
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

Interaction features for prediction of perceptual segmentation : Effects of
musicianship and experimental task

Hartmann, Martin; Lartillot, Olivier; Toiviainen, Petri

Hartmann, M., Lartillot, O., & Toiviainen, P. (2017). Interaction features for
prediction of perceptual segmentation : Effects of musicianship and experimental
task. Journal of New Music Research, 46(2), 156-174.
https://doi.org/10.1080/09298215.2016.1230137

2017



Journal of New Music Research
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Abstract As music unfolds in time, structure is
recognized and understood by listeners, regard-
less of their level of musical expertise. A number
of studies have found spectral and tonal changes
to quite successfully model boundaries between
structural sections. However, the effects of musi-
cal expertise and experimental task on computa-
tional modelling of structure are not yet well un-
derstood. These issues need to be addressed to bet-
ter understand how listeners perceive the struc-
ture of music and to improve automatic segmen-
tation algorithms. In this study, computational
prediction of segmentation by listeners was in-
vestigated for six musical stimuli via a real-time
task and an annotation (non real-time) task. The
proposed approach involved computation of nov-
elty curve interaction features and a prediction
model of perceptual segmentation boundary den-
sity. We found that, compared to non-musicians’,
musicians’ segmentation yielded lower prediction
rates, and involved more features for prediction,
particularly more interaction features; also non-
musicians required a larger time shift for optimal
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segmentation modelling. Prediction of the anno-
tation task exhibited higher rates, and involved
more musical features than for the real-time task;
in addition, the real-time task required time shift-
ing of the segmentation data for its optimal mod-
elling. We also found that annotation task mod-
els that were weighted according to boundary
strength ratings exhibited improvements in seg-
mentation prediction rates and involved more in-
teraction features. In sum, musical training and ex-
perimental task seem to have an impact on pre-
diction rates and on musical features involved
in novelty-based segmentation models. Musical
training is associated with higher presence of
schematic knowledge, attention to more dimen-
sions of musical change and more levels of the
structural hierarchy, and higher speed of musi-
cal structure processing. Real-time segmentation
is linked with higher response delays, less lev-
els of structural hierarchy attended and higher
data noisiness than annotation segmentation. In
addition, boundary strength weighting of density
was associated with more emphasis given to stark
musical changes and to clearer representation of
a hierarchy involving high dimensional musical
changes.



Keywords segmentation density, novelty de-
tection, musical training, segmentation task,
boundary strength

1 Introduction

Humans possess the ability to perceptually parse
ongoing streams into discrete events. This per-
ceptual operation, which is called segmentation,
makes it possible to understand activities that in-
volve sound and movement, just like it is possible,
in a messy room, to recognize each of its objects
(Zacks & Swallow, 2007). It has central importance,
for instance, in the area of speech perception, as
it is needed for language acquisition: infants ex-
ploit different speech segmentation cues to iden-
tify words in sequences of syllables and to rec-
ognize larger groupings such as clauses (Johnson
& Jusczyk, 2001; Seidl, 2007). Similar but special-
ized psychological processes may apply to music
listening, since musical events that share related
characteristics or high temporal proximity are of-
ten grouped into sequences, even in passive lis-
tening contexts. This temporal psychological pro-
cess of integrating musical events into larger units,
which has been proposed to be universal (Drake &
Bertrand, 2001), can be inversely formulated: lis-
teners segment long musical streams when they
perceive changes and repetitions. Musical feature
change is a common cue for segmentation: listen-
ers indicate segment boundaries if they easily per-
ceive that there is a contrast, such as a stark change
in dynamics or instrumentation. Multiple strate-
gies are exploited by composers (Deliège, 2001),
improvisers (Dean, Bailes, & Drummond, 2014)
and performers (Poli, Rodà, & Vidolin, 1998) to in-
duce perception of musical changes, and commu-
nicate musical structure to the listener. This paper
focuses, however, on musical listeners only, and
on a particular conception of segmentation. We re-
fer to segmentation in its broad sense, as we un-
derstand perceptual segment boundaries as signif-
icant instants of musical change; implications of this
choice are discussed further.

Listeners often indicate long notes and rests
as segment boundaries during segmentation of
songs (Bruderer, 2008); generally, temporal pat-
terns upon which phrase and metrical units
emerge have been deemed a crucial factor in
the perception of musical structure (see Dawe,
Plait, & Racine, 1994). Also melodic and harmonic
changes, including pitch jumps, changes in reg-
ister, and especially chord changes and modula-

tions have been regarded to influence segmen-
tation decisions. Tonality largely contributes to
perceived musical structure, because unimportant
events in a tonal hierarchy generate expectations
of musical relaxation that are often confirmed
when more important events evoke resolution (Bi-
gand, Parncutt, & Lerdahl, 1996). Both metrical
structure position and tonal hierarchy are consid-
ered to define the relative importance of certain
musical events with respect to others within a
given time span (Lerdahl & Jackendoff, 1983), and
may have an impact on one another: musicians
tend to infer metrical structure on the basis of
chord changes when note duration and harmony
imply different meters (Dawe et al., 1994). In this
sense, boundary perception results from an inter-
twined mix of musical feature changes and it can
be challenging to disentangle the contribution of
different aspects of segmentation, especially for
real-world music.

Music information retrieval (MIR) studies have
proposed a variety of automatic segmentation al-
gorithms with a focus on evaluating model perfor-
mance against ground truth data using accuracy
measures such as precision, recall and F-measure
(for instance Aljanaki, Wiering, & Veltkamp, 2015);
few studies in this area (e.g. Jensen, 2007) have sys-
tematically assessed the relevance of different mu-
sical features for segmentation. In most cases, au-
tomatic segmentation of music in audio format is
done via novelty detection (Foote, 1997, 1999, 2000)
approaches, which roughly consist in the extrac-
tion of frame-decomposed musical features and
the computation of novelty curves. These curves
describe, for each time point, the amount of dis-
similarity between a certain number of feature
frames before and after that point. For instance,
points in the music that are characterized by tonal
change would show high novelty for the tonal fea-
tures.

The potential of combining different acoustic
features for segmentation and structural analy-
sis has been mentioned in MIR studies (Turnbull,
Lanckriet, Pampalk, & Goto, 2007; Paulus & Kla-
puri, 2009). Few novelty-based studies (Paulus &
Klapuri, 2009; Eronen, 2007; Peeters, 2007) have
yielded enhanced automatic structural analyses
via the summation of spectral and chroma fea-
tures; this operation can be considered as a logi-
cal disjunction (OR), because changes of either or
both spectral and chroma features would result
in novelty peaks. To our knowledge, no studies
in this area have implemented logical conjuction
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(AND) operations, which would yield novelty
peaks only after concurrent change of both fea-
tures. For example, an interaction feature result-
ing from a spectral novelty curve and a chroma
novelty curve would not register a given spectral
change unless it was accompanied by a simultane-
ous chroma change, and vice versa. From a com-
putational perspective, such a novelty feature in-
teraction approach seems appropriate because it
can reduce the effect of spurious novelty peaks de-
rived from high feature sensitivity; it may also be
relevant from a perceptual viewpoint, since listen-
ers probably pay most attention to changes that
are evoked by more than one musical dimension
(see Smith, Schankler, & Chew, 2014).

For evaluation purposes, novelty peaks are
compared to the ground truth data, which often
involve a set of isolated time points; MIR stud-
ies on this area are typically based on a large
number of stimuli, so ground truth segmentation
data is obtained from at most few annotators (e.g.
Smith, Burgoyne, Fujinaga, De Roure, & Downie,
2011). In contrast to MIR ground truth data, stud-
ies focusing on listeners’ perception of boundaries
often collect data from many participants and
aggregate their boundary indications (Deliège,
1987; Krumhansl, 1996; Frankland & Cohen, 2004).
To maximize estimation accuracy, recent studies
(Bruderer, 2008; Burunat, Alluri, Toiviainen, Num-
minen, & Brattico, 2014; Hartmann, Lartillot, &
Toiviainen, in press) have used Kernel Density
Estimation (Silverman, 1986), a method that gen-
erates a smooth probability density estimate of
the data via a Gaussian or other kernel function.
This procedure is comparable to drawing a his-
togram, where each bin would aggregate listeners’
responses within a temporal region; roughly, Ker-
nel Density Estimation is like a histogram that is
smoothed into a curve. This approach yields more
accurate representations of segmentation and al-
lows to perform group comparisons, for instance
between musicians and non-musicians.

Musical experience seems to have an impact
on listeners’ focus of attention during music lis-
tening and on their representation of structure.
Non-musicians are often considered to pay more
attention to aspects related to the musical sur-
face; they often tap with the fastest pulse dur-
ing finger tapping tasks (Martens, 2011), and tend
to place more boundary indications than musi-
cians in segmentation studies (Hartmann et al.,
in press; Bruderer, 2008; Deliège, 1987), suggest-
ing that non-musicians focus more on changes

in timbre, fast rhythmic layers, and pitch jumps.
Most research has found that non-musicians fo-
cus less on harmonic functions than musicians,
for instance in a task that consisted in rearrang-
ing musical segments, non-musicians paid more
attention to rhythmic and metric aspects than
to tonality (Deliège, Mélen, Stammers, & Cross,
1996). Moreover, a rhythm identification study
showed that musicians’ perception of rhythmic
patterns for temporal sequences with harmonic
accompaniment was more influenced by location
of chord changes than non-musicians’, whose an-
swers were less consistent, and biased towards
responses that fitted the inferred meter (Dawe,
Platt, & Racine, 1995). Based on these findings, it
could be posited that non-musicians’ segmenta-
tion can be more accurately predicted from the au-
dio signal than musicians’; musicians would pay
also attention to deeper aspects such as tonal con-
text, which cannot be accurately modelled since
they are rooted on implicit knowledge of West-
ern tonal hierarchies. Other studies on processing
and perception of musical structure (see Tillmann
& Bigand, 2004) however suggest that schematic
knowledge (see Justus & Bharucha, 2001) is built
through mere exposure to music, as both groups
focused on musical surface and deeper aspects of
structure during tasks involving harmonic prim-
ing and manipulation of global organization of
pieces. Hence, it becomes unclear if musically
trained listeners are more influenced by schematic
expectancies during segmentation than untrained
listeners or, conversely, if for both groups few mu-
sical events suffice to generate accurate forecasts
about mode or upcoming chords in the music (Till-
mann & Bharucha, 2002). Thus far, no studies have
investigated the prediction of musicians’ and non-
musicians’ segmentation, nor systematically ex-
amined whether or not these groups pay attention
to same or different acoustic features during seg-
mentation tasks. A deeper understanding on how
musical training shapes our perception and under-
standing of structure and an examination of what
musical dimensions listeners are attending to are
needed in order to gain further insights on how
musical structure is processed.

Boundary perception is affected by musical ex-
pectancies; some boundaries are easier to antic-
ipate as music temporally unfolds in real-time,
whereas others are totally unexpected percepts.
Listening to the whole stimulus has been posited
to provide a better understanding of the musical
structure because some boundaries cannot be per-
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ceived until they occur, or are perceived retrospec-
tively, i.e. ulterior to the actual musical change
(Lerdahl & Jackendoff, 1983). In this respect, dif-
ferent methods to gather segmentation responses
from participants have been used in studies on
musical structure processing. Hartmann et al. (in
press) found differences between real-time and
non-real time segmentation in boundary density,
number of boundary indications (more bound-
aries in the annotation task than in the real-time
task), optimal segmentation time scales, and also
a time lag between tasks; these differences were
attributed to the inaccuracy of real-time task data,
which contains delayed or “missed” indications,
especially for boundaries that are only perceived
retrospectively. If annotation tasks are less noisy,
they should be more accurately predicted by seg-
mentation systems; probably due to this assump-
tion, annotation task data seems to be regarded
as a more reliable ground truth for evaluation
of MIR segmentation systems. However, to our
knowledge no studies have compared real-time
and annotation segmentation tasks with regards
to their predictability from the audio signal con-
tent. It would be important to shed more light
on this possible difference between tasks, because
collection of segmentation data from listeners is
lengthy, particularly when it comes to annotation
tasks; also, both experimental tasks are used (e.g.
real-time segmentation is common in brain and
music studies) so it would be beneficial to know
whether or not they yield similar models to better
understand how musical structure is processed.

The third issue, which is related with the pre-
vious one, is about perceived boundary strength,
its relationship with boundary density and its
acoustic basis. Boundary strength ratings seem to
be associated to listeners’ preference towards cer-
tain types of grouping of musical events; for in-
stance, short melodic sequences including contour
changes or gaps (e.g. rests) tend not to be heard
as groups (Lerdahl & Jackendoff, 1983; Deliège,
1987), but gaps are perceived as stronger bound-
aries than changes in melodic contour (Deliège,
1987; Clarke & Krumhansl, 1990). It has been also
found that listeners generally agree about which
musical boundaries are perceived as strongest
(Clarke & Krumhansl, 1990). Further, Bruderer
(2008) found a positive relationship between the
mean strength ratings of a boundary across par-
ticipants and its relative frequency of indications.
This suggests that boundary strength ratings can
be estimated from listeners’ boundary density; in

other words, boundary strength ratings are super-
fluous data in segmentation tasks involving mul-
tiple participants. Hartmann et al. (in press) could
not replicate Bruderer’s result, suggesting that
boundaries perceived as strong are not necessar-
ily more likely to be indicated and vice versa. On
top of that, it is currently neither known whether
or not weighting boundary density according to
boundary strength ratings would have an effect
on prediction of segmentation, nor what would
be the direction of this effect. Tackling this is-
sue would help clarify what boundary strength
ratings inform about perceived musical structure,
and what is their relationship with local bound-
ary density and local musical contrast. In partic-
ular, it would be interesting to better understand
what aspects of musical change are associated to
perceived boundary strength in real-world music.

Recently, Hartmann et al. (in press) investi-
gated effects of musicianship, differences between
real-time and annotation segmentation tasks, and
optimal time scales for comparison between seg-
mentations. This study can be considered a follow-
up to Hartmann et al. (in press), because the same
boundary data and methodology for aggregation
of indications is applied in this study. Our main
goal is to investigate prediction of perceptual seg-
mentation, and further study the effect of musi-
cianship and experimental task on segmentation.
Due to the complexity of this psychological pro-
cess, we focused mainly on the study of segment
boundaries that are prompted by significant in-
stants of musical change. This paper attempts to
shed light on the following research questions:

– To what extent does musicianship affect seg-
mentation, and more specifically, how does
computational prediction of segmentation for
musicians differ from that of non-musicians?

– What is the effect of experimental task on
segmentation, particularly on the modelling
of real-time and non real-time segmentation
tasks?

– Related to the previous question, what is the
contribution of perceived boundary strength
ratings on prediction of non real-time segmen-
tation?

As a first hypothesis, we expected to find an ef-
fect of musicianship on model prediction, as non-
musicians should be more accurately predicted by
the segmentation models: they would focus more
on perceived local acoustic changes, which could
be accurately detected via novelty-based methods.
Musicians would instead segment more based on
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other aspects, such as learned musical schemata,
and find relatively irrelevant surface events to be
context and cues for ulterior changes that may be
much more significant. Also, more features were
expected to be involved in musicians’ prediction,
particularly more interaction novelty features, be-
cause musicians would pay attention to more
musical dimensions and to co-occurring feature
changes at multiple levels of the musical structure.
In addition, we expected smaller response delays
for musicians than for non-musicians due to exten-
sive training on sense of timing cues.

Our second hypothesis is that the experimen-
tal segmentation task used for data collection has
an effect on model prediction rates. We expected
the real-time task segmentation to be less accu-
rately predicted because the high cognitive load
of the task would lead to imprecise, redundant
and missing boundary indications; for instance,
real-time tasks should pose difficulties to indicate
boundaries as soon as these are perceived, lead-
ing to delayed or “missed” boundary indications.
In addition, the annotation task prediction mod-
els would involve a higher number of musical fea-
tures, since listeners would have the possibility to
focus on more levels of the structural hierarchy,
whereas the cognitive load required to complete
the real-time task would bias listeners towards a
single level. Also, while the annotation task would
require little or no time shifting of the boundary
data for its optimal modelling, real-time task mod-
elling would benefit from compensation for re-
sponse delays.

A third hypothesis, connected with the previ-
ous one, is that weighting the annotation task ac-
cording to perceived boundary strength has an ef-
fect on model prediction. Boundary strength rat-
ings would yield an increase in segmentation pre-
diction rates because they should describe the
amount of perceived musical change more accu-
rately than boundary density. These ratings are
likely to correspond with the magnitude of fea-
ture discontinuity; for instance, musical bound-
aries perceived as stark may yield high novelty
values because both would stem from discontinu-
ity of musical features. In addition, prediction of
models weighted according to boundary strength
ratings should involve more novelty interaction
features, because strength ratings should describe
concurrence of different musical novelty descrip-
tions; in other words, listeners should indicate
high strength for boundaries that involve high
dimensional musical change, so interaction fea-

tures should highly contribute to the prediction of
strength-weighted segmentation density.

2 Method

The first phase of the experimental design con-
sisted in conducting two listening experiments, a
real-time task, and a non real-time task called an-
notation task. A more thorough description of the
experimental procedure, musical stimuli and re-
cruited participants can be found in Hartmann
et al. (in press). From the segmentation data col-
lected in these experiments we derived segmenta-
tion density curves, which in turn were computa-
tionally modelled in a second phase of the design.
Figure 1 illustrates the design of this study and
highlights the approach used to computationally
model the perceptual data.

2.1 Experiment I: Real-time Task

2.1.1 Subjects

18 musicians (11 males, 7 females) and 18 non-
musicians (10 females, 8 males) participated in the
experiment. The mean age of non-musician par-
ticipants was 27.28 years (SD = 4.64) and for mu-
sicians it was 27.61 years (SD = 4.45). The sub-
jects were local and foreign university students
and graduates. The average musical training of
musicians was 14.39 years (SD = 7.49); all non-
musicians reported being musically untrained.

2.1.2 Stimuli

We used 6 stimuli of around 2 minutes of duration
that were relatively unfamiliar to participants and
comprised a variety of styles (see A.1); the stim-
uli considerably differ from each other in terms of
musical form, and emphasize aspects of musical
change of varying nature and complexity.

2.1.3 Apparatus

The listening experiment interface was designed
using Max/MSP; it presented the stimuli through
headphones and involved the use of keyboard and
mouse to record listeners’ responses. The interface
included a play bar to show listeners the relative
duration of the stimulus and the current time posi-
tion; each boundary indication triggered a visual
feedback.
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Figure 1: General design of the study

2.1.4 Procedure

Participants were asked to indicate significant in-
stants of change while listening to the music by
pressing the space bar key of the computer; the
stimuli were presented in random order. For each
participant and stimulus the boundary data was
recorded in a single pass: they neither had the
chance to listen to the stimuli before the segmen-
tation nor were able to modify their boundary in-
dications after the task. The task instructions were
as follows: “Your task is to mark instants of signif-

icant musical change by pressing the space bar of
the computer keyboard. Whenever you find an in-
stant of significant change, please press the space-
bar key to mark it as you listen to the music. You
will not have a chance to listen to the whole exam-
ple before you start marking. Instead, during your
first and only listen of each example, you will give
us your ‘first impression”’.
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2.2 Experiment II: Annotation Task

2.2.1 Subjects

After Experiment I, we asked all participants if
they were familiar with editing software, and
while all musicians mentioned having some expe-
rience, only four non-musicians expressed famil-
iarity. Since this familiarity was required for the
annotation task, we only recruited musicians for
Experiment II; all of them had participated in Ex-
periment I.

2.2.2 Stimuli

In this task we utilized the same set of stimuli as
in Experiment I.

2.2.3 Apparatus

We used Sonic Visualizer (Cannam, Landone, &
Sandler, 2010) to obtain segmentation boundary
indications and also ratings of boundary strength.
The interface included waveforms of the stimuli
to offer visual-spatial cues for indicating bound-
aries and edit their time locations. The music was
played back via headphones, and both keyboard
and mouse were used to complete the task.

2.2.4 Procedure

In this task participants were first asked to listen
to the whole stimulus. Then, they would listen to
the stimulus again and indicate instants of signif-
icant change at the same time, just as they had
done in the real-time task. Next, they were free to
playback from different parts of the stimulus and
make their segmentations more precise by adjust-
ing the position of boundaries. In this step, listen-
ers could remove boundaries if these were indi-
cated by mistake. To avoid the tendency to over-
segment the stimuli (following Krumhansl, 1996)
participants could not add any new boundaries at
this stage. Finally, the last step was to rate the per-
ceived strength of each boundary. Since the stim-
uli waveforms shown in the interface could bias
listeners towards segmentation based on ampli-
tude changes, they were verbally asked to focus
on the music rather than on visual content. The in-
structions included a presentation of the segmen-
tation interface and the following task description:

1. Listen to the complete musical example.

2. Listen to the complete example, and at the
same time mark instants of significant change
by pressing the Enter key.

3. Freely playback the musical example from dif-
ferent time points and correct marked posi-
tions to make them more precise, or remove
them if these were added by mistake. Do not
add any new marks at this stage.

4. Mark the strength of the significant change for
each instant with a value ranging from 1 (not
strong at all) to 10 (very strong).

5. Move to the next musical example and start
over from the first step.

2.3 Perceptual Segment Boundary Density

For each stimulus, the collected boundary indica-
tion data from different listeners was aggregated
into a perceptual segmentation density curve for
each participant group and segmentation task.
First, we organized the segmentation data into
three groups: musicians in the real-time task, non-
musicians in the real-time task, and musicians in
the annotation task. Next, we aggregated bound-
ary indications from all participants so as to obtain
a single profile of indications per stimulus. Subse-
quently, we concatenated the boundary data from
each stimulus to obtain three boundary profiles
spanning a duration of 12 min 5 s each. For each
profile we derived a time series of density of seg-
mentation. These segment boundary probability
curves were obtained via Kernel Density Estima-
tion (KDE). This approach is illustrated in Figure
4 (upper plot), where segmentation density peaks
in the curve imply that multiple participants in-
dicated boundaries at relatively close time points.
The amount of closeness required between two
boundary indications for them to be represented
by the same density peak is defined by the time
scale parameter τ, which corresponds to the band-
width of the KDE Gaussian kernel; in other words,
this parameter determines the degree of smooth-
ness of the KDE. We chose a segmentation den-
sity time scale of τ = 1.5 s following previous
studies that focused on the Gaussian kernel band-
width for modelling perceptual segmentation (Be-
fus, 2010; Bruderer, 2008); particularly, Hartmann
et al. (in press) found a mean optimal time scale
for comparison between real-time and annotation
task boundary density curves at 1.4 seconds and a
mean optimal time scale for comparison between
musicians’ and non-musicians’ boundary density
at 1.7 s. The sample rate of the KDE was set to
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10 Hz since it was deemed sufficiently accurate
for point process data of this nature. Besides the
three obtained segmentation density curves, the
annotation task data was also modelled taking
into account listeners’ boundary strength ratings,
yielding a weighted boundary density curve. In
total, we obtained four curves describing probabil-
ity density estimates of the boundary data: bound-
ary density for non-musicians in the real-time
task (NMrt), musicians in the real-time task (Mrt),
musicians in the annotation task (Ma) and musi-
cians in the annotation task with added boundary
strength weights (Maw).

2.4 Computational Modelling

The structure of the 6 audio stimuli used in the ex-
periments was systematically analyzed via a com-
putational approach based on musical novelty de-
tection that is illustrated in Figure 1 (right side)
and Figure 2. Computational models of percep-
tual segmentation density curves were obtained to
estimate the relative predictability of these curves
and study which musical features were involved
in the prediction.

2.4.1 Feature Extraction

This stage of the experimental design included ex-
traction of musical features from the audio stimuli
using MIRtoolbox (Lartillot & Toiviainen, 2007a).
We extracted 5 features describing timbre, rhythm,
pitch class and tonal context (see A.2). These fea-
tures were frame-decomposed, in the sense that
they were computed on short time frames along
the audio stimuli.

2.4.2 Novelty Detection

For each of the features and stimuli, a novelty
curve was obtained; to this end, a dissimilarity
matrix is first obtained from the audio feature of
interest by computing the Euclidean distance be-
tween all possible pairs of points in the time se-
ries. This matrix is inverted element-wise into a
similarity matrix, where important local contrast
around the main diagonal represents high dissim-
ilarity between neighboring events (Figure 2). A
novelty curve is subsequently obtained via convo-
lution with a Gaussian checkerboard kernel across
the main diagonal of the similarity matrix (see
Foote, 2000; Lartillot & Toiviainen, 2007a; Paulus,
Müller, & Klapuri, 2010, for detailed explanation).

The Gaussian checkerboard kernel is illustrated in
Figure 3. For each time point t, a novelty value
is determined based upon the similarity between
the Gaussian checkerboard kernel (centered at t)
and the portion of the similarity matrix that is cov-
ered by the kernel. The width of this kernel, here
understood as the span of the kernel to both di-
rections from the reference point, is a crucial pa-
rameter in novelty detection. This is because it
determines the smoothness of the novelty curve:
larger widths produce smoother representations,
and vice versa. To find an optimal novelty kernel
parameter we obtained checkerboards for widths
ranging between 0.5 s and 13 s in steps of 0.5 s.
Next, we concatenated the novelty curves of each
stimulus and obtained a time series of 12 min 5 s
for each combination of feature and novelty width.
In total, we obtained 5 novelty features for each of
the 26 novelty widths considered; these are here-
after called basic features (e.g., novelty based on
chromagram).

Subsequently, we created 10 interaction fea-
tures that resulted from the pairwise interaction of
basic features; for example, we obtained spectral-
tonal, rhythmic-tonal, chroma-tonal and tonal-
tonal features. This was done via point-by-point
multiplication between each pair of novelty fea-
tures (Figure 2). Using this method, we obtained
for instance a curve via pairwise multiplication be-
tween novelty based on fluctuation patterns and
novelty based on chroma, which would be called
a rhythmic-chroma feature.

To compare novelty features extracted from
the audio with boundary density of participants,
both basic and interaction novelty features were
resampled to 10 Hz to match the length of the
boundary density curves; also, the novelty curves
were normalized to sum 1. Altogether, we com-
puted a total of 15 novelty features for each of the
novelty widths.

2.4.3 Optimal Checkerboard Kernel Width

Next, we examined the relationship between nov-
elty curves at different Gaussian checkerboard
kernel widths and segmentation density. The aim
was to evaluate segmentation models that would
be most comparable to the obtained segmentation
density. Boundary density was correlated with
each of the novelty curves to find a checkerboard
kernel width that would yield segmentation mod-
els with optimal prediction rates.
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Figure 2: Method used to obtain interaction features via pairwise multiplication between novelty curves.

2.4.4 Non-linear Modelling

We investigated the prediction of perceptual data
from combinations of novelty curves via a non-
linear modelling approach. The approach con-
sisted in finding a subset of novelty curves whose

50th percentile (median ordinal position) would
optimally correlate with the segmentation density
curve. This procedure involves a non-linear ag-
gregation of novelty features that assigns weights
to features for each time point based on ranked
values. From the perspective of soft computing,
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Figure 3: Convolution of a Gaussian checkerboard kernel along the main diagonal of a chromagram-
based similarity matrix.

the percentile aggregation involves a monotoni-
cally increasing mapping that follows a continu-
ous logic function called conjunction/disjunction
function (Dujmović & Larsen, 2007). Roughly, the
0th percentile (equivalent to the min function) can
be understood as a pure logical AND conjunc-
tion (“all criteria are satisfied”) because if the min-
imum among features is high, then all features
should have high values; conversely, the 100th per-
centile (max function represents pure OR disjunc-
tion (“at least one criterion is satisfied”) because a
high maximum value among features implies that
at least one of the features has a high value. Fol-
lowing this logic, 1th−99th percentiles lie between
AND and OR, exhibiting varying levels of orness
(closeness to maximum). Hence, taking the 50th
percentile across features would be comparable to
a ‘majority judgement’, because it would only re-
sult in high values if at least half of the features
exhibited high values. Several statistics, includ-
ing arithmetic mean, median, min, max and per-
centile belong to the family of ordered weighted
averaging (OWA) operators (Yager, 1988, 2006),
but have different characteristics; for example in
arithmetic mean aggregation all data elements get
equal weights, whereas percentiles use only one
argument to determine the aggregated value (for
an odd number of arguments).

2.4.5 Combinatorial Optimization

In order to find an optimal subset of features for
computational modelling we performed discrete

combinatorial optimization. Via this approach we
searched for a combination of novelty features
whose percentile-based model would yield high-
est prediction rates, i.e. maximum correlation
with the perceptual segmentation density. A gen-
eralized conjunction/disjunction correlation was
used as a cost function criterion within a combi-
natorial optimization routine. The cost function
finds the optimal value of the correlation coeffi-
cient y by minimizing the negative of the correla-
tion between actual and predicted density, yopt =

argmin
y

− corr(x , pα), where x is the segmentation

density and pα is the α-percentile along features
of a given subset. The reason for using combina-
torial optimization was the high number of possi-
ble feature combinations per perceptual segmen-
tation density curve (215). We used a Genetic Al-
gorithm search heuristic to find an optimal feature
subset for each perceptual segmentation density
curve. The optimization cost function was initial-
ized with a random subset of features. Since the
algorithm employs a stochastic selection at each
iteration, it tends to avoid local optimal solutions,
i.e. subsets that are only best within the context
of neighboring combinations. As a result, we ob-
tained for each segmentation density curve an op-
timal percentile model, the correlation between
these two curves and an optimal subset of features
for computing the model. Correlation p-values
(H0: no correlation between observed and predicted
segmentation density) were obtained via Fisher’s z-
transformation of r, with standard scores adjusted
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for effective degrees of freedom (i.e., corrected for
temporal autocorrelation, see Pyper & Peterman,
1998; Alluri et al., 2012).

3 Results

We conducted three main analyses via the pro-
posed experimental design: a comparison be-
tween perceptual segmentation sets based on
model prediction rates, an examination of the nov-
elty features involved in the prediction models,
and an assessment of the model prediction rates
for time lagged perceptual segmentation density.
Figure 4 illustrates the main outcomes of the
approach: for non-musicians’ segmentation of 2
min 20 s of music (stimulus Dvořák) in the real-
time task, it compares boundary indication data,
perceptual segmentation density, selected novelty
features and computational model prediction.

3.1 Novelty Kernel Width

To find accurate novelty curves for computa-
tional modelling, we initially examined the effect
of modifying their kernel widths. To this end,
we computed correlations between segmentation
density curves and novelty curves for each of the
26 novelty widths obtained. Figure 5 shows the
correlation profiles of the novelty features for each
segmentation density curve. The global maxima
of each curve, highlighted with markers, tend to
be situated at large novelty widths in all cases.
To find an optimal kernel width for further pre-
diction of segmentation density, we computed a
mean optimal novelty width across curves for
each of the 4 segmentation densities, and finally
a mean novelty width across segmentation densi-
ties. Via this method we found an optimal width
of 11 s across novelty features and segmentation
density curves (please refer to A.3 for correlation
values at this width). We also obtained z-values for
these correlation profiles to estimate significance
of correlation, although a figure is not included for
succinctness; z-values around 4, indicating signif-
icant results at the p < .001 level.

We further tested if a novelty width of 11 s
would be appropriate for prediction of density.
The mean temporal distance between peaks of
each density curve was estimated; given the re-
sults of the aforementioned correlations, we ex-
pected that this distance would be around 11 sec-
onds. For each density curve, we picked each time

point that had a larger density value than its two
neighboring time points and than 20% of the max-
imum density value in the curve. We found that
the temporal distance between peaks in the den-
sity curves tended to be about as large (NMrt:
13.07 s ±8.16 SD; Mrt: 12.82 s ±8.72; Ma: 10.13
s ±7.33; Maw: 11.27 s ±8.90) as the optimal nov-
elty kernel width. The requirement of a minimum
peak height was used to disregard peaks with
very low density values, since these would cor-
respond to indications from few listeners. With-
out this restriction, the temporal distance between
peaks was still relatively large (NMrt: 8.19 s ±2.97
SD; Mrt: 9.46 s ±4.64; Ma: 7.54 s ±3.04; Maw: 7.86 s
±3.10).

Comparing density curves, Figure 5 shows
that the annotation task density curve with added
weights tended to yield the highest correlations
for most features. Adding weights to the annota-
tion task lead to an increase in correlation (with
respect to Ma) for all but three features when us-
ing a novelty width of 11 s (A.3). A possible rea-
son for this correlation increase could have been
the larger variance of the boundary density in the
annotation task with added weights, which might
have increased similarity with novelty curves due
to their high variance. If the increase in correlation
was the result of simply adding variance to the
boundary density via addition of weights, then a
random set of weights would be likely to yield a
density curve that would result in increased cor-
relation with respect to the weighted annotation
task density. To test this possibility, we performed
a Monte Carlo permutation (20000 iterations). At
each iteration, 1) a random vector of boundary
weights (between 1 and 10) of length equal to the
number of boundary indications in the annotation
task was generated, and a kernel density curve of
the annotation task that included the random vec-
tor of weights was correlated with each of the 15
novelty curves. This resulted in a correlation dis-
tribution per novelty feature; for each distribution,
the sum of the values that were equal or higher
than the correlation reported in the study (A.3)
for Maw was divided by the length of the distri-
bution. Features that showed an improvement af-
ter adding weights to the annotation task tended
to yield correlations for Maw that were unlikely
to be reached by using a random set of strength
weights (p < .001 for 8 features; p < .01 for 1
feature; p > .05 for Key Strength, Chromagram ◦
Key Strength, and Key Strength ◦ Tonal Centroid).
This suggests that higher variance of the bound-
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Figure 5: Correlation between perceptual segment boundary density and novelty curves at novelty
widths ranging from 0.5 s to 13 s. Maximum points for each curve are highlighted with markers.

ary density was probably not an important factor
in the correlation increase obtained from listeners’
boundary strength ratings; in other words, bound-
ary strength ratings from listeners include rele-
vant information that lead to an increase of seg-
mentation prediction accuracy.

3.2 Model Prediction Rates

We next examined the prediction obtained
from novelty-based computational models for

different participant groups and segmentation
tasks. To achieve this, we performed combina-
torial optimization using generalized conjunc-
tion/disjunction correlation as a cost function.
We further investigated at this stage the novelty
kernel width parameter by obtaining 26 computa-
tional models at varying novelty widths. Figure 6
shows that prediction rates tend to increase as a
function of novelty but gradually reach a plateau;
novelty curves based on a kernel width of 11 s
yielded the highest overall prediction rates. Table
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NMrt Mrt Ma Maw
Fluct. Pat. Fluct. Pat. Subband Flux Fluct. Pat.
Chromagram Key Strength Fluct. Pat. Tonal Centroid
Tonal Centroid Subband Flux ◦ Fluct. Pat. Tonal Centroid Subband Flux ◦ Fluct. Pat.

Su
bs

et
Subband Flux ◦ Fluct. Pat. Subband Flux ◦ Tonal Centroid Subband Flux ◦ Tonal Centroid Subband Flux ◦ Tonal Centroid
Fluct. Pat. ◦ Chromagram Fluct. Pat. ◦ Chromagram Fluct. Pat. ◦ Chromagram Fluct. Pat. ◦ Chromagram

Fluct. Pat. ◦ Tonal Centroid Fluct. Pat. ◦ Tonal Centroid

Rhythmic Rhythmic Spectral Rhythmic
Chroma Tonal Rhythmic Tonal
Tonal Spectral ◦ Rhythmic Tonal Spectral ◦ Rhythmic
Spectral ◦ Rhythmic Spectral ◦ Tonal Spectral ◦ Tonal Spectral ◦ Tonal

C
at
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or

y

Rhythmic ◦ Chroma Rhythmic ◦ Chroma Rhythmic ◦ Chroma Rhythmic ◦ Chroma
Rhythmic ◦ Tonal Rhythmic ◦ Tonal

r .47*** .43*** .48*** .56***

***p < .001

Table 1: Correlations between perceptual segmentation density and computational models’ predictions
obtained via percentile optimization. NMrt: non-musicians in the real-time task; Mrt: musicians in the
real-time task; Ma: musicians in the annotation task; Maw: musicians in the annotation task (weights
added based on boundary strength ratings). P-values adjusted for effective degrees of freedom.
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Figure 6: Correlation between perceptual segmen-
tation density and computational model predic-
tion obtained via percentile optimization for nov-
elty widths ranging from 0.5 s to 13 s. Maximum
points for each curve are highlighted with mark-
ers.

1 shows the correlation between optimal models
and segmentation density for each participant
group and segmentation task at a novelty width
of 11 s; interaction features include the symbol ◦,
which indicates pairwise multiplication between
two basic features. Notably, prediction rates were
lower for musicians than for non-musicians in
the real-time task. This result suggests that mu-
sicians’ segmentation relies more on schematic
knowledge than in the case of non-musicians.
Comparing experimental tasks, we found higher
prediction rates for the annotation task. This
suggests that some boundaries are difficult to an-
ticipate in real-time segmentation, and are hence
either indicated after longer delays or not indi-
cated at all, leading to more noisy segmentation
data. Related to this finding, the effect of exper-
imental task was clearer for the annotation task
density curve with added weights, which yielded
the highest prediction rates. This indicates that

the strength attributed by listeners to boundaries
aids to the computational prediction and suggests
a positive relationship between musical novelty
and perceived boundary strength.

3.3 Selected Feature Subsets

We examined the categories of musical novelty
features that were involved in the computational
models’ predictions. Table 1 presents the musical
feature subsets that were selected via combina-
torial optimization. Compared to non-musicians’
model, the predicted segmentation density for
musicians involved all the extracted musical fea-
tures (i.e., key strength was not included in non-
musicians’ model). This suggests that, compared
to non-musicians, musicians paid attention to
more levels of the structural hierarchy during seg-
mentation, and that local key context changes
had a larger influence in musicians’ segmenta-
tion. In addition, the model for musicians in-
volved more interaction features than the model
for non-musicians. This suggests that musicians
paid more attention to high dimensional features,
in other words, to simultaneous change of multi-
ple features. It is also noteworthy that the annota-
tion task model involved more features than the
real-time task model; rhythmic and tonal features
in particular had more representation in the sub-
sets. This result suggests that in the annotation
task listeners followed a more complex pattern of
segmentation and focused on multiple hierarchi-
cal levels of metrical and tonal structure. In addi-
tion, we found that the model for annotation task
density with added weights involved the largest
amount of feature interactions. This finding sug-
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Figure 7: Correlation between perceptual segment
boundary density and models’ predictions ob-
tained after time lags ranging from −2 s to 2 s, in-
cremented by steps of 100 ms. Positive time lags in-
dicate delay of novelty curves with respect to per-
ceptual segment boundary density, and vice versa.
Maximum points for each curve are highlighted
with markers.

gests the possibility of a positive relationship be-
tween dimensionality of musical feature change
and perceived boundary strength.

3.4 Time Lag Between Actual and Predicted
Density

Our next step aimed to examine whether or not
boundary indication delays had an effect on the
model prediction. To approach this goal, we com-
puted prediction models for different time lags of
the segmentation density curves. We used 41 lag
values ranging between −2 s and 2 s and incre-
mented by steps of 100 ms. Figure 7 shows the cor-
relation between segmentation density and com-
putational model prediction for different segmen-
tation density time lags. Each global peak corre-
sponds to the optimal time lag for a given seg-
mentation set. We found a larger optimal time lag
for non-musicians (1.7 s, r = .59) than for musi-
cians (1.5 s, r = .54). A larger (200 ms) optimal lag
for comparison between actual and predicted seg-
mentation density suggests a larger response de-
lay during segmentation for non-musicians. Com-
paring tasks, the annotation task exhibited an op-
timal lag of 400 ms (r = .48), which is over a sec-
ond shorter than the real-time task (1.5 s); this find-
ing was replicated for a curve of log-likelihood as
a function of time lag, which was not included
here for brevity. This suggests that listeners’ re-
sponse delay in real-time segmentation can often
reach 1.5 s in the real-time task, whereas in the an-
notation task the delay is unsurprisingly shorter
(due to task characteristics including boundary
reposition and increased familiarity with stimuli)

but it is still observable and can be addressed.
Noteworthy, the prediction rate of most models in-
creased after applying the optimal time lag, illus-
trating the importance of accounting for listeners’
response delays for optimal segmentation mod-
elling.

4 Discussion

This section will discuss three hypotheses that
have been formulated with regard to prediction of
music segmentation. It is important to highlight
at this point that the approach presented in this
article is tailored to an understanding of segment
boundaries as instants of significant change in the
music. The main advantage of this circumscrip-
tion of the notion of music segmentation is that
it allows for a systematic analytic approach ulti-
mately based on correlation between two time se-
ries. However, an important shortcoming should
be mentioned at this point: musical segments
are viewed as built upon boundary indications,
whereas as a matter of fact, segments are con-
comitants of hierarchical representations of musi-
cal structure (Marsden, 2005). Moreover, our ap-
proach is not conceptually driven, as it disregards
higher-level notions of musical motives, phrases,
melodies, and themes, which embrace the com-
plexity inherent in musical structures and point
to the necessity of taking musical repetition and
variation (i.e., parallelism) into account (see Cam-
bouropoulos, 2006; Lartillot & Toiviainen, 2007b).
In other words, this paper only partially addresses
segmentation as a multi-level problem, because
the hierarchical architecture of musical structure
gets reduced to a single dimension. The second is-
sue is that aspects related to recurrence in musical
structure and perception of motivic patterns are
omitted. Although a broader model is clearly re-
quired, such reductionism may be justifiable for
analytic purposes, and could help to elucidate the
applicability of some music-theoretic predictions
to actual segment boundary perception. Further-
more, our approach includes current methodol-
ogy in music information retrieval, but for a dif-
ferent aim: our main focus is on listener’s percep-
tion of local musical changes rather than system
evaluation or comparison between human and al-
gorithmic performance.
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4.1 Musicianship

We obtained three main results supporting our
first hypothesis, which asserts that musicianship
has an effect on segmentation model prediction.
First, the segmentation models for non-musicians
yielded higher prediction rates than for musicians,
so overall prediction based on novelty curves is
presumably more reliable for non-musicians (Fig-
ure 5, Figure 7 and Table 1). This suggests that
segmentation by non-musicians is more guided
by “bottom-up” acoustic local change (as detected
via novelty curves) than for the case of musicians,
who probably relied more on schematic knowl-
edge; in other words, non-musicians yielded
higher prediction rates because novelty curves do
not model schematic knowledge. Second, predic-
tion of musicians’ segmentation involved more
musical features (key strength was selected in
musicians’ model but not in non-musicians’) and
more novelty interaction features than for non-
musicians. This suggests that musicians focus on
high dimensional musical change and more levels
of the structural hierarchy; for example they may
focus on more obvious changes such as instrumen-
tation and rhythm, but also on subtle changes in
tonality even if these are implied changes. Sev-
eral studies support the notion that musicians
pay attention to more aspects determining musi-
cal change; for instance, musicians’ ratings of ten-
sion of chords within sequences were mostly influ-
enced by both tonal functions and specific rough-
ness, whereas non-musicians’ ratings tended to
be mostly prompted by horizontal motion, i.e.
melodic arrangement between successive chords
due to voicing and use of inversions (Bigand et
al., 1996). In addition, a study on perceived ca-
dences (Sears, Caplin, & McAdams, 2014) showed
that, compared to non-musicians, musicians do
not only pay attention to the most salient melodic
line, but also to complex texture changes involving
multiple voices. Our third result regarding musi-
cianship was a larger optimal time lag for segmen-
tation prediction in the case of non-musicians than
of musicians, which points to a negative relation-
ship between musical training and response de-
lay in segmentation. This effect of musicianship on
speed of detecting and indicating segment bound-
aries is partly not surprising because musicians
are explicitly trained to follow musical cues that
trigger their entrance during performances; how-
ever this result still suggests that non-musicians
process perceived musical structure at a slower

rate than musicians. In this line, effects of musi-
cal training on auditory working memory have
been previously shown, since faster ability to cap-
ture the statistical structure of perceived streams
(François, Jaillet, Takerkart, & Schön, 2014) and
larger auditory memory spans (Tierney, Bergeson-
Dana, & Pisoni, 2008) have been found for musi-
cians when compared to non-musicians. A direct
comparison between boundary density curves
via cross-correlation (Hartmann et al., in press)
showed that non-musicians were delayed with
respect to musicians for most of the stimuli, al-
though it did not result in differences between
groups based on the mean lag across stimuli.

A general implication of these findings is that
both participant groups pay attention to local
discontinuities in the music, so specific knowl-
edge of structure may not be required for per-
ception of segment boundaries that emerge due
to novelty; in this respect Tillmann and Bigand
(2004) suggested that, regardless of musical train-
ing, the succession of local structures prevails over
the succession of global structures in music pro-
cessing. However, our results suggest that mu-
sicians may pay less attention to local disconti-
nuities than non-musicians; so global structures
could have a greater role for musicians, who might
build more veridical expectancies (see Justus &
Bharucha, 2001) for events that are likely to occur
in a given piece of music.

4.2 Experimental Task

Three results were found to support our second
hypothesis, which states that the conducted ex-
perimental task has an effect on model prediction.
First, prediction rates for the annotation task were
higher than for the real-time task, but controlling
for delays inverted this result. This suggests that
listeners’ delayed indications are responsible for
the relatively lower prediction rates in the real-
time task, and that once these are compensated,
this task yields higher similarity with “bottom-
up” novelty-based predictions since listeners nei-
ther know with certainty about the unfolding pat-
terns and developments of a piece of music, nor
can clearly estimate the relative significance of a
given musical change. The second result concern-
ing segmentation tasks is that prediction of anno-
tation task involved more novelty features, par-
ticularly rhythmic and tonal features. This result
suggests that listeners pay attention in this task to
more levels of the structural hierarchy. The third
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result with respect to this hypothesis is that the
annotation task exhibited a shorter optimal time
lag for segmentation prediction than the real-time
task. This result is highly expected mainly because
the annotation task allowed participants to mod-
ify the position of boundaries, but it is notewor-
thy that the alignment between segment bound-
aries and instants of musical novelty leads to an
increase in prediction rates for offline segmenta-
tion tasks as well.

4.3 Boundary Strength Weights

Finally, two main results were found supporting
the third hypothesis, which posits that weight-
ing the annotation task segmentation density has
an effect on model prediction. First, we found
that adding weights to the annotation task in-
creases the model prediction rates. This suggests
that the novelty detection approach predicted per-
ceived boundary strength ratings, which is a plau-
sible interpretation because the most stark mu-
sical changes should often coincide with high
discontinuity of musical features. Moreover, the
improvement of prediction rates shows that the
strength of a boundary is not equivalent to its
density, which suggests that boundary strength
weights aid to the prediction of listeners’ segment
boundaries. This result might seem surprising,
considering that Bruderer (2008) found a relation-
ship between frequency of indications of a bound-
ary and mean ratings of boundary strength. How-
ever, Bruderer’s task instructions referred specif-
ically to the indication of phrases, sections, and
passages, whereas our task instructed listeners
to indicate significant instants of change, which
would have prompted more frequent indications.
Possibly, the addition of strength weights in the
annotation task highlighted points of relatively
high acoustic local change, which could have in-
creased prediction accuracy for musical features
that could have been sensitive to these changes.
The second result found regarding this hypothe-
sis was that adding weights to the annotation task
also increases the number of feature interactions
involved in models. This suggests that listeners’
boundary strength ratings relate to different in-
teractions, resulting in a hierarchy of high dimen-
sional features; for instance rhythmic-tonal musi-
cal novelty could be perceived as more perceptu-
ally salient than spectral-rhythmic novelty.

4.4 General Discussion

We may now recapitulate the main conclusions
reached here. Regarding musicianship, our results
suggest that musicians’ schematic knowledge is
a potential factor in lower prediction rates com-
pared to non-musicians’; in addition, musicians
may pay attention to more dimensions of musical
change spanning multiple hierarchical levels of
structure, and seem to respond faster to perceived
musical change than non-musicians. Comparing
experimental tasks, listeners’ response delays in
the real-time task seem to be a major factor in
lower model performance with respect to the an-
notation task; they may also pay attention to more
hierarchical levels of structure in the annotation
task, particularly regarding rhythmic and tonal de-
scriptions of change, which possibly make a ma-
jor contribution in perceptual segmentation. Also,
boundary strength ratings in the annotation task
may be more associated with perceived concur-
rence of multiple descriptions of musical change.

The models presented in Table 1 can be sorted
based on their prediction rates to find the most sat-
isfactory scenarios for novelty-based prediction of
segmentation. For instance, annotation task mod-
els yielded higher prediction rates than real-time
task models, a result that makes sense because
novelty detection does neither account for listen-
ers’ response delays nor for difficulties to indicate
retrospectively perceivable boundaries. In particu-
lar, adding weights to the annotation task bound-
ary density led to a clear increase of prediction
rates, showing that novelty curves can model lis-
teners’ assignment of hierarchies to boundaries,
which might depend on the number of perceived
dimensions of musical change. Although the fre-
quency of indications of a boundary (which is
equivalent to its density) should to some extent
also describe this hierarchy of events, boundary
strength weights contribute to the description of
boundaries’ relative structural importance. In con-
trast to the annotation task results, real-time seg-
mentation (not adjusted for response delays) re-
sulted in lower prediction rates, especially for mu-
sicians (Table 1 and Figure 5), even though their
segmentations were less delayed than those from
non-musicians. This further supports the interpre-
tation that schematic knowledge had a larger in-
fluence on musicians’ segmentation decisions, or
at least that they paid more attention to aspects
such as repetition and musical parallelism instead
of solely focusing on local discontinuity.
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The compensation for response delays had an
effect on the real-time task model performance be-
cause novelty detection provides immediate feed-
back for a given context, whereas listeners’ re-
sponses to perceived musical change are not in-
stantaneous; the annotation task did not greatly
benefit from this compensation because listeners
repositioned their boundary indications. A differ-
ent interpretation of the results is required for op-
timal models that account for response delays (Fig-
ure 7), because real-time task models exhibited a
clear increase in prediction rates, and the differ-
ence between tasks in this respect became smaller.
Overall, larger prediction rates show the need for
controlling for response delays in novelty-based
segmentation modelling, especially when it comes
to real-time segmentation and to non-musicians.
Two other contributors to differences between op-
timal models have been schematic knowledge,
which cannot be modelled by the novelty curves
and could explain lower prediction rates for mu-
sicians’ segmentation, and boundary strength rat-
ings, which yielded density curves that empha-
sized obvious, probably high dimensional musi-
cal changes.

A general result to highlight concerning the
features involved in the prediction models is the
contribution of feature interactions, which sug-
gests that listeners pay attention to high dimen-
sional musical change; for instance, simultaneous
change in rhythm and tonality or in timbre and
tonality seemed to often evoke listeners’ percep-
tion of segment boundaries. In particular, the fea-
ture interaction Fluctuation Patterns ◦ Chromagram
was selected in all models, suggesting that listen-
ers pay attention to simultaneous changes in pitch
class and rhythm during segmentation.

Regarding the proposed non-linear combina-
tion approach, it resulted in improved prediction
rates with respect to any of the novelty curves ex-
tracted (A.3). This means that the combined nov-
elty detected by a majority of the features at each
time point yielded better performance than any
novelty feature alone, which results from the fact
that the contribution of different features to per-
ception of musical change varies over time and
over stimuli. For instance, some boundary indica-
tions may be represented more by rhythmic than
by tonal change, whereas others may exhibit the
opposite trend.

4.5 Considerations for Future Research

Our findings suggest that an ideal scenario for ac-
curate boundary density prediction via novelty
detection would be based on indications not only
of high time precision (i.e. compensated for re-
sponse delays) and describing only local discon-
tinuities, but also weighted based on perceived
strength. To better understand the relative impor-
tance of these factors, non-musicians should also
be recruited to segment in an annotation task; this
addition to the experimental design is feasible be-
cause the skills required in an annotation task can
be quickly learned. Possibly, an offline annotation
would further increase non-musicians’ prediction
rate with respect to the delay-compensated real-
time task.

Future studies on annotation segmentation
tasks should systematically study the effect of dif-
ferent task instructions upon segmentation. For
instance, allowing addition of new boundaries
during the reposition stage of the task might
lead to more detailed representations of structural
change. In addition, a focus on the final state of
an annotation should not ignore other relevant in-
formation that can be collected in this task: steps
such as boundary reposition and removal should
be recorded in order to better understand, for in-
stance, the extent to which a shorter optimal time
lag in the annotation task compared to the real-
time task could be attributed to boundary reposi-
tion or to other factors such as familiarity with the
stimuli and task.

In regards prediction rates, the proposed ap-
proach, which consisted in computing interac-
tion novelty features and non-linear modelling,
yielded up to moderately high correlations with
boundary density. These results outperform those
reported in a preliminary version of this arti-
cle (Hartmann, Lartillot, & Toiviainen, 2015), in
which a smaller novelty kernel width was used
and the effect of response delay was disregarded.
Our evaluation of prediction performance was,
however, not an end but rather a means by which
we could compare different listener groups and
segmentation tasks. Benchmark studies on seg-
mentation could further explore compensation for
response delays, which led to highest prediction
rates.

Focusing further on listeners’ response delays,
our findings showed that segmentation data can
often exhibit up to 1.7 s delays with respect to mu-
sical changes; this compensation for response de-
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lays increased prediction rates in all models except
for the annotation task without added weights. In
this regard, retrieval evaluation of boundary de-
tection systems is commonly based on both 0.5 s
and 3 s thresholds (Ehmann, Bay, Downie, Fuji-
naga, & De Roure, 2011), however according to
our findings, 3 s would yield overly optimistic
results, especially considering that the segmenta-
tion ground truth data for these evaluations is col-
lected via annotation tasks; future research on mu-
sic information retrieval should consider hit rate
evaluation only at a time threshold of 0.5 s.

In regards the effect of segmentation bound-
ary strength weights, we believe that further ex-
ploration is needed to understand its impact for
novelty-based prediction; for instance boundary
strength could be correlated with musical novelty
at the respective time points in order to better un-
derstand their similarity and explore what musi-
cal dimensions prompt perception of stark bound-
aries. This is an important issue to tackle, not only
because boundary strength seems to offer descrip-
tions that do not necessarily relate to boundary
density, but also because it clearly contributed
to the computational prediction and might offer
new insights about the structural hierarchy of per-
ceived musical boundaries.

As a methodological consideration, we remark
that the novelty kernel width used in this study
was rather large. An optimal kernel width span-
ning large time regions was needed due to nois-
iness of novelty curves, and to the ample dis-
tance between the main peaks in density curves.
Although the use of short window lengths and
high overlapping between frames are necessary
for highly accurate feature extraction, this leads
to very detailed similarity matrices, which in
turn produce noisy novelty curves. Future stud-
ies should consider the use of smoothing filters
(e.g. Serrà, Muller, Grosche, & Arcos, 2014) to im-
prove computational efficiency of the models. A
related issue pertains to the aggregation of mul-
tiple novelty features based upon a single nov-
elty width; for instance, spectral and rhythmic fea-
tures tended to yield lower optimal kernel widths
than chroma and tonal features, so it is difficult to
choose a novelty width that gives justice to vari-
ous features operating on different temporal con-
texts. To address this issue, it is possible to com-
pute an optimization model for each density curve
that could involve a subset of novelty curves with
different kernel widths; this promising approach
would require finding, for each feature, a novelty

kernel width that yields optimal correlation with
the density curves. Another matter of concern re-
garding novelty widths is their relationship with
the Gaussian bandwidth of the segmentation den-
sity, which was a fixed parameter in this study and
requires further assessment using different musi-
cal features to better understand the relationship
between these two parameters. It should also be
remarked that the need to choose a novelty ker-
nel width can be circumvented; for instance, a re-
cently proposed multi-granular method (Lartillot,
Cereghetti, Eliard, & Grandjean, 2013) detects nov-
elty by considering both the amount of contrast
between neighboring homogeneous passages and
the temporal scale of the preceding passage.

Regarding the non-linear optimization ap-
proach used in this study, other strategies in-
cluding alternative cost functions could be imple-
mented; we have utilized mean-based optimiza-
tion and cross-entropy minimization as alterna-
tives to percentile-based correlation optimization,
but these yielded lower prediction rates. In addi-
tion, further work on percentile-based optimiza-
tion could focus on the improvement of predic-
tion rates using various percentiles (though we
observed that 50th percentile offered higher rates
than 25th and 75th percentiles) or other summariz-
ing statistics, including computation of aggrega-
tions that specify different weights to features de-
pending on their rank (Yager, 2006). Other combi-
natorial optimization algorithms are also possible;
we also experimented with simulated annealing
and forward-backward feature selection; but these
approaches yielded models with lower prediction
rates than the genetic algorithm method. We as-
sumed that this method did not stumble on local
minima, however other methods might get closer
to the global minimum of the solution space.

A question that may arise is whether or not a
linear modelling approach could have resulted in
comparable results. Stepwise regression models
offer the possibility to rank selected features based
on standardized beta coefficients, however these
models assume a constant contribution from each
feature across time and musical stimuli. We com-
puted the same analysis via this approach, which
yielded a similar pattern of results, but these were
left out from our analyses due to the presence
of negative coefficients in the models. A reason
for this is that some interaction novelty features
highly correlate with each other, for instance Chro-
magram ◦ Key Strength is highly similar to Chroma-
gram ◦ Tonal Centroid (r = .98); future work could
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perform feature selection based on collinearity as
a prior step to stepwise regression.

It should also be mentioned that model predic-
tion rates might be optimistic due to relatively low
amount of musical stimuli and correlating novelty
features, which puts the optimization at risk of
yielding an “optimal” subset that may be equally
optimal to other subsets, and of generating opti-
mal subsets and models that are highly affected by
trivial modifications of the segmentation density
curves. Besides the elimination of redundant fea-
tures, cross-validation with other stimuli or with
other groups of listeners should be used in fu-
ture studies to overcome model over-fitting and
increase robustness.

We also remark that, depending on the musi-
cal stimulus and especially on musical style, listen-
ers should probably use different segmentation
strategies. Hence, it is possible that a methodologi-
cal approach focused on individual stimuli would
have led to different results; e.g., individual stim-
uli may require different feature subsets for opti-
mal prediction, and variation in prediction accu-
racy could occur; some of these issues, which are
crucial for the development of segmentation sys-
tems that automatically adjust their parameters
depending on various characteristics of the target
stimulus, are currently under investigation (Hart-
mann, Lartillot, & Toiviainen, 2016).

Finally, we should highlight the differences re-
ported in this study between musicians and non-
musicians; a clear trend was found in this re-
spect and the results seem plausible. First, higher
prediction rates for non-musicians imply that
they focus more on local acoustic change than
on other aspects such as schematic expectations.
Second, more features in prediction models for
musicians, particularly more interaction features,
suggest that they pay attention to more musi-
cal dimensions and levels of the musical struc-
ture. Third, differences in response times between
groups could reflect a faster processing of per-
ceived structure in musicians. Although explicit
segmentation tasks are not enough to investigate
how underlying musical structures are processed,
it is possible that learning processes involved in in-
tensive musical training and development of mo-
tor skills for musical performance have an effect
on the perception of musical structure. A plausi-
ble explanation is that musical training leads to
different expectations between groups; musicians’
anticipation of future events may be facilitated e.g.
by schemata that cannot be learned from mere ex-

posure to music, resulting in increased attention
to specific types of musical change, such as those
prompted by interaction of different acoustic fea-
tures. Further work should further explore this
possibility by comparing experienced musical lis-
teners and musicians in their processing of musi-
cal structure.
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A Appendices

A.1 Musical Stimuli - List of Abbreviations

Genesis Banks, T., Collins, P. & Rutherford, M. (1986).
The Brazilian. [Recorded by Genesis]. On Invisible
Touch [CD]. Virgin Records. (1986)
Spotify link: http://open.spotify.com/track/
7s4hAEJupZLpJEaOel5SwV
Excerpt: 01:10.200-02:58.143. Duration: 01:47.943

Smetana Smetana, B. (1875). Aus Böhmens Hain und
Flur. [Recorded by Gewandhausorchester Leipzig -
Václav Neumann]. On Smetana: Mein Vaterland [CD].
BC - Eterna Collection. (2002)
Spotify link: http://open.spotify.com/track/
2115JFwiNvHxB6mJPkVtbp
Excerpt: 04:06.137-06:02.419. Duration: 01:56.282

Morton Morton, F. (1915). Original Jelly Roll Blues. On
The Piano Rolls [CD]. Nonesuch Records. (1997)
Spotify link: http://open.spotify.com/track/
6XtCierLPd6qg9QLcbmj61
Excerpt: 0-02:00.104. Duration: 02:00.104

Ravel Ravel, M. (1901). Jeux d’Eau. [Recorded by Martha
Argerich]. On Martha Argerich, The Collection, Vol. 1:
The Solo Recordings [CD]. Deutsche Grammophon.
(2008)
Spotify link: http://open.spotify.com/track/
27oSfz8DKHs66IM12zejKf
Excerpt: 03:27.449-05:21.884. Duration: 01:54.435

Couperin Couperin, F. (1717). Douzième Ordre / VIII.
L’Atalante. [Recorded by Claudio Colombo]. On

François Couperin : Les 27 Ordres pour piano, vol. 3
(Ordres 10-17) [CD]. Claudio Colombo. (2011)
Spotify link: http://open.spotify.com/track/
6wJyTK8SJAmtqhcRnaIpKr
Excerpt: 0-02:00.863 Duration: 02:00.863

Dvořák Dvořák, A. (1878). Slavonic Dances, Op. 46 /
Slavonic Dance No. 4 in F Major. [Recorded by Phil-
harmonia Orchestra - Sir Andrew Davis]. On Andrew
Davis Conducts Dvořák [CD]. Sony Music. (2012)
Spotify link: http://open.spotify.com/track/
5xna3brB1AqGW7zEuoYks4
Excerpt: 00:57.964-03:23.145. Duration: 02:25.181
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A.2 Extracted Musical Features

Basic novelty curves were obtained from similarity matri-
ces of musical features (cf. 2.4). To this end, the following
five musical features describing spectral, rhythmic, chroma
and tonal attributes were extracted from the musical signal:

Spectral

– Subband flux (Alluri & Toiviainen, 2010) : 10-
dimensional feature describing spectral fluctuations
at octave-scaled subbands of the audio signal. First,
ten second-order elliptic filters are used to divide the
signal into subbands. For each frequency channel,
a spectrogram is computed using a window length
of 25 ms and 50% overlapping. Finally, dissimilarity
between successive spectral frames is computed via
pairwise normalized Euclidean distance (spectral
flux). Unlike other common spectral features such as
Mel-frequency cepstral coefficients (MFCCs), subband
flux features have been found to predict perceptual
aspects of musical polyphonic timbre such as activity,
brightness and fullness.

Rhythmic

– Fluctuation patterns (Pampalk, Rauber, & Merkl, 2002):
Psychoacoustics-based representation of rhythmic pe-
riodicities in the audio signal via estimation of spec-
tral energy modulation over time at different frequency
bands. First, a spectrogram in dB scale with frequen-
cies bundled into 20 Bark bands is computed using a
window length of 23 ms and a hop rate of 80 Hz. Fol-
lowing an outer ear model (Terhardt, 1979), frequen-
cies between 2000 Hz and 5000 Hz are emphasized,
whereas energy at frequency range extremes is atten-
uated. Further, the spectrogram is weighted based on
a perceptual model of spectral masking that, given a
high-energy frequency band, attenuates energy at a re-
gion of frequencies below that band. Subsequently, for
each separate Bark band, a second spectrogram is com-
puted (window length 1 s, hop rate 10 Hz) where the
highest frequency taken into consideration is 10 Hz
(600 beats per minute). This yields, for each Bark band
and each frame, a description of loudness modulation.
Each modulation coefficient is weighted based on a
psychoacoustic model of fluctuation strength sensa-
tion to emphasize modulation frequencies that are opti-
mal for the perception of a strong fluctuation such as a
steady beat. Finally, for each frame, the modulation co-
efficients are summed together. The result is a descrip-
tion of the dynamic evolution of periodicity for each
modulation frequency.

Chroma

– Chromagram (pitch class profile, see Fujishima, 1999):
12-dimensional feature describing the energy distribu-
tion of each pitch class per spectrogram frame. First,
a spectrogram for the highest energy over a range of
20 dB and for frequencies ranging between 100 Hz
and 6400 Hz is computed. Frequency bins are then
combined into chroma, corresponding to the different
absolute pitches. To each chroma is associated a cen-
tral frequency cl, which is calculated as cl = 12 ×

lo g2(
f

c f ), where c f is the central frequency related
to C4 (set to 261.6256 Hz). The audio waveform is
normalized before the spectrogram computation, and
each frame of the resulting chromagram is also normal-
ized by the maximum local value. The chromagram is
then wrapped into one octave, by summing together
chroma values of same pitch classes, leading to a 12-
dimensional feature. The spectrogram was computed
using a 3 s window length and 100 ms overlapping to
obtain a sufficiently high time resolution. The follow-
ing two features use chromagram as input.

Tonal

– Key strength (Krumhansl, 1990): 24-dimensional fea-
ture that represents how well the chromagram fits the
different tonal profiles for major and minor keys. The
key profiles are based on the probe-tone experimental
method and represent the contribution of each of the
12 chromatic tones to a given key. The key strength val-
ues of each frame are estimated via correlation between
the pitch class profile and each of the 24 key profiles.

– Tonal centroid (Harte, Sandler, & Gasser, 2006): 6-
dimensional feature that describes a projection of the
pitch class profile onto interior spaces of the circle of
fifths, the circle of minor thirds and the circle of ma-
jor thirds, which derive from a toroidal representation
of the harmonic network (Tonnetz). The spaces are de-
rived from the Spiral Array model (Chew, 2002) for key
boundary detection. For each frame, the chromagram
is multiplied with the basis of a 6-dimensional pitch
space in order to obtain three co-ordinate pairs, one per
circularity inherent in the harmonic network.
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A.3 Correlations Between Perceptual Segment Boundary Density and Novelty Features

Feature Type Basic Feature NMrt Mrt Ma Maw
Spectral Subband Flux .10 .14* .07 .17**

Rhythmic Fluctuation Patterns .38*** .32*** .31*** .39***

Chroma Chromagram .32*** .31*** .36*** .35***

Tonal Key Strength .21*** .19** .25*** .26***
Tonal Centroid .23*** .21*** .31*** .30***

*p < .05; **p < .01; ***p < .001

Table 2: Correlations between perceptual segmentation density and basic features. Maximum coeffi-
cients of each set are indicated in boldface. Coefficients from features selected via optimization are high-
lighted. P-values adjusted for effective degrees of freedom, and for multiple comparisons via Benjamini-
Hochberg correction (q = 0.05).

Type Feature Interaction NMrt Mrt Ma Maw
Spectral ◦ Rhythmic Subband Flux ◦ Fluctuation Patterns .21*** .22*** .17** .27***
Spectral ◦ Chroma Subband Flux ◦ Chromagram .30*** .30*** .31*** .39***
Spectral ◦ Tonal Subband Flux ◦ Key Strength .29*** .28*** .30*** .38***
Spectral ◦ Tonal Subband Flux ◦ Tonal Centroid .31*** .31*** .35*** .42***
Rhythmic ◦ Chroma Fluctuation Patterns ◦ Chromagram .44*** .37*** .43*** .49***
Rhythmic ◦ Tonal Fluctuation Patterns ◦ Key Strength .37*** .31*** .41*** .45***
Rhythmic ◦ Tonal Fluctuation Patterns ◦ Tonal Centroid .40*** .33*** .44*** .49***
Chroma ◦ Tonal Chromagram ◦ Key Strength .22*** .20*** .25*** .26***
Chroma ◦ Tonal Chromagram ◦ Tonal Centroid .23*** .21*** .28*** .28***
Tonal ◦ Tonal Key Strength ◦ Tonal Centroid .17** .15** .22*** .22***

**p < .01; ***p < .001

Table 3: Correlations between perceptual segmentation density and feature interactions. Maximum coef-
ficients of each set are indicated in boldface. Coefficients from features selected via optimization are high-
lighted. P-values adjusted for effective degrees of freedom, and for multiple comparisons via Benjamini-
Hochberg correction (q = 0.05).

24


	Introduction
	Method
	Results
	Discussion
	Appendices

