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Abstract—The explosively growing demands for mobile traffic
service bring both challenges and opportunities to wireless net-
works, among which, wireless network virtualization is proposed
as the main evolution towards 5G. In this paper, we first propose
a Software Defined Network (SDN) based wireless virtualization
architecture for enabling multi-flow transmission in order to
save capital expenses (CapEx) and operation expenses (OpEx)
significantly with multiple Infrastructures Providers (InPs) and
multiple Mobile Virtual Network Operators (MVNOs). We for-
mulate the virtual resource allocation problem with diverse
QoS requirements as a social welfare maximization problem
with transaction cost. Due to the high computational complexity
of formulated problem and hidden information of InPs and
MVNOs for SDN controller, we introduce the shadow price
for ensuring the desirable economic properties as well as the
total welfare of system. Simulations are conducted with different
system configurations to show the effectiveness of the proposed
SDN based wireless virtualization framework and double auction
mechanism.

I. INTRODUCTION

With tremendous growth of traffic and services in cellular
networks, wireless virtualization has been proposed as one of
the main evolution trends in the forthcoming fifth generation
(5G) cellular networks [1]. The main idea of wireless virtu-
alization is to decouple the infrastructure from the services it
provides, therefore different services can share the same infras-
tructure, which can further improve resource usage efficiency,
as well as reduce the CapEx and OpEx significantly [2].
Although wireless virtualization is a promising technology for
next generation networks, many significant research challenges
remain to be addressed before its widespread deployment
in mobile wireless networks, especially how to design an
architecture for encouraging multiple providers to share their
infrastructure in order to save CapEx and OpEx [3].

Most existing work for wireless virtualization have taken ad-
vantages of game theoretic approaches on resource allocation.
Specifically, the authors in [4], [5] and [6] have concentrated
their works on applying power-pricing strategies for wireless
virtualization, which solve the energy allocation and spectrum
sharing problems separately. The cooperative game based
spectrum sharing is analysed in [7] and a virtual resource
allocation mechanism by using market equilibrium theory
is proposed by [8]. The auction mechanisms for dynamic
wireless resources (e.g., spectrum, transmission time) have
been investigated in [9] and [10]. However, the authors above

have only considered merely one Infrastructures Provider (InP)
in the scenario, which lacks of flexibility for service selection.
Besides, the network resources are auctioned without consid-
ering the heterogeneous services QoS requirements of User
Equipments (UEs).

In this paper, we consider a general network scenario
in which multiple InPs (legacy spectrum and infrastructure
holders) and multiple MVNOs who provide services to their
own subscribers coexist, especially for ensuring the fairness
among InPs. InPs attempt to sell their own resources to
MVNOs for monetary gains, while MVNOs try to acquire
the resource usage permissions from InPs to satisfy own
subscribers’ communication goals, which generally introduces
reward payoffs for InPs. In order to solve the above issues,
we consider a double auction mechanism for allocating the
physical resource owned by InPs to MVNOs to satisfy the
special demands of their subscribers.

While a major confronted challenge is how to allocate the
virtualized resource by both considering transmission delay
requirement and priority of service offered by the InPs [3].
In order to realize heterogeneous virtualized resource alloca-
tion, we introduce SDN controller (SDN is one of the most
promising technologies to realize virtual networks and SDN
controller operates and manages virtual resource efficiently in
response with a global view of network [11]) as the resource
allocation control center, which can significantly reduce the
signalling delay by decoupling the network to control and
data plane. To jointly address the available resource and
diversity demands for improving the end-to-end performance,
the distinctive features of this paper are as follows:
• We propose a SDN-based wireless virtual resource allo-

cation framework and a double auction mechanism for
encouraging both the InPs and MVNOs for joining in
order to save CapEx and OpEx significantly.

• The virtual resource allocation problem with diverse QoS
requirements is formulated as a social welfare maximiza-
tion problem with transaction cost.

• Iterative Double Auction (I-DA) algorithms with shadow
price are proposed for solving the formulated high com-
putational complexity problem, which ensures that truth-
ful revelation is dominant strategy for both the InPs and
MVNOs .

• Simulations are conducted to show the effectiveness of



Fig. 1. SDN-based wireless network virtualization framework with multiple
InPs and MVNOs

the proposed scheme. It is shown that we can take the
advantages of both wireless virtualization and double
auction mechanism by considering InPs and MVNOs
simultaneously to improve the resource usage efficiency.

II. SYSTEM MODEL

In this section, we introduce the SDN-based virtual resource
allocation framework and the double auction mechanism.

A. Wireless Network Virtualization

Wireless network virtualization can match resources by
dynamically and flexibly slicing the infrastructure and re-
sources into virtual networks to achieve global optimized
resource utilization. Three logical roles can be identified after
virtualization in Fig.1:
• InPs: they own physical substrate wireless networks, in-

cluding radio resources (licensed spectrum), base stations
(BSs), as well as the core networks and backhauls.

• SDN controller: it is in charge of dividing the service
flow into multiple dedicated slices. The virtualized re-
source is based on flow-level slicing [3] and can enable
multi-flow transmission.

• MVNOs: they lease the virtual resource dynamically
form the InPs through SDN to satisfy their subscribers’
communication requirements.

In this virtualized wireless framework, the MVNOs should
pay the usage of physical resource dynamically. To lease
physical resources to the MVNOs, the InPs charge fees based
on MVNO’s usage. MVNOs and InPs have pre-contracts about
the price and charging rules.

B. Problem Formulation

Within one geographical area, we have a set of N ,
{1, 2, . . . , N} InPs and a set ofM , {1, 2, . . . ,M} MVNOs.
Each InP n ∈ N has a set of Jn BSs. We denote J ,
∪n∈NJn = {1, 2, . . . , J} as the set of all BSs. Each MVNO
m ∈ M has a set of Im UEs, where I , ∪m∈MIm =
{1, 2, . . . , I} is denoted as the set of all UEs. The wide appli-
cation of multi-mode terminals guarantees UEs simultaneous

access to different RANs, which makes it suitable to access
virtualized networks for multi-flow transmission.

The resource slice in this paper is defined as the set of virtual
resources (e.g., traffic flows) requested by different MVNOs.
We assume the resource slice is based on data rate [2]. By
considering the UEs’ QoS requirements, we define the UE’s
demand as the minimum data rate requirements (ri,min, ∀i ∈
Im) with special time-dependency level. Consider the case that
each MVNO m would like to require xij data rate for its UE
i through BS j, we have

∑
j∈J xij ≥ ri,min. We define the

request vector for UE i to all J BSs as: xi , (xij : ∀j ∈ J ),
and the total request data from MVNO m to InP n is Xmn =∑
i∈Im

∑
j∈Jn xij . The requests for all UEs of each MVNO

are given by the matrix (Im is the total number of UEs in
MVNO m):

xm = (xi : ∀i ∈ Im), xm ∈ CIm×N . (1)

Meanwhile, each BS j ∈ Jn has total sliced data of qj,max
at time t. InP n ∈ N want to allocate (sell) yji ≥ 0 bytes of
data through its BS j ∈ Jn to UE i ∈ I, and

∑
i∈I yij ≤

qj,max, so the selling vector for each InP n is yj , (yij :
∀i ∈ I) and the total offered data from InP n to MVNO m
is Ymn =

∑
i∈Im

∑
j∈Jn yij . The selling matrix for all InPs

are given by matrix (JN is the total number of BSs in InP n):

yn = (yj : ∀j ∈ Jn), yn ∈ CM×Jn . (2)

C. Utility functions

The concept of utility function is commonly used in microe-
conomics and refers to the satisfaction level of series actions
allocated by decision maker [12] [13]. In this paper, we make
use of utility function method for illustrating the business
model of both InPs and MVNOs more practically.

For each MVNO m ∈ M, the packets transmission delay
of each flow should be kept low enough to guarantee the QoS
requirements requested by its subscribers i ∈ Im, therefore
utility depends on not only the total data rate MVNO offers,
but also the time-dependency level. We define the utility
function of MVNO m ∈M as Fmi (ωi, xi), where ωi ∈ [0, 1]
is the the weight of UE i ∈ Im (dependency level of time).
We define

∑
i∈Im ωi = 1. Assume that, the utility Fmi (., xi) is

an increasing, strictly concave and continuously differentiable
function of xi over the range xi ≥ 0. The function Fmi (ωi, xi)
has the characteristics as:

∂Fmi (ωi, xi)
∂xi

> 0,
∂Fmi (ωi, xi)

∂ωi
> 0. (3)

The definitions in (3) mean that when the required data rate
xi is the same, the UE i ∈ Im who with the higher time-
dependency weight ωi can stimulate more profit for MVNO
m; while when the weights ωi are the same, the UE who
needs higher data xi can lead more profit for MVNO m. This
utility function is more practical for measuring the business
relationship between operators and subscribers. As the profit
of MVNOs are additive, the aggregate utility of MVNO is:

Fm(xm) =
∑
i∈Im

Fmi (ωi, xi), ∀m ∈M. (4)



For each InP n ∈ N , the objective is to offer as much
possibly accepted resource by the MVNOs as possible in
order to gain more profit. In virtualized wireless system, we
introduce busy level vector: σj ∈ (0, 1) for each BS, which
can help balance the system flow allocation. It can be easily
obtained under the supervisor of SDN controller. We define
function Φnj (σj , yj) as the utility of each InP n ∈ N . From
reality, we can assume that Φnj (·, yj) is an positive, increasing
and concave function of vector yj ≥ 0. So we have the
characteristics of function Φnj as:

∂Φnj (σj , yj)
∂yj

> 0,
∂Φnj (σj , yj)

∂σj
< 0. (5)

The definitions in (5) mean when the allocated data rate is the
same, access with higher busy level BS j ∈ Jn will occur
higher cost, which in reverse decrease the profit for each InP
n; while with the same busy level σj , the more data yi BS
j ∈ Jn can offer, the more profit InP n can obtain finally. As
the utility is additive, for each InP n, the total welfare is:

Φn(yn) =
∑
j∈Jn

Φnj (σj , yj), ∀n ∈ N . (6)

D. Social Welfare Maximization
SDN controller will act as broker and arrange the whole

double-sided auction [4]. In order to ensure the heterogeneity
between different InPs and MVNOs, we introduce transaction
cost, which includes the costs associated with signalling,
backhaul, etc. It is pre-negotiated and when MVNO m ∈ M
purchases data from InP n ∈ N , a transaction cost is incurred.
Thus, even if two InPs provide the same amount data, they may
still be heterogeneous due to these transaction-related costs.
The transaction costs are assumed to be common knowledge.

In order to maintain fairness, SDN controller try to find
the optimal x and y by solving the following social welfare
maximization problem:

max
(x,y)

∑
m∈M

Fm(xm) +
∑
n∈N

Φn(yn)

−
∑
m∈M

∑
n∈N

pmnTmn.
(7)

s.t. A1 :
∑
j∈J

xij ≥ ri,min, ∀i ∈ I, (8)

A2 :
∑
i∈I

yij ≤ qj,max, ∀j ∈ J , (9)

A3 : yij ≥ xij , ∀i ∈ I, ∀j ∈ J , (10)
A4 : yij ≥ 0, xij ≥ 0, ∀i ∈ I, ∀j ∈ J . (11)

where pmn > 0 is the pre-negotiated price between MVNO
m and InP n, which is the cost per unit of data rate. If m and
n has no contract, then pmn = ∞. Tmn is total transmitted
data amount between MVNO m and InP n, which depends on
the final decision variable x and y. It is obvious that at the
equilibrium, yji = xijholds, ∀i ∈ I,∀j ∈ J . So we define:

Tmn =
Xmn + Ymn

2
=

∑
i∈Im

∑
j∈Jn(xij + yij)

2
. (12)

E. Problem Transformation with Shadow Price

Shadow price is a method for illustrating the marginal
utility in constrained optimization in economics [14]. Ac-
cording to properties in (3) and (5), the problem in Section
II-D is continuously differentiable, so we can firstly analyse it
from its necessary and sufficient Karush-Kuhn-Tucker (KKT)
conditions with shadow price (λλλ,µµµ,ννν):

L(x,y,λλλ,µµµ,ν)ν)ν) = max
(x,y)

∑
m∈M

Fm(xm) +
∑
n∈N

Φn(yn)

−
∑
m∈M

∑
n∈N

pmnTmn

−
∑
i∈I

λi(ri,min −
∑
j∈J

xij)

−
∑
j∈J

µj(
∑
i∈I

yij − qj,max)

−
∑
i∈I

∑
j∈J

νij(xij − yij),

(13)

where λλλ , (λi ≥ 0 : ∀i ∈ I), µµµ , (µj ≥ 0 : ∀j ∈ J ) are the
vector of Lagrangian multipliers corresponding to constraints
(8) and (9) separately, and ννν , (νij ≥ 0 : ∀i ∈ I,∀j ∈ J ) is
the matrix of Lagrangian multipliers for constraints (10).

The KKT conditions that yield to the optimal dual variables
(shadow price) λ∗λ∗λ∗, µ∗µ∗µ∗, ν∗ν∗ν∗ and optimal primal variables x∗, y∗

for problem (13) are given by the following set of equations:

(B1) :
∂Fmi (ωi, x∗i )

∂xij
=
pmn

2
− λ∗i + ν∗ij ,

(B2) :
∂Φnj (σj , y∗j )

∂yij
=
pmn

2
+ µ∗j − ν∗ij ,

(B3) :
∑
j∈J

x∗ij = ri,min,

(B4) :
∑
i∈I

y∗ij = qj,max,

(B5) : x∗ij = y∗ij ,

(14)

where x∗ij , y
∗
ij , λ

∗, µ∗, ν∗ ≥ 0 are the global maximizers for
the social welfare maximization problem (7).

III. ITERATIVE DOUBLE AUCTION ALGORITHMS

We can see that it is infeasible for the SDN controller to
derive the optimal SWM solution through solving the problem
above directly, due to the limited information of market,
especially the valued weights of user priority for MVNO
ωi(i ∈ Im) and utility function for both MVNOs and InPs.
Therefore, we take advantage of multi-stage design approach
[14] for eliciting the hidden information and Iterative Double
Auction (I-DA) algorithms are proposed by first analysing the
bidding strategies both from MVNO and InP separately and
then the optimal resource allocation problem is solved by SDN
controller.



Algorithm 1 I-DA: Bidding Strategies for MVNOs

1: Obtaining current iteration shadow price: λλλ(t), µµµ(t), ννν(t)

2: for all m ∈M do
3: for all i ∈ Im do
4: Assign time-dependency weight ωi for all UE i

5: Calculate x(t)
ij according to (A1):

6: (B1): ∂Fmi (ωi,x
(t)
i )

∂xij
= pmn

2 − λ
(t)
i + ν

(t)
ij ;

7: if (B3): x(t)
ij ≥ ri,min then

8: x
(t)
i ← x

(t)
ij

9: end if
10: end for
11: x

(t)
m = (x

(t)
i : ∀i ∈ Im)

12: end for
13: Uploading bidding strategies x

(t)
m to SDN controller

A. The Bidding Strategies

From the transformed problem in Section II-E, we can
see that (B1), (B3), (B5) together combine the optimization
bidding strategies for MVNOs, and (B2), (B4), (B5) together
combine the optimization bidding strategies for InPs. We in-
troduce the Vickery-Clarke-Groves (VCG) mechanism, which
restricts that bidders must follow the truthful valuation for
bidding [9]. After obtaining the current iteration shadow prices
λλλ(t), µµµ(t), ννν(t) and assigned weights ωi, σj of both UEs and
BSs, MVNOs and InPs calculating their bidding strategies
xm, yn separately according to their true valuation of bidding
utility: (4) and (6). As the optimal solution is satisfied by
solving KKT conditions of primal problem, we solve the utility
of both each MVNO m and InP n by (B1) and (B2), which
are calculated by the pre-negotiated price pmn between m
and n and iteration shadow price λλλ(t), µµµ(t), ννν(t) produced by
constraints (8) and (9). We can see the details in Algorithm
1 and Algorithm 2.

B. Evaluating Dual Variables

We define the dual objective g(λλλ,µµµ,ννν) as an unconstrained
maximization of Lagrangian (13):

g(λλλ,µµµ,ννν) = max
x,y
L(x,y,λλλ,µµµ,ν)ν)ν). (15)

The dual optimization problem is:

min g(λλλ,µµµ,ννν),

s.t. λλλ,µµµ,ννν ≥ 0.
(16)

As the objective function in (13) is strictly concave and
the constraint is compact and convex, the results guarantee
that the primal problem (7) and dual problem (16) have the
same solution, i.e. the duality gap between primal and dual
function can be assumed negligible. Consequently, we can
update the dual variables (λλλ,µµµ,ννν) by using a sub-gradient

Algorithm 2 I-DA: Bidding Strategies for InPs

1: Obtaining current iteration shadow price: λλλ(t), µµµ(t), ννν(t)

2: for all n ∈ N do
3: for all j ∈ Jn do
4: Assign busy-level weight σj for all BS j

5: Calculate y(t)
ij according to (B2):

6: (B2):
∂Φnj (σj ,y

(t)
j )

∂y
(t)
ij

= pmn
2 + µ

(t)
j − ν

(t)
ij

7: for all i ∈ I do
8: if (B4):

∑
i∈I y

(t)
ij ≤ qj,max then

9: y
(t)
j ← y

(t)
ij

10: end if
11: end for
12: end for
13: y

(t)
n = (y

(t)
j : ∀j ∈ Jn)

14: end for
15: Uploading bidding strategies y

(t)
n to SDN controller

Algorithm 3 I-DA: Resource Allocation by SDN controller

1: Initialize λλλ(0), µµµ(0), ννν(0)

2: Obtaining current bidding strategies from MVNO: x(t)
m

3: Obtaining current bidding strategies from InP: y(t)
n

4: if (B5): y(t)
ij ≥ x

(t)
ij then

5: if y(t)
ij − x

(t)
ij ≤ ε then

6: Checking Termination Condition
7: if |F (t)

m − F (t−1)
m | ≤ εm and |Φ(t)

n − Φ
(t−1)
n | ≤ εn

then
8: Set Convergence← 1
9: end if

10: end if
11: end if
12: while (Convergence! = 1) do
13: Update sub-gradient for λλλ(t+1), µµµ(t+1) and ννν(t+1) by:
14: λi

(t+1) = (λi
(t) + ∆ · (ri,min −

∑
j∈J x

(t)
ij ))+

15: µj
(t+1) = (µj

(t) + ∆ · (
∑
i∈I y

(t)
ij − qj,max))+

16: νij
(t+1) = (νij

(t) + ∆ · (x(t)
ij − y

(t)
ij ))+

17: end while

descent method:

λ
(t+1)
i = (λ

(t)
i −∆λ

∂L(·)
∂λi

)+, ∀i ∈ I,

µ
(t+1)
j = (µ

(t)
j −∆µ

∂L(·)
∂µj

)+, ∀j ∈ J ,

ν
(t+1)
ij = (ν

(t)
ij −∆ν

∂L(·)
∂νij

)+, ∀i ∈ I,∀j ∈ J .

(17)

where ()+ denotes the projection onto the non-negative orthant
and ensures that feasibility constraints λ(t+1)

i ≥ 0, µ(t+1)
j ≥ 0

and ν
(t+1)
ij ≥ 0. In order to simplify the overall parameter

setting, we set here the ∆λ = ∆µ = ∆ν = ∆.
Meanwhile, we define (εm, εn, ε) as the convergence vec-

tor. If the calculating bidding strategies satisfy the conver-
gence vector, the I-DA algorithms terminate, otherwise, the



Fig. 2. The monotonicity of utility functions of InPs and MVNOs separately.
Where βn = [20, 30] and αm = [ln(2), (ln5)]

I-DA algorithms continue.

IV. PERFORMANCE EVALUATION

In this section, we provide the simulation results to illustrate
theoretical analysis and performance of the proposed I-DA
algorithm. We consider the scenario that there are two InPs
and two MVNOs operate within the same geographical area.
They are all controlled by one SDN controller and the system
resources are sliced in the flow-level and can be specified as
”data rate”. The utility functions of both MVNOs and InPs
are respectively defined as:

Fm = 20 ·
∑
i∈Im

logαm(eωi · xi), m ∈ {1, 2} (18)

Φn = 2 · βn
∑
j∈Jn

e
(1−σj)·yj

βn , n ∈ {1, 2} (19)

Through Fig. 2 we can see that, the setting is satisfied the
monotonicity properties defined in (3) and (5). We suppose
that there are 5 UEs that active with minimum data rate
requirement ri,min = 10(bit/s/Hz) during time-slot t. The first
3 belongs to MVNO1 and the last 2 belong to MVNO2. There
are 3 BSs totally in the geographical area and at t, they all
have maximum available data rate qj,max = 20(bit/s/Hz). The
first 2 belongs to InP1, and the last 1 belongs to InP2. MVNOs
assign the UEs’ weight ωi according to their time-dependency
level as [0.5, 0.3, 0.2] and [0.6, 0.4]. Meanwhile, InPs assign
the BS’s weight σj according to their busy level as [0.5, 0.3]
and [0.6]. We assume the pre-negotiated transaction cost vector
is pmn = [2, 3; 3, 2].

Fig. 3 shows the convergence of proposed I-DA algorithm
and the effect of step size ∆ in Algorithm 3. As shown in
this figure, the gap between the I-DA algorithms and global
optimal value is narrow, meanwhile it is absolutely larger than
the random allocation value. This means the effectiveness of
I-DA algorithms is equivalent to the optimal in terms of the
overall utility. It can be found that the results with different ∆
finally converge to almost the same utility value with only
a small gap. However, the value of ∆ affects the rate of

Fig. 3. The convergence process of I-DA and the effect of ∆

Fig. 4. The impact of UE’s time-dependency ωi and BS’s busy-Level σj for
bidding strategies xij ,yij

convergence. ∆ = 0.15 gives higher convergence rate than
∆ = 0.08 . Nevertheless, if we further increase the step, we
will see that the I-DA algorithm does not converge to the
optimal solution.

Fig. 4 illustrates the impact of QoS requirements ωi and
σj in the utility function for MVNO and InPs’ bidding
strategies iteration by iteration separately. For MVNOs, we
take the bid evolution of UE1 and UE3 (belonged to MVNO1)
to BS1 (belonged to InP1) as reference. As shown in this
figure, MVNO1 changes the bidding strategies according to the
time-dependency weight ωi, the one with higher emergency
service requirement (higher weight) has higher priority when
bidding. The MVNO will increase the bids value for that UE
accordingly and meanwhile decrease the bid value for UE who
has less priority. We can see the same phenomenon for InPs,
where BS2 with less busy level (σ2 = 0.3) has higher priority
than BS1 who has higher busy level (σ1 = 0.5) when bidding.
The reason is that, the InP can increase its own payoff by either
increase the bidding value (yij) for less busy BS, or decrease
the bidding value for higher occupied BS. The phenomenon
also proves that MVNOs and InPs bid strictly and truthfully
according to their utility function (defined in (3) and (5)) in
I-DA algorithms.



Fig. 5. Evolution of bidding with transaction cost pmn increasing

Fig. 6. Evolution of bidding gap with transaction cost pmn increasing

In Figs. 5 and 6, we evaluate the effect of transaction cost
pmn on bidding strategies evolution. We take the bidding
of MVNO2 to InP1 and InP2 as reference. As shown in
Fig. 5, the transaction cost between MVNO2 and InP2 is
increased from p22 = 2 per unit data rate to p22 = 10. Even
though the final total bidding value are the same (according
to UEs’ demand), the bidding strategies to InP1 and InP 2
change significantly. MVNO2 evolves by decreasing bidding
value from 8 (bit/s/Hz) to 2 (bit/s/Hz) to ensure higher utility.
Besides, in Fig. 6, we can see that, at the beginning, the
bidding strategies of MVNO2 are nearly the same, especially
before 5-th iteration. While after re-negotiate the transaction
cost, (p22 = 2→ 10), the MVNO2, as well as InP1 and InP2
evolve the bidding strategies significantly, especially between
5th and 10th iteration. The reason behind the behaviour is
that both MVNOs and InPs want to ensure the utility during
bidding (see Algorithm 1, Line 6 and Algorithm 2, Line 6).

Fig. 6 also presents the convergence of xi and yj . Specially,
we see that the gap between the requested demand and
offered traffic gradually converges to zero, which satisfies the
condition B5 in (14). This means that the MVNOs and InPs
agree on the amount of data and negotiated transaction cost
pmn, as well as the SDN controller’s central control.

V. CONCLUSIONS

In this paper, we investigated a SDN-based architecture
for attracting multiple InPs and MVNOs sharing the virtual
resource allocation in order to reduce CapEx and OpEx. We
first virtualized the physical resources as virtual flow-level
resources. After virtualization, MVNOs can help their own
subscribers access to different InPs to get performance gain.
Furthermore, we formulated the virtual resource allocation
problem as an optimization problem by maximizing the total
utility of system. In order to solve it efficiently, the virtual
resource allocation problem is transformed to an iterative
double auction problem with transaction cost. In this process,
the MVNOs and InPs bid gradually according to their own
utility function, as well as the shadow price introduced by
SDN controller until the system converges. Simulation results
also demonstrated the effectiveness and good convergence
performance of our proposed I-DA algorithm. Future work in
progress is to consider more realistic simulations with SDN, as
well as the dynamic traffic requirement of UEs in the proposed
SDN based virtualization architecture.
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