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1. Introduction

Starting with the works of J.P. Yvon [19] and F. Mignot [7] much
interest is given for the optimal control problems governed by varia-
tional inequalities, both from theoretional and numerical point of view.
See the recent book of V. Barbu [1] for the elliptic and parabolic case,
as well as the works of [8-17] for parabolic and. hyperbolic problems.

Under certain assumptions, a classical remark shows that varia-
tional inequalities are equivalent with minimization problem with con-
straints. Similarly, we prove that there is a close connection between
control problems governed by variational inequalities and constrained
control problems (constraint in state). In special cases, we even have
equivalence between the two types of problems.

This gives a new interpretation of optimal control problems




governed by variational inequalities and provides a new approximation
of constrained control problems. The method proposed here has a great
advantage over standard methods (penalty technique etc.). It makes
possible to use efficiently gradient algorithms for solving numerically the
problem in question.

In order to make clear the above ideas we study the following
model problem (P):

Let V,H,U be Hilbert spaces with dense and compact imbedding
VeHeV* and A: V>V*, B: U>H be Tinear, continuous operators such
that

(1.1) (Au,u) > w|u|3 bu>0,  uev,

(1.2) (Au,sv) = (u,Av) , u,vev.
Above (., ) is the pairing between V and V* (if VisVy €H then
(v, ,v2) is the inner product in H) and b1, s the norm in the
Banach space V

Consider the control problem

(P) Minimize {J(y,u) = g(y) +h(u)}
subject to

(1.3) y'+Ay = Bu+f , a.e. in [0,T],
(1.4) y(0) = yq

(1.5) y(t) € C in [0,T].

Above C<=H 1is a closed, convex subset, yOEC i AyOGH s
FELS(0,T3H), g: L%
from below by a constant ¢ and h :L2(0 s T3U)>1-=,+0] s convex,
Tower semicontinuous, proper, satisfying

2( 0,T;H)>R 1is convex, continuous, majorized

(1.6) Tim  h(u) = + .,
IUIuw
Under the above hypotheses, equation (1.3), (1.4) has a unique solu-
tion yecC(0,T;V), y'e L2(0 »T5H) and (1.5) makes sense. As usual,
we have denoted by C(0,T;H) the space of all continuous functions from
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(0,7T) to Hy; LP(O,T;V) is the space of all (classes of) Lebesque
measurable functions y: (0,T) -V such that

.
/ lly(t)II\F; dt < «
0

with usual modification if p = «.

If we also have control constraints u€ Uy (a closed, convex
subset of L2(0 »T5U)) this may be implicitly expressed by adding to
h the indicator function of uo.

We assume the existence of an admissible pair [y,u] for (P).
This assumption may be relaxed, according to § 3. It is easy to show the
existence of at Teast one optimal pair [y*,u*].

The plan of this paper is as follows. Section 2 contains the main
result. In section 3 we discuss two special cases. Section 4 is devoted
to the analysis of an algorithm for solving problem (P). Finally, in
last section we give numerical examples by which we demonstrate the use-
fulness of the proposed method over standard penalty technique, for
example.

Several results of this paper were announced in [17]. Finally, we
remark that the methods presented here can be applied to optimal shape -
design problems; especially to the important family of design problems

with constraints in state. This will be discussed in a forthcoming
paper.

2. The main result

Let ©: H>]-»,+=] be the lower semicontinuous, convex, proper
function

g0 if yec,
(2.1) oly) = { +o0 otherwise .
With (P) we associate the approximate problem (PE) , € >0

(P ) Minimize {J (y,u) = g(y) +h(u) + 1le2 }

e e 277 L2(0,T;v)
subject to
(2.2) { y'+Ay+ew = Bu+f, werply), >0

y(0) = yq .

Here G:vsl-w, ] is given by G(v)=ol(v) .




The state problem (2.2) has by Theorem 4.1 of [1] a unique solu-
tion yec(0,T;H)nLY

By above regularity results, the cost functional of (Pe), denoted
by Js(y ,u), 1is finite for all u € LZ(O ,T3U) such that h(u)

js finite. Moreover, for any admissible pair [y ,ul of (P), the cor-

responding w € 3@(y) , given by (2.2) satisfies w =0 and
{8(9 su) = J(y, u)
where J is the cost functional associated with (P).
Theorem 2.1. (PE) has at Least one optimal pairn [y_ su_l.

. Proof. Let {un} be a minimizing sequence for (Pe) and Yn the
corresponding solutions of (2.2) and w_€3@(y ) . Then

aly,) + h(un) + 2Iw IEZ(O,T;V*)S ct, W € aw(yn).
Since g(y ) >ct, by (1.6) we see that {u } is bounded in
L20,T;U). Also tw} s bounded in L2(0,T;V*) .
Multiplying (2.2) by ya and using the chain rule, we get that
{y,} ,{ya} are bounded in L*(0,T;V), and in LZ(O , T3 H) respec-
tively.
2Let Y,u, w be the weak 1imits on a subsequence of Y o Uy s Wy
(0,T35V),L2(0,T;U) and in L2(0,T;V*).
Since V < H compactly, we may assume that Y =¥ strongly in
C(0,T;H).
Subtract the equations (2.2) corresponding to U, » U and multiply
by Yo=Y in the scalar product of L2(0,t sH) , te[0,T1. By(1.1),
| (1.2) and the monotonicity of 3@ we obtain

in L

Ty (8) -y (N2 + f|()-()2d
2 Y Tty e 5 Yptad = Yulodly do
t
é Bu, -Bu_ .,y -y ) do.

Therefore, Yo ¥ strongly in L2(0 s T3V). As 3¢ 1is demiclosed in

0,T;V), y'eLl?(0,T;H) for any uel?(0,T;u).

Fany Iy e e
R S LS L SR




2(0 s Ty V) x L2(0 s T3 V*) we infer that wesop(y) a.e. [0,TI.
Now, we can pass to the 1imit and show that [y, u] is an optimal

pair of (Pe) which we denote [ye . us] . o

L

Theorem 2.2. When e-+0, we have on a subsequence:

(2.3) u>T  weakty in L2(0,T;0)
(2.4) y_~¥ strongty in C(0,T3H),
(2.5) J (y_»u ) > J(y,0),

' where [Y,Ul 48 an optimal pair of (P).

Proof. 0bv1ou51y J. (y s U ) < J(y*,u*), ve > 0. Then {u_t,
{we} are bounded 1in L (0 T u), L2(0 T;V*) and {y.}, {y;} are
bounded in L”(0,T;V),L (U »T3H) with respect to ¢ > 0.
Let [¥,T] be the weak limit in L2(0,T;V) xL2(0,T:U) of
[y, » ul. It yields y€->'§/' strongly in C(0,T;H), g(ye)-»g(}‘/) and
Tim inf h(u_) > h(U) . Then
e~>0 e =

(2.6) g(¥) + h(W) < J(y*, u*) .

As ew_>0 strongly in L2(0 s T;V*) we see that ¥ 1is the solu-
tion of (1.3), (1.4) corresponding to U. We alsc have V(t)eC since
ys(t)€C=dom(a?p') , te[0,T] and ys—>'§/ in C(0,T;H). By (2.6) we
get (2.3) and (2.4).

Let W be the weak limit in L2(0 , T3 V*) of W_. By the Tower

semicontinuity of the norm (2.6) may be improved to

(2.6)" JY,U) + ;le 2 < J(y* ,u*) = J(y,0) .
L=(0,T;Vv*)

Then wW=10, w_>0 strongly in L2(0 » T3V*) and (2.5) is proved. o

Remark 1. We have the additional property that h(us)—>h(Ti) . In
function spaces, if h 1is strictly convex and superquadratic, then
u€->'G' strongly 1in L2(0 ,T;LZ(Q)) , U= LZ(Q) , where o<=R" s a
bounded domain. This may be obtained from the results of Visintin [18].

Let y® denote the solution of (1.3), (1.4) corresponding to U

The pair [y°, uE] is not necessarily admissible for (P), but we can




compute J(y®, uE) and prove the following suboptimality corollary:

Corollary 2.3. We have

(2.7) Tim J(y® ,u_) = J(y* ,u*) ,
e~+0 €
s €

where K A8 independent of e > 0.

Proof. Denote z_= y& - y, . It satisfies

€ €

z' + Az = EW_ a.e. [0,T],
(2.9)

z€(0) =0,

and we have IZe'C(O,T;H)n_Lz(O,T;V) < Ke. From ys(t)€CnV vteiO,T] i
we infer (2.7). Then y€-¥ strongly in C(0,T;H), ga(y%) > g(¥)

and J(y%, u_) >~ J(y,U) = J(y*,u*) by Remark 1. This finishes the
proof. o

By the above results, u_ is an approximate solution of (P).
However, (Pe) is a nondifferentiable optimization problem and may be
difficult to handle. To overcome this, we apply a smoothing procedure:
We replace 3¢ by B)‘ sA >0, which is a smooth approximation of the
Yosida approximation (Bw)x for 3.

Let (a(p)}\ be the Yosida approximate of 3¢ in HxH and

BA: H-H satisfy:

(2.10) s y) =0 for yecC,

(2.11) 18My) - (o), (1 Sy WA >0,

(2.12) g s Gateaux differentiable and Lipschitz with constant
-1
A on H.

See the Tast section for more details in an example.
We regularize (PE) by:

Minimize {J_ A(y,u)=g(y)+h(u)+%Is)‘(y)lz2 }
g L=(0,T;H)




subject to

- A
y' +Ay+eg”(y) = Bu+f
(2.13) {

y(0) = yO .

It is easy to prove the existence of at least one optimal pair
which we denote shortly [yx i uA] . Let y)‘ be the solution of (1.3),

(1.4) corresponding to uy

Corollary 2.4. We have

Ry

»

(2.14) ﬁuuhw,mHgM+c
(2.18) IO, u) Ik, ur) +ny(e)

where n}\(s)+0 as e +>0 and K,c are independent o4 *»,e > 0.

Proof. Since y*(t)eC wte([0,T] then 3>‘(y*) =0 and ([y*, u*]
is and admissible pair for (P ) w1th J. (y* ,u*) J(y* ,u*) . It
y1e1ds {u,} to be bounded 1n L (0 T; u) and {8 (y.,\)} bounded 1in
L (0 I & H) Multiply (2.13) by yl and integrate over [0,t]:

t
1y31% do + [y, 29) do v co, (1, (0)

[ VAN QY— ¢+

t
JO'(BuA+f,y}'\)+C->\.

Then {y,} 1is bounded in L0, TV), {y;} is bounded in
L (0 T:H), {wx(yx)} is bounded in L”(0,T) by constants indepen-
dent of e, x> 0.

We remark that

ly - vIH 2
(2.16) ‘px( )-1nf{—2—| V€ C}—2—d1st(y C)H .

Denote z, = y"-yx . An argument similar to (2.9) gives
'Zx(t)lH <Ke, t€[0,T]. Combining this with (2.16) and the boundedness
of {swx(yx)} in L7(0,T), we get (2.14). As concerns (2.15) we have

A

J%u) =T 5y, su) =518 2 +9(y") - g(y,)

ST alyysy) +9(yM) - gly,) < Iy, ur) + g(y*) -9(y,) .




By the above estimates {yl} and similarly {yx} are relatively
compact subsets in C(0,T;H), so we can suppose that g is uniformly
continuous. By the estimate on z, we obtain a real positive function
nx(e)->0 for e-+0 such that Ig(yl)- g(yx)l < ne(e) s A,e >0, 0

Remark 2. If g 1ds Lipschitzian on bounded sets, then ”A(') is
independent of X > 0.

Remark 3. It is possible to take IwI2 , wedoly) ,
L2(0,T3H)
directly in (Pe). Then (PE) has to be interpreted as a singular control

problem, J.L. Lions [6], J.F.Bonnans [3]. Any admissible pair for (P)
is admissible for (PE) with this modification.

It is also possible to consider regularizations of g and h,
but these would make the exposition too Tengthy.

Remark 4. By Corollary 2.4 uy gives a suboptimal solution for
(P). To compute it, a gradient may be used for solving efficienty ap-

proximative problem (P€ A).

Remark 5. A different relationship between control probTEhs gov-
erned by variational inequalities and state constrained control problems
was established in [3, 10] with applications to optimality conditions
for control problems governed by variational inequalities.

3. Special cases

A. Equivalence. We assume that U =H, B 1is the identity

operator in H and

h(u) = |u| 2 .
L=(0,T;H)
We associate with (P) the singular problem

(P.) Minimize {Ja(y, u) =gly) + lul ,

+ |wl )
. L2(0,T;H) 2

L=(0,T;H)

subject to

(3.1) {Y'+Ay+W=u+f, w € ap(y) a.e. [0,T]

.V(O) = yO .




The equivalence result reads:

Theorem 3.1. (i) Any optimal pair forn (P) L8 optimal pair for (Pa).
(11) For any optimat pair [y ,ul of (P.), Let w € 3p(y) be given by

(3.1). Then [y,u-wl 48 an optimal pairn for (P).

Proof. Let [y*,u*] be optimal for (P). We have y*(t)eC for
te[0,T), that is 0€sp(y*) and [y*,u*] is admissible for (Pa) with
I (y*,u*) = J(y* ,u*) . It yields Ja(Q ,U) < J(y* , u*) .

Since weap(y), we have that y(t)edom(ag)=C for all te[0,T]
and by (3.1) [y,u-w] is admissible for (P). Moreover, we have

J(.y* :U*) SJ(SIQG"";’)

9(y) + Hu-wl , < gly) +1il,
L7(0,T;H)

I, (y 5 u) < I(y*,u%) .

We conclude that J(y*,u*) = J(y,u-w) = Ja(y ,u) and the proof
is finished. o

Remark 6. As shown by J.F. Bonnans [4], for distributed control
problems (U =H,B = 1) 1t is possible to obtain equivalence for a
general function h, therefore including the situation when control
constraints are present. Namely, we associate with (P) the problem

(Pb) Minimize {Jb(y su) = gly) +h(u-w)}

subject to (3.1).
The Theorem 3.1 can be proved by a direct argument.

B. Admissibility. We apply the approach given by (PE >\) to the

problem of finding an approximate admissible pair for a constrained sys-

tem:
y' +Ay = Bu+f a.e. [0,T1,
(0) = 3
(s) Y YO
y(t) € C te(0,T],
u € UO s

under the general assumptions of Section 1.
As uo , C are closed subsets, it is possible that no admissible
pair exists. We define
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(3.2) C

{v € H;dist(v,C), < 8}

(3.3) u 2(

{uel < 6}

0,T;uU);dist(u,U,)
s ‘ 0°L2¢0,T;5u)

closed, convex subsets of H ,L2(0 , T3U) with nonempty interior.

We replace C and Uy in (S) by Cs » Ug and we denote (SG) the
obtained system.

We relax the admissibility hypothesis of Section 1 to the s-admis-
sibility property: there is a pair [ya ,u6] admissible for (36)'

Let w: L%0,T3U) » 1-=,4=] and o: H >l-=,+] be the in-
dicator functions of us ,C6 . '
Obviously, (55) is equivalent with

(3.4) Minimize w(u)

subject to (1.3), (1.4) and y(t) € CG , te[0,T].
We apply to (3.4) the variational inequality method:

i 1.2
(P Minimize {Js(u) = w(u)+-2|w| 2 }

)
S L5(0,T; U*)

subject to:

{ y'+Ay+w = Bu+f , weEdaly) a.e. [0,T],
y(0) = yO .

Again, we have equivalence:

Theorem 3.2. The set o4 é&-admissible pains forn the system (S)
codineides with the set of solutions of (Pa).

A regularization procedure transforms (Ps) into a smooth problem
and by (2.14) we get an approximate solution of (S).

Remark 7. The approach given in §2,8§3 has many variants which
may be adapted to different problems.
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4. An Algorithm

In this section we deal with the application of the gradient
method to (PE’A) in a more specific case. We take H = LZ(Q), V = Hé(n),
B: U~ LZ(Q) is a linear, continuous operator and A: Hé(n) > H-1(Q)
is the Laplace operator with Dirichlet boundary conditions. We consider

g(v) = h(v) = |v|22 and the constraints set

L=(0,T;H)

NI—

—{YELZ(Q); y>0 a.e. Q}.

(]
|

Let 8: R~ R be the maximal monotone graph

0 r>0,
(4-1) B(Y‘) = ]'“’,0] r=20 s
) r<o0

Then, we have (¢ 1is the indicator function of C):

(4.2) so(y) = tw e L2(2) 5 wx) € 8(y(x)) a.e. a} .

The smooth approximation g is obtained as the realization in L2(

of

Q)

[+=]

(4.3) BMr) = i sx(r+-x- Ac) p(o)do, reRr.

-00

Here By is the Yosida approximation of 8 and o is a Friedrichs'
mollifier, i.e. o >0, p(-0) =0(0), supppcl-1,1], o € C°(R),

2]

f o(a) do

-0

1. We remark that g satisfies (2.10) - (2.12).

Now, the problem (P€ A) is completely defined and it is quite
standard to obtain the optimality conditions:

Theorem 4.1. There (4 P, € w1’2(
that it satisgies togethern with Yy o U

0, T5HINL7(0, T 5 H)(R)) such
}\I
| A _
Y\ Ayk+e6(yx)-BuA+f a.e. 10, TIxq ,
: A B A A
TPy TAR reTB(Y,) =y, +8%(y,) v (y,) ae. 10,TIxa,

v,(t,x) = p(t,x) =0 a.e. 10,TIxse,
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¥, (0, x) = yo(x) , p,(T,x) =0, a.e. o , i

0 a.e. 10, T[xq .

*

B.pl+ux
Proof. This is based on the fact that the Gateaux differential of

Js L asa function of u only, exists at point Uy and equals

B*p>\+ u

A - a

We are prepared to give the naive algorithm for solving the requ-

larized problem (Ps,x)'

Algorithm 4.1. (steepest descent method for (P

e,k)'

STEP 1. Let uy be given and set n := 0. |
STEP 2. Compute Yn from the state equation.

STEP 3. Test if the pair [yn ,un] is satisfactory. If YES,
then STOP, otherwise GO TO step 4.

STEP 4. Compute Pn from the adjoint equation. |
STEP 5. Compute Up 1 by

- e T |
u u cn(B*pn+un) . _

w
—
m
v
()]
3
1

n+1 and GO TO step 2.

We denote by y" the solution of (1.3), (1.4) corresponding to |

u, - The test involved in step 3 concerns the violation of the constraints

and the value of the cost functional. In step 5 9 is a real parameter |
which may be obtained via a line search. For the covergence of Algorithm 4.1 see ﬂ
[5]. In practice Algorithm 4.1 will not be used but a conjugate gradient

variant of it. It should be more efficient because of the high dimension of

the problem in minimization. For comparison see numerical results.

to the global optimum. Let'Jesx denote the value of the cost functional
at a certain step m and U > Y ,ym the corresponding control and
states. Because the constants appearing in (2.14) depend only on the

|
i
Since (PE A) is not convex, the gradient algorithm may not converge
value of the cost functional, we obtain similar estimates for y™:

Corollary 4.2. We have

{Ke+c //g 4 :

(4.4) dist (y"(t) , C),,



where K, C depend only on m. il

It is possible to apply a penalization method in problem (P). 1In |
standard form, this consists in approximating (P) by

T
(PA) Minimize {g(y)-+h(u)-+é wk(y) dt}

subject to (1.3), (1.4).
Let [yA ,uA] be an optimal pair for (PA). The following result
can be easily obtained (see [2], Ch IV):

Proposition 4.3. We have on a subsequence:

i) ut > G weakly Lin L2(0 ST U)
ii) yA >y strnongly in C(0,T3H) ,
i11) dist(y*,0) , ceale
L=(0,T;H)
where [y, ul 44 an optimal pain of (P) and ¢ 4is a constant independent
og x> 0.

Take ¢ = x1/2 in (2.14). Then we see that the variational in-
equality approach gives pointwise estimates, while the penalization
method gives estimates in L2(0 » T3 H).

1

Remark that 1ae, (y)1 , = A dist(y,C), . Then by (2.16)
L=(0,T;H) L™ () N
and (2.11), we see that the cost functionals of (PE A) and (P") have a

similar structure.

0f course, to solve numerically the state equation in (Pe,x) is
more difficult than in (PA). However, in many situations, this disadvan-
tage disappears. For instance in the optimal control of variational in-
equalities with state constraints, (2.2) is another variational inequality.
Therefore both methods involve computations of the same type.

For the sensitivity analysis for constrained optimization problems

we refer to [11, 12].
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5. Numerical tests

5.1. Two approaches

Consider the problem

(5.1) min  {J(y,u) =

1
2
uELZ(Q)

oY—

[f (y(u) -zd)zdx+f (u -wd)zdx] dt}
Q Q

subject to

a—iy(t,x)-Ay(t,x)=u(t,X) a.e. (0,T)xa,

(5.2) ' y(t,x) =0 a.e. (0,T)xs% ,
y(0,x) = g(x) a.e. o,
(5.3) y(t,x) >0 a.e. (0,T)xq.

Here @ =(0,1)x(0,1), T=1 and

wd(t » X4 ,xz) = x$x§(1-x1)(1 -x2) - 2t(1 - x1)(1- xz)(xf-xg)

+ 4tx1 x2(x1(1-x1)+x2(1-x2))+2x1(1-x1)
+ 2x2(1 - x2) 3 '
_ 2 2
zd(t,x1 ,x2) = tx] x2(1 -x1)(1 -x2)+x1 x2(1 -x1)(1 -x2) :
g(X1 ’xz) = X1 X2(1'X1)(1'X2)

are given functions.

The optimal pair for problem (5.1) - (5.2) is known to be [y*, u*]=
[zd ,wd]. Then J(y*,u*) = 0.

The problem (5.1) is solved by solving the smooth approximate
problems (PA’E) (Method I) and (PA) (Method II). So in Method I we
solve the problem

T

. 1 2
(5.4) m12n {‘Jx,e(yx’“x) =3 é [£ (v, (uy) - 24)" dx

ukeL (2)
2 1 -\ 2
+ [ (u =W )% dx+ =5 [ ((y, (u,))7)" dx?
Q - AT Q
subject to

=T yA-Ay“esk(yx) =u, a.e. (0,T)xq

(5.5) ¥y =0 a.e. (0,T)xs@q
v,(0,+) =yy ae. @
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Here y = %-(Iyl-y) denotes the negative part of y and h

1 -\2 .
5= (y,) if y, <0 il
(5.6) Ay = {2 *
0 otherwise

and A >0, € >0 are real parameters (in practice e = A1/2).
In Method Il we solve the problem

T
, 1 Y
(5.7) m12n Wy su) =75 ﬁ( [sj2 (y_(u)-2z,)"dx
uEGL (o)
2
+ [ (u_-wy)™dx + %I (y,;_(ue))2 dx}
Q Q
subject to |
3 _ !
SEY.moY, 7 U a.e. (0,T)xq
(5.8) y =0 a.e. (0,T)xs@

Y (03')'=yO a.e. 2 .

1 = .- ’ ¥
=y +zZ,-—xY a.e. (0,T)xQ
A “d W27
0 a.e. (0,T)xan

——
ol
w
j g
]
LS
o
)
]
>3
-]
>
+
m
<
>
P
PN
~<
>
g
o o
> >
it 1

I
o
[»)]
m
D

p)\(T ’ ')
and for the problem (5.7) - (5.8)

%pe-Ap =y€-zd--1—y; a.e. (0,T)x@

€

(5.10) 0 a.e. {(0,T)=xs

o
1]

0 a.e. @

>l
—
—
-
~—
1

respectively.

5.2. Discretization and minimization

Both approaches have been discretized by the finite element method
in space (piecewise linear elements, h = 1/8) and by the difference
method in time (implicit Euler for the state and explicit Euler for the
adjoint state; At = 1/16). The value of the cost functional has been
computed with the trapetzoidal rule.
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In minimization the conjugate gradient method has been appiied
in the following numerical results. In fact, the method of steepest
descent works as well but is somewhat more slow. The tests were carried
out using single precision arithmetic (7 digits). The authors are in-
debted to Mr. T. Mdnnikkc for his assistance in numerical tests.

5.3. Comparison of the methods

Let the initial guess for the control be (cf. Algorithm 4.1)
uO(t » X4 ,x2) = (0.1-0.2t) X4 x2(1- x1)(1- x2).

For this initial guess the constraint y > 0 will be violated. During
some iterations both methods find for u such a value that y will be
non-negative.

In the Table 5.1 we see the comparison of methods I and II. We

see the value of cost functionals J_ (with A = 107572 , € = 10-5)
and JE (with € = 10-5) during 5 iterations, the euclidian norm of
vJ€ A and VJe at solution as well as norms
t.g?s 5 ;2; Iyexact"ycomputedl (denoted II.”L;kLw))
i ? h
and
max |y -y I (denoted II-1I _ )
t1€(0,1) exact “computed LZ(Q) L (L2)
(yexact = zd). Here ti = jAat and 2 denotes the set of nodal points

in triangulation. In Method I ycomputed means the discrete solution
of (5.5). It is identical to the solution yA of the problem (5.2),
as Y, 2 0 for final control u .
Method I Method 11
Number_of Value of J Value of J
iterations A€ £
1 7851 . 1075 3314+ 107,
2 .8153 - 10_3 .5636 -10_2
3 .1950 10_4 1135 . 10_3
4 .3963 - 10_4 .2946 '10_3
5 .1308 - 10 L1126 - 10
Il .2695 - 10°/ 2915 - 107°
-2 -2
”‘lle(Lw) .1441 .10 .3233 .10 :
-5 =
H-Ile(LZ) .6208 - 10 .3001 - 10

Table 5.1. Comparison of the methods.
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From Table 5.1 we see that the proposed Method I has been superior
over the standard penalty method (Method II).

In Figures 5.2-5.4 we see the contour plot of the state and con-
trol ( — exact, --- computed by the Method I) for the time levels
t=.2500, t= .5625 and t = .8750 .

Comiour plow of state Contour plov af seniral

3 ' 3
g A ]

8l . g_'

N - g-\

4] - 8'\
3 9] R
8 g \\

T T T T e T 3 T T T
5.000 0.:25 u,fw D,;TE B.SIW o.sizs 0.750 0.5?8 | .000 3.000 0.125 0.250 0.575 p.sog 0.628 0.150 0.975 |.co0

Figure 5.2. t = .2500

Contour plot of siave Lontour plot of contral

Qo0 0125 0

Lo | | BN | T LN T |
000 0.125 0.250 0.575 0.5300 0.86I5 0,750 0.075 1.000

Figure 5.3. t = ,6525
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Comour plou of stiaie Lontour plLot of comirol
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Q000 0.125 0.250 0.375 0.&];m 0.625 0.150 0.875 |.000
L]
000 0.125 0.250 0.4T7s u.s:on 0.625 0.1S0 0.89T5 1.000

| T 3 1 1 . L] Y I N I E N [} . ] T o ] . T * 1 = ) -
000 0.125 0.250 0.315 0.500 0.625 0.750 0.97S |.000 ®.000 0.125 0.250° 0.515 0.500 D.625 0.1s0 0.8715 1.000

Figure 5.4. t = .8750

In the other examples, we have tested, the results have been
similar. The proposed Method I works well and turns out to bgfrobusfw
as well in the case of a very rough initial guess. For example, for
the initial guess

uO(t s X4 ,x2) = -10t Xy x2(1- x1)(1 -x2)

(which causes the violation of the state constraint for t € (0,11)
the Method I worked well but the Method II failed.
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