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Abstract A well-established observation in nuclear physics
is that in neutron-rich spherical nuclei the distribution of neu-
trons extends farther than the distribution of protons. In this
work, we scrutinize the influence of this so called neutron-
skin effect on the centrality dependence of high-pT direct-
photon and charged-hadron production. We find that due
to the estimated spatial dependence of the nuclear parton
distribution functions, it will be demanding to unambigu-
ously expose the neutron-skin effect with direct photons.
However, when taking a ratio between the cross sections
for negatively and positively charged high-pT hadrons, even
centrality-dependent nuclear-PDF effects cancel, making this
observable a better handle on the neutron skin. Up to 10%
effects can be expected for the most peripheral collisions in
the measurable region.

1 Introduction

In ultra-relativistic heavy-ion collisions the concept of cen-
trality plays an important role in phenomena such as the jet
energy loss [1–3] or the systematics of azimuthal anisotro-
pies [4,5]. Experimentally, the centrality of a collision is
usually defined according to the amount of energy seen in
a specific part of the detector, typically at large pseudora-
pidities [4,6,7]: the more energy observed, the more cen-
tral the collision. The theoretical centrality categorizations
are based on Glauber models [8], in which the centrality is
related to impact parameter (optical Glauber) or to the num-

a e-mail: ilkka.helenius@uni-tuebingen.de
b e-mail: hannu.t.paukkunen@jyu.fi
c e-mail: kari.eskola@jyu.fi

ber of nucleon–nucleon collisions (Monte-Carlo Glauber).
While there is no direct, unambiguous relation between the
experimental and theoretical prescriptions, it is yet generally
accepted that a correspondence exists in collisions of two
heavy nuclei. In nucleon–nucleus collisions, however, the
same experimental procedure has led to rather unexpected
results [9–11] and it is now commonly believed that such a
centrality classification induces a non-trivial bias on the hard
process whose centrality dependence was to be measured
[12–16].

The Glauber models take the nuclear density distribu-
tion as an input and it is typically assumed to be identi-
cal for protons and neutrons. However, the measurements
at lower energies indicate that the tail of the neutron density
distribution extends farther than that of the proton density
[17–19]. While this so-called neutron-skin (NS) effect [20]
should not have a great importance in the centrality classi-
fication itself, it leads to a growth of the relative number
of neutrons at high impact parameters and thereby influ-
ences the observables sensitive to electroweak effects in
peripheral (large impact parameter) collisions of two heavy
nuclei. The impact of the NS effect to W± production
in Pb+Pb and p+Pb collisions at the LHC was studied in
Ref. [21].

In this work, we extend the study of Ref. [21] to
direct-photon and charged-hadron production at high trans-
verse momenta (pT) in Pb+Pb collisions at the LHC.
The goal is to study whether the NS effect has a mea-
surable impact on these observables and to quantify at
which centralities and kinematics (transverse momentum,
rapidity) the effect would be most pronounced. Our hope
is that, later on, the NS effect could help to calibrate
the centrality classification in collisions involving heavy
ions.
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2 Centrality-dependent hard-process cross section

Centrality classification is done here using the optical Glau-
ber model as in Refs. [21,22]. For the nuclear density dis-
tribution we use the two-parameter Fermi (2pF) distribution,

ρA(r) = ρA
0 /(1 + e(|r|−dA)/aA), (1)

where dA describes the radius of the nucleus and aA the
thickness of the nuclear surface (skin) in nucleus with a mass
number A. To account for the NS effect the nuclear density is
written as ρA(r) = ρp,A(r)+ρn,A(r) where now the param-
eters of the 2pF distribution are different for protons and neu-
trons. Here we use the parameters from Ref. [17], dn,Pb =
6.70 ± 0.03 fm and an,Pb = 0.55 ± 0.03 fm, for neutrons
and dp,Pb = 6.680 fm and ap,Pb = 0.447 fm for protons.1

The hard-process cross section in an A+ B collision for a
given centrality class Ck corresponding to an impact parame-
ter interval bk ≤ b < bk+1 (where b = |b|) can be calculated
from

dσ hard
AB (Ck) = 2π

∫ bk+1

bk
db b

∫
d2s

∑
i, j

T i
A(s1) T

j
B (s2)

× dσ hard
i j (A, B, s1, s2), (2)

where the nuclear thickness functions T i
A(s) are obtained by

integrating the density over the longitudinal (i.e. beam) direc-
tion,

T i
A(s) ≡

∫ ∞

−∞
dzρi,A(r), (3)

and s1,2 = s ± b/2 are defined according to Fig. 20 of
Ref. [22]. The indices i and j run over combinations (i, j) =
(p, p), (p, n), (n, p) and (n, n). The impact-parameter inter-
vals required in Eq. (2) correspond to the fractions of the total
inelastic cross section σ inel

AB (
√
s), obtained as in Refs. [21,22]

by

σ inel
AB (

√
s) =

∫ ∞

−∞
d2b

[
1 − e−TAB (b) σ inel(

√
s)

]
, (4)

where

TAB(b) ≡
∫ ∞

−∞
d2s

∑
i, j

T j
A(s1) T i

B(s2). (5)

We take σ inel(
√
s = 5 TeV) = 70 mb [23]. The spatial

dependence of the hard-process cross section dσ hard
i j arises

here from the spatial dependence of nPDFs,

1 In the analysis of Ref. [17], the proton density was taken as fixed
when fitting the neutron parameters to the data. Therefore, the proton
density has no uncertainty here.

dσ hard
i j (A, B, s1, s2) =

∑
k,l

f i/Ak (x1, Q
2, s1)

⊗ f j/B
l (x2, Q

2, s2)⊗dσ̂ kl→observable,

(6)

where dσ̂ kl→observable are perturbative coefficient functions
and k and l are parton flavour indices. The nPDFs appearing
in Eq. (6) above are defined as

f i/Ak (x, Q2, s) = r i/Ak (x, Q2, s) f ik (x, Q
2), (7)

where f ik (x, Q
2) is the free nucleon PDF (here CT10NLO

[24]) and r i/Ak (x, Q2, s) the nuclear modification which
depends on the transverse position of the nucleon inside the
nucleus.2 Here we use EPS09s nuclear modifications from
Ref. [22] in which

rp/A
k (x, Q2, s) = 1 +

4∑
j=1

c jk (x, Q
2)

[
T p
A(s) + T n

A(s)
] j

, (8)

where the coefficients c jk (x, Q
2) are obtained by analyz-

ing the A-dependence of the EPS09 [25] nPDFs. The neu-
tron PDFs f n/A

k (x, Q2, s) are obtained from the proton

PDFs f p/A
k (x, Q2, s) by the isospin symmetry. By combin-

ing all, Eq. (2) factorizes into purely geometric and purely
momentum-dependent parts which can be evaluated sep-
arately thereby reducing the dimensions of the required
numerical integrations. We use the Incnlo program [26–
29] to calculate the momentum-dependent parts at next-to-
leading order in perturbative QCD.

3 Results

3.1 Direct-photon production

Direct photons are produced either in the hard process or by
the fragmentation of high-pT partons from the hard process.
To obtain the latter contribution we convolute the partonic
spectra with the BFG (set II) parton-to-photon fragmentation
functions (FFs) [30]. Since the photon coupling is stronger in
the case of up-type quarks than with the down-type quarks,
the production rate of direct photons is larger in p+p colli-
sions than in n+n collisions. This leads to a lower per-nucleon
rate of direct photons in heavy-ion collisions than in p+p col-
lisions due to the presence of neutrons. This is often referred
to as the isospin effect and it becomes important at large val-
ues of x where the valence quarks dominate. Furthermore,

2 Currently, there is no coherent way to treat the PDF nuclear modifi-
cations within the Monte-Carlo Glauber model. This is actually why, in
this work, we stick to the optical version of the Glauber model.
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Fig. 1 The nuclear modification factor for direct-photon production
in peripheral Pb+Pb collisions with

√
sNN = 5.0 TeV at mid-rapidity

for two centralities 70–80% (left) and 90–100% (right). The results are
compared to the isospin effect (dotted) and MB result (long-dashed)
and the centrality-dependent results are shown with (solid) and without

(short-dashed) the NS effect. The uncertainties from EPS09s nPDFs
(light colour band) and 2pF parametrization (dark colour band around
the solid lines) are calculated with the NS effect. The gray band shows
the EPS09s uncertainty for the MB result in the right-hand panel

since the relative fraction of neutrons grows towards the edge
of nucleus due to the NS effect, an additional suppression of
direct photons in peripheral collisions is expected.

A canonical way to quantify the nuclear effects is to com-
pute the nuclear modification factor, defined in a given cen-
trality class Ck of a Pb+Pb collision as

Rγ
PbPb(Ck) = 1

TPbPb(Ck)
dσ

γ
PbPb(Ck)
dpTdη

/
dσ

γ
pp

dpTdη
, (9)

where the normalization is related to the amount of interact-
ing nuclear matter,

TPbPb(Ck) = 2π

∫ bk+1

bk
db b

∫
d2s

∑
i, j

T j
Pb(s1) T

i
Pb(s2),

(10)

where the impact parameters bk and bk+1 define the central-
ity class Ck as in Eq. (2). For the cross-section calculations
we have set the renormalization, factorization and fragmen-
tation scales to photon pT. The uncertainties related to the
scale ambiguities are not considered here in more detail since
they largely cancel out in the ratio, especially at large values
of pT relevant here [31]. The isolation criterion, often used
by experiments to suppress secondary photons from hadronic
decays, is not applied here since the effect to Rγ

PbPb is negli-
gible at the very high values of pT considered here.3

Figure 1 shows Rγ
PbPb at mid-rapidity for two centrality

classes, 70–80 and 90–100% with and without the NS effect,

3 The valence quark-gluon channel dominates irrespectively of the iso-
lation.

compared also to the minimum-bias (0–100%, MB) result
and to the isospin effect. The uncertainties considered here
are the EPS09s uncertainty (light colour band) and the one
related to the uncertainty of neutrons 2pF parameters (dark
colour band), obtained by evaluating Rγ

PbPb with the quoted
parameter variations, and adding the differences to the central
prediction in quadrature.

The different pT regions are sensitive to different nPDF
effects. First, comparing the MB result to the result without
nPDF effects (only isospin), at pT < 30 GeV/c some sup-
pression due to shadowing is observed which then turns into
an enhancement due to anti-shadowing. At pT > 300 GeV/c
a suppression due to the EMC effect is observed. The spa-
tial dependence of the nPDFs always decreases the nuclear
effects towards more peripheral collisions whereas the NS
effect generates additional suppression with increasing pT.
Therefore, at high values of pT where the impact of NS
is more pronounced, these two effects pull towards oppo-
site directions thereby “softening” the aggregate centrality
dependence.

As the nuclear modifications of the PDFs gradually dis-
appear with increasing peripherality, also the uncertainty
becomes smaller for more peripheral events. However, even
in the 90–100% bin the nPDF uncertainty is of the same
order as the NS effect which further complicates the sepa-
ration of different effects. The non-zero nPDF effects even
at the most peripheral bin are due to the power series ansatz
in EPS09s, see Eq. (8), which, by construction, gives zero
nuclear modifications only when b → ∞. The uncertainty
from the neutron 2pF parametrization turns out to be rather
small as the contribution of the n+n channel is inferior e.g.
to the contribution of the p+p channel and thus the varia-
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Fig. 2 The central-to-peripheral ratio for direct-photon production in
Pb+Pb collisions with

√
s = 5.0 TeV at mid-rapidity for (0–10%)/(70–

80%) (upper left) and (0–10%)/(90–100%) (upper right), and at forward
rapidity for (0–10%)/(70–80%) (lower left) and (0–10%)/(90–100%)

(lower right). The results with (solid) and without (dashed) NS effects
are shown and the uncertainties are from the EPS09s nPDFs (light
colour band) and from the 2pF parametrization (dark colour bands)

tions in the neutron density are not that important. Since the
fraction of neutrons (and therefore the n+n channel contri-
bution) grows towards more peripheral collisions, also the
uncertainty grows accordingly.

The centrality dependence can also be studied using the
central-to-peripheral ratio RCP defined as

RCP = TPbPb(P)

TPbPb(C)

dσ
γ
PbPb(C)

dpTdη

/
dσ

γ
PbPb(P)

dpTdη
. (11)

The advantage is that there is no need for a separate p+p
baseline measurement and also that some uncertainties are
expected to cancel out. Here, we have used the bin 0–10% as
the central result and compared it to the 70–80 and 90–100%
bins. The results are shown in Fig. 2 again with and with-
out the NS effect. Since the peripheral bins are now in the
denominator, the NS effect increases the ratio and therefore
decreases the centrality dependence at high-pT region (RCP

closer to unity). The nPDF originating uncertainties are now
larger with the most peripheral bin red (90–100%) because

the uncertainties in the central bin (similar to the MB uncer-
tainty in Fig. 1) do not cancel here as effectively as with the
less peripheral bin (70–80%). Even though the interpretation
of this observable is easier, the NS effect is still of the same
order as the nPDF uncertainties.

At forward/backward rapidities (the lower panels in Fig. 2)
the nPDF uncertainties are smaller. This is because here the
dominant contribution comes from q+g initial state where
the gluon is at shadowing region with only mild uncertainty
(at high factorization scale), and the quark is also a well-
constrained high-x valence quark. The modifications, how-
ever, are quite small and since there is an additional uncer-
tainty due to modelling of the spatial dependence of the
nPDFs, it is difficult to unambiguously study the NS effect
with this observable. The most accurate centrality-dependent
measurement for photons in Pb+Pb comes from the ATLAS
collaboration [32]. However, their most peripheral bin 40–
80% is still too central, and also the experimental uncertain-
ties are large, to see any effects of NS.
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Fig. 3 Upper left panel The ratio between positively and negatively
charged hadrons in p+p (solid) and in n+n (dashed) collisions at√
s = 5.0 TeV and η = 0 using DSS (green), Kretzer (blue), and

AKK08 (red) FFs. Upper right panel The ratio between positively and
negatively charged hadrons in Pb+Pb collisions at

√
s = 5.0 TeV and

η = 0 using DSS (solid) and Kretzer (dashed) FFs for centrality classes
0–100% (red), 70–80% (green), and 90–100% (blue). The light colour
bands show the uncertainty from the 2pF parametrization and the dark

one the EPS09s uncertainty with DSS. For the 0–100% (90–100%) bin
only the EPS09s (2pF) uncertainty is visible. Lower panels The ratio
between positively and negatively charged hadrons in Pb+Pb collisions
at

√
s = 5.0 TeV and η = 0 in 70–80% (green) and 90–100% (blue)

centralities normalized with 0–100% using DSS (solid) and Kretzer
(dashed) FFs. The colour bands show the nPDF uncertainties (dark)
and uncertainty in the 2pF parametrization (light) with DSS FFs

3.2 Charged-hadron production

An observable in which the nPDF effects should cancel out
very efficiently but yet be sensitive to the NS effect, is the
ratio between negatively and positively charged hadrons,

h−

h+ (Ck) = dσ h−
PbPb(Ck)
dpTdη

/
dσ h+

PbPb(Ck)
dpTdη

. (12)

Since the relative number of neutron-involving (p+n, n+p,
n+n) collisions is higher in peripheral than in central colli-
sions, the increased d-quark contribution produces less posi-
tively charged hadrons and more negatively charged hadrons
during the fragmentation. Here we do not consider any addi-
tional final-state effects that may affect the hadron production
even though a significant suppression for the production of
high-pT hadrons has been observed [33–35] in all central-

ities. Indeed, the measurements in Refs. [33,34] show that
the suppression at high pT (pT � 10 GeV/c) is very simi-
lar for all light charged hadrons (pions, kaons, protons) and,
consequently, the particle ratios (K+ +K−)/(π+ +π−) and
(p+p)/(π++π−) are the same in p+p and Pb+Pb collisions.
This motivates us to conjecture that final-state effects would
have only a relatively small influence on the ratio of Eq. (12).
Moreover, at the very high-pT region (pT � 100 GeV/c)
where the current measurements are still statistically limited
[35], the suppression effect in peripheral bins may be even
negligible.

The cross section for hadron production is calculated
by convoluting the partonic spectra with non-perturbative
parton-to-hadron FFs. We consider three options, dss [36],
kretzer [37] and akk08 [38]. To better understand the vari-
ations seen using different FFs, the h−/h+ ratios in p+p and
n+n collisions at

√
s = 5.0 TeV are shown in Fig. 3. The first
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observation is that with akk08 FFs the ratio in p+p actually
turns negative at high-pT, caused by the cross section for h−
becoming negative. This clearly unphysical result implies
that the considered kinematic region is out of the validity
region of akk08. The results using dss and kretzer are not
that different in p+p collisions but for n+n collisions almost
a factor of two difference at the very highest values of pT

is observed. These differences between the FF analyses gen-
erate some further theoretical uncertainty for the considered
observable. Turning this around, a measurement of h−/h+
in p+Pb or Pb+Pb collisions would clearly provide additional
constraints for future FF analyses (modulo the possible final-
state effects in Pb+Pb).

The h−/h+ ratios in Pb+Pb collisions at
√
sNN = 5.0 TeV

for centrality classes 70–80 and 90–100% are shown in the
upper right panel of Fig. 3 together with the MB result with
dss and kretzer FFs. The nPDF effects, including the cen-
trality dependence and the uncertainties, are found to be neg-
ligible as expected. The uncertainty in the 2pF parametriza-
tion is negligible for the MB case but increases towards more
peripheral collisions. The uncertainties are larger than in the
case of direct-photon production as the cross section for h−
now gets a large contribution from the n+n channel and thus
carries more sensitivity to the parameter uncertainties in the
neutron density. More importantly, the centrality dependence
from the NS effect is clearly visible in this observable. How-
ever, the different FFs still yield rather different results but
normalizing the ratio with the MB result, the FF dependence
largely cancels out. This is demonstrated in the lower panels
of Fig. 3, where the ratios in 70–80 and 90–100% classes are
normalized with the 0–100% result for η = 0 and |η| = 2.
Some FF dependence persists with |η| = 2 but it is still
smaller or of the same order than the uncertainty in 2pF
parametrization. Also the nPDFs yield a few-percent uncer-
tainty for the observable.

To estimate the achievable experimental precision for the
h−/h+ ratios discussed above, we multiply the cross sec-
tions from Eq. (2) by the nominal Pb–Pb nucleon–nucleon
luminosity ofLnn = 1 nb−1 (also withLnn = 10 nb−1 which
would correspond to the luminosity targeted after the LHC
Long Shutdown 2 [39]).4 From the resulting number of events
N we compute the relative statistical uncertainty by 1/

√
N .

To have better statistics, we consider here the rapidity bin 1 <

|η| < 3 (excluding the mid-rapidity to have a larger effect
from the neutron skin) and suitably wide pT intervals. The
results are shown in Fig. 4 where the total statistical uncer-
tainty follows from combining the statistical uncertainties
for h+ and h− quadratically. As can be seen from Fig. 4, the
realistically measurable region is pT < 200 GeV/c for the
70–80% bin and pT < 100 GeV/c for the 90–100% bin. We
would expect that systematic uncertainties are small in these
ratios like they are e.g. in the case of W charge asymmetry.

4 Summary and outlook

We have studied the impact of the NS effect to direct-photon
and charged-hadron production in Pb+Pb collisions at the
LHC. In the case of photon production the NS effect has a 5–
10% impact on Rγ

PbPb though the uncertainties in the nPDFs
and their spatial dependence are of the same order or even
larger than the expected effect. With Rγ

CP some of the nPDF
uncertainties cancel out making the NS effect more trans-
parent. Also, going to larger rapidities decreases the nPDF
uncertainties, but still the smallness of the NS effect and the
ambiguities due to the centrality dependence of the nPDFs
makes the direct-photon production a challenging observable
to study the NS effect.

A more promising observable is the ratio between neg-
atively and positively charged high-pT hadrons, for which
we find up to 10% effects in the statistically relevant pT

region. In this case, the spatial dependence of the nPDFs
cancel out very efficiently and, in general, the NS effect has
a more pronounced impact than in the case of direct pho-
tons. The downsides here are the sensitivity to the applied
fragmentation functions and, towards smaller pT, possible
final-state modifications due to the produced strongly inter-
acting medium. The first one can be cured by normalizing the
ratio with the minimum bias result, but for a more detailed
study of the latter, further modelling would be required.
However, as discussed, there are indications that the final-
state effects may largely disappear when considering particle
ratios like the ones we have done here and, after all, the dis-

4 In these rough estimates we do not consider in detail the uncertain-
ties related e.g. to the use of different FFs, next-to-NLO corrections,
choices for the fragmentation/factorization/renormalization scales, or
suppression of the hadron yields in Pb+Pb relative to p+p baseline.
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parity between the amount of initial-state up and down quarks
should strongly correlate with the balance of produced neg-
atively and positively charged hadrons, irrespectively of the
exact way the produced hard partons hadronize.

We hope that in near future the NS effect could provide
an additional handle to control the centrality classification
and help to bridge the theoretical and experimental centrality
definitions. As a further prospect, we plan to study the NS
effect in the future high-luminosity lepton-ion colliders.

Acknowledgements I. H. has been supported by the MCnetITN FP7
Marie Curie Initial Training Network, Contract PITN-GA-2012-315877
and has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation pro-
gramme (Grant Agreement No. 668679). This research was supported
by the European Research Council Grant HotLHC ERC-2011-StG-
279579 and by Xunta de Galicia (Conselleria de Educacion)–H. P. is
part of the Strategic Unit AGRUP2015/11, and by the Academy of Fin-
land, Project 297058 of K.J.E.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. B. Abelev et al. (ALICE Collaboration), JHEP 1403, 013 (2014).
doi:10.1007/JHEP03(2014)013. arXiv:1311.0633 [nucl-ex]

2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 712,
176 (2012). doi:10.1016/j.physletb.2012.04.058. arXiv:1202.5022
[nucl-ex]

3. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett.
114(7), 072302 (2015). doi:10.1103/PhysRevLett.114.072302.
arXiv:1411.2357 [hep-ex]

4. G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 74(8), 2982
(2014). doi:10.1140/epjc/s10052-014-2982-4. arXiv:1405.3936
[hep-ex]

5. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett.
109, 022301 (2012). doi:10.1103/PhysRevLett.109.022301.
arXiv:1204.1850 [nucl-ex]

6. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. C 84, 024906
(2011). doi:10.1103/PhysRevC.84.024906. arXiv:1102.1957
[nucl-ex]

7. B. Abelev et al. (ALICE Collaboration), Phys. Rev. C88(4), 044909
(2013). doi:10.1103/PhysRevC.88.044909. arXiv:1301.4361
[nucl-ex]

8. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl.
Part. Sci. 57, 205 (2007). doi:10.1146/annurev.nucl.57.090506.
123020. arXiv:nucl-ex/0701025

9. S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J.
C 74(7), 2951 (2014). doi:10.1140/epjc/s10052-014-2951-y.
arXiv:1401.4433 [nucl-ex]

10. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B748, 392 (2015).
doi:10.1016/j.physletb.2015.07.023. arXiv:1412.4092 [hep-ex]

11. A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett.
116(12), 122301 (2016). doi:10.1103/PhysRevLett.116.122301.
arXiv:1509.04657 [nucl-ex]

12. G. Martinez-Garcia, arXiv:1408.3108 [hep-ph]
13. A. Bzdak, V. Skokov, S. Bathe, Phys. Rev. C 93(4), 044901 (2016).

doi:10.1103/PhysRevC.93.044901. arXiv:1408.3156 [hep-ph]
14. M. Alvioli, B.A. Cole, L. Frankfurt, D.V. Perepelitsa, M. Strik-

man, Phys. Rev. C 93(1), 011902 (2016). doi:10.1103/PhysRevC.
93.011902. arXiv:1409.7381 [hep-ph]

15. D.V. Perepelitsa, P.A. Steinberg, arXiv:1412.0976 [nucl-ex]
16. N. Armesto, D.C. Glhan, J.G. Milhano, Phys. Lett. B 747, 441

(2015). doi:10.1016/j.physletb.2015.06.032. arXiv:1502.02986
[hep-ph]

17. C.M. Tarbert et al., Phys. Rev. Lett.112(24), 242502 (2014). doi:10.
1103/PhysRevLett.112.242502. arXiv:1311.0168 [nucl-ex]

18. M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012). doi:10.1103/
PhysRevC.86.015803. arXiv:1204.0466 [nucl-ex]

19. J. Zenihiro et al., Phys. Rev. C 82, 044611 (2010). doi:10.1103/
PhysRevC.82.044611

20. C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001).
doi:10.1103/PhysRevLett.86.5647. arXiv:astro-ph/0010227

21. H. Paukkunen, Phys. Lett. B 745, 73 (2015). doi:10.1016/j.
physletb.2015.04.037. arXiv:1503.02448 [hep-ph]

22. I. Helenius, K.J. Eskola, H. Honkanen, C.A. Salgado, JHEP 1207,
073 (2012). doi:10.1007/JHEP07(2012)073. arXiv:1205.5359
[hep-ph]

23. G. Antchev et al. (TOTEM Collaboration), Europhys. Lett. 101,
21004 (2013). doi:10.1209/0295-5075/101/21004

24. H.L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-
P. Yuan, Phys. Rev. D 82, 074024 (2010). doi:10.1103/PhysRevD.
82.074024. arXiv:1007.2241 [hep-ph]

25. K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 0904, 065 (2009).
doi:10.1088/1126-6708/2009/04/065. arXiv:0902.4154 [hep-ph]

26. P. Aurenche, R. Baier, M. Fontannaz, D. Schiff, Nucl. Phys. B 297,
661 (1988). doi:10.1016/0550-3213(88)90553-6

27. F. Aversa, P. Chiappetta, M. Greco, J.P. Guillet, Nucl. Phys. B 327,
105 (1989). doi:10.1016/0550-3213(89)90288-5

28. P. Aurenche, M. Fontannaz, J.P. Guillet, B.A. Kniehl, E.
Pilon, M. Werlen, Eur. Phys. J. C 9, 107 (1999). doi:10.1007/
s100529900018. arXiv:hep-ph/9811382

29. P. Aurenche, M. Fontannaz, J.P. Guillet, B.A. Kniehl, M. Werlen,
Eur. Phys. J. C 13, 347 (2000). doi:10.1007/s100520000309.
arXiv:hep-ph/9910252

30. L. Bourhis, M. Fontannaz, J.P. Guillet, Eur. Phys. J. C 2, 529 (1998).
doi:10.1007/s100520050158. arXiv:hep-ph/9704447

31. I. Helenius, K.J. Eskola, H. Paukkunen, JHEP 1305, 030 (2013).
doi:10.1007/JHEP05(2013)030. arXiv:1302.5580 [hep-ph]

32. G. Aad et al. (ATLAS Collaboration), Phys. Rev. C 93(3), 034914
(2016). doi:10.1103/PhysRevC.93.034914. arXiv:1506.08552
[hep-ex]

33. B.B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 736,
196 (2014). doi:10.1016/j.physletb.2014.07.011. arXiv:1401.1250
[nucl-ex]

34. J. Adam et al. (ALICE Collaboration), Phys. Rev. C 93(3), 034913
(2016). doi:10.1103/PhysRevC.93.034913. arXiv:1506.07287
[nucl-ex]

35. V. Khachatryan et al. (CMS Collaboration), arXiv:1611.01664
[nucl-ex]

36. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 76, 074033
(2007). doi:10.1103/PhysRevD.76.074033. arXiv:0707.1506
[hep-ph]

37. S. Kretzer, Phys. Rev. D 62, 054001 (2000). doi:10.1103/
PhysRevD.62.054001. arXiv:hep-ph/0003177

38. S. Albino, B.A. Kniehl, G. Kramer, Nucl. Phys. B 803, 42 (2008).
doi:10.1016/j.nuclphysb.2008.05.017. arXiv:0803.2768 [hep-ph]

39. A. Uras, PoS LHCP 2016, 177 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP03(2014)013
http://arxiv.org/abs/1311.0633
http://dx.doi.org/10.1016/j.physletb.2012.04.058
http://arxiv.org/abs/1202.5022
http://dx.doi.org/10.1103/PhysRevLett.114.072302
http://arxiv.org/abs/1411.2357
http://dx.doi.org/10.1140/epjc/s10052-014-2982-4
http://arxiv.org/abs/1405.3936
http://dx.doi.org/10.1103/PhysRevLett.109.022301
http://arxiv.org/abs/1204.1850
http://dx.doi.org/10.1103/PhysRevC.84.024906
http://arxiv.org/abs/1102.1957
http://dx.doi.org/10.1103/PhysRevC.88.044909
http://arxiv.org/abs/1301.4361
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020
http://arxiv.org/abs/nucl-ex/0701025
http://dx.doi.org/10.1140/epjc/s10052-014-2951-y
http://arxiv.org/abs/1401.4433
http://dx.doi.org/10.1016/j.physletb.2015.07.023
http://arxiv.org/abs/1412.4092
http://dx.doi.org/10.1103/PhysRevLett.116.122301
http://arxiv.org/abs/1509.04657
http://arxiv.org/abs/1408.3108
http://dx.doi.org/10.1103/PhysRevC.93.044901
http://arxiv.org/abs/1408.3156
http://dx.doi.org/10.1103/PhysRevC.93.011902
http://dx.doi.org/10.1103/PhysRevC.93.011902
http://arxiv.org/abs/1409.7381
http://arxiv.org/abs/1412.0976
http://dx.doi.org/10.1016/j.physletb.2015.06.032
http://arxiv.org/abs/1502.02986
http://dx.doi.org/10.1103/PhysRevLett.112.242502
http://dx.doi.org/10.1103/PhysRevLett.112.242502
http://arxiv.org/abs/1311.0168
http://dx.doi.org/10.1103/PhysRevC.86.015803
http://dx.doi.org/10.1103/PhysRevC.86.015803
http://arxiv.org/abs/1204.0466
http://dx.doi.org/10.1103/PhysRevC.82.044611
http://dx.doi.org/10.1103/PhysRevC.82.044611
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://arxiv.org/abs/astro-ph/0010227
http://dx.doi.org/10.1016/j.physletb.2015.04.037
http://dx.doi.org/10.1016/j.physletb.2015.04.037
http://arxiv.org/abs/1503.02448
http://dx.doi.org/10.1007/JHEP07(2012)073
http://arxiv.org/abs/1205.5359
http://dx.doi.org/10.1209/0295-5075/101/21004
http://dx.doi.org/10.1103/PhysRevD.82.074024
http://dx.doi.org/10.1103/PhysRevD.82.074024
http://arxiv.org/abs/1007.2241
http://dx.doi.org/10.1088/1126-6708/2009/04/065
http://arxiv.org/abs/0902.4154
http://dx.doi.org/10.1016/0550-3213(88)90553-6
http://dx.doi.org/10.1016/0550-3213(89)90288-5
http://dx.doi.org/10.1007/s100529900018
http://dx.doi.org/10.1007/s100529900018
http://arxiv.org/abs/hep-ph/9811382
http://dx.doi.org/10.1007/s100520000309
http://arxiv.org/abs/hep-ph/9910252
http://dx.doi.org/10.1007/s100520050158
http://arxiv.org/abs/hep-ph/9704447
http://dx.doi.org/10.1007/JHEP05(2013)030
http://arxiv.org/abs/1302.5580
http://dx.doi.org/10.1103/PhysRevC.93.034914
http://arxiv.org/abs/1506.08552
http://dx.doi.org/10.1016/j.physletb.2014.07.011
http://arxiv.org/abs/1401.1250
http://dx.doi.org/10.1103/PhysRevC.93.034913
http://arxiv.org/abs/1506.07287
http://arxiv.org/abs/1611.01664
http://dx.doi.org/10.1103/PhysRevD.76.074033
http://arxiv.org/abs/0707.1506
http://dx.doi.org/10.1103/PhysRevD.62.054001
http://dx.doi.org/10.1103/PhysRevD.62.054001
http://arxiv.org/abs/hep-ph/0003177
http://dx.doi.org/10.1016/j.nuclphysb.2008.05.017
http://arxiv.org/abs/0803.2768

	Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC
	Abstract 
	1 Introduction
	2 Centrality-dependent hard-process cross section
	3 Results
	3.1 Direct-photon production
	3.2 Charged-hadron production

	4 Summary and outlook
	Acknowledgements
	References




