ready to evaluate
them.

The expectation value written in the Bogoliubon operators is〈
cp↓c−p↑

〉
= upvp

[
2
〈
n(γ)

p

〉
− 1

]
, (2.25)

where the γ-superscript signifies that we are considering the number operator which is
composed with γ’s and not with the electron number operator. Because the Hamiltonian
is diagonal in γ’s, the expectation value of their number operator is the Fermi-Dirac
distribution. For negative energies the occupation is close to 1 and for positive energies

0.5 1 p=pF

-1

-0.5

0

0.5

1

("
!
7
)=
7

Figure 1. Two branches of the superconducting dispersion (2.23). Also pictured
is the normal state electron dispersion (green line) and normal state hole dispersion
(purple line). In the superconducting state, these two dispersions have hybridized and
formed an avoided crossing of the width 2∆0 at the Fermi surface.
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Figure 2. Magnitude of the order parameter ∆ at zero temperature in the BCS the-
ory. For small coupling λ superconductivity is exponentially suppressed, as expressed
in (2.30). For λ > 0.5 the dependence on λ is linear.

it is close to 0: 〈
n(γ)

p

〉
= 1
eβE±

p + 1
. (2.26)

By plugging in the Fermi-Dirac distribution to Eq. (2.25), we get a hyperbolic tangent
function. The product uv is

u±
pv

±
p = ± ∆p

2Ep
. (2.27)

In total, we have

∆p = −
∑
p′

Vkk′∆p′

2Ep
tanh

(
βEp

2

)
. (2.28)

At zero temperature tanh(βE/2) = sgn(E). By using the approximate interaction (2.12)
and assuming a constant density of states at the Fermi surface, the order parameter is
constant for |ξk| < ωD and the self-consistency simplifies at T = 0 to

∆ = λ

2

∫ +ωD

−ωD
dξ ∆√

ξ2 + ∆
, (2.29)

where λ = N(0)V is a dimensionless parameter which describes the total strength of the
interaction. N(0) is the density of electron states at the Fermi level, which we get by
changing the integration variable from momentum to energy in Eq. (2.28).

This can be solved as

∆ = ωD

sinh (1/λ) ≈

2ωD exp(−1/λ), for λ � 1
λωD, for λ � 1.

(2.30)

The function ∆(λ) is plotted in Fig. 2.
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2.6 Transition temperature
The order parameter goes to zero at the transition temperature Tc. Just below the
transition temperature, the self-consistency equation (2.28) is still valid, but ∆ ≈ 0 and
it can be written as

1 = λ
∫ ωD

0

dξ
ξ

tanh
(

ξ

2kBTc

)
. (2.31)

This can be written as
1
λ

=
∫ ωD

kBTc

0

dx
x

tanh
(
x

2

)
(2.32)

Because tanh x ≈ 1 for large x, we can choose some large number M as a cutoff and
approximate the integral above this number. This can be done, because kBTc is of the
same order as ∆, which we assume to be much smaller than ωD.

1
λ

=
∫ M

0

dx
x

tanh
(
x

2

)
+
∫ ωD

kBTc

M

dx
x

=
∫ M

0

dx
x

tanh
(
x

2

)
− log(M) + log

(
ωD

kBTc

)
≈ 0.126 + log

(
ωD

kBTc

)
,

(2.33)

where, in the last step, M was taken to infinity. Exponentiating this, we find the critical
temperature in the weak-coupling limit

kBTc = 1.13ωD exp
(

− 1
λ

)
, (2.34)

which in terms of the zero temperature gap ∆0 is

1.76kBTc = ∆0. (2.35)

In the case of very strong coupling λ � 1, the left hand side of Eq. (2.32) is small.
Hence the upper limit of the integral also has to be small. We can then approximate
tanh(x/2) ≈ x/2 and solve for Tc. We find

2kBTc = λωD = ∆0 (2.36)

This is however a dubious result, as we would expect the approximations made in the
BCS theory not to be valid in the strong-coupling regime. Eliashberg theory provides
corrections to this result, but we also expect that it should reduce to BCS limit in the
weak-coupling regime.
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3 Electron and phonon fields
To describe the phonon-mediated interaction in more detail than what is possible in
the BCS theory, we consider the electron-phonon interaction from the field theoretical
perspective. The Hamiltonian is the same as above, but for now the electron–electron
Coulomb interaction is not considered,

H = He +Hph +He–ph

=
∑
pσ

ξpc
†
pσcpσ +

∑
q
ωqb

†
qbq +

∑
pqσ

gq
(
bq + b†

−q

)
c†

p+q,σcpσ
. (3.1)

The electron-phonon interaction is formulated in terms of electron and phonon fields.
The central concepts are Green’s functions and self-energies. After we have formulated
the electron-phonon interaction in normal state, the theory is generalized to the super-
conducting state. The field theoretical derivations are done with the equation-of-motion
method, which allows for the self-consistency necessary to treat superconductivity. The
derivation is done in a similar fashion as in the original paper by Éliashberg[8], but with
some differences. For example, we use Matsubara formalism instead of the real-time
formalism.

The central objects of interest in field theory are Green’s functions. Green’s functions
originate from the theory of differential equations, where they are used to solve inhomoge-
nous differential equations. Let us suppose we have a linear differential operator Dx with
some boundary conditions. Green’s function G for Dx then satisfies the equation

DxG(x, y) = δ(x− y),

where δ(x) is the Dirac delta function. Green’s functions encountered in physics are
Green’s functions in this mathematical sense only in the case of non-interacting systems.

Even though the Green’s functions can be treated as a purely mathematical tool, we
can also attach physical meaning to them. As an example, consider the system at absolute
zero on its ground state and the single-particle Green’s function

G(x1, x2) = −i 〈0|T ψ̂↑(x1)ψ̂†
↑(x2)|0〉 , (3.2)

where x contains both space and time coordinates: xi = (ri, ti). If t1 > t2, then this
Green’s function can be interpreted as the propability amplitude for the state to evolve
during time t1 − t2 from state ψ̂†

↑(r2) |0〉 to state ψ̂†
↑(r1) |0〉. At this point, there doesn’t

seem to be much of a connection between the mathematical and physical defitions of
Green’s function, but in the text below, we find that there is a common ground in which
the two definitions coincide.
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3.1 Matsubara formalism
Many-body perturbation theory comes in a few different flavours. The choice of formalism
depends on what kind of observables one wants to calculate. In this thesis, we work with
the Matsubara formalism, which allows us to calculate averages in thermal equilibrium.
Dynamical processes are ruled out, as Matsubara formalism does not include time evolu-
tion in its contour[20]. To calculate time-dependent processes, a more versatile Keldysh
formalism should be adopted. Here are mostly concerned about the phase transition from
the normal to the superconducting state, so equilibrium considerations are sufficient and
Matsubara formalism serves the purpose nicely.

Matsubara formalism is developed by utilizing the formal similarity between the uni-
tary time-evolution operator U = eiHt and the thermal density operator ρ = eβH/Z, where
Z = Tr eβH . Using the similarity between ρ and U , we can define a ’time evolution’ for
the imaginary time

Â(τ) = eHτ Âe−Hτ . (3.3)

The usual Heisenberg picture is obtained by setting τ=it. For this reason Matsubara
formalism is also known as imaginary-time formalism. We refer to parameter τ as time,
even though it does not correspond to actual physical time.

Time-evolved annihilation and creation operators are

cpσ(τ) ≡ eHτcpσe
−Hτ

c†
pσ(τ) ≡ eHτc†

pσe
−Hτ

(3.4)

Because this time-evolution is not unitary, c†
pσ(τ) 6= [cpσ(τ)]†, except on the imaginary

axis τ=it.
Expectation values are calculated according to the usual rules of statistical mechanics,

〈A〉 = Tr ρÂ, (3.5)

where Â is some operator. Usually we do not have to resort to this definition and explicitly
calculate expectation values based on the density matrix, but it serves to motivate the
definitions and boundary conditions for Green’s functions.

Single-particle Green’s operator is then defined as

Gσ(p, τ, τ ′) = −
〈
Tcpσ(τ)c†

pσ(τ ′)
〉
. (3.6)

The sign of G is arbitrary, but here the normalization used corresponds to that used in
Fetter and Walecka[21]. T is the time-ordering operator. It orders the operators in an
increasing order from left to right with respect to τ . For two operators, this means that

TA(τ)B(τ ′) =

A(τ)B(τ ′), τ < τ ′

B(τ ′)A(τ), τ > τ ′
(3.7)
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Usually, hamiltonian H is time-independent, and G only depends on the difference
τ − τ ′, and not on the separate values of τ and τ ′. We can then drop one time variable
from G.

By using the cyclic property of the trace and the definition of the thermal density
operator ρ, it can be shown that the fermionic propagator as defined in (3.6) is antiperiodic
with the period β. This is known as Kubo-Martin-Schwinger (KMS) boundary condition,

G(τ) = −G(τ + β). (3.8)

We can define Matsubara frequencies ωn corresponding to time τ through Fourier trans-
form. Because G is an antiperiodic function, the frequencies are discrete:

G(τ) = 1
β

∞∑
n=−∞

G(ωn)e−iωnτ , with ωn = (2n+ 1)π/β. (3.9)

In the inverse transformation the interval can be restricted to one period [0, β] as implied
by the KMS boundary condition:

G(ωn) =
∫ β

0
dτ G(τ)eiωnτ (3.10)

A bosonic propagator, defined analogously to (3.6), but with operators obeying com-
mutation instead of anticommutation rules, is a periodic function with period β:

D(τ) = D(τ + β). (3.11)

This can be expressed in frequency space as

D(τ) = 1
β

∞∑
n=−∞

D(ωn)e−iνnτ , with νn = 2nπ/β. (3.12)

The important difference between the fermionic (3.9) and bosonic propagators (3.12) is
that the fermionic propagator is defined at odd Matsubara frequencies ωn and bosonic
propagator at even Matsubara frequencies νn.

At zero temperature β → ∞ and ω is a continuous variable. The frequency summa-
tions at the finite temperature can then be translated to zero temperature integrals by
the substitution

1
β

∞∑
n=−∞

→
∫ ∞

−∞

dω
2π . (3.13)

Matsubara formalism simplifies many derivations by avoiding singularities on the real
axis. This is especially handy when calculating solutions numerically, as we do not need to
identify poles and do principal value integrations around them. However, the price to be
paid is that the solutions we find are defined on the imaginary times and frequencies, when
most of the physically meaningful information is on the real axis. Real and imaginary
axes do intersect at τ = 0 = t, so we can get static information directly from Matsubara
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representation.
Translation from the imaginary propagator to the real-time retarded propagator can

be obtained by finding an analytical function G(z,p) which coincides with the Matsubara
propagator at points z = iωn and which has no singularities at the upper half-plane
Im z > 0. This function is unique if we also require G(ω,p) → 0, as |ω| → ∞.[22] If we
already have an analytical expression for the imaginary-time Green’s function, translation
to the real time can be as simple as

iωn → ω + iη,

where η is a positive infinitesimal.
In the interacting case, analytical expression is usually not be available, and we only

know the Green’s function in its discretized, numerical form. In such a case, the analytical
continuation is a non-trivial task and there is no general method. In the Eliashberg
case, this can be done either by Padé approximants[23], or by Marsiglio’s method, which
amounts to solving a set of non-linear integral equations[24].

3.2 Electron propagator in the normal state
I first demostrate the properties of Green’s functions in the normal state. The generaliza-
tion to the superconducting state is straightforward and the similarities and differences
between the two states clearly stated.

Normal-state Green’s function is already defined in (3.6), but I repeat the definition
here.

G(p, τ) = −
〈
Tcp↑(τ)c†

p↑(0),
〉

(3.14)

where, for definiteness, we have chosen the spin-up state. We are concerned with isotropic
systems without magnetization, so spin-up and spin-down states are symmetric, G↑ = G↓

and we do not need the label for spin. The time invariance of the Hamiltonian has also
been used in eliminating the other time index τ ′ from the original definition.

Expanding the time-ordering operator with the Heaviside step function θ, we can write
Green’s function as

G(p, τ) = −θ(τ)
〈
cp↑(τ)c†

p↑(0)
〉

+ θ(−τ)
〈
c†

p↑(0)cp↑(τ)
〉
. (3.15)

By taking a time derivative of the above expression and reconstructing the time-ordering
operator from the diffent step function parts, we get an equation of motion for the single-
particle Green’s function,

d
dτ G(p, t) =δ(τ) +

〈
T

{
d
dτ cp↑(τ)c†

p↑(0)
}〉

, (3.16)

where we use the anticommutation relation and the facts that the derivative of the θ-
function is a Dirac delta function and 〈1〉 = 1.
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Derivative only acts on the first operator, since it is the only one with time dependence.
Derivative of an operator A is given by the Heisenberg equation of motion

dAH

dτ = [H, AH] + ∂AH

∂τ
, (3.17)

which is a consequence of the definition (3.3). The second term with a partial derivative
would take into account explicit time dependence of the Hamiltonian, if we had any. To
calculate the commutator in Eq. (3.17), the following identities are often useful:

[a†
mal, ak] = −δmkal, (3.18)

[a†
mal, a

†
k] = δkla

†
l , (3.19)

where a’s and a†’s can be either bosonic or fermionic annihilation and creation operators.
In our case, for electrons with Hamiltonian (3.1), we have

d
dτ cp↑(τ) = ξpcp↑(τ) +

∑
q
gqϕq(τ)cp−q,↑(τ). (3.20)

The first term is due to commutation with He and the second with He–p. Let us forget
the electron-phonon interactions for a moment and determine Green’s function G0 which
we would have if there were no interaction.

Substituting the relevant part from (3.20) to (3.16), we get

d
dτ G0(p, τ) = δ(τ) − ξp

〈
Tcp↑(τ)c†

p↑(0)
〉
, (3.21)

where the last term can be identified as the electron propagator. Moving that term to
the left hand side, we get (

d
dτ − ξp

)
G0(p, τ) = δ(τ), (3.22)

from which we see that the non-interacting propagator G0 is indeed a Green’s function
in a mathematical sense for the differential operator in parentheses. This fact does not
extend to the interacting Green’s functions.

This equation of motion can be solved algebraically in frequency space. Fourier trans-
forming Eq. (3.22), we get

G0(p, iωn) = 1
iωn − ξp

, (3.23)

where the denominator is never zero, as ξ and ωn are always real, and ωn 6= 0.
In the presence of interaction, Green’s function becomes(

d
dτ − ξp

)
G(p, t) = δ(τ) −

∑
q
gq
〈
Tϕq(τ)cp−q,↑(τ)c†

p↑(0)
〉

(3.24)
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From this equation we see how the interactions are introduced to the system. To actually
introduce them into our equations, we turn to the techniques of field theory and Feynman
diagrams.

Much of the field theory is based on the classification of the Feynman diagrams into
suitable classes which can then summed all at once. This is especially true in a self-
consistent approach like the equation of motion method.

To get a perturbation expansion for G, it is useful to define a self-energy function Σ,
which obeys the following equation in momentum-time space:

G(p, τ) = G0(p, τ) +
∫

dτ1 dτ2 G0(p, t1)Σ(p, τ2−τ1)G(p, τ−τ2) (3.25)

Applying the differential operator from (3.22) to this, we get(
d
dτ − ξp

)
G(p, τ) = δ(τ) +

∫
dτ ′ Σ(p, τ ′)G(p, τ−τ ′) (3.26)

Fourier transforming to frequency space, the differential operator becomes the inverse of
the non-interacting propagator and we can solve for the interacting Green’s function. The
solution is

G(p, iωn)−1 = G−1
0 (p, iωn) − Σ(p, iωn) (3.27)

Which also tells us that the self-energy is the difference between the interacting and non-
interacting Green’s function, and as such represents the contribution from the interactions.

So far we have introduced the general framework in which we can incorporate the
interactions, but the above text does not discuss the actual phonon-mediated interaction
between electrons. It is introduced in the next section by formulating a specific form for
the self-energy which can be inserted in Eq. (3.27).

3.3 Phonon-mediated interaction
We now formulate the phonon-mediated interaction between electrons in terms of the
phonon field. At this point, the derivation is done quite formally. In Sec. 5, in order
to justify some approximations, we take a more careful look into the properties of the
interaction.

To describe the phonon-mediated interaction between electrons, we first need to find
the propagator for the non-interacting phonons. To simplify the derivation of the phonon
propagator, we define a phonon field operator

ϕq = bq + b†
−q (3.28)

for which ϕ†
q = ϕ−q. These operators commute with each other:

[ϕq, ϕq′ ] = 0.
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Figure 3. Diagrams mentioned in the text

Thermal propagator for phonons is usually denoted by D and is defined similarly to (3.2)

D(q, τ) = −
〈
Tϕq(τ)ϕ†

q(0)
〉
. (3.29)

Using the propagator defined with ϕ’s instead of b’s makes the Feynman rules for the
theory somewhat simpler. If we would use the propagator

〈
Tbqb

†
q

〉
, we would have to

consider separately incoming and outgoing phonons. With D defined as above, only the
transmitted four-momentum counts.

In this thesis, we do not consider phonon self-energy, but use the non-interacting prop-
agator for phonons and only consider the interaction effects on electrons. The rationale
behind this is that for real materials the phonon dispersion would usually be obtained
from spectroscopic data, and if we use such an experimental dispersion, it already contains
the contribution from the self-energy. We would be double-counting the diagrams if we
would include it again.

For the non-interacting Hamiltonian, we notice that

d2ϕq

dτ 2 = ω2
qϕq, (3.30)

so in order to close the equations of motion, we have to take the second derivative:(
d2

dτ 2 − ω2
q

)
D(q, τ) = 2ωqδ(τ). (3.31)

The frequency form of the propagator is

D(q, iνn) = −2ωq

ω2
q + ν2

n

, (3.32)

where νn are now bosonic (even) Matsubara frequencies.
In terms of Feynman diagrams, electron self-energy can be defined as the sum of all

the amputated diagrams in which one electron enters and one exits. Here ’amputated’
means that we do not count diagrams in which the first or the last node is connected
to a single propagator. We also only consider connected diagrams. Further, irreducible
self-energy is defined as the sum of self-energy diagrams which cannot be cut into two by
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removing one propagator. This is actually the self-energy that was defined in (3.25).
We also need to define a dressed vertex. A bare vertex of the electron-phonon in-

teraction can be read from the Hamiltonian (3.1) and it gives a contribution of g to
the diagrams. The bare vertex is shown in Fig. 3b. In the bare vertex, there are three
branches: an incoming electron, an outgoing electron and a phonon. Dressed vertex Γ is
then defined as the sum of all the (connected) diagrams which have one incoming elec-
tron, one outgoing electron and one entering phonon line. Its value Γ(p, q) depends on
the four-momentum p of the incoming electron and the four-momentum q of the phonon.

Because there is no zero-momentum phonon (it would amount to the translation of
the whole crystal) there is also no tadpole diagram (fig. 3a) for phonons. It can then be
seen that the complete electron self-energy can be expressed in one diagram:

g
Γp′

p− p′

1

in which the thick lines denote dressed electron and phonon propagators and the crossed
dot denotes the dressed vertex. This is known as the Dyson equation, and it can be
written also as [25]

Σ(p, iωn)=T
∑
m

∫ d3p′

(2π)3 gD(p−p′, iωn−iωm)G(p′, iωn)Γ(p′, iωn; p−p′, iωn−iωm). (3.33)

As mentioned above, we use the phonon propagator obtained in the previous section
in place of the dressed propagator. Still, the relative simplicity of Dyson’s equation
is deceiving, as the vertex function is actually a very complex object. Luckily, in the
electron-phonon case, it can be approximated with good accuracy by the bare vertex.
The justification for this comes from Migdal’s theorem[7] which is discussed in the next
section. After that approximation, Dyson’s equation is

Σ(p, iωn) = T
∑
m

∫ d3p′

(2π)3 g
2D(p−p′, iωn−iωm)G(p′, iωn). (3.34)

From the point of view of electrons, phonons act as mediators of an effective force.
The ’potential’ associated with this force is

g2D(q, ω) = − 2g2ωq

ω2
q − ω2 , (3.35)

and we can see that the interaction is attractive (has a negative sign) for frequencies
|ω| < ωq. Of course this is not an ordinary potential, because it depends on the frequency
ω, which has a meaning only in the context of Green’s functions.
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1
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Figure 4. Ladder diagrams

3.4 Migdal’s adiabatic theorem
There is a theorem by Migdal[7] according to which we can with good a accuracy replace
the dressed vertex Γ by the bare g in the usual metallic systems where the phonon and
electron energy scales are separate: ωD � εF . The justification is based on the argument
that the most important class of diagrams contributing to the vertex are so-called ladder
diagrams, which are pictured in Fig. 4. By calculating the relative contribution to the
dressed vertex from the first ladder diagram, it can be seen that it is usually of the order

O(λωD

εF

),

where λ is the dimensionless coupling parameter corresponding to the BCS interaction
strength,

λ = 2g2N(0)
ωD

. (3.36)

Ladder diagrams can be defined recursively, so the contribution from the second order
ladder is

O(
(
λ
ωD

εF

)2
),

and so on for the following orders. This means that the expansion parameter in our field
theory is not λ, but λ times the ratio between typical phonon and electron energies, which
is typically of the order ∼ 1/100. This ratio is also often written as

√
m/M , where m and

M are the mass of the electron and the nucleus, respectively. Migdal’s theorem can thus
be considered as a many-body perturbation theory analogue to the Born-Oppenheimer
approximation.

Migdal’s theorem is valid in metals, but in flat-band systems the validity has to be
verified separately, as the energy scales of phonons and electrons might be of the same
order or ordered differently with respect to each other.



20

4 Eliashberg theory for electron-phonon interaction
We are now ready to move on to discuss superconductivity. In the normal state, normal
propagator (3.2) is all we need to describe electrons. This is because other expectation
values of combinations of annihilation and creation operators vanish. But as we learn from
the BCS model, in the superconducting phase we also have the non-vanishing anomalous
expectation value. In field theory, the non-vanishing expectation value corresponds to a
non-vanishing propagator. We can define two anomalous propagators

F (p, τ) = −
〈
Tcp↑(τ)c−p↓(0)

〉
(4.1)

F̄ (p, τ) = −
〈
Tc†

−p↓(τ)c†
p↑(0)

〉
. (4.2)

These function are even in time,

F (p, τ) = F (p,−τ) and F̄ (p, τ) = F̄ (p,−τ), (4.3)

which means that they are also even in frequency,

F (p, iωn) = F (p,−iωn) and F̄ (p, iωn) = F̄ (p,−iωn). (4.4)

If F (p, iωn) is chosen to be real (in isolated superconductor this is possible by gauge
freedom), then it can also be shown by taking a complex conjugate of Eq. (4.1) that F
and F̄ coincide,

F̄ (p, iωn) = F (p, iωn). (4.5)

The equation of motion for F is(
d
dτ − ξp

)
F (p, t) = −

∑
q
gq 〈Tϕq(τ)cp−q↑(τ)c−p↓(0)〉 (4.6)

In this case, the annihilation operators always anti-commute, so there is no delta function
in the equation of motion, and the non-interacting F vanishes. As it should, because
there is no superconductivity without interactions.

We also need the time-reversed propagator

Ḡ(p, iωn) = −
〈
Tc†

−p↓(τ)c−p↓(0)
〉

(4.7)
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Figure 5. Diagram which contributes to G and modifies the Dyson equation. With
equal number of F ’s and F̄ ’s the electron number is conserved.

As the name suggests, Ḡ(τ) = G(−τ). For the frequency representation this implies

Ḡ(p, iωn) =
∫ β

0
dτ eiωnτG(−τ) =

∫ 0

−β
dτ e−iωnτG(τ)

=
∫ β

0
dτ e−iωnτG(τ + β) = −

∫ β

0
dτ e−iωnτG(τ)

= −G(p,−iωn),

(4.8)

where the last step follows from the KMS boundary condition (3.8).
In the presence of the anomalous propagator, Dyson’s equation (3.34) ceases to be

valid. The reason for this is that if we define G to include all the diagrams in which
one electron enters and one exits, then we get contributions from F as well, for exam-
ple the diagram shown in Fig. 5. The easiest way to generalize Dyson’s equation for a
superconductor is to write everything in the Nambu basis.

4.1 Collecting time-reversed states in a Nambu spinor
In the above derivation of the BCS theory the Nambu trick helps us to diagonalize the
Hamiltonian. Here it is useful because in the Nambu basis the Feynman rules for the
normal metal can be translated into Feynman rules for the superconductor with minor
modifications. In particular, the similarity between the Feynman rules means that the
Dyson equation also has a form analogous to (3.34).

The Nambu spinors are defined as above,

Ψp =
(
cp↑
c†

−p↓

)
, Ψ†

p =
(
c†

p↑ c−p↓
)
. (4.9)

Pauli matrices in Nambu space are written with τ to distinguish them from Pauli
matrices operating in spin space commonly denoted with σ’s. They are

1 =
(

1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (4.10)
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Hamiltonian (3.1) can be written in terms of diagonal Pauli matrices 1 and τ3:

He =
∑

p
ξpΨ†

pτ3Ψp =
∑

p
Ψ†

p

(
ξp 0
0 −ξp

)
Ψp,

He–p =
∑
pq
gqϕqΨp+qτ3Ψp,

(4.11)

and the non-interacting phonon part is unmodified.
We can then define a matrix propagator, which collects in one matrix both the normal

and anomalous propagators as defined in the previous section,

G(p, τ) = −
〈
TΨp(τ)Ψ†

p(0)
〉

≡
(
G(p, τ) F (p, τ)
F̄ (p, τ) Ḡ(p, τ)

)

= −

 〈Tcp↑(τ)c†
p↑(0)〉 〈Tcp↑(τ)c−p↓(0)〉

〈Tc†
−p↓(τ)c†

p↑(0)〉 〈Tc†
−p↓(τ)c−p↓(0)〉

 . (4.12)

In frequency space, this is

G(p, ω) =
(
G(p, ω) F (p, ω)
F (p, ω) −G(p,−ω)

)
, (4.13)

where we take the symmetries (4.5) and (4.8) into account.

4.2 Nambu equation of motion and Dyson’s equation
The non-interacting propagator can be determined with the equation of motion method
from the Hamiltonian (4.11)

G0(p, ω) = [ω1 − ξpτ3]−1. (4.14)

For the interacting propagator, we just add the self-energy,

G(p, ω) =
[
G−1

0 (p, ω) − Σ(p, ω)
]−1

. (4.15)

The irreducible self-energy Σ is defined through the Dyson’s equation [9]

Σ(p, iωn) = T
∑
m

∫ d3p′

(2π)3 g
2D(p − p′, iωn − ωm)τ3G(p′, iωm)τ3, (4.16)

where we again use Migdal’s theorem and approximate the vertex with its bare value as
in the normal state. The effect of sandwiching τ3Gτ3 is just to switch the signs on the
off-diagonal terms.

There is a small difference between the phonon propagator in the normal state and in
the phonon propagator in the superconducting state, which comes from contribution of the
anomalous propagator to the phonon self-energy. This contribution only affects phonons
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with energy comparable to ∆. In particular, in the superconducting state, phonons with
energy less than 2∆ are unable to decay into electron-hole pair so that their lifetime
becomes infinite. For phonons with energies just above 2∆, the decay rate is enhanced
and the lifetime diminished.[26] Because only a small fraction of the phonons is affected by
this effect, with little weight in the integral of Eq. (4.16), the effective interaction between
the electrons is not significantly altered, and we can use the same phonon propagator D
in the superconducting state as in the normal state.

The equations above have simple forms in Nambu space. However, to obtain expres-
sions for the separate components, we write them in a matrix form. First we divide the
self-energy into diagonal (normal) and off-diagonal (anomalous) components:

Σ(p, iωn) =
(

Σ(p, ω) φ(p, ω)
φ∗(p, ω) Σ(p,−ω)

)
. (4.17)

With this notation, we can calculate the inverse matrix in (4.15). Suppressing the mo-
mentum index, the result is

G(iωn) = 1
Ω(p, iωn)

(
G−1

0 (−iωn) + Σ(−iωn) −φ(iωn)
−φ∗(iωn) G−1

0 (iωn) + Σ(iωn)

)
, (4.18)

where Ω is the determinant of the inverted matrix:

Ω(iωn) =
[
iωn − ξp − Σ(iωn)

]
×
[
iωn + ξp + Σ(−iωn)

]
− |φ(iωn)|2. (4.19)

Note that Ω is an even function of frequency,

Ω(iωn) = Ω(−iωn). (4.20)

From Dyson’s equation (4.16) we have an equation for Σ in terms of G, and from
the equation of motion (4.18) we have an equation for G in terms of Σ. The loop can
be closed by substituting G from the latter equation into the former equation. We thus
obtain a self-consistency equation for the self-energy. Before writing down that equation,
it is useful to divide the self-energy a bit further into different components in Nambu
basis. This is done in the next section.

4.3 Eliashberg equations
Divide the diagonal part of the self-energy into odd and even frequency components,

Σ(iωn) − Σ(−iωn) = i[1 − Z(iωn)]ωn, (4.21)
Σ(iωn) + Σ(−iωn) = χ(iωn). (4.22)

Defined this way, both Z and χ are even functions in frequency. Note that with no
interactions and no self-energy, Z=1. Also, because of the symmetries in Green’s function
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described in Eq. (4.8), we can associate Z with the matrix 1 and χ with τ3. φ can also
be divided into a real and complex parts φ1 and φ2, corresponding to matrices τ1 and τ2,
respectively. The self-energy can then be written as

Σ = i[1 − Z]ωn1 + φ1τ1 + φ2τ2 + χτ3. (4.23)

Pauli matrices and 1 form a complete basis for these hermitian 2 × 2 matrices, so the
expression above is completely general in a spin-symmetric Nambu space. We already
chose φ to be real, so φ2 = 0 and we do not have to consider the τ2 component.

The Nambu propagator is then

G(p, iωn) = −iωnZ(p, iωn)1 + [ξp + χ(p, iωn)] τ3 + φ(p, iωn)τ1

Ω(p, iωn) , (4.24)

where
Ω(p, iωn) = [Z(p, iωn)ωn]2 + [ξp + χ(p, iωn)]2 + [φ(p, iωn)]2. (4.25)

Substituting now the G to Dyson’s equation (4.16), we obtain the Eliashberg equations
for the different self-energy components, [26]

φ(p, iωn) = −
∫ d3p′

(2π)3
1
β

∑
m

g2
p−p′D(p−p′, iωn−iωm)φ(p′, iωm)

Ω(p′, iωm) (4.26)

Z(p, iωn) = 1−
∫ d3p′

(2π)3
1
β

∑
m

g2
p−p′D(p−p′, iωn−iωm)ωm

ωn

Z(p′, iωm)
Ω(p′, iωm) (4.27)

χ(p, iωn) = +
∫ d3p′

(2π)3
1
β

∑
m

g2
p−p′D(p−p′, iωn−iωm)ξp′ + χ(p′, iωm)

Ω(p′, iωm) (4.28)

These different components only couple through the common denominator Ω. The equa-
tion for φ always has a trivial solution φ = 0, which corresponds to the normal state. Z
and χ are generally also present in the normal state, and are only slightly altered by the
transition to the superconducting state.

The connection between the BCS energy gap ∆ and the anomalous self-energy φ can
be established by considering the quasiparticle spectrum from the poles of the propagator
for which Ω = 0. This can be naturally done in real frequencies, not in the Matsubara
formalism. Define ∆ as the energy gap, so that it corresponds to the the lowest energy
excitation. This excitation occurs at the fermi surface |p| = pF . ∆ satisfies the equation

∆ = φ(pF ,∆)
Z(pF ,∆) ≈ φ(pF , 0)

Z(pF , 0) , (4.29)

where the approximation is valid if ∆ � ωD, because then Z(pF ,∆) ≈ Z(pF , 0) and
φ(pF ,∆) ≈ φ(pF , 0).

Z-component of the self-energy can be interpreted in metals as the relative change in
the Fermi velocity due to electron–phonon interaction. This can be seen by considering
the normal state, and an electron on its mass shell with energy Ep, so that ω = Ep
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(assuming spherically symmetric Fermi surface). Then the dispersion relation modified
by the interactions can be determined self-consistently from[27]

Ep = εp + Σ(p, Ep) = εp + (1 − Z(p, Ep))Ep, (4.30)

where χ is neglected, as in metals it is usually small compared to other energies. Taking
the derivative with respect to p at the Fermi momentum pF on both sides gives

dEp

dp

∣∣∣∣
F

= vF +
(
∂Z

∂p
+ ∂Z

∂ω

∣∣∣∣
ω=0

∂Ep

∂p

)
EpF

+ (1 − Z(pF , 0))dEp

dp

∣∣∣∣
F
, (4.31)

where the derivative of Z was decomposed into a sum of partial derivatives. As the
momentum dependence of the electron-phonon interaction is usually weak, the partial
derivative of Z with respect to p is small. Also, the partial derivative with respect to ω
vanishes at the Fermi level (ω = 0), because Z is even in frequency. Thus, we have

v∗
F = dEp

dp = vF

Z(pF , 0) , (4.32)

which can be interpreted as the effective Fermi velocity in the presence of electron–phonon
coupling. By reducing the Eliashberg equations to the BCS limit, it is seen below that
the presence of Z reduces the strength of the effective interaction and opposes supercon-
ductivity.

4.4 Equation for the chemical potential
We get the electron density from the diagonal component of Nambu Green’s function,[26]

np↑ − 1 = −
〈
cp↑c

†
p↑

〉
= G(p, τ=0)

= lim
τ→0+

T
∑

n

G(p, iωn)eiωnτ

The total number density is fixed, so this creates an equation for the chemical potential
µ:

n = 1 − 2T
∑
n,p

εp − µ+ χn

[Znωn]2 + [εp − µ+ χn]2 + φ2
n

. (4.33)

This equation would also be present even if there were no interactions. At a finite tem-
perature, the occupation of states is described by the Fermi-Dirac distribution, and if the
density of states is unequally distributed below and above µ(T=0), the potential has to
be shifted to keep the electron number fixed as the temperature is raised. The appearance
of the self-energy functions in this relation just reflects the fact that they alter the density
of states.

If the density of states can be considered symmetric above and below µ(T=0), then
the equation is trivially satisfied, and the potential is constant in temperature. Most of
the models considered in this thesis are symmetric this way, the sole exception being the
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Figure 6. Effective interaction strength for Einstein spectrum (red) and the BCS
step function approximation (blue). A small positive imaginary part has been added
to the denominator of the propagator to round the divergence at ω = ωE.

dispersion defined before Eq. (5.14).

4.5 BCS limit
BCS theory can be obtained from the Eliashberg equations (4.26–4.28) by approximating
the phonon propagator with its static value up to the cutoff ωE. In real frequencies, the
propagator for Einstein phonons is

D(q, ω) = −2ωE

ω2
E − (ω + iδ)2 , (4.34)

where δ is an infinitesimal quantity. The propagator has a negative sign for ω < ωE as
shown in Fig. 6. Taking this as the most important feature of the interaction, it can be
approximated by

D(q, ω) ≈ D(q, 0) Θ(|ω| − ωE)
≈ D(q, 0) Θ(|εk+q − εk| − ωE)
= −λΘ(|εk+q − εk| − ωE).

(4.35)

With the cutoff moved from the frequency to the momentum space, the Matsubara sums
can be done with the identity

1
β

∑
m

1
ω2

m + E2 = 1
2E tanh

(
βE

2

)
. (4.36)

For weak coupling Z(ω = 0) ≈ 1 + λ and φ ≈ ∆/(1 + λ), so after approximating the
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density of states with a constant N(0), the Eliashberg equation for φ becomes

∆(ε) = λN(0)
1 + λ

∫ +ωE

−ωE

dε′ ∆(ε′)
2
√
ε′2 + ∆(ε′)2

tanh

√
ε′2 + ∆(ε′)2

2T

, (4.37)

This has the same form as the finite-temperature BCS equation (2.28), with a slight
reduction to λ coming from the self-energy function Z = 1 + λ.
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5 Eliashberg equations in metals

By using g2
qD(q, νn) as the interaction kernel in Eqs. (4.26–4.28), we are considering scat-

terings from momentum state p to another momentum state p′. In this work we limit
the discussion on isotropic superconductivity, and therefore it is enough to express our
integrals as scatterings between different energies ξp and ξp′ .

To achieve this, we first write the 3D momentum integral that appears in Eqs. (4.26–4.28)
as an integral over energy ξ and transferred momentum q. In spherical coordinates, the
original integral over p′ is

∫ d3

(2π)3 p′ = 1
4π2

∫ ∞

0
dp′ p′2

∫ +1

−1
du , with u = cos θ, (5.1)

and z-axis from which the angles are measured is chosen along p.
Let’s change q = |p − p′| as the integration variable instead of u. The Jacobian is

simply

J =
∣∣∣∣∣∂u∂q

∣∣∣∣∣ = q

pp′ ,

and the integral becomes
∫ d3p′

(2π)3 = 1
4π2p

∫
dp′ p′

∫ p+p′

|p−p′|
dq q. (5.2)

The q-integration limits are complicated. However, because the integral appears in the
context of electron-phonon interactions, we can do some approximations.

First of all, we choose p from the Fermi surface. We then notice that the largest
contribution to Eqs. (4.26–4.28) comes from the region near the Fermi surface. For this
reason p ≈ pF and p′ ≈ pF and we can simplify the q-integral limits:[28]

∫ d3p′

(2π)3 ≈ 1
4π2pF

∫ ∞

0
dp′ p′

∫ 2pF

0
dq q

= N(0)
∫

dξ
∫ 2pF

0
dq q.

(5.3)

The integrals in Eqs. (4.26–4.28) which we are considering have a common part with
a phonon propagator, which can be written as

∫ d3p′

(2π)3 g
2
p−p′D(p − p′, z) ≈

∫
dξ
∫ 2pF

0
dq q

2p2
F

∫
dν −2νg2N(0)

ν2 + z2 δ(ν − ωq), (5.4)

where the approximation was to confine the p and p′ to the Fermi surface. We also wrote
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the phonon spectrum in terms of energies. Next we average the interaction over q’s by
replacing δ(ωq − ν) with the F (ν), which is the phonon density of states at energy ν.

It is then conventional to define the Eliashberg function[29]

α2F (ν) = N(0)g2F (ν), (5.5)

where the combination α2F is understood as one symbol. The average interaction at the
Fermi surface is then described by the interaction kernel

λ(z) =
∫ ∞

0
dν 2να2F (ν)

z2 − ν2 , (5.6)

which depends only on Matsubara indices, not on the momenta. This function replaces
the propagator g2D in the Eliashberg equations, as we see in the next section. Writing the
interaction with the Eliashberg function is also useful because it connects the electron-
phonon interaction to density of phonon states, which can be experimentally determined.

5.1 Interaction kernels for Einstein and Debye phonons
For the Einstein phonons, all the phonons have the same energy and the density of states
is a Dirac delta function at energy ωE. The interaction kernel is

λE(z) = 2g2N(0)ωE

z2 − ω2
E

= λω2
E

z2 − ω2
E

, with λ = 2g2N(0)
ωE

. (5.7)

In this simple case, λ(z) corresponds exactly to g2D(z)N(0). λ, defined as above is
dimensionless, and is the natural choice to describe the strength of the effective interaction.

Debye phonons have the dispersion ωq = cq for q < qM , where c is the speed of sound
in the material and qM is a momentum cutoff defined by ωD = cqM , where ωD is the
Debye energy of the material. Density of states is defined through the relation between
energy and momentum integrals:

∫ ∞

0
dν F (ν) =

∫ d3q
(2π)3 = 1

2π2

∫ qM

0
dq q2 = 1

2π2c3

∫ ωD

0
dν ν2, (5.8)

from which we find the density of states

F (ν) = ν2

2π2c3 Θ(ν − ωD). (5.9)

For Debye phonons in a simple electron gas model, after taking screening into account,
the electron-phonon coupling is[30]

gq = Ze2

ε0

q

q2 + k2
s

√
N

2Mωq

, (5.10)
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Figure 7. Strength of the electron-phonon interaction in the two phonon models.
Parameters have been chosen so that the interactions match in the static limit and
that the coefficients of ω−2 in the asymptotic expansion at ω → ∞ are the same. For
the intermediate energies the interaction mediated by Einstein phonons is stronger.

where +Ze is the ionic charge, ε0 is the vacuum permittivity, ks is the Thomas-Fermi
screening length, M is the ionic mass, and N is the number of ions in the system. The
takeaway from this equation is that for Debye phonons in the long wavelength limit q → 0,
the square of the electron-phonon coupling is linearly proportional to the momentum
transfer,

g2
q = aq = bν, for q → 0, (5.11)

with proportionality factors a = (Ze2/ε0k
2
s)2N/2Mc and b = a/c. Using this, I obtain the

interaction kernel for the Debye spectrum,

λD(ω) = −bN(0)
π2c3

∫ ωD

0

ν4

ω2 + ν2 = λ

(
1 − 3

(
ω

ωD

)2 {
1 − ω

ωD

arctan
(
ωD

ω

)})
, (5.12)

where λ = bN(0)ω3
D/3π2c3.

The interaction kernel for the Debye spectrum might at first sight look different from
the Einstein kernel, but they actually have quite the same behaviour, as both are based
on the phonon propagator, which is weighted with the Eliashberg function. Concentrat-
ing on imaginary frequencies z=iω, both kernels have a peak at ω=0 and asymptotic
behaviour λ(iω) ∼ 1/ω2, when ω → ∞. Like the Einstein model, the Debye model has
two independent parameters in the interaction kernel: λ determines the strength of the
interaction in the static limit ω = 0 and ωD determines the scaling of the interaction as a
function of frequency. Debye and Einstein interaction kernels with matching asymptotic
behaviour and λ are compared in Fig. 7. The interaction kernel for the Einstein model
has a simple analytical form, so below, if not stated otherwise, we use it to derive the
results.
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5.2 Eliashberg equations for a metal with finite bandwidth
If the interaction is taken to be of the form (5.6), which has no momentum dependence,
the right-hand sides of the Eliashberg equations (4.26–4.28) do not depend on momentum.
We can then drop the momentum indices from all the self-energy functions. The equation
for χ, for example, reads

χn = −T
∑
m

λ(iωn − iωm)
∫

dξ ξ + χm

(Zmωm)2 + (ξ + χm)2 + φ2
m

, (5.13)

where n and m refer to Matsubara frequencies.
Before integrating over energy, the electron dispersion needs to be specified. Based

on Bloch’s theorem, electrons in a periodic lattice form bands, and these bands will have
some width D = εmax − εmin. In metals the chemical potential µ is in the middle of the
band. We can choose to measure our energies relative to the middle of the band, and
then µ determines the deviation from that midpoint. We have already approximated the
density of states as being constant. This is usually not a good approximation if we are
taking into account the whole band, but it gives us some idea about the dependence of
the different self-energy terms on the electronic structure.

With constant density of states, the self-consistency equation for χ is [31]

χn = −T
∑
m

λ(iωn − iωm)
∫ +D/2

−D/2
dε ε− µ+ χm

(Zmωm)2 + (ε− µ+ χm)2 + φ2
m

= −T
∑
m

λ(iωn − iωm)A1(m),
(5.14)

where A1 is
A1(m) = 1

2 log
[

(Zmωm)2 + φ2
m + (D/2 − µ+ χm)2

(Zmωm)2 + φ2
m + (D/2 + µ− χm)2

]
. (5.15)

The magnitude of A1 depends on the inbalance in the density of states below and above
the chemical potential. If µ=0, then χn=0 and A1(m) = 0 is a solution for this equation.
If µ 6= 0, then χ tends to oppose µ and effectively decrease its magnitude. Because of the
properties of the interaction kernel λ, χn → 0 as |ωn| � ωD.

Doing the same for φ and Z, we get [31]

φn = πT
∑
m

λ(iωn−iωm) φm√
[Zmωm]2 + φ2

m

A0(m), (5.16)

Zn = 1 + πT
∑
m

λ(iωn−iωm)ωm

ωn

Zm√
[Zmωm]2 + φ2

m

A0(m), (5.17)

where

A0(m) = 1
π

arctan
 D/2 − µ+ χm√

[Zmωm]2 + φ2
m

+ arctan
 D/2 + µ− χm√

[Zmωm]2 + φ2
m

 . (5.18)
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Figure 8. Shapes of φ(iωn) (left) and Z(iωn) (right) for λ = 0.4 at T = 0.1ωE. For
weak or intermediate -strength coupling the width of the peaks is independent of λ
and cutoff can usually be chosen to be 10−20ωE. Lines are drawn only to guide the
eye, as the functions are defined at discrete points. The discretization is determined
by the temperature.

In the infinite-bandwidth approximation D → ∞, A0(m) = 1 and A1(m) = 0. In this
approximation χm vanishes and there is also no shift in the chemical potential. We are
then left with the two equations (5.16) and (5.17) in a simplified form. Even they can be
condensed into one by defining ∆n ≡ φn/Zn. When D → ∞, we have

Zn∆n = πT
∑
m

λ(iωn−iωm) ∆m√
ω2

m + ∆2
m

. (5.19)

Substituting the equation for Z in this, we are left with the equation [32]

∆n = πT
∑
m

λ(iωn−iωm)
∆m − ωm

ωn

∆n√
ω2

m + ∆2
m

, (5.20)

which now only depends on ∆, and not on any other function. Example solutions of φ
and Z are shown in Fig. 8. If we removed the −ωm∆m/ωn -term, which comes from the
Z-function, we would obtain a BCS-like self-consistency equation.
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5.3 Transition temperature
Near the transition temperature Tc, we can neglect the ∆m in Eq. (5.20) in the denomi-
nator. The self-consistency equation (5.20) at the transition temperature can be written
explicitly as

∆n =
∞∑

m=−∞

λω2
E

ω2
E + 4π2T 2

c (m− n)2

(
∆m

|2m+ 1|
− 2m+ 1

|2m+ 1|
∆n

2n+ 1

)
(5.21)

In this equation we have two dimensionless parameters, λ and Tc/ωE, which are usually
not independent of each other, as they depend on the same material parameters.

5.3.1 Strong coupling

To study the difference between Eliashberg theory and BCS theory, we first choose the
limit in which Tc/ωE � 1, which can be realized by either keeping λ fixed and taking
ωE → 0 or keeping ωE fixed and taking g → ∞. By noting that m=n term in the sum
(5.21) is zero, and restricting the sum to m6=n, we can neglect the constant term in the
interaction kernel[32]:

∆n = λω2
E

4π2T 2
c

∑
m6=n

1
(m− n)2

(
∆m

|2m+ 1|
− 2m+ 1

|2m+ 1|
∆n

2n+ 1

)
(5.22)

The above equation can be written as an eigenvalue equation with eigenvalues α =
λ/4π2T 2

c . Value of α does not depend on any material parameters, so it is possible
to first solve α numerically, and then Tc from α.

In the numerics we must choose some cutoff N for the summation. Then the equation
will have 2N eigenvalues and we are faced with the question: which one of them corre-
sponds to the physically relevant Tc? Near the transition temperature Zn can be solved
independently of φn and can be regarded as a fixed function in the φ-equation (5.16).
Taking the strong-coupling limit of that equation, one can then use the Perron-Frobenius
theorem, which states that for strictly positive matrices the eigenvector corresponding to
the largest eigenvalue is real and positive[33]. The other eigenvectors are oscillatory. It
is then natural to choose the largest eigenvalue as the one corresponding to the critical
temperature.

The critical temperature can then be calculated from (5.22) by the power iteration
algorithm, which means that we solve ∆ by iteration

∆i+1 = f(∆i)
‖f(∆i)‖ , (5.23)

where f(∆i) corresponds to the rhs of (5.22) without the unknown constant in front of
the summation, and with ∆ replaced with the ith iteration ∆i. Here ∆ is understood as
a vector with the components ∆n. In (5.23) ∆i is also normalized at every iteration. ∆
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Figure 9. Critical temperature in BCS and Eliashberg models. In the weak effective
interaction regime, superconductivity is exponentially suppressed in both models. In
the strong coupling regime, the results diverge, with Eliashberg theory predicting
smaller TC .

is then obtained as the limit of this sequence and Tc can be calculated from

λω2
E

4π2T 2
c

= ∆n

f(∆)n

, for any n. (5.24)

The result for the critical temperature in this limit is[32]

Tc ≈ 0.258ωE
√
λ. (5.25)

This result should be contrasted with the BCS strong coupling limit Tc = λωD, which is
linear in λ.

5.3.2 Weak coupling

When the interaction kernel cannot be simplified as in (5.22), the problem of finding the
critical temperature does not quite turn into an eigenvalue problem as the interaction
kernel depends on Tc in a non-linear way. The equation is still linear in ∆, and the
power iteration algorithm can be modified to find an approximate solution for Tc. Tc

can be solved iteratively by starting from some initial guess T0 and approximating the
interaction kernel at every iteration by

λω2
E

ω2
E + 4π2T 2

c (m− n)2 ≈ λω2
E

4π2T 2
k+1

1
(ωE/4π2Tk)2 + (m− n)2 , (5.26)

so that we can take Tk+1 out of the sum. Tk+1 can then be solved as in (5.24), but now the
solution depends on an earlier value Tk. This approximation is bad if Tk is far from Tc,
but gets exact as the iteration in k converges. In practice the iteration seems to converge
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Figure 10. Transition temperature in the Einstein and Debye phonon models. In
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similar for both model dispersions.

well regardless of the initial guess.
The results for Tc with fixed ωE are shown in Fig. 9. For large λ, the square root

behaviour is clearly seen and for the weak coupling, the behaviour is exponentially sup-
pressed, as in the BCS case. If we choose the BCS interaction parameter as the λ used
here, then the BCS and Eliashberg results coincide in the weak coupling limit. The ex-
ponential behaviour is difficult to calculate numerically, because the number of relevant
Matsubara points is inversely proportional to the critical temperature. To put it the other
way, the number of points increases exponentially as λ decreases.

When the interaction is strong, the Eliashberg theory predicts a smaller TC than the
BCS theory. In small part this is because of the renormalization function Z which in-
creases the denominator in the Eliashberg equations, effectively decreasing the interaction
constant as in Eq. (4.37). The more important factor is the frequency dependence of the
interaction kernel λ(z) and φ, both of which are approximated constant (except for the
cutoff) in frequency in the BCS model.

Let us then compare the Debye and the Einstein models. By again fixing the asymp-
totic and static limits to be same in both models, we can compare them. There is not
much of a difference in the transition temperature between the two models as shown in
the Fig. 10.
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Figure 11. Hartree and Fock self-energy from Coulomb interaction. In the jellium
model, the Hartree term on the left is cancelled by the contribution from the positive
background charge.

5.4 Coulomb interaction
Superconductivity is caused by an attractive interaction. In a lattice the electrons also
interact via Coulomb interaction, which is repulsive. Intuitively it is clear that this repul-
sion weakens the superconducting state and lowers the transition temperature. We would
like to know the exact effect of this repulsion, so let us consider the Coulomb interaction
in more detail.

If we think of the possible Feynman diagrams, then the contributions to the irreducible
electron self-energy from Coulomb interaction can be collected into the two categories
shown in Fig. 11, the Hartree and Fock terms. The propagators and vertices shown in
the figure are bare, but the general diagrams can be obtained from these two by dressing
them in a suitable way.

If we would try to calculate the Hartree term, we would notice that it is divergent.
This is because we are only considering neutral phonons and negatively charged electrons
explicitly, even though the complete system is neutral. To remove the divergence, we
must add a positive background charge. The jellium model assumes that the background
charge is spread out uniformly and because the ions are heavy, the background stays fixed.
In the jellium model it can then be shown that the Hartree term and the term from the
ionic background cancel exactly.[34]

Without the Hartree term, the only contribution to the self-energy comes from the
self-consistent Fock diagram as in the phonon case. Writing the total self-energy as a sum
Σ = Σph + Σc and also by dividing each Nambu space component, we get

φc(p) = −
∫ d3p′

(2π)3T
∑
m

V c(p − p′)φ(p′, iωm)
Ω(p′, iωm) , (5.27)

[1 − Z(p)]cωn =
∫ d3p′

(2π)3T
∑
m

V c(p − p′)Z(p′, iωm)ωm

Ω(p′, iωm) , (5.28)

χ(p)c = +
∫ d3p′

(2π)3T
∑
m

V c(p − p′)ξp′ + χ(p′, iωm)
Ω(p′, iωm) , (5.29)

where, on the right hand side, we have the total self-energy components, which include
both Coulomb and electron-phonon contributions. On the left hand side we only have the
Coulomb parts. Because we consider the Coulomb interaction instantanious i.e., assume
c � vF , where c is the speed of light, there is no frequency dependence in the Coulomb
interaction. The summand in (5.28) is then odd in Matsubara frequencies and the sum
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vanishes. For this reason there is no Coulomb contribution to Z.
Coulomb contribution to χ does not vanish, and can be quite large. The difference

between the normal state χc
N and the superconducting state χc

SC on the other hand,
is small (in metals of order ∆/εF [28]), and the explicit mention of χ can be removed by
including it in the dispersion by redefining ξp+χ(p) → ξp. The effect of χc

SC−χc
N would be

to change the effective electron mass and shift the chemical potential[34], the magnitude of
the shift being in metals of the order of ∆2/εF . The main effects in superconductivity are
created by the electron-phonon interaction and we are considering Coulomb interaction
only as an modifier to those effects. The normal contributions to the Coulomb self-energy
are then removed and the only significant part is the anomalous part φc.

5.5 Anderson-Morel pseudopotential
Examining the two components of φ corresponding to the Coulomb and the electron-
phonon interactions, we notice that the electron-phonon part has a frequency dependence
but no momentum dependence, and for the Coulomb part the reverse is true:

φ(p, iωn) = φph
n + φc(p). (5.30)

The lack of frequency dependence in the Coulomb kernel causes practical problems be-
cause the energy scale that should be considered in the numerics gets large. For phonon
interaction the summation can be typically cut off at 10ωD because of the frequency
dependent kernel, but for Coulomb interaction, energies of the order of the electronic
bandwidth ω ∼ εF should be taken into account. To solve this problem, the method
of Morel and Anderson[11] can be used. In this method, the Coulomb interaction with
infinite range in frequency space is replaced by a pseudopotential with a small cutoff. The
presentation given here follows the article by Schrieffer et al.[28], but I reformulate it in
Matsubara frequencies.

When compressing the Coulomb interaction into a pseudopotential, the strength of the
interaction is also reduced. So, while pseudopotential is basically a calculational trick,
it also reveals that the larger the electronic energies are in comparison to the phonon
energies, the weaker the effect Coulomb interaction has on the order parameter ∆. This
is at least part of the reason why Coulomb interaction is relatively insignificant with
respect to superconductivity.

The summation over frequencies includes both positive and negative frequencies, but
it can be folded over and expressed as a summation over the positive frequencies. All
the self-energy functions are even in ωm, so only the interaction kernel is affected. We
can also add a cutoff N , chosen so that φph

n is effectively zero for |ωn| > ωN . As stated
above, ωN = 10ωD is typically enough. After these manipulations, we have for the
electron–phonon part

φph
n = −T

N∑
m=1

∫ d3p′

(2π)3 [λ(n−m) + λ(n+m)] φm(p′)
[Zmωm]2 + ξ2

p′ + φ2
m(p′) . (5.31)



38

For φc the self-consistency equation can be divided into two parts at the cutoff N .
Above the cutoff, Z ≈ 1 and φph

n ≈ 0 and the only self-energy part which survives is φc.
The frequencies are large above the cutoff, so φ can also be neglected in the denominator
above the cutoff. The self-consistency equation is

φc(p)=−2T
∫ d3p′

(2π)3V
c(p−p′)


N∑

m=1

φm(p′)
[Zmωm]2 + ξ2

p′ + φ2
m(p′) +

∞∑
m=N+1

φc(p′)
ω2

m + ξ2
p′

 , (5.32)

In the isotropic case, the interaction can be averaged over the angles,

φc(p)=2T
∫ ∞

0

dp′

2π2V (p, p′)


N∑

m=1

φm(p′)
[Zmωm]2 + ξ2

p′ + φ2
m

+
∞∑

m=N+1

φc(p′)
ω2

m + ξ2
p′

 . (5.33)

We describe the screened Coulomb interaction between the electrons by a Thomas-Fermi
potential[35]

V c(q) = e2

ε0(q2 + k2
s) , (5.34)

where e is the elementary charge, ε0 is the vacuum permittivity and ks is the Thomas-Fermi
wavevector. The screening length is inversely proportional to ks. With this potential, the
angle-averaged Coulomb interaction is

V (p, p′) ≡
∫ dΩ

4π V
c(p − p′) = e2

4ε0pp′ ln
(

(p− p′)2 + k2
s

(p+ p′)2 + k2
s

)
. (5.35)

Eq. (5.33) can be formally written as a matrix equation,[28]

φc = V F − Ωφc, (5.36)

with p and p′ viewed as matrix indices and the summation over the index represented by
the integral. Here, F is a vector containing the contribution to φc below the cutoff

F (p) = 2T
N∑

m=1

φm(p)
[Zmωm]2 + ξ2

p + φ2
m(p) , (5.37)

and Ω is a matrix containing the contribution above the cutoff, multiplied with the
Coulomb interaction matrix V ,

Ω(p, p′) = 2V (p, p′)T
∞∑

m=N+1

1
ω2

m + ξ2
p′
. (5.38)

In this context, φc is a vector and it can be solved from Eq. (5.36) as

φc = (1 + Ω)−1V F ≡ U∗F, (5.39)

where the matrix inverse in U∗=(1 + Ω)−1V exists because the Coulomb interaction is
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repulsive, and therefore Ω(p, p′) ≥ 0 for all p and p′. U∗ is the Anderson-Morel pseudopo-
tential, and it can be calculated from the integral equation

U∗(p, p′) = V (p, p′) − 2T
∫ ∞

0

dp′′

2π2

∞∑
m=N+1

V (p, p′′)U
∗(p′′, p′)
ω2

m + ξ2
p′′
, (5.40)

from which we can see that the Coulomb interactions above the cutoff are taken into
account by reducing the effective potential U∗ below the cutoff. After U∗ has been solved,
the equation for φc becomes

φc(p) = −
∫ ∞

0

dp′

2π2U
∗(p, p′)T

∑
|ωm|<ωN

φm(p′)
[Zmωm]2 + ξ2

p′ + φ2
m

, (5.41)

which can be included in the Eliashberg equations.

5.6 Pseudopotential in metals
Above, the treatment of the Coulomb interaction is quite general, as we have not even
specified the dispersion relation. In metals, the Thomas-Fermi wavevector ks is of the same
order of magnitude as the Fermi momentum pF . In Eq. (5.40) most of the contribution
comes from the region near the Fermi surface and we can thus approximate U∗(p, p′) ≈
U∗(p, pF ) and similarly for V . If we are also only interested in φc(p) near the Fermi surface,
we can also set p = pF B in U∗(p, pF ). Thus, in this approximation, the angle-averaged
potentials V and U∗ are constant in the regions of interest,

µ ≡ V (pF , pF ) and µ∗ ≡ U∗(pF , pF ). (5.42)

µ∗ can be now solved from Eq. (5.40),

µ∗ = µ

1 + 2µ
∫ dp′

2π2T
∞∑

m=N+1

1
ω2

m + ξ2
p′

. (5.43)

Here µ should not be confused with the chemical potential. It is the magnitude of the
angle-averaged Coulomb interaction and µ∗ is the strength of the corresponding pseu-
dopotential. The Coulomb contribution to φ is

φc = −µ∗
∫ d3p′

(2π)3T
N∑

m=1

φm

[Zmωm]2 + ξ2
p′ + φ2

m

, (5.44)

and the Eliashberg equation for the total φ is

φ(iωn) = T
∑
m

[λ(iωn−iωm) −N(0)µ∗] φm√
(Zmωm)2 + φ2

m

. (5.45)
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Figure 12. Effect of Coulomb interaction on TC .

Within this approximation, the interaction is only modified by an addition of a constant,
but only for φ, as the Coulomb potential is not added to the self-consistency equations
for the other self-energy components.

For a Fermi-surface with finite bandwidth D and constant density of states, we can
also do the momentum integration of (5.43). We get [31]

µ∗ = µ

1 + 2µN(0)πT
∞∑

m=N+1

1
ωm

arctan
(
D

2ωn

) . (5.46)

The arctangent-function serves as a soft cutoff, and is needed for the Matsubara summa-
tion to converge. For infinite bandwidth, an artificial cutoff would have to be introduced.
The above Matsubara summation is a little more involved, but the asymptotical result is

µ∗ = µ

1 + µN(0) log(D/2ωc)
. (5.47)

The bandwidth is of the order of Fermi energy and the cutoff of the order of Debye energy.
From this expression we can see that the larger the discrepancy between the two scales,
the more the pseudopotential is reduced and with it, the Coulomb effects.

Numerical results from the linearized equations for the transition temperature are
shown in Fig. 12. For small U the reduction is linear. Superconductivity does not seem to
disappear even when U > λ, but at large U the algorithm based on fixed-point iteration
starts to oscillate, and a damping factor has to be used to converge the solution. The
iteration is then modified to the form

∆i+1 = (1 − ε)f(∆i) + ε∆i, (5.48)

where ε ∈ [0, 1] is the damping. ε = 0 is the original iteration algorithm. At U ≈ 2, the
damping as strong as ε = 0.99 had to be used. Based on the instability in the numerics,
it is possible that the superconducting phase is physically unstable in such a case.



41

-1 -0.5 0 0.5 1
p=pFB

-1

-0.5

0

0.5

1

"=
" 0

Figure 13. Flat band with the dispersion ε(p) = ±ε0(p/pF B)5. The chemical poten-
tial is at ε = 0.

6 Superconductivity in ideal flat band
So far, I have only considered superconductivity in metals, in which the electronic band-
width is large compared to the Debye energy. This is natural, in the sense that the
most conventional superconductors are metals and the BCS and Eliashberg theories were
originally developed to explain the superconductivity in metals.

There is, however, no real reason why the Eliashberg theory would not apply to other
kinds of systems also, provided the approximations of the theory are critically evaluated.
Based on the BCS expression for the effective interaction strength which is proportional
to the density of electron states, one possible criterion for the choice of the system is a
high density of states.

Density of states is inversely proportional to the derivative of the dispersion relation,
N(0) ∼ [dε(p)/dp]−1, so the density of states is high when the energy varies as little as
possible near the chemical potential. A prototypical dispersion to achieve this is

ε(p) = ε0

(
p

pF B

)N

, (6.1)

where N is some large integer, and ε0 and pF B are the energy and momentum scales,
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respectively, of the system. When p < pF B, the dispersion is very flat, so that ε(p) � ε0.
N = 5 is already large enough to achieve quite a flat dispersion when p < 0.5 pF B (Fig. 13).
We also include a second band with an inverse dispersion ε(p) = −ε0

(
p

pF B

)N
as shown in

the figure. The existence of this second band creates a symmetry between the unoccupied
and occupied states, which removes the need for equations of χ and µ.

This kind of flat band dispersion is obtained in many places, most notably in graphite
at interfaces, surfaces and lateral edges and also in periodically strained graphene[12, 36].
In these cases the momentum is restricted to two dimensions, and in the following, I only
consider 2D momentum.

In the limit N → ∞, the dispersion becomes a completely flat infinite well:

ε(p) =

0 |p| < pF B

∞ |p| > pF B

. (6.2)

As this is the simplest case, I first consider the effect of different factors to superconduc-
tivity with this model dispersion. In Sec. 6.4 I consider finitely flat dispersions.

The BCS self-consistency equation for flat band is achieved by replacing the usual
dispersion in (2.28) with the dispersion (6.2) and by limiting the momentum to two
dimensions. At zero temperature, we get [12]

∆0 =
∫

|p|<pF B

d2p
(2π)2

V

2 = V p2
F B

8π , (6.3)

where V is the strength of the interaction. In contrast to exponentially suppressed ∆ in
metals, in a flat band the strength of superconductivity grows linearly with respect to the
flat band area πp2

F B and interaction strength V . Also, this expression does not depend
on phonon energies, except for the possible dependence hidden in V . The transition
temperature is TC = 2∆0.

6.1 Eliashberg theory
We can also do Eliashberg theory simply by inserting the dispersion (6.2) into the Eliash-
berg equations (4.26–4.28) and again limiting the momentum integration to 2D. This is a
very simple way of projecting the high-energy states out from the Green’s functions and
the validity of this projection should be checked in any real system.

The existence of two bands can be included in the Eliashberg equations by adding
a summation over bands to the momentum integration. With the two bands symmetric
around the chemical potential, the self-consistency equations for χ and µ vanish because
there is no imbalance between the occupied and unoccupied states. The other two Eliash-
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berg equations obtain an extra factor of 2 from the summation over bands, and are

φn = p2
F B

2π T
∑
m

g2DE(iωm−iωn) φm

[Zmωm]2 + φ2
m

(6.4)

Zn = 1 + p2
F B

2π
T

ωn

∑
m

g2DE(iωm−iωn) Zmωm

[Zmωm]2 + φ2
m

, (6.5)

where Einstein spectrum was chosen for analytical convenience. Writing the equation for
φ in terms of the interaction kernel

λ(iωm − iωn) = λω2
E

ω2
E + (ωm − ωn)2 , (6.6)

we find the dimensionless interaction constant

λ = g2p2
F B

πω2
E

, (6.7)

and the equation itself becomes

φn = T
∑
m

λ(iωm−iωn) φmωE

[Zmωm]2 + φ2
m

. (6.8)

Although the loose ωE in the numerator might seem weird, in this way a dimensionless
interaction constant is obtained. That this is the natural choice can be seen by writing
the linearized equations at the transition temperature and pairing each ωE with TC ,

φn = λ
ωE

Tc

∑
m

[
1 + 4π2(m− n)2

(
Tc

ωE

)2]−1
φn

Z2
m(2m+ 1)2 , (6.9)

Zn = 1 + λ
ωE

Tc

1
(2n+ 1)π2

∑
m

[
1 + 4π2(m− n)2

(
Tc

ωE

)2]−1 1
Zm(2m+ 1) , (6.10)

from which we can read the relevant dimensionless parameters as being TC/ωE and λ as
defined above.

In this case, Zn cannot be removed from the equations as easily as in (5.20), so the
asymptotic behaviour is harder to calculate. From numerical calculations, it is seen that
the results coincide in the weak coupling limit with the BCS results (Fig. 14a). In the
strong-coupling limit the transition temperature grows very slowly as compared to the
Fermi-surface result. At Fermi-surface TC ∼ λ1/2 and for the flat band TC ∼ λ0.2 based
on numerical calculations. The temperature dependence of the gap ∆0 has the usual form
as shown in the Fig. 14b.

The BCS limit can also be obtained analytically by taking the static limit, λ(z) ≈ λ,
in which φ and Z also have no frequency dependence. When λ � 1, Z ≈ 1 and the
equation for φ is

φ = T
∑
m

λ
φωE

ω2
m + φ2 = ωEλ

2φ tanh
(
φ

2T

)
. (6.11)
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Figure 14. Left: Transition temperature in with fixed ωE and variable λ. The
solution coincides with BCS result at weak coupling λ → 0. Right: Temperature
dependence of the superconducting gap in flat band with λ = 0.5.

At zero temperature, the superconducting gap is

∆0 ≈ φ0 =
∫ ∞

−∞

dω
2π

λφωE

ω2 + φ2 = λ

2ωE. (6.12)

The transition temperature is obtained by expanding the inverse hyperbolic tangent at
φ = 0.

TC = λ

4ωE or 2TC = ∆0, (6.13)

as obtained from the BCS theory [Eq. (6.3)] with interaction strength V = g2/2ωE.

6.2 Debye phonon model
In the Debye phonon model, the phonons have a maximum momentum qM , which is
detemined by the condition cqM = ωD. In a flat band, the maximum phonon momentum
is not restricted by the requirement cq ≤ ωD, but by the flat band diameter 2pF B. The
order of magnitude of the Debye phonon energy in a flat band is

ω0 ≡ cpF B = ωD
pF B

qM

� ωD, (6.14)

if qM � pF B.
What is the effect of this restriction on the interaction strength? We can estimate it

by neglecting the momentum dependence in the self-energy, so that the interaction can
be averaged over the flat band. Assuming that g2

q = aq and ωq = cq, the average is
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Figure 15. Effect of the Coulomb interaction on TC in a flat band for λ = 1. TC

decreases almost linearly in U . Approximation (6.19) was not used, but the Matsubara
sum was calculated numerically.

calculated as

1
πp2

F B

∫
p<pF B

d2p
∫

p′<pF B

d2p′

(2π)2 g
2
p−p′D(p − p′, iνn)

= a

2π2p2
F Bc

∫ pP F

0
dp
∫ pP F

0
dp′

∫ p+p′

|p−p′|
dq q3

q2 + (ν/c)2

=ap
3
F B

2π2c

∫ 1

0
dx
∫ 1

0
dy
∫ x+y

|x−y|
du u3

u2 + (ν/cpF B)2 .

(6.15)

Here it can already be seen that the relevant scale for energy ν is ω0 as defined in (6.14).
By taking the zero frequency limit ν = 0 of the above expression we get the dimensionless
interaction parameter

λ = ap3
F B

2π2cω2
0
, (6.16)

where the factor of 2 coming from the summation over the bands is included.
With a small flat band momentum as compared to qM , ω0 is small compared to ωD.

Then at low energies the effective interaction is stronger than what would be obtained if
we had ωD instead of ω0. The tradeoff is that it dies off faster at large frequencies. These
two behaviours oppose each other.

6.3 Coulomb pseudopotential in flat band
It is also possible to take the Coulomb interaction into account in the flat band, using the
pseudopotential as in a metal. Again we use the Thomas-Fermi potential of Eq. (5.34) as
a model for the Coulomb interaction. We assume that the screening length is very small,
ks � pF B, so that the interaction is effectively constant on the flat band. The strength



46

of the interaction is
U ≈ U(0, 0) = e2

ε0k2
s

. (6.17)

For a flat band, Eq. (5.43) gives

U∗ = U

1 + p2
F B

2π UT
∞∑

m=N+1

1
ω2

m

. (6.18)

The summation can be expanded asymptotically in the cutoff N :

∞∑
m=N+1

1
(2m+ 1)2 = 1

4N + O( 1
N3 ), (6.19)

so instead of a logaritmic dependence on εF/ωc as in metals, we have a linear dependence
on p2

F B/ωc in the denominator:

U∗ = U

1 + Up2
F B

4π2ωc

. (6.20)

In comparison to the Fermi surface case (5.47) the denominator of (6.20) depends linearly
on the ratio of electron and phonon energies, and not logaritmically as for the Fermi
surface. This means that for flat bands with a large area, the reduction of Coulomb
effects is strong.

Numerical results for the effect on Tc are shown in Fig. 15. The effect seems to be
similar to the Fermi surface case: superconductivity is suppressed by the Coulomb in-
teraction, but because of the pseudopotential effect, the interaction effects are reduced
somewhat and we can have superconductivity when U/λ > 1. It is not clear what happens
after U ≥ 1.2 as the numerics become difficult to do with low TC and with φc and φph

0
having similar magnitudes.

6.4 Finite N

Let us examine the Eliashberg equations for an approximate flat band with 2D dispersion
ε(p) = ε0(p/pF B)N , where ε0 defines the energy scale of the flat band and N ≥ 2 is an
integer. It is possible to integrate out the momentum dependence by using the integral
identity ∫ ∞

0
dx x

x2N + A
= 1

2
π

N sin(π/N)
1

A1−1/N
, (6.21)
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Figure 16. Critical temperature for a finitely flat band with dispersion (p/pF B)N

with χm = 0. The coupling constant is λ̃ as defined below Eq. (6.24). For N = 2
superconductivity is exponentially suppressed within the shown range of λ̃.

For φn we can write

φn = T
∑
m

2g2ωE

ω2
E + (ωm − ωn)2

∫ d2p
(2π)2

φm

(Zmωm)2 + ε2
0

(
p

pF B

)2
+ φ2

m

= g2p2
F B

2πωE

T
∑
m

[
1 +

(
ωm − ωn

ωE

)2
]−1 2φm

ε2
0

∫ ∞

0
dx x

x2N + (Zmωm/ε0)2 + (φm/ε0)2

= αλ
T

ωE

∑
m

[
1 +

(
ωm − ωn

ωE

)2
]−1

φm {(Zmωm/ε0)2 + (φm/ε0)2}1/N

(Zmωm/ωE)2 + (φm/ωE)2 ,

(6.22)

where λ ≡ g2p2
F B/πω

2
E and α ≡ π/(N sin(π/N)). The equation for Zn is

Zn = 1 + αλ
T

ωE

∑
m

[
1 +

(
ωm − ωn

ωE

)2
]−1

Zmωm {(Zmωm/ε0)2 + (φm/ε0)2}1/N

ωn(Zmωm/ωE)2 + (φm/ωE)2 . (6.23)

There are now two energy scales, which the temperature is being compared to: phonon
energy ωE and the flat band energy ε0. The flat band energy scale only appears inside
the curly brackets under the Nth root and its importance is marginal when N is large.
For N → ∞, equations (6.4) and (6.5) are obtained as α → 1 and {x}1/N → 1.

What is the effect on superconductivity for finite N of these two different energy
scales? We notice that ε can be taken out of the Nth root and included in the coupling.
The equation for φn becomes

φn = λ̃
T

ωE

∑
m

[
1 +

(
ωm − ωn

ωE

)2
]−1

φm

{(Zmωm/ωE)2 + (φm/ωE)2}1−1/N
, (6.24)

with the coupling λ̃ = αλ (ωE/ε0)2/N . The equation for Zn can also be transformed into
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a similar form. Critical temperature can now be written in terms of λ̃ and ωE as

Tc = fN(λ̃)ωE, (6.25)

where fN is some function whose shape depends on N .
The dependence of TC on λ̃ for finite N is shown in Fig. 16 for different N . When

N = 2 is the self-consistency equations have by coincidence the same form as in the usual
metallic system, but with the interaction constant defined with different parameters. With
N > 2 the number of layers seems to mostly affect the derivative of TC(λ̃) at λ̃ → 0. For
N → ∞ the ideal flat band behaviour of Fig. 14a is regained.

6.5 Validity of the perturbation expansion
Migdal’s theorem is used in Sec. 3.3 to approximate the full electron-phonon vertex Γ by
its bare value g. The theorem says that in the perturbation theory, we can take λωD/εF

instead of just λ as the small expansion parameter, provided that ωD � εF . In a flat band
εF = 0, so the assumptions of Migdal’s theorem are not met. How do the conclusions
change in the flat band, and when can the vertex corrections be neglected?

Using the Ward identity, Engelsberg and Schrieffer [37] have shown that Migdal’s
theorem actually also fails in metals in case of optical (Einstein) phonons with long
wavelengths and that the correction to the vertex is of the order of λ as defined in
Eq. (3.36), without the extra factor of ωD/εF . In metals, the relative contribution of those
phonons to the self-energy is small and in general Migdal’s theorem stays valid[29]. In a
flat band, the long-wavelength phonons are more important, and it is possible to modify
the argument of Engelsberg and Schrieffer to get an estimate for the vertex corrections in
this case.

The Ward identity is a self-consistency equation for the full vertex Γ(p, q), where
p= (ω,p) is the four-momentum of the incoming electron and q= (ν,q) is the four-
momentum of the phonon. To illustrate the limits, we begin with a generalization of
the Ward identity which is valid for q → 0, [37]

νΓ(ω,p; ν, 0)
g

= G−1(ω + ν,p) −G−1(ω,p). (6.26)

At ν → 0 we get

Γ(ω,p; 0, 0)
g

= lim
ν→0

G−1(ω + ν,p) −G−1(ω,p)
ν

= ∂G−1(ω,p)
∂ω

= ∂G−1
0 (ω,p)
∂ω

− ∂Σ(ω)
∂ω

= 1 − ∂Σ(ω)
∂ω

.

(6.27)

To approximate the size of the vertex corrections with this, we first analytically eval-
uate the self-energy to the lowest order using the Einstein model for phonons. At zero
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temperature it is

Σ(iω) ≈
∫ d2p

(2π)2

∫ dω′

2π g
2DE(iω − iω′)G0(iω′)

= g2pF B

4π P
∫ +∞

−∞

dω′

2π
−2ωE

ω2
E + (ω − ω′)2

1
iω
.

(6.28)

Because at a finite temperature the Matsubara summation does not include zero fre-
quencies, the integral over frequency is evaluated as a principal value integral. After the
integration, the self-energy is found to be

Σ(iω) = λ

2
ω2

Eiω

ω2
E + ω2 , (6.29)

with λ = g2pF B/2πω2
E. This matches with the numerically obtained shape for 1 −Z(iω),

which at low temperatures looks like a Lorentzian.
The self-energy can now be analytically continued to real frequencies on the upper

half-plane by substitution iω → ω + iδ, with δ → 0+. Taking the derivative, we have

∂Σ(ω)
∂ω

= −λ

2
ω2

E(ω2 + ω2
E)

((ω + iδ)2 − ω2
E)2 , (6.30)

which means that at low energies ω � ωE, we find at q → 0 and ν → 0 from the Ward
identity a vertex correction

Γ(ω,p; 0, 0)
g

= 1 + λ

2 , (6.31)

where we did not take into account the fact that the vertex correction should be self-
consistently included on the self-energy, so it would also appear on the rhs of the above
equation. Thus, in order to accurately approximate the full vertex with the bare vertex,
we must have λ � 1, and it would seem that there is no equivalent of the Migdal’s
theorem in a flat band.

For Debye phonons the calculation can be done in a similar fashion as in (6.15) and
again the significant difference is the change of the phonon energy scale from ωE to
ω0 = ωDpF B/qM . At ω → 0 exactly the same result as with the Einstein phonons is
obtained, but with λ as defined in Eq. (6.16).
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Figure 17. Left: Graphene lattice. Carbon atoms belonging to sublattices A and
B have been colored blue and yellow, respectively. a1, 2 are the lattice vectors and
δ1,2,3 are the nearest neighbour vector relating the sublattices to each other. Right:
1st Brilloun zone of graphene. Dirac cones are at K and K ′. b1,2 are the reciprocal
lattice vectors. The figure is from [39].

7 Superconductivity on rhombohedral graphite
In this section, we show that the surface states of rhombohedral graphite realize the flat
band dispersion described in the previous chapter. The presentation is based on the
textbook by Heikkilä[38]. After this, I present the form the Eliashberg theory takes in
the rhombohedral graphite and discuss how to solve it numerically. Before discussing
rhombohedral graphite, I start from a single graphene layer and its Hamiltonian.

7.1 Electronic structure of a single graphene layer
In graphene carbon atoms are arranged in a two dimensional honeycomb lattice, which
is a Bravais lattice with a two-point basis (Fig. 17). The basis defines two sublattices A
and B, which can be described with two lattice vectors

a1,2 = 1
2(∓

√
3, 3)a. (7.1)

Above, a is the lattice spacing, for graphene a = 1.42 . The nearest neighbours of an
A-atom are three B-atoms and the nearest neighbours of a B-atom are three A-atoms.
Nearest-neighbour vectors from an A-atom to a B-atom are

δ1 = −1
2(

√
3, 1)a, δ2 = 1

2(
√

3,−1)a, δ3 = (0, 1)a. (7.2)



51

1
0.5

kya/π

0
-0.5

-1-1

~K′

-0.5
kxa/π

0

~K

0.5
1

-3

-1

0

1

2

3

4

-2

ǫ
/γ

0

Figure 3: The full dispersion of graphene. The non-equivalent Dirac points are
located in the corners of Brillouin zone and are called K and K′.

Since we are interested in the low-energy limit, we focus on the solutions near
these points and make a linear approximation for the Hamiltonian. Small vec-
tors k cannot couple the points K and K′. Therefore the Schrödinger equations
near them separate and we may calculate the Hamiltonian around one valley at
a time. Near point K we have

γk ≈ γ(K) +
dγk

dk
(K)(K− k)

= 1 + eiK·a1 + eiK·a2 +
(

ia1eiK·a1 + ia2eiK·a2
)
· (K− k).

Let us translate the coordinate system such that (K− k) → k, assuming |k| �
h̄/a. With some algebra the equation above comes to a form

γk ≈
3a
2
(êx − iêy)k =

3a
2
· (kx − iky). (26)

Respectively near the point K′ we get

γk ≈
3a
2
(−kx − iky). (27)

Thus the low-energy Hamiltonian is

H ≈ h̄vF

(
0 ±kx − iky

±kx + iky 0

)
= h̄vF(±kxσx + kyσy) (28)

13

Figure 18. Dispersion of graphite. The Dirac cones are at points K and K ′. the
figure is taken from [40].

Using a tight-binding model, the coupling between the states localized at each lattice
point can be described with a nearest-neighbour hopping energy γ0. The tight-binding
Hamiltonian for graphene, written in real space, is [38]

Hg = −γ0
∑
R
ψ(R)† [ψ(R + δ1) + ψ(R + δ2) + ψ(R + δ3)] + h.c., (7.3)

where ψ(R) creates an electron in the state centered at position R. The momentum-space
representation is defined through Fourier transform:

cA,p = 1√
N

∑
R
eip·Rψ(R), cB,p = 1√

N

∑
R
eip·Rψ(R + δ3). (7.4)

In momentum space the Hamiltonian is diagonal except for the mixing between the sub-
lattices,

Hg = −γ0
∑

p
γpc

†
A,pcB,p + h.c., (7.5)

where γp = 1 + eip·a1 + eip·a2 . Collecting the operators from the two sublattices into 1 × 2
vectors, the Hamiltonian can be written as

Hg = −γ0
∑

p

(
0 γp

γ∗
p 0

)
. (7.6)

Writing the eigenvalue equation for the above Hamiltonian, the dispersion of graphene
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can be solved to be

ε(p) = ±γ0|γp| = ±γ0

(
3 + 2 cos

(√
3pxa

)
+ 4 cos

(3pya

2

)
cos
(√

3pxa

2

))1/2

. (7.7)

The dispersion is plotted in Fig. 18. The notable characteristic of graphene is the double-
cone dispersion around certain points in momentum space, known as Dirac points. There
are only two non-equivalent Dirac points, denoted with K and K ′. These momenta are
typically referred as valleys. The rest of the cones can be translated to those two with an
addition of a reciprocal lattice vector.

A low-energy Hamiltonian is obtained from (7.6) by linearizing around the Dirac
points:

Hg ≈ vF

(
0 ±px − ipy

±px + ipy 0

)
, (7.8)

where vF = 3γ0a/2 is the Fermi velocity near the Dirac point. Here, momentum is
measured relative to point K/K ′. The sign of px depends on the choice of the valley.
Above, the coordinate system is chosen so that the positive sign corresponds to K and
negative sign to K ′. With Pauli matrices σx,y acting on sublattice indices, the above
expression can be further condensed to

Hg = vF (±pxσx + pyσy). (7.9)

This is the same form as the relativistic Hamiltonian for two-dimensional massless Dirac
fermions, with ± standing for the choice of chirality, and the speed of light replaced with
the Fermi velocity.

The cones in the graphene dispersion were already noticed in 1947 by P.R Wallace
in a theoretical study of the electronic structure of graphene[41]. Wallace was mostly
interested in studying graphene as part of graphite, and before 2004 it was generally
believed that an isolated graphene layer would not be stable. However, in 2003 Andre
Geim and Konstantin Novoselov succeeded in extracting single graphene layers from bulk
graphite[42]. In 2005 they also managed to connect the graphene samples to electrodes
and measure the Hall conductivity, which was found to be anomalous, suggesting that
graphene has unique electrical properties[43]. Geim and Novoselov were awarded the 2010
Nobel prize in physics for their work on graphene.
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Figure 19. Parameters of the tight-binding model in rhombohedral graphite. γ0 and
γ2 describe the hoppings inside a single graphene layer, whereas γ1, γ3 and γ4 describe
the hoppings between different layers. In this work, we only take into account γ0 and
γ1, the effect of the other terms has been considered in [15] and the do not change
the situation qualitatively, provided ∆ � 2γ1γ4/γ0.

7.2 Electronic structure of rhombohedral graphite
Graphite is an allotrope of carbon composed from multiple graphene layers. There are
two forms of ordered graphite, Bernal and rhombohedral graphite. Bernal is the most
common form, but rhombohedral graphite also occurs in a metastable form. In these two
forms the layers are arranged in different stackings, with different points of the subsequent
layers being on top of each other.[38]

In the following, I concentrate on rhombohedral stacking with the stacking order ABC.
This means that the upper layer is always shifted with a vector δ3 with respect to the
lower layer. The arrangement repeats itself every three layers because 3δ3 = a1 + a2

is a lattice vector. The reason we are interested in this specific arrangement of layers
is because it has low-energy surface states with an approximate flat band. Henni et al.
have experimentally verified that a rhombohedral graphite sample with 17 layers contains
electronic bands with a flat dispersion[16].

Near the K point, the low energy Hamiltonian of rhombohedral graphite is[15]

HRHG(p) =



vF (p · σ) γ1σ+

γ1σ− vF (p · σ) γ1σ+

γ1σ−
. . . . . .
. . . γ1σ+

γ1σ− vF (p · σ)


, (7.10)

which is a N×N -matrix in terms of layer indices. In each layer, there is additionally the
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Figure 20. Low-energy dispersions for rhombohedral graphite with N layers with
different N . The dispersion is very flat already for N = 5.

sublattice structure. Coupling between the layers is described by the ladder operators σ±

and the strength of the coupling is γ1. Inside the planes, carbon atoms are covalently
bonded, but different layers are only held together with van der Waals bonds. Thus,
γ1 � γ0. We take the values of the parameters to be γ0 = 3.2 eV and γ1 = 0.39 eV[39],
keeping in mind that these the values obtained for γ0,1 in a seven-parameter model, and
might not be accurate for our two-parameter model.

The Schrödinger equation for rhombohedral graphite is

(HRHG − ε1) |ψ〉 = 0, (7.11)

where ε is the eigenenergy of the eigenvector |ψ〉. Components at each layer are denoted
by 1 × 2 vectors ψ̌n, where the check-sign is used to remind the reader of the sublattice
structure. Numerically solved dispersion relations are shown in Fig. 20. The prominent
feature of the dispersion is the low-energy states with weak dispersion. These correspond
to surface states.

To study the Hamiltonian (7.10) analytically, we can write the solution as an recursion
relation between the different layers:

γ1σ+ψ̌n−1 + [vF (p · σ) − ε1] ψ̌n + γ1σ−ψ̌n+1 = 0, for n 6= 1, N (7.12)

As described in [44], the solutions for this kind of recurrence relation can be expressed in
the form

ψ̌n = A1r
n
1 α̌1 + A2r

n
2 α̌2, (7.13)

where Aj are constants to be determined from the boundary conditions. In this case, the
equations for the surfaces determine them. rj and α̌j are the eigenvalues and eigenvectors
of the characteristic equation(

γ1σ̌+ + r [vF (p · σ̌) − ε1] + r2γ1σ̌−
)
α̌ = 0, (7.14)
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Inspecting the general form of the solution (7.13), it can be seen that if |r| = 1, the
amplitude of the solution is the same on all layers. In that case, the state is delocalized
over the whole crystal, and the solution describes a bulk solution. We can then choose
r1 = eidq and r2 = e−idq, with d being the distance between the layers and q the out-of-
plane momentum. The solution has the familiar plane wave form.

On the other hand, if |r| < 1, the state decays when proceeding from the surface to
the bulk. If we insist on writing the solution in terms of out-of-plane momentum q, we
will have to generalize it to complex values: q = q′ + iq′′, where q′ and q′′ are real and
q′′ > 0. Now the amplitude of the solution on each layer is determined by

|rn| = e−q′′dn, (7.15)

which means that the state decays exponentially into the bulk. Had we chosen |r| > 1
(q′′ < 0), the solution would be localized on the opposite surface.

Returning to the specific case of rhombohedral graphite, by defining p̃ = p/pF B,
pF B = γ1/vF , φ = − arg(px + ipy) and ε̃ = ε/γ1, Eq. (7.14) can be written as

[
−rε̃ 1 − rp̃e−iφ

r2 − rp̃eiφ −rε̃

]
α̌ = 0, (7.16)

We can restrict the study to surface states by approximating ε ≈ 0 in (7.16). Taking
the determinant of the matrix in (7.16), the roots are then seen to be r1 ≈ p̃eiφ and
r2 ≈ eiφ/p̃. The solution is localized to the surfaces if p � pF B. When p ≈ pF B, the state
is spread over the whole crystal.

The vectors α corresponding to r1 and r2 are

α̌1 =
[

1
ζeiφ

]
, α̌2 =

[
ζ

eiφ

]
, with ζ = p̃ ε̃

1 − |p̃|2
, (7.17)

so that the solution in each layer is

ψ̌n = A1 p̃
n−1

[
1
ζeiφ

]
+ A2 p̃

N−n

[
ζ

eiφ

]
. (7.18)

The equations for the surfaces couple A1 and A2:

[vF (p · σ) − ε1] ψ̌1 + γ1σ−ψ̌2 = 0, (7.19)
[vF (p · σ) − ε1] ψ̌N + γ1σ+ψ̌N−1 = 0, (7.20)

Substituting the solution (7.18) into these, we can solve the constants Ai and the energy
ε. The first component of Eq. (7.19) and the second component of (7.20) equation reduce,
respectively, to

A1
ε̃

1 − p̃2 = A2 p̃
N and A2

ε̃

1 − p̃2 = A1 p̃
N . (7.21)
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Solving ε̃ from this pair of equations, the dispersion relation is found be

εp = ±ξp

(
1 − p2

p2
F B

)
, with ξp = γ1

(
p

pF B

)N

. (7.22)

The surface states of rhombohedral graphite thus realize the flat band dispersion discussed
in the previous chapter. The superficial difference to an ideal flat band system is the
factor of (1 − p2/p2

F B), which flattens the flat band even more at its boundaries. The
more important difference is the fact the surface states are not localized to the surface
and that the electron–phonon interaction couples them to other energy eigenstates. We
must also keep in mind that the above is obtained near K valley and that there is there
is a similar dispersion at K ′ valley. The two electrons bound to a Cooper pair occupy
different valleys.

7.3 Surface superconductivity in the BCS model
The above derivation for the surface state spectrum can be extended for superconducting
state within the BCS theory by replacing the Schrödinger equation with the Bogoliubov–
de Gennes equations. This has been done by Heikkilä and Kopnin[15], and is not be
presented here in detail. Some points of the derivation are presented, as they are im-
portant also for the Eliashberg derivation, and give some intuition about the possible
superconductivity in rhombohedral graphite.

To write the Bogoliubov–de Gennes equations, we need the Hamiltonian for the time-
reversed states (holes). The corresponding hole for the particle at valley K is situated in
the valley K ′. In spite of this, the hole Hamiltonian can be shown to coincide with the
particle Hamiltonian, [15]

Hh(K,p) = H∗(−K,−p) = H(K,p). (7.23)

The Bogoliubov–de Gennes equations are
∑
m

τ3 ⊗Hnm(K,p)Ψ̌m + ∆̌nΨ̌n = εΨ̌n. (7.24)

The above equation has a similar structure as the Schrödinger equation for the normal
state, and the same method as used for Eq. (7.11) can be used to solve it, the only
difference being the extra Nambu dimension in the matrices and vectors.

What is the form of the order parameter in the sublattice space? In both valleys, the
surface states of sublattices A and B are localized at surfaces n = 1 and n = N , respec-
tively. As the graphene layers are weakly coupled as compared to the coupling inside the
layer, the phonon-mediated interaction mainly happens between the electronic states lo-
calized in the same plane. The attractive interaction leading to surface superconductivity
thus happens between the surface states at the opposite valleys. Because in the sublattice
A the surface states are localized at the surface n=1 in both valleys (for sublattice B, at
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the surface n=N), the order parameter ∆ is diagonal in sublattice space.
Assuming that ∆ is non-zero only at the surfaces, and N → ∞ so that the two surfaces

decouple, a self-consistency equation for ∆ can be obtained, [15]

∆ = W

d

∫
p<pF B

d2p

(2π)2
(1 − p2/p2

F B)2∆√
|∆|2(1 − p2/p2

F B)2
× tanh |∆|(1 − p2/p2

F B)
2T , (7.25)

where W is the 3D coupling potential and d is the distance between the layers. This
equation differs from the self-consistency equation for metals by the presence of the nor-
malization factors (1 − p2/p2

F B) connected to the delocalization of the surface states. At
zero temperature, Eq. (7.25) reduces to

∆0 = g

8π , (7.26)

with the coupling energy g = Wp2
F B/d. As in the case of the flat band, the above ∆0 is

linear in g. The critical temperature is determined from Eq. (7.25) by taking ∆ → 0. The
result is ∆0 = 3kBTC [15]. Here it should be noted that in this result the normalization
factor plays a role: for an ideal flat band we would have ∆0 = 2kBTC . Neglecting the
details of the rhombohedral graphite and idealizing it as a simple flat band dispersion
thus gives qualitatively similar, but not exactly correct results.

7.4 Eliashberg theory for rhombohedral graphite
To my knowledge, Eliashberg theory has not been done before for rhombohedral graphite,
so the derivations in this section are new. To write the Eliashberg equations for rhombohe-
dral graphite, we first consider the normal state and then generalize to the superconduct-
ing state. The phonon-mediated interaction couples the valleys, so we need to consider
both of them. To express the Hamiltonian in valley K ′ in terms of the Hamiltonian in
the valley K, we use the symmetry [39]

HRHG(−K, p̄) = HRHG(K,p), (7.27)

where p̄ = (−px, py) and σz act on the sublattice space. We need the “non-interacting”
propagators in the valleys,

G−1
0 (K,p, iωn) = iωn1 −HRHG(K,p), (7.28)

G−1
0 (−K, p̄, iωn) = iωn1 −HRHG(−K, p̄). (7.29)

The above propagators are non-interacting in the sense that even though they contain
the hopping interactions, electron–phonon interaction is not included. Using Eq. (7.27)
we have

G−1
0 (−K, p̄, iωn) = G−1

0 (K,p, iωn). (7.30)
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The above propagators are 2N×2N matrices with N the number of graphene layers and
2 coming from the sublattice structure. They are diagonal in the in-plane momentum
and have a non-diagonal layer and sublattice structure. This structure can be written
explicitly as

G−1
0 (K,p, iωn)ij = iωn1δij − vF (p · σ)δij − γ1σ+δi,j+1 − γ1σ−δi,j−1. (7.31)

Interacting propagators are obtained by adding the self-energy from the electron–
phonon interaction,

G−1(K,p, iωn) = G−1
0 (K,p, iωn) − Σ(K,p, iωn), (7.32)

G−1(−K, p̄, iωn) = G−1
0 (−K, p̄, iωn) − Σ(−K, p̄, iωn). (7.33)

Graphene layers are weakly coupled together, so as an approximation we can limit the
phonons to only propagate within the layers, and not across them. With this kind of
interaction, the Hamiltonian and the self-energy cannot be diagonalized at the same time,
because the electronic states are not localized within a certain layer. Electron–phonon
interaction tends to mix the electronic eigenstates. This mixing becomes weak for N → ∞
and p < pF B.

The in-plane propagation of phonons is enforced by adding a δij-term in the phonon
propagator. In Dyson’s equation [Eq. (3.33)] the 3D integration over momentum is re-
placed by an integration over in-plane 2D momentum and a sum over the planes. We
get

Σ(p, iωn)ij = T
∑
m

N∑
k=1

∫
BZ

d2p′

(2π)2 g
2D(p−p′, iωn−iωm)δikG(p′, iωm)kj

= T
∑
m

∫
BZ

d2p′

(2π)2 g
2D(p−p′, iωn−iωm)G(p′, iωm)ij,

(7.34)

where i and j are the layer indices. In this equation, the integral is over the whole Brilloun
zone, and correspondingly, the self-energy and the propagator are not the ones defined
only in the valleys.

To use the low-energy expansion, we break up the integration into two parts corre-
sponding to the two valleys. This is possible because G(p, iωn) 6= 0 only when p ∼ K,K′.
For valley K, we get

Σ(K,p, iωn) = T
∑
m

∫
p<pc

d2p′

(2π)2

[
g2D(p−p′, iωn−iωm)G(K,p′, iωm)

+g2D(K−K′+p−p′, iωn−iωm)G(−K,p′, iωm)
]
,

(7.35)

where the momentum p is now measured relative to the K. The above expression is valid
for p � |K − K′|. A cutoff pc needs to be specified in this case. The self-energy in valley
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K ′ is

Σ(−K, p̄, iωn)=T
∑
m

∫
p<pc

d2p′

(2π)2

[
g2D(K′−K+p̄−p′, iωn−iωm)G(K,p′, iωm)

+ g2D(p−p′, iωn−iωm)G(−K, p̄′, iωm)
]
,

(7.36)

where the facts that |p̄−p̄′|=|p−p′| and that the phonon propagator only depends on the
magnitude of the momentum were used. Because

|K − K′ + p − p̄′| = |K′ − K + p̄ − p′|, (7.37)

we can write Eq. (7.35) as

Σ(K,p, iωn) = T
∑
m

∫
p<pc

d2p′

(2π)2

[
g2D(p−p′, iωn−iωm)G(K,p′, iωm)

+g2D(K′−K+p̄−p′, iωn−iωm)G(−K, p̄′, iωm)
]
.

(7.38)

We now assume the symmetry of the solution as the symmetry of the Hamiltonian,
Σ(−K, p̄) = Σ(K,p), and G(−K, p̄) = G(K,p). This choice corresponds to s-wave
superconductivity. We see that in this case Eqs. (7.38) and (7.36) are equivalent and
reduce to

Σ(K,p, iωn) =T
∑
m

∫
p<pc

d2p′

(2π)2

[
g2D(p−p′, iωn−iωm)

+ g2D(K′−K+p̄−p′, iωn−iωm)
]
G(K,p, iωm).

(7.39)

In the Einstein phonon model, the propagator has no momentum dependence, and we
can add the phonon propagators together,

Σ(K, iωn) = T
∑
m

2g2DE(iωn−iωm)
∫

p<pc

d2p′

(2π)2G(K,p, iωm). (7.40)

With the Einstein model, the existence of the valleys shows up only as a factor of 2. Thus,
the valley structure of rhombohedral graphite flat bands does not change the form of the
equations as compared to the one flat-band case we study in Sec. 6.

In the Debye phonon model, we can remove the momentum dependence from the
intervalley propagator. The distance between K and K ′, reduced to the first Brilloun
zone, is |K − K′| = 4π/3

√
3a. Because the size of the flat band is much smaller than the

distance between the valleys,

pF B

|K − K′|
= γ0

γ1

√
3

2π ≈ 0.03, (7.41)

the interaction strength does not depend much on the exact momenta p and p′ within the
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Figure 21. Left: Dependence of the bulk Z on the momentum cutoff pc with λ = 0.5
and 5 layers. The scale is logarithmic. Right: Z(iω0) on different layers with λ = 0.5,
pc = pF B and 20 graphene layers. The blue and the red curves are the magnitude of
Z in the sublattices A and B, respectively.

flat band. We can then approximate the phonon momentum with the distance between
the valleys,

g2D(K−K′+p+p′, iωn−iωm) ≈ g2D(K−K′, iωn−iωm). (7.42)

In the intravalley term, the momentum dependence is more important. Based on the
approximations of Sec. 6.2, the effective coupling inside the valley is stronger than the
coupling between the valleys, but the range of the interaction in frequency space is also
smaller.

Assuming a momentum-independent interaction kernel, either from the Einstein model,
or as some approximation of the Debye spectrum, we replace g2D’s with λ. Then the mo-
mentum dependence of the self-energy disappears. To see how the layers mix up with
each other in the above equation, we write G in terms of the self-energy,

Σ(iωn) = T
∑
m

λ(iωn−iωm)
∫

p<pc

d2p
(2π)2

[
G−1

0 (K,p, iωm) − Σ(iωm)
]−1

. (7.43)

When p/pF B � 1, the surface states are well localized and the inverted matrix is almost
diagonal. When p/pF B ∼ 1, the surface states delocalize across the layers and the inverted
matrix is dense.

The above equation can now be solved numerically with the fixed-point iteration. In
the normal state, we can begin with the ansatz Σ = 0. Then, to calculate the lhs of
Eq. (7.43), the 2D momentum integral has to be first calculated for different ωm. Every
function evaluation in the integral involves calculating a matrix inverse of a 2N×2N
matrix, so with increasing N , or with decreasing temperatures and many Matsubara
frequencies, this soon becomes numerically expensive. After the integration, the sum over
m with the interaction kernel λ is calculated.
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Results from the numerics for the normal state are shown in Fig. 21. Below, with a
bulk value, we mean the value of Z in the middle layer. We have not projected out the
high-energy bulk states from the Hamiltonian, and propably for this reason, the bulk self-
energy seems to diverge logarithmically with the momentum cutoff pc. The value obtained
for Z at surfaces differs from the bulk value. The even component of the self-energy, χ,
seems to vanish in the numerical results. This is consistent with the analytical results
from the ideal flat band.

Again, the transition to superconductivity is achieved by doubling the size of the
matrices with Nambu structure. The non-interacting propagator becomes

G−1
0 (K,p, iωn) = iωn1 − τ3HRHG(K,p), (7.44)

where the same Hamiltonian can be used for the particles and holes because of the relation
(7.23). The interacting Hamiltonian is

G−1(K,p, iωn) = G−1
0 (K,p, iωn) − Σ(iωn)

= Z(iωn)iωn1 − τ1φ(iωn) − τ3HRHG(K,p),
(7.45)

where the χ-component is assumed to vanish. In the numerics, there is no need to do this
assumption. Again, Z and φ are 2N×2N matrices, so G(p, iωn) is now 4N×4N . Finally,
the self-energy is calculated as

Σ(iωn) = T
∑
m

λ(iωm − iωn)
∫

p<pc

d2p
(2π)2 τ3

[
G−1

0 (K,p, iωm) − Σ(iωm)
]−1
τ3, (7.46)

with the only difference to Eq. (7.43) being the presence of the τ3’s, the effect of which is
to flip the signs of the off-diagonal Nambu elements.

Eq. (7.46) is the Eliashberg equation for rhombohedral graphite and it can be solved
numerically with minor modifications to the procedure described above for the normal
state. A non-zero initial value for φ has to be assumed.

We can find an approximate solution to Eq. (7.46) by projecting out the high-energy
bulk states (see Fig. 20). We are then left with one flat band state on either surface.
Assuming that the number of layers is large, so that the surface states are not coupled,
we get two decoupled equations for the two surfaces. In this case the sublattice structure
is not important any more, and we can use the results for the ideal flat bands from the
Sec. 6. The weak point of this argument is the delocalization of the surface states, which
makes also the BCS results for rhombohedral graphite to differ from the results obtained
in the ideal flat band.

In Fig. 21 the magnitude of the normal state self-energy seems to very large as com-
pared to the values obtained for Z in the Fermi surface or the ideal flat band. The high
cost of the numerics in terms of CPU time also forces us to solve the equations in rel-
atively high temperatures. Within the temperatures available to us, I could not find a
combination of parameters which would support superconductivity. In the other mod-
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Figure 22. Magnitude of φ at different layers, with Z set to 1 and the parameters
λ = 0.2, ωE = 0.1γ1, T = 0.01ωE and pc = pF B. The number of graphene layers was
5. φ is supported by the surface states and varies the same way as Z from layer to
layer.

els considered in this thesis, superconductivity could be found at high temperatures by
increasing the coupling. However, in rhombohedral graphite, Z seems to grow very fast
with increasing λ and this may suppress superconductivity in the model.

To test the assumption that Z suppresses φ, I solved the Eliashberg equation (7.46)
by setting Z = 1 at each iteration. In this case superconductivity appeared within
accessible temperatures with any combination of parameters tested. The magnitude of φ
varies from layer to layer the same way as Z (Fig. 22). Therefore, in this case Z seems
to be more important than usual and in future work, it should be checked whether the
Z obtained from the low-energy Hamiltonian agrees with the one found from a more
complete Hamiltonian. The calculation of the transition temperature in rhombohedral
graphite is also left for future work.
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8 Conclusion
In this work, I study electron-phonon superconductivity in the Eliashberg theory. I review
the Eliashberg theory for the Fermi surface and apply it to the flat band. I show that
the flat band supports a parametrically enhanced superconductivity also in the Eliash-
berg theory and not only in the BCS theory. Because of this enhancement, materials
with flat bands are promising candidates for high-temperature (even room-temperature)
superconductivity. It is this prospect which makes their study worthwhile. The possi-
ble material with high-temperature surface superconductivity could be used to build new
kinds of electrical components with much improved energy efficiency.

We study surface states of rhombohedral graphite as an example of a flat band system.
This is motivated by the high temperature superconducting regions observed in a highly-
ordered graphite samples with internal interfaces[14]. We write the Eliashberg equation
for the rhombohedral graphite. The study is not finished as the superconducting gap
and the transition temperature are still to be calculated. The role of the normal state
self-energy from the phonon-mediated interaction in rhombohedral graphite also needs to
be clarified.

Rhombohedral graphite is not the only possible system in which flat bands are ob-
tained, as they have been predicted also in strained Dirac materials, heavy fermion com-
pounds, transition metal oxides and anti-perovskites[45]. BCS superconductivity has been
predicted to occur at least in a strained graphene[46]. The Eliashberg theory could be
used to elucidate this prediction also.

In this thesis we have not considered the possibility of a magnetic order, but have
concentrated only on superconductivity. A magnetic order is at odds with the super-
conducting s-wave order, so this possibility should be examined in detail. For example,
rhombohedral graphite has recently been proposed to exhibit magnetic order[47]. Which
one of these competing orderings is realized depends on the parameters describing the
electron-phonon interaction and the Coulomb interaction. Therefore, the parameter space
of the flat-band model should be charted to produce a complete phase diagram. This as-
pect is important as we search for the most promising candidates for high-temperature
superconductivity.
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