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We investigate a one-dimensional Bose–Hubbard model in a parametrically driven global harmonic trap. The
delicate interplay of both the local interaction of the atoms in the lattice and the driving of the global trap
allows us to control the dynamical stability of the trapped quantum many-body state. The impact of the atomic
interaction on the dynamical stability of the driven quantum many-body state is revealed in the regime of weak
interaction by analyzing a discretized Gross–Pitaevskii equation within a Gaussian variational ansatz, yielding
a Mathieu equation for the condensate width. The parametric resonance condition is shown to be modified
by the atom interaction strength. In particular, the effective eigenfrequency is reduced for growing interaction
in the mean-field regime. For a stronger interaction, the impact of the global parametric drive is determined by
the numerically exact time-evolving block decimation scheme. When the trapped bosons in the lattice are in a
Mott insulating state, the absorption of energy from the driving field is suppressed due to the strongly reduced
local compressibility of the quantum many-body state. In particular, we find that the width of the local Mott
region shows a breathing dynamics. Finally, we observe that the global modulation also induces an effective
time-independent inhomogeneous hopping strength for the atoms.

DOI: 10.1103/PhysRevA.95.043604

I. INTRODUCTION

Strong external time-dependent driving is known to have
pronounced implications for quantum many-body systems [1].
For instance, light can induce a collapse of long-range-ordered
charge-density-wave phases [2–5], deconstruct insulating
phases [6–8], break Cooper pairs [9–12], or induce novel
transient superconducting phases [13–19]. An interesting class
of externally driven systems are parametric oscillators in which
the characteristic frequency is periodically modulated. Already
the classical Kapitza pendulum is known for its peculiar
dynamics [20] which is stabilized by properly choosing
the driving parameters. The parametric quantum harmonic
oscillator has even a nonlinear Floquet spectrum [21,22] with
regimes of stable and unstable quantum dynamics.

Novel concepts of driven quantum many-body systems can
be studied in atomic quantum gases, see Refs. [23–27] for
recent reviews. A trapped Bose–Einstein condensate (BEC)
with weak interactions is well described by the mean-field
Gross–Pitaevskii (GP) equation. In absence of any additional
optical lattice, a homogeneous BEC in a time-dependent setup
has been considered in different constellations for a long time.
In an early work, Castin and Dum analytically studied a
homogeneous BEC in a parametrically modulated harmonic
trap [28]. They showed that the driving induces a parametric
instability in the global motion of the condensate which gets
depleted exponentially fast and noncondensed modes become
dominantly populated due to this effective “heating.” The
effect of a parametrically driven trap potential was also studied
in Ref. [29] within the GP approach. It was shown that the
dynamics of the condensate wave function is described by
the classical Mathieu equation of a parametrically forced
oscillator, by which one obtains stability criteria. In another
mean-field study, the effect of a time-dependent scattering

length on the collective motion of a BEC was studied in Ref.
[30].

In the presence of an optical lattice, the BEC is described
by the Bose–Hubbard model which is known to have the two
distinct phases of a superfluid or a Mott insulator. Jaksch
et al. [31] have investigated the case of a Bose–Hubbard model
with a time-dependent lattice depth which leads to a variation
of both the on-site interaction and the hopping amplitude.
Starting out from the superfluid phase, the atoms are driven to
the Mott insulator phase and converted there into molecules.
Eventually, the melting of the molecular Mott insulating phase
produces a molecular superfluid [31].

Furthermore, a periodically modulated local atomic inter-
action [32] can stabilize a Bose–Einstein condensate [33–35].
Moreover, the superfluid-Mott insulator transition can be
controlled [36–39] or novel synthetic quantum matter [40]
can be realized by Floquet engineering [27,41]. Also, anyonic
statistics [42] might be accessible [43]. Local modulations
can coherently control the single-particle tunneling in shaken
lattices [44], magnetic frustration [45], and effective magnetic
fields [46]. Modulated local onsite Bose–Hubbard interactions
can lead to correlated tunneling [47] and artificial gauge
potentials, and thus to novel topological phases [48]. All these
works commonly rely on the time-periodic modulation of local
parameters.

An interesting regime which is less explored is realized
when a strongly interacting gas in the Mott phase is exposed
to a time-dependent external driving of the global trapping
potential. When a system is driven parametrically, it exchanges
energy with the driving field and, in principle, can be heated to
infinite temperature [49–51]. On the other hand, the parametric
oscillator has regions of dynamical stability as well. So
the natural question arises of how does a strong atomic
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interaction affect the stability of a globally parametrically
driven quantum many-body system? Can strong short-range
interaction stabilize a quantum gas in a parametric trap
which would otherwise be unstable? In turn, can we obtain
information on the atomic interaction by externally tuning the
system to an unstable dynamical state?

In this work, we show that a global parametric modulation
of the trapping potential, which does not have to be tuned
to local properties, can be used to control the stability of the
interacting quantum gas in an optical lattice. In particular,
the global dynamics of the quantum many-body system in a
parametrically modulated trap can be stabilized or destabilized
by tuning the atomic interaction strength. Conversely, locating
the onset of the instability can be used to determine the
atom interaction strength. To illustrate the mechanism, we
investigate the parametrically driven Bose–Hubbard model
with repulsive interaction in two regimes. First, we consider
the regime of weakly interacting atoms in the lattice in the
presence of a parametrically modulated global trap. This can
be treated by a mean-field Gross–Pitaevskii ansatz for the
condensate wave function and is supported by a numerically
exact treatment in terms of the time-evolving block-decimation
(TEBD) method. Second, we aim to investigate the interplay
of the strongly interacting quantum gas in the Mott regime
with an additional parametrically modulated trap. To this
end, we have calculated the time-dependent dynamics in this
regime numerically by the TEBD approach. We find that the
parametric driving leads to a breathing of the width of a local
central Mott region which becomes resonant at frequencies
which are shifted as compared with the noninteracting case. In
the Mott regime, energy absorption is increasingly suppressed
due to the strongly reduced compressibility of the Mott region.

After introducing the underlying driven Bose–Hubbard
model in Sec. II, we present our mean-field analysis for
parametric resonance based on a discretized GP equation in
Sec. III. To go beyond the weak-interacting regime, we show
our complementary results for strong interactions based on the
exact numerical TEBD in Sec. IV. The connection between
periodically driven harmonic trap and site-dependent hopping
is clarified in Sec. V. We summarize our work in Sec. VI.

II. MODEL

We consider a one-dimensional Bose–Hubbard model with
a global harmonic potential with a time-dependent curvature
V (t) = V0 + δV sin �t . The potential has a time-averaged
curvature V0, which is parametrically modulated with the
strength δV and the frequency �. The model Hamiltonian
reads, with h̄ = 1,

H (t) = −J
∑

�

(b†�b�+1 + H.c.) + U

2

∑
�

n�(n� − 1)

+V (t)
∑

�

(� − �0)2n�, (1)

where J is the hopping amplitude and U is the on-site
interaction strength. Furthermore, b�(b†�) are the bosonic
annihilation (creation) operators at site �, and n� = b

†
�b�

denotes the local occupation number operator. We consider

a lattice with M sites loaded with N bosonic atoms. Thus, the
lattice center is located at �0 = (M − 1)/2.

III. QUANTUM MANY-BODY PARAMETRIC RESONANCE
IN MEAN-FIELD REGIME

In the noninteracting limit U = 0 and for no driving,
the system can be mapped exactly to a discretized quantum
harmonic oscillator with frequency ω0 = 2

√
JV0 and unity

mass with a Gaussian ground state. When the parametric
driving is switched on, the parametric resonance at n� = 2ω0

produces regions of instability in the parameter space [21,22]
with diverging position and momentum variances. The driven
single-particle problem is still exactly solvable in terms of
the Mathieu equation with its known stability diagram. For
interacting particles, this is no longer possible. To elucidate the
impact of quantum many-body interactions on the parametric
resonance, we first consider the mean-field regime.

A. Mean-field description

A dilute, weakly interacting atom gas at zero temperature
is described by the mean-field Lagrangian density

L = 1

N

∑
�

[
i

2
(ψ∗

� ∂tψ� − ψ�∂tψ
∗
� ) + J (ψ∗

� ψ�+1 + H.c.)

−V (t)(� − �0)2ψ∗
� ψ� − U

2
ψ∗

� ψ∗
� ψ�ψ�

]
, (2)

obtained from the Hamiltonian (1), with the mean-field
condensate wave function |ψ〉 = ∑

� ψ�b
†
�|0〉. By extremizing

the Lagrangian with respect to ψ�(ψ∗
� ), one arrives at a

discretized version of the Gross–Pitaevskii equation. To obtain
an analytic approximation for the time evolution of the boson
gas, we use a Gaussian trial wave function [52]

ψ� =
(

N2

πα2

)1/4

exp

[
− (� − �0)2

2α2
+ iβ(� − �0)2

]
, (3)

with a time-dependent width α ≡ α(t) and β ≡ β(t) and
minimize L with respect to α and β.

In the following, we consider the regime J � V0, where
the condensate is extended over many sites, i.e., α � 1. Then,
all sums over � can be approximated by continuous integrals
and the Lagrangian takes the form

L = 2Je
− 1

4α2 −β2α2 − [β̇ + V (t)]
α2

2
− UN

2
√

2πα
. (4)

The Euler–Lagrange equations ∂xL = d
dt

∂ẋL for x = α, β

provide the equations of motion α̇ = 4Jγ αβ and

α̈ + γ̇ α̇ + 4Jγ V (t)α = 4J 2
γ

α3
+ 2Jγ UN√

2πα2
, (5)

with γ = 1
4α2 + α2β2 and Jγ = Je−γ .

Aiming at a linear stability analysis, we expand the
width α(t) = α0 + δα(t) in terms of small deviations δα(t)
from its equilibrium value α0, i.e., we assume α0 � |δα(t)|
and linearize Eq. (5) with respect to δα. Taking into ac-
count correspondingly β(t) = β0 + δβ(t) with β0 = 0 we
find that the stationary solution α0 follows implicitly from

043604-2



DRIVEN BOSE-HUBBARD MODEL WITH A . . . PHYSICAL REVIEW A 95, 043604 (2017)

10−2 10−1 100 101 102

101

102

V0 = 10−4 J

V0 = 10−3 J

V0 = 10−2 J

(a)

interaction strength UN/J

w
id

th
α

0

10−5 10−4 10−3 10−2 10−1
100

101

102

U = 0

UN = 10 J
UN = 100 J

(b)

potential strength V0/J

w
id

th
α

0

FIG. 1. Stationary width α0 of the static condensate (within
the mean-field picture) as function of (a) interaction strength UN

for different potential curvatures V0, and (b) V0 for different UN

(δV = 0).

2V0α
4
0 = 2Je−1/4α2

0 + UNα0/
√

2π and that the deviation δα

from equilibrium obeys

δα̈ + 4J ′[V ′ + δV ′ sin �t]δα = −4J ′δV α0 sin �t, (6)

where both the hopping J ′ = Je−1/4α2
0 and the driving strength

δV ′ = δV (1 + 1/2α2
0) are renormalized. Furthermore, the

atomic interaction renormalizes the potential curvature such
that

V ′ = V0

(
1 + 1

2α2
0

)
+ J ′

α4
0

(
3 − 1

α2
0

)

+ UN√
2πα3

0

(
1 − 1

4α2
0

)
. (7)

It ranges from V ′ � 4V0 in the noninteracting limit to V ′ �
3V0 in the Thomas–Fermi limit, i.e., when the kinetic term can
be neglected. Equation (6) is the well-known Mathieu equation
with an additional time-dependent-force term. Note that the
inhomogeneity does not influence the parametric resonance
condition [35]. Thus, for δV ′ 	 V ′, δα(t) exhibits a resonant
behavior when the parametric resonance condition n� = 2ω′
with the resonance frequency ω′ = 2

√
J ′V ′ is fulfilled for

n = 1,2, . . ..

B. Static trap

In Fig. 1(a), we show the stationary condensate width α0 as
a function of the interaction strength for different potential
curvatures. Below UN � J , the condensate width α0 �
(J/V0)1/4 is mainly determined by the potential curvature
V0 and only gradually increases with UN . For UN > J , the
U term becomes comparable in size to the J term which
leads to a steeper growth of α0. In fact, the condensate width
behaves as α0 ∼ U 1/3 in the Thomas–Fermi limit. Moreover,
in Fig. 1(b), we show the condensate width α0 as a function
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FIG. 2. Resonance frequency ω′ as function of UN for different
V0 (main) and in dependence of V0 for different UN (inset) for
δV = 0.

of the static potential curvature V0. In all cases, we find an
algebraic decrease of α0 ∼ V

−1/η

0 with increasing V0, where
3 � η � 4. In the noninteracting limit we find η = 4, whereas
in the strongly interacting limit we obtain η = 3.

The resonance frequency ω′ is also modified by the conden-
sate interaction. In Fig. 2 (main), we depict the dependence of
ω′ on the interaction strength for various potential curvatures.
For ease of comparison, we show the resonance frequency
scaled to

√
JV0 = ω0/2. For strong interaction U � J/N ,

the resonance frequency turns out to be independent of the
interaction U and approaches ω′ = 2

√
3JV0, where J � J ′

is satisfied. In the opposite limit of noninteracting bosons,
J = J ′ is not satisfied per se. This is especially the case for a
steep potential when V0 is so large that α0 is only of the order
of several lattice sites. In this regime, the resonance frequency
is given by ω′ = 4

√
JV0[1 + 1/(2α2

0)]1/2e−1/8α2
0 . In the inset

of Fig. 2, we show the resonance frequency as a function of
the potential curvature for different interaction strengths. For
a small (large) enough interaction strength U the resonance
frequency ω′ weakly decreases (increases) with the potential
steepness V0.

C. Parametrically driven trap

Next, we address the condensate stability in the parametri-
cally modulated trap. To get information about the onset of the
parametric instability on a general basis, we write Eq. (6) in
terms of two coupled first-order linear differential equations.
By using the Floquet theorem [53], we determine whether the
solutions for a given set of parameters are stable or not (see
appendix for more details). In Fig. 3, we show the resulting
stability diagram as a function of the interaction strength UN

and the driving strength δV for a fixed potential curvature
V0 and three different values of the driving frequency �.
Each curve divides the parameter space into regions with
stable or unstable behavior of the condensate. In the region
below each curve, all solutions of Eq. (6) are stable, while
in the region above, at least one solution is unstable. At
resonance, i.e., n� = 2ω′ = 4

√
J ′V ′, an infinitesimally small
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FIG. 3. Stability diagram of parametrically driven BEC for the
first resonance n = 1. Horizontal axis indicates the particle interaction
UN and vertical axis the parametric driving strength δV for V0 =
(1.6 × 10−5)J for different driving frequencies �, as indicated.
Unstable (stable) solutions exist in the regions above (below) each
curve.

driving amplitude is sufficient to destabilize the condensate
entirely. A finite particle interaction may cause a transition
from a stable to an unstable behavior. Hence, atom-atom
interaction may be explored to stabilize a condensate in a
parametrically modulated trap by modifying the resonance
condition. Moreover, the onset of the parametric instability
can be used to measure the interaction strength.

IV. STRONGLY INTERACTING ATOMS

Next, we determine the quantum many-body dynamics of
a strongly interacting gas in a lattice and in a parametrically
driven trapping potential. To this end, we use the numerically
exact time-dependent TEBD method, which is a variant of the
time-dependent density matrix renormalization group [54–56].
We determine the numerically exact transient dynamics and are
able to investigate the onset of Mott physics and its interplay
with the parametric resonance.

A. Static trap

First, we consider the static case δV = 0 and calculate the
ground state of the Hamiltonian (1). Then, the condensate
width is extracted as the full width at half maximum (FWHM)
of the distribution of the local occupation number 〈n�〉 [57].
We use a lattice with M = 32 sites filled with N = 16 bosons
in a trap with V0 = 0.0922J . In Fig. 4, we show the condensate
width in dependence of U calculated numerically exactly in
comparison with the mean-field result α0. The inset depicts the
corresponding distribution 〈n�〉. A perfect agreement is found
for U = 0, where both approaches yield coinciding Gaussians.
Deviations between the two results increase for growing U ,
as expected. For U = 7J , a plateau-like Mott region with
a nearly integer occupation number starts to appear in the
numerical result; see inset of Fig. 4. This wedding-cake-like
structure cannot be reproduced by the variational mean-field
approach. The reasons for the deviations are twofold. Beyond
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FIG. 4. Comparison of the condensate width determined by the
numerically exact FWHM (TEBD, dashed line) and variational mean-
field result α0 (GPE, solid line) for a half filled lattice of M = 32
sites. The curvature of the trapping potential is set to V0 = 0.0922J

and δV = 0. The step refers to the Berezinsky–Kosterlitz–Thouless
quantum phase transition (see text). Inset shows local occupation
number 〈n�〉 (ψ∗

� ψ�) for U = 0 (diamond), U = J (square), and U =
7J (circle) for the same V0 (dashed lines are for TEBD, solid lines
are for GPE).

finite-size effects in the numerically exact result, for increasing
U , the condensate starts to locally form a Mott insulating state.
The quantum fluctuations at larger U become more important
and lead to a broadening of the population density. This is
not taken into account by the GPE mean-field approach, but
is captured by the TEBD. In fact, for all U , the condensate
width is systematically larger by TEBD than predicted by the
mean-field approach. Interesting is the step-like increase of
the condensate FWHM at U ≈ 7J which accompanies the
formation of the Mott plateau. In fact, this is a signature of
the Berezinsky–Kosterlitz–Thouless quantum phase transition
which has been shown to occur between U = 7.5J and
U = 8J for the n = 1 Mott lobe [58,59].

B. Parametrically driven trap

Having studied the static trap, we next address the transient
dynamics of the parametrically driven trap. At initial time
t = 0, we prepare the system in the ground state of the
Hamiltonian H (0). In Fig. 5(a), we show the time evolution of
the total energy E(t) = E(t) − E(0) as a function of time t

and driving frequency � with E(t) = 〈H (t)〉. In Fig. 5(b), we
show two cuts along the lines � = 1.31ω′ and � = 2.34ω′.
The resonance frequency ω′ can be estimated according to
Eq. (7). Resonant driving in Fig. 5 is expected to occur close
to �/ω′ = 2/n. We find clear evidence of the two-photon
resonance n = 2 which is manifest in a growth of the total
energy after each period. The resonance is slightly shifted to
� � 1.3ω′, due to the strong interaction between the atoms
which is not taken into account in the variational mean-field
description. However, the n = 1 resonance is not observed
in the transient dynamics, but is expected to occur at longer
times. For off-resonant driving, the energy oscillates with the
frequency � and with small variations in the amplitudes.
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along constant � lines as indicated. Parameters are M = 64, N = 32,
V0 = 0.01J , δV = 0.002J , and U = 8J .

For a better quantification of the resonance in the transient
dynamics, we define the energy absorption over a certain
number m of periods according to

〈E〉 = �

2πm

∫ 2πm/�

0
dtE(t). (8)

For the set of parameters of Fig. 5, we are able to calculate the
dynamics until t = 40/J . This time window encompasses up
to m = 7 periods over which we take the average in Eq. (8).
The result is shown in Fig. 6. Note that for smaller values
of �, the time needed to complete the mth period is longer
than for larger driving frequencies. Therefore, data points for
smaller � are averaged over fewer periods. Yet, this does not
change the result substantially. A rather broad peak shows up
around the second resonance � � ω′ which is slightly shifted
to higher frequencies. The slight oscillations at the flank as
well as the rise of the first resonance around � � 2ω′ can be
expected to vanish when longer times are taken into account
for the averaging.
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FIG. 6. Time-averaged energy 〈E〉 as a function of the driving
frequency � for the case shown in Fig. 5. The same parameters as in
Fig. 5 were used.

(b)

1

1.2

-4

0

4

8

(c)

1

1.2

0

1

2

(d)

0 2 4 6 8 10 12 14

1

1.2

time tJ

fr
eq

u
en

cy
Ω

/
J

-3

0

3

Δ
E

(t)/
J

0.9 1 1.1 1.2 1.3

0.6

1

(a)

0J

1J

10J

×4

×20

frequency Ω/J

〈E
〉/

J
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periods, of the energy difference E(t), as shown in panels (b) to
(d), as a function of the frequency � for different values of the
interaction strength. The solid line corresponds to panel (b) with
U = 0, the dashed line to panel (c) with U = J , and the dash-dotted
line to panel (d) with U = 10J . Note that the dashed (dash-dotted)
line has been multiplied by a factor of 4 (20) for better illustration. We
set M = 32, N = 16, V0 = 0.092J , and δV = 0.01J . The remaining
parameters are chosen the same as in Fig. 4.

As can be seen in the inset of Fig. 4, when the interaction
is below or still in the vicinity of the Berezinsky–Kosterlitz–
Thouless phase transition, the mean-field result for particle
density agrees well with that of TEBD. However, for stronger
interaction, this is in general no longer true and the features of
the phase transition are not caught by a mean-field ansatz. In a
global harmonic potential, zones of different quantum phases
may coexist, and sites that locally realize a Mott insulator
state hinder the expansion and contraction of the condensate.
This can be seen in Fig. 7 where we show a comparison of
the time evolution of the total time-dependent energy E(t)
for the cases of noninteracting bosons [Fig. 7(b)], interacting
bosons with U = J [Fig. 7(c)], and strongly interacting bosons
with U = 10J [Fig. 7(d)]. While the ground state (with the
static potential curvature V0 = 0.0922J ) of the cases (b) and
(c) occupies a superfluid state on all sites, the central about
14 sites of the ground state in case (d) occupy a Mott state.
According to the mean-field result of Eq. (7), the resonance
frequencies can be estimated for the three cases to be ω′ �
1.18J [Fig. 7(b)], ω′ � 1.06J [Fig. 7(c)], and ω′ � 1.05J

[Fig. 7(d)]. We find that the resonance frequencies for the
cases (b) and (c), determined by the mean-field argument, fit
well to the transient behavior that we observe. This is also
reflected in the time-averaged energy shown in Fig. 7(a). The
slight discrepancies can be traced back to the choice of a rather
steep potential such that α0 � 1. Then, the mean-field ansatz
becomes not very reliable and further corrections become
necessary. However, for the case of strong interaction shown
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FIG. 8. (a) Time evolution of the width δ� of the particle density
under a parametric drive. The parameters of the static potential
curvature and the driving strength are V0 = 0.01J and δV = 0.005J ,
respectively. We have chosen the time-dependent potential curvature
V (t) = V0 − δV cos �t . The other parameters are M = 64, N = 48,
and U = 12J . The resonance frequency ω′ is estimated to be
0.346J . (b) Ground-state profile 〈n�〉 of the particle density and
local compressibility κ� = 〈n2

�〉 − 〈n�〉2 of the initial Hamiltonian
with V (0) = V0 − δV . The shaded region indicates sites within the
Mott insulator (MI) phase.

in Fig. 7(d), no significant energy absorption occurs in the
vicinity of the resonance frequency and the energy returns to
almost its initial value after each period. In contrast, in the
cases (b) and (c) a clear growth can be seen.

Furthermore, we show in Fig. 8(a) the time evolution
of the time-dependent width δ�(t) = ∑

�〈n�〉t |� − �0| of the
particle density for different values � of the driving frequency.
We choose a parametric drive of the form V (t) = V0 −
δV cos(�t), such that V (0) � V (t) is satisfied for all times,
and a rather large driving strength δV = 0.5V0 in order to
enhance the impact of the parametric resonance. For each
frequency, we choose the initial state to be the ground state
of the initial Hamiltonian H (0). The transient behavior shows
a growth of δ� in the vicinity of � � 2ω′ and � � ω′. To
illustrate that the initial state locally occupies a Mott state, we
show in Fig. 8(b) the density profile of the initial state 〈n�〉
and the local compressibility κ� = 〈n2

�〉 − 〈n�〉2. In the central
about 25 sites, the system initially occupies a Mott insulating
state, which is characterized by a reduced compressibility. The
particle motion on these sites is strongly suppressed because an
energy of the order of U is needed to move particles inside this
region. In that sense, the Mott region acts as a local barrier that
suppresses the contraction process during the time evolution.
Consequently, particle currents are only observed inside the
superfluid regions during the time evolution.

V. EFFECTIVE SITE-DEPENDENT HOPPING

The parametric driving of the global trap can also be
used to create a spatially varying hopping strength. By a

time-dependent unitary transformation

U (t) = exp

[
iδV sin(�t)

∑
�

(� − �0)2n�/�

]
,

the time dependence of the potential can be converted to a
time- and site-dependent hopping amplitude. With this, the
bosonic annihilation operator transforms according to

U (t)b�U
†(t) = b�e

−iδV sin (�t)(�−�0)2/�. (9)

The exponential can be absorbed into the hopping amplitude
to define a site- and time-dependent hopping amplitude

J�(t) = JeiδV sin (�t)[2(�−�0)+1]/�. (10)

Making use of the Jacobi–Anger identity to expand the
exponential in terms of the mth Bessel function of the first
kind Jm(x), we obtain

J�(t) = J
∑
m

Jm(δV [2(� − �0) + 1]/�)e−im�t . (11)

Thus, for a large enough driving frequency �, the time average
yields an effective local hopping Jeff� = JJ0(δV [2(� − �0) +
1]/�), where the spatial dependence is imprinted by the Bessel
function J0(x).

VI. CONCLUSIONS

We have studied a driven one-dimensional Bose–Hubbard
model with a periodically modulated harmonic trap. It de-
scribes an interacting gas of bosonic atoms in a lattice which
is placed in a parametrically modulated trapping potential. This
model allows for the investigation of the interplay of strong
atomic interactions in the Mott state of the lattice and the
external parametric drive. We have analyzed the parametric
resonance condition first in the mean-field regime of weak
atomic interactions. We find that also in the presence of the lat-
tice, the condensate width is governed by the Mathieu equation.
The resonance frequency of the condensate is shifted to lower
values for increasing interaction. Moreover, the phase diagram
of stable and unstable dynamics is inherited from the Mathieu
equation. Furthermore, for stronger interaction, the mean-field
approach becomes invalid and the numerically exact TEBD
technique has to be invoked. For strong interaction, we observe
the formation of a local Mott-insulator region in which the
movement of atoms also in the presence of the driving
becomes suppressed. Finally, we have demonstrated that the
global parametric modulation yields site-dependent hopping
amplitudes which can be controlled. Interestingly, locating
the onset of the instability allows, in principle, to determine
the atom interaction strength. Thus, dynamically probing a
quantum many-body system with a periodic modulation of
the harmonic confinement provides a diagnostic tool, which
warrants an experimental realization in the realm of ultracold
Bose gases.
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APPENDIX: STABILITY ANALYSIS

In this appendix, we provide more details on the stability
analysis of Eq. (5). To study the appearance of the instability
in the parametrically modulated trap potential, we make use
of the well-known Floquet theorem. The theorem is directly
applicable to systems whose dynamics are described by a set
of d coupled linear differential equations

ẋ = A(t)x, (A1)

where A(t + T ) = A(t) is a d-dimensional matrix with peri-
odicity T . The main idea is to evolve the fundamental solution
�(t) over a single period T in time. Whether the system is
stable [i.e., all solutions of (A1) are stable] or unstable [i.e.,
there exists at least one solution of (A1) that is unstable] can be
characterized by the eigenvalues λi=1,...,d of the monodromy
matrix B = �−1(0)�(T ). The eigenvalues λi are directly
connected to the Floquet exponents νi via λi = eT νi . When
all eigenvalues satisfy |λi | � 1, the real part of each Floquet
exponent is less than or equal to zero and the solution is stable.
In turn, in the case that |λi0 | > 1 for any i0, there exists an
unstable solution of Eq. (A1) with Re(νi0 ) > 0.

To apply the Floquet theorem to Eq. (5), we define the
variable τ = sin �t , which allows us to rewrite Eq. (5) in

terms of a linear differential equation like Eq. (A1) with the
vector x = (δα, ˙δα,τ,τ̇ )t and the matrix

A(t) =

⎛
⎜⎜⎝

0 1 0 0
−4J ′(V ′ + δV ′ sin �t

)
0 −4J ′δV α0 0

0 0 0 1
0 0 −�2 0

⎞
⎟⎟⎠,

(A2)

with the period T = 2π/�. To construct the fundamental
solution, we have to calculate the time evolution xj=1,...,4(t)
of four linearly independent initial vectors xj (0). Then, the
fundamental solution is given by

�(t) = (x1(t) x2(t) x3(t) x4(t)).

In practice, we choose the initial conditions such that
�(0) = 1 is the identity matrix. From this, we numerically
calculate �(t) and analyze the spectrum of the monodromy
matrix B. In the eigenvalue spectrum of B, we always find two
eigenvalue λj1 = λj2 = 1 which corresponds to the solutions
of the differential equation τ̈ = −�2τ . The remaining two
eigenvalues are used to characterize the stability behavior
of Eq. (5).
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