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Abstract. In this paper, we present an approach of employing multiobjective 
optimization to support decision making in forest management planning. The 
planning is based on data representing so-called stands, each consisting of ho-
mogeneous parts of the forest, and simulations of how the trees grow in the 
stands under different treatment options. Forest planning concerns future deci-
sions to be made that include uncertainty. We employ as objective functions 
both the expected values of incomes and biodiversity as well as the value at risk 
for both of these objectives. In addition, we minimize the risk level for both the 
income value and the biodiversity value. There is a tradeoff between the ex-
pected value and the value at risk, as well as between the value at risk of the 
two objectives of interest and, thus, decision support is needed to find the best 
balance between the conflicting objectives. We employ an interactive method 
where a decision maker iteratively provides preference information to find the 
most preferred management plan and at the same time learns about the interde-
pendencies of the objectives. 

Keywords: Forest management planning, multiobjective optimization, interac-
tive multiobjective optimization, Pareto optimality, uncertainty 

1 INTRODUCTION 

In forest management, a forest area is typically divided to decision units, so-called 
stands, which are relatively homogeneous with respect to the age structure and the 
species composition of trees. Forest management planning means selecting optimal 
harvest schedules including one or more treatment option(s) and their timing for each 



of these stands. The treatment options may include harvesting all the trees (final 
felling) or a part of them (thinning) within any stand, and planting new seedlings and 
tending them after a harvest has been carried out. The timing of the treatment options 
in the schedules is described by dividing the planning horizon to several planning 
periods of one or more years. 

For most decision makers, forest management planning is a multiobjective decision 
making problem. Harvesting implies incomes from forests but, on the other hand, it 
diminishes the recreational and esthetical values of the forest, and it may have adverse 
effects on the natural values of the forest area, for instance, the biodiversity within the 
area and the viability of wildlife populations living in the area. 

Importantly, forest management planning involves a lot of uncertainty as it is not 
possible to measure all trees within a forest area. This means that there is uncertainty 
concerning the current state of the forests. Furthermore, measuring biodiversity is 
prohibitively expensive, so using proxy variables (biodiversity indices) is the only 
possibility. Finally, all forest decisions concern the future (typically the next 5-20 
years), so that the state of the forest stands and the biodiversity as well as the conse-
quences of the treatment options need to be predicted using statistical models. As we 
do not know the exact consequences of the management decisions, the decisions in-
volve uncertainty which the decision makers may wish to manage.  

In this paper, we present an application that accounts for the conflicting objectives 
in forestry (incomes and biodiversity) and manage the risk involved in them using the 
value at risk (often denoted by VaR) concept. We apply an interactive multiobjective 
optimization method to find the most preferred treatment option for each stand con-
sidered. 

2 BACKGROUND AND RELATED WORK 

Selecting the optimal treatment schedule for each stand is a combinatorial optimiza-
tion problem, where the size of the problem depends on the number of separate stands 
and the number of possible treatment schedules for them. Linear programming has 
been widely used to solve this problem since the 1960s (Kangas et al. 2015). Most 
applications have multiple objectives, and have typically been solved using the ε-
constraint method (Miettinen 1999). Heuristic optimization has also been used since 
the 1990s. Within a heuristic framework, multiobjective optimization has typically 
been based on a weighted (additive) utility function. The main reason for not utilizing 
multiobjective optimization more has been the lack of computational tools to do so.  

Multiobjective optimization problems can in general be formulated as 
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In the above problem, 
if  are objective functions to be maximized simultaneously, 

 and j kg h are inequality and equality constraints, respectively, bounds a i i ix b   are 

called box constraints and, finally, the decision variable vector ( , )i rx x x  consists of 

integer-valued variables ix and real-valued variables rx . All the constraints form a 
feasible set Q which is a subset of the decision space. The image of Q mapped with 
the objective functions is called the feasible objective set f(Q) and elements of it are 
so-called objective vectors z. 

In multiobjective optimization, there typically does not exist a single optimal solu-
tion but, instead, there exist multiple so-called Pareto optimal solutions, where none 
of the objective functions can be improved without impairing at least one of the oth-
ers. For this reason, one needs additional preference information to decide which of 
the Pareto optimal solutions is the best one. The person giving this information is 
called a decision maker (DM). 

One way of giving preferences is providing aspiration levels, which are values of 
objective functions that should desirably be achieved, and they constitute a reference 
point krefz R . Aspiration levels are employed in so-called achievement scalarizing 
functions (Wierzbicki, 1986). The main idea behind achievement scalarizing func-
tions is that they measure the preferability of a solution given a reference point in a 
way that is theoretically justifiable. This is defined as order-consistency by 
Wierzbicki (1986). 

There exist many achievement scalarizing functions following the characterization 
of Wierzbicki (1986). In this paper, we use the following achievement scalarizing 
function to be maximized 
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In the above problem, z is a so-called objective vector in the image space of the 
feasible set, idealz is the ideal vector of the problem containing the maximum values of 
the individual objectives and nadirz is the nadir vector containing the minimum values 
of the individual objectives within the set of Pareto optimal solutions (see e.g. Miet-
tinen, 1999). The summation term at the end is called an augmentation term and the 
constant   is a small positive constant, e.g. 0.0001. The augmentation term guaran-
tees that the solutions are indeed Pareto optimal.  

Employing the achievement scalarizing function means solving the optimization 
problem 

max ( ( )),asf ref
x Q s f x z  

for any reference point refz  given by the DM. Given a reference point, the optimal 
solution of the above problem is a Pareto optimal solution to the original multiobjec-
tive optimization problem (Wierzbicki, 1986). The variant of the reference point 
method (Wierzbicki, 1986) employed utilizes the achievement scalarizing function. 

A vast majority of applications within forest management planning assumes a deci-
sion situation under certainty. A couple of applications of stochastic optimization 



have been published since the 1980s, and most of them in the last 10 years. To our 
knowledge, any kind of risk management has only been included in two published 
papers (Eyvindson and Kangas 2016a, Eyvindson and Chen 2016). The latter em-
ployed conditional value at risk (Rockafeller and Uryasev 2000). Applications utiliz-
ing value at risk (Duffie and Pan 1997) have not yet been published in forest man-
agement planning. To our knowledge, applications including two or more different 
value at risk concepts have not been published in any field. However, in forest plan-
ning, it is quite possible that the DM is willing to accept high risks for poor incomes 
but only a low risk for losing biodiversity or vice versa. The main reason why the 
uncertainties have been ignored so far is that the problem including uncertainties re-
quires quite heavy calculations, which can be regarded too demanding for large areas 
with a lot of stands. 

In interactive multiobjective optimization methods (e.g. Miettinen, 1999, Miettinen 
et al. 2008), the final Pareto optimal solution, to be called the most preferred solution, 
is identified by iterating the steps of re-defining the preferences and producing a solu-
tion fulfilling these preferences as well as possible, until the DM is satisfied. The idea 
is that in this way the DM learns about what kind of preferences are attainable and 
what kind of solutions are achievable. As mentioned, the preferences can be ex-
pressed, for instance by giving aspiration levels. Even though the benefits of interac-
tive methods have been acknowledged in the forest management planning field (Pyk-
äläinen 2000), only a few applications have been published. 

3 MULTIOBJECTIVE OPTIMIZATION OF FOREST 
INVENTORY 

One complication in forest management planning is that most decisions concern the 
future. Even when a decision is implemented immediately, the consequences of the 
actions in the future need to be predicted. This prediction is carried out using a forest 
growth simulator. 

In the Finnish forestry, there are three different operational simulators that are used 
by all organizations making forest planning. In this study, we used the SIMO simula-
tor, which includes more than 400 equations to predict, e.g., the diameter growth and 
the height growth of each tree, and the probability that a tree dies in the next years. 
The simulator also predicts the total volume of timber available from a harvest carried 
out at a specific time, and the income based on the harvested volume. Forest growth 
can be predicted fairly accurately for the next 1-5 years, but as the time period be-
comes longer, the uncertainties grow. 

While forest growth can be simulated, biodiversity cannot really be measured in 
practical forestry. Biodiversity should include genetic variation within species, varia-
tion of species within each stand and the variation of habitats (types of forest stands) 
within the forest area. Of these, only the habitat variation is an operational objective 
for optimization. It is even more difficult to predict the consequences of different 
actions on the biodiversity. Therefore, the usual approach is to utilize a proxy varia-
ble, a so-called biodiversity (BD) index, in the optimization. The BD indices are 



based on the characteristics of the stands, which enables analyzing the consequences 
of actions also from the biodiversity point of view (Kangas and Pukkala 1996). As 
these forest characteristics include uncertainty, and using a proxy in itself includes 
uncertainty, these estimates are highly uncertain.  

The stochasticity involved can be dealt with by using a set of scenarios. Parametric 
distributions are utilized to describe the uncertainty in any one of the input variables 
of a system, and a parametric distribution can also be used to describe the uncertainty 
in the simulated growth. The variables of interest, like incomes from harvests, are a 
result of several input variables and statistical models, and therefore describing the 
uncertainty is easiest to carry out with a set of scenarios, each of them essentially 
describing one possible future development of the forest area. Then, the whole set of 
scenarios describes the uncertainty in the variables of interest. Using a set of scenarios 
also enables describing the stochastic optimization problem involving uncertainties in 
a way where linear optimization can be used (a so-called deterministic equivalent of 
the stochastic problem).  

It is possible to evaluate the quality of the set of scenarios used to describe the sto-
chastic problem, through the use of evaluation techniques. The so-called Sample Av-
erage Approximation (SAA, Kleywegt et al. 2001) method compares the solution 
generated by a smaller number of scenarios to the solution generated by a much larger 
number of scenarios. This is iterated several times to generate confidence intervals of 
the gap in optimality and expected objective value of the solution. One application of 
this method has been realized in forestry, and the number of scenarios required to 
effectively represent the uncertainty depended on the quantity of uncertainty and risk 
preferences of the DM (Eyvindson and Kangas 2016b). 

4 MODELLING FOREST MANAGEMENT AS A 
MULTIOBJECTIVE MIXED INTEGER LINEAR 
PROBLEM 

We assume that we have S stands, T treatment schedules for each stand, R scenarios 
and P periods of time to consider. We have simulated values , , ,t s r pI  for the income and 

, , ,t s r pB for the biodiversity with indices denoting 

 treatment schedules t (including one or more timed treatments),  
 stands s,  
 scenarios of future development of the forest stand r  
 and 5-year periods p.  

The problem of choosing the best treatment schedules for all the stands can be formu-
lated as a multiobjective optimization problem 
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In the above problem, # denotes the number of elements in a set and we have six ob-
jectives to be maximized: 

1. Minimum income in the scenarios that are in the set of scenarios IR  (in euros). This 

objective will be denoted by 
I

VaR  in what follows. According to the first con-

straint, the set IR  is a subset of the complete set of scenarios R  and the number of 

scenarios in this subset is greater or equal to I times the number of scenarios in 

the complete set of scenarios. This means that this is the income at risk for the risk 
level1 I . 

2. Minimum biodiversity index in the scenarios that are in the set of scenarios BR . 

This objective will be denoted by 
B

VaR . Being an index, this variable is unitless, 

and only the relative differences can be interpreted. According to the second con-

straint, the set BR  is a subset of the complete set of scenarios R  and the number of 

scenarios in this subset is greater or equal to B times the number of scenarios in 

the complete set of scenarios. This means that this is the biodiversity at risk for the 
risk level1 B . 

3. Expected minimum income across the periods p in the complete set of scenarios R

(in euros). This objective will be denoted by 
IE . 

4. Expected minimum biodiversity index across the periods in the complete set of 
scenarios R . This objective will be denoted by BE .  

5. Probability I  of the set IR .  The risk level for the value at risk for the income is, 

thus, 1 I . 

6. Probability B of the set BR .  The risk level for the value at risk for the biodiversity 

is, thus, 1 B . 

Traditionally in forestry, the variation of income over periods has been handled by 
seeking a so-called even-flow solution. In an even-flow solution, the income is equal 
over all periods. With biodiversity, stability is even more important. We, however, 
maximize the minimum income and biodiversity over periods, instead of seeking the 
even-flow solution. The solution that maximizes the minimum income or biodiversity 
over the periods is sometimes the even-flow solution, if all the periodic incomes are 
the same as the minimum income, or it is better than the best available even-flow 
solution, if the income or the biodiversity in one of the periods is higher than the min-



imum income or biodiversity. For this reason, we believe that it makes more sense to 
maximize the minimum over the periods than to seek for the even-flow solution. 

Our decision variables in the problem formulated are both the sets IR and BR and 

the treatment decisions ,t sx  for all treatment schedules t and stands s. The treatment 

decision ,t sx  is one, if the treatment schedule is chosen for the stand s and 0 if not. 

Because only one treatment schedule can be chosen for each stand, the third con-
straint allows only one of the ,t sx  values to be one, and the others must be zero for all 

the stands. 
In order to solve the optimization problem efficiently, it can be converted into a 

mixed integer linear problem (MILP). Once we can re-formulate the problem as a 
MILP, we can use the efficient MILP solvers available e.g., IBM ILOG CPLEX Op-
timization Studio (see e.g., http://www-01.ibm.com/support/knowledgecenter/ 
SSSA5P_12.6.3/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html) 
or Gurobi Optimization (see e.g., http://www.gurobi.com/documentation/). Our prob-
lem can be re-formulated as a multiobjective MILP 
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In the re-formulated problem, the constant M is a big number that allows for the 
minimum over the scenarios R in both the biodiversity and income to be the minimum 
over the scenarios, for which the variable r

It  or r
Bt  has the value one. Because of the 

two first new constraints, the new variables r
It and r

Bt  must be one for the ratio of 

scenarios given by their respective probability variables I  and B . 
The re-formulated problem is, however, computationally extremely expensive to 

solve when the number of stands is high. For this reason, we approximate it with a 
problem where the decision variables for the treatment schedules ,t sx are allowed to 

take any real value between 0 and 1, instead of being binary variables. This is a com-
mon approximation in forest management. The interpretation of treatment schedules 
with non-binary values is that a part of the stand is treated with a different schedule. 
For this reason, we can do this approximation and still get solutions which can be 
implemented as treatment schedules for the stands. This leaves us with a multiobjec-



tive optimization problem, with both integer ( I
rt  and r

Bt ) and real-valued ( ,t sx ) varia-
bles. 

5 EXPERIMENT AND RESULTS 

5.1 An overview of the experiment 

We have conducted an experiment and Figure 1 shows the data flow in it. We first 
need to acquire the data (1), which is estimated for a set of 0.04 ha segments of a 
forest area. To make the data more manageable, this data is segmented (2) into fairly 
homogenous stands. To include uncertainty into the model, randomization (3) is in-
cluded into the forest data. With each instance of the stand level data, the forest stand 
is simulated (4) to predict future forest resources according to different treatment 
schedules. Once the future resources are predicted and different scenarios are created, 
we approximate (5) the ideal and nadir vectors using optimization. Then we can start 
the (6) solution process with an interactive method using reference points from a DM. 
Once the DM is satisfied, we produce a list of treatment schedules for all stands, and 
we can implement the plan for the forest area.  

In what follows, Section 5.2 describes the data, segmentation of the forest area, 
randomization of the data and simulation. Section 5.3 oulines single-objective optimi-
zation and interactive multiobjective optimization methods applied. The output of our 
experiment are preferred treatment schedules for the stands that take into account the 
conflict between income and biodiversity and the DM’s preferences and handle the 
uncertainties inherent to the problem. 

5.2 Forest Inventory Data with Uncertainties 

The forest inventory data has been acquired through the combined use of remote sens-
ing and statistical models based on a field plot measurement. The forest data, obtained 
from the Multi-source National Forest Inventory (MS-NFI) for 2011,was available in 
a raster dataset with a pixel size representing a 20 x 20 m footprint, provided by the 
Natural Resources Institute Finland (Luke), available from http://kartta.luke.fi/index-
en.html. Our area of interest is a large forest area (8,415 ha) to the north of the city of 
Jyväskylä in Finland. The entire forest area has been segmented into a set of 2,842 
stands where each stand represents a relatively homogenous forest area. The segmen-
tation is based on a mainly cloud free Landsat image (LC81880162013155LGN00), 
utilizing an algorithm developed by the Technical Research Centre of Finland (VTT). 
In the experiment, we only used 300 stands, and 50 scenarios for the whole forest 
area. The forest-level scenarios were constructed by randomly selecting one of 25 
stand-level scenarios for each stand, resulting in a problem with a size similar to a 
15,000 stand problem. The selection of 50 scenarios was based on previous research 
(Eyvindson and Kangas 2016b).  

Figure 1: Data flow in the conducted experiment 



As collected, the data are estimates of the expected value of the forest resources, 
and the actual forest resources may differ from the expectation. Two sources of uncer-
tainty were included: initial inventory errors and forest stand age. We assumed that 
the inventory errors for the height, basal area (a measure of the forest density) and 
forest stand age were normally distributed, with a mean of 0 and a standard deviation 
equal to 10% of the mean of both variables. These estimates of errors reflect the cur-
rent state-of-the-art inventory methods for Finnish forest conditions (Mäkinen et al. 
2010).  

The simulation of future forest resources was conducted using an open-source for-
est simulation and optimization software (SIMO, Rasinmäki et al. 2009). For each 
stand, SIMO generates a list of possible treatment scenarios which could be used in 
the forest during the planning period. They include silvicultural (i.e. planting, tending 
and fertilizing) and harvesting options (i.e. final felling or thinning). The maximum 
number of possible sets of treatment schedules for all stands was 34. For each stand, a 
total of 25 simulations were run for all treatment schedules. Each simulation was run 
with a random adjustment to the error estimates. As uncertainty is not spatially corre-
lated (the estimate of one stand does not influence the estimate of another stand), one 
possible realization of what is contained in the forest is a random selection of all 
stands. With this number of simulations, there are 25300 possible combinations of 
different treatment schedules for the stands. Thus, going through all of them would 
not be possible and optimization is needed.  

In this experiment, in order to estimate the biodiversity of the forest, a weighted 
combination of habitat suitability indices of red-listed saproxylic species for boreal 
forests was used (Tikkanen et al. 2007). These models require an estimate of dead-
wood in the forest, which is especially difficult to measure using remote sensing tech-
niques. The amount of dead-wood was estimated based on average quantities of dead-
wood in Finland (Tomppo et al. 1999) and the age of the forest stands. Two functions 
were used to estimate the quantity of deadwood, one to represent the increase of dead-
wood from a middle aged forest to an old-aged forest, while the other represented the 
decrease of deadwood from a recently harvested stand to a middle aged one.  

5.3 Decision making 

The decision making environment has been implemented using a Jupyter Notebook, 
which has been made freely available at https://github.com/maeehart/MOD2016. The 
data used in decision making is also available at the same repository. The data of the 
stands is represented as a text file with the format required by the IBM® ILOG® 
CPLEX® Optimization Studio. The DM involved was an expert in forest manage-
ment planning. The experiment was run on a sixteen core Intel Xeon E5-2670 proces-
sor with 64 GB of RAM. The computer was running Ubuntu Linux 14.04.3 LTS. 

The multiobjective optimization problem of forest management planning was 
modeled using the Optimization Programming Language (OPL) of IBM. The problem 
was not, however, directly converted into a text file using OPL but, instead, the essen-
tial components (i.e., objectives, constraints and decision variables) of the problem 
were included in a Python dictionary. This is because OPL does not directly support 



multiobjective optimization, but the problems need to be scalarized (in this case with 
the achievement scalarizing function) in order to be completely modelled with OPL 
and then to be solved with IBM® ILOG® CPLEX® Optimization Studio. 

Before starting the decision making process, one had to estimate the ideal and nadir 
vectors of the problem. This was done using the pay-off table approach (Miettinen 
1999), where one first optimizes each objective individually, evaluates the values of 
all objectives at solutions obtained and forms the k-dimensional ideal vector from the 
best value of each objective and estimates the components of the nadir vector from 
the worst values obtained. The pay-off table for the problem considered is given in 
Table 1. In the pay-off table, the rows represent objective function values calculated 
at the solution where an objective function obtained the best value (ideal on the diag-
onal) and the components of the nadir vector are the worst values of each column. 
The biggest values in the table are written in bold face and the smallest values are 
underlined. The ideal vector is, thus  

( , , , , , )=(5246601,  520,  4828656,  520,  1,  1)I B I B I BVaR VaR E E    

and the nadir vector is all zeros. 
Table 1. Pay-off table for the problem considered 

IVaR  
BVaR  

IE  
BE  

I  
B  

5246601 358 4275987 358 0 1 

0 520 0 520 1 0 

3588782 398 4828656 399 0 1 

0 519 0 520 0 1 

0 0 0 0 1 1 

0 0 0 0 1 1 

 
The Pareto optimal solution corresponding to the reference point specified by the 

DM was obtained by solving the achievement scalarizing function introduced earlier. 
The achievement scalarizing function was implemented using a Python function, 
which compiles a string, which is then written into a text file. The text file was, final-
ly, solved by calling the IBM® ILOG® CPLEX® Optimization Studio and attaching 
the data files to the call. 

Before asking the DM for any reference point, a so-called neutral compromise so-
lution (Wierzbicki 1999) for the problem was computed and shown to the DM togeth-
er with the ideal and the nadir vectors. The neutral compromise solution was  

4595853, 456, 4631499, 456, 0.54, 0.( 68).  
The neutral compromise solution gives information about the objective function val-
ues that are roughly in the middle of Pareto optimal solutions. This solution means 
that 

 there is a 100% 54% 46%   chance that income is worse than 4595853€,  
 there is 32% chance that the biodiversity is worse than 456; and that 
 the mean income and biodiversity are 4631499€ and 456, respectively. 



The DM found the solution quite good. However, she wanted to improve the secu-
rity on the biodiversity and was willing to give up on the income. Thus, she gave a 
reference point 

2500000,  504,  2600000,  505,  0.7,  0.85( ).  

In it, the confidence on the biodiversity is higher and both the mean and value at risk 
for the biodiversity are larger, and the values for income are worse than in the neutral 
compromise solution. 

The solution of the achievement scalarizing function corresponding to the refer-
ence point was 

(2545940,    509,    2642280,    510    0.8,    1). 
This Pareto optimal solution is better in all objectives than the reference point. Thus, 
the DM was really happy. In the reference point method, the DM specifies a new 
reference point as long as she wishes to continue iterating. 

As the DM wanted to still see whether it would be possible to improve the ex-
pected income at the cost of the reliabilities, she gave a new reference point  

(250000,    508,    3000000,    509,    0.7,  0.85),  

which has a higher value for the expected income. However, this reference point led 
to a Pareto optimal solution    

(2913004,    507,    2986231,    508,    1,    0.98),  

which means that the higher expected income came at the cost of biodiversity instead 
of the reliabilities. 

This was not what the DM wanted. For this reason, she wanted to make one more 
check whether the income could be improved at the cost of reliabilities and gave one 
more reference point 

(2 000 000,    504,    3 000 000,    510,    0.7,  0.85),  

where she had improved the expected biodiversity and allowed the value at risk for 
the income to get worse. This resulted in a Pareto optimal solution 

(2755038, 507, 2982154, 508, 0.98, 1).  

The DM was satisfied with this solution, because it is better than the reference 
point that she gave in all of the objectives except the expected biodiversity and in-
come, and even in these objectives, the value is very close. In addition, the DM was 
really happy that the probability of the biodiversity being over the value at risk is 
100%. For this reason, the DM chose this solution as the final, most preferred solu-
tion. 

The interpretation of this final preferred solution is that 
 expected values of the minimum income and minimum biodiversity (i.e., 

minima over the periods) are 2982154 € and 508 ; 
 there is only a two percent risk that the minimum income is smaller than 

2755038 €; and 
 the minimum biodiversity is guaranteed to be over 507 with 100% probabil-

ity. 
This was very much what the DM was hoping for, because the expected values are 

at satisfactory levels and risk levels in the value at risk are really low (i.e., 2% and 
0%). Overall, the interactive solution process enabled the DM to get convinced of the 



goodness of the final solution and gain insight about the interdependencies of the 
objectives. 

6 CONCLUSIONS 

We have presented an approach of using interactive multiobjective optimization to 
handle the conflict between both  

 income and biodiversity and  
 risk and expected outcomes 

in forest management planning. Our approach is based on  
 simulating forest growth using standard models, 
 modelling uncertainty using a scenario-based approach, 
 converting the decision problem into a six-objective optimization problem, 

and 
 using a reference point based interactive method to find preferable treatment 

schedules for the forest stands. 
In the solution process, we applied the reference point method of Wierzbicki 

(1986) in its simplest form. Thanks to the interactive nature of the method, the DM 
could learn about the interdependencies between the objectives and the attainability of 
her preferences. Thanks to this, she could gain confidence of the final solution select-
ed. 

From the DM’s point of view, an interactive method is essential. As the biodiversi-
ty is a unitless index, interpreting the results is only possible in relative terms. Relat-
ing the current solution to the previous solutions is needed in order to be able to con-
struct a set of preferences.  

Having the risk level and the value at risk at that particular risk level both as objec-
tives for both the incomes and biodiversity further emphasizes the need for an interac-
tive approach. It would be very difficult to give pre-defined hopes (like weights) for 
these variables. It may be easy enough to set e.g. weights when there is only one ex-
pected value and the value at risk at stake, but the setting would require quite an ab-
stract analysis unless the task can be carried out in iterative fashion enabling learning. 

A drawback of the solution process was that the computation times with the given 
data for a single given reference point were rather long, ranging from less than one 
day to almost five days. This is a problem when using interactive methods, when the 
DM may get tired in waiting for new solutions to be computed (as argued e.g., in 
Korhonen and Wallenius 1996). This is a major challenge to extend this method to 
scale, which is needed with large forests. Large forests may contain up to hundreds of 
thousands of stands, while our data contained only 300 stands. In many cases, such 
forest properties can be divided into parts that can be handled independently from 
each other, but still there is a need to make the method less time-consuming. One way 
could be the use of hierarchical planning. For instance, Pantuso, Fagerholt and Wal-
lace (2015) have developed a method of solving hierarchical stochastic programs for a 
maritime fleet renewal problem. They were able to solve large problems in a hierar-
chical framework, which could not be solved using CPLEX alone.  
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