
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

Functional Brain Segmentation Using Inter-Subject Correlation in fMRI

Kauppi, Jukka-Pekka; Pajula, Juha; Niemi, Jari; Hari, Riitta; Tohka, Jussi

Kauppi, J.-P., Pajula, J., Niemi, J., Hari, R., & Tohka, J. (2017). Functional Brain
Segmentation Using Inter-Subject Correlation in fMRI. Human Brain Mapping, 38(5),
2643-2665. https://doi.org/10.1002/hbm.23549

2017



Functional brain segmentation using inter-subject
correlation in fMRI

Jukka-Pekka Kauppi†a,b,∗, Juha Pajula†c,f,∗, Jari Niemic, Riitta Harid, Jussi
Tohkae,1,∗

aDepartment of Mathematical Information Technology, University of Jyväskylä, Finland
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Abstract

The human brain continuously processes massive amounts of rich sensory in-

formation. To better understand such highly complex brain processes, modern

neuroimaging studies are increasingly utilizing experimental setups that better

mimic daily-life situations. We propose a new exploratory data-analysis ap-

proach, functional segmentation intersubject correlation analysis (FuSeISC), to

facilitate the analysis of functional magnetic resonance (fMRI) data sets col-

lected in these experiments. The method provides a new type of functional

segmentation of brain areas, not only characterizing areas that display similar

processing across subjects but also areas in which processing across subjects is

highly variable.

We tested FuSeISC using fMRI data sets collected during traditional block-

design stimuli (37 subjects) as well as naturalistic auditory narratives (19 sub-

jects). The method identified spatially local and/or bilaterally symmetric clus-

ters in several cortical areas, many of which are known to be processing the

types of stimuli used in the experiments. The method is not only prominent for

spatial exploration of large fMRI data sets obtained using naturalistic stimuli,

but has other potential applications such as generation of a functional brain
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atlases including both lower- and higher-order processing areas.

Finally, as a part of FuSeISC, we propose a criterion-based sparsification of

the shared nearest-neighbor graph for detecting clusters in noisy data. In our

tests with synthetic data, this technique was superior to well-known clustering

methods, such as Ward’s method, affinity propagation and K-means++.

Keywords: functional magnetic resonance imaging, functional segmentation,

inter-subject correlation, inter-subject variability, naturalistic stimulation,

Gaussian mixture model, shared nearest-neighbor graph

1. Introduction

Traditionally, neuroimaging studies have utilized highly controlled and sim-

plified experimental setups to study human brain function. While these studies

have been, and continue to be, extremely informative, the applied simplified

stimuli do not resemble situations of daily life, where the brain continuously

receives massive amounts of rich sensory information. In recent years, attempts

have been made to conduct more naturalistic experiments that better mimic

daily life and thus should help to understand complex brain processes.

While the amount of complex neuroimaging data sets collected in naturalistic

experiments is increasing, a major bottleneck remains to be the lack of proper

analysis methods. So far, one of the most promising approaches to analyze

such complex functional magnetic resonance imaging (fMRI) data sets is inter-

subject correlation (ISC) analysis (Hasson et al., 2004), applied to fMRI data

sets collected using naturalistic stimuli, such as movies/video (Hasson et al.,

2004, Golland et al., 2007, Nummenmaa et al., 2012a, Reason et al., 2016) and

music (Trost et al., 2015, Abrams et al., 2013). ISC-based analysis is con-

ceptually simple, involving voxel-wise computations of correlation coefficients

between time series of all subjects. Once the correlation coefficients have been

computed across all participants exposed to the identical time-varying stimu-

lus sequence, the subject-pair-wise correlation coefficients for each voxel can be

averaged and subsequently thresholded to obtain brain maps indicating which
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regions exhibit considerable ISC during the stimulation (Wilson et al., 2008,

Kauppi et al., 2010b). A major strength of the ISC-based analysis is that it

can detect activated brain areas without modeling the expected hemodynamic

responses (Pajula et al., 2012).

Despite its benefits, the existing ISC-based analysis has limitations. For

example, it typically provides voxel-wise information about the extent of the

ISCs during the whole fMRI time series of interest. For longer time series,

ISC can be computed in several shorter time windows (see e.g. Nummenmaa

et al. (2012b)), but there exists no standard procedure how to integrate ISC

information across the time windows.

In any case, integrating ISC information across voxels and time frames of in-

terest may provide new insights into functional architecture of the human brain.

More specifically, each voxel can be characterized by a pattern of ISC features,

describing how extensively a voxel is co-activated during different stimuli of in-

terest. For instance, out of five different video/audio clips, a voxel may not

show any ISC during two clips but may exhibit very high ISC during one clip

and moderate ISC during the remaining two clips. It is plausible to assume that

some voxels share a highly similar pattern of ISC features whereas some other

voxels do not, meaning that voxels can be organized into distinct clusters on the

basis of these features. Thus, to better understand the functional organization

of the human brain during processing of complex stimuli, we propose formation

of subject-pair-wise averaged ISC features from specific time series of interest,

and clustering them across the brain.

Another limitation of the conventional ISC-based mapping is that it assumes

similar brain mechanisms across subjects.1 It is, however, well known that indi-

viduals process identical sensory information more or less differently, especially

in higher-order brain areas that are strongly involved in situations of daily life

(Hasson et al., 2010). Therefore, a conventional ISC approach based on the

1This assumption is also made in model-based brain-mapping methods, such as those based
on a general linear model (GLM; Friston et al. (1994))
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averaging of correlation coefficients across all pairs of subjects may find high

ISC values in sensory projection areas but may completely lose ISC in higher-

order brain areas due to high inter-subject variability (Kauppi et al., 2010a).

Consequently, averaging across subjects abolishes signs of active processing in

such important brain areas.

To better understand the functions of different brain areas, we incorporated

into our analysis subject-pair-wise ISC variability in addition to traditional av-

eraging of ISC features. It is likely that brain areas of high average ISC together

with relatively low ISC variability mostly reflect sensory processing that is ex-

pected to be most coherent across subjects. On the other hand, areas with rel-

atively high ISC variability may reveal activations with higher inter-individual

differences. Note that, in contrast to our interpretation, inter-subject variation

of signal strengths is in neuroimaging data traditionally considered as noise.

However, recent studies show that individual variability provides meaningful

information that can elucidate complex brain processes and brain development

(Mueller et al., 2012, Zilles and Amunts, 2013, Boldt et al., 2014, Gopal et al.,

2016).

We call our entire method, which combines ISC-based feature extraction

and clustering, functional segmentation ISC analysis (FuSeISC). The features

are extracted from multiple subjects and multiple fMRI time series of interest.

The fMRI time series can be selected either from separate experiments, sepa-

rate runs within the same experiment, or from selected time intervals of a longer

fMRI experiment (for example, corresponding to the scenes of a movie). Due to

both local and distributed brain processes, it is likely that some of the clusters

found in the “ISC feature space” are spatially local whereas others are more

widely spread. Therefore, we do not apply to the segmentation any anatomi-

cal constraints. The FuSeISC method described in this paper won the Study

Forrest Real Life Cognition Challenge2 (Hanke et al., 2014) where the goal was

2http://studyforrest.org/pages/challenge.html,http://studyforrest.org/contest_
fuseisc.html
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to introduce novel analysis methods for complex fMRI data sets acquired un-

der naturalistic stimulation. Here, we present the details of the algorithm and

validate the technique more thoroughly with different data sets. FuSeISC has

been integrated to the ISC toolbox (Kauppi et al., 2014) and is freely available

at https://www.nitrc.org/projects/isc-toolbox/.

We have previously presented clustering of ISC matrices (Kauppi et al.,

2010a) to analyze how subject-pair-wise ISCs are distributed across brain areas

during a complex stimulus time course. FuSeISC notably extends this approach

by capturing spatiotemporal variation in ISCs as it utilizes a number of shorter

time series instead of a single time course. Another major difference is that in

FuSeISC, we cluster features describing the summary statistics (mean, variabil-

ity) of the ISC matrices instead of the entire matrices. This procedure is impor-

tant because the number of subject-pair-wise ISCs (dimensionality) increases

rapidly together with the number of time series and subjects. In FuSeISC, we

also replace a random initialization approach used in Kauppi et al. (2010a) with

a new algorithm which provides more reliable initial estimates of cluster cen-

troids. Finally, we replace a K-means algorithm used in Kauppi et al. (2010a)

with model-based clustering which allows finding clusters with more complex

covariance structures.

2. Materials

2.1. ICBM Functional Reference Battery data

The fMRI data collected during Functional Reference Battery (FRB) tasks

developed by the International Consortium for Human Brain Mapping (ICBM)

(Mazziotta et al., 2001) were used for the evaluation of the method and for the

construction of the simulated data set described in the next subsection. The

block-design FRB tasks are a set of behavioral tasks designed to produce reliable

across-subjects functional landmarks in brain-imaging data, and the data sets

as such are ideal for the validation of functional segmentation methods. We

have previously used the same data for other experiments. For details of the
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data and experiments, see Pajula et al. (2012) and Pajula and Tohka (2014),

but, for convenience, we provide a short description here.

The FRB fMRI data were obtained from the ICBM database in the Image

Data Archive of the Laboratory of Neuro Imaging. The ICBM project (Princi-

pal Investigator John Mazziotta, M.D., University of California, Los Angeles)

is supported by the National Institute of Biomedical Imaging and BioEngineer-

ing. ICBM is the result of efforts of co-investigators from UCLA, Montreal

Neurological Institute, University of Texas at San Antonio, and the Institute of

Medicine, Jülich/Heinrich Heine University, Düsseldorf, Germany.

The dataset used earlier by Pajula et al. (2012) included fMRIs of 41 right-

handed subjects whose fMRI had been measured during five FRB tasks: (1)

auditory naming (AN) task where the subject silently named objects that were

verbally described; (2) external ordering (EO) task where the subject, after a

delay period (and thus relying on working memory), kept track of the abstract

designs on the screen; (3) hand imitation (HA) task where the subject was

instructed to imitate the presented hand configuration with his right hand; (4)

oculomotor (OM) task where the subject made saccades to target locations;

and (5) verb generation (VG) task where the subject generated a verb that

corresponded to an object presented on the screen. For detailed definitions of the

five FRB tasks, see the FRB software package3 and Pajula et al. (2012). Pajula

et al. (2012) discarded four subjects during the pre-screening phase because of

poor data quality in at least one task in the battery. Thus, the final data set

consisted of measurements from 37 healthy right-handed subjects (19 men and

18 women; mean age 28.2 years, range 20–36).

In addition to the original ICBM data set, we also investigated the repro-

ducibility of the FuSeISC results with two ICBM data sets consisting of different

subjects. For this purpose, we selected altogether 74 subjects from the ICBM

database by widening the original age range of the subjects (the ages of the

subjects in this new data set were between 21 and 55 years). The data set was

3http://www.loni.usc.edu/ICBM/Downloads/Downloads_FRB.shtml
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then split into two comparable sets both consisting of 37 subjects. Furthermore,

we investigated the effect of the number of subjects on the results by forming

four additional data sets from the whole 74 subject set: An age-matched pair

of data sets with 25 subjects and another age-matched pair of data sets with 15

subjects. Table 1 lists the details of the data sets.

Table 1: Description of ICBM data sets used to compare FuSeISC clustering with different
sets of subjects. Data sets were balanced to have close to equal number of male and female
subjects as well as similar age range and mean age. A single subject appeared only in one of
the two data sets (#1 or #2). First row (ICBM37ORIG) is the data set from Pajula et al.
(2012).

Data set Age range Mean age # Male # Female
ICBM37ORIG 20–36 28.2 19 18
ICBM37#1 21–55 37.6 19 18
ICBM37#2 21–54 37.4 20 17
ICBM25#1 21–54 37.2 13 12
ICBM25#2 21–55 38.3 13 12
ICBM15#1 21–53 35.9 8 7
ICBM15#2 21–53 36.9 8 7

The functional fMRI data were collected with a 3 T Siemens Allegra FMRI

scanner and the anatomical T1 weighted MRI data with a 1.5 T Siemens Sonata

scanner. The TR/TE times for the functional data were 4 s/32 ms, flip angle

90 ◦, pixel spacing 2 mm and slice thickness 2 mm. There were 12 blocks of 7

volumes per task (6 ‘off-on’ blocks) and 3 volumes at the beginning of the run to

wait for magnetisation stabilisation, which were removed during the preprocess-

ing. The total lengths of the time series in the analysis were 84 volumes (with

the total duration of 5 min 36 s). The acquisition parameters for the anatomical

T1 data were 1.1 s/4.38 ms, 15 ◦, 1 mm and 1 mm, correspondingly. Prepro-

cessing was performed as described in Pajula et al. (2012) by a standard FSL

preprocessing pipeline including Gaussian 5-mm full width at half maximum

(FWHM) spatial filtering.
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2.2. Simulated data

We generated synthetic fMRI data sets based on the ICBM data described

above. Similarly to the experimental ICBM data, the simulated data consisted

of five FRB tasks (AN, EO, HA, OM, and VG) from 37 subjects. The purpose

of simulated data was to validate the functional segmentation method quanti-

tatively when the true functional segmentation is fully known.

In the simulated data sets and for each task separately, every voxel was de-

fined either as “activated” or “non-activated”. Thus, any voxel was character-

ized by a 5-element binary vector creating 25 = 32 distinct functional segments.

Voxels were selected as “activated” according to the binarized statistical maps

of the GLM analysis performed for the empirical ICBM data sets in Pajula et al.

(2012) (thresholded at voxel-wise false discovery rate (FDR) corrected threshold

q = 0.001). A simulated hemodynamic signal was included in the time series

of the activated voxels; the signal was identical to the one used as a model

in the GLM analysis of the data (see Pajula et al. (2012)), i.e., a boxcar con-

volved with a canonical hemodynamic response function (HRF). These signals

were then corrupted by pink 1/f noise which was generated according to Smith

(2012). Signal-to-noise-ratio (SNR) was 0.02, which was quantified on the basis

of the boxcar function before the convolution with the canonical HRF. All brain

areas outside the activated regions contained only noise.

The generation procedure was identical for every 37 simulated data sets and

FRB tasks. We ignored anatomical and effect size variations between the sub-

jects. Moreover, since the original empirical data sets were registered to the

MNI-152 coordinate space, we did not perform registration or motion correc-

tion as preprocessing. The preprocessing only included Gaussian 5-mm FWHM

spatial filtering.

2.3. StudyForrest data

To demonstrate the performance of the FuSeISC method with naturalistic

stimulation, we analyzed fMRI data sets of 19 subjects provided by the organi-

zation committee of the StudyForrest project and data challenge. The details of
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the experiment, data collection and preprocessing are provided by Hanke et al.

(2014). In brief, the participants listened to a German sound track (Koop,

Michalski, Beckmann, Meinhardt & Benecke, produced by Bayrischer Rund-

funk, 2009), of the movie “Forrest Gump” (R. Zemeckis, Paramount Pictures,

1994) as broadcast as an additional audio track for visually-impaired listeners

on Swiss public television.

The auditory content was largely identical to the dubbed German sound

track of the movie, including the original dialogues and environmental sounds,

but added by interspersed narrations by a male speaker who described the

visual contents of the scenes. As detailed by Hanke et al. (2014), the par-

ticipants listened to the movie sounds using custom-built in-ear headphones

designed to maximize comfort during the scanning. T2-weighted echo-planar

images (gradient-echo, 2-s TR, 22-ms echo time, 0.78-ms echo spacing, gener-

alized autocalibrating partially parallel acquisition (GRAPPA)) were acquired

during stimulation using a whole-body 7 T Siemens MAGNETOM scanner. Al-

together 36 axial slices (thickness 1.4 mm, 1.4 mm x 1.4 mm in-plane resolution,

224-mm field-of-view, anterior-to-posterior phase encoding direction) with 10%

interslice gap were recorded in ascending order. Slices were oriented to include

the ventral portions of frontal and occipital cortex while minimizing the inter-

section with the eyeballs. Note that the brain coverage of the scans was limited

due to the high scan resolution (Hanke et al., 2014).

The entire data set consisted of 8 runs (about 15 min each) for each subject

from which we selected sound segments for our analysis. We selected five at-

tractive sound segments, because we noted that they had created more buzz in

Internet movie forums than the other scenes of the movie. We ranked the at-

tractiveness of the clips based on an Internet survey of the corresponding video

clips (that the subjects did not see) on online video services such as YouTube

and movie-discussion forums. Table 2 lists the time points used to create the

five clips. The exact data set for the analysis was extracted from the original

preprocessed linear anatomical alignment set of the StudyForrest data. In addi-

tion to preprocessing performed by the providers of StudyForrest data (Hanke
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et al., 2014), we included Gaussian spatial filtering with the isotropic 3-mm

FWHM kernel.

Table 2: Time points (in fMRI volumes) of the audio clips used in the analysis of StudyForrest
data. Clip 2 has data from two acquisition sessions.

Clip Run Start Stop Length Description
Clip 0 1 1 50 50 Feather flies and actors are described
Clip 1 2 1 50 50 Scene with ’Run, Forrest, Run’ cry

Clip 2
2 342 441

55
Scene where Bubba and Forrest discuss
about shrimps and how to cook them

3 1 45
Clip 3 6 158 404 246 Forrest runs across the USA from coast

to coast
Clip 4 7 46 107 51 Next to the Jenny’s bed, Forrest tells

about his adventures, and at the end of
the scene Jenny dies

2.4. Resting-state fMRI data

In addition to stimulus-related fMRI data, we applied the FuSeISC method

to resting-state fMRI (rfMRI) data of 38 randomly selected, unrelated subjects

from the Human Connectome Project WU-Minn HCP Data - 900 + 7 T data set

(Essen et al., 2012). The data set included 17 males and 21 females with ages

between 22 and 35 years. The data were pre-processed (Glasser et al., 2013)

and co-registered by the Human Connectome Project (Marcus et al., 2011)

non-linearly to a common MNI-152 space. For the data-acquisition protocol,

see Essen et al. (2012). The first resting-state session (REST1) with the left-to-

right scanning protocol (LR) was divided into 5 clips with 140 time points each.

The total length of the session was 1200 time points. The first 10 time points

as well as 10 time points between each clip were discarded. FuSeISC was then

run for these five rfMRI clips.

3. Methods

The FuSeISC method consists of two main steps:
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1. Feature extraction (Section 3.1): Given M fMRI time series of N sub-

jects, 2M ISC-based features are extracted for each voxel, as illustrated

in Fig. 1.

2. Clustering (Section 3.2): Feature vectors of the voxels are clustered to

form the functional segmentation of the brain.

These steps, together with the performance-evaluation metrics, will be described

next.

3.1. Feature extraction

Functional segmentation has been typically performed individually for each

subject, based on the individual fMRI time series, and the individual clus-

tering results have been combined in a subsequent stage to form group-level

cluster maps (see, e.g., van den Heuvel et al. (2008)). We propose a different

approach in which information is directly integrated across subjects by com-

puting subject-pair-wise ISCs from multiple temporally distinct time series and

extracting features from them. Two ISC features—the mean and the variabil-

ity of pair-wise correlations—are extracted from the selected time series. They

provide complementary information about processing in different brain regions.

Features were extracted separately for each voxel of the brain using the

ISC toolbox (Kauppi et al., 2014), as described in Figure 1. For each of M

time series, we computed correlation coefficients between the time series of all

subject pairs, leading to N × N ISC matrix for each time series, where N is

the number of subjects. For instance, the fMRI data sets of the Forrest study

were divided into M = 5 distinct time series, corresponding to the five scenes

of interest (see Section 2.3 on how the most interesting scenes were selected).

The ISC features were computed based on the ISC matrices. First, the means

of subject-pair-wise correlation coefficients, i.e., the mean ISC features, were

computed for each time series m and for each voxel (a voxel index is omitted

for clarity):
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Figure 1: Illustration of the feature extraction in FuSeISC for one arbitrary voxel located
at coordinate (x,y,z). At first, M ISC matrices are independently computed based on the
fMRI time series of N subjects. In our study, the total number of time series was M = 5,
corresponding to the total number of tasks (ICBM data) or movie clips (StudyForrest data)
of interest. From each N × N ISC matrix, mean and variability are extracted using the
Jackknife procedure. These two features are stacked into a single feature vector fxyz , whose
dimension is 2M . This procedure is repeated for each brain voxel to obtain altogether 228,483
and 449,612 feature vectors for cluster analysis, corresponding to the ICBM and StudyForrest
data, respectively.
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r̄(m) =
1

N(N − 1)/2

N∑
i=1

N−1∑
j=2,j>i

rij(m), (1)

for m = 1, 2, . . . ,M . Here, r(m) denotes a group-level ISC in a given voxel for

time series m and rij(m) is the correlation coefficient between mth fMRI time-

courses of subjects i and j. Note that because rii(m) = 1 and rij(m) = rji(m),

it is sufficient to compute correlation coefficients across N(N − 1)/2 subject

pairs (instead of N2 pairs) (Kauppi et al., 2014).

We computed ISC variability features using a leave-one-subject-out Jack-

knife procedure, similar to that applied by Pajula and Tohka (2014). More

specifically, we first computed the mean ISC values so that each subject was left

out from the original sample one at a time. This procedure corresponds to the

computation of the N mean ISC values, called pseudovalues, for i = 1, 2, . . . , N ,

so that ith row and ith column in the ISC matrix are left out one at a time. The

Jackknife standard-error estimate was then computed as standard deviation of

the pseudovalues multiplied by
√
N − 1. With simple algebraic manipulation,

it can be shown that this procedure corresponds to computing

r̂J(m) =
2

(N − 2)

√√√√N − 1

N

N∑
i=1

(r̄i(m)− r̄(m))2, (2)

where ri(m) = 1
N−1

∑
j 6=i rij(m). The Jackknife technique was preferred over

the bootstrap due to a heavier computational burden associated with the boot-

strap. Finally, the mean and variability features were combined into the feature

vector

f = [r̄(1), r̂J(1), . . . , r̄(M), r̂J(M)]T .

After feature extraction, we have one instance of the feature vector f for each

voxel. The supporting idea in the above feature-extraction scheme is that voxels

showing similar mean and variability statistics in ISCs for each time series of

interest belong to the same functional segment. This way, the brain is divided

into different functional regions on the basis of ISC features. Because the time
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series of interest have different characteristics in ISCs, it is likely that clustering

reveals multiple brain areas, each constructed on the basis of a specific pattern

of ISC mean and variability features. The number of time features (twice the

number of time series M) should be much smaller than the number of voxels. No

assumptions are made about the relationship between the number of subjects

and the number of time series (i.e. N > M or M ≥ N). However, the more

subjects we have, the less noisy are the features.

3.2. Robust algorithm for functional segmentation

Gaussian mixture model

After the feature extraction, we learned a Gaussian mixture model (GMM)

to cluster the ISC features. GMM provides a principled way of performing

the functional segmentation under the assumption that the ISC features form

clusters which follow a Gaussian distribution. Importantly, we did not impose

any spatial constraints on our model, meaning that functional segments need

not be spatially local but can consist of several spatially disjoint “subclusters”.

The model is given by (McLachlan and Peel, 2000):

p (f |θ) =
C∑
i=1

w(i)g
(
f |µ(i),Σ(i)

)
, (3)

where C is the total number of clusters, f ∈ R2M feature vector described in

the previous section, θ denotes all the parameters of the model, w(i) ∈ [0, 1],∑
i w

(i) = 1 are mixture weight parameters, and g
(
f |µ(i),Σ(i)

)
are multi-

variate Gaussian component densities with the mean µ(i) and the covariance

Σ(i). Because a multivariate Gaussian distribution can be fully described by

its mean and covariance matrix, the unknown parameters of the GMM are

θ =
{
w(i),µ(i),Σ(i)

}
, for i = 1, 2, . . . , C. The elements of µ(i) ∈ R2M are given

by µ
(i)
j and the elements of Σ(i) ∈ R2M×2M are given by σ

(i)
jl . Note that the

mean vector of each cluster µ(i) characterizes the cluster in terms of the original

mean ISC and variability ISC features. We estimated the maximum likelihood

solutions for these parameters using the expectation maximization (EM) algo-
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rithm (Xu and Jordan, 1996, McLachlan and Peel, 2000) implemented in the

Statistics Toolbox of the Matlab.

Finding initial model

A major difficulty with the GMM-based clustering is that the quality of the

clustering is highly dependent on a selected initial model (Fraley and Raftery,

2002, Figueiredo and Jain, 2002): if the mean vectors of the Gaussian com-

ponents are not initially near the true cluster mean values, the EM algorithm

converges towards a suboptimal solution and easily misses interesting clusters in

the data.4 Another problem is that the total number of clusters C in the GMM

is hard to determine because well-known model-selection criteria, such as the

Bayesian information criterion (BIC), tend to overestimate the total number of

clusters in complex fMRI data sets (Thirion et al., 2014).

To overcome these problems, we propose restricting a set of initial candidate

models a priori to meaningful ones based on local structures in the data. Be-

sides accuracy, prerequisites for the algorithm are computational and memory

efficiency, because we run segmentation across all the brain voxels (the number

of brain voxels was 228,483 for the ICBM data and 449,612 for the StudyFor-

rest data). Appendix A.1 presents a detailed mathematical description of the

algorithm, and a summary is given below:

• Compute a k-nearest-neighbor (k-NN) list for each data point.

• Compute a weighted shared nearest-neighbor (SNN) graph (Jarvis and

Patrick, 1973) of the data based on the k-NN list. In the SNN graph,

two data points are connected only if they belong to each others’ nearest-

neighbor lists.

• From this graph, extract a high number of subgraphs by sparsification.

• Compute mean vectors of the connected components in each subgraph to

obtain multiple sets of GMM mean-vector candidates.

4This difficulty follows from the non-convexity of the maximum likelihood cost function to
be minimized and every local optimization algorithm (including gradient methods) have this
problem.
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• Choose a best set of initial mean vectors according to a minimum distance

rule.

The method was validated against state-of-the-art-algorithms, such as Ward’s

method (Ward, 1963), K-means (MacQueen, 1967), K-means++ (Arthur and

Vassilvitskii, 2007) and Affinity propagation (Frey and Dueck, 2007). The vali-

dation results are presented in supplementary material (Section 3).

The proposed method depends on a single user parameter: a neighborhood

size k. This parameter describes how many neighboring feature vectors (voxels)

are used to form the SNN graphs.5 A choice of k affects the total number of

clusters indirectly: Smaller values of k lead to large number of small clusters

and thus can describe fine details of the original data. However, too detailed

segmentation is difficult to grasp from the visualizations. Larger values of k lead

to a lower number of clusters but to greater loss of the details of the data. Thus,

a choice of k is a compromise between fine-graininess and interpretability of the

findings. In this sense, k is not an ad hoc parameter but rather determines

granularity level of the analysis.

We selected k as follows: First, we run FuSeISC for several values of k. Then,

we plotted the total number clusters as a function of k and selected a value

from the region where the number of clusters remained relatively constant (see

Section 4 in supplementary material for validity of this approach using synthetic

data). To confirm that the selected k value was appropriate, we also computed

the similarity using the adjusted rand index (ARI) (Hubert and Arabie, 1985)

between all FuSeISC solutions constructed from different values of k (see Section

2 in supplementary material for details of the ARI). In the constructed “stability

matrix”, we looked for a stable region of high ARI values, because in this region

the segmentation results were similar irrespective of the choice of k. Finally,

we picked k from the region which showed stability in terms of both the total

5It is important to note that the connected components of the SNN graph are found in a
feature space and not in a spatial domain and this way a single cluster may consist of multiple
spatially connected components (subclusters).
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number of clusters and ARI.

3.3. Postprocessing

Large brain regions are not expected to be activated by the stimuli, which

complicates the interpretation of the clustering results. An easy way to simplify

the interpretation is to a priori discard voxels from the expected noise areas

and run the FuSeISC only across voxels of interest6. This approach is also com-

putationally much faster than the full-brain analysis. However, in this study

we found it useful to evaluate the segmentation results across the whole brain

for several reasons. First, the whole-brain segmentation serves as a validation

tool for FuSeISC to detect large noise regions as separate clusters as well as

to avoid mixing these areas with the activated cortical areas. Second, the dis-

tinction between “interesting” and “non-interesting” brain areas is not obvious:

Although clusters located in the cerebral white-matter likely reflect noise, some

interesting clusters may partially extend to these regions. Third, a whole-brain

analysis tells whether our method can deal with large data in a feasible time

(the StudyForrest data consisted of as many as 449,612 data points).

Because a whole-brain analysis leads to segmentation of both noise- and

stimulus-related regions, we designed a postprocessing scheme to separate ex-

pected noise clusters from the clusters of interest. At first, we constructed a

mask consisting of cerebral white-matter, brainstem, and ventricles, and counted

how many voxels fell within this mask for each cluster. Then we sorted the clus-

ters according to these counts and discarded clusters with highest counts from

the rest of the analysis as noise. The exact number of discarded clusters was

determined based on visual inspection of the spatial distributions of the clusters

so that the clusters mainly distributed close or inside the noise mask were dis-

carded. In the Results section, we concentrate on analyzing clusters of interest.

The noise clusters are also briefly discussed and are displayed as supplementary

material (Section 6).

6This option is available in the ISC toolbox.
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We additionally discarded clusters reflecting border artifacts resulting from

slightly different anatomical registration across the time series. These clusters

were easily detected, because the mean ISC for at least one of the time series in

these clusters was exactly zero.

3.4. Code availability

FuSeISC has been integrated to the ISC toolbox (Kauppi et al., 2014) and

is freely available at https://www.nitrc.org/projects/isc-toolbox/.

4. Results

4.1. Comparison between conventional ISC and FuSeISC maps

It is insightful to compare FuSeISC maps with “conventional” univariate

ISC maps. For this purpose, we computed conventional ISC maps across each

five clip of interest for the StudyForrest data using the ISC toolbox (Kauppi

et al., 2014). Thresholds for statistical significance were determined using a

resampling procedure implemented in the toolbox. The thresholds were multiple

comparison corrected across the voxels using the FDR (q < 0.001; the standard

setting of the ISC toolbox).

Figure 2(A) shows three axial slices of the ISC map across Clip0. The

colormaps denote ISCs averaged across all subject-pair-wise computations. The

ISC is highest in the auditory cortex, which is expected because the stimuli

were auditory. Interestingly, however, also frontal cortices show statistically

significant ISC.

Figure 2(B) superimposes the ISCs for all five clips. (Red color denotes

statistically significant ISC during Clip0, green during Clip1, and so on; when

several clips elicited significant ISC in the same voxel, the color code refers to

the clip with the highest ISC.) All clips revealed statistically significant ISC in

the auditory cortex, with right-hemisphere dominance, but the spatial location

of ISCs also varied depending on the clip. For instance, Clip0 showed ISC in

frontal regions whereas Clip2 showed ISCs in the posterior visual cortex (red

and violet blobs, respectively).
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Figure 2(C) shows a FuSeISC map of the same data using a neighborhood-

size parameter k = 230 after postprocessing (see Section 4.4 on how we selected

neighborhood sizes for the StudyForrest and ICBM data). Whereas conventional

ISC mapping simply tells which voxels show statistically significant mean ISC

across subject pairs for different clips, FuSeISC divides the brain into functional

clusters formed on the basis of both mean and variability features of the subject-

pair-wise ISCs extracted for each clip. Each cluster is shown in different color,

and the names of the brain regions corresponding to the center of mass of the

clusters are listed next to the colorbar. The names of the largest and the second

largest subclusters are provided.7 For a more comprehensive listing of brain

regions for each cluster, see supplementary material (Section 1, Table S3).

FuSeISC provided physiologically feasible functional division, with clusters

in auditory and visual cortices. Many of the clusters were spatially local in

one hemisphere and/or symmetric between the hemispheres, strongly suggest-

ing that they reveal plausible brain processing instead of noise. Interestingly,

FuSeISC revealed brain areas that remained undetected by the conventional

ISC. For instance, some of the frontal regions covered by the FuSeISC map were

not covered by the ISC maps of the individual clips in Fig. 2(B). Thus FuSeISC

seemed to be more sensitive than the conventional ISC mapping for detecting

activated brain areas.

4.2. Segmentation of StudyForrest data

To gain a better insight into the FuSeISC results, we divided the found clus-

ters into two different spatial maps according to their relative ISC variability

(i.e., ISC variability with respect to the ISC mean). The purpose of this di-

vision was to 1) highlight how low/high variability information is distributed

7Because spatial constraints are not used in FuSeISC, each found cluster in a feature space
can consist of more than one spatially disjoint subclusters. The name of the second largest
subcluster is reported only when the actual cluster consists of at least two spatially disjoint
subclusters whose sizes are greater than 100 voxels. Moreover, if the center of mass is located
in white-matter or non-specified brain area, the largest cortical brain region intersecting with
the cluster is reported instead of the location of the center of mass.
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Figure 2: Comparison between conventional ISC and FuSeISC results for the StudyForrest
data: (A) ISC map for Clip0, (B) Integrated ISC map of the five clips (when several clips
resulted in statistically significant ISC in the same voxel, the voxel is color-coded according to
the strongest ISC), and (C) FuSeISC map of the five clips. The axial slices are presented in
millimeters in the MNI coordinates. The ISC maps were FDR corrected at q < 0.001 across
all the voxels. FuSeISC does not require threshold selection, but clusters located dominantly
over cerebral white-matter, brainstem, or ventricle areas were discarded. Note how FuSeISC
found spatially meaningful segmentation and revealed more brain areas than conventional
univariate ISC mapping.
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across the brain, and 2) simply reduce the amount of information shown in a

single brain image to make visual inspection of the results easier. We used the

relative variability instead of the plain variability because the ISC variability

was observed to increase with the mean, making the ranking of the clusters

based on plain variability less interesting. The scatter plots of the mean and

variability features are available in Fig. S8 (Section 7 in Supplementary mate-

rial), confirming that the ISC variability increases with the mean. Increasing

response variability together with a response mean has been previously reported

in both animal and human brain signals (Tolhurst et al., 1981, Tanskanen et al.,

2007). However, the increased variability of the ISC with increasing mean can-

not be explained by general properties of the correlation coefficient because the

variance of correlation coefficient decreases with increasing correlation (Bowley,

1928). This issue therefore deserves more thorough investigation in the future.

Clusters with low relative variability are expected to be found in early sen-

sory areas where the processing is most coherent across subjects. Instead, clus-

ters with high relative ISC variability are expected to be found both in the

less coherent sensory areas and in higher-order brain areas that are involved in

stimulus-related processing in a subject-dependent manner. The relative vari-

ability was computed as a fraction of the GMM mean vector elements for each

cluster i as follows:

V (i) =

∑
jv
|µ(i)

jv
|∑

jm
|µ(i)

jm
|
, (4)

where jm are the indexes of the ISC mean and jv are the indexes of the ISC

variability features in the model.

Fig. 3(A) shows spatial maps of the clusters with low relative ISC variabil-

ity. These clusters were predominantly located in temporal lobes, especially

covering the supratemporal auditory cortex. The supratemporal cluster was

separated from the larger perisylvian cluster, as well as from a cluster in the

temporoparietal junction. Fig. 3(B) shows clusters with high relative ISC vari-

ability. Most of the these clusters were located in frontal and occipital regions.

The complete 3D spatial maps of clustering results are available in the Neu-
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roVault service (Gorgolewski et al., 2015) at http://www.neurovault.org/

collections//PXNGFJTL/.

In addition to spatial information, FuSeISC provides a characteristic pat-

tern of ISC features (mean and variability) for each cluster, showing how the

different stimulus sequences have contributed to each cluster. Figure 4 shows

these “building blocks”, extracted from the estimated model of the StudyForrest

data. Figures 4(A) and (B) correspond to the clusters of lowest and highest ISC

variability (see Fig. 3), respectively. The contributions of the five audio clips on

each cluster are coded in grayscale. For instance, temporal-lobe clusters showed

highest ISCs during Clips 0–3 (see the first and the second bars of the mean

ISC in Fig. 4(A)).

4.3. Segmentation of ICBM data

Fig. 5 shows spatial maps for the ICBM data (ICBM37ORIG). Similar to

the StudyForrest data, clusters with low and high relative ISC variability are

visualized separately. Clusters with low ISC variability were mainly located

in the occipital lobes (see Fig. 5(A)), with segmentation of the visual cortices

into multiple areas. This division of brain areas resembles results of indepen-

dent component analysis (ICA) of fMRI data obtained during natural viewing

(Pamilo et al., 2012), with different segments for foveal and peripheral vision,

for example.

Clusters with highest relative ISC variability were dispersed across many

regions of the cortex (see Fig. 5(B)). For instance, separate clusters covered the

intraparietal sulcus bilaterally, extrastriate body area, and parahippocampal

space area. Interestingly, the segmentation also seemed to delineate nodes of the

“default-mode network” in the posterior parietal cortex and medial prefrontal

cortex).

Figure 6 shows the contributions of the five tasks on the ICBM clusters.

Inspection of both the bar diagrams and the spatial locations of the clusters

supports the physiological relevance of the obtained functional segmentation.

For instance, clusters #1 and #2 in the visual cortices showed high mean ISC
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Figure 3: Functional segmentation of the StudyForrest data: (A) clusters with lowest ISC
variability, and (B) clusters with highest ISC variability relative to the mean. The axial slices
are presented and labeled with millimeters in the MNI coordinates. For the abbreviations of
the brain region names and the spatial coordinates of the cluster centers, see supplementary
material (Section 1, Tables S1 and S2).
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Figure 4: “Building blocks” of the clusters found in the StudyForrest data: (A) ISC features
of clusters with lowest variability, and (B) ISC features of clusters with highest variability.
Note that the clusters are ordered according to the total (relative) variability across the clips,
meaning that the heights of the variability bars are in the increasing order. The feature
values shown in the bars correspond to the distribution (mean) parameters of the GMM. The
grayscale corresponds to audio clips of interest, and the color code corresponds to clusters
shown in Fig. 3. See Table S1 in supplementary material for the abbreviations of the brain
region names.
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during external ordering (EO), hand imitation (HA), oculomotor (OM), and

verb generation (VG) tasks. This result is unsurprising because these tasks

were based on visual stimuli. In contrast, the large cluster #11 in the temporal

lobe showed high mean ISC during the auditory naming (AN) task. Also this

is physiologically plausible, because AN was the only task in which the stimuli

were presented auditorily. Moreover, a cluster exhibiting high mean ISC during

the hand imitation task was located around the sensorimotor strip (cluster #14).

4.4. Selection of final segmentations

Here we describe how we selected k to obtain the final FuSeISC maps shown

in the previous section. First, we ran FuSeISC for several values of k and plotted

the total number of clusters for each result. Then, we found the range of stable

values of k leading to a constant number of clusters. Fig. 7(A) shows the total

number of clusters found for real ICBM and StudyForrest data sets as a function

of a neighborhood size k. Interestingly, the curves were highly similar to each

other. With small k-values, the number of clusters was high but the number

decreases rapidly as k became larger. When k ≥ 230, the number of clusters in

the ICBM data stabilized around 20. For the StudyForrest data, the number of

clusters in a stable region was approximately the same.

In addition, we computed ARI between results obtained for different values

of k. In the resulting stability matrix, a high ARI value indicates that the

segmentation result is stable, i.e., similar for two different choices of k. Figures

7(B) and (C) show the ARI stability matrices for the StudyForrest data and

ICBM data, respectively. For both data sets, clustering solutions started to

stabilize when k was relatively large (red color in the stability matrix indicates

high similarity between the results computed for different values of k). The ARI

values of the StudyForrest data were slightly lower than those of the ICBM data,

which is expected because the spatial resolution (and the total number of voxels)

in the StudyForrest data was notably higher.

Based on the above findings, we selected one of the stable solutions from

both data sets for closer inspection (k = 250 for the ICBM data and k = 230 for
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Figure 5: Functional segmentation of the ICBM data: (A) clusters with lowest ISC vari-
ability, and (B) clusters with highest ISC variability relative to the mean. The axial slices
are presented and labeled with millimeters in the MNI coordinates. For the abbreviations of
the brain region names and the spatial coordinates of the cluster centers, see supplementary
material (Section 1, Tables S1 and S3).
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Figure 6: “Building blocks” of the clusters found in the ICBM data: (A) ISC features of
clusters with lowest variability, and (B) ISC features of clusters with highest variability. Note
that the clusters are ordered according to the total (relative) variability across the tasks,
meaning that the heights of the variability bars are in the increasing order. The feature
values shown in the bars correspond to the distribution (mean) parameters of the GMM. The
grayscale corresponds to tasks of interest, and the color code corresponds to clusters shown
in Fig. 5. See Table S1 in supplementary material for the abbreviations of the brain region
names.
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Figure 7: The effect of neighborhood size for the clustering results of the fMRI data: A)
Total number of clusters of the ICBM and StudyForrest data, B) ARI stability matrix of the
StudyForrest data, and C) ARI stability matrix of the ICBM data.
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the StudyForrest data). In these solutions, the exact number of clusters was 19

for the ICBM data and 21 for the StudyForrest data. After postprocessing, the

total number of clusters was 14 for the ICBM data and 13 for the StudyForrest

data.

Simulated ICBM data

To further validate our approach, we analyzed the simulated ICBM data

and compared the results with the ground truth. Figure 8(A) presents the

performance of the functional segmentation for the simulated ICBM data against

the ground truth as a function of the neighborhood size k. For a wide range

of parameters, ARI values resulted in “moderate agreement” (ARI between

0.4–0.6) between the ground truth and the estimated cluster labeling computed

across the 72,577 voxels that were activated in the ground truth for at least one

task. However, to make the clustering task realistic, FuSeISC was run across

the entire brain involving 449,612 voxels.

Figure 8: Results of the FuSeISC for the simulated ICBM data: A) clustering quality, B)
total number of clusters, C) stability of the results, and D) an example slice showing spatial
organization of the clusters (both ground truth and estimated clusters are shown).

Figure 8(B) shows the total number of clusters as a function of k. Clearly, the
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curve shows a region of constant number of clusters (20) when 200 ≤ k ≤ 250.

This result corresponded well with the real-data results (see Fig. 7B), where

the stable regions also consisted of about 20 clusters.

The ARI stability matrix of the solutions in Figure 8(C) shows the similarity

between segmentation results computed for different values of k. Clearly, seg-

mentation results were stable within the aforementioned constant region, since

the ARI values were high.

Figure 8(D) shows a spatial organization of the clusters for one stable result

(k = 225) and one axial slice (z = 6.0 mm in MNI). The ground-truth seg-

mentation (left) and the estimated segmentation (right) are shown side by side

to allow comparison. Based on visual inspection, the estimated segmentation

resembles the true segmentation in most regions very well.

Results for ICBM data sets composed of different subjects

We also run FuSeISC for the two ICBM data sets consisting of different sub-

jects (ICBM37#1 and ICBM37#2) and compared the obtained segmentations.

Fig. 9 shows the spatial maps of both segmentations side-by-side; we show

postprocessed segmentations, where white-matter and CSF clusters are elimi-

nated, to simplify comparison. The corresponding raw segmentation results are

available in Fig. S9 (Section 8 in supplementary material). To compare clusters

between the data sets, we computed the Dice index (Dice, 1945) values between

all the clusters in the two data sets (see Section 2 in supplementary material

for details of the Dice index) and then used a Munkres assignment algorithm

(Munkres, 1957) to match the clusters with each other. The Dice index val-

ues between the clusters are shown next to a color bar (“NaN” means that the

corresponding cluster is present only in the leftmost data set). In many brain

areas, the segmentation was visually very similar across the two data sets. The

Dice index values between the clusters varied between 0.2–0.8. Using the same

categorization for the Dice index as in Pajula et al. (2012), this result indicates

slight to substantial agreement between individual clusters. The ARI value com-

puted across the whole brain (228,483 voxels) between the two segmentations
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was 0.30.

Figure 9: Functional segmentation result (k = 250) of (A) ICBM data set with 37 subjects,
and (B) ICBM data set with another 37 subjects. The cortical segmentation in the two
data sets is relatively similar. Clusters in the two data sets are matched using the Munkres
assignment algorithm. Similarity between the clusters according to the Dice index is shown
next to the color bar, “NaN” meaning that the corresponding cluster is present only in the
leftmost data set. Postprocessing was used to emphasize similarities and differences between
the results in the cortical areas. The corresponding raw segmentation results are provided in
Fig. S9 (Section 8 in supplementary material).

Table 3 shows how the number of clusters in the FuSeISC results depends

on the number of subjects used in the analysis. For both simulated and real

ICBM data sets, the number of clusters increased together with the number of

subjects. This result is plausible because the complexity of the data increases

together with the number of subjects. For a fixed number of subjects, the

number of clusters was quite similar across all three data sets. Slightly fewer

clusters were found for the simulated data, as can be expected because we

did not include ISC variability which is present in the real data. Table 3 also

shows that the ARI values between the data sets containing different numbers

of subjects varied between 0.27–0.52. For more detailed comparison between

the clustering results with different number of subjects, see the spatial maps

and cluster-wise similarities for the real ICBM data#2 in Figs. S10–S12 (see

Section 8 in supplementary material).
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Table 3: Effect of subject set size for the number of clusters found and ARI. Results for both
simulated (sim) and real ICBM data sets (data#1 and data#2) are presented. ARI values
for the real data sets were computed across the whole brain (228,483 voxels), and ARI values
for the simulated data were computed across the activated brain areas (72,577 voxels). The
neighborhood size used in the analysis was k=225 according to the previous simulation results.
Spatial maps for more detailed comparison are available for the results marked with asterisks
(Figs. S10–S12, see Section 8 in supplementary material).

Number of clusters sim data#1 data#2
ICBM15 9 14 12
ICBM25 16 15 18
ICBM37 19 23 22
ARI between data sets sim data#1 data#2
ICBM37 vs ICBM25 0.52 0.31 0.34*
ICBM37 vs ICBM15 0.30 0.27 0.31*
ICBM25 vs ICBM15 0.35 0.37 0.30*

Comparison between ICBM and resting-state data

To validate that spatial structures found by FuSeISC result from stimulus-

related brain activity, we also run FuSeISC with rfMRI data and compared the

obtained segmentation with the ICBM data. Figure 10 shows segmentation

results of both rfMRI (A) and the ICBM data (B). Here, we did not discard

white-matter/CSF clusters as postprocessing to allow comparison of the seg-

mentations across the whole brain. The segmentation results of the rfMRI data

were very noisy whereas the segmentations of the ICBM data consisted of spa-

tially connected and/or symmetric segments. ARI value between the ICBM and

rfMRI data sets was 0.0, indicating disagreement between the segmentation re-

sults. Lack of spatial structure in the rfMRI suggests that connected/symmetric

clusters found in the ICBM and StudyForrest data sets reflect similar stimulus-

related brain activity across subjects rather than within-subject correlations

which are present in the fMRI data even in the absence of external stimuli.
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Figure 10: Functional segmentation result (k = 250) of (A) resting-state data, and (B) ICBM
data. The segments of the resting-state are grainy whereas the segments of the ICBM data are
spatially connected/symmetric. Clusters in the two data sets are matched using the Munkres
assignment algorithm. Similarity between the clusters according to the dice index is shown
next to the color bar, “NaN” meaning that the corresponding cluster is present only in the
leftmost data set.

5. Discussion

5.1. Functional feasibility of the segmentation

The examination of the analysis results for the real fMRI data results in

a couple of observations. Functional segmentations of both StudyForrest and

ICBM data give an impression of a physiologically feasible division, with clusters

in auditory, visual, and frontal cortices. Many of the clusters were symmetric

between the hemispheres. Segmentations also seemed to delineate parts of the

resting-state network. Although this network is considered to be highly “intrin-

sic” (Golland et al., 2007), it can be expected to change its state time-locked to

the task demands and thereby show synchrony across subjects.

In FuSeISC, each cluster is characterized by its ISC mean and variability (bar

plots in Figs. 4 and 6). In the ICBM data, the mean ISC patterns reflected

well the expected brain areas involved in the tasks. Moreover, relative ISC

variability of the clusters reflected, to at least some extent, the level of processing

hierarchy in the brain. For instance in the StudyForrest data, clusters with
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high mean ISC but relatively low ISC variability were found in temporal lobes,

where the majority of low-level auditory processing takes place during auditory

stimuli. In contrast, clusters with higher relative ISC variability were found in

higher-order brain areas, such as in the prefrontal areas and in the frontal poles.

Based on visual inspection, the clusters were spatially relatively compact and/or

bilaterally symmetric, indicating that also clusters with high ISC variability

reflect real brain processing.8 This result is in line with recent studies indicating

that the across-individuals variability in the functional brain areas and their

connectivity carries meaningful information (Smith et al., 2014, Wang and Liu,

2014, Mueller et al., 2012, Gopal et al., 2016, Boldt et al., 2014, Zilles and

Amunts, 2013).

The clusters for the 5-task ICBM data set covered most of the convexial

and mesial cortices, thereby clearly extending the typical ISC maps that tend

to concentrate on early sensory processing areas where the inter-subject cor-

relations of fMRI time series are strongest because the activations are driven

by the low-level sensory features of the stimuli (Kauppi et al., 2010a). These

findings are in line with group-ICA results of fMRI obtained during natural

viewing: the reconstruction of individual time courses shows considerably more

inter-individual variability at, e.g., parieto-occipital sulcus than at early visual

cortices (Malinen et al., 2007). The 5-task ICBM data set used in this work has

been analyzed previously task-by-task for comparing the GLM and the conven-

tional ISC (Pajula et al., 2012) for the purpose of validation of the ISC method.

The analysis demonstrated that the active areas detected by the ISC (with no

knowledge of the reference time course for the stimuli) and GLM (with a ref-

erence time course) were highly overlapping. In this work, all the tasks were

analyzed jointly and one may thus ask whether the results would differ from

just a combination of task-wise analysis. The visually most apparent difference

was that the FuSeISC allowed the segmentation of visual cortex into multiple

8However, because of the higher spatial resolution of the fMRI recordings and sharper
smoothing kernel (with smaller FWHM) during the analysis, some of the clusters were spatially
more fragmented in StudyForrest than ICBM data.
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areas, as described in Results above, whereas in the conventional ISC analysis

all tasks including visual input (verb generation, oculomotor, hand imitation,

and external ordering) activated a large part of the visual cortex, with minor

differences between the tasks.

Inter-subject variability can arise from several sources, one of them being

between-subjects anatomical misalignment. To circumvent such challenges,

between-subject alignment methods based on functional responses have been

recently proposed (see Dubois and Adolphs (2016) for a review). In particular,

fMRI during movie viewing has been found efficient in achieving correspondence

via either maximizing inter-subject correlation (Sabuncu et al., 2010) or deriving

a common representational space between subjects (Haxby et al., 2011, Guntu-

palli et al., 2016). These methods effectively reduce inter-subject variability in

the data, but they may also mix spatial misalignment and intrinsic functional

variability (Dubois and Adolphs, 2016), and they are costly in terms of scanning

time. However, in future, functional segmentation methods might be developed

to separate different types of between-subject variability.

5.2. Methodological considerations

Many cluster analysis techniques have been previously proposed for the func-

tional segmentation of the human brain on the basis of fMRI data (Goutte et al.,

1999, Craddock et al., 2012, van den Heuvel et al., 2008, Maggioni et al., 2014,

Bellec et al., 2010, Blumensath et al., 2013, Eickhoff et al., 2016), but they have

certain limitations in the analysis of complex group-fMRI data collected under

diverse stimulation. Our method was particularly designed to address some of

the key problems. For instance, conventional functional segmentation meth-

ods construct group-level segmentations by averaging results across individuals,

ignoring inherent variability of brain functions across them. Importantly, Fu-

SeISC does not cluster time series of the subjects themselves, but it computes

and utilizes statistical information of the ISC features in clustering and this way

naturally accounts both for similarity and variability in hemodynamic responses

across subjects.
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Previously, a clustering framework based on a two-layer generative model

was introduced to account for inter-subject variability (Lashkari et al., 2012,

Thirion et al., 2014). Unlike our cluster model built on the ISC features, that

model utilizes information from the experimental setup. Wang et al. (2015)

constructed functional segmentations separately for individuals using an iter-

ative algorithm starting from the solution of the population atlas. While this

approach takes into account individual differences, visual inspection of individ-

ual brain maps is a tedious task. One benefit of FuSeISC is that integrates data

across all subjects and time series of interest into a single brain map and this

way summarizes heterogeneous data into a meaningful amount of information

for visual inspection.

Many existing functional segmentation methods constrain segmentation into

spatially local neighborhoods (see e.g. Blumensath et al. (2013), Craddock et al.

(2012)). FuSeISC does not assume that the clusters are spatially connected,

but voxels are clustered without information about their spatial locations. This

approach is plausible from neuroscientific perspective, as it allows to detect

spatially distributed clusters as well as clusters with strikingly different sizes.

Moreover, since spatial information is not used in the clustering process itself,

visual inspection of the spatial locations of the clusters as well as spatial com-

pactness of the clusters serves as a useful validation of the clustering outcome.

The spatially compact clusters in our analyses indicate that the obtained seg-

mentations reflect inherent structures of the fMRI data sets and not noise.

FuSeISC contains a user-definable parameter k which controls the coarseness

of segmentation. Technically, k is used to decide the number of neighbors in k-

NN lists and the subsequent optimally sparsified SNN graph. The graph, in turn,

was used as a basis to initialize the GMM to improve the estimation accuracy.

This way, k is only indirectly related the number of clusters that the clustering

algorithm produces. Based on our simulations with synthetic Gaussian data, the

value of k can be approximately interpreted as the number of voxels that each

cluster should minimally contain (see Section 4 in Supplementary material).

However, due to the complexity of real fMRI data, we proposed a systematic
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way to choose k based on the stability analysis of the number of clusters and

similarity of the segmentation solutions (see Figs. 7 and 8(B–C)). For the tested

data sets, the number of clusters stabilized close to 20 (irrespective of the data

set), which is in line with Wang et al. (2015). On the other hand, it is possible

that the number of found clusters varies notably between some data sets and

the number of time series chosen, as the choice of optimal k depends on the

intrinsic properties (size, shape, density and overlap of the clusters) of the data.

In the future, we aim to study FuSeISC with a higher number of data sets and

a different number of time series.

Smaller k values would result in more functional segments as illustrated in

Fig. 7(A). Thus, for more detailed parcellations, a smaller k could be used.

The smaller k values can be useful also to investigate some dedicated region of

interest, either defined based on neuroanatomy or on a more coarse functional

segmentation.

Due to the complex structure of the fMRI data, it is difficult to build an

appropriate functional segmentation model in a general case. To alleviate the

particular problems associated with the learning of the cluster model and selec-

tion of the total number of clusters, we proposed a new method based on SNN

graph construction to initialize the GMM (see Appendix A.1). The method was

successfully validated against the well-known methods K-means (MacQueen,

1967), K-means++ (Arthur and Vassilvitskii, 2007), Farthest first traversal al-

gorithm (Hochbaum and Shmoys, 1985, Gonzalez, 1985), Ward’s minimum vari-

ance method (Ward, 1963), and Affinity propagation (Frey and Dueck, 2007)

as well as its sparse version using simulated data sets containing Gaussian clus-

ters and outliers (see Section 3 in supplementary material). These techniques

were selected as they have been previously reported as useful in the initializa-

tion of the GMM, see for instance (Dueck, 2009, Dasgupta and Schulman, 2000,

Fraley and Raftery, 2002, Blömer and Bujna, 2013). Moreover, all these meth-

ods can be conveniently controlled with a single user parameter, making them

well-comparable against the proposed method. Although derived from a differ-

ent point of view, we found very close correspondence in the clustering quality
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between our method and the affinity propagation algorithm. This finding was

surprising and deserves further investigation. In any case, the benefit of our

method over affinity propagation and Ward’s minimum variance method is that

the full distance matrix needs not to be saved in the memory (even when spatial

constraints are not used), allowing a large-scale segmentation across the whole

brain without using spatial constraints.

FuSeISC is applicable for the analysis of large whole-brain multi-subject

fMRI data sets as we have demonstrated in this paper. With a high-end desk-

top computer, the computation of the segmentation for one choice of k is fea-

sible within 1–3 hours. However, we recommend optimizing the choice of k by

running the FuSeISC segmentation for several values of k, possibly in parallel.

When discarding a priori the voxels of the white-matter areas, brainstem and

ventricles, computation time drops considerably. In this case, it is possible to

evaluate several k values within few hours even without parallel processing.

The feature extraction step (involving computation of voxel-wise ISC matri-

ces between each subject and estimation of the Jackknife ISC mean and vari-

ability estimates) is straightforward to parallelize for each time series. Note that

when ISCs are computed between subjects using the ISC toolbox, there is no

need to estimate threshold values for the ISC statistic using a block-bootstrap

test, which is the computationally heaviest step in the conventional ISC analysis.

We have added more details about computational demands of the initialization

algorithm in the Appendix (see last section: Computational considerations).

5.3. Applications

In addition to being a tool for the spatial exploration of large fMRI data

sets obtained using naturalistic stimulation (such as movies), FuSeISC has other

potential applications. For example, it could be used to generate a functional

atlas, either for a certain region of interest or for the whole brain, based on

task-related fMRI.

This approach would be rather different than constructing atlases based

on resting-state fMRI (see Craddock et al. (2012) and references therein) as,
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for example, fMRI-based functional connectivity patterns markedly depend on

the brain state (Geerligs et al., 2015). As can be seen in Figs. 3 and 5, to

achieve a resolution level of the currently commonly used resting-state fMRI

atlases, a whole-brain atlas would require larger and more diverse data sets

than the ones applied in this work. However, combined with a high-resolution

fMRI of naturalistic experiments, our approach represents a novel line for future

research. In principle, FuSeISC is not sensitive to the type of stimulus presen-

tation, meaning that block-design, event-related, and naturalistic experiments

could be combined together (at least when fMRI of the same set of subjects is

acquired using the same scanner), partly facilitating atlas construction. Future

research should show to what extent data combination is practically feasible.

As demonstrated in Figs. 4 and 6, FuSeISC also provides specific information

about the ISC statistics of the time series of interest for each cluster, which can

be used to trace clusters back to stimulus features. This is potentially useful

if, for example, the multiple time series that form the input to FuSeISc are

recorded during different scenes of a movie. Rich annotations of the stimulus

sequence can then be used to relate clusters to different characteristics of the

stimulus, providing an additional vehicle to interpret the FuSeISC parcellation.

FuSeISC also allows for reverse analysis, i.e., going back from the found

clusters to the original ISC correlation matrices. The structures of the corre-

lation matrices provide more details how the brains of different subjects have

processed the same stimuli. For instance, high ISC variability may reflect sub-

groups of subjects who have dissimilar processing. Associating behavioral or

other non-brain data with these subgroups or correlation matrices themselves

(using, e.g., the Mantel test; see Salmi et al. (2013), Jääskeläinen et al. (2016))

could provide further insights into brain functions of different individuals.

Although FuSeISC is geared towards brain-imaging studies applying natural-

istic stimulation, it can be equally well applied to traditional fMRI studies where

the stimuli are strictly controlled. In the latter type of experiments, the results

have been similar with ISC and standard GLM analyses (Pajula et al., 2012,

Pajula and Tohka, 2014). However, it should be noted that the ISC method re-

39

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/057620doi: bioRxiv preprint first posted online Jun. 7, 2016; 

http://dx.doi.org/10.1101/057620
http://creativecommons.org/licenses/by-nc/4.0/


quires that the subjects received identical stimuli and therefore, FuSeISC is not

useful in segmenting resting-state fMRI data that can be analyzed for example

by using group-ICA (Beckmann et al., 2005, Kiviniemi et al., 2009).

6. Conclusions

We have proposed a new data-driven method, functional brain segmentation

using inter-subject correlation, FuSeISC, to analyze fMRI data sets collected

from a group of subjects who experience a variety of stimuli. The method seg-

regates brain areas based on the ISC information without explicit knowledge

of the stimuli. This way, FuSeISC clusters brain areas directly on the basis of

a single data set formed from a group of subjects. Each cluster is character-

ized by its spatial location as well as by its specific ISC mean and variability.

These properties make FuSeISC rather different from conventional functional

segmentation algorithms and ISC analysis methods designed for fMRI data.

The method is not only prominent for spatial exploration of large fMRI data

sets obtained using naturalistic stimuli, but has also other potential applica-

tions such as generation of a functional brain atlases including both lower- and

higher-order processing areas.
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Appendix A. Construction of initial Gaussian mixture model

Appendix A.1. Generation of candidate models

Here we describe a simple but efficient technique for restricting a set of initial

Gaussian mixture model (GMM) candidates a priori. To find good candidate

models, we capture intrinsic structure of the data by shared nearest-neighbor

(SNN) graphs (Jarvis and Patrick, 1973) (also called mutual nearest-neighbor

graphs). In the SNN graph, two data points are connected only if they belong

to each other’s k-nearest-neighbor sets. More formally, let us denote the set of

L data points in a d-dimensional feature space as D = {x1,x2, ...,xL} ⊂ Rd,

and let the set of the k-nearest neighbors9 of an arbitrary data point xm be

Nm. In the SNN graph G (D,E), the vertex set D contains all the data points

and the edge set E is given as follows (Jarvis and Patrick, 1973):

E =
{

(xm,xn)
∣∣xm ∈ Nn ∧ xn ∈ Nm

}
. (A.1)

Furthermore, we weight every edge in E of the SNN graph by counting the total

number of intersecting data points of the two nearest-neighbor sets:

w (xm,xn) = |Nn ∩Nm|. (A.2)

Note that by using this weighting scheme, the similarity between two connected

data points does not depend on their absolute distance but the similarity be-

tween data points is determined by the similarity of the k-nearest-neighbor sets

of these data points. This desirable property allows detection of clusters with

varying densities even in a high-dimensional feature space (Tan et al., 2014,

Ertöz et al., 2003, Houle et al., 2010). We also compute a degree for each data

point xm as the sum of the weights of edges connecting xm and its nearest

neighbors:

9A point is not its own neighbor, i.e. xm 6∈ Nm.
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deg (xm) =
∑

xn∈Nm

w (xm,xn) . (A.3)

Next, we form multiple candidate (sub)graphs through sparsification of the

weighted SNN graph. More specifically, to form a single candidate, we remove

all the edges associated with data points xm whose degree values are below a

selected threshold Tj . Several candidates are formed using multiple thresholds

Tj , for j = 1, 2, . . . , q.10 Thus, a final set of candidate graphs is:

AG = {G1 (D,E1) , G2 (D,E2) , ..., Gq (D,Eq)} ,

where the edge sets of the candidate graphs are:

Ej =
{

(xm,xn) ∈ E
∣∣deg (xm) , deg (xn) ≥ Tj

}
, (A.4)

for j = 1, 2, . . . , q. Finally, we locate the centers of the connected components

in each candidate graph:

µij = f (Pij) , (A.5)

for i = 1, 2, ..., hj . In this expression, µij denotes the center of the ith connected

component in the jth graph Gj , the set Pij contains all the data points associ-

ated with that component, and hj is the total number of connected components

in that graph. The function f (·) defines a center of a connected component in

a meaningful way. Our default choice for f (·) is the mean of the data points of

the Pij .

Appendix A.2. Choice of initial GMM

Given the candidate sets C1, C2, ..., Cq of the mean vectors, the next task is

to choose one set Cj =
{
µ1j ,µ2j , ...,µhjj

}
that represents all clusters in data.

10A most systematic approach is to construct as many candidates as there are distinct degree
values. Note that degree values are integers and the maximum possible value is k (k − 1).
Therefore, the number of distinct candidate graphs is q ≤ k (k − 1).
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Different criteria can be used for this purpose, including well-known Bayesian

information criterion (BIC) (Schwarz et al., 1978) or simple minimum sum-

of-squared error (SSE) criterion (minimum distance rule). In our tests with

synthetic noisy fMRI data, we found slightly more stable clustering results with

the SSE than BIC (see Section 5 in supplementary material) and therefore we

used SSE as the criterion in this paper.11

After selecting the best candidate set of mean vectors, we used the K-means

algorithm (MacQueen, 1967) to update the mean vectors and assign all the data

points to the clusters. Mixture weights were initialized by computing fractions

of the data points within the clusters and covariance matrices were estimated

from the data within the clusters. The obtained mean vectors, mixing weights

and covariance matrices formed our initial GMM.

Appendix A.3. Computational considerations

The construction of the k-NN graph in our initialization algorithm requires

computation of L2 distances, where L is the number of data points. Memory

requirement of the k-NN graph is O(Lk), which is not a problem since k � L in

practice. The computation time of the initialization algorithm is also dependent

on the number of sparsification thresholds evaluated, which in turn depends on

k and the properties of data. We have noted that for large data sets (which is

the case with the fMRI data), the evaluation of all sparsification thresholds is

computationally very heavy. Therefore, we use the following heuristic to analyze

fMRI data: At first, we evaluate the SSE for every kth sparsification threshold.

After this, we pick the best two SSE values, and evaluate all unique sparsification

threshold values between the two thresholds to improve the SSE. To further save

computation time, computationally most demanding steps (construction of the

k-NN graph, selection of the best sparsified SNN graph) of our initialization

algorithm are written in C language.

11We found out that the SSE criterion returns meaningful solutions in which all clusters
are represented by estimated centroids µ but these solutions did not trivially coincide with
the solutions having highest number of clusters in the formed candidate sets. This can be
explained by varying locations of estimated centroids between different candidate models.

43

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/057620doi: bioRxiv preprint first posted online Jun. 7, 2016; 

http://dx.doi.org/10.1101/057620
http://creativecommons.org/licenses/by-nc/4.0/


Author Contributions

Conceived and designed the experiments: JPK, JP, JT. Performed the ex-

periments: JPK, JP. Analyzed the data: JPK, RH, JT. Wrote the paper: JPK,

JP, RH, JT. Contributed new clustering algorithm: JPK, JN.

Acknowledgments

JPK was funded by the Academy of Finland Postdoctoral Researcher pro-

gram (Research Council for Natural Sciences and Engineering; grant number

286019).

RH was funded by the Finnish Cultural Foundation (Eminentia grant).

JT received funding from the Universidad Carlos III de Madrid, the Euro-

pean Union’s Seventh Framework Programme for research, technological devel-

opment and demonstration under grant agreement nr 600371, el Ministerio de

Economı́a y Competitividad (COFUND2013-40258) and Banco Santander.

Data collection and sharing for this project were provided in part by the In-

ternational Consortium for Brain Mapping (ICBM; Principal Investigator: John

Mazziotta, M.D., Ph.D.). ICBM funding was provided by the National Insti-

tute of Biomedical Imaging and BioEngineering. ICBM data are disseminated

by the Laboratory of Neuro Imaging at the University of Southern California.

The rfMRI data in this study were provided [in part] by the Human Con-

nectome Project, WU-Minn Consortium (Principal Investigators: David Van

Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes

and Centers that support the NIH Blueprint for Neuroscience Research; and by

the McDonnell Center for Systems Neuroscience at Washington University.

Conflicting interests

The authors declare no conflicting interests.

44

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/057620doi: bioRxiv preprint first posted online Jun. 7, 2016; 

http://dx.doi.org/10.1101/057620
http://creativecommons.org/licenses/by-nc/4.0/


References

Abrams, D. A., Ryali, S., Chen, T., Chordia, P., Khouzam, A., Levitin, D. J.,

and Menon, V. (2013). Inter-subject synchronization of brain responses during

natural music listening. Eur J Neurosci, 37(9):1458–1469.

Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful

seeding. In Proc Symp Discrete Algorithms, pages 1027–1035.

Beckmann, C. F., DeLuca, M., Devlin, J. T., and Smith, S. M. (2005). Investi-

gations into resting-state connectivity using independent component analysis.

Philos Trans R Soc Lond B Biol Sci, 360(1457):1001–1013.

Bellec, P., Rosa-Neto, P., Lyttelton, O. C., Benali, H., and Evans, A. C. (2010).

Multi-level bootstrap analysis of stable clusters in resting-state fMRI. Neu-

roImage, 51(3):1126–1139.
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Tanskanen, T., Näsänen, R., Ojanpää, H., and Hari, R. (2007). Face recognition

and cortical responses: effect of stimulus duration. NeuroImage, 35(4):1636–

1644.

Thirion, B., Varoquaux, G., Dohmatob, E., and Poline, J.-B. (2014). Which

fMRI clustering gives good brain parcellations? Front Neurosci, 8.

Tolhurst, D., Movshon, J. A., and Thompson, I. (1981). The dependence of

response amplitude and variance of cat visual cortical neurones on stimulus

contrast. Exp Brain Res, 41(3-4):414–419.

Trost, W., Frühholz, S., Cochrane, T., Cojan, Y., and Vuilleumier, P. (2015).

Temporal dynamics of musical emotions examined through intersubject syn-

chrony of brain activity. Soc Cogn Affect Neurosci, 10(12):1705–1721.

van den Heuvel, M., Mandl, R., and Hulshoff Pol, H. (2008). Normalized cut

group clustering of resting-state fMRI data. PLOS ONE, 3(4):e2001.

Wang, D., Buckner, R. L., Fox, M. D., Holt, D. J., Holmes, A. J., Stoecklein,

S., Langs, G., Pan, R., Qian, T., Li, K., et al. (2015). Parcellating cortical

functional networks in individuals. Nature Neurosci, 18:1853—-1860.

Wang, D. and Liu, H. (2014). Functional connectivity architecture of the human

brain not all the same. Neuroscientist, 20(5):432–438.

Ward, J. (1963). Hierarchical grouping to optimize an objective function. J Am

Stat Ass, 58(301):236–244.

Wilson, S. M., Molnar-Szakacs, I., and Iacoboni, M. (2008). Beyond superior

temporal cortex: Intersubject correlations in narrative speech comprehension.

Cereb Cortex, 18(1):230–242.

Xu, L. and Jordan, M. I. (1996). On convergence properties of the EM algorithm

for Gaussian mixtures. Neural Comput, 8(1):129–151.

Zilles, K. and Amunts, K. (2013). Individual variability is not noise. Trends

Cogn Sci, 17(4):153 – 155.

52

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/057620doi: bioRxiv preprint first posted online Jun. 7, 2016; 

http://dx.doi.org/10.1101/057620
http://creativecommons.org/licenses/by-nc/4.0/

