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Most variation in behavior has a genetic basis, but the processes
determining the level of diversity at behavioral loci are largely
unknown for natural populations. Expression of arginine vasopressin
receptor 1a (Avpr1a) and oxytocin receptor (Oxtr) in specific regions
of the brain regulates diverse social and reproductive behaviors in
mammals, including humans. That these genes have important fitness
consequences and that natural populations contain extensive diver-
sity at these loci implies the action of balancing selection. In Myodes
glareolus, Avpr1a and Oxtr each contain a polymorphic microsatellite
locus located in their 5′ regulatory region (the regulatory region-
associated microsatellite, RRAM) that likely regulates gene expres-
sion. To test the hypothesis that balancing selection maintains diver-
sity at behavioral loci, we released artificially bred females and males
with different RRAM allele lengths into field enclosures that differed
in population density. The length of Avpr1a and Oxtr RRAMs was
associated with reproductive success, but population density and the
sex interacted to determine the optimal genotype. In general, longer
Avpr1a RRAMs were more beneficial for males, and shorter RRAMs
were more beneficial for females; the opposite was true for Oxtr
RRAMs. Moreover, Avpr1a RRAM allele length is correlated with
the reproductive success of the sexes during different phases of re-
production; for males, RRAM length correlated with the numbers of
newborn offspring, but for females selection was evident on the
number of weaned offspring. This report of density-dependence
and sexual antagonism acting on loci within the arginine vasopres-
sin–oxytocin pathway explains how genetic diversity at Avpr1a and
Oxtr could be maintained in natural populations.

Avpr1a | Oxtr | sexual conflict | density-dependent selection |
Myodes glareolus

Most variation in behavior has a substantial genetic basis.
Identifying loci that underpin the expression of behavior is

central to our understanding of the evolution and adaptive signifi-
cance of behavioral diversity (1, 2). Although many studies have
found an association between genotype and behavior (2–4), few
have quantified the eco-evolutionary dynamics of these genetic
polymorphisms. A corollary of the diversity of behaviors exhibited in
wild populations is the action of balancing selection (3, 5), a general
term for mechanisms that promote fitness of alternate genotypes,
including density-dependent selection (1), negative frequency-
dependent selection (6), heterozygote advantage (7), and sexual
antagonism (8, 9). Density- and frequency-dependent selection, for
example, can maintain polymorphisms at the foraging gene in lab-
oratory populations of Drosophila melanogaster (1, 10). However,
the lack of evidence for the conditions that drive balancing selection
on behavioral loci in natural settings creates a challenge to behav-
ioral genetics in understanding the dynamics of behavioral loci in
real-world scenarios. Genes within the arginine vasopressin–oxyto-
cin pathway present a classic opportunity to meet this challenge; its
constituent loci have been subject to extensive study because they
exert major effects on animal behavior (5, 11, 12).
The neurotransmitters vasopressin and oxytocin are evolution-

arily conserved, with the vasopressin–oxytocin pathway regulating
social and reproductive behaviors in many mammals including
humans (5, 11, 13, 14). The behaviors associated with vasopressin

and oxytocin are often mediated by the density of their receptors,
notably arginine vasopressin receptor 1a (V1aR) and oxytocin re-
ceptor (OTR), in specific regions of the brain (5, 11–13). The
genetic basis of the variation in V1aR density and its concomitant
effect on behavior has been studied comprehensively in microtine
voles (5, 15–17). In the prairie vole Microtus ochrogaster, arginine
vasopressin receptor 1a (Avpr1a) expression and V1aR density in
specific regions of the brain correlate with allele length at a reg-
ulatory region-associated microsatellite (RRAM) located in the 5′
regulatory region of the Avpr1a gene (15, 16), and longer Avpr1a
RRAM alleles are associated with greater partner preference and
male parental care in the laboratory (15). This intraspecific pattern
of an association between Avpr1a RRAM allele length and V1aR
expression in the brain and/or socio-reproductive behavior extends
to other mammals. In chimpanzees, genetic diversity at one Avpr1a
RRAM locus is associated with sociality (18). In humans, allele
length at the Avpr1a RRAM locus RS3 is correlated with gene
expression in the hippocampus (19) and with male pair bonding
(14), altruism (19), and maternal behavior (20), whereas allele
length at a second Avpr1a RRAM locus (RS1) correlates with
autism and promoter activity (21). An association between RRAM
allele length and transcriptional activity is not unique to Avpr1a
and has been shown in other genes and in diverse taxa (22, 23).
In contrast to Avpr1a, no genetic polymorphism in the 5′ reg-

ulatory region of the oxytocin receptor (Oxtr) that associates with
variation in OTR density in the brain has been identified. None-
theless, the region ∼1–5 kbp upstream of Oxtr is important for the
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regulation of this gene’s expression (24, 25), and other studies
have found an association between behavior and SNPs within an
intron or in the 3′ UTR of Oxtr (26, 27). Moreover, there is ap-
preciable variation in OTR density within and among rodents (12,
28). Variation of OTR density in the nucleus accumbens is asso-
ciated with partner preference and maternal care in prairie vole
females, such that individuals with higher OTR density show more
alloparental care than individuals with lower OTR densities (29).
In short, many studies have provided convincing evidence that
variation in Oxtr expression has a prominent role in regulating
social and sexual behavior in many animals (30, 31).
Polymorphisms at the Avpr1a RRAM are associated with the

reproductive success of rodents in the laboratory (32) and in
some (5, 33, 34), but not all (17), field experiments. There have
been few attempts to quantify the fitness consequences of poly-
morphisms at the Oxtr regulatory region, or indeed the natural
levels of genetic diversity, at this locus. Nonetheless, the exten-
sive variation in OTR density in the brains of male prairie voles
presumably impacts fitness, because the distribution of OTR
density in the brain predicts male mating success (12). Di-
rectional selection is expected to erode fitness-associated genetic
diversity toward an optimum value (35), but wild rodent pop-
ulations contain extensive standing genetic variation, at least at
Avpr1a. For example, wild prairie vole populations have more
than 15 alleles at the Avpr1a RRAM locus (15, 17, 33, 34), and
Okhovat et al. (5) identified an excess of intermediate-frequency
alleles at nucleotide sites within Avpr1a as compared with pu-
tative neutral loci. A combination of putative fitness effects and
extensive genetic and phenotypic diversity at Avpr1a and Oxtr are
compelling evidence for the action of balancing selection.
However, experimental manipulations that explicitly test this
prediction are lacking (5).
In line with a well-established gene–brain–behavior model in

rodents (5, 11, 15, 16) and in primates (19, 36), the bank vole
Myodes glareolus presents a good model to study selection operating
on polymorphisms in the regulatory regions of Avpr1a and Oxtr (SI
Materials and Methods). Here, we quantify the roles of sex and
population density in determining the fitness of bank voles with
different genotypes at Avpr1a and Oxtr. Assessing the role of sex
follows the predominantly sexually divergent roles adopted by loci
within the vasopressin–oxytocin pathway: variation in V1aR density
in the brain typically is associated with the expression of behaviors
in males that include spatial memory, mating behavior, offspring
care, and aggressiveness (5, 15, 37), whereas variation in OTR
density in the brain is associated more with female behaviors, such
as maternal aggression, mother–infant bonding, and same-sex social
interactions (30, 38, 39). Quantifying whether there is an interaction
between genotype and population density is an extension of the
ecology of many species, notably the prairie vole (40) and the bank
vole (41), whose populations naturally experience periodic fluctu-
ations in density that alter the extent of intraspecific competition,
e.g., for food and breeding territories (41). Bank voles experience a
decrease in reproductive success and survival probability as pop-
ulation density increases, and thus environmental heterogeneity can
favor alternate genotypes (42). To determine whether balancing
selection can maintain high standing genetic variation, we first used
artificial selection to create sufficient numbers of bank voles with
distinct genotypes at RRAM loci for both Avpr1a andOxtr. Next, we
allowed animals to compete naturally for territories and mates, and
then we quantified the fitness components of different genotypes.

Results
Genetic Diversity and Gene Expression. Both Avpr1a and Oxtr
RRAM loci exhibit high levels of genetic variation in natural bank
vole populations. After genotyping 325 individuals, we observed
31 alleles at the Avpr1aRRAM that varied between 460 and 528 bp
in length and that had a qualitatively normal distribution around the
most frequent alleles, which were between 496 bp and 502 bp long

(Fig. S1A). At the Oxtr RRAM, we uncovered 24 alleles that varied
between 264 and 310 bp in length, with the most frequent alleles
being between 286 and 290 bp in length (Fig. S1B).
In Oxtr RRAM loci, gene expression was sex-specific in different

regions of the brain (P = 0.019) (Fig. 1, Fig. S2, and Tables S1 and
S2), and the association between Oxtr RRAM allele lengths and
gene expression interacted with brain regions (P = 0.004) (Fig. 1,
Fig. S2, and Tables S1 and S2). Longer Oxtr RRAM alleles were
associated with increased gene expression in the olfactory bulbs
(Fig. 1A) and in the midbrain of females (Fig. 1B). At Avpr1a
RRAM loci, expression differed in brain regions in females (P <
0.001) (Fig. 1, Fig. S2, and Tables S1 and S2): Longer Avpr1a
RRAM alleles were associated with increased gene expression in
the caudal forebrain (Fig. 1C) and decreased gene expression in the
midbrain (Fig. 1D).

Effect of Avpr1a and Oxtr RRAM Genotype upon Fitness.We released
more than 300 mature bank voles (Avpr1a, n = 180; Oxtr, n = 138)
with different Avpr1a and Oxtr RRAM genotypes into experi-
mental field populations (Avpr1a, n = 13; Oxtr, n = 16) that
contained an equal number of voles of each genotype. These ani-
mals were allowed to compete and reproduce at high and low
population densities (SI Materials and Methods, Field Experiments).
We observed that RRAM allele length at both loci had a signifi-
cant effect on reproductive success that was contingent on both
sex and population density (Figs. 2 and 3, Table 1, and Table S3).
Females with longer Avpr1a RRAM alleles produced signifi-

cantly more offspring that survived to recruitment (weaned off-
spring) at high population density (P = 0.009 allele length ×
density) (Table 1 and Table S3); more precisely, an ∼20 bp in-
crease in Avpr1a RRAM allele length corresponds to an addi-
tional recruitment of one offspring per female at high population

Fig. 1. Significant associations between gene expression (ln-transformed) of
Oxtr (A and B) and Avpr1a (C and D) and RRAM allele lengths in the olfactory
bulbs (A), the midbrain (B and D), and the caudal forebrain (C) of the bank
vole. White circles and dashed lines represent females, and black circles and
solid lines represent males. See Fig. S2 and Tables S1 and S2 for full details of
statistical tests of gene expression in all brain regions and Fig. S4 for illustra-
tion of brain regions. Significant sex-specific associations according to linear
models (Table S2) are indicated by asterisks.
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density. Male reproductive success also showed an interaction of
population density ×Avpr1aRRAM allele length, but with the main
effect operating on the number of sired offspring (newborn animals)
(P = 0.011) (Table 1 and Table S3), not the number of recruited
offspring (P = 0.130) (Table 1 and Table S3). At high density, an
∼30 bp increase in Avpr1a RRAM allele length in males corre-
sponded to the production of one more newborn offspring, but
Avpr1a genotype had no apparent fitness effect at low density. Oxtr
had a significant impact only on male reproductive success at low
population density; males with shorter alleles sired more offspring
(P < 0.001 for allele length; P = 0.011 for allele length × density)
(Fig. 3D, Table 1, and Table S3) and achieved more recruited
offspring (P < 0.001 for allele length; P = 0.002 for allele length ×
density) (Fig. 3E, Table 1, and Table S3). In effect, reducing a male
Oxtr genotype by about 20 bp corresponds to an increase in fitness
of one additional recruited offspring at the low population density.
Additional evidence for sex-specific optima was apparent by

quantifying the lengths of the maternal and paternal alleles in the
offspring (Fig. 2). There was a trend to produce offspring with
longer RRAM alleles at a high population density (Fig. S3), al-
though this density effect was significant only for Avpr1a (Table
S4). At both high and low population densities, offspring inherited
significantly longer Avpr1a alleles from males than from females
(P < 0.001 for origin of allele) (Fig. 2 A and B and Table S4). At
Oxtr, we found the opposite pattern, with offspring inheriting
significantly longer RRAM alleles from their mothers than from
their fathers (P = 0.004 for origin of allele) (Fig. 2 C and D and
Table S4). These results indicate sex-specific fitness optima for
both Avpr1a and Oxtr alleles.

Discussion
Genes within the arginine vasopressin–oxytocin pathway provide
some of the best-studied models of the link from gene to brain to
socio-sexual behavior (5, 11–14), but the mechanisms that can
maintain high phenotypic and genetic variation in these loci are
not known (5). Our field experiments show how RRAM genotypes
at both Avpr1a and Oxtr affect reproductive success, in agreement
with some work on the Avpr1a RRAM in the prairie vole (33, 34),
and provide insight into the dynamics of the Oxtr locus. The major
advance in understanding the eco-evolutionary dynamics of the
arginine vasopressin–oxytocin pathway is that both loci have sex-
and population density-specific fitness optima. Genetic diversity at
these loci thus has adaptive relevance in natural settings and is
likely maintained by balancing selection.
That sex and population density interact to vary the fitness

optima for alleles at Avpr1a and Oxtr RRAM loci provides
plausible mechanisms for the maintenance of genetic diversity
at these loci (33, 34). Apparent functional divergence between
sexes can maintain polymorphisms by generating different op-
timal trait values between the sexes via sexual antagonism
(8, 9). A taxonomically widespread influence of sexually an-
tagonistic alleles is supported by empirical studies on quanti-
tative traits (e.g., testosterone level, body size) (6, 43) and at
specific loci (44–46). Some authors have argued that sexual
antagonism alone may be insufficient to account for most
natural patterns of genetic diversity (6) but that instead some
interaction with changes in social environment, such as fluc-
tuation in population density, is required (6, 42).
Changes in population density (40, 41) can impact components of

fitness through intraspecific competition (e.g., for food, mates, and
territories). Competitive interactions for resources are often resolved
by an individual’s level of aggression, a behavior regulated by Avpr1a
and Oxtr (13, 47). Interestingly, male prairie voles with divergent
Avpr1a genotypes enjoy similar overall fitness that is achieved via
different mechanisms, being associated with either an apparent ca-
pability to monopolize a female partner or increased extra-pair fer-
tilization (5). Okhovat et al. (5) suggested that population density
could dictate the strength and direction of selection acting on di-
vergent Avpr1a genotypes, with population density cycles thus
maintaining genetic diversity. Therefore it is relevant that we ob-
served an interaction between population density and Avpr1a
RRAM allele length in bank voles, in contrast to a field study on
prairie voles in which males with shorter Avpr1a RRAM alleles
enjoyed greater reproductive success irrespective of density treat-
ment (33), likely a response to the greater competition at high
population density. More generally, high population density selects
for longer alleles at both loci and in both sexes of the bank vole (Fig.
2). By analogy, these results imply selection for increased gene ex-
pression (15, 17, 19, 21), raising the possibility that the optimum
female Avpr1a genotype at high population density represents a shift
toward the male optimum genotype, and the male allelic optimum
for Oxtr at high population density represents a shift toward the fe-
male optimum (Fig. 2). Conversely, there is the possibility of sex-
specific gene expression associated with genotype (e.g., Avpr1a in the
midbrain) (Fig. 1D) and for still further fine-scale variation in V1aR
and OTR receptor density in the brain (12, 15). Indeed, no associ-
ation between genotype and behavior was identified in female prairie
voles at Avpr1a (15). Processes such as the activation of hormone
receptors can drive sex-specific gene expression; for example, es-
trogen receptor mediates the transcriptional activity of many genes,
including the expression ofOxtr (48). Nonetheless, examining several
processes in tandem demonstrates how intralocus sexual conflict can
be dynamic through an interrelationship with the social environment
(6, 42). Interactions between different mechanisms of balancing se-
lection have a fundamental role in maintaining diversity.
Intraspecific interactions determine reproductive success, but the

severity and timing of competition often differ between sexes (6, 35,

Fig. 2. Sex-specific and density-dependent selection of Avpr1a and Oxtr loci
in the field. Mean lengths (bp ± 1 SE) of the paternally (black circles) and
maternally (white circles) derived alleles at Avpr1a (A and B) and Oxtr (C and
D) RRAM loci in bank vole offspring produced at high and low population
densities. Newborn offspring are shown in A and C; recruited offspring are
shown in B and D. Reproductively successful males had significantly longer
Avpr1a alleles than females, whereas the opposite pattern was observed for
Oxtr allele lengths. Furthermore, increasing population density selected for
longer Avpr1a alleles in both sexes. The mean Avpr1a (A and B) and Oxtr (C
and D) RRAM allele lengths in the parental generation are shown as solid
(males) and dashed (females) lines.
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41, 49, 50). Quantifying the numbers of offspring from birth to re-
cruitment revealed sex-specific timing of selection acting on Avpr1a.
Bank vole males do not perform parental care, and male re-
productive success is determined primarily by intrasexual competition
for mating opportunities when males establish a dominance hierarchy
(41). Female bank voles compete intrasexually for breeding territories
and then protect and care for their young (41). Consistent with this
sexual dichotomy in natal care, Avpr1a RRAM allele length affects
the outcome of competition for mating opportunities in males (i.e.,
newborn offspring), whereas for females the critical period of selec-
tion on the Avpr1a genotype occurs during maternal care (i.e.,
weaning). Avpr1a genotypes associate with aggressive behavior (13),
but we do not know if this association is the mechanism by which
Avpr1a genotype affects intrasexual competition in bank voles. For
example, female choice may determine male reproductive success,
because laboratory studies indicate that female prairie voles prefer to
mate with males that have longer Avpr1a alleles (32). In females, our
data imply a role for the expression of behaviors associated with the
protection of offspring, e.g., from infanticide by intruders (51), and/or
mother–offspring social dynamics rather than intrasexual competition
for territories. In bank voles, the Avpr1a and Oxtr genotype impacts
the outcome of sexual interactions in nature, but with the timing and
mechanisms differing between sexes indicating pleiotropy.
Variation in Oxtr expression is associated typically with maternal

affiliative behavior (30, 38) and aggression (39). Despite sex-specific
fitness optima for Oxtr, the nonsignificant association between female
Oxtr RRAM allele length and reproductive success indicates that
other factors, e.g., environmental plasticity or epistatic interactions of
gene networks, have a greater role in driving female reproductive
success in the wild. Nonetheless, our data indicate that Avpr1a has a
prominent role underlying female reproductive success, counter to
laboratory studies on prairie voles (15) but consistent with work on
other rodents (39) and in humans (20). Conversely, the significant
role of Oxtr in determining male bank vole reproductive success adds
support to evidence that OTR density in the brain predicts mating
tactics and reproductive success in male prairie voles (12). Indeed,
greater oxytocin induces partner-preference formation (30). How-
ever, in bank voles, longer Oxtr alleles appear costly for males, es-
pecially at low population density; this difference presumably reflects
the promiscuous and monogamous mating systems of bank voles
and prairie voles, respectively. In short, we find no evidence that
this gene has stereotyped sex-limited fitness effects.

That genetic diversity at both RRAM loci affects fitness shows
how polymorphisms in microsatellite allele length can represent
important functional genetic variation. This finding is consistent
with evidence that microsatellites often are associated with gene-
regulatory elements (52). Changes in microsatellite allele length may
alter the position of regulatory DNA motifs, such as transcription
factor-binding sites. Positional changes in regulatory motifs can alter
transcriptional activity (23, 53) and represent one mechanism by
which changes in microsatellite length can affect gene expression.
Microsatellite allele length is associated with the level of expression
of many genes (4, 23), including Avpr1a in several vertebrates (17,
21, 54). Of course, regulation of gene expression extends to genomic
features beyond the action of microsatellite allele length, even at
Avpr1a. For example, Turner et al. (55) did not find a correlation
between RRAM allele length and V1aR brain expression in an in-
terspecific comparison of deer mice (Peromyscus) species. More
specifically, a detailed functional genetic analysis of Avpr1a in the
prairie vole uncovered how SNPs and methylation of CpG sites
affect gene expression of V1aR in the brain and associated male
socio-sexual behaviors (5). Multifaceted control of gene expression,
both genetic and epigenetic, may explain the failure to establish a
link between Avpr1a RRAM length and behavior, such as fidelity, in
some field studies on prairie voles (17, 33, 56) and the variation in
gene expression among similar RRAM genotypes (Fig. 1 and Fig.
S2). Indeed, the failure to maintain a significant association between
candidate genetic polymorphisms and behavior across different
populations highlights the substantial challenge in quantifying evo-
lutionary dynamics at behavioral loci in wild populations (57).
Uncovering the mechanism(s) by which the Oxtr and Avpr1a

RRAMs might affect gene expression in the bank vole and identi-
fying the influence of other potential modifiers of gene expression
require detailed functional genomic analyses. Nonetheless, an anal-
ogous influence of sex and population density on the two genes Oxtr
andAvpr1a is convincing support of a direct influence of allele length.
What is most relevant for our understanding of the eco-evolutionary
dynamics of Avpr1a and Oxtr in natural bank vole populations is that,
although these loci having duplicated and then adopted more spe-
cialized roles in mammals over roughly 100 Mya (58), both density-
dependent selection and sexual antagonism act on both loci.

Materials and Methods
Model Species. The bank vole, M. glareolus, is a small rodent that inhabits
forests and fields in the Palearctic; its distribution extends from Europe into

Fig. 3. Effect of sex and population density (solid
trend lines and black circles indicate high density;
white circles and dashed trend lines indicate low
density) upon variation in fitness components of dif-
ferent RRAM genotypes at Avpr1a (A–C) and Oxtr (D
and E). (A) Longer Avpr1a RRAM alleles are associated
with more newborn offspring in males at high pop-
ulation density. (B and C) Longer Avpr1a RRAM alleles
are associated with more recruited offspring (B) and
greater recruitment success (the ratio of the number
of recruited offspring to the number of newborn
offspring) (C) in females. (D and E) For Oxtr, shorter
RRAM alleles were associated with greater numbers
of newborn (D) and recruited (E) offspring in males at
low population density. Allele lengths are shown as
population-centered values of the mean length for
each sex. Symbols indicate the sex that is included in
the plot; only data with a significant interaction be-
tween allele length and density are shown (see Table 1
and Table S3). Significant effects of allele length in
densitywise GLMM analyses are indicated by asterisks.
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western Siberia (41). Female bank voles are philopatric and defend their
breeding territories; males are more dispersive and do not make provision for
their young; both sexes mate multiply (41).

Avpr1a and Oxtr. M. glareolus contains microsatellite loci in the 5′ regulatory
region (i.e., RRAM) of both Avpr1a and Oxtr (SI Materials and Methods, Se-
quencing the Coding Sequence and 5′ Regulatory Region of Avpr1a and Oxtr in
the Bank Vole and Table S5). At Avpr1a, the RRAM consists of (CA) and (GA) di-
nucleotide motifs and is located ∼920 bp upstream of Avpr1a exon 1. The Avpr1a
RRAM appears conserved in many rodents; e.g., a RRAM that also is rich in (CA)
and/or (GA) motifs is located some 903, 963, 965, and 980 nt upstream of Avpr1a
exon 1 in the prairie vole (15, 16), mouse, Norway rat, and in eight species of deer
mice (55), respectively. The Oxtr RRAM in the bank vole comprises a mixture of
predominantly (CT)n/(GA)n dinucleotide motifs that are located immediately
(∼10 bp) upstream of the oxytocin receptor transcript variant X1 and 1,448 bp
upstream of the oxytocin receptor transcription start site in Mus musculus.

To quantify natural levels of polymorphisms in theAvpr1a andOxtrRRAM loci,
we caught 325 wild bank voles from central Finland from 20 trapping locations
that were scattered over an area of ∼100 km2. All animals were genotyped using
the primers and PCR conditions described in SI Materials and Methods, Geno-
typing of Avpr1a and Oxtr RRAM in the Bank Vole. The use of the animals
followed the principles of Directive 2010/63/EU (License no. ESAVI/3834/04.10.03/
2011) as well as all the institutional guidelines for animal research in Finland.

Selective Breeding of Animals with Distinct Avpr1a and Oxtr Genotypes. Individ-
uals with short (i.e., ≤484 bp and ≤274 bp in Avpr1a and Oxtr, respectively) and
long (i.e., ≥504 bp and ≥298 bp in Avpr1a and Oxtr, respectively) alleles at the
Avpr1a andOxtr RRAMwere rare in natural populations (Fig. S1). We therefore
used selective breeding to produce sufficient unrelated animals with short and
long alleles (as well as animals with medium-length alleles) at both loci (see SI
Materials and Methods, Breeding for Avpr1a and Oxtr Genotypes for details).
This procedure allowed us to balance each field enclosure with contrasting
genotypes, i.e., animals with short (S) alleles (Avpr1a: 460–484 bp; Oxtr: 264–
274 bp), medium (M) (Avpr1a: 486–504 bp Oxtr: 286–290), or long (L) alleles
(Avpr1a: 504–528 bp; Oxtr: 298–310 bp) as well as individuals with a combi-
nation of S and M (SM) alleles or L and M (LM) alleles.

Effect of Avpr1a and Oxtr RRAM Genotypes upon Reproductive Success. We de-
termined the relative effects of Avpr1a and Oxtr RRAM genotype, sex, and
population density on reproductive success under seminatural conditions in
outdoor enclosures at the Konnevesi Research Station, University of Jyväskylä
(62°37′N, 26°20′ E) (see SI Materials andMethods, Field Experiments for details).
To manipulate the degree of breeding selection among individuals, we estab-
lished higher- and lower-population-density treatments. Animals of opposite

sex with a common ancestor in the selective breeding pedigree were not re-
leased into the same enclosure to avoid possible inbreeding-avoidance effects.
For Avpr1a, the lower-population-density treatment (n = 8 populations) con-
tained five females and five males per enclosure, and the higher-population-
density treatment (n = 5 populations) contained 10 females and 10 males per
enclosure; each genotype (i.e., SS, SM, MM, LM, or LL) was equally represented
in each enclosure, so that there were one male and one female of each ge-
notype at the lower density and two males and two females of each genotype
at the higher density. For Oxtr, the lower-population-density treatment (n =
9 populations) contained three females and three males per enclosure, and the
higher-population-density treatment (n = 7 populations) contained six females
and six males per enclosure; again each of three genotypes (SS, MM, and LL)
was equally represented in each enclosure. The number of individuals differed
in the Avpr1a and Oxtr experiments because of constraints in producing
enough heterogeneous (SM or ML) animals for the Oxtr populations.

Animals were allowed to move, establish territories, and reproduce. After
16 d we began to trap animals on a regular trapping grid to identify breeding
females. All trapped animals were measured in the laboratory, where the
pregnant femalesweremaintained andmonitoreduntil theygavebirth; females
and pups were returned to the enclosures within 3 d after birth (SIMaterials and
Methods, Field Experiments). We determined the parentage of all pups
(Avpr1a, n = 241; Oxtr, n = 243; see details in Table S6) at birth using micro-
satellite genotyping (SI Materials andMethods, Genotyping of Avpr1a andOxtr
RRAM in the Bank Vole) and followed their survival to recruitment. Thus, our
variables of reproductive success (see Statistical Analyses) combine data for both
breeding and fecundity selection as well as survival selection.

Statistical Analyses. We used generalized linear mixed models (GLMMs) to
analyze the effect of Avpr1a and Oxtr RRAM genotype on (i) the number of
newborn offspring, (ii) the number of recruited offspring, and (iii) the re-
cruitment success (the ratio of the number of recruited offspring to the number
of newborn offspring) (Table 1 and Table S3). Sexes were examined separately.
The GLMMs quantified whether the numbers of newborn or recruited offspring
(dependent variables) could be predicted by the independent variables of allele
length (centered value of the mean length of Avpr1a or Oxtr RRAM alleles),
population density (high or low), and their interaction. Variation between years
and enclosures in the Avpr1a experiment and replicates and enclosures in the
Oxtr experiment were accounted for by including them as random factors.
Numbers of newborn and recruited offspring were examined using a zero-
inflated negative binomial model (ZINB) with a Poisson distribution, using
glmmadmb in R v. 3.1.1 (R Development Core Team 2014). Recruitment success
was examined using GLMM (events-trials, binomial distribution, and logit link
function) in SPSS (IBM SPSS Statistics 22). The difference in the length of ma-
ternally and paternally derived Avpr1a and Oxtr RRAM alleles (Table S4) was

Table 1. GLMMs to quantify effects of sex, population density, and Avpr1a and Oxtr RRAM
allele lengths on three different components of reproductive success: number of newborn
offspring, number of recruited (weaned) offspring, and recruitment success in the bank vole
M. glareolus

Fitness component,
locus–sex combination

Allele length Population density
Allele length ×

population density

Estimate P Estimate P Estimate P

Number of newborn offspring
Avpr1a male −0.007 0.422 −0.419 0.093 0.050 0.011
Avpr1a female 0.000 0.950 −0.257 0.070 0.011 0.370
Oxtr male −0.024 <0.001 −0.011 0.936 0.023 0.011
Oxtr female −0.001 0.850 −0.062 0.630 0.001 0.900

Number of recruited offspring
Avpr1a male −0.003 0.800 −0.518 0.160 0.046 0.130
Avpr1a female 0.007 0.325 −0.776 0.006 0.053 0.009
Oxtr male −0.037 <0.001 −0.240 0.463 0.045 0.002
Oxtr female 0.002 0.840 −0.119 0.520 0.002 0.900

Recruitment success
Avpr1a male 0.035 0.051 0.131 0.853
Avpr1a female 0.127 0.002 0.669 0.289 −0.146 <0.001
Oxtr male 0.006 0.354 0.431 0.481 −0.036 0.169
Oxtr female 0.007 0.869 0.516 0.442 −0.011 0.629

Allele length × population density refers to the interaction between allele length and population density.
Significant (P < 0.05) effects are highlighted in bold.
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analyzed using population density and origin of allele (maternal or paternal
RRAM allele) and their interactions as independent variables. Offspring ID
nested within litter and experimental enclosure was included as a random ef-
fect. We used linear models with R v.3.1.1 (R Development Core Team 2014) to
analyze the effects of allele length, sex, brain region, and their interactions on
the expression of Avpr1a and Oxtr (Table S1). Avpr1a and Oxtr expression also
was analyzed separately for each brain region (Table S2).

Ethical Approval. Use of study animals followed the ethical guidelines for
animal research in Finland.
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