1% £

Jyvaskylan yliopiston julkaisuarkisto I
Jywiskyld University Digital Archive UNIVERSITY OF JYVASKYLA

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): Tikka, Santtu; Karvanen, Juha

Title: Simplifying Probabilistic Expressions in Causal Inference
Year: 2017
Version:

Please cite the original version:

Tikka, S., & Karvanen, J. (2017). Simplifying Probabilistic Expressions in Causal
Inference. Journal of Machine Learning Research, 18, 1-30.
http://jmlr.csail.mit.edu/papers/volume18/16-166/16-166.pdf

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

Journal of Machine Learning Research 18 (2017) 1-30 Submitted 4/16; Revised 3/17; Published 4/17

Simplifying Probabilistic Expressions in Causal Inference

Santtu Tikka SANTTU.TIKKA@JYU.FI
Juha Karvanen JUHA.T.KARVANENQ@JYU.FI
Department of Mathematics and Statistics

P.0.Box 35 (MaD) FI-40014 University of Jyvaskyla, Finland

Editor: Peter Spirtes

Abstract

Obtaining a non-parametric expression for an interventional distribution is one of the most
fundamental tasks in causal inference. Such an expression can be obtained for an identifiable
causal effect by an algorithm or by manual application of do-calculus. Often we are left
with a complicated expression which can lead to biased or inefficient estimates when missing
data or measurement errors are involved.

We present an automatic simplification algorithm that seeks to eliminate symbolically
unnecessary variables from these expressions by taking advantage of the structure of the
underlying graphical model. Our method is applicable to all causal effect formulas and is
readily available in the R package causaleffect.

Keywords: simplification, probabilistic expression, causal inference, graphical model,
graph theory

1. Introduction

Symbolic derivations resulting in complicated expressions are often encountered in many
fields working with mathematical notation. These expressions can be derived manually or
they can be outputs from a computer algorithm. In both cases, the expressions may be
correct but unnecessarily complex in a sense that some unrecognized identities or properties
would lead to simpler expressions.

We will consider simplification in the context of causal inference in graphical models
(Pearl, 2009). Advances in causal inference have led to algorithmic solutions to problems such
as identifiability of causal effects and conditional causal effects (Huang and Valtorta, 2006;
Shpitser and Pearl, 2006a,b), z-identifiability (Bareinboim and Pearl, 2012), transportability
and meta-transportability (Bareinboim and Pearl, 2013b,a) among others. The aforemen-
tioned algorithmic solutions operate symbolically on the joint distribution of the variables of
interest and return expressions for the desired queries. These algorithms have been previously
implemented in the R package causaleffect (Tikka and Karvanen, 2017). Another implemen-
tation of an identifiability algorithm can be found in the CIBN software by Jin Tian and
Lexin Liu freely available from http://web.cs.iastate.edu/~jtian/Software/CIBN.htm.
However, the algorithms themselves are imperfect in a sense that they often output an
expression that is complicated and far from ideal. The question is whether there exists a
simpler expression that is still a solution to the original problem.

(©2017 Santtu Tikka and Juha Karvanen.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-166.html.

http://web.cs.iastate.edu/~jtian/Software/CIBN.htm
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-166.html

TIKKA AND KARVANEN

Simplification of expressions may provide significant benefits. First, a simpler expression
can be understood and reported more easily. Second, evaluating a simpler expression will
be less of a computational burden due to reduced dimensionality of the problem. Third, in
situations where estimation of causal effects is of interest and missing data is a concern,
eliminating variables with missing data from the expression has clear advantages. The same
applies to variables with measurement error.

We begin with presenting in Section 2 a general form of probabilistic expressions that are
often encountered in causal inference. In this paper probabilistic expressions are formed by
products of non-parametric conditional distributions of some variables and summations over
the possible values of these variables. Simplification in this case is the process of eliminating
terms from these expressions by carrying out summations. As our expressions correspond to
causal effects, the expressions themselves take a specific form.

Causal models are typically associated with a directed acyclic graph (DAG) which
represents the functional relationships between the variables of interest. In situations where
the joint distribution is faithful, meaning that no additional conditional independences
are generated by the joint distribution (Spirtes et al., 2000), the conditional independence
properties of the variables can be read from the graph itself through a concept known as
d-separation (Geiger et al., 1990). We will use d-separation as our primary tool for operating
on the probabilistic expressions. The reader is assumed to be familiar with a number of
graph theoretic concepts that are explained for example in (Koller and Friedman, 2009) and
used throughout the paper.

Our simplification procedure is built on the definition of simplification sets, which is
presented in Section 3. We continue by introducing a sound and complete simplification
algorithm for probabilistic expressions defined in Section 2 for which these simplification
sets exist. The algorithm takes as an input the expression to be simplified and the graph
induced by the underlying causal model, and proceeds to construct a joint distribution of
the variables contained in the expression by using the d-separation criteria. Higher level
algorithms that use this simplification procedure are presented in Section 4. These include an
algorithm for the simplification of a nested expression and an algorithm for the simplification
of a quotient of two expressions. Section 5 contains examples on the application of these
algorithms. We have also updated the causaleffect R-package to automatically apply these
simplification procedures to causal effect expressions.

As a motivating example we present an expression of a causal effect given by the ID
algorithm of Shpitser and Pearl (2006a) that can be simplified. The complete derivation
of this effect can be found in Appendix C. The causal effect of X on 7, Z,, Z3 and Y is
identifiable in the graph of Figure 1 and application of the ID algorithm gives

>x P(Y125, X, Z3, Z,) P(Z5] 2, X) P(X|Z5) P(Z5)
Yoxy P(Y|22, X, Z3, 2,) P(Z3] 25, X) P(X|Z5) P(Z5)

> P(Y|Zy, X, Z3, Z1)P(Zs| Zs, X)P(X|Z2) P(Z5).
X,Z3Y

P(Z,|Zy, X)P(Z5|Z5)

It turns out that there exists a significantly simpler expression,

P(Z1|Z3, X)P(Z5) Y | P(Y|Zy, X, Z3, Z1) P(Z3| Z3, X)) P(X | Zs), (1)
X

SIMPLIFYING PROBABILISTIC EXPRESSIONS

Figure 1: A graph for the introductory example on simplification.

for the same causal effect. This expression can be obtained without any knowledge of the
underlying model by using standard probability manipulations. However, this requires that
a favorable choice is made for the ordering of the nodes of the graph in the ID algorithm.
In the case that we had chosen an ordering where Z; precedes Z3, the term for Z5 would
instead be P(Z3|Zy, Z1, X') and simplification would require knowledge about the underlying
graph. We will take another look at this example later in Section 5 where we describe in
detail how our procedure can be used to find expression (1).

Our simplification procedure is different from the well-known exact inference method of
minimizing the amount of numerical computations when evaluating expressions for condi-
tional and marginal distributions by changing the order of summations and multiplications
in the expression. Variants of this method are known by different names depending on
the context, such as Bayesian variable elimination (Koller and Friedman, 2009) and the
sum-product algorithm (Bishop, 2006) which is a generalization of belief propagation (Pearl,
1988; Lauritzen and Spiegelhalter, 1988). Efficient computational methods exist for causal
effects as well, such as (Shpitser et al., 2011). The general principle is the same in all of the
variants, and no symbolic simplification is performed.

In our setting simplification can be defined explicitly but in general it is difficult to
say what makes one expression simpler than another. Carette (2004) provides a formal
definition for simplification in the context of Computer Algebra Systems (CAS) that operate
on algebraic expressions. Modern CAS systems such as Mathematica (Wolfram Research
Inc., 2015) and Maxima (Maxima, 2014) implement techniques for symbolic simplification.
Bailey et al. (2014) and references therein discuss simplification techniques in CAS systems
further. However to the best of our knowledge, the symbolic simplification procedures for
probabilistic expressions described in this paper have neither been given previous attention
nor implemented in any existing system.

2. Probabilistic Expressions

Every expression that we consider is defined in terms of a set of variables W. As we are
interested in probabilistic expressions, we also assume a joint probability distribution P for
the variables of W. The most basic of expressions are called atomic expressions which will
be the main focus of this paper.

TIKKA AND KARVANEN

Definition 1 (Atomic expression) Let W be a set of p discrete random variables and
let P be any joint distribution of W. An atomic expression is a pair

A= A[W] = (TS),
where

1. T is a set of pairs {(V1,C1),...,(V,,C,)} such that for each V; and C; it holds that
Vie W, C;C W, V; ¢ C; and V; # V; for i # j.

2. S is aset {Sy,...,8,} ©W such that for each i =1,...,m it holds that S; = V; for
some j € {1,...,n}.

The value of an atomic expression A is
n
Py=> T PWilCy).
S =1

The probabilities P(V;|C;) are referred to as the terms of the atomic expression. A term
P(V;|C;) is said to contain a variable V' if V; =V or V' € C,. A term for a variable V' refers
to a term P(V|-). We also use the shorthand notation V[A] := {V;,...V,,}. As S is a set,
we will only sum over a certain variable once. All variables are assumed to be univariate
and discrete for clarity, but we may also consider multivariates and situations where some of
the variables are continuous and the respective sums are interpreted as integrals instead.
As an example we will construct an atomic expression describing the following formula

Y P(Y|Zy, X, Zs, Z,)P(Zs] Zy, X) P(X|Z3) P(Z,),
X
which is a part of the motivating example in the introduction. We let W = { XY, Z,, Z5, Z3},
which is the set of nodes of the graph of Figure 1. The sets T and S can now be defined as
{<}/7 {Z27X7Z3721}>7<Z37{Z2aX}>v<X7{ZQ}>7<ZQ7®>} and {X}7
respectively. Next we define a more general probabilistic expression.

Definition 2 (Expression) Let W be a set of p variables and let P be the joint distribution
of W. An expression is a triple

B = B[W,n,m] = (B,A,S),
where
1. S is a subset of W.
2. Form >0, A is a set of atomic expressions
[Ty, 81, (T S0}

If m =0 then A = (.

SIMPLIFYING PROBABILISTIC EXPRESSIONS

3. Forn >0, B is a set of expressions
{Bl[wlanhml]v"‘7Bn[Wn’nnamn]}
such that W; C W, n; <n,m; <m foralli=1,....,n. If n =0 then B =10.

The value of an expression B is
n m
PB - ZHPBi HPA]"
S j=

i=1 j=1
where an empty product should be understood as being equal to 1.

The recursive definition ensures the finiteness of the resulting expression by requiring
that each sub-expression has fewer sub-expressions of their own than the expression above it.
A single value might be shared by multiple expressions, as the terms of the product in the
value of the expression are exchangeable. Expressions B1[W,ny,m] and By[W, ngy, msy| are
equivalent if their values Pp and Pp, are equal for all P. Equivalence is defined similarly for
atomic expressions. Every expression is formed by nested atomic expressions by definition.
Because of this, we focus on the simplification of atomic expressions.

As an example we construct an expression for the causal effect formula (1). We define
W :={X,Y,Z,,Z,, Z3} and let the sets B and S be empty. We define the set A to consist
of three atomic expressions A;, Ay and As defined as follows

Ay = <{<Zla{Z27X}>}7®>a
Ay = ({(%,01)},0),
A2 = <{<Y7 {227X7 Z37 Zl}>7 <Z37 {Z27X}>7 <X7 {Z2}>7 <Z27 ®>}7 {X}>

In the context of probabilistic graphical models, we are provided additional information
about the joint distribution of the variables of interest in the form of a DAG. As we are
concerned on the simplification of the results of causal effect derivations in such models, the
general form of the atomic expressions can be further narrowed down by using the structure
of the graph and the ordering of vertices called a topological ordering.

Definition 3 (Topological ordering) Topological ordering m of a DAG G = (W, E) is
an ordering of its vertices, such that if X is an ancestor of Y in G then X <Y in m.

The symbol Vj7T is used to denote the subset of vertices of GG that are less than V; in 7.
For sets we may define V™ to contain those vertices of G that are less than every vertex of V
in 7. Consider a DAG G = (W, E) and a topological ordering 7 of its vertices. We use the
notation 7(-) to denote indexing over the vertex set W of G in the ordering given by , that
is Vay > Vage) > -+ > Vi) where m = [W|. For any atomic expression A[V] = (T, S)
such that V.C W we also define the induced ordering w. This ordering is an ordering of the
variables in V such that if X > Y in w then X > Y also in 7. From now on in this paper,
any indexing over the variables of an atomic expression will refer to the induced ordering of
the set V when 7 is given, i.e V] > V5 > --- >V, in w. In other words, w is obtained from
7w by leaving out variables that are not contained in A.

TIKKA AND KARVANEN

The ID algorithm performs the so-called C-component factorization. These components
are subgraphs of the original graph where every node is connected by a path consisting
entirely of bidirected edges. The resulting expressions of these factors serve as the basis for
our simplification procedure.

Definition 4 (Topological consistency) Let G' be a DAG with a subgraph G = (W, E)
and let 7 be a topological ordering of the vertices of G. An atomic expression AJW] = (T, S)
is topologically consistent (or mw-consistent for short) if

An(V;))a CC,; CV; foralli=1,...,n.

Here An(V;)q denotes the ancestors of V; in G. To motivate this definition we note that
the outputs of the algorithms of Shpitser and Pearl (2006a,b) can always be represented by
using products and quotients of topologically consistent atomic expressions. An expression
is topologically consistent when every atomic expression contained by it is topologically
consistent with respect to a topological ordering of a subgraph. We provide a proof for this
statement in Appendix A. This also shows that any manual derivation of a causal effect
can always be represented by a topologically consistent expression. The assumption that
An(V;)g C C; is not necessary for the simplification to be successful. This assumption is
used to speed up the performance of our procedure in Section 3.

3. Simplification

Simplification in our context is the procedure of eliminating variables from the set of variables
that are to be summed over in expressions. In atomic expressions, a successful simplification
in terms of a single variable should result in another expression that holds the same value,
but with the respective term eliminated and the variable removed from the summation. As
we are interested in causal effects, we consider only simplification of topologically consistent
atomic expressions.

Our approach to simplification is that the atomic expression has to represent a joint
distribution of the variables present in the expression to make the procedure feasible. The
question is whether the expression can be modified to represent a joint distribution. Before
we can consider simplification, we have to define this property explicitly.

Definition 5 (Simplification sets) Let G’ be a DAG and let G be a subgraph of G’
over a vertex set W with a topological ordering w. Let AJW] = (T,S), where T =
{(V1,C1,)5V, Cpp) b, be a w-consistent atomic expression and let V; € S. Suppose
that Vi) = V; and that Vi, = Vi and let M be the set

{U eWwW | U¢g V[A},Vﬂ(q) >U > Vﬂ(p)}.

If there exists a set D C Vf and the sets Eyy C'W for all U € M such that the conditional

distribution of the variables Vi, ..., Vyq) can be factorized as
UeM VizV;

SIMPLIFYING PROBABILISTIC EXPRESSIONS

and
(U LV;|Eg \{V;}) for allU € M. (3)

then the sets D and Ey,U € M are the simplification sets of A with respect to V;.

This definition is tailored for the next result that can be used to determine the existence
of a simpler expression when simplification sets exist. Afterwards we will show how this
result can be applied in practice via an example. The definition characterizes m-consistent
atomic expressions that represent joint distributions. It is apparent that simplifications sets
are not always unique, which can lead to different but still simpler expressions. Henceforth
the next result considers simplification in terms of a single variable. The proof is available
in Appendix B.

Theorem 6 (Simplification) Let G’ be a DAG and let G be a subgraph of G' over a vertex
set W with a topological ordering w. Let A{W] = (T, S) be a m-consistent atomic expression
and let D and Ey,U € M be its simplification sets with respect to a variable V; € S. Then
there exist an expression A'|W \ {V,}] = (T',S') such that V; ¢ S', Py = P, and no term
in A" contains V.

Note that even if M = () in Definition 5, the existence of simplification sets still requires
that [y, >y, P(V;|C;) = P(Vj,...,V;|D). In many cases there exists variables U € M such
that the expression does not contain a term for U. Condition (2) of Definition 5 guarantees
that if these terms were contained in the expression it would represent a joint distribution.
Our goal is thus to introduce these terms into the original expression temporarily, carry
out the desired summation, and finally remove the added terms. This can only be achieved
if the variables in the set M are conditionally independent of the variable currently being
summed over, hence the assumption (U L V;|Ey \ {V}}). of condition (3) of Definition 5.

We show how simplification sets can be used in practice to derive a simpler expression
via an example. We consider the causal effect of {X, Z, W} on Y in the graph G of Figure 2.

Figure 2: A graph G for the example on the use of simplification sets.
The effect in question is identifiable and the ID algorithm readily gives atomic expression

> PY|X,W,Z)P(X|W)P(W).
X,W

TIKKA AND KARVANEN

We consider simplification sets with respect to V; = W. The topological order is W < X <
Z <Y. The atomic expression does not contain a term for Z so we have M = {Z}. By
noting that (Z 1L W|X)s we are able to satisfy condition (3) of Definition 5. We can write

P(Y,Z,X,W) = P(Z|X,W)P(Y|X,W, Z)P(X|W)P(W),

as required by condition (2) of Definition 5 by setting E, = {X, W}. Thus, the simplification
sets D and E for the atomic expression with respect to W are () and {X, W}, respectively.
Finally, we obtain the simpler atomic expression by carrying out the summation over W:

Y P(Y|X,Z)P(X).
X

Neither Definition 5 nor Theorem 6 provide a method to obtain simplification sets or to
determine whether they exist in general. To solve this problem we present a simplification
algorithm for m-consistent atomic expressions that operates by constructing simplification
sets iteratively for each variable in the summation set.

Algorithm 1 always attempts to perform maximal simplification, meaning that as many
variables of the set S are removed as possible. If the simplification in terms of the entire
set S can not be completed, the intermediate result with as many variables simplified as
possible is returned. If simplification in terms of specific variables or a subset is preferred,
the set S should be defined accordingly.

The function SIMPLIFY takes three arguments: an atomic expression A|W] that is to
be simplified, a graph G and a topological ordering 7 of its vertices. A is assumed to be
m-consistent.

On line 10 the function INDEX.OF returns the corresponding index ¢ of the term containing
S;. Since A is m-consistent, we only have to iterate through the variables V;,...,V; as the
terms outside this range contain no relevant information about the simplification of V;. The
variables without a corresponding term in the atomic expression A are retrieved on line 11
by the function GET.MISSING. This function returns the set M of Definition 5 with respect
to the current variable to be summed over.

In order to show that the term of A represent some joint distribution, we proceed in
the order dictated by the topological ordering of the vertices. The sets J and D keep track
of the variables that have been successfully processed and of the conditioning set of the
joint term that was constructed on the previous iteration. Similarly, the sets R and I keep
track of the variables and conditioning sets of the corresponding variables that the atomic
expression does not originally contain a term for. Iteration through relevant terms begins
on line 13. Next, we take a closer look at the function JOIN which is called next on line 14.

Here P(-) denotes the power set, /A denotes the symmetric difference and An*(-)s denotes
the ancestors with the argument included. The function JOIN attempts to combine the joint
term P(J|D), obtained from the previous iteration steps, with the term P(V|C) := P(V,|Cy)
of the current iteration step. d-separation statements of G are evaluated to determine whether
this can be done. In practice this means finding a suitable subset P; of G, where GUAn(V)g
is the largest possible conditioning set of the new combined term. The set G is computed
on line on line 4 of Algorithm 2. A valid subset P; satisfies P(J|D) = P(J|An"(V)g, P;)
and P(V|C) = P(V|An(V)g, P;) which allow us to write the product P(J|D)P(V|C) as
PJ,V|An(V)q, P;).

SIMPLIFYING PROBABILISTIC EXPRESSIONS

Algorithm 1 Simplification of an atomic expression A = (T, S) given graph G and topo-
logical ordering 7.
1: function SIMPLIFY(A, G,)

2:] +~—0

3: while j < |S| do

4: B+ A

5: J«0

6: D« 0

7 R«

8: 10

9: j—i+1

10: i < INDEX.OF(A4, j)

11: M «+ GET.MISSING(A4, G, j)
12: k<1

13: while £ <7 do

14: (Jnews Drew> Rpew) < JOIN(J, D, V,, Cy, S;, M, G,)
15: if J,ow € J then

16: break

17: else

18: J—Joew

19: D« Dnew
20: if Ry # 0 then
21: R+~ RUR,,
22: I+~ IuU{D}
23: M+ M\ R,
24: else
25: k< k+1
26: if k =i+ 1 then
27: Apew < FACTORIZE(J,D, R, 1, A)
28: if A .y = A then
29: A+ B
30: else
31: A Apew
32: S «+ S\ {9;}
33: 7+0
34: return A

In order to find this valid subset, we compute the sets A and B for each candidate
on lines 8 and 9. These sets characterize the necessary change in the conditioning sets of
the terms P(J|D) and P(V|C) that would enable a joint term to be formed by these two
terms. The validity of the candidate set is finally checked on line 10 which determines if the
necessary change is allowed by d-separation criteria in the graph G. If no valid subset P; can
be found, we can still attempt to insert a missing variable of M by calling INSERT. If this

TIKKA AND KARVANEN

Algorithm 2 Construction of the joint distribution of the set J and a variable V' given
their conditional sets D and C using d-separation criteria in G. S is the current summation
variable, M is the set of variables not contained in the expression and 7 is a topological
ordering.

1: function JOIN(J,D,V,C,S,M, G, 7)

2: if J =0 then

3: return ({V}, C,0)

4: G+ J"\An*" (V)¢

5. P« P(G)

6: n < |P|

7 fori=1:ndo

8: A« (An*(V)qUP,)AD

9: B+ (An(V)gUP;)AC

10: if (JLAD\A); and (V 1L B|C\ B); then
11: return (JU{V}, (An(V)g UP;),0)

12: if M # () then

13: for M' € M do

14: if M' ¢ D, M’ ¢ C then

15: (Jew Diews R) <= INSERT(J, D, M, S, G,)
16: it J C J,e then

17: return (J .y, Dpews R)

18: return (J, D, ()

does not succeed either, the original sets J and D are returned, which instructs SIMPLIFY to
terminate simplification in terms of V; and attempt simplification in the next variable.

A special case where the first variable of the joint distribution forms P(J, D) alone is
processed on line 2 of Algorithm 2. In this case, we have an immediate result without having
to iterate through the subsets of G. The formulation of the set G ensures that the resulting
factorization is m-consistent if it exists. Knowing that the ancestral set An(V')g has to be a
subset of the new conditioning set also greatly reduces the amount of subsets we have to
iterate through. In a typical situation, the size of P is not very large. Let us now inspect
the insertion procedure in greater detail.

In essence, the function INSERT is a simpler version of JOIN, because the only restriction
on the conditioning set of M’ is imposed by the conditioning set of J and the fact that M’
has to be conditionally independent of the current variable S to be summed over. If JOIN or
INSERT was unsuccessful in forming a new joint distribution, we have that J,., C J. In this
case simplification in terms of the current variable cannot be completed. If we have that
Jiew Z J the iteration continues.

Together the functions JOIN and INSERT capture the two conditions of Definition 5. They
are essentially two variations of the underlying procedure of determining whether the terms
of the atomic expression actually represent a joint distribution. The only difference is that
JOIN is called when we are processing terms that already exist in the expression, and INSERT

10

SIMPLIFYING PROBABILISTIC EXPRESSIONS

Algorithm 3 Insertion of variable M’ into the joint term P(J|D) using d-separation criteria
in G. S is the current summation variable and 7 is a topological ordering.
1: function INSErRT(J, D, M, S, G,)
2 G« J"\ An* (M)
3 n + |G|
4 fori=1:ndo
5: A« (An*(MqUP,)AD
6
7
8
9

B« (An(M')g UP;)
if (J L A|D\ A); and (M’ I S|B\ S); then
return (J U {M'}, (An* (M) UP,), {M'})
return (J, D, ()

is called when there are variables without corresponding terms in the expression, that is the
set M of Definition 5 is not empty.

If the innermost while-loop of Algorithm 1 succeeded in iterating through the relevant
variables, we are ready to complete the simplification process in terms of S;. We carry
out the summation over S; which results in P(J \ {V;}|D). This is done on line 27 by
calling FACTORIZE(J, D, R, I, A) which checks whether the joint term P(J\ {V;}|D) can be
factorized back into a product of terms. In practice this means that if the function succeeds,
it will return an atomic expression obtained by removing each inserted term P(R|Ig) such
that R € R and Iy € I from atomic expression A. The status of the atomic expression is
updated on lines 31 and 32 to reflect this. If the function fails, it will return A unchanged.

If the innermost while-loop did not iterate completely through the relevant variables,
the simplification was not successful in terms of S; at this point. In this case we reset A
to its original state on line 29 and attempt simplification in terms of the next variable. If
there are no further variables to be eliminated, the outermost while-loop will also terminate.
In the next theorem, we show that Algorithm 1 is both sound and complete in terms of
simplification sets. The proof for the theorem can be found in Appendix D.

Theorem 7 Let G' be a DAG and let G be a subgraph of G' over a vertex set W with a
topological ordering . Let AJW| = (T,{V;}) be a m-consistent atomic expression. Then if
SIMPLIFY (A, G,) succeeds, it has constructed a collection of simplification sets of A with
respect to V;. Conversely, if there exists a collection of simplifications sets of A with respect
to V;, then SIMPLIFY (A, G, m) will succeed.

4. High Level Algorithms

In this section, we present an algorithm to simplify all atomic expressions in the recursive
stack of an expression. We will also provide a simple procedure to simplify quotients
defined by two expressions: one representing the numerator and another representing the
denominator. In some cases it is also possible to eliminate the denominator by subtracting
common terms. First, we present a general algorithm to simplify topologically consistent
expressions.

11

TIKKA AND KARVANEN

Algorithm 4 Recursive wrapper for the simplification of an expression B = (B, A, S) given
graph G and topological ordering .
1: function DECONSTRUCT(B, G,)

22 R+ 0

3 for Y € A do

4 {(V1,Cq),....(V,,C)},Sy) < siMPLIFY (Y, G,)
5 if Sy =0 then

6: A< AU UZ{{(Vi, CL0)})

7 for (By,Ax,Sx) € B do

8 (Bx,Ax,Sx) < DECONSTRUCT((Bx,Ax,Sx),G)
9: if By =0 and Sy = () then

10: R(-RU{<BX,Ax,Sx>}

11: A+—~AUAy

12: B+~ B\R
13: return (B, A S)

Algorithm 4 begins by simplifying all atomic expressions contained in the expressions.
If an atomic expression contains no summations after the simplification but does contain
multiple terms, each individual term is converted into an atomic expression of their own.
After this, we iterate through all sub-expressions contained in the expression. The purpose
of this is to carry out the simplification of every atomic expression in the stack and collect
the results into as few atomic expressions as possible. First, we traverse to the bottom of the
stack on line 8 by deconstructing sub-expressions until they have no sub-expressions of their
own. Afterwards, it must be the case that (Bx, Ax,Sy) consists of atomic sub-expressions
only.

If (Bx,Ax,Sx) contains no summations on line 9 then the atomic expressions contained
in this expression do not require an additional expression to contain them, but can instead
be transferred to be a part of the expression above the current one in the recursive stack.
On line 6 we lift the atomic expressions contained in the atomic sub-expressions up to the
current recursion stage.

There is no guarantee, that the resulting atomic expression is still m-consistent after
this procedure. The function DECONSTRUCT operates on the principle of simplifying as
many atomic expressions as possible, combining the results into new atomic expressions
and simplifying them once more. We do not claim that this procedure is complete in a
sense that Algorithm 4 would always find the simplest representation for a given expression.
This method in nonetheless sound and finds drastically simpler expressions in almost every
situation where such an expression exists.

We may also consider quotients often formed by deriving conditional distributions. For
this purpose we need a subroutine to extract terms from atomic sub-expression that are
independent of the summation index, that is V; ¢ S and C; NS = (.

The procedure of Algorithm 5 is rather straightforward. First, we attempt to simplify
B by using DECONSTRUCT on line 2. Next, we simply recurse as deep as possible without
encountering a sum in an expression. If a sum is encountered, extraction is attempted.
On any stage where a sum was not encountered, we may still have atomic sub-expression

12

SIMPLIFYING PROBABILISTIC EXPRESSIONS

Algorithm 5 Extraction of terms independent of the summation indices from a expression
B = (B, A,S) given graph G and topological ordering 7.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

14:

15:

16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

function EXTRACT(B, G,)

B <+ DECONSTRUCT(B, G,)
if S=0 then
for X € B do
X < EXTRACT(X, G,)

for (T4,S4) € A do
if Sy # 0 then

Ap 0

R« 0

for (V,C) € T, do

if V¢S, and CNS, =0 then

Ap < Ap U{{{V.C)},0)}
R+~ RU{(V,C)}

A—AUA,
Ty« T4 \R
else
Ap+ 0
R« 0
for (T4,S4) € A do
if Sy =0 then
T(A1)<—Q)
T(A2)<—(Z)
for (V,C) € T, do
TV « TV U (V)
Y « TP uC
ifTEj)ﬂS:(Dand Tf)ﬂS:chen
Ap + ApU{(T4,S4)}
R« RU{(T4,S4)}
A+« A\R
Bp « {B}

return (Bg, Ag,0)

that contain sums. Because the recursion had reached this far, we know that there are no
summations above them in the stack, so we can attempt extraction on them as well.

Algorithm 6 takes two expressions, B; and Bs, and removes any sub-expressions and

atomic sub-expressions that are shared by B; and By. This is of course only feasible when
the summation sets are empty for both By and Bsy. This condition is checked on line 4.

13

TIKKA AND KARVANEN

Algorithm 6 Simplification of a quotient Pp, / Pp, given by the values of two expressions
B; = (B1,A,S;) and By = (B,, A,,S,) given graph G and topological ordering 7.

1: function ¢-SIMPLIFY (B, By, G,)
2 B; < EXTRACT(Bq,G,)

3 By < EXTRACT(By, G,)

4 if S; #0 or Sy # () then

5: return (B, B,)

6 141

7 while i < |B;| and |B;| > 0 and |B,| > 0 do
8 for j =1:|By| do

9: if By; = By; then

10: B, < By \ {Bu}

11: B, + By \ {By;}

12: 140

13: break

14: 1+—1+1

15: 141

16: while i < |A;| and |A;| > 0 and |A,| > 0 do
17: for j =1:|A,| do

18: if Ay; = Ay; then

19: Ay A\ {Ay}
20: Ay < Ao\ {4y}
21: 140
22: break
23: 14—1+1

24: return (By, By)

5. Examples

In this section we present examples of applying the algorithms of the previous sections. We
denote line number y of algorithm x with Axz:y. We begin with a simple example on the
necessity of the INSERT procedure in graph G of Figure 3.

Figure 3: A graph G for the example on the necessity of the insertion procedure.

14

SIMPLIFYING PROBABILISTIC EXPRESSIONS

The causal effect of W on X is identifiable in this graph, and expression

> P(Y)P(Z|Y)P(X|W,Z,Y)
Z2Y

is obtained by direct application of the ID algorithm or by the truncated factorization
formula for causal effects in Markovian models (Pearl, 2009). We let A be this atomic
expression. The topological ordering 7w is X > W > Z > Y and M = {W}. The call to
SIMPLIFY (A, G, m) will first attempt simplification in terms of Z, by calling

JOIN(D, 0, X, {\W, Z, Y}, Z,{W},G,x),
which results in (X, {W, Z,Y},0). At the second call
JOIN{X},{W,Z, Y}, Z,)Y, Z, {W},G,)

we already run into trouble since we cannot find a conditioning set that would allow Z to be
joined with {X}. However, since M is non-empty and W € {W,Z,Y} and W ¢ {Z} this
means that the next call is

INSERT({ X },{W, Z, Y}, W, Z,G,).

Insertion fails in this case, as one can see from the fact that no conditioning set exists that
would make W conditionally independent of Z. Thus we recurse back to JOIN and back to
SIMPLIFY and end up on line A1:15 which breaks out of the while-loop. Thus A cannot be
simplified in terms of Z. Simplification is attempted next in terms of Y. The first two calls
are in this case

JOIN(D, 0, X, {W, Z, Y}, Y,{W},G,),
JOIN{X},{W,Z, Y}, Z,{Y}, Y. {W} G,x),

and in the second call we run into trouble again and have to attempt insertion
NsERT({ X}, {WV, Z,Y}, W, Y, G, 7).

This time we find that we can add a term for W which is P(W|Z,Y) because (W L Y|Z)q.
The other calls to JOIN also succeed and we can write the value of A as
Y2y PY)P(ZIY)P(W|Y, Z)P(X|W, Z,Y)
P(W|Z)

and complete the summation in terms of Y. After the call to FACTORIZE we are left with
the final expression

> P(X|W,Z)P(Z).
Z

We continue by considering again graph G depicted in Figure 1. The topological ordering
misY > Zy > Z3 > X > Zy. Atomic expression A; given by

ZP(Y’Z%Xv Z37ZI)P(Z3’Z27X)P<X‘Z2)P(ZQ>7
XY

15

TIKKA AND KARVANEN

is a part of the expression to be simplified.

We will first simplify A; and take a closer look at how the function JOIN operates. The
call to SIMPLIFY (A, G,) will attempt simplification in terms of the set {X,Y} in the
ordering that agrees with the topological ordering 7, which is (Y, X). After initializing the
required sets, we find the index of the term with Y as a variable on line 10. There is one
missing variable, Z;, so M = {Z,} as returned by GET.MISSING on line Al:11. The first
call to JOIN results in (Y, {Z,, X, Z3, Z; },), because line A2:3 is triggered. Condition on
line A1:15 is not satisfied since J,o,, = {Y'} € 0 = J. Thus we update the status of J and D
on lines A1:18 and A1:19. Since R ., = 0 on line A1:20 we do not have to update the status
of R,I and M on lines A1:21, A1:22 and A1:23. The innermost while-loop is now complete
and we call FACTORIZE on line A1:27 which succeeds in removing the term P(Y'|Z,, X, Z3, Z1)
by completing the sum. Now we update the status of the atomic expression on line A1:31
and remove Y from the set of variables to be summed over on line A1:32. The resulting
value of the expression at this point is

> P(Z3|Zy, X)P(X|Z5) P(Zs).
X

Next, the summation in terms of X is attempted. JOIN is once again successful, because
Z5 is the first variable to be joined and line A2:3 is triggered. Next we attempt to join the
terms P(Z3|Zy, X) and P(X|Z;). Computation of the set G on line A2:4 results in

{Z3}" \ An"(X)g = {X, Zo} \ {X, Z,} = 0.
The power set computed on line A2:5 contains only the empty set. For P; = () we have
A= (An(X)GUP)AD = ({X, Zy} UD)A{X, Zy} =0
on line 8, and
B=(An(X)gUP)AC = ({Z,} UD)AN{Z,} =0

on line 9. The condition on line A2:10 evaluates to true and we return with ({Z3, X },{Z,}, 0).
The innermost while-loop terminates allowing the summation over X to be performed. The
function FACTORIZE provides us with the final expression

P(Z5|25) P(Zy). (4)

Next, we will consider the full example and see how ¢-SIMPLIFY is applied. Using the 1D
algorithm we obtain the causal effect of X on Z;, Z5, Z3 and Y in graph G of Figure 1 and
it is

>x P(Y|Zy, X, Z3, 2,) P(Z3| Zy, X) P (X |Z3) P(Z3) o
Yoxy P2y, X, Z3, Z1)P(Z3| Zy, X)P(X|Z5) P(Z5)

Z P(Y|Z27X7 Z37 ZI)P(Z3’Z27X)P(X‘ZQ)P(ZQ)
X,Z3,Y

P(Z1| 2, X)P(Z3|2,)

We will represent this as a quotient of expression using Definition 2. Let A; be the atomic
expression of the previous example and let A, also be an atomic expression given by

> P(Y|Zy, X, Z3, Zy)P(Z3| Zo, X)P(X|Z3) P(Z5),
X

16

SIMPLIFYING PROBABILISTIC EXPRESSIONS

which is essentially the same as Ay, but with the variable Y removed from the summation
set S. Similarly, we let A3 be an atomic expression given by

Y. P(Y|Zy, X, Z3, Zy)P(Z3]Zy, X)P(X|Z,) P(Z).
X,Z5,Y

We also define the atomic expressions A4 with the value P(Z3]|Z,) and A5 with the value
P(Z,|Z5, X). Now, we define two expressions B; and B, for the quotient Pg /Pp, as follows:

By = <®7 {A27A37A4>A5}7®>a B, = <®7 {Al}a®>

We now call ¢-SIMPLIFY (B, By, G, 7). First, we must trace the calls to EXTRACT for both
expressions on lines A6:2 and A6:3. For By and B, this immediately results in a call to
DECONSTRUCT on line A5:2. First, the function applies SIMPLIFY to each atomic expression
contained in the expressions on line A4:4.

Let us first consider the simplification of As. As before with A;, we have that JOIN first
succeeds in forming (Y, {Z,, X, Z3, Z, },), but this time Y is not in the summation set, so
we continue. Next, the algorithm attempts to join P(Y|Zy, X, Z3, Z) with P(Z3|Z,, X).
The set G is defined as

YY"\ An'(Zs)a = {Zs, 21, X, Zo} \{Z3, 2y} = {Z,, X}
and its subsets are {Z1, X'}, {Z}, {X} and (). For the first subset P; = () we have that

A= (An*(Z3) UP)AD = {Zy, Z3} N2y, X, Z3, 21} = {X, Z1}
and since (Y L X, Z|Z3, Z5)q the condition on line A2:10 is not satisfied. We continue
with P, = {X} and obtain

A= (An"(Z3) UP)AD = {X, Zy, Z3} N Zy, X, Z3, Z0} = {Z,1}

and since (Y L Z,|X, Z3, Zy) the condition on line A2:10 is still not satisfied. Next, for
P; = {Z;} we have

A= (An*(ZS) U Ps)AD = {ZZa Zs, Zl}A{Z%Xa Z3>ZI} = {X}

and since (Y L X|Zy, Z3, Zy)q the condition on line A2:10 is again, not satisfied. Finally,
for P, = {Z;, X} we have

A= (A"*(ZS) U P4)AD = {szX, Z3, Z1}A{Z27X, Z3, Zl} = {X}
and
B = (An(Z5) UP,)AC = {Z,, X, Z1 } N {Z,5, X} = {Z3}.

Both conditions on line A2:10 are now satisfied ny noting that (Z3 1L Z;|X, Z3)q. Afterwards
we obtain
P(Y|Zy, X, Z3, Z,)P(Z3]Zy, X) = P(Y, Z3|Z, Z3, X)

and continue in an attempt to join the term P(X|Z;) with this result. The set G is now
defined as
{Y, Z3}"\ An"(X)g = {21, X, Zo} \ {X, Zo} = {Z,}

17

TIKKA AND KARVANEN

and its subsets are {Z;} and (). Starting with P; = () we have that
A= (An*(X) U Pl)AD = {X7 ZQ}A{Zlv Z27X} = {Zl}

and since (Y, Z3 L Z1|X, Z3)q the condition on line A2:10 is not satisfied. Continuing with
P, = {Z,} we have

B = (An(X)UP)AC = {2y, Z1} A{Zy} = {21}

Again, the condition on line A2:10 is not satisfied by noting that (X L Z;|Z5)g. We have
exhausted the possible subsets, which means that we enter the loop on line A2:13 since the
set M = {Z,} is not empty of line A2:12.

In this case INSERT is called to bring Z; into the expression because Z; € D = {Z, Z5, X }
and Z; € C = {Z,}. The set G is constructed on line A3:2 and it is

I\ An™(Z))q = {Y, Z3}" \{X, 21, Zo} = 0.
For the only subset P; = () we have
B = (An(Z1)c UP,) ={X, Zo}

on line A3:6, and since (Z; L X|Z;3)q the condition on line A3:7 is not satisfied and we
return with (J, D, ()) unchanged on line 9 of Algorithm 3, which causes JOIN to also return
with the same output on line A3:18. The condition on line A1:15 is now satisfied and we
cannot simplify A,.

The atomic expression A3 can be simplified. First, Y is eliminated exactly as it was
removed from A;. Following the same principle we can see that whenever a variable in the
summation set is the largest one in the topological order of the variables contained in the
atomic expression, it will be removed successfully. From this we obtain that the value of
Az is in fact simply P(Z;3). Let us call the atomic expression with this value E, that is
Pp, = P(Z,). The atomic expression A; can also be simplified, and its value is given by
(4). Furthermore, since this value is made of two product terms, it is split into two atomic
expressions respectively. Let these be called D, and D, such that Pp = P(Z3|Z,) and
Pp, = P(Zy).

Applying SIMPLIFY to A4 and Ay simply returns the original expressions, since they do
not contain any summations and the loop on