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Abstract

Eye tracking is a widely used method for recording eye movements, which are important
indicators of ongoing cognitive processes during the viewing of a target stimulus. Despite
the variety of applications, the analyses of eye movement data have been lacking of methods
that could take both the spatial and temporal information into account. So far, most of
the analyses are based on strongly aggregated measures, because eye movement data are
considered to be complex due to their richness and large variation between and within the
individuals. Therefore, the eye movement methodology needs new statistical tools in order to
take full advantage of the data.

This dissertation is among the first studies to employ point process statistics for eye move-
ment data in order to understand its spatial nature together with the temporal dynamics.
Here, we consider eye movements as a realisation of a spatio-temporal point process. The em-
phasis is in statistical inference on eye movements using existing point process statistics along
with the new methods and models introduced in this work. Our aim is to get understanding
of eye movements as a temporally evolving process in space. This objective is achieved in four
steps: First, we apply the second-order characteristics of point processes to describe features
of the process. Second, we develop new functional summary statistics in order to evaluate the
temporal nature of the eye movements. Third, we use likelihood-based modelling to assess
the uncertainty related to these data summaries. Fourth, the developed models are used both
for group comparisons and for distinguishing components in an eye movement sequence.

The empirical results of this dissertation give new information on visual processing of
paintings. We find evidence that the viewing process of one subject changes during the
inspection of the painting being an indication of learning. The behaviour of this learning
effect, however, varies between the individuals. We also study differences between novices
and non-novices in art viewing by comparing where they look at and for how long the gaze
typically stops. The latter distinguishes the two groups, whereas the former reveals minor
differences that are not statistically significant. Altogether, we hope that our results encourage
researchers to pay more attention to temporal dynamics in eye movement data, as well as to
the inevitable variation in the individual level.

The spatio-temporal analysis of eye movements presented here is novel and covers a wide
range of methods from functional summary statistics to the likelihood-based modelling. The
methods and tools presented are applicable to other eye movement data collected in a free-
viewing condition, but we believe that the developed models, being rather simple but flexible,
could also be useful for the analysis of spatio-temporal sequences outside the field.
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Chapter 1

Introduction

The present dissertation provides tools for statistical inference on eye movement data by
employing spatial and spatio-temporal point process statistics and modelling. The novelty
of this work is in considering the temporal evolution of an eye movement process without
strong aggregation in space and in presenting model-based inference on the functional sum-
mary statistics describing the evolution. The main aims for this work are: to perform group
comparisons, to assess the uncertainty of appropriate summary statistics and to detect long-
term dependence in an observed eye movement sequence. For answering these questions,
we use existing methods of point processes, introduce new summary statistics, develop se-
quential spatial and spatio-temporal point process models, do model fitting, and experiment
with synthetic and real data. The results of this dissertation are expected to be useful for
other applications measuring eye movements in a free-viewing condition, where the gaze is
allowed to move freely in a two-dimensional space, but the models may be applied for other
spatio-temporal data as well.

1.1 Tracking eye movements

Eye movements are reflections of cognitive processes in the brain and provide valuable infor-
mation on where the attention is being directed to (Just and Carpenter, 1980). The movement
of the gaze on a target is recorded by electronic devices, called eye trackers, which often locate
below a computer screen. The eye tracking starts with a calibration phase, in which the eye
tracker associates the location of the gaze with the target stimulus. Typically, the participant
is asked to look at a set of calibration markers and the eye tracker records values from the
eyes, such as pupil positions and corneal reflections, that are associated with the locations of
the markers (Holmqvist et al., 2011). After the calibration, the eye tracker software is able to
define the location of the gaze on the target stimulus with a sufficient accuracy and precision.

The eye tracking method has been applied in various psychological studies, such as reading,
scene perception, visual search or music reading (see extensive reviews of Duchowski, 2002;
Rayner, 1998, 2009), as well as in educational studies in recent years (see the review of Lai
et al., 2013). Reasons for the on-going expansion of popularity of the method likely lie in the
reduced prices and increased availability of eye trackers as well as in the development of user-
friendly recording software produced by eye tracker manufacturers. Therefore, the eye tracking
method is nowadays easy to apply without programming skills, and mobile equipments allow
researchers to conduct experiments outside laboratories as well.



Despite the increasing use of eye tracking, the statistical methodology for analysing eye
movement data is still rather limited. Simple eye movement analyses can be done by the eye
tracker software that provides also comprehensive visualisations of eye movements. However,
these analyses are useful mainly for describing the data by means of where people look at and
for how long, since they are based on eye movement measures that are strongly aggregated
over time and space. For text reading studies, the development of methodology and compu-
tational models for the eye movements are advancing rapidly (Rayner, 2009), but other areas
of application come far behind.

Eye movements can be split into several kinds of events, of which the most reported one
is called a fization (e.g. Holmqvist et al., 2011). The fixation is a state, when the gaze is
staying fairly still around a location over a time period. The duration of a fixation can
vary from tens of milliseconds up to several seconds (Holmqvist et al., 2011). In practice,
fixations are identified from raw eye movement data by algorithms, which use information on
spatial dispersion and temporal characteristics of raw data (Salvucci and Goldberg, 2000).
These algorithms are included in the eye tracker software and the parameters for identifying
fixations can be often adjusted by the researcher.

Another essential phase of eye movements is the rapid movement of the gaze from one
fixation to another, called a saccade. Saccades are really fast, typically lasting only 30-80 ms
(Holmqvist et al., 2011). In this dissertation, saccades are loosely described as linear jumps
between consecutive fixations, whereas in reality they may be of any shape. Also, we do not
distinguish saccades from other kind of movements of the gaze, such as microsaccades (see
e.g. Holmqvist et al., 2011), because the data set used here includes detailed information only
on fixations (see Section 1.2).

In general, the main role of fixations is to gather visual information whereas the role
of saccades is to move the attention and gaze to another spot. It is often thought that
fixations measure allocation of attention in those locations, even though that is not always
true (Holmqvist et al., 2011). However, most of the visual information is acquired during the
fixations (Rayner, 2009) and therefore we will mainly focus on the fixations in the present
work.

The motivation for this dissertation comes from an experiment, where the participants
were looking at pictures and their eye movements were recorded. The pictures shown were
static. There were no given structure which would have restricted the gaze during the ex-
periment (as there is, for example, in reading a text), and therefore the set-up is called
free-viewing condition. In general, eye movement data in this kind of free-viewing situation
are rich, non-standard from the point of view of statistical analysis, and usually quite complex
to analyse.

1.2 Eye movement data from an art study

The data set! used in this thesis was collected in an experimental study applying eye tracking
for studying visual processing of paintings. Twenty students from the University of Jyvaskyla

The data set was collected and provided at our disposal by Pertti Saariluoma (Professor of Cognitive
Science, University of Jyvéskyld), Sari Kuuva (Postdoctoral Researcher, University of Jyvéskyld) and exchange
student Marfa Alvarez Gil (University of Salamanca) with the technical help of Jarkko Hautala (Postdoctoral
Researcher, Agora Center, University of Jyvéskyld) and Tuomo Kujala (Postdoctoral Researcher, University
of Jyvaskyld).



participated in the experiment. Ten of the subjects were either art students or students who
had studied art history and frequently visited art exhibitions, and the remaining ten subjects
were students who did not have art as their major nor their hobby. The participants in the
first group are here referred to as non-novices and participants in the latter group as nowvices.

In the experiment the participants saw six pictures of paintings and they were asked to
describe orally the atmosphere in the paintings. Each painting was visible for three minutes
and during the viewing their eye movements and voice were recorded. The eye movements
were recorded by the SMI iView XTMHi-Speed 500 Hz eye tracker. The resolution of the
screen, on which the pictures were presented, was 1024 x 768 pixels and the distance between
participant’s head and the screen was about 85 cm. The forehead rest was used during the
experiment to minimize any extensive head movement that could reduce the quality of the
recording. After the experiment the participants filled in a questionnaire about their own
emotional experience on each painting.

An example of one participant’s eye movements on the painting La croisée des destins
(1988) by Risto Suomi can be seen in Figure 1.1 with the fixations during the first minute of
inspection and with the 15 first saccades illustrated as arrows. The size of the painting, 766
X 768 pixels, was smaller than the screen. Eye movement data corresponding to the first ten
fixations shown in Figure 1.1 are listed in Table 1.1. Each row of the table represents one
fixation for which we know the time of occurrence (timestamp), duration in milliseconds and
location on the screen (x- and y-coordinates in pixels).

Figure 1.1: Example of the eye movements on a painting La croisée des destins (1988) by
Risto Suomi (printed with a kind permission of the artist). The dots represent the fixations
during the first minute of inspection and the arrows represent the saccades during the first
five seconds. The first fixation located in the centre of the painting is marked with a black
dot. The size of the painting on the screen was 766 x 768 pixels.

When extracting fixations from the raw data, the eye tracker software uses an algorithm
that provides a lower bound for fixation duration. The lower bound is usually somewhere
below 200 ms, for instance, in Tatler et al. (2006) the minimum fixation duration was 50 ms
and in Castelhano and Henderson (2008) it was 90 ms, and it can be adjusted by the researcher.
In our case, the data set included some really short fixations, but we made a decision to remove
all the fixations shorter than 40 milliseconds due to the data-based assumption that they are
artefacts (see Figure 4 in Article II).



Table 1.1: Example of an eye movement data matrix. Each row represents one fixation.

index | timestamp (ms) | duration (ms) | location x (px) | location y (px)
1 6 556 522 427
2 612 218 358 529
3 864 272 309 560
4 1202 198 606 579
) 1475 120 7T 166
6 1631 218 816 107
7 1919 250 490 413
8 2207 396 500 485
9 2645 486 614 387
10 3181 202 470 441

1.3 Brief review of eye movement methodology in picture view-
ing

Since the early studies by Buswell (1935) and Yarbus (1967), researchers have tried to explain
why certain elements or parts of the painting gain more fixations than some others. A funda-
mental contribution to this question was made by Koch and Ullman (1985), who introduced
the concept of saliency map. A saliency map is a spatial map that is calculated from multiple
feature maps of the picture and it represents the salient locations of the target picture that
are assumed to attract the gaze. According to the model by Koch and Ullman (1985), the
most salient parts of the picture are likely to be fixated first since, loosely speaking, they are
thought to be visually attractive. The model was first implemented by Itti et al. (1998), and
it has been refined after that (see further attempts to model visual attention by saliency in
Borji and Itti, 2013). Saliency maps have been widely applied in the eye movement research,
e.g. in Barthelmé et al. (2013); Foulsham and Underwood (2008); Parkhurst et al. (2002);
Tatler et al. (2005). The weakness in most of the models relying on the saliency map is that
fixation locations are assumed to be mainly driven by the features of the stimulus picture,
even if there are other mechanisms influencing on where people pay attention to (see e.g.
Rayner, 2009).

Apart from explaining the locations of fixations by a saliency map, there have been at-
tempts to study the dynamics of eye movements. Noton and Stark (1971) were interested in
the sample path of the gaze and introduced the term scanpath to describe the eye movement
sequence. In their study, Noton and Stark (1971) noticed that when the subjects of an exper-
iment were looking at the same picture of patterns over again, the first few fixations followed
the same scanpath than in the first attempt. After their work, several algorithms have been
presented for comparing scanpaths, such as string-edit procedures and distance algorithms,
see e.g. Underwood et al. (2008) and Jarodzka et al. (2010). In general, the scanpath is a
useful visualisation tool for getting a preliminary impression of the data or for data quality
checking (Holmqvist et al., 2011). However, scanpath comparison algorithms are getting more
and more complex by taking into account not only directions and lengths of the scanpaths
but also their durations. The longer the scanpaths are, the more variation is related to them
and the comparison of such scanpaths gets complicated.

Some studies argue that in the very beginning the visual stimulus is inspected very fast to
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gain a general impression, and after that the subject starts to focus on local details to satisfy
cognitive curiosity (see e.g. Locher, 2006; Locher et al., 1996, 2007). Furthermore, Castelhano
and Henderson (2007) found in their study that the initial glimpse of the picture affects the
subsequent eye movements: the picture shown quickly before the experiment had an effect
on the eye movements of the actual search task. Rayner (2009) also notes that saliency is
not the only factor determining where to look. Altogether, we believe that the eye movement
sequence may change in time due to the visual information that is gathered during the viewing
or due to some other cognitive mechanisms guiding the attention.

The analysis of eye movement data has usually been based on aggregation in time and/or
in space (see e.g. Salvucci and Anderson, 1998). Aggregation summarizes the information to
units which are easy to understand and compare, for instance, how many fixations lie in a
certain area of interest (later AOI) or what the mean duration of fixations is in that area.
In the simplest case, these AOIs can be formed by grids, but often it is the researcher who
decides the size of the AOIs. The drawback of this kind of aggregation is that information
on the dynamics of the process is lost. When eye movement data consist of measurements of
several individuals, an experimental design usually allows groups, such as experts and novices,
to be compared. Then, aggregation is done over dependent eye movement sequences and com-
parisons between the groups formed by independent subjects can be made using conventional
statistical methods. However, there is a large variation between and within individuals re-
garding eye movements and hence group comparisons based on aggregated measures contain
substantial uncertainty. Therefore, efficient tools for group comparisons are needed.

1.4 Point processes as models for eye movements

Statistically speaking, eye movement data can be thought to be a realisation of a spatio-
temporal point process, where each point represents the location and occurrence time of an
event (e.g. Diggle, 2013; Daley and Vere-Jones, 2008). This kind of data may be complex to
analyse for various reasons. First, the data can be very rich when the viewing period is long
since eye movements are really fast and fixations usually short. Second, eye movements gather
visual information and hence they are affected by several components even in experimental
studies. Such components are, for example, the target stimulus, task of the experiment or the
domain knowledge of the participant (see e.g. Castelhano and Henderson, 2008; Rayner, 2009;
Tatler et al., 2005). In addition, fixation pattern is usually inhomogeneous and clustered in
the target picture. Therefore, the inspection of the whole eye movement sequence may be too
ambitious and some aggregation may be needed. A natural choice to proceed further would
be to retain the valuable information on the exact locations of fixations, but to aggregate
in the temporal domain. That choice leads to spatial point process modelling and various
analysis tools it offers (see e.g. Baddeley et al., 2015; Diggle, 2013; Illian et al., 2008).

Few recent studies have employed point process statistics in eye movement analysis. In
their novel work, Barthelmé et al. (2013) linked the eye movements to the spatial point process
framework for the first time. Their aim was to investigate how the image properties, considered
using the saliency map, predict the locations of fixations. They use the inhomogeneous Poisson
process as a model for fixation locations and the heterogeneous space is modelled via intensity
function. In their case, the intensity is modelled as a function of the features of the image. The
centrality bias is also taken into account, since people tend to look more at central locations
of the pictures (partly due to the positioning of the elements in the picture). The conclusion



of the study is that the image properties do not always succeed in predicting the locations
of fixations, especially when the image looks rather homogeneous. Despite the novelty and
broadness of the work by Barthelmé et al. (2013), the assumption on independence of fixations
is at best a rough approximation to the truth, as they note themselves.

Engbert et al. (2015) extended the idea of Barthelmé et al. (2013) and built a dynamic
model for eye movements by taking the features of the picture as well as the locations of the
previous fixations into account. Instead of modelling the spatial heterogeneity as in Barthelmé
et al. (2013) by using the saliency map, they use the non-parametric kernel method and
estimate the intensity of fixations that will serve as the empirical saliency map of the target
picture. The idea is that the empirical saliency map describes the allocation of the attention
better than a saliency map that is based on the features of the picture. For obtaining a
good estimate of the empirical saliency map, Engbert et al. (2015) use the data set of all
participants. Using the spatial second-order analysis they found evidence of clustering in
small spatial scales that cannot be explained by the spatial heterogeneity. The dynamic model
developed in Engbert et al. (2015) is able to predict this kind of spatial clustering. However,
the model evaluation in Engbert et al. (2015) is based on the pair correlation function and
the saccade length distribution, which do not reveal interpretable features of the temporal
behaviour of the eye movement sequence. Hence there is still a lack of studies that take the
temporal nature of the eye movement process into account.

According to Parkhurst et al. (2002), the saliency map can predict fixation locations only
at the beginning of inspection, and then the role of the saliency diminishes. Furthermore,
Barthelmé et al. (2013) show that the ability of the saliency map to predict fixation locations
varied image-wise quite a lot. Engbert et al. (2015) found in their study that there is spatial
clustering of fixations at short scales, which cannot be fully explained by spatial heterogeneity.
All these studies then indicate that there are probably some other mechanisms that drive the
attention than just the target picture represented by the saliency map or the empirical saliency
map. One reasonable mechanism could be learning, which happens when the viewer gets
familiar with the target picture. Also, the hypothesis of Locher (2006) about global viewing
followed by a more local one supports the assumption that there might be some changes in
the eye movement process during the inspection. It is rather presumable that some changes
in the viewing strategy happen during the inspection. Our interest is to find out, how this
kind of learning, or more generally long-term dependence, can be detected.

The motivation for this dissertation arose from an art study and the associated data set,
but the idea of the point process approach is supported by the studies mentioned above.
The work presented here contributes to the statistical inference on eye movements using
spatial and spatio-temporal point process statistics. On the one hand, we expand the work
of Barthelmé et al. (2013) by studying how the spatial point process statistics can be further
used for fixation data. On the other hand, we follow the ideas of Engbert et al. (2015) by
building dynamic models for eye movements. The first model is a simple group level model
representing the average behaviour of the participants, as does the model by Engbert et al.
(2015). In addition, we develop dynamic models which are sequential spatial point process
models and are intended for one eye movement sequence. These subject level models are
aimed for studying temporal dynamics in the sequence. The models are further extended to
spatio-temporal point process framework, such that we can exploit the existing tools of spatial
point processes for detecting dynamics in the sequence.



1.5 Objectives

The overall objective of this dissertation is to expand the eye movement methodology from
descriptive statistics to statistical inference. This provides new summary statistics for visual-
isation and analysing purposes as well as modelling approaches for evaluating the uncertainty
related to those summaries. The dynamic nature of eye movements is emphasised throughout
the work.

The first aim of this dissertation is to find out how to approach complex eye movement
data gathered in a free-viewing situation. More precisely, what kind of analysis and inference
can be done without modelling and how far we can go with existing simple tools. Our solution
is based on spatial point process statistics, for which a variety of methods are available. The
practical motivation is to study whether participants change their inspection strategy during
the viewing process. Our interest is in fixation locations and durations since they reflect
which parts of the picture have been looked at and how long. We start by aggregating the
spatio-temporal data over time and by studying the spatial point process of fixations, which
is one of the marginals of a spatio-temporal point process. The statistical question is, how we
can use such marginal processes of a spatio-temporal point process in eye movement analysis.

The second motivational question is driven by the application under study. We are inter-
ested in whether there are differences between novice and non-novice art viewers on how they
are looking at paintings. This kind of group comparison is of interest in many applications
using eye tracking in experimental designs. Tools are needed for the eye movement studies to
improve the comparison, which is traditionally based on strong aggregation (e.g. by AOISs).
Apart from the existing summary statistics for eye movements, new and justified tools are
needed especially for describing how the process evolves. We introduce statistical summaries
for the eye movement sequences that can be used for group comparisons as well, and study the
variation related to those summaries by group level and subject level models and simulation.

The third objective is to study the evolution of an eye movement sequence and to find
evidence on learning during the viewing process. This learning can appear as a change from
global viewing to local one as suggested by the model in Locher (2006), or it can turn out
that the gaze starts to return or avoid previously studied areas of the picture. Our interest is
to find this kind of behaviour, which would statistically discriminate eye movement process
from a memoryless process such as the random walk. Therefore, we develop models which
remember the history of the sequence and can be used in studying the learning of the process.
For simplicity, we start with a sequential spatial point process model conditioning the spatio-
temporal process by the observed temporal order.

The fourth aim of this thesis is to experiment, whether we can use second-order character-
istics of spatio-temporal point processes in detecting long-term dependencies such as learning
in an eye movement sequence. More precisely, we are interested whether we can find statisti-
cal evidence that the spatial clustering of the fixations is confounded with the long-memory
effect of fixations, thus reflecting the tendency of the gaze to return pre-examined areas of
the target. For this aim, we extend the developed sequential spatial point process models
to spatio-temporal models by including the occurrence times for fixations. The advantage is
that then the existing spatio-temporal point process statistics and the associated software are
available and can be used for statistical testing of the learning effect.



1.6 Contributions

In Article I, we study to what extent the existing methodology of spatial point process statis-
tics can be used in the analysis of eye movement sequences and what scientific questions
they can give an answer to. The issue of spatial heterogeneity has to be taken into account
and here the heterogeneity is controlled by the case-control approach introduced in Diggle
and Chetwynd (1991). The advantage of the case-control approach is that no detailed point
process modelling is needed since we apply design-based methods for the inference. In Arti-
cle I, we compare the durations of fixations within two parts of a sequence and extend the
case-control approach to marked point processes to study the mark-correlation structure of
two point patterns with durations as marks. The methods introduced in Article I can be
used in comparing the spatial clustering structure in two point patterns, which is useful when
studying whether a picture has been looked at similarly in two repeated measurements, for
instance. However, by using spatial point process statistics we are not able to deduce whether
this clustering is caused by the target picture or by dependencies between fixations.

The existing summary statistics of spatial point processes can be used for the preliminary
analysis of the eye movement data. However, to assess the dynamics of eye movements, we
need summaries that take the time or order of fixations into account. In Articles IT and IIT we
introduce summary statistics that are useful for visualising a spatio-temporal eye movement
process. Due to the temporal nature of the eye movement data, some of the summaries are
cumulative functions of time or order of the fixation. These summaries can be used in studying
the evolution of the process, such as how fast the gaze explores the target picture, but keeping
in mind their cumulative nature. Besides descriptive purposes, summary statistics are needed
for testing the goodness-of-fit of the models fitted to the data.

In Article IT we introduce new tools for group comparisons and a model for eye movements.
Our first attempt for modelling eye movement data is to model the average behaviour of the
group, in our case novice and non-novice art viewers. The model is separable such that the
spatial and temporal components do not depend on each other. The developed model is
used to describe the variation related to summary statistics of interest. This information is
important when the statistical properties of the functional summary statistic are not known.
In addition, the model can be used for group comparisons by simulating an envelope for the
summary statistic under study. Furthermore, the pointwise or simultaneous envelopes of the
two groups can be compared for the inference, in a similar way to confidence intervals. The
model in Article II fits reasonably well to the data even though it does not change in time as
the real data seem to indicate. This can be partly explained by the fact that the model is a
group level model and describes the average behaviour.

Our next attempt is to understand the dynamics in a single eye movement sequence
through modelling, for which we develop sequential point process models in Article III. The
motivation for the modelling arises from the eye movement literature (e.g. Locher et al.,
1996; Engbert et al., 2015; Tatler et al., 2006) and from our own experience that the eye
movement process could contain a learning effect. The models in Article III have a so-called
self-interaction component, which takes features from the whole history of the process into
account. Our models apply stochastic geometry in creating self-interaction by coverage (how
much of the scene is covered and how fast) or by recurrence (how much the process favours
points nearby the previous points). The models are intended to capture such self-interaction
features of an eye movement sequence. Besides the eye movement studies, these models can



be useful in other applications. In addition, sequential point process models can be a bridge
to spatio-temporal models.

Finally, in Article IV we extend one of the sequential point process models of Article
III to continuous time by considering the occurrence times of the fixations in addition with
the locations. As a result, we get a spatio-temporal model for an eye movement sequence.
The motivation for the model is to study whether the gaze has a tendency to return to the
pre-examined areas of the target, the feature which we call a long-memory effect. For per-
forming a formal test to statistically assess the existence of such an effect, we use second-order
characteristics of spatio-temporal point processes. With an experiment relying on simulated
data, we study in Article IV how the long-memory effect can be detected in a spatio-temporal
sequence.

To sum up, the articles included in this dissertation answer to the question how spa-
tial point processes can be used when studying the dynamics of an eye movement sequence,
present a group level model that is used for assessing the uncertainty of the relevant sum-
mary statistics and also for performing group comparisons, and introduce tools for studying
learning effect in an eye movement sequence by means of sequential point process models and
spatio-temporal point process statistics. The model-based statistical inference relies on Monte
Carlo simulation. The methods presented here are applied to an eye movement data set from
an art study, but their usefulness for other applications is acknowledged.

1.7 Dissertation structure

The outline of this thesis is as follows. In Chapter 2, the underlying point process theory
is introduced together with model characteristics, and the important marginals of spatio-
temporal point processes are listed. Static and dynamic data summaries useful for the analysis
of eye movement data in free-viewing situation are introduced in Chapter 3. Chapter 4
concerns the modelling and inference for eye movement data and Chapter 5 demonstrates
developed methods in practise for the art data. Finally, Chapter 6 is for discussion.



Chapter 2

Spatial point processes and model
characteristics

2.1 Spatial point process preliminaries

A point pattern or point configuration is an unordered set of points in a subset of R?, usually
observed in a bounded observation window W C R?. For a spatial point pattern the dimension
may be d > 2, but here we restrict it to R%2. As an example, a set of fixations in Figure 1.1
can be considered as a spatial point pattern in the window W = [0, 765] x [0, 767].

Point processes are stochastic mechanisms that generate random point patterns. A point
process X can be defined in two ways: as a random set of points, X = {x1,x2,...}, or as a
random counting measure. In the latter case, for each Borel set B C R? the notation N (B)
stands for the random number of points of X that fall in the set B. N is then referred as
random counting measure. For more rigorous presentations of point processes, see e.g. Chiu
et al. (2013); Illian et al. (2008); Moller and Waagepetersen (2004).

A point process X is said to be

stationary, if its probability law is invariant under translation: the processes X and
X + s have the same distribution for all s in R,

1sotropic, if it is invariant under rotation: the processes X and rX have the same
distribution for every rotation r around the origin,

simple, if no two points of X coincide, thus x; # x; when i # j,

locally finite, if for any bounded set B, the random variable N (B) is almost surely finite,

e finite, if the total number of points in the process X is finite with probability 1.

The modelling and analysis methods developed in this dissertation are intended for points
observed in a bounded window W. The observations are then modelled as a finite and simple
point process. Note, however, that the underlying point process model is often assumed to
be stationary.

The term event is used here to denote a point of the process, since each point can be
attached with additional information (marks and occurrence time).
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The first-order property of a point process can be described by the intensity measure
w(B) = EN(B), B C R% If the intensity measure j is absolutely continuous with respect to
the Lebesgue measure, then

,u(B)—/B/\(x)dx, B C RY,

where A is a nonnegative function and is called the intensity function. The intensity function
can be interpreted as

_ E(N(dx))
A) = lim =

where |dx| is the area of a small spatial region dx around the location x. For a stationary
point process, A(x) is constant and interpreted as the mean number of events per unit area.
The second-order intensity function is characterised as

E(N(dx)N (dy
cy)— im EVE0N(y)
jdx|.|dy|-0  |dx||dy]
For a stationary and isotropic point process, Aa(x,y) reduces to Aa(r), where r = ||x — y||.
Furthermore, if exists,
)\2 (X’ Y)

9(X7Y):m,

is called the pair correlation function. For a stationary and isotropic point process, g(x,y) =
Aa(1) /A2, where r = ||x — y|.

The point process is said to be second-order intensity-reweighted stationary, if the pair
correlation function depends only on r and the intensity function A(x) is positive almost
everywhere (Baddeley et al., 2000).

K-function

For a stationary and isotropic spatial point process one characterisation of second-order prop-
erties is provided by Ripley’s K-function (Ripley, 1977), which is defined as

K(r) = A'E, [number of further events within distance r of a typical event],

where ) is the constant intensity and E, is an expectation with respect to Palm probability,
which heuristically means an expectation conditional on that there is a point of the process
X at the origin o (considered as typical event), see e.g. Chiu et al. (2013); Illian et al. (2008).
More formally, this can be written as

Kr)=XA"Eo | > Lyon® ], (2.1)
xeX\{o}

where 1(,,(x) is the indicator function which equals 1 if x is in the ball b(o,7) of radius r
centred at o, and 0 otherwise. Then AK (r) denotes the mean number of further events within
distance r of a typical event.
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An important property of the K-function is that it is invariant under independent random
thinning. This means that if each point is retained or discarded according to a series of
mutually independent identical Bernoulli trials, then the K-function of the resulting thinned
process equals to that of the original unthinned process.

The estimator of the Ripley’s K-function (2.1) is recalled in Article I, see also Diggle
(2013); Mgller and Waagepetersen (2004). Typically, the L-function, L(r) = /K (r)/m, is
used instead of the K-function. In the case of homogeneous Poisson process (complete spatial
randomness, CSR), K(r) = mr? and L(r) = r, which makes the departures from the CSR
easy to detect (Illian et al., 2008).

For a second-order intensity-reweighted stationary process, Baddeley et al. (2000) define
the inhomogeneous K -function,

1b(o,r) (X)
A(x)

The estimator can be found in Article I and in Baddeley et al. (2000).

(2.2)

Ki(r)=E, [ >

xeX\{o}

2.1.1 Marked spatial point processes

If a random mark, say m; € M, is attached to each event x; € X, then (X, M) = {(x;,m;)}
is called a marked spatial point process, where X is a point process on R? and M is a mark
space. In this dissertation, the mark space is limited to R?.

Mark-weighted K-function

For a marked spatial point process, a generalization of the K-function, called the mark-
weighted K-function K, can be defined. Following Penttinen and Stoyan (1989), we define
the mark-weighted K-function as

Ky (r) = A0 | Y m(0)m(x) 10 (%) | (2.3)
[x,;m(x)]
#(0,m(0))
where p is the mean mark, m(x;) = m; is the mark of the event i at location x; and E,
denotes the conditional expectation that there is an event with mark m(o) at the origin. The
estimator of K,,,, can be found in Article I.
For separating the clustering of marks from the clustering of points, the normalized mark-
weighted K -function is defined as

Ky (1)
K(r)

If the marks are independent, Ky, (r) = K(r) and Ko™ =1 for all » > 0.
For a stationary and isotropic point process the mark-weighted K-function can be pre-
sented in the form (Penttinen and Stoyan, 1989)

Kpom(r) =

Ky (1) :/OT /MXMmlrrLQMr/{d(ml,mg)}dK(T')/,u2. (2.4)
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Here M is the mark space and M, is the two-point mark distribution (see e.g. Chiu et al.,
2013), which is the joint distribution of two marks, m; = m(o) and my = m(x), on the
condition that there exists points of the process at the origin and at x, depending only on
r" = ||x||. When independent thinning is directed to events, the mark distribution remains
the same, and hence the K,,,,-function is also invariant under independent random thinning.

2.1.2 Multitype and multivariate point processes

If the mark space is discrete and finite, say M = {1,2, ..., k}, the marked spatial point process
corresponds to the multitype (spatial) point process {(x;,1;)}, where l; € M for all i € N. Thus
the label marks [; specify k different categories of events, such as case and control events when
k = 2. A multitype point process is equivalent to a multivariate point process, which is a tuple
(X1, Xo,..., X)), where each X; is a point process consisting only of type i events (Mgller
and Waagepetersen, 2004).

The intensity of a subprocess X; of a multivariate point process is A\;(x). In the stationary
case, the intensity is constant )\;. The second-order intensity of type ¢ and type j events is

. E(Ni(dx)Nj(dY)).
|dx|,|dy|—0 |dx||dy|

)\z] (Xv y) =
If the process is stationary and isotropic, A;;j(x,y) depends only on the distance r = |[x —y||.

Multitype K-function

For a stationary and isotropic multivariate point process a set of K-functions can now be
defined as

Kij(r) = )\;1E [number of further type j events within distance r of a typical type i event |,

where )\; is the intensity of type j events. More formally,

Kij (T) = )\j_lEoi Z 1b(o,r) (X) )
XX\ o)

where E,; is expectation conditional on that there is an event of type i at the origin, and
X; is the subprocess of X including only the events of type j. Then \;K;;(r) denotes the
mean number of events of type j within distance r of a typical event of type i. It holds that
K;j(r) = Kji(r) for all 7 > 0, and if i = j the formula gives the univariate K-function defined
n (2.1). The estimator of K;; can be found in Article I and e.g. in Diggle (2013).

2.2 Sequential spatial point processes

When the events {x1,...,X,} in a bounded window W C R? are assigned with the order, they
may be considered as a realisation of a sequential spatial point process (van Lieshout, 2006a,b).
Such a sequence of events is denoted by X, = (x1,...,%,) here, and the corresponding
sequential spatial point process by {(x;,4), ¢ = 1,...,n}. Examples of sequential point process
constructions are e.g. random sequential absorption (RSA) models (Evans, 1993; Talbot et al.,
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2000), known also as simple seq,uen,tial inhibition (SSI) in the statistical literature (Diggle
et al., 1976; van Lieshout, 2006b,c). However, in their statistical use, the order is usually
unobserved.

When the order of the events is known, the likelihood of a sequential point process model
can be written by using conditional densities. If W™ stands for the n-dimensional space of
ordered points and n is fixed, the density function f (w.r.t. the Lebesgue measure in the
product space) may be defined in terms of conditional densities fk+1(x|?k), k=1,....,n—1,
yielding the expression

n—1
F(Xn) = fixa) [ o e[ %) (2.5)
k=1
where f(x1) stands for the probability density of the first event and fii1(x|X})) is the
conditional density of a further event x given X = (x1,...,Xg). See Article III for more
details.

2.3 Spatio-temporal point processes

For the sequential spatial point process only the time-order of the events defines the dynam-
ics. If the waiting times between the events are also considered, we attach an occurrence
time ¢; € R to each event x;. Formally, a spatio-temporal point process {(x;,t;)} is a point
process in a product space R? x R, and its realisation is a set of events (x;,t;) observed in a
window W x [0,7]. Examples of such realisation are earthquake occurrences (Ogata, 1998)
or epidemics such as human Campylobacter jejuni infections (Gabriel and Diggle, 2009) and
chickenpox incidence (Iftimi et al., 2015). These examples represent the case where typically
some background process causes the births of the events. For eye movements, however, a
realisation of the spatio-temporal process is similar to a particle that is moving in space and
the main emphasis is on the transitions.

We consider the fixation process as a finite spatio-temporal process in W x [0,7]. When
stationary is used, for example in the definition of model characteristics, we think that the
process is defined in R? x R and is sampled in the bounded window W x [0, T].

For a spatio-temporal point process, the first-order intensity function is interpreted as

. E(N(dx x dt))
Aa(x,t) = 1 _
(%) |dx><lgtl|—>0 |dx x dt|

where |dx x dt| is the volume of an infinitesimal region dx x dt containing the event (x,1)
(see e.g. Gabriel and Diggle, 2009). If the spatio-temporal process is stationary, Ag(x,t) is
constant representing the mean number of events per unit area and unit time (Diggle, 2013).
If the process is spatially stationary, Ag(x,t) is independent of x, and if it is temporally
stationary, Ag(x,t) is independent of ¢. The spatio-temporal process is said to be isotropic,
if it is spatially isotropic and temporally reversible (Diggle, 2013).

A spatio-temporal point process is said to be first-order separable if the intensity can be
factorised as

Ast(X,1) = As(x)A\e(t), for all (x,t) € W x [0,T]
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where A\ and \; are non-negative functions (see e.g. Gabriel and Diggle, 2009). Under this
assumption, the effects that are non-separable can be interpreted as second-order effects rather
than first-order effects. The first-order separability is assumed, for instance, when testing the
hypothesis of no spatio-temporal clustering, see e.g. Diggle (2013).

The second-order intensity function is characterised as

E(N(dx x dt))N(dx' x dt'))

)\ 7t ) /at, = ’
2((X ) (X )) |dx><dt|,‘d£(l}><dtl|_>0 |dX X dtHdX/ X dt/|

and the pair correlation function, if exists, as

g((x,1), (x', 1)) = ji(((; t’;;i’(‘xtz)) : (2.6)

where A9 is the second-order intensity and Ag the first-order intensity. For a stationary,
isotropic process A2 ((x,1), (x/,¢')) reduces to Aa(r,u), where r = ||x’ —x|| and u = |[¢ —¢|, and
g(r,u) = Ao(r, u)/)‘gt

A spatio-temporal point process is second-order intensity-reweighted stationary and isotropic,
if the pair correlation function depends only on r = ||x’ —x|| and u = |t/ —¢|, and the intensity
Ast(x,t) is bounded away from zero (Gabriel and Diggle, 2009).

Spatio-temporal K-function

For a stationary and isotropic process, the spatio-temporal K-function is defined as

K (r,u) = A\;'E, [number of further events within distance r

and time u of a typical event |,

where E, is the expectation on condition that there is an event of the process at the origin at
time 0. More formally,

Kst(ra u) - A;ﬁlEo Z ]-b(o,r‘) (X)l[fu,u] (t(X)) ) (27)
[x,t(x)]
#(0,0)
where t(x;) = t; is the time of the event i at location x;. Note, that Gabriel and Diggle (2009)
consider only future events, whereas we take into account both past and future events.
The spatio-temporal K-function can be presented in the form

Ko(ryu) = /0 /T At~ )F A, )} ),

where T = [0,7] and F), is the joint cdf of the occurrence times of two events, one at the
origin and the other one at x with [|x[| = v. Here 1/_, ,(t2 — t1) = 0 if the time between
occurrences of two events longer than wu, 1 otherwise. In analogy with the case of mark-
weighted K-function in (2.4), one can deduce that spatio-temporal K-function is invariant
under independent random thinning.

15



For a second-order intensity-reweighted stationary and isotropic point process, Gabriel and
Diggle (2009) define the space-time (or spatio-temporal) inhomogeneous K -function (STIK-
function) as

K 1(r,u) = 27r/ / g(r',u")r'dr' du! (2.8)
—u JO

where ¢ is the pair correlation function in (2.6). See, for instance, Article IV or Gabriel and
Diggle (2009) for the estimator.

Mark-weighted spatio-temporal K-function

We may define a mark-weighted spatio-temporal K-function for a stationary and isotropic
process by

Kmm,st(r’ u) = )‘;tllu’_2E0 Z m(o)m(x)]-b(o,r) (X)l[—u,u] (t(X)) ) (29)
[x,m(x),t(x)]
#(0,m(0),0)
where E, is the expectation conditioning that there is an event of the process with mark
m(o) at the origin at time 0. If the marks are uncorrelated, the function reduces to (2.7), i.e.
Kmm,st (Ta 'LL) =Ky (’I”, u)
The mark-weighted spatio-temporal K-function can now be presented as

Kmm,st (T7 u) -

/or /MxM / 1 (t2 = 1) f (1, ma) Byt £2) My {d (e, o) HE (1),

where T = [0,T], F,» indicates the joint cdf of the birth times of two events, one at the
origin and the other one at x with ||x|| =/, and M, is the corresponding two-point mark
distribution. This is also invariant under independent random thinning.

Conditioning on the past

The characterisation of the spatio-temporal point process as a point process in the product
space W x [0,T7] allows, for example, the study of spatio-temporal clustering. However, the
moment characteristics of such a process do not capture dependence on the past. In addition,
the likelihood is seldom possible to present in a closed form. These problems can be partially
bypassed by utilising the temporal ordering of points which leads to the conditional densities
with respect to the history of the process. We assume here that all the finite-dimensional
densities exists, that is, they are absolute continuous with respect to the Lebesgue measure of
the same dimension (the point process is regular in the terminology of Daley and Vere-Jones,
2003).

Alternative way to characterise a spatio-temporal point process is to consider a point
process in time and treat the locations as marks. This kind of process has a causal feature
and conditioning by the past is natural. In that case, a spatio-temporal point process is
typically defined in terms of conditional intensities, since the construction aims to explain
how the evolution of the process depends on its history.
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The conditional intensity function of a spatio-temporal point process is the spatial first-
order intensity at time ¢ conditional on the history H;—. The history of the process refers
to the events that occur before time ¢, thus H;— = {(x;,t;), t; < t} (Diggle, 2013). Here we
assume that the process is orderly, which implies that ¢; < ¢;41 for all 7 > 1 and no multiple
events occur. The conditional intensity of a spatio-temporal point process can be defined
informally as

_ EB(N(dx x dt)|H)
N(x, tHe) = 1
(e, - |dxxlgsl|—>o |dx x dt|

For an orderly spatio-temporal point process, the conditional intensities define the process
uniquely (Diggle, 2013). As Gonzalez et al. (2016) note, the likelihood-based inference is
quite straightforward for any model for which the conditional intensity is specified. For a
spatio-temporal point process on a finite region W x [0, 7] this requires that \*(x,t|H;_) is
non-negative and finite for all (x,¢) € W x [0,T] and for all possible configurations H;_ with
t € [0,T] (Diggle, 2013).

Likelihood inference

Let us assume that the point process {t;} with marks {x;} is regular (see e.g. Daley and Vere-
Jones, 2003). For a set of events, (x;,t;), i = 1,...,n, observed in W x [0, T], the log-likelihood
function can be written as (see e.g. Diggle, 2013)

n T
D log N (xi i He, ) — / / N (X!t [Hy o )dxdt,
i=1 0 Jw

where H;,— denotes the history up to time ¢;. Note that the conditional intensity may be
intractable, as is the case for the log-Gaussian Cox process, and calculation of the integral
may be complicated (Diggle, 2013; Gonzélez et al., 2016). An alternative for this approach is
a partial likelihood familiar in the context of proportional hazard modelling of survival data,
which is applied to spatio-temporal setting in Diggle et al. (2010). However, as Gonzilez
et al. (2016) argue, it is sometimes more suitable to treat spatio-temporal point processes as
a random collection of events, as they are defined, observed in some region where one of the
dimensions represents time. This approach emphasises the spatial nature of the process but
employs the natural ordering of time (Gonzélez et al., 2016).

Our interest is in the spatial locations of the events whilst the temporal process is consid-
ered to be less important. The temporal part of the eye movement sequence gives a natural
ordering of the points and allows us to write the likelihood for the process in a sequential way.
By conditioning on the number of events n, we have constructed a sequential point process
model for the locations in (2.5). Under the regularity assumption (see Daley and Vere-Jones,
2003) and assuming that the spatial transitions do not depend on the previous occurrence
times, the model can be extended to the spatio-temporal point process framework (see Sec-
tion 4.2.1 and Article IV). In this case, we consider locations x; as exogenous variables, which
affect the process of occurrence times (see e.g. Daley and Vere-Jones, 2003). Therefore, for
modelling the locations ?n, we can use the likelihood of the sequential point process model,
whereas for modelling the occurrence times, we need the conditional distributions of ¢ given
the history that includes both occurrence times and locations of the events in the past.
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2.4 Useful marginals of spatio-temporal point processes

Eye movement data have been analysed in terms of spatial point processes (see Section 1.4),
even though the phenomenon can be considered as spatio-temporal. This is justified in some
cases, as Diggle (2013, p. 195) writes: ” Most spatial processes in nature are merely snapshots
of evolving spatio-temporal processes. But to argue that they should therefore be analysed using
spatio-temporal methods would be misquided. We analyse purely spatial data, and build purely
spatial models, if and when in doing so we can address interesting scientific questions.”

We apply spatial point processes to get information on the underlying spatio-temporal
point process. The question is, if the other marginals of spatio-temporal point processes
could be employed as well. Next, we will introduce some marginals of spatio-temporal point
processes that can be considered relevant for eye movement analysis.

Assume we have a finite marked spatio-temporal point process, where each event includes
information on the location and occurrence time and is attached with a mark vector that
consists of the duration and label marks. More precisely, consider a spatio-temporal point
process, where the events result from one particle (e.g. the gaze) moving in space such that
no simultaneous events occur. The particle arrives in location x; at time t;, stays there for
time m; and arrives the next location x;11 at time ¢;;1. A duration mark m; is needed if the
movement of the particle from one location to another takes considerable amount of time and
the duration cannot then be approximated by ;11 — ¢;. Relevant marginal processes which
can be derived from such marked spatio-temporal point process {(x;,t;, m;),i =1,...,n} are
the following ones:

e The (unordered) spatial point process {x1,X2,...,X,} in W, which indicates where the
events are located.

e The sequential spatial point process {(x;,7),7 = 1,...,n} in W x {1,...,n} takes the
order of events into account and reveals the trace of the process.

e The (ordered) temporal point process (t1,to, ..., t,) in [0, 7] reveals the occurrence times
of the events, and can be used to study if the temporal behaviour of the process changes
in time.

e The (unordered) marked spatial point process {(x;,m;),i =1,...,n} in W x M, where
m is the duration and M C R is the mark space, associates each event with its duration.
This can be used when studying in which locations the particle is staying longer than
on average.

e The ordered marked spatial point process {(x;, m;,1),i = 1,...,n}in WxMx{1,...,n}
can be used to study how the process evolves in space and whether the marks change in
time, for example, are there long jumps and short events in the beginning of the process.

e The multitype spatial point process {(x;,l;),i = 1,...,n} in W x M, where [ is the
label mark and M = {1,...,k}. The label can indicate

— subinterval U; of the partition of [0,7] to which the event belongs. Then we can
compare the subprocesses of events in two time intervals.
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— subspace W; of the partition of W to which the event belongs. These W;:s can
be considered as areas of interests (AOIs) and this approach can be used to study
subprocess of events in an AOI.

In an eye movement framework, the eye movement process can be considered as a marked
spatio-temporal point process, of which events represent fixations. Each fixation has a location
X;, time of occurrence t; and duration m; as a mark. When the order of fixations is known,
it is possible to calculate the lengths of the jumps (i.e. saccades, if they are considered as line
segments), ||x;+1 — x;||, as well as the empirical jump length distribution. In addition, the
trace of the gaze, called scanpath (see Chapter 3), can be calculated for sequential spatial or
spatio-temporal sequences.

The choice of an appropriate marginal process is determined by the research hypothesis
in question. In eye movement studies, Barthelmé et al. (2013) use spatial point processes,
whereas the model in Engbert et al. (2015) is a spatio-temporal point process model, but their
focus is in spatial characteristics and interactions, whereas the temporal nature is ignored.
In this dissertation, we concentrate on spatial, sequential spatial and spatio-temporal point
processes, but also unordered marked spatial and multivariate spatial point processes are
applied. Altogether, the locations of fixations are always considered and usually the temporal
information either as order or as occurrence time of the fixation is also taken into account.
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Chapter 3

Data summaries

The information in data is typically compressed into a summary statistic which describes
the feature of interest. However, any data summary alone is not very informative without
knowledge about the statistical variation in it. In this dissertation, we are interested in
describing features of the eye movement data with existing and new summary statistics. The
statistical variation in the summary can be acquired by modelling and parametric bootstrap
method (Efron and Tibshirani, 1994, p. 53): when simulating the fitted model we get an
impression of the sampling distribution of the summary statistic in question and we can then
evaluate its variation. In addition to descriptive purposes, summary statistics are useful in
validating the fitted models and in group comparisons (see e.g. Article II).

In this chapter, we first introduce some commonly used static summaries for eye move-
ment data. Then we concentrate on functional summary statistics that describe the dynamic
nature of the eye movement process. Both kind of summaries are useful in visualisation and
modelling. Additional summary statistics and several other eye movement measures are listed
in Holmqvist et al. (2011) with references to literature.

Here, we introduce the notation for the following chapters considering eye movements as
spatio-temporal point processes. Assume that a participant of an eye movement experiment
is inspecting a target picture on a screen for fixed time, say 7" milliseconds. The eye tracker
records movements of the participant’s gaze in a given bounded window W C R?, representing
the target picture, during the inspection time interval [0, 7]. The obtained fixation sequence
can be interpreted as a set {(x;,t;,m;), i = 1,...,n}, where x; € W is the location, t; € [0, 7]
is the occurrence time and m; € R is the duration of the fixation i. This kind of sequence
can be considered to be a realisation of a simple (marked) spatio-temporal point process.

3.1 Static data summaries

Recall that the locations where the gaze stops have often been of interest in eye movement
studies (see Section 1.3). The simplest data summary that describes the spatial distribution
of fixations is the point map, a graphical presentation of the point pattern of fixations. For
exploring an eye movement data, plotting a point map is the first thing to do. It represents
which parts of the picture have been looked at and how the fixations are located with respect
to each other. However, especially when doing comparisons, it is more useful to deal with
functions rather than point patterns, and hence regionalization or smoothing of a point pattern
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comes into use. Both of these methods employ the point pattern data and result in a two-
dimensional function (Illian et al., 2008). For example, by using the kernel smoothing method,
we can estimate the underlying spatial intensity A(x) based on a point pattern. As a result,
we get an estimate of the intensity for each point x € W, which allows, for instance, statistical
comparison of two intensity surfaces (see Article IT). The eye tracker software usually provides
a heatmap visualisation, which resembles smoothed point map but includes weighting by
fixation durations.

The duration of fixation is a commonly used measure for eye movement data. In eye
movement studies, often the mean and standard deviation of fixation duration are reported,
even thought the empirical distribution is usually right-skewed as is common for many lifetime
measures. Here, we suggest to study the distribution rather than aggregated summaries of
fixation duration and, in case of group comparisons, to compare the distributions by means
of the shift function (Doksum and Sievers, 1976) measuring how much one distribution has
to be shifted in order to coincide with the other. This comparison reveals if one of the groups
has longer or shorter fixations more than the other group, and is more informative than the
difference of the empirical means. Examples of the use of the shift function can be found in
Article I1.

Another distribution that is of interest is the jump length distribution. Here, the jump
refers to a saccade, defined as a line segment between two consecutive fixations. The length
of the jump between the subsequent fixations ¢ and 7 + 1 is then ||x;4+1 — x;||. In the eye
movement literature, the jump length is usually called saccade amplitude and measured in
degrees of visual angle (see e.g. Holmqvist et al., 2011). Typically, the gaze makes short
jumps while the subject is concentrating on details or after a long jump when adjusting
the gaze to the target of interest. When the stimulus target of an eye movement study is
represented on a computer screen, the jumps are restricted such that no jumps outside the
observation window are allowed. In practice, this means that the fixations outside the window
are excluded, as well as the saccades leaving or entering the observation window. Thus, there
is always a maximum distance for a jump length: the diameter of the observation window.
The jump length is a useful measure, for example, when comparing eye movements in two
different tasks (see e.g. Tatler et al., 2006).

3.2 Dynamic data summaries

For describing how the eye movement process evolves, dynamic data summaries measured
as a function of time should be employed. To begin with, the point maps can be presented
as dynamic summaries of spatial dispersion considering time. A dynamic point map can be
drawn such that the colour of the point indicates its order (see e.g. Figure 2 in Article III).
Alternatively, the order of the points could be denoted by connecting them with arrows, as
in Figure 1.1. This dynamic visualisation represents the scanpath of the gaze.

Goldberg and Kotval (1999) defined the scanpath length as the total distance that the gaze
travels during the inspection period. Usually, the scanpath is thought to be a sequence of
consecutive fixations connected with the line segments (saccades) between them, and hence
the scanpath length can be calculated as a sum of jump lengths. Scanpaths can be used
for visualising the movement of the gaze (see Figure 1.1), but they have also been used for
comparisons of subjects or viewing processes e.g. by string-edit methods mentioned in Section
1.3. The string-edit methods require that the target window is divided into the areas of
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interest (AOIs). If the scanpath is very long, the string that consists of the AOI labels can
also be long and comparing two such strings is perhaps not meaningful. For long sequences,
another option would be to define AOIs and estimate the transition probability matriz that
consists of the probabilities for the jumps of the process between the AOIs. The transition
probability matrix can then be used to reveal the most commonly occurring transitions.
Transition probabilities are used in testing the goodness-of-fit of the models in Article II.

We can apply the functional version of the scanpath length measure defined by Goldberg
and Kotval (1999) in order to study the movements of the gaze. The scanpath length is
then calculated for each fixation occurrence time, whether it is a discrete (sequential spatial
point process) or continuous (spatio-temporal point process). Let us denote the ordered set
of fixations up to a fixed time t as x = {x1,...,X,, }. The scanpath length for this point set
is

ne—1

Sp(t) = Z |1 — x4 (3.1)
i—1

where x; is the location of the fixation 7. The resulting scanpath length curve increases rather
fast if the gaze takes long jumps, for example, during the global view in the beginning of the
inspection.

Another useful summary statistic, which was first introduced by Goldberg and Kotval
(1999), is based on the convex hull. Let us assume that the observation window W is convex.

The convex hull of the point set {x1,...,Xy,} is defined as the minimal convex set of W which
contains all the (unordered) points (x1,...,Xy,). More formally, convex hull is the set of all
convex combinations of {xi,...,Xy, },
nt ni
C(t) = {Z o;X; oy > 0 for all ¢ andZai = 1} . (3.2)
i=1 =1

An example of the convex hull is shown in Figure 3.1, left. We measure the convex hull as a
function of time ¢ and define the convex hull coverage as the relative area of the convex hull,

0 ifnt<3

Solt) = { CaOl/|W] i ne > 3. (3.3)

The convex hull coverage is then a cumulative function and it is most useful for measuring
the coverage of the target window at the beginning of the process. The problem with this
measure is that if the gaze makes long jumps towards the edges of the spatial window W,
then the convex hull increases rapidly and do not reveal detailed information on the process
later on since the following fixations will most probably appear inside it.

Let us define the ball union measure of points (x1,...,x,) as the union of the balls b(x, r)
with radius r located at each point x (see Figure 3.1, left). The relative area of this measure
inside the window W is called the ball union coverage, defined as

U i) N W

SB(t) |W|

(3.4)

It is a monotonically increasing function and each new fixation increases the ball union cov-
erage by 7r? at the maximum. The ball union coverage depends on the radius r, which must
be chosen by the researcher. The radius can be adjusted, for example, with respect to the
size of the foveal region, in which the visual image is accurate.
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Figure 3.1: Left: Example of the convex hull and ball union coverage measures of fixations
during the first 10 seconds of inspection. The points represent locations of the fixations and
the numbers indicate their order. The grey polygonal area is the convex hull coverage and the
orange area is the ball union coverage (with radius r = 50 pixels). Right: Convex hull and
ball union coverage functions for the fixations during three minute inspection period. The
dashed vertical line indicates the 10 second time point.

Both coverage measures, convex hull and ball union, are calculated with respect to the
size of the window W, and hence they receive values between [0, 1] (or 0-100%), see Figure
3.1, right. The advantage of these coverage measures is that they do not require that the
space is divided into the areas of interest or into a grid.

Recall that we are interested in learning in an eye movement sequence. More precisely,
how the already existing fixations attract or inhibit forthcoming fixations. For this we suggest
recurrence measure, which calculates the number of earlier fixations ?k = (x1,...,xg) closer
than radius r of the current fixation x, formally, Zle 1p(x; ) (x). The delayed version of this
measure omits the previous fixation x; and is further preferred in this dissertation. We define

a cumulative delayed recurrence measure for a point set x = {x1,...,%p,} as
0 if ny <3
Sr(t) = { i—2 . 3.5
©) Dty 21 Loy, (xi)  if g > 3. (35)

This measure indicates how much the process favours locations nearby the previous fixations.
The recurrence measure is employed in the sequential point process model, introduced in Ar-
ticle III, such that the process favours locations close to the previous fixations. Illustrations
of the cumulative delayed recurrence measure can be found in Article IIT and in Chapter 5.

The data summaries presented above are found to be useful for eye movement data both in
the literature and in the articles included in this dissertation. In addition to those summaries,
empirical versions of the point process characteristics can be employed. The second-order
characteristics presented in Chapter 2 can be used for studying the interactions between the
events. When describing the spatial clustering of fixations pair correlation functions come into
use, whereas for testing the clustering K-functions are usually applied. For these second-order
measures, there are also inhomogeneous, marked and spatio-temporal versions available, see
Chapter 2.
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Chapter 4

Modelling and inference for eye
movement data

Eye movement sequences may be difficult to model in terms of spatio-temporal point process
models due to non-stationarity of long sequences or lack of information in short sequences.
Therefore, we first approach the analysis of an eye movement data by design-based meth-
ods, which are based on marginals of a spatio-temporal point process and do not require any
parametric modelling. Design-based in this context means that we condition on the loca-
tions of fixations and the statistical test against the null hypothesis can be formulated by
random labelling. Random labelling is based on permutation of the labels of the points or the
subjects (see more in Articles I and II). Design-based methods that are presented here are
easy to apply using existing point process statistics, such as the K-function. However, the
usefulness of design-based methods for ordered point processes is limited and they can answer
to rather simple research questions. Up to our knowledge, modelling is required for assessing
the uncertainty in functional summary statistics or for studying long-term dependence in an
eye movement sequence.

4.1 Model-free approaches

One of the fundamental questions in the eye movement research is, to which parts of the
target picture the subjects pay attention. If we assume that fixations exhibit the allocation
of attention, this can be easily visualised by plotting the point map of fixations. However, if
the question is whether the eye movement patterns of two groups are similar, some smoothing
of the point map is needed and, for example, the intensity function can be applied. The
intensity surface (the estimate of the intensity function A(x) in two-dimension) can be used to
visually summarize, how the fixations are spread on a target picture. In group comparisons,
it is interesting to compare two intensity surfaces statistically in order to find out whether the
two groups pay attention to the same parts of the target picture. This method is described
in Article II, where the intensity surfaces of novices and non-novices are compared. The test
statistic can be based on the ratio of the estimated intensities for the two groups. The statis-
tical comparison can be done by random labelling of subjects into two groups several times
and by calculating the ratio of the intensity surfaces for the new groups in each permutation.
The random labelling of subjects retains the fixation sequence as full, which means that the
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individual effect, if there is any, is preserved.

The K-function is a second-order characteristic of a spatial point process which measures
the clustering of events as a function of distance. However, the K-function assumes station-
arity, which is a rather strong assumption in the case of eye movement data. To deal with
the spatial heterogeneity, one possibility is to apply the case-control design introduced by
Cuzick and Edwards (1990) and used in epidemiological studies. The approach is based on
the idea that we choose a group of controls, which is thought to be a random sample from the
underlying population. Then, the point pattern of cases (e.g. the ones with the disease) can
be tested with respect to the point pattern of controls in order to study extra (spatial) clus-
tering of cases. More precisely, we can test whether cases are more clustered than controls by
comparing the difference of the two K-functions to an envelope created by random labelling
of the bivariate points. An exact Monte Carlo test can be done by using a test statistic, see
e.g. Diggle (2013); Diggle and Chetwynd (1991). As an example, in Article I we study the
dynamics of the fixation process in a rough way by comparing how fixations are clustered in
the beginning versus in the latter part of the inspection period.

The two design-based methods discussed above are intended for spatial point patterns.
However, the clustering of fixations on a picture is not only a cause of its features, but
probably also of other mechanisms related to visual processing as noted earlier. By using
spatial point process statistics, we do not get detailed information on the temporal evolution
of the process, such as whether the gaze has returned to some elements of the picture multiple
times during the process, or whether the clustering is only due to consecutive fixations. To
answer these questions, we cannot base the inference on the spatial point process marginal
of the spatio-temporal point process, but at least the temporal order of fixations is needed.
The problem is that the similar case-control method that was used for spatial point patterns
is not available for sequential spatial point patterns, because events in the ordered sequence
cannot thought to be exchangeable.

The design-based method can be used to test the lack of spatio-temporal interaction in a
spatio-temporal sequence, that is, whether the spatio-temporal K-function decomposes into
spatial and temporal components, such that K(s,t) = K(s)K(t) is true. The test is based on
random labelling the locations, but keeping the occurrence times fixed (see e.g. Diggle et al.,
1995). Here the random labelling suffices, since the idea is to find out whether the temporal
and spatial domain interact or not.

Another commonly tested hypothesis for a spatio-temporal point process is spatio-temporal
clustering. This test, however, relies on modelling through the null hypothesis that the un-
derlying process is a Poisson process. The test is performed by comparing the empirical
spatio-temporal K-function to K-functions calculated for simulations from an inhomogeneous
Poisson process with intensity Ay (s,t) = A(s)A(¢) (Gabriel and Diggle, 2009). The test statis-
tic is then based on the difference between the empirical K-function and its expectation under
the null hypothesis (see e.g. Diggle, 2013). Nevertheless, this test or any of the model-free
approaches presented above are not able to detect long-term dependency that causes spatial
clustering in a long time range in an eye movement sequence. Article IV addresses to this
issue by modelling and applying the spatio-temporal inhomogeneous K-function.

To conclude, modelling is needed for sequential spatial or spatio-temporal sequences since
the available design-based methods do not give answers to the research questions we have set.
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4.2 Dynamic models

Our interest is to study what happens inside the eye movement sequence and hence in mod-
elling we concentrate on sequential spatial and spatio-temporal point processes. Important
characteristic of eye movements, such as spatial inhomogeneity and dependency between fix-
ations, should be taken into account in the modelling. The model presented by Barthelmé
et al. (2013) does not fulfil these requirements, because it assumes independence of fixations
and it is a spatial point process model. The dynamic model by Engbert et al. (2015) con-
siders the spatial heterogeneity and second-order spatial interaction, but the model is rather
complex and is validated only with static summaries that do not take the time into account.
We propose new point process models that can be used for any eye movement data collected
during free-viewing and where the target picture is static and do not have strict demands for
the movement of the gaze (such as linear movement while reading).

4.2.1 Spatio-temporal point process model for fixations

The density of a regular spatio-temporal point process {(x;, ¢;)} can be defined by two families
of conditional probability densities,

{fk(x‘?kfh?kfl)} and {hk(ﬂ?kq,?kq,xk)},

where k£ € N and ?k and t . denote the ordered sequences of fixation locations and fix-
ation occurrence times, respectively. The density fi(x] t ke 1,?,% 1) describes the distri-
bution of the location of the kth event given the history up to time ¢;_; and the density
hy, (t\?k,l, ?k,l, x}) describes the distribution of the kth occurrence time given the history
of the process up to time t;_; and the location of the kth point. Similar construction of a
spatio-temporal point process is presented in Jensen et al. (2007), but we emphasise here the
locations instead of the occurrence times.

From now on, let us assume that the data consist of pairs (x;,¢;), ¢« = 1,...,n, where
t; € [0,T) and x; € W C R? for all i = 1,...,n. The joint density of (?n,?n), can be
presented in general form as

F(Rn ) = fulxsty) T fielu trl K, T rer),

k=2

where f; is the model for the occurrence time and locatlon of the first fixation, or is omitted
if (x1,%1) is assumed to be fixed, and fk(xk,tk|?k 1, 7 k—1) is the density for a new point
(xk, tr) conditional on the history up to time t5_1. We can decompose the density as

— — —
Pt Kooty € r1) = il Xno1, € o) et i1, € ho1,%8),

see also Jensen et al. (2007).

We think that the order of fixations include enough information on the temporal dynamics
of the eye movement process for our purposes and the occurrence times of fixations would
bring only minor value for the analysis. Therefore, we put our emphasis first on the modelling
of the ordered sequence of fixation locations before considering their occurrence times. This
approach challenges the traditional way of treating spatio-temporal point processes as tempo-
ral point processes with locations as marks and modelling them with conditional intensities.
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Next, we make two simplifying assumptions, which support the idea that we condition by
the locations of fixations and model them using sequential spatial point process models. First,
we assume that the number of points, n, is fixed. This is reasonable if the number of fixations
is not very informative for long eye movement sequences, as we believe. Second, we assume
that the spatial transitions x;_1 — X} given the previous locations Xj_1 do not depend on
the occurrence times t _1, i.e. fk(xk|?k,1, tp_1) = fk(xk\?k,l) for all k = 2,...,n. Due
to this assumption, we can fit a sequential point process model for the sequence of fixation
locations Yn, and then a temporal model for the occurrence times ¢ ,,.

Under these assumptions, we can write the joint density as

PRy Tn) = F(R ) (t1) | O, 1),

k=2

where f(X,) = f(x1) [Ty fe(xk| X s_1) is a sequential point process model as in (2.5), and
hi models the occurrence times t ;. conditional on (?k,l, 71971)- In this construction, the
role of fixation locations ?k_l when modelling the occurrence times ¢ is to be treated as
covariates (Daley and Vere-Jones, 2003). A simplification of this kind of spatio-temporal point
process model is demonstrated in Article IV.

4.2.2 Sequential spatial point process models for fixations

This subsection introduces sequential spatial point process models indented for extracting
features from a fixation sequence measured from one subject (see also Article III). The models
consist of three components, which are thought to catch important characteristics of eye
movement sequences. The reasoning of the components and their construction for the models
are reviewed next. The models can be extended to spatio-temporal point process models by
adding occurrence times of fixations as explained above.

Spatial heterogeneity

The first feature of an eye movement sequence that the model should take into account is
spatial heterogeneity caused by the target picture. Spatial heterogeneity appear in any eye
movement data, because people do not look at pictures uniformly. There have been attempts
to explain locations of fixations by saliency maps (see e.g. Barthelmé et al., 2013, and Section
1.3). However, saliency maps, being models of visual attention, are intended to predict fixation
locations in the beginning of inspection and they do not always perform well (see Barthelmé
et al., 2013). Another estimate for the spatial heterogeneity in the case of eye movements
is suggested by Engbert et al. (2015). In their study, the spatial heterogeneity is described
by empirical intensity function (also known as empirical saliency map) that is estimated
using pooled fixation data from all the subjects participating the experiment. The empirical
intensity function, however, does not measure exactly the same than the saliency map: when
the saliency map is calculated from the features of the picture and is representing the areas
which should receive attention, the intensity surface describes which areas of the picture have
been looked at in general and how intensively.

In our data set, we have 20 participants and hence we have 20 independent replicates
of the eye movement sequence per picture, which can be used for estimating the empirical
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intensity. The reason for employing replicates is that the intensity surface describes the first-
order characteristic of the point pattern and in order to study second-order or higher-order
characteristics we have to use some additional data (e.g. covariates or replicates as suggested
by Diggle et al., 2007). The drawback of this empirical intensity approach is that the short
saccades are more common than the long ones and hence there might be extra clustering
which the features of the picture alone cannot explain, as noted by Engbert et al. (2015). To
reduce the effect of dependency between the fixations one could use thinned sequences, for
example to choose only every 4th fixation of each sequence, and use those in the intensity
estimation. In our data set this thinning did not seem to change the intensity surface much
and hence we retained the full eye movement sequences (see more discussion in Article IIT).
In models introduced in this dissertation, the spatial heterogeneity term, a(x), is represented
by the empirical intensity surface.

Dependency between consecutive fixations

The next component of the model should take into account dependency between fixations.
Our idea is to control the length of the saccades, since the gaze has a tendency to make short
correction saccades (Engbert et al., 2015) and long saccades are more rare. This feature is
called contextuality in Article III. One way to control the effect of saccade lengths is to assume
that the fixation xx11 depends on the previous fixation xj, thus having the Markov property.
This construction can be modelled by the kernel function K (xj,Xk11). Examples are

e truncated exponential kernel K (xj, Xp41) oc e MPee1=x6ll 15 (x,1), A > 0,

1 |2
e truncated Gaussian kernel K (xj,Xp 1) < € 202 [13k-41 =] 1w (Xgs1), 0 >0,

e mixture kernel K (Xp,Xp11) = pK1 (X, Xg4+1) + (1 — p) Ko(Xk, Xp11), where p € [0, 1] is
the probability of choosing the kernel K, and K7 and K5 are truncated kernel functions,
for example, one can be the uniform distribution in W,

e separable kernel function K (xp,xx+1) < g1(|[%xk+1 — xk|))92(0(Xk+1 — xx)) 1w (Xg+1),
where g; is a model for saccade lengths and g2(6(+)) is a model for saccade angles 6.

Examples of the use of these kernels can be found in Article II (separable function) and in
Article III (truncated Gaussian kernel).

Structured long-term dependence

If the process is suspected to change in time, the long-term dependence can be added to the
model. In our case, it means that every time when the process takes a jump, the previous
fixations of the process affect the probability law of the transition. The process is said to
have self-interaction feature. In this dissertation, we consider two types of self-interaction:
coverage-based and recurrence-based self-interaction. In practice, it means that the history
of the process is included in the model by stochastic geometry, such as convex hull coverage
or ball union coverage, or by the recurrence function introduced in Section 3.2. The purpose
of the coverage-based self-interaction is to create a two-stage model where the target picture
is first inspected globally and, after some time, the attention is allocated to finer details. The
idea is that the function of the coverage of the fixations increases rapidly in the beginning
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indicating the spread of the fixations throughout the window. This kind of behaviour is
also supported by the concept of inhibition of return (IOR), which means that the attention
towards previously visited elements of the picture is suppressed, but towards novel elements
is encouraged (Posner and Cohen, 1984). Examples of such models are the history-dependent
rejection model with coverage and the history-adapted model developed in Article III.

The recurrence-based self-interaction is based on the idea that after the initial view of
the picture, the gaze will return to the interesting elements of the picture. We suggest to
model this kind of long-term dependence in terms of the recurrence function. The process
with recurrence-based self-interaction tends to favour locations close to previous fixations of
the process. Such a behaviour causes spatial clustering, which is stronger than the cluster-
ing caused by the heterogeneous environment and short transitions. The history-dependent
rejection model with recurrence is intended for modelling this kind of behaviour, see Article
I1T and the spatio-temporal version of the model in Article TV.

The long-term dependence can be included into the model through the kernel function
or as a separable component. If it is adapted to the kernel function, the kernel depends on
the history, for instance, through a parameter, K (xj, X11) = K¢(§>k)(xk, Xk+1)- An example
is the history-adapted model in Article III, where the information on the history is used to
adjust the width of the Gaussian kernel. An alternative is to model long-term dependence as
a separable component, denoted here as W(?kﬂ), when the long-term dependence of the eye
movement sequence is less confounded with the saccade lengths controlled by the kernel. The
latter choice is used here and explained in detail below.

4.3 Maximum likelihood estimation for sequential spatial point
processes

Finding the likelihood function for a spatial point process is often challenging and the maxi-
mum likelihood method can only be applied to certain point process model classes for which
the likelihood is known, such as Poisson processes (Illian et al., 2008). In general, if the point
process distribution can be constructed in terms of their probability densities, the maximum
likelihood method can be applied. In some cases, the likelihood function is not known explic-
itly, but it can be approximated, for instance, by the pseudo-likelihood or by Monte Carlo
methods (see e.g. Illian et al., 2008; Diggle, 2013, for more details).

The maximum likelihood method has been applied for finite sequential point processes,
such as random sequential absorption model (van Lieshout, 2006¢). In our case, the order
of the events is known and the likelihood function for the developed sequential spatial point
process models can be written up to a intractable normalizing constant (see Article III). For
instance, the likelihood for the general sequential spatial point process model with all three
components introduced above can be presented in form

n—1
L= fx) [] et exhg1) K (ks Xp 1) 7(Xe 1, S(K ks Xe11)),
k=1

where
a(+) describes spatial heterogeneity of the target,

K(-) is a Markovian kernel controlling spatial lengths of the transitions,
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7(-) controls long-term dependence of the process, and
S(+) is a geometric feature of the previous points, such as convex hull coverage.

The long-term component can be thought to be a penalization term, such that when a new
point is proposed according to the density proportional to a(xjy1)K (Xk,Xg+1), the term
7r(xk+1,5’(?k7xk+1)) decides whether the point is accepted or not. The terms ¢ in the
likelihood are normalizing integrals depending on the window W, on all the components
introduced above and on the sequence X

As an example of construction, we present the history dependent rejection model with
the ball union coverage weighting (see Article III) which consists of the spatial heterogeneity

term «(xXpy1), truncated Gaussian kernel K(xp,Xpi1) e 307 Pl 1w (xk+1), and the
ball union coverage as the long-term penalization term. Recall that the empirical intensity
function represents here a(x). The penalization term depends on whether the new point is
inside the ball union created by the previous points or not, that is,

if xp41 € Beov(Xy) = UF, b(xs,r) N W
7 (%1 S(R s xp41)) = 4 e (5¢) = Uiy bxi;m)
1—0p otherwise,

where p € [0,1]. If p > 0.5, the process favours locations inside the ball union created by the
previous points. The likelihood of the model can be written as

n
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where the density fi(x1) can be assumed to follow the empirical intensity function a(x), or
modelling can be conditional on the first fixation x;. Note that here we fix the heterogeneity
term «(x), but an option would be to use different heterogeneity term, for example, for the
first 10 fixations than for the later ones. The normalizing integral depends on every parameter
of the model and it has to be calculated for each step from x; to xx+1, K =1,...,n—1. Hence
the normalizing term is analytically intractable, but numerical integration methods, such as
Riemann sums, can be used for its calculation.

Due to the way the sequential point process model is constructed here, the components
of the model are dependent and the parameters of these components are confounded. The
parameters of the model can be estimated one at a time, for instance, by the coordinate ascent
method as is done in Article III, or simultaneously by applying optimisation algorithms after
reparametrisation of the likelihood. In addition, one should consider whether to use all data
in estimation. For example, if the long-term dependence of the model is based on recurrence
penalization, this component does not have much effect in the beginning of the process, whilst
the kernel function is dominating. In that case, it would be better to use the latter part of the
eye movement sequence for estimating the parameters of the long-term component and use
only the beginning of the sequence for estimating the kernel parameters. Another example is
a process which spreads rapidly in the beginning due to the convex hull penalization. For this
kind of model, the kernel starts to dominate after the sequence has covered most of the target
window and hence the latter part of the sequence is informative for the kernel parameters.
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4.4 Model diagnostics

Recall that our interest is in studying the uncertainty related to summary statistics (see
Chapter 3) as well as in making group comparisons. After fitting a model for an eye movement
sequence or sequences, we can apply Monte Carlo simulation, called also parametric bootstrap
method in Efron and Tibshirani (1994, p. 53), to asses the uncertainty. The method is based
on simulation of the fitted model with estimated parameters. First, we choose a summary
statistic that describes the feature under study. In our case, the summaries we use are
mainly functional in time, since we are interested in the fixation process. Second, we simulate
realisations of the fitted model and estimate the chosen summary statistic for each realisation.
These estimates can then be used to compute model-based envelopes which indicate statistical
variation in that summary statistic under the model assumption. On the other hand, the
envelope serves as a basis for simulation envelope test (Ripley, 1977), which give evidence
against the null model if the data summary exceeds the envelope. This method has been
traditionally used in model validation, which is reviewed next.

In spatial statistics the pointwise envelope is typically created by using the maximum and
minimum value of the chosen functional summary statistics at each argument value (such as
K-function at several distances r), calculated from the realisations of the model. Then, the
data summary is plotted on the top of the envelope to check if the data summary exceeds it or
not. However, the statistical significance of the simulated pointwise envelope is questionable,
since with functional summary statistics we end up with the multiple testing problem when
looking for deviations from the envelope at multiple points at the same time. This leads to
invalid inference due to underestimation of the probability of type I error (significance level),
as pointed out e.g. by Loosmore and Ford (2006). It is also a matter of number of simula-
tions needed to obtain an envelope with a reasonable type I error probability (see Grabarnik
et al., 2011). However, the pointwise envelope can be used for visualisation purposes and, as
Baddeley et al. (2014) note, it can be plotted to assess what the result of the test would have
been if we had chosen one particular argument value to perform the test, for example, if the
distance r is fixed for the K-function prior simulations.

The difficulties in the pointwise envelope test can be bypassed by applying an alternative
test procedure suggested by Loosmore and Ford (2006) relying on Barnard’s Monte Carlo test
(Barnard, 1963). The idea behind is following: the information in the data is suppressed to
a single number, called the test statistic Ty. We generate m realisations of the null model
and compute the value of the test statistic for each realisation. Assuming that the null
hypothesis is true, the realisations and data are thought to be statistically equivalent. We
can then compare the value Ty to the simulated values 17, ...,T,,, which gives us a p-value
representing the significance of the observed result (more detailed explanation can be found
e.g. in Baddeley et al., 2014). For functional summary statistics, one can use the Diggle-
Cressie-Loosmore-Ford test (Baddeley et al., 2014),

R
= r_tleor2r7
T—/()(H() o r))? d

where H is a summary statistic and Hyy,eo is its theoretical value under the null hypothesis.
Often Hipeo is not known and it is calculated as an average of simulated and observed values
of H (Baddeley et al., 2014). Another option for the test statistic would be the maximum
deviation between H and its theoretical value (see e.g. Baddeley et al., 2014; Grabarnik et al.,
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2011). Note that these kind of test statistics are sensitive to the upper value R. The problem
with Monte Carlo tests arises, if the parameters of the null model are estimated from the data
in question. This results that the Monte Carlo test is probably conservative (see e.g. Baddeley
et al., 2014), since the true parameter value of the null model behind the data differs from
the estimated parameter value which is used to generate the simulations.

Recently, several attempts have been made for creating envelopes that would truly repre-
sent certain significance level. Grabarnik et al. (2011) describe a way to calculate the type I
error probability after performing the simulations, but they suggest to use deviation test for
obtaining p-values and use envelopes just for visual purposes. Myllyméki et al. (2017) present
two approaches, which allow to choose the significance level a priori and provide p-values and
graphical representations as a result. These two global envelope tests are called the rank en-
velope test and the scaled mazximum absolute difference envelope test. Both of these are robust
to the choice of the upper value of the integral, but the first one requires a large number
of simulations (e.g. 2499 if 5% significance level is pursued), whereas the latter one requires
clearly less (99 for 5 % significance level) (Myllyméki et al., 2017). The global envelopes are
applied in Article II, but only for graphical diagnostics.

Because of the complexity of eye movement sequences, finding one summary statistic
describing the feature under study may be difficult or even impossible. We suggest to use
several summaries at least for model validation. It should also be noted that the summary
characteristics or statistics used for model validation should be chosen to be different in nature
than the one or ones used in fitting the model (Illian et al., 2008) or in model construction.
In the articles included in this dissertation, we have used the following summary statistics in
model validation: convex hull and ball union coverage, scanpath length, recurrence function
and transition probabilities between four specified areas of the target space. In addition, the
intensity surface is used in checking the goodness of fit of the models, but only for visualising
purposes. The summary characteristics of point process models, such as the K-function,
can also be used for evaluation of the models. Note that we use here pointwise envelopes
as graphical diagnostics in model validation, which is allowed since we do not use them for
statistical testing.
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Chapter 5

Decomposition of art viewing: an
example

In this chapter, the methods introduced above are applied to eye movement data. The idea is
to experiment, whether long-term dependence exists in an eye movement sequence measured
from one subject. We concentrate on the first 100 fixations occurred when the subject was
looking at the painting La croisée des destins by Risto Suomi (see, Figure 1.1). These 100
fixations were measured during the first 41 seconds of inspection. On the painting there are
some clearly salient elements, namely the shark and the rabbit, which will most probably
gain attention. It can be expected that these elements will be looked at quite early and, as
the saccades in Figure 1.1 indicate, the gaze jumps between these elements. The aim of this
example is to study, if we can decompose this eye movement sequence using the new sequential
spatial point process modelling. Is the gaze jumping around on the painting randomly, or is
there a learning effect? The sequence of fixations during the first minute of inspection on
the painting can be seen in Figure 1.1 and the convex hull and ball union coverages of the
eye movements during the first 10 seconds are illustrated in Figure 3.1, left. Indeed, these
figures indicate that the subject has looked at the most salient elements in the beginning of
the inspection.

In order to study the long-term dependence, we decompose the fixation sequence into three
components described in Section 4.2.2. In particular, we fit the history-dependent rejection
model with ball union coverage (4.1) to the data. The ball union coverage is chosen to be
used in the penalization term, because the target painting includes a few visually very salient
elements that will probably attract attention. According to this model, a new point outside
the ball union, created by the previous points, is accepted with probability 1 — p and inside
the ball union with probability p. If p = 0.5, the model coincides with the random walk in
heterogeneous space. To study the long-term dependence, we fit both the random walk model
and the history-dependent rejection model to the data.

The spatial heterogeneity term «(x) and the ball radius » = 50 pixels are fixed before model
fitting. The radius is chosen such that one ball located on the top of the shark or the rabbit
covers the whole object, since we assume that these salient objects can be recognised with
one fixation. As the heterogeneity term «a(x) we use the empirical intensity that is estimated
from all fixations in the data set related to the painting of Risto Suomi and measured from 19
participants, excluding the fixations of the subject under study. This kind of pooled empirical
intensity surface serves as the empirical saliency map (see Section 1.4). The size of the balls
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Figure 5.1: Point maps of the data (left), a realisation of the random walk model (middle)
and a realisation of the history-dependent rejection model (right) with the estimated intensity
surface (the empirical saliency map).

used in the penalization term with respect to the size of the painting is visualised in Figure 3.1,
left. The coordinate ascent algorithm is used for fitting the models to the fixation sequence.

For the random walk model, we obtain ¢ = 240 as an estimate of the kernel parameter,
whereas the parameter estimates of the fitted history-dependent rejection model are & = 260
and p = 0.8. In both cases, the kernel is quite flat and allows the process to make rather long
jumps according to the estimates of the kernel parameter. In terms of long-term dependence,
the two fitted models differ. The estimate p = 0.8 of the history-dependent rejection model
indicates that the locations inside the ball union coverage are favoured compared to those
outside the coverage.

Next, we simulate realisations of these fitted models. The first 100 fixations of the subject
on the estimated intensity surface is presented in Figure 5.1, left. The realisations of the fitted
random walk model and of the fitted history-dependent rejection model are presented in the
middle and on the right hand side of Figure 5.1. The point map resulting from the random
walk model is less clustered compared to the data indicating that the spatial heterogeneity
(estimated from the pooled data) does not alone explain the locations of fixations. The point
map of the realisation of the history-dependent rejection model performs better in terms of
clustering, but the points seem to be allocated somehow differently than the data. This is
the drawback of estimating the spatial heterogeneity from a set of eye movement sequences:
variation between subjects is large and when the information is summarized over several
subjects we lose subject-level information.

In order to check the goodness-of-fit of these two models, we simulate 99 realisations
of each fitted model. From these simulations we calculate the pointwise envelopes for the
chosen summary statistics. We suggest to use several summary statistics in model evaluation,
because none of the summaries alone are able to describe all the important features of the
process. Here, we employ the data summaries represented in Chapter 3 together with the
inhomogeneous K-function (see equation (2.2)). The same empirical intensity surface is used
for A(x) when estimating K as we used for a(x). The results can be seen in Figures 5.2, 5.3
and 5.4.

For the random walk model, the empirical ball union coverage with radius » = 35 exceeds
the pointwise lower envelope and the empirical cumulative recurrence function exceeds the
pointwise upper envelope, see Figure 5.2. This means that the model favours locations that
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Figure 5.2: Ball union coverage with » = 35 (top left), convex hull coverage (top right),
scanpath length (bottom left) and cumulative recurrence with r» = 50 (bottom right) for the
data. The dashed lines represent the simulated pointwise envelopes based on 99 realisations
of the fitted random walk model (6 = 240).

are outside the ball union coverage and are hence apart from the previous points. Since we
used the ball union coverage with r = 50 in model construction, here we used the smaller
radius of size r = 35. Based on these summary statistics, the random walk model with spatial
heterogeneity and Markovian kernel components does not fit the data well. In the case of the
history-dependent rejection model, all the four data summaries as well as K -function remain
inside the pointwise envelopes, see Figures 5.3 and 5.4. Note, however, that the inhomogeneous
K-function was not able to distinguish the random walk from the history-dependent rejection
model because it does not take the time into account.

To conclude, the history-dependent rejection model seems to fit well to the fixation se-
quence under study. The estimated model parameter p = 0.8 indicates that the eye movement
sequence is not just a random walk, but the locations inside the ball union coverage created
by the previous points are favoured. From Figure 3.1 one can deduce that the ball union cov-
erage covers the most salient elements, the shark and the rabbit, during the first 10 seconds
of inspection. After that, the increase in the ball union coverage curve declines meaning that
the gaze does not jump far away from the previous fixations. This kind of behaviour can be
interpreted as an evidence of long-term dependence: the process tends to favour the already
visited locations.

In this empirical example, we were able to find indications of learning in the sequence with
a rather parsimonious model by using information only on the order of fixations but not on
their occurrence times.
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Figure 5.3: Ball union coverage with r = 35 (top left), convex hull coverage (top right),
scanpath length (bottom left) and cumulative recurrence with » = 50 (bottom right) for the
data. The dashed lines represent the simulated pointwise envelopes based on 99 realisations
of the fitted history-dependent rejection model (6 = 260, p = 0.8).
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Figure 5.4: K -function for the data with the simulated pointwise envelope based on 99
realisations of the fitted random walk model (left) or of the history-dependent rejection model
(right).
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Chapter 6

Discussion

This dissertation aimed at contributing to the eye movement methodology, where data consist
of movements of the gaze recorded with an eye tracker. The research questions studied
here arose from an art study and the associated experimental data set. The idea behind
the experiment was to compare visual processing of novices and non-novices in art viewing,
and therefore we developed methods that can be used for group comparisons. In order to
understand visual processing of paintings, we studied how the eye movement process evolves
in time. This aspect is often neglected in the analyses due to complexity of the data or lack of
availability of statistical methods. Here, the data set allowed us to study both the dynamics
and long-term dependence in eye movement sequences due to the sufficiently long inspection
time.

In this pioneering work, parallel with two other studies using point process statistics for
eye movement data (see Barthelmé et al., 2013; Engbert et al., 2015), we studied how spatial
and spatio-temporal point process statistics and tools therein can be applied to eye movement
data. Instead of jumping right into spatio-temporal point process framework, we started from
spatial point process statistics and design-based approaches and then proceeded to sequential
spatial point processes by taking into account the temporal order of fixations. Finally, we
included also the occurrence times and presented a spatio-temporal point process model for
fixations. This step by step approach helped us to understand the limitations of the marginal
processes of a spatio-temporal point process. From a statistical perspective, we enlarged the
field of spatio-temporal point process statistics by introducing new summary statistics, by
presenting useful and interpretable point process models, and by applying likelihood-based
inference.

The novelty of our work in the eye movement context is in the study of the evolution
of the eye movement process instead of concentrating just on the static pattern of fixations
or other strongly aggregated data summaries. We took into account the temporal nature of
the eye movement process both through functional summary statistics and by considering the
history of the process in modelling. The functional summary statistics that we proposed for
describing the temporal evolution of the process can also be used in model construction and
evaluation. In addition, we presented subject level models for decomposing features, such
as long-term dependence, from an eye movement sequence. These models are parsimonious
sequential point process models, but their usefulness was illustrated in this work.

The sequential spatial point process models introduced here could be further developed,
for instance, by modifying the penalization term or by letting the spatial heterogeneity term
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vary in time. However, the estimation of spatial heterogeneity is problematic as is discussed
in Article III, in Barthelmé et al. (2013) and in Engbert et al. (2015), since the dependency
between consecutive fixations is a cause of extra clustering. Another issue related to the
sequential point process models is the computation of the normalizing integrals in the likeli-
hood. Our choice to use numerical integration (Riemann sums) is rather slow to compute for
long eye movement sequences, because the integral has to be calculated for every step of the
process. Computation of the integral and the likelihood itself could most likely be improved
by other approximative methods.

We brought eye movement data to a spatio-temporal point process context with the idea
that we start from the sequential point process modelling of fixation locations being the most
informative part of eye movement sequence. The spatio-temporal point process model is then
constructed under a condition that the fixation locations conditional on the history of the
process do not depend on the occurrence times of the previous fixations. This condition,
being a generalisation of the space-time separability, is not a severe restriction in this context.
The occurrence times of fixations are modelled conditional on the locations. One of the
attempts for the future would be to study further the relationship between fixation locations
and occurrence times. This information would help in building more general spatio-temporal
point process models. On the other hand, the use of spatio-temporal point process methods
requires reasonable amount of events, which means that the experiment and the resulting eye
movement sequence should be long enough, or replicates should be available.

Altogether, this dissertation opens new views to eye movement methodology. The growing
use of eye tracking method is constantly raising new research questions and thus demands
more sophisticated tools for the analysis. We believe that the point process statistics helps to
deal with these kind of complex data, if only the researchers would be aware of the methods
and tools were available. The tools introduced here, such as data summaries and models, are
rather easy to implement, whereas K-functions and other point process characteristics can be
already found in R (R Core Team, 2016), see e.g. packages spatstat (Baddeley et al., 2015)
and stpp (Gabriel et al., 2013). The work presented in this dissertation gives good premises
for developing the methodology further.
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Summary of original publications

Article 1: Spatial point process statistics in understanding eye movement
data

Eye movement sequence can be considered as a realisation of a spatio-temporal point process.
However, before modelling such complex data, more statistical analysis methods are needed for
understanding the nature of the eye movement process. Here, we consider simple model-free
methods that are based on marginals of the underlying spatio-temporal point process. More
precisely, we apply spatial point process statistics for detecting changes in the behaviour of a
fixation sequence in terms of spatial clustering and fixation durations. We compare the early
fixations of an eye movement sequence with the late fixations of the same sequence by using
Ripley’s K-function. Since the original K-function assumes stationarity, which is not fulfilled
by our data, we apply the case-control method and study the difference of two K-functions.
Another way to bypass this problem is to apply the inhomogeneous K-function, for which
the first-order intensity has to be estimated. We estimate the intensity using the pooled eye
movement data of other subjects participating the experiment and study also the difference of
the inhomogeneous K-functions of the two groups. This comparison reveals extra clustering
of fixations when the features of the painting are taken into account. Finally, we investigate
the stability of mark-correlation in an eye movement sequence by adding the durations of
fixations as marks.

Article 2: What we look at in paintings: A comparison between experienced
and inexperienced art viewers

This article introduces statistical tools for analysing eye movements in two groups. We con-
centrate on comparing the eye movements of novice and non-novice art viewers on one painting
called Koli landscape, but we also report the results for the five other paintings in our data
set. In addition, we study the consistency of the distribution of fixation durations between
different paintings in order to find out how the painting itself affects the eye movements. The
eye movement process on Koli landscape painting is illustrated with several static and func-
tional summary statistics, which are rather novel in eye movement methodology, describing
spatial nature and temporal dynamics of the process. To have a more detailed comparison
of the two groups, we introduce a group-level spatio-temporal point process model for fixa-
tions. The model is rather simple, but is able to catch the variation related to the functional
summary statistics reasonably well. However, the developed model does not catch the full
temporal dynamics shown in the fixation process, because it does not consider the long-term
history of the process, only the previous location.
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Article 3: Deducing self-interaction in eye movement data using sequential
spatial point processes

The eye movement process can be thought to contain learning due to the visual information
obtained from the target and cognitive mechanisms affecting the movement of the gaze. The
objective of this article is to introduce sequential spatial point process models for detecting
such dynamic structures in eye movement data. What is special for these models is that they
take the history of the process into account through a so-called self-interaction component.
The self-interaction is created by two alternative mechanisms: coverage or recurrence. The
first one can be used to model global scanning in the beginning of the process, while the latter
can model the behaviour where the eye movement process tends to return to already visited
areas. Spatial heterogeneity, that is usually present in eye movement data, is controlled by
estimating the pooled intensity of the eye movements of other participants of the experiment
considered as replicates. The models also control the lengths of the saccades by the Gaussian
kernel. An empirical example illustrating the use of one of the developed model is given
revealing a large variation between the individuals.

Article 4: Detecting the long-memory effect in an eye movement sequence

This paper is motivated by the idea that the gaze has a tendency to return to the pre-
examined areas of the target, which we call here as the long-memory effect. This kind of
long-term interaction causes spatial clustering in a long time range, which differs from the
traditionally studied space-time clustering. The aim is to experiment whether such behaviour
could be detected statistically. Therefore, we expand the sequential spatial point process
model introduced in Article 3 to spatio-temporal framework by adding the temporal model
for the occurrence times. By applying the resulting model, we study how the second-order
characteristics of spatio-temporal point processes, namely the pair correlation function and
the K-function, can be employed for detecting the long-memory effect in the sequence. A
challenge is the spatial heterogeneity that have to be taken into account both in modelling
and in applying the summaries. The ability of the suggested method in detecting the effect
is illustrated by synthetic data.

40



Bibliography

BADDELEY, A. J., DIGGLE, P. J., HARDEGEN, A., LAWRENCE, T., MILNE, R. K., AND
NAIR, G. (2014). On tests of spatial pattern based on simulated envelopes. Ecological
Monographs, 84(3):477-489.

BADDELEY, A. J., M@LLER, J., AND WAAGEPETERSEN, R. (2000). Non- and semi-
parametric estimation of interaction in inhomogeneous point patterns. Statistica Neer-
landica, 54(3):329-350.

BADDELEY, A. J., RuBAK, E., AND TURNER, R. (2015). Spatial Point Patterns: Methodol-
ogy and Applications with R. Chapman and Hall/CRC Press, Boca Raton.

BARNARD, G. A. (1963). Discussion on paper by M. S. Bartlett. Journal of Royal Statistical
Society: Series B, 25:294.

BARTHELME, S., TRUKENBROD, H., ENGBERT, R., AND WICHMANN, F. (2013). Modelling
fixation locations using spatial point processes. Journal of Vision, 13(12):1-34.

Boruyi, A. AND ITTI, L. (2013). State-of-the-art in visual attention modeling. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 35(1):185-207.

BusweLL, G. T. (1935). How People Look at Pictures - A Study of the Psychology of Per-
ception in Art. The University of Chicago Press, Chicago, Illinois.

CASTELHANO, M. S. AND HENDERSON, J. M. (2007). Initial scene representations facilitate
eye movement guidance in visual search. Journal of Experimental Psychology: Human
Perception and Performance, 33(4):753-763.

CASTELHANO, M. S. AND HENDERSON, J. M. (2008). Stable individual differences across

images in human saccadic eye movements. Canadian Journal of Experimental Psychology,
62(1):1-14.

CHiu, S. K., StovaN, D., KENDALL, W. S., AND MECKE, J. (2013). Stochastic Geometry
and its Applications, 3rd ed. Wiley, Chichester.

Cuzick, J. AND EDWARDs, R. (1990). Spatial clustering for inhomogeneous populations
(with Discussion). Journal of the Royal Statistical Society: Series B, 52:73-104.

DALEY, D. J. AND VERE-JONES, D. (2003). An Introduction to the Theory of Point Pro-
cesses: Volume I: Elementary Theory and Methods. Springer-Verlag, New York.

41



DALEY, D. J. AND VERE-JONES, D. (2008). An Introduction to the Theory of Point Pro-
cesses: Volume II: General Theory and Structure. Springer-Verlag, New York.

DiGGLE, P. J. (2013). Statistical Analysis of Spatial and Spatio-Temporal Point Patterns.
Chapman and Hall/CRC Press, Boca Raton.

DicGLE, P. J., BESAG, J., AND GLEAVES, J. T. (1976). Statistical analysis of spatial point
patterns by means of distance methods. Biometrics, pp. 659-667.

DiGGLE, P. J. AND CHETWYND, A. G. (1991). Second-order analysis of spatial clustering
for inhomogeneous populations. Biometrics, 47:1155-1163.

DIGGLE, P. J., CHETWYND, A. G., HAGGKVIST, R., AND MORRIS, S. (1995). Second-order
analysis of space-time clustering. Statistical Methods in Medical Research, 4:124-136.

DIGGLE, P. J., GOMEZ-RUBIO, V., BROWN, P. E., CHETWYND, A. G., AND GOODING, S.
(2007). Second-order analysis of inhomogeneous spatial point processes using case-control
data. Biometrics, 63(2):550-557.

DiGGLE, P. J., Kamvi, 1., AND ABELLANA, R. (2010). Partial likelihood analysis of spatio-
temporal point process data. Biometrics, 66(2):347-354.

Doksum, K. A. AND SIEVERS, G. L. (1976). Plotting with confidence: Graphical compar-
isons of two populations. Biometrika, 63:421-434.

DucHowskI, A. T. (2002). A breadth-first survey of eye tracking applications. Behavior
Research Methods, Instruments €& Computers (BRMIC), 34:455-470.

EFRON, B. AND TI1BSHIRANI, R. J. (1994). An Introduction to the Bootstrap. Chapman and
Hall/CRC Press.

ENGBERT, R., TRUKENBROD, H., BARTHELME, S., AND WICHMANN, F. A. (2015). Spatial
statistics and attentional dynamics in scene viewing. Journal of Vision, 15(1):1-17.

Evans, J. V. (1993). Random and cooperative sequential adsorption. Reviews of modern
physics, 65(4):1281.

FouLsHam, T. AND UNDERWOOD, G. (2008). Whan can saliency models predict about eye
movements? Spatial and sequential aspects of fixations during encoding and recognition.
Journal of Vision, 8(2):6-6.

GABRIEL, E. AND DicGLE, P. J. (2009). Second-order analysis of inhomogeneous spatio-
temporal point process data. Statistica Neerlandica, 63(1):43-51.

GABRIEL, E., ROWLINGSON, B., AND DIGGLE, P. J. (2013). stpp: An R package for plotting,
simulating and analysing spatio-temporal point patterns. Journal of Statistical Software,
53(2):1-29.

GOLDBERG, H. J. AND KoTvaL, X. P. (1999). Computer interface evaluation using eye
movements: Methods and constructs. International Journal of Industrial Ergonomics,

24(6):631-645.

42



GONZALEZ, J. A., RODRIGUEZ-CORTES, F. J., CRONIE, O., AND MATEU, J. (2016). Spatio-
temporal point process statistics: A review. Spatial Statistics, 18:505-544.

GRABARNIK, P., MYLLYMAKI, M., AND STOYAN, D. (2011). Correct testing of mark inde-
pendence for marked point patterns. Ecological Modelling, 222(23):3888-3894.

HoLmqQvisT, K., NYSTROM, M., ANDERSSON, R., DEWHURST, R., JARODZKA, H., AND
VAN DE WEUJER, J. (2011). Eye Tracking: A Comprehensive Guide to Methods and Mea-
sures. OUP Oxford.

IrTiMI, A., MARTINEZ-RUIZ, F., SANTIYAN, A. M., AND MoONTES, F. (2015). Spatio-
temporal cluster detection of chickenpox in Valencia, Spain in the period 2008-2012.
Geospatial Health, 10:54-62.

ILLIAN, J., PENTTINEN, A., STOYAN, H., AND STOYAN, D. (2008). Statistical Analysis and
Modelling of Spatial Point Patterns. Wiley, Chichester.

ItTI, L., KocH, C., AND NIEBURG, E. (1998). A model of saliency-based visual attention
for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20:1254-1259.

JArRODZKA, H., HoLMQVIsT, K., AND NYSTROM, M. (2010). A vector-based, multidimen-
sional scanpath similarity measure. In Proceedings of the 2010 symposium on eye-tracking
research € applications., pp. 211-218. ACM.

JENSEN, E. B. V., JONSDOTTIR, K. Y., SCHMIEGEL, J., AND BARNDORFF-NIELSEN, O. E.
(2007). Spatio-temporal modelling — with a view to biological growth. In Finkenstadt, B.,
Held, L., and Isham, V. (Eds.), Statistical methods for spatio-temporal systems, Monographs
on statistics and applied probability, pp. 47-75. Chapman & Hall/CRC, Boca Raton.

JusT, M. A. AND CARPENTER, P. A. (1980). A theory of reading: From eye fixations to
comprehension. Psychological Review, 87:329-355.

KocH, C. AND ULLMAN, S. (1985). Shifts in selective visual attention: Towards the under-
lying neural circuitry. Human Neurobiology, 4:219-227.

Lar, M.-L., Tsa1, M.-J., YANG, F.-Y., Hsu, C.-Y., Liu, T.-C., LEg, S. W.-U., LEE,
M.-H., CHiou, G.-L., Liang, J.-C., AND Tsa1, C.-C. (2013). A review of using eye-
tracking technology in exploring learning from 2000 to 2012. Educational Research Review,
10:90-115.

VAN Liesnour, M. N. M. (2006a). Campbell and moment measures for finite sequential

spatial processes. In Huskova, M. and Janzura, M. (Eds.), Proceedings Prague Stochastics
2006, pp. 215-224, Prague. Matfyzpress.

VAN LiesHout, M. N. M. (2006b). Markovianity in space and time. IMS Lecture Notes—
Monograph Series, 48:154—168.

VAN Liesnout, M. N. M. (2006¢). Maximum likelihood estimation for random sequantial
adsorption. Advances in Applied Probability (SGSA), 38:889-898.

43



LOCHER, P. J. (2006). The usefulness of eye movement recordings to subject an aesthetic
episode with visual art to empirical scrutiny. Psychological Science, 48:106-114.

LOCHER, P. J., GrRAY, S., AND NODINE, C. F. (1996). The structural framework of pictorial
balance. Perception, 25(12):1419-1436.

LOCHER, P. J., Krurinskl, E. A.;, MELLO--THOMS, C., AND NODINE, C. F. (2007). Visual
interest in pictorial art during an aesthetic experience. Spatial Vision, 21:55-77.

LoosMORE, N. B. AND ForD, E. D. (2006). Statistical inference using the G or K point
pattern spatial statistics. Ecology, 87:1925-1931.

M@LLER, J. AND WAAGEPETERSEN, R. P. (2004). Statistical Inference and Simulation for
Spatial Point Processes. Chapman and Hall/CRC Press, Boca Raton.

MvyLLYMAKI, M., MRKVICKA, T., GRABARNIK, P., SEwo, H., AND HaHnN, U. (2017).

Global envelope tests for spatial processes. Journal of the Royal Statistical Society: Series
B, 79(2):381-404.

NoOTON, D. AND STARK, L. (1971). Scanpaths in saccadic eye movements while viewing and
recognizing patterns. Vision Research, 11(9):929-942.

OGATA, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of
the Institute of Statistical Mathematics, 50(2):379-402.

PARKHURST, D., Law, K., AND NIEBURG, E. (2002). Modeling the role of salience in the
allocation of overt visual attention. Vision Research, 42:107-123.

PENTTINEN, A. AND STOYAN, D. (1989). Statistical analysis for a class of line segment
processes. Scandinavian Journal of Statistics, 16:152—168.

PosNER, M. I. AND COHEN, Y. (1984). Components of visual orienting. Attention and
Performance X: Control of Language Processes, 32:551-556.

R Core TEAM (2016). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

RAYNER, K. (1998). Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin, 124:372-422.

RAYNER, K. (2009). Eye movements and attention in reading, scene perception, and visual
search. The Quarterly Journal of Experimental Psychology, 62:1457-1506.

RIpLEY, B. D. (1977). Modelling spatial patterns (with Discussion). Journal of the Royal
Statistical Society: Series B, 39:172-212.

Sarvuccr, D. D. AND ANDERSON, J. R. (1998). Tracing eye movement protocols with cog-
nitive process models. In Proceedings of the Twentieth Annual Conference of the Cognitive
Science Society, pp. 923-928, Hillsdale, NJ. Lawrence Erlbaum Associates.

Sarvucct, D. D. AND GOLDBERG, J. H. (2000). Identifying fixations and saccades in

eye-tracking protocols. In Proceedings of the 2000 symposium on Eye tracking research &
applications, pp. 72-78. ACM.

44



TALBOT, J., TARJUS, G., VAN TASSEL, P. R., AND VioT, P. (2000). From car parking to
protein adsorption: An overview of sequential adsorption processes. Colloids and Surfaces
A: Physicochemical and Engineering Aspects, 165(1):287-324.

TATLER, B. W., BADDELEY, R. J., AND GILcHRIST, I. D. (2005). Visual correlates of
fixation selection: Effects of scale and time. Vision Research, 45:643-659.

TATLER, B. W., BADDELEY, R. J., AND VINCENT, B. T. (2006). The long and the short
of it: Spatial statistics at fixation vary with saccade amplitude and task. Vision Research,
46(12):1857-1862.

UNDERWOOD, G., HUMPHREY, K., AND FouLsHAM, T. (2008). Knowledge-based patterns of
remembering: Eye movement scanpaths reflect domain experience. In Holzinger, A. (Ed.),
HCI and Usability for Education and Work: 4th Symposium of the Workgroup Human-
Computer Interaction and Usability Engineering of the Austrian Computer Society, USAB
2008, pp. 125-144. Springer Berlin Heidelberg.

YARBUS, A. L. (1967). Eye Movements and Vision. Plenum Press, New York.

45



[1

What we look at in paintings: A comparison between
experienced and inexperienced art viewers

Ylitalo, A.-K., Sarkka, A. and Guttorp, P.

The Annals of Applied Statistics, 10(2): 549-574, 2016.
doi:10.1214/16-A0AS921

(©2016 Institute of Mathematical Statistics. Reprinted with permission.



The Annals of Applied Statistics

2016, Vol. 10, No. 2, 549-574

DOI: 10.1214/16-A0AS921

© Institute of Mathematical Statistics, 2016

WHAT WE LOOK AT IN PAINTINGS: A COMPARISON BETWEEN
EXPERIENCED AND INEXPERIENCED ART VIEWERS

BY ANNA-KAISA YLITALO®!, AILA SARKKAT-2 AND PETER GUTTORP*$

University of Jyvaskyla*,
Chalmers University of Technology and University of Gothenburg”,
University of Washington® and Norwegian Computing Center®

How do people look at art? Are there any differences between how expe-
rienced and inexperienced art viewers look at a painting? We approach these
questions by analyzing and modeling eye movement data from a cognitive
art research experiment, where the eye movements of twenty test subjects,
ten experienced and ten inexperienced art viewers, were recorded while they
were looking at paintings.

Eye movements consist of stops of the gaze as well as jumps between the
stops. Hence, the observed gaze stop locations can be thought of as a spatial
point pattern, which can be modeled by a spatio-temporal point process. We
introduce some statistical tools to analyze the spatio-temporal eye movement
data, and compare the eye movements of experienced and inexperienced art
viewers. In addition, we develop a stochastic model, which is rather simple
but fits quite well to the eye movement data, to further investigate the differ-
ences between the two groups through functional summary statistics.

1. Introduction. Eye movements are outcomes of cognitive processes in the
human brain, and can be recorded with high spatial and temporal resolution by
computerized eye trackers. Eye movements provide valuable information about
cognitive processes [Duchowski (2002), Rayner (1998, 2009)], and tracking of
them is analyzed in a range of different areas, such as language and music reading
[Kinsler and Carpenter (1995), Rayner (1998)], psychology [Findlay (2009)], and
marketing research [Nagasawa, Yim and Hongo (2005)].

The first measurements of eye movements were made in 1879 independently
by M. Lamare in France and Ewald Hering in Germany [Wade (2010)]. Both re-
searchers used an acoustic approach, and noticed, much to everyone’s surprise,
that in reading text the gaze moves in jerks between points of rest. These ex-
tremely rapid movements are called saccades. They are essentially involuntary, so
once a saccade starts it cannot be interrupted [Findlay (2009)]. Thus, researchers
can predict saccade lengths from very few observations early in the saccade
[Komogartsev, Ryu and Koh (2009)]. The points of rest, periods in which the gaze
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is staying relatively still around a location of the target space, are called fixations
[Barlow (1952)]. Eye movements can thus be represented as an alternating se-
quence of fixations and saccades. In this paper we will mainly focus on sequences
of fixation locations and times in the target space, and call such a sequence of
observations a fixation process. Our targets are pictures of paintings and the data
consist of recorded eye movements of subjects on the paintings. We will introduce
some new statistical tools and a model to analyze the fixation process by means of
group comparisons.

The fixation process is regarded as a spatio-temporal point process. We are
aware of only few studies that use point process methodology to analyze fixation
processes. Barthelmé et al. (2013) use inhomogeneous Poisson processes to model
fixation locations, and Engbert et al. (2015) perform some preliminary analysis of
clustering of the fixations by using inhomogeneous pair correlation function. Fur-
thermore, they construct a dynamic model for saccade selection by discretizing the
space.

We are interested in studying how people look at art. The first such study was
carried out using two movie cameras by Buswell (1935). His findings indicated
that much of the theory of how people look at art needed reformulation. Another
interesting eye movement study related to arts is brought out by Locher (2006). He
developed a two-stage model for art viewing, where the first stage of viewing of
a painting was to obtain a general view of its structure and semantics. In Locher’s
study, subjects describing a painting orally while viewing it started to describe the
painting only after a couple of seconds after they had begun to look at it. At the
second stage of the model the viewer focuses on some interesting features, which
are analyzed from an aesthetic point of view.

In this paper, we concentrate on comparing the fixation process of inexperi-
enced and experienced art viewers, novices and non-novices for short. Already in
his pioneering work Buswell (1935) compared the fixation durations of 61 non-
novices and 117 novices (originally “art experts” and “lay persons”) by comparing
the group averages based on the 25 first fixations. He repeated the experiment for
seven paintings, and in each case he concluded that the non-novices made shorter
fixations than the novices. Nevertheless, when comparing the fixations in the ar-
eas of the subdivided picture, he did not report any major differences between the
two groups. However, there are some studies where some differences have been
found. In Kristjanson and Antes (1989) ten paintings were shown to a group of
non-novices and a group of novices (“artists” and “non-artists” in the original pa-
per). All the subjects were familiar with three of the paintings (same for all sub-
jects), and the non-novices group was familiar with another three paintings, while
the remaining paintings were unknown to all subjects. The only statistically sig-
nificant difference between the non-novice and novice groups found was that non-
novices made more fixations on the parts of the paintings that were not centers
of interest when viewing unfamiliar paintings compared to novices. The authors
concluded that the non-novices made a more thorough investigation of all areas
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of the unfamiliar paintings than the novices. The final conclusion was that it is
conceivable that the non-novices extract a different amount or different kind of in-
formation during each fixation, even though the pattern of fixations may vary little
from the pattern of novices.

Vogt and Magnussen (2007) used eye movement patterns to investigate how
non-novices and novices (“artists” and “artistically untrained people” in the orig-
inal paper) view art. Participants were shown realistic and abstract works of art
under two conditions: one asking them to free scan the paintings, and the other
asking them to memorize them. Participants’ eye movements were tracked as they
either looked at the images or tried to memorize them, and their recall for the
memorized images was recorded. The researchers found no differences in the fix-
ation frequency or duration between picture types for non-novices and novices.
However, across the two conditions, the novices had more short fixations while
free scanning the works, and fewer long fixations while trying to memorize. Non-
novices followed the opposite pattern. In addition, non-novices spend more time
than novices by scanning the areas which were not defined as regions of interest.
There was no statistically significant difference in the recall of the images across
groups, except that non-novices recalled abstract images better than novices and
remembered more pictorial details.

Here, we investigate whether we can find any differences between how non-
novices and novices view a particular painting by using a new set of tools to study
eye movements. As mentioned earlier, the fixation process is described by a spatio-
temporal point process, and intensities of the point processes and distributions
of the fixation and saccade durations are used to compare the eye movements of
novices and non-novices. We are mainly concentrating on the eye movements of 20
subjects, 10 novices and 10 non-novices, on the painting Koli landscape by Eero
Jarnefelt [Sundell (1986)] but give some results based on the other five paintings
as well. For example, we investigate whether the fixation duration distributions
of the novice and non-novice groups remain the same from painting to painting.
Finally, based on the data analysis, we construct a rather simple stochastic model
that further helps to describe the fixation process and to investigate differences
between the non-novices and novices in terms of functional summary statistics.

The paper is organized as follows. The experimental setup and the data from
the cognitive art research experiment as well as the results from the preliminary
data analysis are described in Section 2. In Section 3, we show the results of a
comparison of the two groups, novices and non-novices. A stochastic model is
constructed in Section 4, and it is used to make further comparisons of the groups
for the Jarnefelt painting in Section 5. Finally, in Section 6 we discuss the results.

2. Data and data analysis.

2.1. Art experiment. Twenty test subjects participated in an experiment where
the task was to observe six pictures of paintings on a computer screen, each dur-
ing three minutes, and describe orally the mood in each painting while their eye
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movements and voice were recorded. The paintings can be seen in Figure 1. The
eye movements were recorded by the SMI iView X™ Hi-Speed eye tracker with a
temporal resolution of 500 Hz. The resolution of the target screen was 1024 x 768
pixels and the distance between a participant’s head and the screen was around
85 cm. A forehead rest was used in order to avoid redundant movement of the
head. The data were collected by Pertti Saariluoma and Sari Kuuva (University of
Jyviskyld) and Marfa Alvarez Gil (University of Salamanca) with technical help
from Jarkko Hautala and Tuomo Kujala (University of Jyviskyld). All subjects
were students at the University of Jyviskyld at the time of the study. Ten of the
subjects were either art students (8) or students who had studied art history and
frequently visited art exhibitions (2). The remaining ten subjects were students
who did not have art as their major or their hobby. We call the participants in the
first group non-novices and participants in the latter group novices. Five of the
participants were men (three novices and two non-novices) and 15 women (seven
novices and eight non-novices).

In this article our main purpose is to introduce some new tools for eye move-
ment analysis. Therefore, instead of analyzing all the six paintings in detail, we
concentrate mainly on the eye movements on one of the paintings, namely, the
Jarnefelt painting Koli landscape, shown in Figure 1(a). The resolution of the im-
age of the painting is 770 x 768 pixels, hence, it does not fill the whole computer
screen and there are white areas on both sides of the painting. For some subjects,
some of the fixations were located in these white areas outside the painting (Fig-
ure 2, right) and excluded from the analysis. We will treat saccades going outside
the image as missing values.

2.2. Data description. We first look at the eye movement data as a whole and
later (Section 3) compare the eye movements of novices and non-novices. An im-
portant way of describing the viewing of the painting is to look at a smoothed
plot of all fixation locations of all subjects, which represents the viewing foci of
the painting. Technically, when describing the locations of fixations by a spatial
point process this is an estimate of the intensity of the fixation process, marginal-
ized over time. We use the R package spatstat for the intensity estimation
[Baddeley, Rubak and Turner (2015)]. A chi-square test for quadrat counts clearly
rejects the hypothesis of constant intensity (p < 0.001). The areas of the painting
that have been visited most by the subjects are shown in Figure 3 (left). We can see
that the trunk of the main tree going down almost the entire length of the painting
and the top of the small tree next to it seem to be the areas of particular interest in
the painting. In Figure 3 (right) one can see the least visited areas, the edges of the
painting in this case.

The fixation process varies a lot between subjects, and hence it is interesting to
look at some summary statistics for the data. The supplemental article by Ylitalo,
Sarkkd and Guttorp (2016a) includes a table which shows the total number of
fixations and the number of short fixations (less than 40 ms) inside the picture with
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FIG. 1. The stimulus paintings used in the experiment. (a) Eero Jdrnefelt—Koli-landscape (the
turn of 19th and 20th century), source: Sundell (1986)/public domain. (b) Claude Monet—Ter-
rasse a Sainte-Adresse (1867), source: The Metropolitan Museum of Art/public domain. (c) Risto
Suomi—La croisee des destins (1988), source: Mikkola (1997). Reprinted with kind permission of
Risto Suomi. (d) Wassily Kandinsky—Picture with a Black Arch (1912), source: WikiArt.org/public
domain. (d) Nicolas Poussin—La Lamentation sur le Christ (17th century), source: The Yorck Project
(2002)/public domain. (e) Pasi Tammi—Poem Forces to Kneel Down (1999), source: Anonymous
(2000). Reprinted with kind permission of Pasi Tammi.



554 A.-K. YLITALO, A. SARKKA AND P. GUTTORP

F1G. 2. (Left image) Koli landscape by Eero Jirnefelt from the turn of 19th and 20th century.
(Right image) Fixations (red spots) for Subject 15, a male non-novice. The duration of each fixation
is proportional to the size of the spot.

means, medians, and standard deviations of fixation durations for each subject.
The number of fixations during the three minutes time period varies between 326
and 770, and the median fixation duration varies between 150 ms and 438 ms. The
mean fixation duration is always greater than the median, indicating a right-skewed
distribution of the fixation duration.

Short fixations are not included in our analysis because they are believed to be
microsaccades, or eye movements within a fixation [Manor and Gordon (2003)].
The histogram on the left side of Figure 4 indicates that the duration distribution
may be a mixture of very short durations and regular ones. When excluding the
short fixations, the remaining durations seem to follow a gamma distribution. The

R~ e

FI1G. 3. Areas of the Jdrnefelt painting that were visited most (left) and least (right) by the gaze of
the subjects. (Left image) Top 50% white, top 20% yellow, top 10% orange, and top 1% red. (Right
image) Bottom 30% blue and bottom 10% black.
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F1G. 4. (Left panel) Distribution of fixation durations for all subjects when short fixations are in-
cluded. (Right panel) Gamma quantile—quantile plot for fixation durations exceeding 40 ms with
asymptotic 95% confidence region (grey) and the line (red) of unit slope through the origin corre-
sponding to perfect agreement of empirical and theoretical quantiles.

right panel shows a gamma quantile—quantile plot [Wilk and Gnanadesikan (1968)]
of the regular (longer than 40 ms) fixation durations. The red line of slope 1 falls
inside the simultaneous confidence band [Doksum and Sievers (1976)], indicating
that the durations can be described well by a gamma distribution.

As mentioned earlier, the complete eye movement process consists of fixations
and saccades, the latter being the rapid movements between the fixations. The sup-
plemental article by Ylitalo, Sdrkki and Guttorp (2016b) shows summary statistics
for saccade durations and saccade lengths, that is, the distances between consecu-
tive fixation locations. The distribution of saccade lengths as well as the distribu-
tion of saccade durations are skewed to the right, and are also well described by
gamma distributions. The temporal dependence between fixation durations is very
weak, as judged by the autocorrelation functions and ARIMA time series fitting.

2.3. Temporal analysis. Art is considered to be a subjective field. How
one views artwork is individually unique, and reflects one’s experience, knowl-
edge, preference, and emotions. According to Locher’s two-stage model [Locher
(2006)], exploration of a picture starts with a global survey of the pictorial field in
order to get an initial overall impression of the structural arrangement and seman-
tic meaning of the composition. The second phase of an aesthetic episode consists
of visual scrutiny or focal analysis of interesting pictorial features detected initially
to satisfy cognitive curiosity and to develop aesthetic appreciation of the display.
Some pioneering investigations into visual exploratory behavior of paintings by
Buswell (1935) and Yarbus (1967), and subsequent studies on the informative de-
tails of an image by Antes (1974) and Mackworth and Morandi (1967), revealed
that observers focus their gaze on specific areas of the image, rather than in a ran-
dom fashion. The areas receiving high intensities of fixations were interpreted as
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FIG. 5. Residual intensity surfaces in 30 s intervals. The more yellow the color, the higher the
intensity compared to the mean intensity surface; the more blue the color, the lower the intensity.

guiding the observer’s interest in informative elements of the image [Henderson
and Hollingworth (1999)].

Since people do not look at all parts of the painting, but rather focus on some
features of interest, the fixation process cannot be assumed to be spatially station-
ary. Furthermore, the features people look at may vary in time. To investigate the
latter, we estimated the intensity surface of fixation locations based on the fixa-
tions of all subjects, and plotted residual intensities in 30 s intervals (Figure 5).
The residual intensity is the difference between the estimated intensity surface and
the mean intensity surface of the six intervals. The intensity in location x € I,
where [ is the area of the painting, is estimated using the edge-corrected kernel
estimator [see, e.g., Gatrell et al. (1996)]

" hTPK (N (x = x0)

o ) = K T (x — )y du”

where x;, i = 1,...,n, are the fixation locations, & a bandwidth (a smoothing
parameter), and K a kernel function, here the standard two-dimensional Gaussian
density. The bandwidth for the mean intensity estimation is selected by applying
the cross-validation approach described in Diggle (1985) and Berman and Diggle
(1989), and that bandwidth (here 17) is the same for all intervals.

One can notice in Figure 5 that during the first 30 s, the gaze is more concen-
trated on the tall pine tree on the left-hand side of the painting and after that more
on the small tree in the middle than on average during the whole three minutes
time period. During the second and the third minutes fixations are spread out a
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little more than during the first minute. In addition, during the last minute the ar-
eas which were of interest at the beginning (the two trees) are now being avoided.
Note that here we have only made some visual observations. For a more formal
comparison of intensity surfaces we could use the test we introduce in Section 3
below.

We also investigate the difference in fixation duration distributions between the
different 30 s time intervals. Figure 6 shows a graphical way to compare distri-
butions, a shift function [Doksum and Sievers (1976)] defined as follows. If X
has the cumulative distribution function F, written X ~ F, and Y the cumulative
distribution function G, Y ~ G, then the shift function is defined as

A(x) =G (F(x)) —x,
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FIG. 6. Fixation duration shift function estimates in 30 s intervals, relative to the first 30 s. The
red line corresponds to equal distributions, and the grey lines form 95% asymptotic simultaneous
confidence bands. The lower right panel is a box plot comparison of the distributions on a log scale.
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and has the property that X + A(X) ~ G. The idea of the shift function is to
compare two distributions based on how much one distribution function needs to
be shifted in order to coincide with the other. In general, this may depend on the
abscissa at which the comparison is made. We have the simplest case when the sec-
ond distribution is simply the first shifted by a constant amount. The shift function
is then just a horizontal line at the level of the shift (in particular, if the distribu-
tions are the same, then the shift function is a horizontal line at the level zero). If
a location-scale model is appropriate, then the shift function is a straight line with
slope related to the scale change. The shift function is easily estimated using em-
pirical distribution functions, and simultaneous confidence intervals based on the
distribution of the Kolmogorov—Smirnov statistic are given in Doksum and Sievers
(1976). If a horizontal line at level O falls inside the band, then the two distributions
are statistically indistinguishable. The shift function estimates in Figure 6 repre-
sent the comparison of the second through the sixth 30 s fixation distributions to
the first 30 s distribution. It seems that the later time intervals tend to have slightly
longer fixations between about 200 ms and 450 ms than the earlier intervals. This
is also illustrated by the side-by-side box plots in the lower right-hand panel of the
figure.

3. Comparison of novices and non-novices. In the previous section we in-
troduced some tools to describe the fixation process. Now these tools are applied to
compare the fixation processes of novices and non-novices. First, we compare the
fixation intensity surfaces of the two groups visually, and then construct a test for
more formal comparison. Second, we compare the fixation duration distributions
in the two groups using shift plots. Finally, we investigate whether the fixation
duration distributions change within the two groups if the painting is replaced by
another.

3.1. Visual comparison of intensity surfaces. To compare the spatial patterns
of fixations, we first estimate the overall intensity for each group by using equa-
tion (1); see the top row in Figure 7. We see that both groups concentrate on the
middle part of the painting and do not look closely at the edges, and that the fix-
ations of non-novices seem to be slightly more concentrated than the fixations of
novices. Non-novices look a lot at the large pine and one of its branches (vertical
alignment), while novices look at the same branch of the tree but continue to the
right of the branch (horizontal alignment). We also plot the areas of the painting
that are visited most (top 5% in yellow and top 1% in red) for each group (Figure 7,
bottom row). This verifies the finding of non-novices’ interest in the vertical trunk
while novices have been concentrating more on the horizontal branch.

A more detailed investigation, where the time interval is divided into 30 s in-
tervals [see supplemental article Ylitalo, Sarkkd and Guttorp (2016¢)], reveals that
especially early on the non-novices are more concentrated on the large tree and its
branch than the novices. The gaze of novices starts to spread out much earlier than
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Novices Non-novices

F1G. 7. Top row: The estimated overall intensity surface with bandwidth 20 for novices (on the left)
and with bandwidth 16 for non-novices (on the right). Bottom row: Top 5% (yellow) and top 1% (red)
intensities, novices vs. non-novices.

the gaze of non-novices and novices have more hot spots than non-novices. The
gaze of non-novices mainly stays on the large pine tree and in the end also on the
small tree on the right side of the large one, while novices investigate other areas
of the painting as well.

3.2. Test for comparing two intensity surfaces. In order to test whether two
intensity surfaces differ significantly from each other, that is, whether the subjects
in the two groups have been looking at different areas of the painting, we apply
the method developed by Kelsall and Diggle (1995a, 1995b). They considered a
ratio of two kernel density estimates and used a Monte Carlo test for testing if
the ratio is constant, that is, whether the kernel estimated intensity surfaces can
be considered similar. This ratio is used in epidemiology to explore whether some
diseased cases are randomly located among healthy controls and is therefore often
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called a relative risk function. The logarithmic relative risk function is defined as
p(x) =log(r1(x)/A2(x)), where A;’s are computed using equation (1), and can re-
veal areas where the intensity of fixations differs between novices and non-novices.

By conditioning on the observed number of fixations, we may view the fixation
locations of novices and non-novices as independent samples from the densities
f1(x) and f>(x), where

Ai (x)
JpAi(x)dx ’
fori =1, 2. We can now define a logarithmic density ratio
fi(x)
g =
Hx)
where ¢ = log(M) [see, e.g., Wakefield, Kelsall and Morris (2000), Kelsall

JrAa(x)dx
and Diggle (1995b)]. We have

fix) =

r(x)=1lo px) —c,

F(x) =log ]jl )

f2(x)
which contains all the information about the spatial variation in p(x).

According to Kelsall and Diggle (1995b), the choice of the kernel function is not
critical, but choosing the smoothing parameter # is. Furthermore, it is not obvious
whether one should use the same bandwidth for both densities when computing
the ratio. Kelsall and Diggle (1995b) suggest that if the densities are expected to
be nearly equal, then the bandwidths should be equal as well to reduce bias. They
also warn that if the sample sizes are very different, then one can get poor results
when using the same bandwidth for both samples. Furthermore, Bailey and Gatrell
(1995) suggest that the kernel estimate in the denominator should be deliberately
oversmoothed (a larger bandwidth should be used). In addition, Hazelton (2007)
shows that edge correction terms are not needed if a common bandwidth is used.

We test the null hypothesis that the intensity surfaces are equal, that is, that the
logarithmic density ratio r(x) = 0, by the following Monte Carlo test [Barnard
(1963)]. Ten subjects were randomly selected from the twenty subjects to form the
novice group and the remaining ten subjects formed the non-novice group. (Hence,
the possible dependence between the fixation locations within a subject was taken
into account.) By doing this random grouping m times, we obtain m log-density
surfaces 71, ..., 7, under the null hypothesis. As introduced by Kelsall and Diggle
(1995b), we use the test statistic

Tj:ffj(x)zdx, j=0,....m.
I

The p-value is then p = ”7%11, where k is the number of test statistics 7; which are

larger than or equal to the observed value of the test statistic, 7p.
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Since the number of fixations vary quite a lot between the subjects, we estimate
the bandwidths separately for the two groups by using the cross-validation method
by Diggle (1985) and Berman and Diggle (1989) with Ripley’s isotropic edge cor-
rection [Ripley (1988)]. The estimated bandwidth for the novices was approxi-
mately 20 and for the non-novices 16. We obtained 7y = 59,604 and p = 0.108
after random grouping of subjects 10,000 times. This means that the difference
between the intensity surfaces of novices and non-novices is not statistically sig-
nificant even though there are some dissimilarities in the intensities; see Figure 7.
The largest differences between the intensities of the two groups are near the edges
of the painting, where there are very few fixations of either group.

We made the same comparisons for the other five paintings and obtained similar
results; see supplemental article Ylitalo, Siarkkd and Guttorp (2016d). None of the
tests gave any significant result, and Fisher’s combined probability test resulted in
p=0.392 (x%2 = 12.685, df = 12). Therefore, we did not find any overall differ-
ences when comparing the intensities of the two groups. However, it seems that the
more abstract paintings could reveal some differences between novices and non-
novices; see results related to Kandinsky’s painting in Ylitalo, Sirkkd and Guttorp
(20164d).

3.3. Comparing duration distributions. 'To compare the fixation duration dis-
tributions of the novice and non-novice groups, we again look at the shift plot;
for the Jarnefelt painting see Figure 8. Here, the novices have fewer short fixa-
tions (duration less than 125 ms), and more fixations between about 175 and 600
ms than non-novices. Similar results were found for the remaining five paintings;
see Ylitalo, Sdrkké and Guttorp (2016d). This is in line with the early findings of
Buswell (1935), and may mean that novices more rarely only glance at a point on
the painting but rather spend more time on each point compared to non-novices.

Novice
I I I I I

100 200 300 400 500 600 700
|

0

T T T T T T T T
0 100 200 300 400 500 600 700

Non-novice

F1G. 8.  Shift plot of non-novice distribution vs. novice distribution for fixation duration. The red
line indicates equal distributions, and the grey lines form simultaneous asymptotic 95% confidence
bands.
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F1G. 9. The estimated overall intensity surface with fixed bandwidth 13 for novices (on the left)
and for non-novices (on the right) for the Monet painting.

3.4. Pairwise comparison of paintings. Since several paintings are available,
we are also able to investigate whether the fixation process is similar for differ-
ent paintings, that is, whether the fixation process stays stable when looking at
paintings. We are particularly interested in whether we detect any differences be-
tween the behavior in the novice and non-novice groups. We started by comparing
the Jarnefelt painting and the painting Terrace at Sainte-Adresse by Claude Monet
(1867) shown in Figure 1(b) since both are landscapes, and hence similar to each
other. The estimated intensity surface of the fixation locations for Monet’s paint-
ing is also shown separately for novices and non-novices in Figure 9. The intensity
surfaces of the two groups look fairly similar; see also the formal test in Ylitalo,
Sarkkd and Guttorp (2016d).

Since the pictures are completely different, the intensity surfaces of fixations
for the paintings are also different and comparing them would be meaningless.
However, it is of interest to compare the fixation duration distributions of novices
and non-novices between two paintings in order to see whether the way of looking
at paintings remains stable between different paintings. The shift function com-
parisons of the duration distributions for novices and non-novices are plotted in
Figure 10 for the Jarnefelt—-Monet pair. We can see that for non-novices there is
no significant difference between the paintings, while for novices there are more
fixations that last 200-350 ms on the Jéarnefelt painting than on the Monet paint-
ing. We made similar comparisons for the other pairs of paintings as well; see
supplemental article Ylitalo, Sarkkd and Guttorp (2016e). Here, only the results
based on the comparisons of the fixation duration distributions for the most simi-
lar pairs of paintings, namely, Suomi and Kandinsky which are abstract paintings
[see Figures 1(c) and (d)], and Poussin and Tammi which have people in focus [see
Figures 1(e) and (f)], are included. For novices, we see a difference for each three
pairs of paintings. For non-novices, however, we can only see a clear difference
for the Suomi—Kandinsky pair, but there is no difference for the other two pairs of
paintings. This indicates that the non-novices, being used to looking at paintings,
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F1G. 10. Shift function comparison of fixation duration distributions between the Jdrnefelt and
Monet paintings for non-novices (upper panel) and novices (lower panel). The red lines correspond
to equal distributions and the grey lines form 95% asymptotic simultaneous confidence bands.

are more consistent in their fixation durations between paintings, but for novices,
the duration of fixations depends on the painting.

4. Stochastic model. Above, we used intensity surfaces and shift plots to
compare the eye movements of novices and non-novices. Next, we will construct a
simple spatio-temporal model that describes the dynamics of the fixation process.
We will fit the model separately to the novice and non-novice groups for the Jarne-
felt painting and see if we can find some further differences between the groups
by comparing the fitted models in terms of functional summary statistics and their
model-based simultaneous envelopes.

To build a spatio-temporal model for the fixation process, we need to model fix-
ation locations, fixation durations, saccade durations, and saccade lengths. (Sac-
cade durations are needed to fill the whole three minutes time period.) As building
blocks we use the tools discussed in Section 2. Fixation locations are modeled as a
realization of a spatial point process, which is characterized by its intensity func-
tion. Furthermore, appropriate distributions can be fitted to the fixation and saccade
durations and for saccade lengths. After having estimated the intensity surface and
the distributions mentioned above, we can simulate from the resulting model and
compare the behavior of the model to the behavior in the data, and finally compare
the models fitted to the two groups.

A natural reference or null model for spatial point pattern data, locations of
fixations in our case, is the homogeneous Poisson process, where the points are
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Novices

FIG. 11. The next fixation location is chosen from the black circle at distance | from the current
fixation x; according to the estimated intensity surface.

located uniformly and independently of each other on the study area. In our sit-
uation, however, only the more interesting parts of the painting are visited, and
we cannot assume that the final set of locations of fixations is a realization of a
homogeneous process. A homogeneous Poisson process is therefore not a realis-
tic reference process for the fixation locations. Next, we define our own reference
model for the fixation process.

Given an intensity surface, the first fixation location is drawn from the prob-
ability distribution on the observation window by normalizing the intensity to a
bivariate distribution. The length / of the next saccade is drawn from a saccade
length distribution for the group in question. Then, the exact location of the new
fixation is decided by taking a point at distance / away from the current fixation
location according to the intensity surface. In other words, the new location is cho-
sen from the conditional intensity of points at the given distance from the current
location; see Figure 11.

Concerning the temporal evolution, it seems natural to draw each fixation dura-
tion independently from the distribution of durations.

5. Model fit and comparison between novices and non-novices for the
Jarnefelt painting. In what follows, we will first give the particular choices of
the distributions mentioned in the previous section, and introduce some summary
statistics that could be used to assess the goodness of fit of the fitted models. Fi-
nally, we fit the model to the data for the Jarnefelt painting, separately for novices
and non-novices, simulate 200 realizations of each process, and check the good-
ness of fit of the fitted models by comparing the summary statistics estimated from
the data to those estimated from the simulations.
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5.1. Choice of distributions. The intensity surfaces of the fixation locations
are estimated separately for each group and the bandwidth is selected by ap-
plying the cross-validation approach implemented in the R package spatstat
[Baddeley, Rubak and Turner (2015)]. The same bandwidth is used for the data
and for the simulations. The first location is drawn from the intensity surface esti-
mated from the locations of the first fixations of the subjects in the group. Alter-
natively, the intensity surface estimated based on all the fixation locations in the
group could be used. We believe that the choice of the first fixation location is not
crucial.

Given the summary statistics computed from the data (Section 2.2), an appro-
priate distribution for the duration of fixations and the duration of saccades is the
gamma distribution. Therefore, we model the fixation durations by sampling from
the estimated gamma distribution of fixation durations in the group. The duration
of each saccade is modeled by drawing from the common distribution of saccade
durations estimated from all the subjects, as saccades are involuntary, once started,
and therefore not expected to vary depending on viewing experience. The intensity
surface, as well as the fixation duration and saccade duration distributions, stay the
same throughout the observation period.

For saccade lengths we first fit a Gamma distribution separately for novices and
non-novices and then use truncated versions of these distributions in order to avoid
jumps outside the painting. The truncation point depends on the current location:
if the process is at location x;, then the longest jump it can take is to the furthest
corner of the painting. This distance is called /; max and serves as the truncation
point for the truncated gamma distribution from which the next jump is sampled.
We noticed, however, that the truncated gamma distribution alone does not catch
the long jumps that the gaze makes when the person moves her/his attention to
another location. Therefore, we include such long jumps into the model and define
the distribution for saccade lengths to be a mixture of two distributions: When the
process is at location x;, the length of the next jump is sampled from the uniform
distribution U (I; max/2, li max) With probability p and from the truncated Gamma
distribution with truncation point /; max With probability 1 — p. After some exper-
imentation, we fixed the probability p for sampling the saccade length from the
uniform distribution above to 0.2 for both groups.

5.2. Summary statistics. To get some idea of how the gaze jumps between
different areas of the painting in the data and in the simulations, we divide the
painting into quarters and compute the transition frequencies between them. Each
quarter is called a state and identified with numbers 1-4 (from upper left to lower
right quarter).

In order to see how much of the painting is viewed, we use two functional
summary statistics, namely, convex hull coverage and ball union coverage defined
as follows. Let, as before, I represent the observation window and x; € I be the
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ith fixation of the fixation process {X (¢)}. An ordered set of n; fixations up to a
fixed time ¢ is denoted by x = {x1, ..., x,,}. The convex hull of this point set is

ng ny
Ce(t) =1 ajx;j ;> 0foralliand Y ;=1

and the relative area of the convex hull is denoted by

O, if ny < 3,
AC,(t) = § area(Cy (1))

area(/l)

This is called the convex hull coverage of the fixation process. Hence, the convex
hull coverage is computed every time a new fixation appears.
Let b(x;, R) be a ball of fixed radius R centered in a fixation x; € I. Define

Ux(t):{Ub(x,-,R)ﬂW},

i=1
and call
area(U, (1))

AU = area([l)

the ball union coverage of the fixation process.

In addition, to measure the total length of the distance the gaze has moved, we
use the scanpath length function [Noton and Stark (1971)], which is the sum of the
saccade lengths up to time 7. Hence, the scanpath length can be defined as

nt—l
L) =) li1(tip <1),
i=1
where ;1 is the time when the fixation i 4+ 1 at location x;4 takes place and
[; is the length of the jump just before that fixation. That length is the Euclidean
distance between two successive fixations, that is, the length of the saccade.

5.3. Model fit. The estimated model-based intensity surfaces for the groups
are different; see Figure 12. As mentioned earlier, both groups look a lot at the
large pine tree and the top of the small tree next to it. The novice group tends to
follow the branch of the large tree, while the non-novice group follows the trunk.

The convex hull coverage, ball union coverage with disc radius 35 pixels, and
scanpath length for non-novices and novices are shown and compared to the mod-
els in Figure 13. The 95% simultaneous (rank) envelopes were created by using
the R package spptest [Myllymiki et al. (2015, 2016)]. Figure 13 shows that
the coverage statistics based on the model describe the data quite well. The model-
based scanpath length is, however, less variable and somewhat shorter in the sim-
ulations than in the data. It seems that the model is not able to catch all variation
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Novices, reference model Non-novices, reference model
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F1G. 12. Scaled overall intensity surfaces of the reference model for novices (left) and for
non-novices (right).

related to the scanpath length. In the beginning (during the first 30 seconds for
novices and during the first minute for non-novices), the model describes the data
well, but later on variation in the data becomes too large to be caught by the model.
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F1G. 13.  Convex hull coverage (left), ball union coverage (middle), and scanpath length (right)
curves for novices (top) and non-novices (bottom). Orange lines represent the subjects and black
solid lines represent 95% simultaneous envelopes estimated from 200 simulated realizations of the
reference model of the group in question. Dotted lines (bottom) represent 95% simultaneous en-
velopes for novices.
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FIG. 14. Transition probabilities for novices with 95% simultaneous envelopes estimated from 200
simulated realizations of the reference model.

One should also note that the scanpath length is strongly affected by the number
of fixations and saccade lengths, which both vary quite a lot in our data; see sup-
plemental articles Ylitalo, Sarkkd and Guttorp (2016a) and Ylitalo, Siarkkd and
Guttorp (2016b).

For both the novice data and the non-novice data, the estimated transition prob-
abilities between different quarters of the painting indicate that the model does an
adequate job (Figures 14 and 15). Recall that the quarters of the painting are called
states and numbered from 1 to 4 (from upper left to lower right quarter).

The model seems to fit quite well to the fixation process for both groups. The
fitted models are quite similar, but also some differences can be found. As can be
seen in Figure 13, the model-based coverage summaries are quite similar for the
two groups. However, the modeled gaze of non-novices seems to move slightly
more than the gaze of novices according to the scanpath length (see Figure 13,
bottom right plot). This is somewhat surprising, since the intensity surface of non-
novices seems to be more compact than the one of novices, which would indicate
that the gaze of non-novices takes shorter jumps in smaller areas than the gaze of
novices. However, fixation durations of novices are longer than the ones of non-
novices in general, which means that non-novices tend to make more jumps during
the three minute period compared to novices. Thus, it is possible that the gaze of
non-novices makes a larger number of short jumps than the gaze of novices, which
results in the gaze traveling a longer path than the gaze of novices.
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F1G. 15. Transition probabilities for non-novices with 95% simultaneous envelopes estimated from
200 simulated realizations of the reference model. Dotted lines represent 95% simultaneous en-
velopes for novices.

6. Conclusions and discussion. In this study we have analyzed eye move-
ment data from twenty subjects who had looked at six different paintings. We have
been particularly interested in whether non-novices and novices look at paintings
in the same way, both when it comes to which parts of the painting they look at and
how long the gaze typically stays in one spot. By regarding the fixation process as
a spatio-temporal point process and by using a new set of tools we can study the
differences from a slightly different perspective than what has been done earlier.
Our main purpose has been to see how useful our new approach is and, therefore,
we have mainly concentrated on one of the six paintings that we have had avail-
able, namely, the Jarnefelt painting Koli landscape. However, some results based
on the other paintings are included.

By looking at the intensity surfaces of the point patterns formed by the locations
of fixations we have been able to see some differences between the eye movements
of novices and non-novices on the Koli painting. The area that is visited most
is more concentrated and more stable in time for the non-novice group than for
the novice group. We also constructed a test to compare the intensity surfaces of
novices and non-novices. Even though the observed difference was not statistically
significant, there was some indication that the intensities cannot be considered
equal. By comparing fixation duration distributions instead of bare means we were
able to see a clear difference between the two groups under study. Non-novices
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tend to have more short fixation durations than novices, meaning that they may
only glance at some areas of the painting which novices do not tend to do. This
was confirmed by the analysis based on the other paintings.

To have some idea whether the painting itself affects how novices and non-
novices look at it, we compared the fixation processes of each group on three
pairs of paintings, Jarnefelt-Monet, Suomi—Kandinsky, and Poussin—Tammi. The
intensity surface of fixations vary of course from painting to painting and it is
not meaningful to compare them on different paintings, but it does make sense
to compare the duration distributions. An interesting observation was that in the
non-novice group the distribution of duration of fixations is more consistent from
painting to painting than in the novice group.

Ideally, to be able to have a more detailed comparison of the eye movements of
novices and non-novices, we would like to be able to describe the complete fixa-
tion process on a painting, that is, where, when, and how long the gaze of a person
stays in different parts of the painting. Therefore, we have introduced a simple ref-
erence model for the fixation process. The model is a spatio-temporal point process
model, where we used the fixation intensity and duration distributions estimated
from the data. In order to restrict how far the gaze usually jumps, we also esti-
mated the saccade length distribution from the data. To mimic the tendency that
after having stayed on one area of the target painting for some time the gaze jumps
to another area on the painting, the model suggests a long jump with some (small)
probability p.

We fitted the model to the non-novice and novice groups separately for the eye
movements on the Jarnefelt painting and saw that the model fits quite well for both
groups, except when measured by the scanpath length. The structure of the fixation
process (described by our model) is similar in nature for non-novices and novices.
The model-based simultaneous envelopes for the functional summary statistics can
be used like confidence intervals to compare the two groups. However, since the
envelopes overlap, we were not able to reveal any significant differences between
the groups based on the model-based summaries.

Our idea here was to find a rather simple model that captures the most impor-
tant features of the fixation process, and the reference model is quite good for this
purpose. However, if the goal is to understand the complete dynamics of the fix-
ation process, then the model constructed here is not good enough since it does
not capture that the fixation process is changing in time. We noticed, for example,
in Section 2 that both the intensity surface and the fixation duration distribution
vary in time. Despite this, we used the same intensity surface and the same gamma
distributions for the fixation durations and saccade lengths during the whole time
period. We made some experiments by using six intensity surfaces (for each 30
second interval) and two distributions for saccade lengths (one for the first 30 sec-
onds and one for the rest of the three minute time interval) in the reference model,
but these modifications did not improve the goodness of fit of the model.
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One possible way to improve the model could be to take the order of fixations
into account. The fixation process could be regarded as a realization of a sequential
point process which can be used to access the nonstationarity of the fixation pro-
cess. The first author of this paper is currently working on that issue [see Penttinen
and Ylitalo (in press)].

To conclude, our new set of tools allowed us to make more detailed compar-
isons between how novices and non-novices look at paintings than reported in the
literature. As far as we know, such comparisons of fixation intensity surfaces, dura-
tion distributions, and coverages have not been presented earlier in eye movement
studies.
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SUPPLEMENTARY MATERIAL

Supplement A: Statistics for fixations inside the picture (DOI: 10.1214/16-
AOAS921SUPPA; .pdf). Table includes information about the fixations, such as
total number of fixations and mean fixation duration, for each subject.

Supplement B: Statistics for saccades inside the picture (DOI: 10.1214/16-
AOAS921SUPPB; .pdf). Table includes information about the saccades, such as
mean saccade duration and mean saccade length, for each subject.

Supplement C: The most visited areas during the six 30 second intervals
for novices and non-novices (DOI: 10.1214/16-A0AS921SUPPC; .pdf). Figures
show the top 5% and top 1% intensities in 30 second intervals (0-30 s), (30-60 s),
(60-90 s), (90-120 s), (120-150 s), and (150-180 s) for novices and non-novices.

Supplement D: Results for the comparison of novices and non-novices for
all six paintings (DOI: 10.1214/16-A0OAS921SUPPD; .pdf). Results for the inten-
sity surface and fixation duration distribution comparisons between novices and
non-novices for all six paintings used in the experiment.

Supplement E: Results for the groupwise fixation duration distribution
comparisons for three pairs of paintings (DOI: 10.1214/16-AOAS921SUPPE;
.pdf). Results for the fixation duration distribution comparisons within novice and
non-novice groups for the three pairs of paintings: Jarnefelt-Monet, Kandinsky—
Suomi, and Poussin—Tammi.
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SUPPLEMENT A TO

By ANNA-KAISA YLITALO*, AILA SARKKAT AND PETER GUTTORP*
b)

“WHAT WE LOOK AT IN PAINTINGS: A
COMPARISON BETWEEN EXPERIENCED AND INEXPERIENCED
ART VIEWERS“

University of Jyvaskyla®, Chalmers University of Technology and University of
Gothenburgt, University of Washington and Norwegian Computing Center

Statistics for fixations inside the picture.

Subject total number of fix. | number of short fix. | mean fixation | median fixation sd fixation
inside the picture inside the picture | duration (ms) | duration (ms) | duration (ms)
1NN, F 653 41 (6.3 %) 164 150 81
2NN, F 456 30 (6.6 %) 376 336 197
3NN, F 501 19 (3.8 %) 209 186 122
4NN, F 519 14 (2.7 %) 200 190 105
5N, M 601 95 (15.8 %) 282 258 142
6N, F 469 14 (3.0 %) 324 300 141
7NN, F 770 157 (20.4 %) 219 208 87
8 NN, M 442 4(0.9 %) 282 246 168
9N, F 760 231 (30.4 %) 247 226 156
10N, F 686 272 (39.7 %) 288 241 241
11N, F 712 193 (27.1 %) 224 200 133
12N, F 572 74 (12.9 %) 280 272 140
13 N, M 326 11 (3.4 %) 508 438 295
14 NN, F 619 51 (8.2 %) 265 248 112
15 NN, M 510 52 (10.2 %) 328 298 150
16 N, F 525 30 (5.7 %) 308 300 122
17N, F 471 40 (8.5 %) 343 302 214
18 N, M 614 138 (22.5 %) 247 220 156
19 NN, F 670 110 (16.4 %) 234 218 111
20 NN, F 659 112 (17.0 %) 276 256 120
TABLE 1

Statistics for fizations inside the picture. NN refers to non-novice, N to novice, F to female and M to male.




SUPPLEMENT B TO

“WHAT WE LOOK AT IN PAINTINGS: A

COMPARISON BETWEEN EXPERIENCED AND INEXPERIENCED
ART VIEWERS“

By ANNA-KAISA YLITALO*, AILA SARKKAT AND PETER GUTTORP*
b)

University of Jyvaskyla®, Chalmers University of Technology and University of

Gothenburgt, University of Washington and Norwegian Computing Center

Statistics for saccades inside the picture.

Subject | mean saccade | median saccade sd saccade mean saccade | median saccade | sd saccade
duration (ms) | duration (ms) | duration (ms) length (px) length (px) length (px)
1 NN 136 118 86 173 159 119
2 NN 55 44 50 143 128 78
3 NN 158 110 133 157 135 103
4 NN 141 102 131 137 133 76
5N 74 54 71 141 123 97
6 N 74 50 64 190 176 117
7NN 76 48 64 126 110 88
8 NN 119 102 73 173 142 114
9N 83 56 92 125 108 104
10 N 84 47 107 122 98 109
11N 121 50 162 114 88 90
12 N 90 46 108 181 167 107
13 N 80 72 45 208 199 100
14 NN 57 52 34 132 108 94
15 NN 69 44 88 169 156 102
16 N 55 44 47 138 117 87
17N 82 46 90 113 92 87
18 N 122 62 126 180 157 130
19 NN 96 54 7 86 64 73
20 NN 61 46 52 191 179 99
TABLE 1

Statistics for saccades inside the picture. NN refers to non-novice, N to novice.




SUPPLEMENT C TO “WHAT WE LOOK AT IN PAINTINGS: A
COMPARISON BETWEEN EXPERIENCED AND INEXPERIENCED
ART VIEWERS*“

By ANNA-KAISA YLITALO®, AILA SARKKA! AND PETER GUTTORP?

University of Jyvaskyla®, Chalmers University of Technology and University of
Gothenburgt, University of Washington and Norwegian Computing Center

The most visited areas during the six 30 second intervals for novices and non-novices.
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SUPPLEMENT D TO “WHAT WE LOOK AT IN PAINTINGS: A
COMPARISON BETWEEN EXPERIENCED AND INEXPERIENCED
ART VIEWERS*“

BY ANNA-KAISA YLITALO®, AILA SARKKAT AND PETER GUTTORP'

University of Jyvaskyla®, Chalmers University of Technology and University of
Gothenburg', University of Washington and Norwegian Computing Center *

Results for the intensity surface and fixation duration distribution comparisons between
novices and non-novices for all six paintings used in the experiment.

Painting To p-value
Jarnefelt 59604 0.108
Monet 479771 0.590
Suomi 124453 0.768

Kandinsky | 91837 0.078
Poussin 950777 | 0.683
Tammi 64840 0.675
TABLE 1
Results for the intensity surface comparisons.
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F1G 1. The estimated intensity surfaces for the Koli-landscape (Jdrnefelt), bw = 17.
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F1G 2. The estimated intensity surfaces for the Terrasse d Sainte-Adresse (Monet), bw = 13.
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F1G 4. The estimated intensity surfaces for the Picture with a Black Arch (Kandinsky), bw = 18.
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Fia 5. The estimated intensity surfaces for the La Lamentation sur le Christ (Poussin), bw = 13.
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F1G 6. The estimated intensity surfaces for the Poem Forces to Kneel Down (Tammi), bw = 13.
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SUPPLEMENT E TO “WHAT WE LOOK AT IN PAINTINGS: A
COMPARISON BETWEEN EXPERIENCED AND INEXPERIENCED
ART VIEWERS“

By ANNA-KAISA YLITALO*, AILA SARKKAT AND PETER GUTTORP*
b)

University of Jyvaskyla®, Chalmers University of Technology and University of
Gothenburgt, University of Washington and Norwegian Computing Center

Results for the fixation duration distribution comparisons within novice and non-novice
groups for the three pairs of paintings: Jarnefelt - Monet; Kandinsky - Suomi and Poussin
- Tammi.
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Fig. 1. First 100 fixation points of one subject on a painting called Picture with a Black Arch (or Black Bow) by Wassily Kandinsky
(Kandinsky, 1912). The arrows show the movement of the gaze during the first three seconds.

1. Introduction

Eye movements reflect brain functions, revealing information on ongoing cognitive processes, and
can be recorded by eye trackers in a cost-efficient way. Eye movement data are spatio-temporal and
consist of time sequences of fixations, points in the target space where the gaze stays for a while, and
of saccades, which are rapid jumps between fixations. An example of eye movement data can be seen
in Fig. 1.

Fixation locations in eye movement data are point patterns which can be modelled by means
of spatial point processes. Point process statistics is a well-developed branch of spatial statistics
increasingly used in applied sciences, see e.g. Illian et al. (2008) and Diggle (2013). Extensive
software spatstat (Baddeley et al., 2015) has made efficient point pattern data analysis attractive.
Point process statistics has been applied for eye movement data by Barthelmé et al. (2013),
who use the spatial inhomogeneous Poisson point process to predict the fixation locations. The
approach by Barthelmé et al. (2013) aggregates the eye movement data over time but omitting all
dynamics. Engbert et al. (2015) present a dynamical model that takes spatial interaction into account,
but their model validation is based on characteristics of spatial point processes. A step towards a
dynamic model is to add the temporal order of fixations, which leads us to the class of (finite)
sequential spatial point processes, see van Lieshout (2006a,b, 2009). If, in addition to the order,
the time instances of occurrences of the points are recorded and included in the model, then the
underlying process is a spatio-temporal point process, see e.g. Diggle et al. (2010), and an application
to eye movement data by Ylitalo et al. (in press).

We consider eye movement data to be a realization of a sequential spatial point process which
allows us to extend the approach by Barthelmé et al. (2013) for detecting new important dynamic
structures of data. The advantage of this approach is that the likelihood is tractable and the simulation
of realizations is straightforward. In addition, sequential point process modelling is a construction step
for spatio-temporal point processes.

For eye movement data, three structural components of sequential spatial point processes are
central. Spatial heterogeneity of fixation pattern means that some parts of the scene get the observer’s
attention more than others. This strong component is present in almost all eye movement data. It
is usually modelled through a saliency map, which is calculated from the features of the scene (see
e.g.Itti and Koch, 2000; Kiimmerer et al., 2014), such that the most salient areas are expected to obtain
more fixations. Dynamic contextuality is a saccadic property which describes the (metric) length of a
jump from the current fixation to the next one: for example, nearby sites may be more favourable
than the more distant ones (see e.g. Tatler et al., 2006). Both heterogeneity and contextuality are well-
established in eye movement studies (see e.g. Barthelmé et al., 2013; Engbert et al., 2015; Kiimmerer
etal, 2014).
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However, our empirical evidence shows that these two components are not sufficient, since
e.g. they cannot model the learning effect. Similar findings are made by Engbert et al. (2015)
and Kiimmerer et al. (2014). Thus we are looking for simple mechanisms which could utilize the
long-term dependence indicating the learning process during an experiment. One such possibility
is self-interaction, which modifies the individual moves (saccades) by means of the history of the
eye movement sequence. As an illustration, the observer prefers to inspect the whole scene at
the beginning of the experiment and gradually focuses on a few details (see e.g. Locher et al.,
1996). Here, we offer a tool for studying the self-interaction effect in eye movement sequences. We
suggest new models for eye movement data to deduce the effect of structural components and to
evaluate statistical variation in problem-specific functional summary statistics. The suggested models
have potential use also beyond the eye movement research, e.g. in ecology for modelling animal
movements, and in user-interface studies.

Our idea is that the history of the sequence changes the dynamics during the evolution of the
eye movement sequence. We present two general principles for model construction, both of which
are generalizations of the random walk in heterogeneous media. The first principle is the history-
dependent thinning of transitions, which assigns smaller weights for suggested transitions being at
odds with the chosen functional summary characteristic conditional on all previous fixations. This
type of penalization is similar to the area-interaction process by Baddeley and van Lieshout (1995)
in point process statistics. The second principle resembles the ARCH (autoregressive conditional
heterogeneity) model, commonly applied in econometric time series analysis (Engle, 1982). Based on
these principles, we present the construction of the two processes, how to simulate them, and how
to estimate the parameters by the maximum likelihood method. Several summary statistics, assisted
by Monte Carlo simulation, are applied in model evaluation.

The new models are mainly of “statistical” nature, which means that they do not mimic the neural
process, but they can capture essential variation in eye movement data. We will not employ all the
generality the suggested new models are able to achieve. Instead, the objective is to present the new
ideas in terms of rather simple models which still are useful in eye movement data analysis, especially
in the study of the learning mechanism during an experiment, and in the derivation of statistical
variation of important data summaries. Furthermore, this new approach will bring eye movement
data analysis closer to statistical inference. The motivation is the complexity of eye movement data,
which are inhomogeneous in space and time, and the use of asymptotic inference, for example, is
difficult to justify.

The paper is organized in the following way. In Section 2, two new sequential spatial point process
models are suggested. Simulation algorithms are given in Section 3 with simulation experiments
demonstrating the models. In Section 4, eye movement data in the field of art study is modelled by
using the new approach to deduce self-interaction. Section 5 contains some concluding remarks.

2. Finite sequential spatial point process models

Suppose _x)n = (X1, ..., Xp) is a sequence of time-ordered points in a bounded window W C R?.
The corresponding unordered point set {xq, ..., X,} is denoted by {7),,}. If (W™, 'w") stands for the n-
dimensional space of ordered points provided with the Borel o -algebra in W", the density function f
w.r.t. the Lebesgue measure is defined sequentially as follows: f;(x1) stands for the probability density
of the first point, and the conditional density of a further point x given X, = (x1,...,X),k =
1,...,(n — 1), is denoted by fk+1(x|7k), a transition probability density for the transition X, —
(_x)k, x), and the joint density of X ,, is

n—1
FR ) = @) [ [fin G % o). (1)
k=1

The density f; (x) can be assumed to follow a function (e.g. the saliency map) exposing the focal areas

of the target, or modelling can be conditional on the first observation x;. The transition densities
9 .

fee1(x] X ), k=1, ...,n— 1, reflect saccadic features of the eye movement sequence.
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A simple model for the transition would be a random walk in heterogeneous media, which is
defined as

fer1 &KX ) o @ (0) K (%, %), (2)
where «(x) is non-negative and bounded in W, and K (x,, x) is a Markovian kernel, i.e.,

K(x¢,x) >0 forallx,x € W, and

f K(xg,u)ydu=1 forallx, e W,
w

k=1,...,n— 1.In this simple model, @ (x) describes heterogeneity of the scene. It can be a known
saliency map, an empirical saliency map estimated as the intensity of repeated fixation patterns (see
the discussion in Diggle et al., 2007), or a model based prediction of the saliency map, for example,

P
a(X)=nh (Z ijj(X)> )

i=1

where the variables z;(x) are the values of p feature vectors at x extracted from the scene using machine
learning techniques, b;’s are regression coefficients, and h is an adequate non-negative function (see
e.g. Barthelmé et al., 2013). The Markovian kernel K (x;, x) describes the contextuality of subsequent
fixations related to jump lengths. An example is the truncated Gaussian kernel

— L lxe—x]?
K(xg, x) oxe 20 , Xk, XxeW, (3)

where ||x;, — x|| is the Euclidean distance between the points x;, and x. For the rectangular window
W = [a, b] x [c, d] the normalization term for (3) can be written as

202 (@ (b) — @ (a))(@(d) — @(c)),

where @ is the c.d.f. of the standard normal distribution. This kernel penalizes large jumps and keeps
the process inside the specified window W. Thus the model (2) captures heterogeneity in the target
and models the transitions (or saccades) in a Markovian way.

The transition mechanism (2) may be insufficient if data contain learning. For instance, a two-
stage model describing the nature of an aesthetic experience (see e.g. Locher, 2006; Locher et al.,
1996, 2007) suggests that a picture is first inspected globally and, after having obtained a gist of
the scene, the viewer starts to concentrate on some details. Also, the visual information gathered
from the scene affects our cognitive processes and attention, which again affect the movement of the
gaze. By keeping these complexities of human attention in mind, we develop two models which try to
catch the sequential adaptation in the eye movement sequence in a tractable manner using geometric
reasoning.

2.1. Self-interaction due to history-dependent rejection model

First, we define a history-dependent rejection model (later: rejection model), in which the self-
interaction mechanism is created by a reweighting probability function. This model penalizes the
location of the next point in terms of coverage or recurrence composed by the previous points: the
density for the transition 7/< — (7 k» X) is assumed to be

Fer1 (1% 1) o a(®) K (e, X) 70 (%, S(K 1, %)), (4)
where 7 (x, S(_x)k, X)) is the reweighting probability of x when proposed according to the density
. — .
proportional to o (x)K (x, x). Here, S( X ¢, x) = S(x1, . .., X, X) is a measure of coverage or recurrence
of the ordered sequence (xq, ..., Xk, X).

Reasonable choices of the reweighting probability 7r in the eye movement context are given below.

Coverage-based reweighting
Two measures of the coverage of a point set are the area of its convex hull and the area of the
associated ball union. From now on we assume that the scene W is convex. The convex hull of a point
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set {7 «}, denoted by Conv(7 k), is the minimal convex subset of W which contains all the points of
—
{ X }. The convex hull is unique and invariant under _Permutatlon of the pomts hence it is the same
for ordered and unordered sets. Let us denote by S¢( X ;) the area of Conv( X ) and call it convex hull
coverage.
The ball union measure of a point set { X i} is defined as

k
Bcov(?k) = U b(x;, r) "W,

i=1

where b(x, ) stands for the ball with radius r and centred at x. It is a “regionalized” version of the point
set, where the r close nelghbourhood of a point is taken into account, and which again is invariant
under permutation. Its area SB( X 1) is called ball union coverage.

The rationale behind model (4) is that the kernel function generates random jumps and the
reweighting probability determines which of the proposed jumps are accepted, depending on the
current coverage of the sequence and on the new suggestion. Consider the convex hull coverage f1rst if
the new suggestion x is not in Conv( X k), the odds ratio of acceptance w.r.t. a proposal y € Conv( X k)
with [|x — x|l = [[y — xell is Sc (X k, %) /Sc (K 1)

A reasonable and simple choice of the geometric nature for the reweighting probability would be

1 ifxeW\ Conv(?k)
p ifxe Conv(7k),

7 (X% S(X 1, %) = { (5)
where p € [0,1] and k > 1.If p = 1, we have the random walk model. When p < 1, this choice
encourages locations outside the convex hull of previous points leading to faster coverage. When the
convex hull of the points covers almost the whole scene, the process behaves like a random walk. The
density for the transition x K —> ( X k, x) with the truncated Gaussian kernel is

__1_ —x|12
fk+1(x|7>k) X Ol(X) e 22 = (1W\C0nv(7l<)(x) +p 1Conv(_x)k) (X))’ (6)

wherek =1, 2, . — 1, and 1(+) is the indicator function.

The convex hull coverage can be replaced by the ball union coverage. It is not as sensitive to dlstant
points as the convex hull coverage but reacts to the “holes” in the point pattern. If Conv( X ) is
replaced by Bcov( X 1) in the reweighting probability (6), the process favours locations away from
the previous points and hence reduces clustering if p is small. It should be noted that the ball union
coverage measure requires the radius of the ball.

Recurrence-based reweighting

As a measure of recurrence we propose the number of earlier visits in a ball b(x, r) around a site
x, formally §R(7 ks X) = Zf‘zl 1, (x). However, instead of using all the previous points, at step k
the number of earlier visits is calculated from the point set {_x>k_1} omitting the most recent point xy.
This delayed recurrence measure

k—1
SR(—X)ka X) = Z 1b(x,-,r) (X) (7)
i=1

is less confounded with the Markovian kernel K (x;, x) than §R(7> k, X) and is therefore used in this
paper from now on. Note also that the recurrence measure is not invariant under random permutation.
A simple model for the reweighting probability is

6 if Sg(X 1o X) > 1

1—60 ifSp(X,x)=0" (8)

7 (%, Sp(X 1, X)) = {

where 6 € [0, 1] and k > 2. The odds ratio for accepting a location close to the points of {7 k—1}
against accepting a location from an empty area is 6 /(1 — ). If 8 is close to 1, the process favours
clustering, and if 6 is small, the process avoids previously visited local areas around the points { X -1}



6 A. Penttinen, A.-K. Ylitalo / Spatial Statistics 17 (2016) 1-21

If & = 0.5, the process is a random walk. The density for the transition 7k — (Yk, X) with the
truncated Gaussian kernel is

__1_ —xII2
fern @ X ) oca@ye” 22 TN (1= 0) 15, 3,020/ ®) + 0 Vg, 021 X)), (9)

wherek=2,3,...,n—1,(and L(x| X 1) = f1(x)).

In particular, the model defined through (4) is among the simplest ones which satisfy our
requirements of self-interacting nature. Note that we need the normalized transition kernel in the
likelihood, because the scaling factor contains the parameters of the model. The normalizing integral
can be computed using numerical integration. Its evaluation can be avoided in the simulation of the
process, however.

2.2. Self-interaction due to history-adapted model

The motivation behind the history-adapted model arises from the saliency map idea and the
two-stage model by Locher and colleagues (Locher, 2006; Locher et al., 1996, 2007). Heterogeneity
of the target plays the main role at an early stage of the process evolution: the areas with high
saliency (or intensity) get more fixations than the low-saliency areas. However, when the target has
been inspected well enough, the jump lengths get shorter as if the process were mimicking a local
inspection process.

This model construction is intended for coverage type self—mteractlon We apply directly an
adaptive Markovian kernel Ky, (¢, X), where ¢y is a function of the points { X i} and determines the
width of the kernel. Hence, the kernel changes in time and affects the jump lengths. The transition
probability density can be written as

a(x) Ky, (xi, X)
fo o) Ky, (x¢, w)du
b = pu(X 1) o HS(X 1) (11)

where H(s) is decreasing in s. Here a(x) controls the heterogeneity of the target as in the rejection
model, whilst H(s) models the progress of the coverage. This model resembles the autoregressive
conditional heterogeneity model (ARCH) commonly applied in time series analysis for modelling
volatility (Engle, 1982). While ARCH models use the information from q lagged values, our model
is allowed to use the entire history. Again, this model is a self-interacting random walk.

In what follows, we make use of the specific model

firr (XX p) = (10)

— L Ix—x)?

Ky, (X, X) oc e 20k(x0 , (12)
$(R 1) = e SFWI (13)

T,k > 0and x,, x € W, where S(_x)k) is the coverage of {7,<}. If « = 0, the process is a random
walk since the kernel does not change in time. This model contains two parameters, T describing
the initial kernel width and x modelling the decay as a function of coverage. The transition is deter-
mined by the conditional density (10). Both convex hull and ball union coverages are suitable for this
construction.

2.3. Model fitting and statistical inference

2.3.1. Model fitting

We assume that an ordered sequence ?n = (X1, ..., xy) is observed in W. In what follows we
suggest parameter estimation for the two models defined by (6) (rejection model), and by (12) and
(13) (history-adapted model) assuming that the non-negative heterogeneity component « (x) is fixed.
In practice, the estimation of «(x) is problematic, as we have pointed out in Discussion.
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History-dependent rejection model
The log-likelihood for the general rejection model (4) is now a function of the model parameters.
For the two parameter model defined by (6) the expression

(0, p) = Zlog(a(xk+1)) > Zank—kan +log(p) Zlc(,nw)(xm

k=1 k=1

— 1 ixe—ull?
- E log /W a(u)e 20° =l (1W\Conv(7k) ) +p 1C0nv(7l<)(u)) du (14)
k=1

is obtained. Here we use the convex hull coverage in the reweighting probability, but also the ball
union coverage could be used. The log-likelihood function for the rejection model with recurrence (9)
is shown in Section 4.1, formula (16). The logarithm of the normalizing factor (the last line of (14)) can
be computed by numerical integration. The optimization of [(2, p) w.r.t. 0 can be conducted using
numerical optimization, or alternatively, one can solve the exponential family likelihood equation

n—1

27 2

ZEz (I = UIP 1R 1) = D 1% — X 1%
k=1

where the expectatlon is over the conditional distribution of a new random point U from the
distribution fk+1(x| X ). This can be computed using Monte Carlo maximum likelihood (MCMCML,
see Geyer, 1991).

Maximizing the log-likelihood (14) (or (16)) is costly due to the normalizing integral. We apply the
coordinate ascent algorithm which would be a simple choice also for more complex model.

History-adapted model
The kernel width ¢y, of the kth transition of the random walk is a function of the model parameters
and is adapted to the history of the sequence through the coverage measure S ( X ). The log-likelihood
for the general model given by (10)and (11) is
n—1
> [log(a (%+1) + log Ky, (Xt Xic41) — log / 0o (1)K, (e, 1) du} .
w

k=1

In the special case of (12) and (13) the log-likelihood is

n—1 n—1
1 2
I(t,k) = ;IOg(OK(XH])) - ; W”X" — Xi1ll

n—1 o 2
— > log / a(u)e” 2 MUl gy (15)
k=2 w
with ¢y (i, ) = Te*SF/WI |k =1 . n—1.

The log-likelihood can again be maximized directly, or alternatively, the likelihood equations can
be derived and solved: the estimation equations are

=
—_

Ece (Ixe = UI* X 4) /o = ank—xmn [

k=2 k=
n—1
—
D Ee (SR I = UIP 1% k) /e = Zsm) % = X112/
k=2 k=

where the expectations are over the conditional distribution fi. 1 (x| X k) with parameters t and «. The
estimation equations are in accordance with the maximum likelihood equations for the exponential
family of distributions.
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2.3.2. Model evaluation

Model evaluation of spatial dynamic models is typically based on the selected functional summary
statistics which measure different features of the model, such as coverage, recurrence and jump length
as a function of time (or order). In addition, a saliency map is plotted together with the fixation
locations. The random variation of the summary statistics is estimated from simulations.

Model evaluation is done by estimating several summary statistics from data and plotting the
estimates together with the model based simulated pointwise envelopes being a parametric bootstrap
method (see e.g. Efron and Tibshirani, 1994, p. 53). These envelopes indicate statistical variation in the
summary statistic under the parametric model assumption. It should, however, be noted that when
using the pointwise envelopes as statistical tests, the multiple testing problem is present and the
interpretation of the envelopes must be done with care, see the discussions in Grabarnik et al. (2011)
and in Baddeley et al. (2014).

Model evaluation is illustrated in the examples in Sections 3 and 4.

3. Simulation experiments

Realizations from the suggested models can be simulated sequentially using conditional distribu-
tions (4) and (10)-(11). We recommend to use the scaled heterogeneity «(x)/ max,cw «(u) as the
distribution for the first location, or alternatively, to condition to the first location x; of data. Assume
that (xq, ..., x¢) are simulated. A simple algorithm for adding a point x to _x)k = (X1,...,Xg), Or
equivalently, simulating from the distribution having density f. 1 (X| 7k), is to apply the accept-reject
algorithm, see e.g. Ripley (1987, p. 61), which provides an upper bound for the conditional density.
For the two models, the algorithm is as follows:

e History-dependent rejection model: A point x following the conditional density o« (x) K (x;, x) is
proposed using the accept-reject method and the proposal is accepted with the reweighting
probability 7 (x, S(X k. x)).

e History-adapted model: The kernel width ¢, = H(S (7) ) is computed and proposals from the
unnormalized transition density a (x) Ky, (xi, X) are drawn using the accept-reject method.

In the following simulation experiment we generate realizations of the new models with three param-
eter values in order to demonstrate the time evolution of the new processes and to see how data sum-
maries capture their properties. We illustrate to what extent and how fast these processes can cover
the target area, as well as whether the process starts to cluster in space. Each realization consists of
100 points located in the unit square window. In this illustration, for the sake of simplicity, we assume
that the target space is homogeneous, setting a(x) = 1, and hence the first point is drawn uniformly
and the same starting point is used for all realizations. The first sampled point is x; = (0.22, 0.41).

3.1. History-dependent rejection model

First, we demonstrate the history-dependent rejection model with self-interaction defined through
the convex hull coverage, where the points outside the convex hull of the current point set are
favoured according to the reweighting probability (5). Second, we demonstrate the rejection model
with recurrence self-interaction by using the reweighting probability (8), which takes the number of
generated points near the suggested point into account.

3.1.1. Coverage self-interaction

The purpose of this example is to illustrate self-interaction caused by the parameter p in the
history-dependent rejection model with convex hull coverage (6). We fix the parameter 6> = 0.3
of the truncated Gaussian kernel (3) and vary the parameter p:

e Model a, p = 1 (random walk without self-interaction).

e Model b, p = 0.1 (fast coverage), which accepts points inside the convex hull of previous points
with low probability.

e Model c, p = 0.5 (mild coverage), which accepts points inside the convex hull of previous points
with mild probability.
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Model a Model b Model ¢

Fig. 2. Simulated patterns of the three history-dependent models with coverage self-interaction. The colour of the points
denotes their order (from dark to light) and the first fixation is marked with a cross. The polygon indicates the convex hull of
the first 10 points.

We simulate 19 realizations of the random walk model a, since it here represents a reference model,
and five realizations of Model b and Model c. One of the simulated realizations of each model can
be seen in Fig. 2. The polygons in the figure illustrate the convex hull coverage related to the first 10
points of the process. One cannot detect much difference between the random walk model a and mild
coverage model c, but the fast expansion of Model b can perhaps be seen: there are early (dark) points
near the edges.

However, point patterns only tell us about the spatial nature of the point process. Since we are
mainly interested in the sequential (time order) aspect, we use four different functional summary
statistics: ball union coverage (with radius 0.1), convex hull coverage, scanpath length and cumulative
recurrence. (The two latter ones are explained below.) The results related to these summaries can
be found in Fig. 3. The ball union coverage does not distinguish between the three models, but the
convex hull coverage reveals that the coverage of Model b increases faster than for the other two
models. Accordingly, Model b makes longer jumps on average than Model a or c, as can be seen from
the scanpath length which measures the length of the sample path cumulatively.

The recurrence function used in the reweighting probability (8) calculates the numbers of points
near the current point excluding the previous point, and the cumulative version sums all these
numbers together. Now we see that Model b avoids the locations nearby other points when compared
to the random walk. This may be due to the fact that the fast coverage process b penalizes slow
coverage and hence increases the drift of points near the edges.

3.1.2. Recurrence self-interaction

Here we illustrate self-interaction in the history-dependent rejection model with recurrence (9).
We again fix the parameter o2 of the truncated Gaussian kernel (3) to 0.3 and vary the self-interaction
parameter 6:

e Model d, 6 = 0.5 (random walk without self-interaction).

e Model e, & = 0.1 (low recurrence), which favours points in the non-visited areas rather than the
points in the areas nearby the previous points.

e Model f, 8 = 0.9 (high recurrence), which accepts points nearby the previous points with high
probability.

We again simulate 19 realizations of the random walk model d as well as five realizations of Model
e and Model f. In Fig. 4 we can see that, compared with the random walk model d, the realization of
the low recurrence model e indicates a tendency towards higher regularity, and the realization of the
high recurrence model f is clearly more clustered. Note also that Model e seems to cover the whole
area quite fast compared with the other two models.

The results of the functional summary statistics are depicted in Fig. 5. The ball union coverage
describes clustering of the points, hence for the high recurrence model e the ball union coverage curves
locate lower than for the low recurrence model f, which covers the whole window with 100 points.
The convex hull coverage curves reveal an effect similar to the ball union coverage: the low recurrence
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Fig. 3. Ball union coverage with radius 0.1 (top left), convex hull coverage (top right), scanpath length (bottom left) and
cumulative recurrence with radius 0.1 (bottom right) for the two models (five realizations of each): The fast coverage model b
is marked with black solid lines and the mild coverage model c is marked with red dashed lines. The grey area represents the
envelopes estimated from 19 realizations of the random walk model a used as the reference model.

Model d Model e Model f

Fig. 4. Simulated patterns of the three history-dependent models with recurrence self-interaction. The colour of the points
denotes their order (from dark to light) and the first fixation is marked with a cross. The polygon indicates the convex hull of
the first 10 points.

model e almost fills the whole unit square, whereas the high recurrence model f only fills around 60%
of the area.

There is not much difference between the processes when comparing the scanpath lengths for the
first 40 points, but after that the high recurrence model f makes shorter jumps on average compared
with the other two models. However, the cumulative recurrence function clearly reveals that the two
models differ from the random walk model: the low recurrence model e avoids areas close to the
previous included points, while the high recurrence model f favours areas near the previous included
points.
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Fig. 5. Ball union coverage with radius 0.1 (top left), convex hull coverage (top right), scanpath length (bottom left) and
cumulative recurrence with radius 0.1 (bottom right) for the two models (five realizations of each): The low recurrence model
e is marked with black solid line and the high recurrence model f is marked with red dashed line. The grey area represents the
envelopes estimated from 19 realizations of the random walk model d.

3.2. History-adapted model with convex hull coverage self-interaction

In this example we fix the kernel width parameter t = 0.3 and pay attention to the effect of the
parameter « of the history-adapted model (12)-(13). The parameter « controls the speed of decay as
a function of coverage. We again define three history-adapted models:

e Model g, k = 0 (random walk, the kernel does not change in time).

e Model h, x = 2 (mild clustering), which means that the process is allowed to take long jumps at
the beginning, but eventually starts to cluster.

e Model i,k = 4 (fast clustering), which starts to cluster rather quickly when the coverage increases.

The kernel function (12) here uses the convex hull coverage, which means thatin (13) S (7 k) is the
area of the convex hull coverage generated by the points (X1, ..., x;). Now the history-adapted model
works in such a way that at first the kernel width parameter 7 is dominating and the process can make
long jumps, but when the area of the convex hull of points approaches the size of the window, the
parameter « starts to affect and produces clustering.

In Figs. 6 and 7, it can be seen that the convex hull of the first 10 points is of the same size for
all models: the speed of coverage seems to be similar for all processes at the beginning. The spatial
structure of the mild clustering model h and the random walk model g are quite similar, but the points
of the fast clustering model i are clearly more clustered than the points of the other two models, and
there are only a few points in the upper half of the unit square.

The functional summary statistics are plotted in Fig. 7. The fast clustering model i covers the area
similarly to the other two models at the beginning, but after about 50 points it starts to cluster, which
can be seen as a decline of the ball union coverage summaries. The convex hull coverage does not
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Fig.6. Simulated patterns of the three history-adapted models. The colour of the points denotes their order (from dark to light)
and the first fixation is marked with a cross. The polygon indicates the convex hull of the first 10 points.

reveal much difference between the models, and all the models are able to cover at least 60% of the
window. This is due to the wide kernel (r = 0.3) which allows the processes to make long jumps at
the beginning.

The summary statistic that shows the clearest difference between the three models is the scanpath
length. While the jumps in the random walk model have time invariant transitions, the clustering
models h and i start to take shorter jumps at some point, which is indicated by the decline in scanpath
curves. In addition, the cumulative recurrence function shows that the fast clustering model i gathers
points around the previous ones. To conclude, the effect of the decay parameter « seems to fasten the
clustering as a function of coverage.

4. A case study: Picture with a Black Arch by Wassily Kandinsky

We apply the developed modelling to experimental eye movement data related to arts in order to
study self-interaction. The participants of the art experiment were inspecting six pictures of paintings
and their eye movements were recorded. The stimulus picture was shown on the screen with a
1024 x 768 resolution and the eye movements were measured by the SMI iView X™Hi-Speed eye
tracker with temporal resolution of 500 Hz. The distance between a participant’s head and the screen
was about 85 cm, and a forehead rest was used in order to prevent unintentional head movements.
Each stimulus painting was shown for three minutes. The participants were also asked to describe the
moods of the painting and their voice was recorded, but this information is not used here.

We will focus on one painting used in the experiment, called A Picture with a Black Arch (1912)
by Wassily Kandinsky shown in Fig. 1. We will fit four versions of the history-dependent model with
recurrence self-interaction to the eye movement data of one subject. The goodness-of-fit of the model
is checked using the four functional summary statistics mentioned earlier, and the best fitting model
is compared with the other subjects’ data in order to conclude whether the same model fits well for
all participants.

4.1. Fitting the history-dependent rejection model with recurrence self-interaction

We choose one subject of which eye movements are analysed and modelled here. Because of the
long inspection period (three minutes), we decided to use only 100 first fixations of the sequence
corresponding to a 35 s time-interval, as shown in Fig. 1. According to the two-stage model (see
e.g. Locher et al.,, 1996) the overall impression of the scene is obtained during the first few fixations,
and then the focus turns to the presumably interesting features. In addition, the gaze has a tendency
to return to the interesting parts of the scene. Our aim is to find out whether we can find this sort of
behaviour, i.e. if the process is of self-interacting type and if we can catch it with our rejection model.

We first investigate the variation of the four functional summary statistics related to this particular
data from Kandinsky’s painting. The ball union coverage with radius of 35 pixels, convex hull coverage,
scanpath length and cumulative recurrence (radius 50) of the 20 subjects of the experiment are
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Table 1
Components of the four rejection models.
Model Components Parameter values
1 H 0 =1,0%large
2 H, C 0= % 02>0
3 H, S 0<6<1,0?large
4 HCS 0<6<1,02>0

" The value of o' should be chosen to be large enough such
that the kernel is flat in the specified window.

presented in Fig. 13, as a dark solid curve for the subject under study, and as grey curves for the
other participants. It can be noticed that the first 100 fixations do not cover the whole painting (the
ball union covers around 30% and the convex hull around 40% of the target). It is typical of the eye
movements that the edges of the painting are avoided and that is why the coverage hardly ever reaches
the whole scene.

Next, we estimate the heterogeneity term o (x) for the target painting. In this case, we utilize the
empirical saliency map estimated as the intensity of fixation patterns of all the 20 subjects excluding
the one under study (a total of 9366 fixations is used for the intensity estimation). Problems associated
with the estimation of «(x) are considered in Discussion. For technical reasons o (x) is scaled to have
values in [0, 1]. The scaled saliency map together with the fixations of the subject under study can be
seen in Fig. 8. This particular subject paid most attention to the areas with high intensity, but the gaze
stayed in some low intensity areas also.

In what follows, we fit four different rejection models consisting of three components:
heterogeneity (H), contextuality (C) and self-interaction (S). The self-interaction is assumed to be
caused by the delayed recurrence function SR(7,<, X), k = 2,...,n— 1defined in (7), where the
radius r = 50 pixels is used. Therefore, we condition by the first two fixations, x; and x,. All four
models are submodels of (9), see Table 1.

Model 1 includes heterogeneity and is a binomial process in a heterogeneous environment. When
the Markovian kernel function is added (Model 2) the process is a random walk with Markovian
property. Model 3 is a self-interacting process in a heterogeneous media without the contextuality
effect and Model 4 contains both the Markov kernel and the self-interaction term.

The log-likelihood function for Model 4 is now

n—1 n—1
1
l0?,6) =} log(e(sn) = 5— Y I — Xewa
=2 ey
n—1 n—1
+108(1=0) Y 15y 3 1=0) Fiee) +1080) D Ny, =) (Kesr)
k=2 k=2

n-l 1 2
— 57 Ixe—ull
— E log/‘:voz(u)e 202 kH (1= % w=0y T 0 Vsp7 =1 du. (16)
k=2

The likelihood for Model 1 is just the first term on the right hand side of Eq. (16). For Model 2, the
likelihood is obtained choosing 6 = % in (16) and for Model 3 choosing o2 to be large (i.e. large
enough such that the kernel is flat in the specified window). The parameters are estimated using
the coordinate ascent algorithm. We used numerical integration for computing the normalization
term of the log-likelihood (16), last row, and a grid of (60, 80, ..., 400) and (0.05, 0.10, ..., 0.95)
for maximizing the likelihood.

Model 1 includes only the empirical saliency map and we do not have to estimate any parameters.
For Model 2 we get 6 = 180, and for Model 3 & = 0.75. The parameter estimates for Model 4 are
& = 180, 6 = 0.70. Note that for a random walk model we should have § = 0.50; hence there are
recurrence features involved in this data.
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Fig. 7. Ball union coverage with radius 0.1 (top left), convex hull coverage (top right), scanpath length (bottom left) and
cumulative recurrence with radius 0.1 (bottom right) for the two models (five realizations of each): The mild clustering model
h is marked with black solid lines and the fast clustering model i is marked with red dashed lines. The grey area represents the
envelopes estimated from 19 realizations of the random walk model g used as the reference model.
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Fig. 8. Empirical saliency map estimated from the fixations of all subjects excluding the one under study. The points indicate
the first 100 fixation points of the particular subject under study. The first fixation is marked with a cross and the second with
a star.

4.1.1. Model comparisons

Assessing the goodness-of-fit of the models is here done by estimating the four summary statistics
mentioned earlier from the data and from 99 simulated realizations of the fitted models. When
simulating the model, we condition on the observed values of the first two fixations in order to reduce
variation right at the beginning of the process. One simulated realization of each model can be seen in
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Fig.9. Simulated realizations of the four models fitted to the eye movement data of the particular subject under study, overlaid
with the empirical saliency map based on data from the other subjects. The first two points are fixed and marked with a cross

and a star, respectively.
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Fig. 10. Ball union coverage with radius 35 (top left), convex hull coverage (top right), scanpath length (bottom left) and
cumulative recurrence with radius 50 (bottom right) for the subject under study (solid line). Dashed lines represent pointwise
envelopes estimated from 99 simulations of Model 1.

Fig. 9, and the summary statistics estimated from the data with pointwise envelopes estimated from
the simulations in Figs. 10-13. Note that the ball union and convex hull coverages are here presented
with respect to the size of the window, hence they obtained values in [0, 1].
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Fig. 11. Ball union coverage with radius 35 (top left), convex hull coverage (top right), scanpath length (bottom left) and
cumulative recurrence with radius 50 (bottom right) for the subject under study (solid line). Dashed lines represent pointwise
envelopes estimated from 99 simulations of Model 2.

For Model 1 all summary statistics show poor fit (Fig. 10). Compared with the data this model covers
the target area too fast, takes too long jumps according to the scanpath length, and goes to areas with
too few points according to the cumulative recurrence function. As a conclusion, the heterogeneity
component alone does not describe the data set well enough even though the spatial heterogeneity is
followed rather well (see Fig. 9 upper left).

Model 2 seems to perform slightly better than Model 1. The summaries estimated from the data
set stay inside the simulated pointwise envelopes, except the ball union coverage and cumulative
recurrence function after the first 70 points (Fig. 11). These findings indicate that data begin to cluster
at the end of the inspection period, but the model does not carry that effect.

Model 3 includes heterogeneity and self-interaction, but not contextuality, which is related to the
length of the jumps the process makes. As a result, this model seems to jump too much compared with
data, since the estimated scanpath length summary is at odds with the simulated pointwise envelopes
(Fig. 12). The marginal spatial structure looks slightly more clustered than Model 1 and Model 2 predict
(Fig. 9).

Model 4 includes all the three effects and seems to be in good agreement with data: all four
summary statistics estimated for the subject under study stay within the simulated pointwise
envelopes, see Fig. 13. It seems that this model is able to catch the nature of this eye movement
process fairly well. The estimated parameter value 6 = 0.75 indicates that the locations nearby the
previous points (excluding the most recent point) are favoured, which is a cause of spatial clustering.
We conclude that the random walk model does not seem to be a good model for these data, but there
is self-interaction due to the recurrence involved: the eye movement process seems to favour areas
close to previous fixations.

4.1.2. Population level comparison

We have been able to describe the variation in the eye movement sequence of an individual by
using the rejection model with recurrence-based weighting. In order to investigate the generality of
the suggested models, we make comparisons at the population level using all 20 subjects. As can
be seen in Fig. 13, the envelopes of Model 4 seem to cover the convex hull and ball union coverage
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Fig. 12. Ball union coverage with radius 35 (top left), convex hull coverage (top right), scanpath length (bottom left) and
cumulative recurrence with radius 50 (bottom right) for the subject under study (solid line). Dashed lines represent pointwise
envelopes estimated from 99 simulations of Model 3.
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Fig. 13. Ball union coverage with radius 35 (top left), convex hull coverage (top right), scanpath length (bottom left) and
cumulative recurrence with radius 50 (bottom right) for the subject under study (black solid line) and for all other subjects
(grey solid lines). Dashed lines represent pointwise envelopes estimated from 99 simulations of Model 4.

curves of the subjects rather well. The scanpath length does not cover the curves as well: there are
subjects whose gaze makes longer jumps at the beginning of the eye movement process than the fitted
model predicts. Furthermore, the envelopes of the cumulative recurrence function cover almost all
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Table 2

Estimated parameters ¢ and 6 of Model 4 with their confidence intervals for all subjects. The subject
under closer study is number 5 (bold).

Subject id 6 90% Cl for & 0 90% Cl for 0
1 240 200 280 0.75 0.70 0.85
2 180 160 200 0.55 0.45 0.65
3 160 140 180 0.65 0.60 0.75
4 160 140 180 0.80 0.75 0.85
5 180 140 200 0.70 0.65 0.85
6 180 140 200 0.85 0.80 0.95
7 160 140 180 0.70 0.65 0.80
8 240 200 280 0.70 0.65 0.80
9 160 140 180 0.65 0.60 0.75
10 160 140 180 0.65 0.60 0.75
11 200 180 220 0.70 0.65 0.80
12 260 240 320 0.85 0.80 0.90
13 280 220 340 0.70 0.60 0.85
14 220 200 240 0.70 0.60 0.75
15 220 180 260 0.55 0.45 0.60
16 200 160 220 0.70 0.65 0.80
17 160 140 180 0.70 0.60 0.80
18 340 220 420 0.80 0.75 0.90
19 140 120 160 0.70 0.65 0.80
20 280 200 340 0.80 0.70 0.85

the curves, but there is one exceptional subject, whose fixations are strongly clustered after the 70th
fixation.

In order to further describe the variation in the data set related to self-interaction, we fitted Model
4 for the first 100 fixations of each subject separately. The estimates of the parameters ¢ and 6 can
be seen in Table 2. The 90% bootstrap confidence intervals for the parameter estimates are calculated
from 20 realizations of the fitted model. When the parameter o is large, the model allows jumps
over the observation window, and then the self-interaction parameter 6 dominates. Large 0 indicates
strong spatial clustering. When o is small, one needs to take multiple jumps in order to cross the
whole target window.

In Fig. 13, we have plotted the estimated summary statistics for all subjects together with the
pointwise envelopes based on the model fitted to subject 5. For subjects 13, 18 and 20, the scanpath
length curves clearly exceed the envelopes of the Model 4 fitted for subject 5. For each of them, the
fitted value of the parameter o in Model 4 is over 280. This indicates that the process is allowed to
make long jumps resulting in longer scanpaths. However, for these subjects the recurrence parameter
6 varies from 0.70 to 0.80 and does not differ much from the recurrence parameter of subject 5.

For subject 6, the cumulative recurrence curve is way above the envelopes, and the estimated
recurrence parameter is 0.85 indicating strong clustering. The other subjects, whose cumulative
recurrence curve is outside the envelopes, are 4, 12, 18 and 20, and for all of them the recurrence
parameter is over 0.80. As a conclusion, there is some variation related to the clustering effect of the
points between these subjects. However, for each subject the estimated recurrence parameter differs
from 0.5 meaning that the random walk is not a suitable model.

5. Discussion

In this paper, we develop advanced data-analytical tools for extracting information from eye
movement sequences needed in various areas of application utilizing eye tracking (see e.g. Rayner,
2009). Our objective is to create simple but flexible dynamic stochastic models by employing
mechanisms which use the whole history of the sequence in each gaze jump in order to capture
features of learning during the experiment.

Heterogeneity of the scene, contextuality of subsequent fixations, and self-interaction of eye
movements are elements that affect the eye movement process. We present a sequential spatial



A. Penttinen, A.-K. Ylitalo / Spatial Statistics 17 (2016) 1-21 19

point process approach which includes these three effects, the self-interaction being new in this
context and is interpreted as a learning effect. This leads to what in probability theory is called self-
interacting processes, which are generalizations of random walks in heterogeneous media. Although
self-interacting random walks are well established in mathematics, physics and animal ecology, our
reasoning here is slightly different. We study how the process evolves at an early stage of an eye
movement sequence whilst, e.g. in mathematics, the long term behaviour is of interest. Such processes
are analytically difficult, even intractable, but their simulation is basically straightforward.

After having constructed a new model, we need model fitting (estimation), evaluation of goodness-
of-fit (model criticism) and simulation algorithms for various inferential purposes. Here, we suggest
a likelihood approach for the new processes which is used in parameter estimation. It is not possible
to obtain analytical results or use asymptotical reasoning. Instead, we compute the likelihood using
simulation which allows us to make exact inference in the sense that it does not depend on the size
of data and which includes a boundary effect correction. In doing this, we enlarge the applicability of
spatial statistics and the likelihood inference to a new area of applications. The processes can be used
to make inference on the structure of data, including self-interaction, and to deduce uncertainties in
conventional and new functional data summaries such as scanpath length and recurrence function.

In this paper, we are interested in the dynamics of the eye movement process. The main question
is whether there is self-interaction present in a given eye movement sequence and whether we can
detect it using our new modelling. We focus on the beginning of an eye movement process, since,
according to the two-stage model by Locher and colleagues (see e.g. Locher, 2006), the gist of the
scene is established during the early fixations. Our history-dependent rejection model is, in fact, able
to observe self-interaction in these particular data, although there is large within-subject variation.

Our models utilize stochastic geometry in creating self-interaction caused either by coverage
(how much of the scene is covered and how fast) or by recurrence (how much the process favours
points nearby the previous points), both of which have justifications in eye movement literature.
Functional summary statistics are needed for checking the goodness-of-fit of a fitted model, as well as
for describing the structural components of the sequence. We use four summary statistics: convex
hull coverage, ball union coverage, scanpath length, and cumulative recurrence. Several summary
statistics are needed since none of these four was able to alone distinguish between the models in
our simulation study. We found that the rejection model with convex hull coverage can be separated
from the random walk by the scanpath length, whereas the rejection model with recurrence can be
distinguished from random walk with the coverage measures. The scanpath length and cumulative
recurrence are needed with the history-adapted model for defining the speed of spatial clustering.

We have illustrated two tractable process constructions for self-interaction, namely, history-based
independent thinning and history-dependent transitions. These constructions are very different, and
their use depends on the problem and the data set. The two developed models are rather simple
but can easily be extended. Other constructions are also possible, such as the heterogeneous mixture
model, where the Markov kernel K (7 k» X) is replaced by

P(X 1) Ky (X, %) + (1 — p(K 1)) Ko (%, X).

Here, K; and K, are two kernel functions where the choice K,(xy, x) could be uniform in W or
proportional to «(x), for example, and the mixture factor p( X ) depends on the history of the
sequence. Although simulation of such a model is straightforward, the associated inference is
computationally demanding.

We have restricted our approach to sequential spatial point processes, mainly due to their
tractability. However, this approach is a bridge to spatio-temporal models that would take fixation
durations into account. For a separable spatio-temporal model, the spatial effect and time dynamics
are multiplicative in the likelihood. A sequential spatial point process model can be used as a
building block: if an order-dependent spatial model is available, the inclusion of time dynamics
is straightforward, because inference on the ordered spatial aspect and fixation durations can be
performed independently. If a preferred summary statistic contains information on the fixation
durations, then a spatio-temporal model should be used instead of the sequential point process.

The estimation of the heterogeneity component « (x) is problematic. In the second order analysis
of point patterns the first and second order components are not estimable from one observed point
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pattern without further information. Diggle et al. (2007) suggest two alternatives, which are the use of
a parametric model for the intensity (heterogeneity) or, alternatively, the utilization of replications for
the intensity estimation. In the sequential context the situation is similar. In our experiment sequences
measured from several participants are available and are independent of the particular sequence
under study. When using this information in the estimation of the heterogeneity component, the
problem is that also these auxiliary control sequences are serially correlated leading to extra clustering
at the sequence level. We assume that this effect is not as serious as in the intensity estimation from
the case data only. When using auxiliary sequences, we have assumed that these sequences contain
information which originates mainly from the target common to all participants and to the case under
study and measures the wanted heterogeneity.

Animprovement would be to sample fixations from each of the auxiliary fixation sequences instead
of using all the fixations as we did here. Merging these sampled fixations gives a point pattern which is
then used in the estimation of « (x) using the kernel method. This will further reduce the effect of serial
correlation. An alternative improvement is based on the case sequence under study by using the fitted
model (containing both contextuality and self-interaction and a prefixed «(x)) to compute the inverse
of the transition probability for each fixation. These weights can then be used in the estimation of « (x)
by the weighted kernel method. The procedure can be iterated. The estimation of o (x) is discussed in
Barthelmé et al. (2013) and Engbert et al. (2015).

Another issue concerns the parameter estimation. Here, we suggest the discretized coordinate
ascent algorithm for maximum likelihood using forward simulation. This early experiment shows
that by this method it is possible to separate the effect of self-interaction and present confidence
intervals for parameter estimates and confidence envelopes for chosen summary statistics. We know
that approximative inference, being computationally much faster, is also a possibility and would be
very important in a methodological toolbox.
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