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Abstract

A problem for finding optimal shape for systems governed by
the mixed unilateral boundary value problem of Dirichlet-
Signorini-type is considered. Conditions for the solvability
of the problem are stated, when variational inequality formu-
lation and penalty method is used for solving the state problem
in question. The asymptotic relation of design problems

based on these two formulations is presented. The optimal

shape design problem is discretized by means of finite element

method. The convergence results for the approximation are
proved. The discretized versions are then formulated as a non-
linear programming problem. Results of practical computations

of the problem in guestion are reported.

Subject classification: AMS: 438, 65 K, 35 1]




INTROBUCTION

During the past 15 years, optimization theory has been
developed for the optimal design of many structural and
mechanical systems. Generally speaking, an optimal shape
design problem is an optimization problem that involves

a function satisfying certain relations (ordinary or par-
tial differential equations, e.g.) and optimization vari-
ables with geometrical structure of the problem in qguestion.
Optimal shape design problems, where the state problem is
modelled by a partial differential equation, have been dis-
cussed widely in engineering literature [13, 14, 21, 22, 231,
see especially the article of Haug [13], where a representative
survey of appeared contributions can be found. Mathematical
theory of such kind of problems, including the theory of
their approximation by finite differences or finite elements,
has been developed during the last ten years mainly by the |
French school of applied mathematics [3, 4, 5, 6, 17, 25, 297.
See also [1] and [28].

In practice, we often meet preoblems the behaviour af which is
described by variational inequaelities (see (7]). A natural
question arises: what happens if the state problem is now
given by these inequalities? Mathematical theory of problems
with controlled right hand side has been given e.g} in [247,
[171. In the meantime, shape sensitivity analysis of design
problems (control of coefficients) has been given in [26, 27]. A
relatively small number of papers is devoted to cptimal shape
design problems with state inequalities. We mention here
papers [15, 16] where the existence of a solution as well as
the approximation are studied. It is well known that the
relation between admissible designs and the corresponding sol-
ution of state inequality is not differentiable everywhere.
From this point of view, some specific optimization approach

has to be used for numerical realization. To overcome this




difficulty in [10, 11] an alternative way has been proposed:

instead of variational inequality (associated to a unilateral

boundary value problem) a family of penalized variational

equations is assumed. It can be shown (see Theorem 2.3, in

[(101)

that the corresponding optimal designs (associated with

penalized problems) are close (in an appropriate sense) to

an optimal design associated with the variational inequality

formulation.

The aim of the present paper is to study the finite element

approximation of our penalized design problems. The paper

is organized as follows:

1. Introduction

2. Statement of the optimal shape design problem

3. Approximation of the penalized problem

4, Numerical realization of optimal shape design problem
4.1 Construction of moving triangular grid
4.2 Algebraic formulation of discretized shape design

problem

4.3 Computation of the gradient for the cost functional
4.4 Algorithms for solving Problem (P)h

5. Remarks on alternative methods
5.1 Dual formulation of the state problem

5.2 Adjoint state for the penalized problem

6. Numerical examples

References

The problem in guestion can be regarded as a model example of

the contact problem between an elastic body and a rigid foun-

dation, which will be studied in a forthcoming paper [12].




STATEMENT OF THE OPTIMAL SHAPE DESIGN PROBLEM

Let us consider domains @ = Q(v) < Rz with the following

geometrical structure

Qlv) = {x;, x3) € I?2| 0 < x, < vixs), 0 < %y < 11,

where v € CD’q([O,1]] (i.e. v Lipschitz-function);
aalv) = T, U I'(v) the boundary of Q(v) with (see Figure 2.1)

I‘,l = 3Q(v) ~ T(v) ,

T'(v) = {x € Ezl Xq = v(x2], 0 < X5 < 11 .
Axs
‘ <
|
| |
l |
' riv) |
Q(v) t |
' |
l f
| \ | & x
o B 1
Figure 2.1. Domain R(v) with moving boundary riv)

In this case the optimal shape design problem reduces to
finding boundary I'(v) under certain criteria. Indeed, we can

formulate our problem as follows :

Problem (P). (Optimal shape design)] Find w € uad such that

(2.1) J(w) = min J(v) ,
1 veu
ad
where
2
| (2.2) Jv) = 1 lyv) - zg|" dx
Qlv)




2 v ) . N v N
zy €L () a given function (Q:=(0,8) x (0,1), B8 > B) and U_g

is a set of admissible controls,

0,1
(2.3) Uy = tvec ([0,11)] 0 < a S wvixy) 5B,
dv < !
|—d-7l - C,l » é V(XZ} dX2 = CZ} »
o, B, C, and c, are given positive constants. Function
y = y(v) is the solution of the unilateral boundary value

problem: Find y = y(v]) € K(Q(v)) such that

>

(2.4) (grad y, grad (E—y))o Ql 2 [ F, (E-y))o Qev)

v)

v
for all & € K(Q(v)). Here f € Lz(Q) is a given function and

V{Q(v))
K(Q(v))

1

te e v’ (2] £ =0 on T},
(£ € V(Q(v))] £ 20 on T(V)} ,

(— denotes the scalar product in LZatv)).

0,00(v)

In [15] the following fundamental result is proved for the
solvability of Problem (P):

Theorem 2.1. Problem (P) has at least one solution.

In practice Problem (P) has to be solved approximately. The

unknawn part of the boundary is sought among piecewise linear

arcs and the state problem is solved by finite element method
in polygonal domain Q(vh) . In Q(vh) a moving finite
element grid is constructed. Another possibility would be the
transformation technique: the problem is transformed into an
equivalent one with the state problem defined on a unit saquare

domain and then finite elements on a uniform mesh are employed.

Anyhow, in both cases the main trouble is that the mapping
v » y(v) is not differentiable. As, moreover, the cost functional

v = J(v) is not convex we are led to difficult optimization




problem. To avoid the first difficulty in [10] another
approach for (2.4) is utilized. Instead of (2.4) a family
of penalized problems is considered: Find Y= yg(v) € V(Qlv))
such that

1

(2.5) (grad ya,grad E)O,Q(v] = (P(yeJ,E)

\Y

= (f,£8) for all £ € vV(Q(v)) ,

0,0(v)

where P denotes the penalty mapping

1
(Ply),8), &= - é Ve (VIxy) ,x0) ElVx, ), xo)dxy

Ye = (|y€|-y€)/2 is the negative part of Ve and € > 0 is a

penalty factor.

The regularized optimal shape design problem reads:

Problem [P}c' Find W € uad such that
(2.6) J(WEJ = min J(v) ,
veu
ad
where
T = S Ly (vimzg| Pdx
Qlv)

and y. is the solution of (2.5).

The solvability of Problem (PJE is proved in [10]:

Theorem 2.2. For any € > 0 Problem (P)€ has at least one solution.

According to Theorem 2.2 there exists for any ¢ > O+ at least one
optimal soluticn of Problem (P)Ek, which will be denoted by Wi
and the corresponding state by yk(wk]. In [10] it is also
proved that some solutions of Problem (P)€ are close to a
solution of Problem (P). Indeed, it holdsk (see [10], Theorem
4.1):




Theorem 2.3. There exist a subsequence {Wk Y (wk )} of
Joo3 o

{wk,yk(wk)} and elements w € U_g,
y(w) € K(Q(w)) such that

Wy Z w (uniformly) in [0,1] for j -
J
ykj(wkj) ~ y(w) (weakly) in Hq(Gm(w)] for Jj &+ «© ,

and for any m, where

(2.7) G (w) = {(xy,x;) € R | 0 < x4 < wix,)=1/m, 0 < x5 < 11,

and where w is the solution of Problem (P) and y(w) 1is the

corresponding state, solving the unilateral boundary value

problem (2.4) in Q(w).

3. FINITE ELEMENT APPROXIMATION OF THE PENALIZED PROBLEM

According to Theorem 2.3 solutions of Problem (P) and Probliem
(P)8 are in certain sense close together. It can be shown
that similar result holds, if the penalized problem (P]€ is
replaced by a family of finite element approximaticns. This

fact will be utilized in discretization.

Let 0 = ag < a; < ... < 3 = 1 be a partition of [0, 11,
" <
a; a4 = h , and let
h _ .
U y = vpe e ([0,1])|vh‘[ ]E Pylla; _qoa; DD ol g
81-1794

where P1 denotes the set of all linear functions.
For any vy € uad we define

= {x € R2|

Qv x4 € (O,vh(szJ, x5 € (0,13} . -

b



i.e. the variable part of the boundary Fz(v] is now approxi-
mated by piecewise linear arc Fz(vh]. By Th(vh), vy € Ugd,
we denote the triangulation of Q(vh] such that the whole
segment I, = {(x,x5)] xq = vp(x;), x; € la;_4.a;1} 1is the
whole side of a triangle T, € Th(vh) and satisfying usual
requirements, concerning the mutual position of two triangles,
belonging to Th(vh). Moreover, we shall assume such families
of {Th(vh)}, h - 0+ only, which are regular uniformly with
respect to Vi € Ugd , 1.e. there exists og > 0 independently
on h > 0 and Vi € uzd such that all interior angles of all
triangles belonging to Th(vh) are greater or egual to g (for
practical applications some other technical restrictions will
be added (see chapter 4.1)).

Finally, the symbol Qh(vh) will denote the set Q(vh) with a

given triangulation Th(vh); we also use abbreviation Qh1br %%Vh]'

To any Th(vh) a finite dimensional space Vh[Qh(vhJ) will be

assoclated:

Vi (@ (v d) = {vy € C(Q, (v )) | vh|T € PyLT)

v T & Th[vh), vy = 0 on F1 = BQh(vh] = Fz(vh)} i

The approximation of the penalized optimal shape design problem

is now defined as follows:

problem (P). Find w, € U7 such that
h b ad

(3.1} Jh(wh] = min Jh(vh) ,
Vv euh
h~"ad
where
J(vp) = f lyp (v ) -2z [de
h'Vh YREVRI T2

and Yy = yh(vhJ € Vh(Qh(vh)) is a solution of the nonlinear

elliptic boundary value problem




1 }
(3.2) | (grad Y- grad thD’Qh(Vh) 3 (P(yh), Eh)vh
= (f, &) for all £ € V_(Q_ (v, )) .
10,0, (v,) h & Vit by,

The penalty operator is defined like in the continuous case
and the penalty parameter € = e(h) is such that e(h) - O+
for h = 0+

Using classical compactness arguments one can prove

Theorem 3.1. For any h € (0,1) there exists a solution

w, € ugd of problem (PJh .
The main result of this section is

Theorem 3.2. Let Wy € Ugd be a solution of Problem (P]h

and yh(wh) the corresponding solution of the state eguatian

(3.2). Then there exist a subseguence {wh } < {wh}, an element

W € uad and y(w) € K(Q(w)) such that

Wy T ow (uniformly) in (0,11, hj - Q0+
J

. 1
yhj(whj) ylw) in H (Gm(wJJ, hj - 0+

for any m, where w is a solution of Problem (P) and ylw) is

3 solution of the corresponding state inequality (2.4) in Q(w).

For the proof of this theorem we need the followirg auxiliary

result:
Lemma 3.3. Let Vi € Ugd be such that Vi, =CIRV. (uniformly)
in [0,1]. Let Yp = yh(vhJ be a solution of (3.2) on domain

Qh(vh). Then there exists a subsequence {yh.(vhj)} < {yh(vh)}

such that J
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yhj(vhj] ~ y(v) in H'(B_(v))

for j » @ and for any natural m, where y(v) € K(Q(v)) is the

solution of variational inequality (2.4) and Gm(vJ is defined

analogously to (2.7).

Proof. To simplify notations we shall write Qh and Yh

instead of Qh(vh) and yh(vh], when no confusion arises. The
proof is similar to the one given for the continuous case [10]
and it will be given in sevaral steps.

1

12 First we prove that there exists y = y(v) € H' (Q(v)) and

{yh.(vh.)} c {yh(vh)} such that
J J

1(Gm(v)) for any m.

(3.4) Y (vh J = y(v) in H
J J

' The sequence {||y,|[|, q } is bounded. Indeed,from (3.1) it
follows that h

A

1 .
(grad Yp» grad yh)D,Qh+ =5y LP(yh),yh)

2
llgrad vy ||
h D,Qh 2

('F,yh)D,Qh .

From this, Poincare’s generalized inequality and from the fact
0 < a < vh(sz S B it follows that there exists a canstant

¢ > 0 independent of h such that

2
Cl|yh[f1,ghf llFllngh IlyhllD'Qh .

1) In the sequel c denotes a generic constant, which doesn't

depend on h.




_’[']_

Hence

(3.5) |[yh”1,Qh e for any h

Let m be fixed.

Then there exists hD = hD(m] such that Gm(v) < Qh for all
h < hg - Consequently by (3.5)

(3.6) for all h < hD :

Hyp S vyl Se
hil1,6 (v) nl1,a

{m) 1

As H1(Gm(v)) is a Hilbert space, there exists a vy € H (G _(v))

and a subsequence {y (m)} c {yh} such that
h

Y (m y(m) in H1(Gm(v)J 3

Proceeding in the same way on G 1(v) with {y (m)} one can
h

(m+1) (m) m

choose {yh } < {yh }  such.that
Y (met) v Wl L )
and y(m+1) = 0 on 236G (v ~ I (v), where
m+ 1 m ’

In(v) = {(xq.xy) € B x; = v(x,) - 1/m, x, € [0,11} .
Moreover y(m+1] = y(m] on Gm. Setting

y = y(m) on Gm(v) for all m

we obtain y = y(v) € Hq(Q(v)), y = 0 on 3Q(v)~ T'(v).

A diagonal sequence, constructed from {y (m]} has the
h

required property (3.4).
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0

2 Let us prove that y € K(Q(v))

For any £ € HS [QE) n H

where T denotes a mapping, which associates to any
J

£ € Hz(QE) its piecewise linear interpolate from Vi, [Qh )

]

(hj is filter of indices for which (3.3) holds). Substituting

Eh into (3.2), we get
J

Z(QEJ we define ghj = (gl ),

h,
J j

1 —
(grad Yh v grad gh.)O,Q + SR (P(yh_), Eh.)v = (f, Eh.)D,Q )
J J hj J J J hj J hj

From this follows

(3.7) 0 2 [(Ply, ), g ), |
J Joh;

p E(hj){”FHD o " ngadyh HU Q }[lgh “1 Q
Oy EE Ty, TR e

J

J

By utilizing the approximating property of linear interpolate
we find that

- < <
|I£hj EHq’Qh - C hj’€|2,9h - C hj{glz,QN .
J J 8

Consequently

g, |l S lle. - gl + el S5
hj 1,Qh_ hj 1’Qh. 1’Qh.

J J J

Taking into account this, (3.5) and (3.7) we have

(3.8) lim (Ply, ), & ), =0 .
his0e 3T Ty
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On the other hand,

(3.9) [ (PLy),8), = (Ply, ), & ) |
J J hj

< I(P(yJ,EJV - (P(yhj),EJv | +|(P(yhj), a—ahjlv | .

h. h.
J J

The first term on the right hand side of (3.9) tends to zero,
as follows from Lemma 3.2. in {10]. Let us estimate the second

term:

1
[ (Plyy Dog-gp 0, | = |1y (8lyy, - g, (v 1)dx, |
J J 0 j Jo

LA

clly,, |l e v ) = g0 (v )|
hy 10, T Cvy) h hy h o, Ty

(AN

c Hyh'”1'9h Hg—gh.H'],Qh -0,
. j J j

if hj > 0+ . In the last inequality we have used the fact that
the norm of the trace mapping vy : V(Q(vh)) - LZ(F[vh)) can be
estimated uniformly with respect to h for sufficiently small

h (in our situation this fact follows immediately from the
proof of trace theorem, see [19], Th 2.1). 'Comparing (3.8)

with (3.3) we see that

lim (Ply, ), & ), = (P(y), &) = 0
(P R R

1

Z,
y £ ~ N

LQEJ, l.e« y 20 on T(v) .

37

verify that y is a solution of variational inequality (2.4).

To establish the assertion of Lemma 3.3., it remains to

Let £ € K(Q(v)). Then there exists a function y € Hq(QEJ such
that

PlaQlvy = g[3q(v)
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it is readily seen that n € Hg(ﬂ(v)) and therefore

n = lim ny in H1(Q(v))

i o0

with n; € D(Q(v)). Similarly, one can prove the

existence of ¢, € c” (ﬁg) vy

>0 1in QE , such that

Y-

. 1
s TV in H (QE)

Let us define
Y, + N in Q(v)

v, in 9. ~ Q(v)

Clearly &, € C (—%) ,

E. > + = E in Hl(R(v))

and

1

£; € K (Qlv)) = {z € H (Q§J| z 20 in QE ~ G (v)}

for all sufficiently large i. Let

Kh(ﬂh(vh)) = {Eh € Vh(Qh)I gh 20 on F(vh)}

Then

Ein = wh(gi|9h) € Ky (9)
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if i is large and h is small. Let hj’ j » « be filter
of indices, for which (3.3) holds.

Consider the problem (3.2) in which a function €h is replaced

J
by utilizing the monotonity of P that

by yp = &ip, - As &;p € Kh_(Qh ) and P(gih.) = 0, we obtain
J J J J J

— < =
(3.10) (grad Yh v grad Yh. grad Eih.]D,Q - (f, Yh. gih.]O,Q :
J J J h- J J h'

J J

Furthermore, it holds

(3.11) (grad y_ grad(g,, - yh.))D,Q
J J J hj

= (grad y, , grad(&;, - Yo Vg5 (v

j J 3o

+ (grad y, , grad(g;, - v, Mg g
J b4

. h.
J J j

~ Q(v)

+ (grad y, , grad(g.,. - vy, )] ]
hj lhj hj 0, (Q(v)~ Gm(V)) n Qh

< (grad y,. , grad(&., - y_ ))
f . h. .
i i i hJ O,Gm(v)

+ (grad y, » grad &,y Jg o O q(v)
j 3 7hy
+ (grad y, , grad gih_)g,(Q(VJ\ G _(v)) n Q .
N J m "
As
v~y in H'(G_(v))
J
and
g~ & in H'(G (V1)

J

J
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then

(3.12) lim sup (grad yhj, grad(iih =

v )
hj+0+ 5 hj 0,G (v)

m

< -
> (grad vy, grad(&i y))D,Gm(v)

Because of (3.5) and the fact that Vi T v uniformly in [0,1]
it holds J

(3.13) (grad Yy, » grad gih.]D,Q < qa()” 0 forj >
J J h.
J
As

| (grad yhj, grad(Eihj‘ 590, (atv) ~ G,(v)in @ |

< o|mih_— gilh,ﬂh < e hj|£i|2,ﬂ(v)+ 0 for j - =
J o

J

we can conclude that

h.

lim sup (grad yhj, grad gihj)o,(Q(v) - Gm(VD nQ
J

j—)-oo

S lim sup (grad y, , grad £.) \
oo hj 170, (Q0v) ~ Gm(v)) n Qh

J

h.

+ lim sup (grad yhj, gfad(Eih_' Ei))g,(Q(v) ~ Gm(v)) n Q
J

j+oo J

From this, (3.11), (3.12) and (3.13) we obtain that

(3.14) lim sup (grad Yy grad(gi
J

j>s

< (grad y(v), grad(g,- y[V)]]D,Gm(V)+ Cl]gi“1,QUU\Gm(VL-“~
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Finally, we estimate the linear term:

+ (-F: E;- -y J i ('F) E- =V ]
1hj hj D,S?hj\ Qlv) 1hj hj O,(Q(v}\Gm(v])n th ;
Hence,
(3.15) lim inf (F, gih = yh )O Q
Joo J % hj

= g g6y @ Uillg,a0s (v NS
By summing (3.10)-(3.15) we have
(3.16) (grad y(v), grad(ii-y(vJ)JO,Gm(v)+ CHgi”1,Q(vP\Gm(v)

= U8 v 6 7 @ UFllg acoae it 8l q00as 0 -
m m m
Letting m + « we have
(grad y(v), grad(g, - y(v)))D Q0v) z (f, €1 yvllg Qev)
Thence, if 1 + » we have
(grad y(v), grad(g - y(v)))o alv) 2 (f, € - y(v)]g Qly)

for any & € K(Q(v)). This completes the proof of Lemma 3.3.
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Now we are able to prove Thecrem 3.2.

Proof of Theorem 3.2. Let {wh}, h = 0+, Wi € Ugd are

solutions of Problem (P)h. As Ug c uad for all h and uad is

d

compact in Co-topology, there exists a subsequence {Wh.} < {wh}
J
and w € uad such that
Wy, T weE uad uniformly in [0, 1] .

J

Let {yh (wh ) } be corresponding solutions of state problem (3.2).
J o
In accordance with Lemma 3.3, there exists a subsequence

{yh.(wh )} (we use the same notation) and an element y(w) € K(w)
j .

J
such that

vi we ) = ylw) in H'(G_(w))
J J

for any m, and moreover, y(w) solves the state inequality (2.4).

We now show that w solves Problem (P). Let v € uad be an
arbitrary function. Then there exists Vh € Ugd such that
Vh I v uniformly in [0,1]

(see [3]1). By definition of Problem (P)h one has:

- R
<
Jh(wh) ps Jh(vhJ for all Vi € uad
Let us write
Jh.(wh.]= |Wh (Wh )'Zdﬂg I [W)+ Hyh (Wh )'ZdH% Q. (w. ING (w)
JoJ Jood > 7m o ’hjhjm

v

2
vy Gy = 24l
hyh, ¢'lo,6_(w)

——
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so that

(3.17) Hyh.[whj)

- 2 < v
2glly, 5wy = Tntwy 2 T )
J m J

J J J

= Mvn, 024018 6 crt Ivn, 9 024ll5 0 v 1~ o)
J ~0m Jod ’ hj hj i

Here yh.(vh.) denotes the solution of (3.2) on Qh.(vh_J.
J J J J

Now the indices are chosen in such a way that both {yh_(wh )}

as well as {yh (Vh )} tend weakly to y(w) and to y(v) J J
; .
in H1(Gm(w)J and Hq(Gm(vJ), respectively. Applying Rellich's

theorem to (3.17) we get

2
(3.18) ly (w) - ZdHD,Gm(wJ

- 2
v )=z_|| - .
hj d O,th(vhj] ~ Gm(V)

2 .
< I|y(V)-Zd”D,Gm(v)+ 1}Ta?up Hyhj(

Let us analyse the last term on the right hand side of (3.18).

One can write

Vh,
J

(3.19) Iy, (v )
J

2
-z | o=
d D’Qh.[vh.] ~ Gm(v)
J J

1/2

—_ — 2
< (meas(th[vth\ G (v))) Hyhj[vh')-de

A _
J L4 e, (V. )
J J

2

We define a mapping Fh : R™ > Ez by means of the relation

A
2] = [xqvh(

A -
[xq, x2J € Q@ := (0,1) x (0,1). Then Qh_(v

J J J



Fubini’'s theorem and the continuity of the imbedding
A A
T e LY Q) imply

(3.20) lly. (7. ) ||
hy Yhyt T d 4(Qh (7, 1)
J
A A A
Selld B IP A SEIY, -Z 58
J 5 L (Q) J j 7
hen §. = Z, - F o is ind dent
when y, = yhjthj. Zdj-zdo *U and ¢ >0 is independent of
hj . Applying Fubini's theorem once again as well as (3.5) we get
A 2
”yh Zd ”1 Q - Hyh dll/l’Qh e

This and (3.19) imply the following estimate:

(3.21) lim sup Hyh (v, )

J—)-oo

2
z_ ||
d O,Qh_(vhj) ~ Gm(v)

S c {meas(Q(v) ~ Gm(v)]}1/2

A combination of (3.18) and (3.21) yields

2
(3.22) lly (w) Zd”D,Gm(v)

lly (v) - Zdué,Gm(vJ+ c {meas Q(v) ~ Gm(V)}1/2

Passing to the limit with m = «, we finally get

Jlw) S J(v) for all v € U
ad

Thence Theorem 3.2 is proved.
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NUMERICAL REALIZATION OF OPTIMAL SHAPE DESIGN PROBLEM

4.1 Construction of moving triangular grid

A, A,
Let Qh(vh] = QU QE(Vh)’ where Q = (0, a') x (0, 1), o' < a ,
is a part of Qh(vh), where the moving boundary Fz(vh) cannot

penetrate and QE(VhJ the rest of Qh(vh) (see Figure 4.1).

ay AN
ai*"]" i+1
) A A
a;e o Q?[vh) -
| A._
85 11 i-1
a/l‘ AII
e - B
Fi 1 Al r
igure 4.1. Qplvp) = @ U'Qh(vh) .

A A
Let Th and Tﬁ(vhJ resp. be a triangulation of Q@ and of Qr[vhl

h
resp. Tﬁ(vh) will be constructed my means of principle moving
points

! i .
(4.1) Ai - (x1, ai), Xy = vh(ai), a; = ih ,

further by means of associated moving points

J o (edyt

and of fixed points
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N, j =1,y M, N =1/h, M= [a/h]

It is readily seen that principal moving nodes and associate
moving nodes may vary in xq—direction only. The position of

moving points is associated to principal moving points by means
J
i
one may define

of function o If the dependence is supposed to be linear

(4.2) (p~?(><11)=ou+-—j, 3= 0,00., M.

‘ A
Finally, TE(Vh) will be constructed by points Ai‘ Ai and Ai

such that triangulation of QE(Vh) will be regular (see Figure

4.2)
A
An L &
j- J
N Al Mo
Ay Al
A A
L AT\ A fREX i
i i
A
Ai-1 NS A1
i-1 i-1
A
A
1 Aq
A A
AO * 7
Figure 4.2. Triangulation of QE(Vh)'

A
Evidently Th(vh) = Th U TE(Vh) satisfy the assumptions desired

in chapter 2 for regular triangulation of Q(vh).
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4.2 Algebraic formulation of discretized shape design

problem

Taking into account the geometry of Qh(vh) and piecewise
linearity of F(vh], for finding optimal F(vh) it is enough to
find the x1—ooordinates of the principal moving nodes (deter-
mining F(vh)) such that Jh is minimum. As for fixed h, the
shape of Qh[vh) and value of y, resp. depends on design vari-

ahles (x1—coordinates of AiJ

= 0 N
X_ (x,],ooo, x,])

we shall write QhDO and yh(XJ resp. and instead of (x?,..., xwl

we shall write simply (xo,..., xN).

For fixed Qh(X), yh(XJ can be obtained by solving the algebraic

form of (3.2) for nodal displacements

T

Q(X) = (qq,..., qQ )

5’ Gpe1rerr AgoN-1

(p = number of interior nodes of Th(vh)):

(4.3) ACX) D(X) - % D(Q(X)) = F(X) .

Here A(X) is the global stiffness matrix, which presents in

of -A, F(X) is the corresponding discrete right hand side; the

h(X)) the piecewise linear finite element discretization

dependence of these factors on design variables is emphasized

here. Operator D : RK(h) - EK(h), K(h) = dim Vh(QH(X])’

K(h) = p + N - 1, is a nonlinear mapping corresponding to the

second term of (3.2) with penalty operator P[ye) = -(y;)z, ,
_ - 2 - 2

(4.4) 0(Q) = (0,..., O, h(qp+1) £ W h(qp+N-1] ¥




where qp+1, v v qD+N_1 are nodal displacements at principal

moving nodes (Aq, . AN-1)'

For the sake of smoothness, we have slightly modified the penalty
operator from that of the previous chapters (this is allowed in
the finite dimensional case, at least). The differentiability
of the mapping @ - D(Q) will be utilized in sensitivity
analysis (chapter 4.3).

In order to express the cost functional jh by means of nodal

displacements, we first find that it locally holds (for the sake

of simplicity we assume z, = 0):
T _ 2
(4.5) Jh o= [ (yh(X)) dx
T
_ meas T 2 , z2 ., 2
= _6— (qi(X) C]J-[X) QK(X)
+ qi(Xqu(X) * qj(X)qk(X) + qi(x)qk(x)).

The dependence of the nodal displacements on design variables
is emphasized here. We note that meas T depends on X ,
if vertices belong to principal moving nodes or to asso-

ciated moving nodes.
I+ ws write U7 in the form

(4.5) UM, = v, € clio, 1Dy

< <
= € Ppsoa 2 vy = By

hi
[ai_qxai]

1

[vi (E)-v (£ ] S Cqlt-t

and take into account the local formula (4.5) we can formulate
problem (P), for fixed h and e(h) as the following nonlinear

programming problem with linear constraints:
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(4.7) Minimize P(X,Q(X))

subject to constraints

(4.8) a S X5 <8, i=0,..., N,
(4.9) CX2b .
Here <(h)

denotes the objective function obtained from
J . (v.) = [J (yo (v ))2 dx by the local formula (4.5); (4.8),
h*"h h™"h
Qh(v)
(4.9) correspond to constraints, given in the definition of

(4.6).

When the discretization of the continuous model has been daone
(by finite elements here), the backbone of a computer program
for the numerical solution of the design problem is an optimi-
zation algorithm (quasi-Newton, conjugate gradient, projected
gradient etc., as a rule a gradient algorithm). If the gradient
with respect to design variables is not available, one must
utilize nonsmooth optimization algorithms (methods without
derivatives, derivatives with finite differences or subgradient
methods). The benefit of the penalty method over variational ine-
quality formulation of the state problem is that it enables us to

use gradient methods.

It turns out that the gradient with respect to the design
variables (variation of the boundary) is an involved step.

The next section is devoted to this single step.
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Computation of the gradient for the cost functional

By local formula (4.5), 5%— p(xX,Q(x)J), 1 =0,..., N, consists
i
of terms 5%; meas Ti’ T;€ TE(Vh)’ and 321 ql(X]
3 K(h) 5
K(h) 5 5
: §=1[bij(XJ(W Qi(X)qj(X) qi(X) m QJ(X))] .

As 5%— meas T; 1s evident to compute, the only problem in
1
10)

(4.10) is to find gg— q; i.e. derivatives of nodal displace-

1
ments with respect to design variables X1 1 =0,..., N. We
are led to guestion: how the nodal displacements are varying
when the boundary F(vh) is varying? We shall make use of the

implicit function theorem.
Let

(4.11) o(Q,X) = A(X)Q - B(R) - F(X)

M=

and let X be fixed (i.e. F(vh) is fixed). Then the problem:
Find Q@ = Q(X) such that

(4.12) o(Q,X) =0
is equivalent to (4.3). Now
9 3 3 _ _
——BQ (D aXl Q + ax]- @ - D; l bl D; ’ N

is by (4.3) equivalent to equation



( -1 g 9 & O - (0
(4.13) {A(X) = D'(Q@)) T N ™ F(X) [Bx ACX)1)Q
1 il 1
for 1 = 0, », N, where
F 0 0
D'(Q) = -2 h ql:J+1 0
0 qp+2
. GpeN-1

Thence, by (4.10) 3%- Q(X) is obtained as a solution of linear

system (4.13). As A}X] is positive definite, the same is true

for (A(X) - % 0'(Q)).

From the construction of A(X) and F(X) it is evident that the
derivatives of A(X) and F(X) on the right hand side of (4.13)
must be computed from corresponding derivatives of the local

stiffness matrix and of the local force vectocr. For details see [20].

4.4 Algorithms for solving Problem (P)h'

The steps for solving the discretized shape design problem (P)h

are: solve the discrete state equation (3.2) in order to aobtain an
objective function ¥(X,0(X)), compute Vy PIX,Q0X)) (if esxists)

and finally use an appropriate minimizing algorithm for finding

a decreasing sequence: w(Xi,Q(Xi]) 2 w(xi+1,Q(Xi+1)J. These

steps are considered now in more detail.
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1. The state problem. Because of the nonlinear part D(Q) the

state equation (4.3) must be solved iteratively. Both gradient
methods and relaxations methods can be applied. Due to the

high dimension of the problem we have used the relaxation method.

The nonlinear over relaxation algorithm for solving (4.3) with
the pesnalty term e reads:
Algorithm (NSOR)  Let Q° ¢ gF(P)
Q" being known, compute Qn+1, component by component as follows.
Let

be arbitrarily chosen. Then

(4.14) a7 2 o g™V por i€ I(P(v)) or if &7 5 D
i a3 i h i Z
and
2 -1 n+1,1/2
018 ne1/2 _ 814 - (343 - 4he T Gy )
) 1 2 h/¢
for 1 €1 (F(vh)J and G?+1 < 0 , where

i-1 K(h)
(4.16) 52+1 = Fy - I ag; q3+1 -Ia.; q
"= j=ivg B9
and where I(F(vh)) refers to indices i = p+1,..., p+N-1
corresponding to nodes of [lvy). Set
n+1 _ n n+1/2 _ n

The critical point of Algorithm (NSOR) is the optimal choice
of relaxation parameter w . In practice QD will be chosen
to be equal to the solution of the state problem of the

previous iteration in the minimization procedure (step 3).
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A The gradient for cost functional. Form 5%— F(X) and
1
5%— A for 1l =20,..., N by using local force vectors and local
1

stiffness matrixes. Solve equation

4,13) by Cholesky method

(
in order to obtain 33— Q(X) for 1 = 0,..., N. Compute =2 meas (T),
Xq Bxl
T € T (v.) 1in order to calculate the term 2 b..(X), 1 =0,..., N
h*'h axl ij

(the majority of these terms will be identically zero). Finally

d

5o VX,0(X)) is then obtained by equation (4.10).
i

3. Minimizing of cost functional. 1In a concrete choice of the

optimization algorithms, specific features of the problem have to

be taken into account:

1) The evaluation of cost functional and its gradient are time
consuming (steps 1 and 2). The Hessian matrix cannct be given

explicitly.. -

ii) Constraints are linear containing box constraints, inequality
constraints (Lipschitz-condition) and an equality constraint

[meas(Qh(vh)J = C5). The Lipschitz condition reads

Cq < By
(4-18) _‘N—_ Xl 'Xl_,] —N—, l = 1,-&-; N
and the volume constraint

N
(4.19) E (xl + xl-1] = 2 CZN

This implies that matrix (Cij) in (4.9) is sparse.

iii) Function v » J(y(v)) is not convex. Thence an initial
guess plays an important role in minimizing procedure. Because
of the complexity and the high dimensionality of the problem

global optimization is not relevant.
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For algorithms solving linearly constrained optimization problems
we refer to [8, 9], to [18] (large scale linearly constrained

problems) and to [30].

5. REMARKS ON ALTERNATIVE METHODS
5.1 Dual formulation for the state problem '
By applying Green's formula to (2.4) one can easily prove

that v = y(v) € K(Q(v)) satisfies in Q(v) the Poisson equation

with mixed Dirichlet-Signorini boundary conditions:

- Ay = f in Q(v)
(5.1) y =0 on T,
y >0 S y 20 y-é— y =0 on T'(v)
- ’ on - 77 9n

For regularity of such type of a problem see [2] .

Using a saddle-point formulation to a unilateral boundary value
problem (5.1) on K(Q(v)) (v € uad being fixed) we obtain a problem:

Find (v, %ﬁ y) € V(Q(v)) x A such that

(5.2) Lly, 5% y) = min sup L(@,u) = max inf Lo, ul)
_ QeVviQlv)) uen HEA Ve V(Q(v])
where L : V(Q(v)) x A - R is a lagrangian defined by means of

1 2
Lly(v),u) = = ngady(v)HO,Q(vj- (F’y(V))O,Q(V)— u,yv) >

and




The symbol & , > denctes the duality pairing between H™ /2

and H1/2

_3'] -

L20c0,1)), i.e.

By utilizing the classical Uzawa method to (5.2)

following iterative procedure for solving the original unilateral

1
<u, ylv)) = é Hixy) ylvixy)), dx,,

ue L20co,1)).

boundary value problem (5.1) in Q(v):

Algorithm 5.1. Let A

0 (k)

€ A be given. If ) €

y[kJ € V(Q(v)) such that

(5.3) Ly ™, Aty < e, ARy for arn
Replace A(k] by a new value k[k+1) as follows
(5.4) A(k+1) f PA(A(k) = g y[k)] . B

where PA is a projection onto the convex set

The convergence of the above type of algorithm is studied in [471.

is known,

((0,1)), which is an extension of a scalar product 1in

we have the

© e V(Qlv)).

Step (5.3) consists of a mixed elliptic boundary value problam

(5.5)

(k)

[ = Ay(v) = f in Q(v)
y(v)(k] = 0 on 1“,I
(k)
2 yvixg)) K i
L Jp YIViXy

(1+ (v (x,))%) 172

s

((0,4))

find
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The algorithm we propose here for sclving the optimal shape
design problem (2.1) with the state problem (5.1) proceeds as

follows:

(00 ¢ n. Let

€ A be already known. Then solve the aoptimal shape design

Algorithm 5.2. Start with arbitrarily given A
(K)
A

problem (2.1) with (5.5) as a state equation.

(k) (k) (k))

Let v € Uad be its solution and y (v be the corres-
ponding state, respectively. Finally, replace A(k) by A[k+1]
by means of

Let us note in this place that the canvergence of Algorithm

5.2 remains still an open problem.

5.2 Adjoint state for the penalized problem

In chapter 4.4 the gradient for the cost functional Je is
computed in algebraic form. Due to the simple geometry it is
quite straightforward. We note however on the use of more
general methods in sensitivity analysis of shape design problems
(material (or speed) derivatives, see [6]1 , [29]). An

essential point is to find the adjoint state. In connection of
the penalized problem (2.5) it reads: Find p € V(Q(v])) such that

(5.6) / grad p * grad § dx +
Qlv)

dx

1
2 .
5 é p'PUH ye|FhA EII‘(V) 2

=2 f (ye- zd) £ dx for all € € V(Q(v)) .
Qlv)

By utilizing the adjoint state eguation (5.8), the material

derivative for cost functional J€ can be computed by evident

modifications of methods presented in [6, 28]. See also [26, 27].
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6. NUMERICAL EXAMPLES

Problem (P) has been saolved numerically by using three different

methods for the state problem:

(i) variational inequality formulation |

(ii) method of penalization

(iii) dual formulation.

We consider the minimization of the functional for total displace-

ments:

(6.1) I ) = T (y(v))? dx |

1 /ﬂ/v{o (—C'Y@
2 L= —— to wal
6.2) Jotv) =/ (y(v))© d . ( o«
( 2 v . ylv ><2 (/\

We have considered in the theoretical part only the case of the
first cost functional, but the results are straightforward

to extend to cover the second one as well.,

The algorithms presented above were implemented to UNIVAC 1100/80
computer of Computer Centre of the University of Jyvaskyla.

In minimization module of design procedure the subroutine

VEOTA of Harwell Subroutine Library was utilized. The authors
are indebted to B.Sc. T. Tiihonen for his assistance in numerical

experiments.

Example 6.1. In this example we have applied the above mentioned

three different types of variational methods for minimizing the cost
functional (6.1) over U7, with h - 1/8.
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Let F(xq,xz] = 4 sin 2 m x5, and assume in the definition of
h o _ 3 _
U g (see formula (4.6)) a =5, B = > Gy 5 = 1
The initial guess is X =(1,...,1), i.e. Q (0,11 x (0,1).

In variational inequality formulation difference approximation
( wq(X,Q(XJ] is the discretized

is used to provide waq(X,Q(X))
form of J,(v]), see chapter 4.2).

In penalty method and dual method waq(X,Q(X)) was computed

by formulae presented in chapter 4.3.
chosen to be = 10—6
Single precision was utilized.

seen in Table 6.1.

Penalty parameter ¢ was

and parameter p in Uzawa algorithm = 5.

The obtained results can be

Variational Penalty Dual
ineg. formul. method method

Initial value of w1 .0035647 .0035645 .00356710

Final value of w1 0027075 .0026686 .0026683
1.0736472 .0631734 .0624982

- o L

xq-coordinates of .9486468 .9381738 .9374992

€8 S WIRSIO 8236468 .8131729 .8124990

boundary 9486468 .9381729 .9374959
1.0736468 .0631734 .0625005
1.17568486 .1866188 .1875005
1.0546840 .0618407 .0B625006
.89296840 .8366406 .9375006
1.0080733 .0616407 .0B625005

Number of gradisnt

svaluations (ite- 36 31 28

rations)

CPU-time 1is 175 58 20

seconds

Table b6.1. Comparision of different methods.
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It can be seen that the penalty method gives the best result.
The higher CPU-time in variational inequality formulation is

due to the fact that difference method is used for approximating
waq(X,Q(X)). Every iteration in this connection means ten
function evaluations. The function evaluation in dual method

is slightly more time consuming than in penalty method (Uzawa-
NSOR). In both methods the gradient of the cost functional is
evaluated by methods presented in chapter 4.4.

The solution of the state equation in penalty method with 931

(last iteration), the triangulation for 931 and the final position

of design nodes Ai = (xi, ih) can be seen in Figure 6.2.

o ““‘."—'
3 ! ad =

S T OSSR SIS SRR
R s

_— e e e D LT -
e g SR \‘ - ““‘:" ‘.‘_s‘ "‘\’d‘.‘
R g o S S S Rt SR RSt % XX
: oS :
¥ oo
S

o
0
)
()

T et e
B e
Sele e tel s te oo et ia st
A
s

Figure 6.2. Spline-smoothed FE-solution of the state equation

(3.2) with 22", triangulation of 93 and final position of

design nodes a (i = 0,...,8).

For finer triangulation (h = 1/16, h = 1/32 etc.) the number
of design variables is 17, 33 etc. In optimization procedure
the number of iterations for finding as good design as above
remains almost the same. The function evaluation is however

highly more time consuming: for example about 8 times more
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expensive for h = 1/16 than for h = 1/8. In this connection
no essentially new information can be obtained by finer tri-

angulatiaon,

One possibility is to begin the design procedure with a rough
triangulation and to take the obtained optimal design nodes

plus nodes between these nodes as a new initial guess.

Example 6.2. In this example the criteria function is (6.2).
Let

F(x1,x2) = B sin 2 T X sin 2 X
We assume that h = 1/8, o = 3/4, B = 3/2, Cq = 1, C~0 =1 .

As already mentioned, the criteria function is not convex,

so that the initial guess has great influence for the design
obtained when standard minimization routines are utilized
(local minimum). To illustrate this situation let us consider
three initial guesses for x
(see Table 6.3).

1-coordinates of design variables

x1-coordinates of design value of criteria
variables function (6.2)

X? = (1.0,.9,.8,.9,1.0,1.1,1.2,1.1,1.0) J2 = ,31898E-3

Xg = (1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0) JZ = .38345E-2

Xg = (1.0,1.1,1.2,1.1,1.0,.9,.8,.9,1.0) JZ = .237B2E-2
Table 6.3. Value of criteria function for different

initial guesses.

In Table 6.4 we see the final values of the criteria functions
for the above three initial guesses. Penalty method with

g = 10—6 is used for solving the state problem.
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Guess X? Guess Xg Guess Xg
Value of cost
function 12 for .31898 E-3 .38345 E-2 . 23762 E-2
initial guess
Final value of 24012 E-4 16546 E-4 .15238 £-2
cost functional
Final X4, -coor- .7500000 .7500000 1.0968671
dinates of .74939993 . 7500000 1.19353851
design .8324477 .8234432 1.1329431
variables .9574477 .9484432 1.1250003
.0811422 1.0621496 1.0000002
.2061422 1.1871436 .8750000
.1228118 1.2408772 . 7500000
. 1583375 1.1168916 .8750000
.0333421 .9918914 .9999559
Values of . 0000000 . 0000000 .C000000
nodal dis- .0000000 .0000000 .0000000
placements .00076689 -.0007438 .0135833
on final .0008473 .00039452 .0088125
design points .0004957 -.0005171 .0026262
(principal .0126108 113655 -.0004833
moving points) .0002110 -.000106861 .0440756
.0055680 -.0007284 0841414
.0003415 . 0004256 .0538423
. 0000000 .0000000 .0000000
Number of
iterations 2t 50 13
CPU-time 77 25 23

(seconds)

Table 6.4.

Influence of initial guess for design obtained
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In Table 6.4 it can be seen that the first two initial guesses
lead roughly speaking to the same minimum. For initial guess
Xg the algorithm can reduce the cost functional relatively
less than for initial guess Xg for example (47 % - 93.39 %).
The final design is also different from that obtained for the

other two initial guesses.

The solution of the state problem for QBO

(with initial guess
Xg),?inal triangulation and final position of design nodes

A. = (x., 1h) can be seen in Figure B.6.

A S
S R e e O
RS “"“‘;’3"%'3’5:.‘:::;’3353:“
\ S o S T ICE I ST S
o R s Se 0 e Ot Vg LA
Sineee e
oS

) \

5 \\m‘i‘*\‘ S
oSS N
T B! e, R R
S S R A I SIS USRS SRR S

®-gv gl ._.,o". ‘\0.0. 5SS ‘O‘Q ‘_ﬁ e y
S S S R O O R R St ST
B e 005 et

o we Rt o o SO e e’
T R S S S LD S R e S e g
o LR :;:::,&_‘?ﬁ%‘.\\ﬁg":“::‘ﬁ: ‘ﬁ‘—,o::,'
—————

A

8
7
A An A
Ag 2 e 4 Ag Ag
Figure 6.5. Spline-smoothed FE-solution of the state problem in

Example 6.2. with QBD corresponding triangulation for QDD and

final position of design nodes Ai =i =20,..., 8.
It can be seen that the constraint X1 2 o = 3/4 is active in the
first two design nodes Ag = (.75,0) and Ay = (L75,.125).

At node AB ~ (1.24,.75) the Lipschitz constraint is active.
By choosing the constraints for u;d in an appropriate way we can

. . . . 9 N
find design points A, such that uh(Ai) = 0, 55 Yp 2 0 .
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Example 6.1 as well as other methods for solving the state

problem (variational inequality formulation and dual method)

gave essentially the same "optimal design”. The only differ-
ence is in CPU-time, which for penalty method and dual method
is roughly speaking the same, but for varietional inequality

formulation about three times higher.

Finally, we consider the diminution of the criteria function J

P
in the design process. In Figure 6.6 we can see the decreasing
of 12 versus iterations; as above, the penalty method with

-6 . .
e = 10 for solving the state problem and the subroutine VEGC1A
of Harwell Subroutine Library for the minimization process were
= 0 8 p
utilized. X2 .was chosen as the initial guess (see Table 6.3).
)
o
- "
<
=z
o
-
Q
=z
>
e
o
—_ |
w
o %
[
79
pe
e
L
or—)
T =4
5 2
-4 =
<
>
3
<
! I 1 I 1] 1 :
T 10 20 30 10 s¢ 60
NUMSER OF FUNCTIGN EVALUATIONS
Figure 6.6. Decreasing of criteria function versus iteration

In Figure 6.6 the value of 12 is given by a logarithmic
scale. We can find that the criteria function has been reduced
from QO (corresponding to initial guess Xg in Table 6.3)

to 928 about a factor of 100 . Frcm step QZB to 956
(28 iterations) the value of the criteria function has been
reduced a relatively small amount. As the total CPU-time is
here 76 seconds, about 50 % of the CPU-time was used without

cbtaining any essential new information.
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