
258
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

Investigating the Causal
Mechanisms Underlying the
Customization of Software

Development Methods

Hadi Ghanbari

JYVÄSKYLÄ STUDIES IN COMPUTING 258

Hadi Ghanbari

Investigating the Causal Mechanisms
Underlying the Customization of Software

Development Methods

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Lea Pulkkisen salissa

tammikuun 7. päivänä 2017 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Agora, Lea Pulkkinen hall, on January 7, 2017 at 12 o’clock noon.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2017

Investigating the Causal Mechanisms
Underlying the Customization of Software

Development Methods

JYVÄSKYLÄ STUDIES IN COMPUTING 258

Hadi Ghanbari

Investigating the Causal Mechanisms
Underlying the Customization of Software

Development Methods

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2017

Editors
Marja-Leena Rantalainen
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

URN:ISBN:978-951-39-6944-8
ISBN 978-951-39-6944-8 (PDF)

ISBN 978-951-39-6943-1 (nid.)
ISSN 1456-5390

Copyright © 2017, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2017

Cover picture by Heta Kangasniemi

ABSTRACT

Ghanbari, Hadi
Investigating the Causal Mechanisms Underlying the Customization of
Software Development Methods
Jyväskylä: University of Jyväskylä, 2017, 129 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 258)
ISBN 978-951-39-6943-1 (nid.)
ISBN 978-951-39-6944-8 (PDF)
diss.

Over the last four decades, software development has been one of the
mainstream topics in the Software Engineering and Information Systems
disciplines. Thousands of methods have been put forward offering
prescriptions for software development processes. The goal of these methods is
to produce high-quality software in a systematic manner. However, it is widely
known that these methods are rarely followed as prescribed – developers often
modify or skip different steps, practices, or quality rules recommended by
software development methods. While a group of previous studies suggests
that maximizing the flexibility and leanness of software development processes
is the key driver of such customizations, another group argues that the
inadequacy of these methods to fulfill stakeholders’ expectations is the main
reason they are customized in practice. However, to the best of our knowledge,
there are no theory-based and empirically grounded explanations elucidating
the causal mechanisms underlying the customization of software development
methods. We attempted to take the first step in overcoming this gap by
conducting this doctoral research.

We first conducted an extensive Systematic Literature Review to identify
the gaps in research on customization of software development methods and to
clarify the need for addressing these shortcomings. Following this, we attempt-
ed to address some of the identified gaps by conducting a longitudinal field
study. Collecting data from different software projects across industrial do-
mains and using the Grounded Theory Methodology, we built a process theory
called Theory of Software Development Balance. In this theory, we explain the
mechanisms through which software development methods are customized in
practice in order to maintain balance among contrasting and sometimes contra-
dictory contextual forces associated with software projects.

Keywords: Software Development Methods, Information Systems Development,
Technical Debt, Behavioral Software Engineering, Balancing, Grounded Theory,
Process Theory, Systematic Literature Review

Author Hadi Ghanbari
Department of Computer Science and Information
Systems
University of Jyväskylä
Finland

Supervisors Professor Mikko Siponen
Department of Computer Science and Information
Systems
University of Jyväskylä
Finland

Professor Kalle Lyytinen
Department of Design & Innovation
Weatherhead School of Management
Case Western Reserve University
United States

Reviewers Professor Lars Mathiassen
Center for Process Innovation
J. Mack Robinson College of Business
Georgia State University
United States

Professor Pekka Abrahamsson
Department of Computer and Information Science
Norwegian University of Science and Technology
Norway

Opponent Professor Kieran Conboy
Lero Research Centre & Whitaker Institute
School of Business & Economics
National University of Ireland Galway
Ireland

DEDICATION

I dedicate this work to Heta who has been a great support for me, not just as a
lovely spouse, but also as a caring friend. Äzizäm, it is very hard to describe
how grateful I am to you. Thank you so much for always being ready to discuss
about my research and comment on my work and at the same time listening to
me complaining about how difficult it is to study Finnish. I am sure without
your help it would have been impossible for me to simultaneously work on
these two exhausting projects.

I also dedicate this work to my parents. Well, I don't know how I could
thank them enough since without them I would not even exist. Maman, Baba, I
have always tried to be a good son for you so at least I hope to deserve whatev-
er you have done for me. I know that sometimes – or maybe many times – I
made you feel worried. At least I hope that reading this text will make you
happy and realize that so far I have managed to achieve many good things in
my life. To you I owe all those achievements.

ACKNOWLEDGEMENTS

Preparing this doctoral dissertation has been a long process, which was initiat-
ed by my eagerness to further my education and deepen my understanding
about software and information systems development. However, this would have
not been possible without the support and contribution of many people that I
would like to thank.

First of all, I want to express my gratitude to Dr. Mikko Siponen, my advi-
sor, not only for his support and instruction during the last four years, but also
for providing me with the opportunity to meet internationally known scholars
and to present my work to them. I have always aimed for the highest level in
my life, and seeing Mikko’s achievements as a researcher has given me further
motivation to aim for only the best results in my research. I would also like to
thank my external advisor Dr. Kalle Lyytinen for providing me with his critical
insights and constructive comments that have enabled me to think outside the
box and find new ideas to improve my work.

I would like to thank a very influential colleague to me, Dr. Tero Var-
tiainen, who has challenged me in conducting research, thinking critically, and
learning Finnish. I must also thank Dr. Jouni Similä who has been a great sup-
port for me both during and after my master’s degree studies at the University
of Oulu. Additionally, I would like to thank the external reviewers of my thesis,
Dr. Lars Mathiassen and Dr. Pekka Abrahamsson, and all the other scholars
who have provided feedback on my doctoral dissertation.

I must acknowledge University of Jyväskylä and the Finnish Funding
Agency for Technology and Innovation (TEKES) for funding my doctoral re-
search. I also appreciate the support from my colleagues at the Department of
Computer Science and Information Systems, University of Jyväskylä, especially
my teammates Hemin Jiang, Jungwon Kuem, Naomi Woods, Ying Li, Alain
Tambe, Manja Nikolovska, and Aggeliki Tsohou. Additionally, I must thank
Tapio Tammi, Seija Paananen, and Tiina Lampinen for their supports during
the last four years.

Well, conducting a four year project needs plenty of motivation and ener-
gy; thus, I am very grateful to my friends, especially Heidi, Sara, Nastaran,
Payam, Amin, Tolga, Viktor, Hoji, Ehsan, and Mansoor, who were always up
for having fun, enjoying life, and helping me to recharge my batteries to get
ready for work.

Last but not least, my deepest gratitude goes to my family for all the love
and support that they have given to me.

Hadi Ghanbari
Jyväskylä, December 9, 2016

FIGURES

FIGURE 1 An overview of the studies included in this dissertation 17
FIGURE 2 Dimensions of Causal Structure (Markus and Robey 1988) ... 31
FIGURE 3 Heider's pox model (Khanafiah & Situngkir, 2004) 35
FIGURE 4 Three examples of balanced triads ... 35
FIGURE 5 Three examples of imbalanced triads... 35
FIGURE 6 A balanced triad from Developer’s perspective 36
FIGURE 7 An imbalanced triad from Developer’s perspective 37
FIGURE 8 Three possible alternatives for maintaining balance 37
FIGURE 9 Developer decides to ignores Best Practices 37
FIGURE 10 Developer decides to ignore Management’s order 38
FIGURE 11 Developer convinces Management to follow Best Practices ... 38
FIGURE 12 Four stages of planning and conducting the SLR 43
FIGURE 13 Common instances of the omission of quality practices 58
FIGURE 14 The context of the psycho-social process of

omitting quality practices .. 60
FIGURE 15 An overview of the V-model used in Beta 76
FIGURE 16 The occurrence of technical debt in Beta 83
FIGURE 17 Different viewpoints about the use of software development

methods .. 91
FIGURE 18 Different types of qualitative data collected in four rounds ... 96
FIGURE 19 An example of open codes produced from interview

transcripts ... 98
FIGURE 20 An overview of the causal forces contributing to the

customization of software development methods 98
FIGURE 21 The causal mechanisms underlying the customization of

methods .. 101

TABLES

TABLE 1 The publication plan ... 26
TABLE 2 Differences between the Logical Structure of Variance and

Process Theory (Markus and Robey 1988) 32
TABLE 3 The search terms identified based on research objectives 45
TABLE 4 The results of the search conducted in January 2015 45
TABLE 5 Primary studies selected through three rounds

of evaluations ... 47
TABLE 6 The data items extracted from the primary studies 47
TABLE 7 An overview of the primary studies (PS) 48
TABLE 8 An overview of the publication forums 50
TABLE 9 A summary of the main findings of the primary studies 51
TABLE 10 Factors causing the omission of quality practices 59
TABLE 11 A summary of the interviewees’ characteristics. 75
TABLE 12 A summary of the interviewees and their development

contexts ... 94

CONTENTS

ABSTRACT
DEDICATION
ACKNOWLEDGEMENTS
FIGURES
TABLES
CONTENTS

1 INTRODUCTION .. 13
1.1 Research objectives ... 14
1.2 Overview of Chapters .. 17

1.2.1 Study 1 - Omission of Quality Software Development Practices:
A Systematic Literature Review and Research Agenda 18

1.2.2 Study 2 - Seeking Technical Debt in Critical Software
Development Projects: An Exploratory Field Study 20

1.2.3 Study 3 - Why Software Development Methods are
Customized in Practice - A Theory of Software Development
Balance .. 22

1.3 Publication Status ... 25

2 RESEARCH APPROACH ... 27
2.1 Interpretive Research ... 27

2.1.1 Ontology ... 28
2.1.2 Epistemology ... 28
2.1.3 Methodology .. 29

2.2 Theory Construction .. 30
2.2.1 Process vs. Variance Theory .. 31
2.2.2 Grounded Theory Method ... 33
2.2.3 Balance Theory .. 34

3 STUDY 1- OMISSION OF QUALITY SOFTWARE DEVELOPMENT
PRACTICES: A SYSTEMATIC LITERATURE REVIEW AND RESEARCH

 AGENDA ... 40
3.1 Abstract .. 40
3.2 Introduction ... 40
3.3 Research method ... 42

3.3.1 Initial literature review Study (Stage 0) 43
3.3.2 Planning the review (Stage 1) .. 44
3.3.3 Conducting the review (Stage 2) ... 46
3.3.4 Data extraction and synthesis (Stage 3) 47

3.4 Results of the Literature Review .. 48
3.4.1 RQ1: How is the omission of quality practices reported by

previous studies? ... 51

3.4.2 RQ2: What are the common instances of the omission of
quality practices reported by previous studies? 58

3.4.3 RQ3: Under what conditions does the omission of quality
practices take place? .. 59

3.4.4 A Synthesis of the Literature Review ... 60
3.5 Research Agenda .. 66

3.5.1 Research Area 1: What are the instantiations of the omission of
quality practices and their nature? ... 67

3.5.2 Research Area 2: What is the psycho-social process of making
decisions regarding the omission of quality practices? 67

3.5.3 Research Area 3: What are the consequences of the omission of
quality practices? ... 68

3.5.4 Research Area 4: How to consider omissions of quality
practices .. 68

3.6 Conclusions ... 68

4 STUDY 2 - SEEKING TECHNICAL DEBT IN CRITICAL SOFTWARE
DEVELOPMENT PROJECTS: AN EXPLORATORY FIELD STUDY 71
4.1 Abstract .. 71
4.2 Introduction ... 71
4.3 Related work.. 73
4.4 Research method ... 74

4.4.1 Data collection ... 75
4.4.2 Stage1: Preliminary interviews ... 75
4.4.3 Stage 2: Case study .. 75
4.4.4 Case description .. 76
4.4.5 Data analysis .. 77

4.5 Results .. 77
4.5.1 Ambiguity of Requirements .. 78
4.5.2 Diversity of Projects .. 79
4.5.3 Inadequate Knowledge Management .. 81
4.5.4 Resource Constraints .. 82
4.5.5 Theoretical model .. 83

4.6 Discussion .. 84
4.7 Conclusions ... 86

5 STUDY 3 - WHY SOFTWARE DEVELOPMENT METHODS ARE
CUSTOMIZED IN PRACTICE - A THEORY OF SOFTWARE

 DEVELOPMENT BALANCE ... 87
5.1 Abstract .. 87
5.2 Introduction ... 88
5.3 Research Background ... 90

5.3.1 Software Development Methods .. 90
5.3.2 Customizing Software Development Methods 92

5.4 Research Methodology .. 93
5.4.1 Data Collection .. 94

5.4.2 Theoretical Sampling .. 96
5.4.3 Data Analysis ... 97

5.5 The mechanisms underlying the customization of methods 99
5.5.1 Unique Characteristics of Software .. 101
5.5.2 Requirements Evolution... 103
5.5.3 Maintaining Structural Balance ... 104
5.5.4 Maintaining Social Balance .. 106
5.5.5 Interaction between Structural and Social Balance 108
5.5.6 Loose Quality Management .. 109
5.5.7 Ignoring Software Development Practices 110

5.6 Discussion .. 111
5.6.1 New Theoretical Contributions and Related Work 111
5.6.2 Implications for Practice ... 113
5.6.3 Limitations and Future Work .. 114

5.7 Conclusions ... 115

6 SUMMARY ... 116

REFERENCES ... 119

”It is established in the sciences that no knowledge is acquired save through the study of

its causes and beginnings, if it has had causes and beginnings, nor completed except by

knowledge of its accidents and accompanying essentials.”

– Avicenna1, Canon of Medicine, ca. 1020

1 Iranian philosopher, scientist, and physician (Rothman 2012)

1 INTRODUCTION

Nowadays, software and information systems are intertwined with every area
of human life and business world in a way that it is extremely difficult for socie-
ties to survive without them. Consequently, software development continues to
be a mainstream topic in both Software Engineering (SE) and Information Sys-
tems (IS) and at the same time receives a considerable amount of attention from
practitioners.

Despite all the financial and human resources that have been spent by the
software community to improve both the productivity of software processes
and the quality of software products, software development projects still face
severe challenges (The Standish Group International, Inc. 2009). A research by
Standish Group (2009) shows that 24% of system development projects failed
before completion, while 44% of projects faced severe challenges such as ex-
ceeding budget and delivery time or missing specified features and functions.

To overcome these challenges, thousands of software development meth-
ods have been put forward (Conboy & Fitzgerald 2010, Huisman & Iivari 2006)
offering prescriptions for performing a sequence of activities for developing
software in a systematic way (Avison & Fitzgerald 2003). However, it is widely
reported by scholars and practitioners that these software development meth-
ods are not followed fully but are instead customized (Conboy & Fitzgerald
2010, Iivari & Iivari 2011, Ralph 2015b). Often, in practice, certain steps and
practices suggested by these methods are omitted or performed imperfectly
(Ralph 2015b, Ahonen & Junttila 2003).

From the organizational viewpoint, maximizing the leanness of software
development processes is a key goal of such customizations (Vartiainen &
Siponen 2012, Codabux & Williams 2013, McConnell 2007, Ahonen & Junttila
2003, Baskerville & Pries-Heje 2004). However, to the best of our knowledge,
there are no scientific, i.e., theory-based and empirically grounded, explana-
tions elucidating the causal mechanisms underlying the customization of the
methods. Especially, there is a lack of research to investigate the customization
of software development methods from developers’ perspective.

14

Therefore, in this doctoral dissertation, our goal is to perform an in-depth
analysis of the logic behind customizing software development methods in or-
der to provide new scientific explanations of why and how certain software de-
velopment steps or practices are ignored or modified. We attempted to reach
this goal by drawing on SE and IS literature and by conducting a longitudinal
interpretive field study (Klein & Myers 1999) across industrial domains.

The results of this research not only reveal the conditions under which de-
velopers decide to ignore software development methods but also explain the
processes through which these methods are customized as developers decide to
skip or modify certain practices or steps. Such empirically grounded explana-
tions are beneficial for both research and practice, and therefore, they enable the
software community to improve software development processes while rein-
forcing both individual and organizational tendencies towards the use of soft-
ware development methods. The contributions of this doctoral dissertation to
both research and practice are discussed in later sections.

1.1 Research objectives

Over the last four decades, increasing interest has been shown in making sense
of and comparing and exploring the underlying theoretical assumptions of dif-
ferent software development methods (Iivari 1991, Iivari & Lyytinen 1998,
Hirschheim, Klein & Lyytinen 1995, Iivari, Hirschheim & Klein 1998b, Iivari
1990, Lyytinen 1987). These studies have improved our understanding of differ-
ent methods and their limits and have suggested important avenues for future
research.

However, it has been suggested by a group of researchers (Hirschheim &
Newman 1991, Orlikowski & Iacono 2001, Ralph & Wand 2008, Truex, Basker-
ville & Travis 2000, Sjøberg et al. 2008, Wohlin, Šmite & Moe 2015, Johnson, Ek-
stedt & Jacobson 2012) that the lack of theories about software and systems de-
velopment is one of the key unresolved problems in SE and IS fields. In particu-
lar, there is a very limited understanding of the usage and practicability of
software development methods (Iivari & Maansaari 1998, Ralph & Wand 2008,
Truex, Baskerville & Travis 2000, Wynekoop & Russo 1995).

Software development is a highly dynamic and complex phenomenon
consisting of a set of interrelated processes—such as requirements engineering,
software construction, software evaluation and software maintenance—of
which the ultimate goal is to transform user requirements into working soft-
ware (Sabherwal & Robey 1993, Slaughter et al. 2006, Truex, Baskerville &
Travis 2000). Over time, as software projects started to fail or were faced with
severe challenges, organizations realized a need for more-systematic and for-
malized approaches to manage complexity in projects and to improve the quali-
ty of software processes (Avison & Fitzgerald 2003). Consequently, a large
number of software development methods were designed with the goal of
providing effective means and guidelines to assist developers in performing a

15

series of predefined steps and activities during software development processes
(Iivari & Maansaari 1998, Iivari, Hirschheim & Klein 2004, Iivari, Hirschheim &
Klein 1998a).

A variety of definitions for software and systems development methods
has been suggested in the SE and IS disciplines. For instance, systems develop-
ment methodology is defined by Hirschheim, Klein, and Lyytinen (1995, p.22)
as “an organized collection of concepts, methods, beliefs, values, and normative
principles supported by material resources”. Alternatively, Wynekoop and
Russo (1995) define systems development method as:

A systematic approach to conducting at least one complete phase (e.g. requirements
analysis, design) of systems development, consisting of a set of guidelines, activities,
techniques and tools, based on a particular philosophy of systems development and
the target system. (Wynekoop & Russo 1995, p.66)

This is similar to another definition suggested by the Guide to the Software
Engineering Body of Knowledge (Bourque & Fairley 2014), which is widely accept-
ed in the software community:

Software development methods impose structure on software engineering with the
goal of making that activity systematic, repeatable, and ultimately more success-
oriented […] Methods provide an approach to the systematic specification, design,
construction, test, and verification of the end-item software and associated work
products. (Bourque & Fairley 2014, p.162)

Hirschheim and Klein (1992) suggest that software and systems develop-
ment methods can be broken down into process and modeling notation. Process
indicates how, and in which order, the development of the system is carried out
(e.g., the Waterfall model), and modeling notation describes how things are
presented (e.g., Object-Oriented notations).

It is argued by a group of researchers that the software and system devel-
opment process to be followed is an important factor that may contribute to
projects’ success (Baskerville et al., 2004; Iivari, 1991; Ralph & Wand, 2008).
Thus, designing more-effective and more-efficient methods has received a great
deal of attention from the software community (Leppanen 2006, MacCormack
et al. 2003, Banker, Davis & Slaughter 1998, Lyytinen 1989). These software and
system development methods introduce a set of principles and prescriptions to
system developers that help them understand what kinds of practices and tech-
niques they should use for developing software. However, despite a plethora of
software development methods suggested by the software community (Conboy
& Fitzgerald 2010, Huisman & Iivari 2006), it is widely known that there is no
single method that suits all kinds of software development projects (Brinkkem-
per 1996, Iivari 1991). Therefore, software development teams rarely follow the
methods as prescribed (Ralph 2015b) but customize them (Conboy & Fitzgerald
2010, Iivari & Iivari 2011) or even do not follow them at all (Truex, Baskerville &
Travis 2000). In other words, it is very common for development teams to omit
or modify different steps, rules, or practices of a given method.

16

The majority of previous studies investigate the customization of software
development methods from an organizational perspective, in which increasing
productivity and leanness of software development processes are the main rea-
sons forcing development teams to modify or ignore certain software develop-
ment steps or practices (Baskerville & Pries-Heje 2004, Tom, Aurum & Vidgen
2013, Lim, Taksande & Seaman 2012). These studies argue that often, under re-
source constraints or in response to constant market demands, software firms
have to make trade-offs between lower development costs, shorter delivery
times, and software quality. Under the influence of such organizational-level
trade-offs, developers are forced to customize software development methods
(Tom, Aurum & Vidgen 2013, Lim, Taksande & Seaman 2012).

While software development methods and practices are adapted or select-
ed by organizations, developers are the ones who must follow those methods
and practices. Therefore, it is very important to understand how software de-
velopers deal with such organizational level decisions. However, the role of
developers in customizing software development methods has been significant-
ly ignored in previous research. This ignorance becomes more problematic
when bearing in mind that a group of researchers (Lim, Taksande & Seaman
2012, Peters 2014, McConnell 2007) have suggested that software developers
often have a tendency to perform high-quality work, and therefore, they might
not want to be associated with such quality-compromising simplifications.

Thus, there is a significant need for scientific explanations clarifying the
organizational- and individual-level mechanisms underlying the customization
of software development methods. Such explanations must be able to take into
account the temporal order and sequence of different steps in customizing
software development methods to explain how customizing software develop-
ment processes unfolds over time and why it happens in certain ways. There-
fore, such explanations need to penetrate the logic behind the customization of
software development methods to clarify the causal mechanisms through which
software development methods are customized and to explain the rationale be-
hind developers’ behavior in omitting certain steps while performing other
practices.

In this research, we aim at providing such empirically grounded explana-
tions by using a process theory (Mohr 1982) approach. Process theory (Mohr 1982)
is a suitable means for explaining how and possibly why a discrete set of events
occurs over time (Gregor 2006, Ralph & Wand 2008, Van de Ven, A. H. 1992).
Recently, there has been growing interest among SE and IS scholars in building
process theories (Burton-Jones, Mclean & Monod 2011, Markus & Robey 1988,
Van de Ven, A. H. 1992, Van de Ven, A. H. & Poole 2005, Ralph 2015b).

By building a process theory, we aim at clarifying the conditions under
which and the causal mechanisms through which software development meth-
ods are knowingly customized in practice. We try to reach these goals by an-
swering our main research question: Why are software development methods cus-
tomized in practice? which is devided to the following sub-questions:

17

• RQ1: What is the state of research related to the customization of software de-
velopment methods?

• RQ2: How does the development context affect the customization of software de-
velopment methods?

• RQ3: Under what conditions software development methods are customized in
practice?

• RQ4: Through what causal mechanisms software development methods are cus-
tomized in practice?

These research questions are approached both theoretically and empirical-
ly through several stages, as shown in Figure 1 and as explained in the follow-
ing section.

1.2 Overview of Chapters

This doctoral dissertation consists of three studies, each of which is aimed at
addressing one of the research questions introduced in the previous section (see
Figure 1). In the following paragraphs we provide a short overview of these
studies and explain how these studies are related to each other.

FIGURE 1 An overview of the studies included in this dissertation

In Study 1 we approach RQ 1 by identifying and aggregating the existing
research on the customization of software development methods in order to
provide a clear understanding of the research problem and to emphasize the
need to address this problem. In doing so, we have conducted a comprehensive
Systematic Literature Review (SLR) to clarify how previous studies in the SE
and IS disciplines reported and explained the customization of software devel-
opment methods. By synthesizing these previous studies, we report the state of

18

research on the customization of software development methods, and we indi-
cate the current gaps in the literature. Additionally, by analyzing these identi-
fied studies, we build a theoretical process model to indicate how, from our
perspective, the customization of software development methods happens.

According to the results of Study 1, we have realized that the act of cus-
tomizing software development methods is highly influenced by the develop-
ment context. Therefore, we decided to answer RQ 2 by conducting a field
study (i.e., Study 2). In this study, we indicate that customizing software devel-
opment methods is not limited to fast-changing and volatile environments; ra-
ther, in critical domains software development teams might also decide to cus-
tomize methods in response to contextual obstacles. In Study 2, we show that
different organizational constraints make software development challenging,
and as a result, software developers might decide to customize methods to deal
with these challenges.

Finally, in Study 3, we approach RQ 3 and RQ 4, and based on the empiri-
cal data collected from a field study conducted across development contexts,
we propose a process theory called Theory of Software Development Balance. Our
suggested theory indicates the causal mechanisms through which software de-
velopment methods are customized to balance contradictory stakeholders con-
cerns and contextual forces. In particular, in Study 3, we show how macro-level
structural balance and micro-level social balance are maintained in the devel-
opment context by firms and individual developers.

1.2.1 Study 1 - Omission of Quality Software Development Practices: A Sys-
tematic Literature Review and Research Agenda2

Research Objectives
In recent years, a significant amount of resources has been spent in software
development projects, since software products have become inseparable parts
of human life. Consequently, during the last four decades, the software com-
munity has tried to improvise software development and quality assurance
processes by proposing different methods, best practices, and quality rules
(Sommerville 2011, Poth & Sunyaev 2014). However, recent literature hints that
ignoring such software development practices and performing workarounds
increase the chance of producing defective software products (Ahonen &
Junttila 2003, Austin 2001, Baskerville & Pries-Heje 2004, Baskerville et al. 2001,
Baskerville et al. 2003, Vartiainen, Siponen & Moody 2011).

It is apparent that available software development methods and quality
standards will become ineffective if they are purposefully ignored. Therefore, it
is very important to understand why software professionals ignore best practic-
es and engage in quality-compromising practices. It must be noted that the term
“best practices” here means a well-defined technique or method that enables

2 H. Ghanbari, T. Vartiainen, & M. Siponen, “Omission of Quality Software Develop-
ment Practices: A Systematic Literature Review and Research Agenda”, ACM Compu-
ting Surveys (under review).

19

developers to successfully complete one step of software development (Tighy
2012). These practices can be suggested by given software development meth-
ods, quality rules, and standards or by in-house procedures and guidelines
prepared in a company.

In Study 1, we attempt to understand why software development teams
knowingly decide to omit quality practices as previously defined. To gain such
understanding, we decided to conduct an SLR study (Kitchenham & Charters
2007, Okoli & Schabram 2010) to discover the state of research on this phenom-
enon.

Research Results
In our SLR study, we initially found 4838 studies that were potentially relevant
to the customization of software development practices. However, after an ex-
tensive and iterative review process, we have found only 19 of these studies to
be relevant to our research questions. These studies use a variety of terminolo-
gies, including ‘shortcutting’ (Austin 2001), ‘systematic omission of software
tasks’ (Samalikova et al. 2011), ‘technical debt’ (Cunningham 1992), and ‘short-
cycle time development’ (Baskerville & Pries-Heje 2004) to report the intention-
al omission of quality practices.

According to the identified studies, the omission of testing and quality
control activities is the most common instance of ignoring software develop-
ment practices. Keeping in mind that such activities play a vital role in ensuring
the quality and reliability of software products, it becomes obvious that this
specific aspect of software development has received less attention from the
software community. Ignoring design and implementation practices followed
by documentation are the next most common instances of omission of quality
software development practices. Finally, the omission of quality practices dur-
ing the requirements analysis and specification phase is reported by one-fourth
of the identified studies. Based on these results, it can be said that the delivery
of new functional features compared to the evaluation of software quality has
received more attention from software development teams.

The identified studies report the intentional omission of quality practices
from both organizational and individual perspectives. From an organizational
perspective, the omission of quality software development practices is the result
of organizational-level decisions to gain certain business advantages or to deal
with certain business obligations or common issues and challenges of software
development projects. However, from an individual perspective, software de-
velopers often decide to omit quality practices in order to achieve certain per-
sonal goals.

Previous studies report a variety of factors leading to the omission of qual-
ity practices. We have divided these factors, based on their nature, into five
main categories: Business goals, Customers’ requirements, Project constraints, Tech-
nical issues, and Psychological factors. Each of these categories, originated from
different levels of context, affects the omission of quality practices.

Our results show that, depending on their business environments, devel-
opment teams might be pressured or encouraged to ignore quality software

20

development practices in order to gain competitive advantages. On the other
hand, developers might decide to ignore quality software development practic-
es under the influence of different organizational level factors such as develop-
ment resources and technical obstacles. Finally, we suggest that these market-
and organizational-level factors might influence individuals’ attitudes and cog-
nitive tendencies and as a result managers and developers might decide to ne-
glect certain software development practices.

Conclusions
In Study 1, our goal is twofold: first, to discover the state of research on the
omission of quality practices and to understand the extent to which this phe-
nomenon has been investigated previously; and second, to determine the root
causes underlying the customization of software development methods as sug-
gested by previous studies.

Based on the analysis of the primary studies, we hypothesize that the de-
liberation of omission behavior concerns the contradiction between quality and
productivity and that there is a psycho-social process pertaining to omission
instantiations. The current literature does not consider the omission of quality
practices adequately with respect to why and how software developers make
the decision to omit a quality practice and how to address this phenomenon in
practice.

The results of Study 1 show that, despite previous attempts to explain the
customization of software development processes, there is a need for further
research to clarify several aspects of this research phenomenon. In particular,
further research is needed to deeply investigate the contextual factors and con-
ditions under which the omission of quality practices is initiated. Another area
that requires further research is the psychological processes through which
software professionals decide to perform such questionable practices. Further-
more, while previous studies consider several short-term consequences of the
omission of quality practices, future research needs to study the long-term con-
sequences of such questionable practices. Finally, future research must identify
and suggest different interventions and solutions that could enable the software
community to overcome the omission of quality practices.

1.2.2 Study 2 - Seeking Technical Debt in Critical Software Development
Projects: An Exploratory Field Study3

Research Objectives
Previous research shows that a large number of software and system develop-
ment projects fail or face severe challenges (The Standish Group International,
Inc. 2009). Apart from different technical and human problems, software defects
are the main cause of most software vulnerabilities and failures (Fonseca &
Vieira 2008, Wijayasekara et al. 2012). Therefore, identifying and fixing software

3 H. Ghanbari (2016), “Seeking Technical Debt in Critical Software Development Pro-
jects: An Exploratory Field Study”, Proceedings of 49th Hawaii International Conference
on System Sciences (HICSS-49), pp. 5407-5416.

21

deficiencies, such as bugs, missing requirements or flaws in software design
(Notander, Höst & Runeson 2013), have major importance in increasing the
quality and reliability of software products.

As mentioned earlier, to increase the quality and reliability of software
products, a large number of software development methods and tools have
been put forward by the software community (Avison & Fitzgerald 2003, Iivari
& Maansaari 1998). However, these software development methods are rarely
followed as prescribed (Boehm & Turner 2003, Conboy & Fitzgerald 2010, Bas-
kerville & Pries-Heje 2004). According to the results of Study 1, a group of
scholars uses the metaphor of technical debt (Cunningham 1992) to explain stra-
tegic business decisions made by organizations to achieve short-term goals by
compromising or fully eliminating certain software development activities,
such as architectural design, documentation, and testing (Lim, Taksande &
Seaman 2012, Martini, Bosch & Chaudron 2014), to speed up delivery times
(Brown et al. 2010, Lim, Taksande & Seaman 2012). According to this group of
primary studies, such quality-compromising trade-offs are mainly tactically and
reactively made by firms under the influence of market demands to capture
market share (Lim, Taksande & Seaman 2012, Lindgren et al. 2008) or fulfill
their contractual obligations (Martini, Bosch & Chaudron 2014).

While minimizing development time and costs might play a key role in
highly competitive markets (Eberlein & Leite, Julio, Cesar, Sampaio, do Prado
2002, Sommerville 2005), quality of software often has a higher priority in de-
veloping critical systems (Sommerville 2015). Critical systems are those systems
whose failure might cause devastating financial, infrastructure, or human life
loss or injuries (Sommerville 2015). Despite such criticality, there have been still
a considerable number of failures in critical systems that were caused by soft-
ware defects and vulnerabilities (Dalcher 1999, Alemzadeh et al. 2013, Lann
1997, Eklund, Nichols & Knutsson 2016). However, previous studies have
shown that technical debt does not always occur because of bad design or de-
velopment decisions but might also be due to environmental factors that cannot
be controlled by development teams (Tom, Aurum & Vidgen 2013, Brown et al.
2010). Therefore, in Study 2, we decided to conduct an exploratory field study
in a company active in the aerospace domain to investigate whether, and possi-
bly why, the omission of software development practices and quality rules
happens in critical domains.

Research Findings
The results of Study 2 show that ignoring software development practices and
steps is not limited to highly volatile and competitive markets. Rather, even in
critical domains where integrating dependability and safety requirements into
software has a significant importance, development teams might decide to
make quality-compromising trade-offs while facing different issues and chal-
lenges.

In Study 2, we identified four main circumstances under which perform-
ing planned development activities becomes very challenging in the case com-
pany and the development teams might thus be forced or encouraged to cus-

22

tomize given software development methods. Particularly, in the case company,
due to Ambiguity of Requirements, Diversity of Projects, Inadequate Knowledge Man-
agement, and Resource Constraints, software developers are often forced to min-
imize software processes by skipping certain practices or postponing certain
activities.

Our data indicate that the diversity of projects in the case company makes
it challenging for the development teams to follow certain methods for specify-
ing software requirements. In some projects stakeholders’ requirements are
communicated vaguely, while in other projects the requirements are defined
well. On the other hand, inadequate knowledge management in the case com-
pany makes it even more problematic to identify and specify a clear set of re-
quirements. Inadequate knowledge management alongside the ambiguity of
the requirements makes it very challenging for development teams to precisely
estimate the necessary resources for implementing stakeholders’ requirements.
As a result, development teams face a lack of necessary resources later during
the software project. Under the above-mentioned circumstances, following
planned software processes and complying with given methods become very
difficult for development teams. Therefore, they might decide to ignore or mod-
ify certain practices or activities to deal with such circumstances.

In Study 2, based on our observations and drawing from previous litera-
ture, we suggest that utilizing certain agile practices might enable development
teams to avoid, or to at least identify and manage, technical debt.

Conclusions
In Study 2, upon collecting data from several projects in a company active in the
aerospace domain, we discovered a set of factors that make it challenging for
software development teams to rigorously follow given methods. The results of
this study reveal that ignoring recommended practices and quality rules might
happen even in critical software projects, where certain standards and costly
software engineering processes must be followed.

In this study, we suggest that combining agile practices with plan-driven
processes brings flexibility into critical software projects and, as a result, ena-
bles development teams to avoid or at least better manage technical debt in
these projects. However, further research is needed to support our suggestions
and to investigate the effectiveness of agile practices to manage technical debt
in critical software projects.

1.2.3 Study 3 - Why Software Development Methods are Customized in
Practice - A Theory of Software Development Balance4

Research Objectives
Thousands of software development methods have been put forward by SE and
IS communities in order to better manage highly dynamic and complex soft-

4 H. Ghanbari & M. Siponen, “Why Software Development Methods are Customized
in Practice - A Theory of Software Development Balance”, IEEE Transactions on Soft-
ware Engineering (“Revise and Resubmit” for 2nd round of review).

23

ware processes (McLeod & Doolin 2012). The available methods mainly pro-
pose a set of predefined practices and steps for developing and maintaining
software products (Iivari 1991, Iivari, Hirschheim & Klein 1998b). However, it
has been widely reported by previous studies that these methods are not fol-
lowed as prescribed (Truex, Baskerville & Travis 2000, Baskerville & Pries-Heje
2004, Avison & Fitzgerald 2003, Coleman & O’Connor 2007, Conboy & Fitzger-
ald 2010, Fitzgerald 1998, Iivari & Maansaari 1998, Huisman & Iivari 2006, Kiely
& Fitzgerald 2002, Ralph 2016, Fitzgerald, Hartnett & Conboy 2006); rather,
software development teams modify or skip certain steps or practices that are
recommended by these methods (Highsmith & Cockburn 2001, Sommerville
2005).

Maximizing the leanness of software development processes (Baskerville
& Pries-Heje 2004, Fitzgerald, Hartnett & Conboy 2006, Boehm 2002, Baskerville
et al. 2001, Lim, Taksande & Seaman 2012, Lindgren et al. 2008) and a lack of
universal methods suitable for all types of projects (Truex, Baskerville & Travis
2000, Iivari 1991, Brinkkemper 1996, Henderson-Sellers & Serour 2005) are the
main reasons suggested for modifying or even combining different software
development practices in each project (Conboy & Fitzgerald 2010, Boehm 2002,
Henderson-Sellers & Serour 2005, Leppanen 2006, Iivari & Iivari 2011). Howev-
er, despite the important role of individuals in implementing software devel-
opment methods, there is a lack of understanding of how software developers
decide to ignore or modify best practices recommended by given methods.

Until now, the majority of research on software development, especially in
the SE field, has focused on identifying and improving novel methods and prac-
tices, but without firm theoretical foundations (Ralph 2016, Zhang & Budgen
2012). Therefore, there is a need to propose novel SE theories (Sjøberg et al. 2008,
Wohlin, Šmite & Moe 2015, Johnson, Ekstedt & Jacobson 2012) that explain why
these software development methods are widely ignored in practice.

In Study 3, we attempt to contribute to this issue by proposing a novel
theory grounded in the experience of software professionals active in different
contexts in order to explain the customization of software development meth-
ods as mechanisms—at both individual and organizational levels—for main-
taining balance between stakeholders’ multi-concerns and contradictory contex-
tual forces over time.

Research Findings
The results of our field study show that all of the interviewees skip or modify
software development practices to some extent, even though all of them think
that using methods is beneficial. However, all the interviewees mentioned that
these methods must be customized based on the nature of the software under
development and the characteristics of the development context.

From our data, we identified a wide range of instances where software
development methods and practices were ignored. Such instances include, but
are not limited to, ignoring design and coding guidelines, skipping documenta-
tion and quality control activities, abandoning recommended tools, performing
workarounds, and postponing external quality assurance activities. During the

24

data analysis, we found that such changes in the software development pro-
cesses are caused by different factors, such as the complexity of the software
under development, the evolution of the requirements, technology advance-
ment, and contrasting and sometimes contradictory stakeholders expectations
and market forces.

In Study 3, we propose a novel grounded theory called the Theory of Soft-
ware Development Balance. Our suggested theory indicates how developers, de-
pending on the development context, decide to modify or omit certain software
development practices or activities to deal with such complex and inconsistent
contextual settings. In particular, this theory explains how the customization of
software methods is initiated by the unique characteristics of software and pro-
gresses through a series of complex interactions among software stakeholders
under the influence of contextual forces.

In our theory, we explain how the dispositional attributes of internal and
external entities (e.g., stakeholders and regulatory authorities) involved in
software projects, their structural arrangement, and their interactions lead to
instability in the software development context; as a result, changes in the soft-
ware development process are unavoidable. These entities may have incon-
sistent goals and contradictory opinions about how these goals must be
achieved. For example, for some stakeholders faster delivery time has higher
priority, while other stakeholders might be more concerned about the quality of
the software. Because of such differences between stakeholders’ goals and con-
cerns, they might have contrasting and sometimes contradictory opinions about
the necessity of utilizing software development methods.

On the other hand, since software is evolving over time, software devel-
opment processes are highly dynamic and they cannot be universally prede-
fined. Often, software development teams seek solutions not only to address
constant requirement changes but also to increase their velocity and productivi-
ty. As a result, software firms may decide to ignore certain practices or activities
in order to maximize the leanness of their software development processes.

In Study 3, we explain how software developers might decide to skip cer-
tain practices and activities in order to address deal with unexpected issues and
evolving requirements as well as organizational-level decisions to address envi-
ronmental changes. However, according to several interviewees, performing
such quality-compromising workarounds is undesirable. Therefore, we argue
that developers experience inconsistent social situations when their personal
concerns and values are in contradiction with contextual forces. We propose
that developers try to resolve such inconsistent situations either by identifying
alternative solutions to perform their tasks while avoiding quality-
compromising practices or by justifying such compromises to themselves.

Finally, in our theory, we propose that the lack of proper quality control
and assurance mechanisms is another reason for the customization of software
development methods. Since controlling the quality of software products and
processes is expensive and challenging, it is very difficult for software stake-
holders to identify compromises in software development processes, especially

25

if quality management mechanisms are not appropriate. Therefore, it becomes
possible for development teams to take shortcuts without fear of being noticed
by other stakeholders.

Conclusions
In Study 3, we conducted a longitudinal field study and built a novel process
theory. This empirically grounded theory indicates the causal mechanisms un-
derlying the customization of software development methods in order to clarify
how and under what conditions certain software development activities and
practices are ignored. In this theory, we propose that the unique nature of soft-
ware triggers the mechanisms underlying the customization of software devel-
opment methods, while these mechanisms progress as a result of interactions
among several driving forces influenced by inconsistent socio-structural set-
tings.

In the Theory of Software Development Balance, we propose that develop-
ment teams, depending on their context, decide to customize software devel-
opment processes in order to maintain balance among contrasting or even con-
tradictory forces imposed by stakeholders’ concerns and contextual determi-
nants. Therefore, we suggest that, if needed, software methods must be custom-
ized strategically and according to the organizational structures of software
firms and their development contexts.

1.3 Publication Status

Due to the importance of the research topic and based on growing interests in
building theories, especially process theories in both SE and IS domains (Bur-
ton-Jones, Mclean & Monod 2011, Markus & Robey 1988, Van de Ven, A. H.
1992, Van de Ven, A. H. & Poole 2005, Ralph 2015b), we expect that our findings
receive considerable attention from software development community both in
academic and industry. Therefore, based on the results of this PhD study, we
have been preparing several high quality scientific papers to be published in
leading SE and IS outlets. So far, three papers are prepared, as discussed in the
previous section.

As it is indicated in Table 1, one peer-reviewed conference paper is pub-
lished and two other papers are still under review at the time that this thesis
has been published. Study 1, which is prepared as a standalone literature re-
view paper is under review at the ACM Computing Surveys which is a highly
ranked peer-reviewed journal published by the Association for Computing Ma-
chinery.

Study 2 is published in the proceedings of The 49th Hawaii International
Conference on System Sciences (HICSS-49) which is an annual peer-reviewed IS
conference. The paper was presented during the HICSS-49 and based on the
constructive feedback provided by the audience we are planning to further im-
prove and prepare a new version of this paper.

26

TABLE 1 The publication plan

Study Author(s) Title Forum Status
Study 1 Ghanbari,

Vartiainen,
& Siponen

Why Software Professionals
Knowingly Omit Quality Soft-
ware Development Practices: A
Systematic Literature Review
and Research Agenda

ACM Computing
Surveys

Under Review

Study 2 Ghanbari Seeking Technical Debt in Criti-
cal Software Development Pro-
jects: An Exploratory Field
Study

HICSS-49 Published

Study 3 Ghanbari
& Siponen

Theory of Software Develop-
ment Balance: A Grounded
Theory

IEEE Transac-
tions on Software
Engineering

Revise and
Resubmit for
2nd round of
review

Finally, Study 3 has received a Revise and Resubmit decision after the first
round of review at the IEEE Transactions on Software Engineering which is the
leading journal in the SE discipline (Garousi & Fernandes 2016). It must be not-
ed that this peer-reviewed journal is published by the IEEE Computer Society.

Even though this doctoral thesis consists of three studies presented in Ta-
ble 1, at the time of publishing this thesis two more journal articles are being
prepared based on the results of this research.

2 RESEARCH APPROACH

As discussed earlier in this doctoral research our goal is to seek an in-depth un-
derstanding of the mechanisms and rationale behind the customization of soft-
ware development methods. In so doing, we aim to build empirically grounded
theories to explain why and how software development methods are custom-
ized in practice. Since software development is a highly dynamic and complex
sociotechnical phenomenon (McLeod & Doolin 2012), we need to employ a
suitable research approach that enables us to precisely identify and analyze the
mechanisms through which software development methods are customized. In
addition, the selected research approach must enable us to explore contextual
factors initiating and affecting these mechanisms and their outcomes.

2.1 Interpretive Research

It is suggested in both SE and IS literature that qualitative research is a suitable
approach for developing knowledge about dynamic processes and for under-
standing the logic behind change over time (McLeod & Doolin 2012, Van de
Ven, A. H. & Poole 2005). In particular, it is suggested that an interpretive study
that is grounded in the experience of professionals involved in software devel-
opment processes is useful for developing new theoretical understandings
about this phenomenon (Sarker, Lau & Sahay 2000, Urquhart, Lehmann & My-
ers 2010, Klein & Myers 1999).

Therefore, based on my personal beliefs regarding the conduct of research,
I have decided to follow an interpretive (Orlikowski & Baroudi 1991, Klein &
Myers 1999) approach in this PhD study. The interpretivist paradigm (Orlikow-
ski and Baroudi, 1991) enables a researcher to develop an understanding of a
research phenomenon by using and interpreting the perceptions and experienc-
es of those who participate in that phenomenon (Thanh & Thanh 2015). The
concept of “paradigm” is widely used by scientific communities to describe the
assumptions underpinning different theoretical ideas and research approaches

28

and to classify them accordingly (Iivari 1991). In the following sections, we
briefly explain the paradigmatic constituents of this doctoral research.

2.1.1 Ontology

Ontological assumptions concern the form and nature of the reality, meaning
the phenomena under study (Iivari 1991, Guba & Lincoln 1994, Orlikowski &
Baroudi 1991). In other words:

Whether the empirical world is assumed to be objective and hence independent of
humans, or subjective and hence having existence only through the action of humans
in creating and recreating it. (Orlikowski & Baroudi 1991, p.7)

From an ontological standpoint, the interpretive approach assumes that a
subjective social world is constructed and reconstructed through ongoing ac-
tions and interactions of humans. Therefore, since social relations or entities
(e.g., organizations or social systems) do not exist objectively and apart from
humans they can only be interpreted by researchers:

Meaning and intentional descriptions are important, not merely because they reveal
subjects' states of mind which can be correlated with external behavior, but because
they are constitutive of those behaviors. (Orlikowski & Baroudi 1991, p.13)

Keeping in mind that an interpretive approach recognizes that the social
reality is produced through constant human interactions, understanding of the
social reality may change as researchers provide different interpretations of this
reality over time.

2.1.2 Epistemology

Epistemological assumptions have to do with the nature of scientific knowledge,
meaning how the researcher (i.e., knower) acquires valid knowledge about the
phenomena under investigation (Iivari 1991; Guba & Lincoln, 1994; Orlikowski
& Baroudi, 1991).

Epistemologically, the interpretive approach assumes that by getting in-
volved in a social setting, researchers are able to construct understandings and
interpretations of a phenomenon by accessing the subjective meanings that are
constructed and assigned to that phenomenon by the participants of that par-
ticular setting.

The intent of the research is to increase understanding of the phenomenon within
cultural and contextual situations; where the phenomenon of interest is examined in
its natural setting and from the perspective of the participants; and where research-
ers did not impose their outsiders' a priori understanding on the situation. (Orlikow-
ski & Baroudi 1991, p.5)

29

As a result, since interpretive research enables researchers “to understand
human thought and action in social and organizational contexts” (Klein & My-
ers 1999, p.67), it is suitable for developing circular or reciprocally interacting
models of causality to indicate how participants perceive the social world
around them and their role in this socially constructed world (Orlikowski &
Baroudi 1991).

2.1.3 Methodology

Methodological assumptions concern which methods can be used by the re-
searcher to acquire the valid empirical evidence about the phenomenon under
investigation (Guba & Lincoln 1994, Orlikowski & Baroudi 1991).

As discussed earlier, interpretivism assumes that the phenomenon under
study must be understood in its context and from the perspective of the actors
who experience it (Orlikowski & Baroudi 1991). Therefore, qualitative research
methods, such as field studies (Klein & Myers 1999), are appropriate for inves-
tigating a social phenomenon within its natural context (Orlikowski & Baroudi
1991, Stol, Ralph & Fitzgerald 2016) through qualitative data collected from dif-
ferent sources, including interviews, observations, and archival materials
(Conboy, Fitzgerald & Mathiassen 2012). Orlikoswki and Baroudi (1991) sug-
gest that:

Following on the ontological belief that reality is socially constructed, the interpretive
researcher attempts to derive his or her constructs from the field by in-depth exami-
nation of and exposure to the phenomenon of interest. The categories and themes
that emerge out of this approach are intended to closely couple those relevant to the
study's participants [as] interpretive techniques allow participants to use their own
words and images, and to draw on their own concepts and experiences. (Orlikowski
& Baroudi 1991, p.14)

However, it must be noted that gaining a deep understanding of the phe-
nomenon under investigation and observing the social processes within a con-
text is an effort-intensive task (Maxwell 2004). Therefore, interpretivist re-
searchers must spend a considerable amount of effort and time in a social con-
text to collect the “rich” data (Maxwell 2004) necessary for understanding the
causal mechanisms within that context. Therefore, in this doctoral research, we
utilized a combination of techniques to collect “rich” data and to build empiri-
cally grounded interpretations of the mechanisms through which software de-
velopment methods are customized in practice.

Systematic Literature Review
To gain an understanding of the state of research on the customization of soft-
ware development methods, we have conducted an SLR (Kitchenham & Char-
ters 2007, Okoli & Schabram 2010) study to identify and analyze previous em-
pirical studies relevant to our research phenomenon.

It has been suggested by previous studies that an SLR is a suitable meth-
odology for aggregating and evaluating completed and recorded research re-

30

garding a certain topic of interest to both identify gaps in the body of
knowledge and propose directions for conducting future research to address
these identified gaps (Kitchenham & Charters 2007, Kitchenham et al. 2010,
Okoli & Schabram 2010, Rowe 2014).

As suggested by Petersen et al. (2008), following a well-defined procedure
in our SLR study enabled us to identify and analyze a wide range of previous
studies. By providing a synthesis of these previous studies, we were able to
identify and show the gaps in the literature regarding the customization of
software development methods. At the same time, by analyzing data aggregat-
ed from the identified studies, we have built a theoretical model indicating our
interpretation of the processes through which the customization of software
development methods happens in practice. This model is explained in detail in
Study 1.

Finally, based on the synthesis of our SLR study, we have suggested a re-
search agenda for filling the identified gaps in the current knowledge. We have
attempted to address some of these gaps in several steps and by conducting a
longitudinal field study.

Field Study
Following our SLR, we conducted a three year field study within the context of
an industrially led research and development project consisting of 17 European
organizations and research institutes. During this field study we employed a
combination of techniques to collect “rich” qualitative data from software de-
velopment teams active in a variety of contexts. In doing so, we aimed at exam-
ining different aspects of customization of software development methods
across industrial domains.

In particular, we collected data through formal semi-structured interviews
(Myers & Newman 2007) and informal conversations with software develop-
ment professionals (e.g., developers, designers, testers, and project managers).
In addition, we collected data by observing participants during several field
visits to the case companies as well as regular co-located and online project
meetings with the project consortium.

Finally, we used archival materials such as project reports, software de-
velopment procedures and guidelines provided by the interviewees, domain-
specific standards used by case companies, and public information available on
the internet as complementary data sources. It must be mentioned that we used
a qualitative data analysis tool called Nvivo to store and manage the large
amount of qualitative data collected during this doctoral research.

2.2 Theory Construction

As explained earlier, in this doctoral research, our aim was to identify and pro-
vide theoretical explanations of the causal mechanisms through which software
development methods are customized. To reach this goal, we followed an in-

31

terpretive approach to theory construction, drawing on dimensions of theory
construction suggested by Markus and Robey (1998). These dimensions, namely,
causal agency, logical structure, and level of analysis (Markus & Robey 1988),
are shown in Figure 2.

FIGURE 2 Dimensions of Causal Structure (Markus and Robey 1988)

Regarding the causal agency, in this doctoral research, we followed an
emergent perspective on theory construction (Markus & Robey 1988). This is
because we assume that developers’ tendency to neglect software development
methods and practices is shaped by both complex and unpredictable develop-
ment environments as well as their intentions and social interactions.

Regarding the level of analysis, in our field study, we focused on both mi-
cro- and macro-level (Markus & Robey 1988) entities. This is because we as-
sume that the decision to ignore software development practices is the result of
interactions between individual software developers and larger social struc-
tures in the development context.

Finally, regarding the logical structure, we followed a process approach
(Markus & Robey 1988) in which we aimed to identify mechanisms underlying
developers’ behavior in neglecting software development practices. A process
theory (Mohr 1982) can explain how and possibly why a discrete set of events
occurred over time (Gregor & Jones 2007, Ralph 2015a, Ralph 2016, Van de Ven,
A. H. & Poole 2005, Van de Ven, A. H. 1992). Therefore, a good process theory
provides richer explanations of why and how (Van de Ven, A. H. 1992) software
developers take shortcuts by skipping recommended practices and quality rules.

In the following sections we briefly discuss the characteristics of a process
theory and its differences from a variance theory.

2.2.1 Process vs. Variance Theory

In regard to the logical structure, theories can be divided into two types: vari-
ance and process. Table 2, which is adapted from Markus and Ruby (1989),
shows the characteristics of process and variance theories and how they are dif-
ferent.

32

TABLE 2 Differences between the Logical Structure of Variance and Process Theo-
ry (Markus and Robey 1988)

Variance Theory Process Theory
Role of Time Static Longitudinal

Definition The cause is necessary and
sufficient for the outcome

Causation consists of necessary conditions
in sequence; chance and random events
play a role

Assumptions Outcome will occur when
necessary and sufficient condi-
tions are present

Outcome may not occur (even when con-
ditions are present)

Elements Variables Discrete outcomes
Logical Form If X, then Y; If more X, then

more Y
If not X, then not Y; cannot be extended to
“more X” or “more Y”

Generally speaking, while variance theories deal with variables and their
correlations, process theories mainly deal with events and the processes
through which those events are connected (Maxwell 2004). However, Moher
(1982) suggests that the difference between these two types of theory can be
best explained in terms of necessary and sufficient conditions.

The variance theory is a type [of theory] whose characteristics grow out of a founda-
tion in the necessary and sufficient, whereas the characteristics of process theory
grow out of a foundation in the necessary alone. (Mohr 1982, p.36)

In other terms, in a variance theory, the precursor (X) is considered to be a
necessary and sufficient condition for the outcome (Y) to occur, whereas in a
process theory, the precursor (X) is a necessary but not sufficient condition for
the outcome (Y) to occur. Therefore, for a process theory to be satisfactory, the
precursor must:

Contain three types of elements - (1) necessary conditions and (2) necessary probabil-
istic processes, which together form the core of the theory, and (3) external, direc-
tional forces that function to move the focal unit and conditions about in a character-
istic way, often herding them into mutual proximity. (Mohr 1982, p.45)

Since variance theory deals with correlations between variables, experi-
mental and survey methods are commonly used to measure how changing the
values of particular variables contributes to variations in the values of other
variables (Maxwell 2004). On the other hand, qualitative methods are appropri-
ate for identifying how events occur in a given context and what are the contex-
tual causal mechanisms connecting those events (Maxwell 2004). However,
since these causal processes usually cannot be observed directly, the identifica-
tion of plausible and valid causal explanations requires intensive field-work to
collect rich empirical evidence (Maxwell 2004).

Therefore, during our field study we attempted to collect “rich” qualita-
tive data from different sources to identify and explain under what conditions
and through which mechanisms software development methods are custom-

33

ized in practice. These conditions and mechanisms are extensively explained in
Study 2 and Study 3.

2.2.2 Grounded Theory Method

In recent years, the Grounded Theory Method (GTM) has been used increasing-
ly in the SE and IS disciplines (Giardino et al. 2013, Hoda, Noble & Marshall
2013, Birks et al. 2013, Urquhart & Fernandez 2013, Stol, Ralph & Fitzgerald
2016). GTM is suitable for generating “conceptual theory that accounts for a
pattern of behavior which is relevant and problematic for those involved” (Gla-
ser 1978, p.93). Such theory is generated through systematic collection and
analysis of empirical data based on the experiences of humans and the contex-
tual factors associated with a phenomenon (Hoda, Noble & Marshall 2013, Gla-
ser & Strauss 1967).

In GTM studies a theoretical sampling (Glaser & Strauss 1967, Glaser & Hol-
ton 2004) strategy must be followed to collect and analyze data iteratively. This
strategy enables researchers to enrich their emerging theoretical concepts by
identifying shortcomings in the collected data and to address them by collecting
more data (Birks et al. 2013).

To analyze the data systematically, we have performed three stages called
open coding, selective coding, and theoretical coding (Glaser 1978, Glaser & Holton
2004, Glaser 1992, Urquhart, Lehmann & Myers 2010) as well as memoing (Gla-
ser & Strauss 1967).

In the first stage, open coding (Glaser 1978, Glaser & Holton 2004, Glaser
1992), textual data collected from the field are broken down into small pieces
and conceptual labels are assigned to conceptually similar fractures. In the sec-
ond stage, selective coding (Glaser 1978, Glaser & Holton 2004, Glaser 1992), a
core conceptual category is identified and those categories that are sufficiently
related to this core category are further developed through further data collec-
tion and coding (Glaser 1978, Glaser & Holton 2004). Finally, in the last stage of
data analysis, theoretical coding (Glaser 1978, Glaser & Holton 2004, Glaser 1992),
the interrelationships between the core category and relevant categories (i.e.,
selective codes) are conceptualized to theorize the research phenomenon. While
performing these three stages of data analysis, memoing must be performed by
researchers in order to capture their insights regarding the emerging conceptual
categories and their interrelationships (Glaser & Strauss 1967).

The GTM is suggested to be effective in generating context-based and pro-
cess-oriented explanations about socio-technical phenomena (Urquhart, Leh-
mann & Myers 2010, Myers 1997), such as software and information systems
development. Therefore, in this doctoral research, we decided to use the GTM
(Glaser 1978, Glaser & Strauss 1967, Glaser & Holton 2004, Glaser 1992) to de-
velop a process theory (Mohr 1982) that is grounded in the experience of soft-
ware development professionals.

As mentioned earlier, drawing from literature and based on the results of
our field study, we found that a typical scenario of ignoring recommended
practices or quality rules relates to conflicts between stakeholders’ concerns and

34

contextual forces. For example, while software developers are more concerned
with producing innovative and high-quality artifacts (Lim, Taksande & Seaman
2012, Katz 2005), due to market demands, managers are more concerned with
increasing productivity. Therefore, we propose that such conflicts might trigger
the psycho-social processes leading to the customization of software develop-
ment methods.

Drawing upon the concept of balance from the field of psychology (Heider
1946, Heider 1967, Heider 1958, Cartwright & Harary 1956), we propose that the
customization of software development methods is the result of individual- and
organizational-level mechanisms for maintaining balance between stakeholders’
multi-concerns and contradictory contextual forces. Especially from an individ-
ual perspective, we argue that due to structural pressures, software developers
experience social inconsistencies and as a result they become motivated to take
shortcuts or perform workarounds to resolve such tensions. In the following
section we briefly explain the balance theory.

2.2.3 Balance Theory

Since the 1960s, balance theory (Cartwright & Harary 1956, Heider 1946, Heider
1958, Newcomb 1961) has been widely used in the field of psychology and the
social sciences as a meta-framework for studying how the attitudes and rela-
tions between social actors influence the structural arrangements between ac-
tors in social groups (Hummon & Doreian 2003). The theory was originally
suggested and developed by Heider (1946, 1958) to explain the mechanisms for
changes towards balanced states from an individual view-point (micro-level).
Basically, Heider proposes that in social groups, rational actors have a tendency
toward balanced states (Khanafiah & Situngkir 2004).

The initial ideas on balance were later extended to the group level (macro-
level) by Cartwright and Harary (1956) and Newcomb (1961). Unlike Heider,
they suggest that balance occurs as the result of change processes at the group
level (Hummon & Doreian 2003). To formalize Heider’s original balance theory,
Cartwright and Harary (1956) represented social structures as graphs. Using
graph theory in their approach had a significant impact on the further devel-
opment of balance theory (Khanafiah & Situngkir 2004, Hummon & Doreian
2003). More recently, balance theory has been increasingly used in other disci-
plines to study the relation between the behavior of social actors and their mode
of thinking, especially in large social groups such as consumer networks and
social networks (Bargh, Chen & Burrows 1996, Woodside & Chebat 2001).

Heider (1958, p.201) describes a balance state as “a situation in which the
relations among the entities in a social system fit together harmoniously; there
is no stress toward change”. He categorizes the relations between separate enti-
ties in a social group into unit and sentiment relations. A group of separate enti-
ties that are perceived as belonging together represents a unit (e.g., members of
a software development team). On the other hand, one’s attitude towards other
entities in the social group is called sentiment relation (Heider, 1958). Here, the
term attitude refers to positive and negative relationships (e.g., feelings or valu-

35

ation) of a person to another entity which might be a person or a non-person
(i.e., an object, a situation, an event, an idea etc.). The relations between separate
entities, from the perspective of perceiver (p), may be for dyads, triads or more-
complex cases. A dyad indicates a relation between two separate entities, while
a triad represents a relationship among three separate entities. In more-complex
groups the relations among separate entities can be shown as a combination of
several dyads and triads.

For dyads, the relation can be either between a person and a non-person (p,
x) or between two persons (p, o). The relations in a triad may be between one
person and two non-person entities, two persons and a non-person entity, or
three persons (p, o, x). Heider’s pox model (see Figure 3) shows the relations be-
tween social entities for a triad.

FIGURE 3 Heider's pox model (Khanafiah & Situngkir, 2004)

FIGURE 4 Three examples of balanced triads

FIGURE 5 Three examples of imbalanced triads

In this model, the relations are balanced as long as the multiplication of
their signs is positive (see Figure 4). As can be seen in Figure 4, all the triads are
balanced. Heider (1958) argues that in balanced situations, no tension is felt by
actors involved in a social structure, and therefore, there is no need for con-

36

scious thinking to occur. An imbalanced state occurs as soon as the multiplica-
tion of the signs of the relations between entities becomes negative (see Figure
5).

In such situations, actors feel tension, and thus, they tend to rearrange
their social structures in order to achieve balance. For example, in the triads
shown in Figure 5, to reduce tension, p must either change the relationship to-
wards x or o.

As mentioned earlier, a combination of dyads and triads can be used to
represent the relations between entities in large and complex social groups.
However, it must be noted that change towards balance in social systems is not
a straight-forward process, as it is influenced by different individual and group
factors. As social actors gain higher levels of knowledge and experience their
perceptions about socio-structural arrangements in their environments change
over time. Therefore, at each point in time, especially in large groups, different
actors might have different and even contradictory perceptions about balance.
Therefore, each actor might choose different approaches towards balance based
on their level of knowledge and their perception of a balanced state at the time
of decision making (Hummon & Doreian 2003).

Additionally, an actor might have inconsistent attitudes toward the same
entity simultaneously. This is because different relations between entities are
not integrated logically (Woodside & Chebat 2001). In such situations, there is a
tendency in actors to use cognitive restructuring (e.g., excuses or rationaliza-
tions) as a means for balancing inconsistent relations (Woodside & Chebat 2001).
Therefore, it can be seen that maintaining balance does not necessarily need to
be a physical process but it can also be a cognitive process.

In the following paragraphs, we use the pox model to represent an exam-
ple from our empirical observations in terms of maintaining balance within the
software development context.

FIGURE 6 A balanced triad from Developer’s perspective

In Figure 6 we show a situation in which the Developer is aware of the
Best Practices recommended by the firm’s software development method. The
decision to select and use this software development method is made by the
firm’s Management team. Since the Developer is employed by the company (i.e.,
a unit relationship), he is aware that he is obliged to follow organizational

37

guidelines, and therefore, he tends to follow Best Practices. At this point, this
situation is balanced.

In response to a customer’s request, the Management team decides to re-
duce the delivery time. In doing so, the Developer is requested to speed up the
development by skipping or postponing certain practices Management consid-
ers unnecessary for this release. This leads to an imbalanced situation shown in
Figure 7. Therefore, based on the theory of balance, the Developer tends to take
physical or mental steps to maintain balance. In this case, there are three possi-
ble alternatives to resolve the balance, as shown in Figure 8.

FIGURE 7 An imbalanced triad from Developer’s perspective

FIGURE 8 Three possible alternatives for maintaining balance

FIGURE 9 Developer decides to ignores Best Practices

 In Option 1, the Developer simply follows Management’s order and ig-
nores the Best Practices (see Figure 9). Study 1 showed that this is what the ma-
jority of previous studies report, as they argue that the omission of quality prac-
tices is due to organizational-level decisions. We argue that such an argument is

38

problematic, since it assumes that developers are fully obedient agents who
simply follow orders against their personal and professional concerns.

In Option 2, the Developer decides to ignore Management’s order and to
follow the Best Practices (see Figure 10). In this case, the Developer might com-
promise his relationship with the organization, which will most likely affect his
career. From our perspective, this option also sounds very simplistic, since de-
velopers have obligations to their organizations, and therefore, they cannot
simply avoid organizational-level decisions. Especially when keeping in mind
the high rates of change in software projects, it becomes obvious that such or-
ganizational-level decisions to change software development processes are
made frequently.

FIGURE 10 Developer decides to ignore Management’s order

FIGURE 11 Developer convinces Management to follow Best Practices

Finally, in Option 3, the Developer tries to identify an alternative solution
to perform his task and at the same time maintain balance. For instance, based
on our empirical observations, the Developer may try to convince the Manage-
ment team that ignoring the Best Practices is not a good idea (see Figure 11).

Another solution is that the Developer tries to voluntarily work overtime
to perform his task based on the recommended Best Practices. However, if the
Developer cannot identify any alternative solution and has to ignore the Best
Practices, he may use cognitive restructuring as a mental solution to maintain
balance. For instance, based on our data, the Developer might blame the Man-
agement team for ignoring the Best Practices and potentially compromising
quality.

39

Each of the above-mentioned alternatives has its own effects on develop-
ers’ behavior. In Study 3, we argue that if in a certain development context de-
velopers frequently experience pressure to take shortcuts and skip recommend-
ed practices and quality rules, their attitudes towards following these recom-
mended practices will change over time. As a result, the omission of quality
rules and practices will become legitimate in that context.

It must be noted that at each point in time there might be relatively
stronger or even dominant relations between entities in a software development
context, which will affect developers’ decisions. For example, junior software
developers might be more concerned about their career prospects than their
personal concerns about following recommended practices. Therefore, if they
are asked to take shortcuts, they might simply follow organizational-level deci-
sions and skip given practices and quality rules, even though they have nega-
tive attitudes towards doing so.

3 STUDY 1- OMISSION OF QUALITY SOFTWARE
DEVELOPMENT PRACTICES: A SYSTEMATIC
LITERATURE REVIEW AND RESEARCH AGENDA5

3.1 Abstract

Software deficiencies are minimized by utilizing recommended software devel-
opment and quality assurance practices. However, these practices become inef-
fective if software professionals purposefully ignore them. Conducting a sys-
tematic literature review, we discovered that while a group of studies have in-
vestigated the omission of quality practices, different aspects of this phenome-
non deserve further research. Future research must investigate the conditions
triggering the omission of quality practices and the consequences of such quali-
ty-compromising decisions. Additionally, because software development is a
human-centric phenomenon, the psychological aspects of ignoring quality prac-
tices deserve more precise investigation. Finally, future research must suggest
interventions to overcome this issue.

3.2 Introduction

Today, software has become an integrated part and parcel of everyday modern
life. Not only are computers and tablets in offices and homes, but software sys-
tems have also found their way into a range of commonly used devices, from
smartphones to Internet-TV. Despite all the financial and human resources that
have been spent on information systems and software development projects,
deficiencies in software products are widely reported in the research and prac-
tice literature (Fraser & Mancl 2008, Brooks 1995, Mancl, Fraser & Opdyke 2007).

5 Ghanbari, H., Vartiainen, T. & Siponen, M. (Under review at ACM Computing Sur-
veys).

41

Previous research has shown that such software defects are amongst the most
important causes of software failures and vulnerabilities (Fonseca & Vieira 2008,
Wijayasekara et al. 2012). These software deficiencies not only make infor-
mation systems vulnerable but also cause extensive financial costs for software
stakeholders and societies (Fonseca & Vieira 2008, Linberg 1999, Wijayasekara
et al. 2012, Judy 2009). For example, in the year 2002, the cost of software defi-
ciencies in just the United States was estimated to be almost 60 billion dollars
(Judy 2009, Tassey 2002).

Minor and trivial software defects might not cause serious issues for
stakeholders (Black 2012), and ordinary users might even perceive and largely
accept them as technical issues, such as application or even operating system
crashes and delays in services (Leveson & Turner 1993). However, because
software systems deployed with critical bugs are more vulnerable to safety and
security threats, they might result in devastating damages for stakeholders and
societies in general (Fonseca & Vieira 2008, Leveson & Turner 1993, Eklund,
Nichols & Knutsson 2016).

In response to such quality challenges during the last four decades, the
software community has mainly been engaged in improving software devel-
opment and quality assurance processes by proposing a variety of standards,
procedures, and best practices (Sommerville 2011, Poth & Sunyaev 2014). Alt-
hough utilizing these practices might enable developers to identify and resolve
defects in software products, software defects might stay hidden even after de-
livery in some cases (Wijayasekara et al. 2012). In addition, fixing identified
software deficiencies becomes more expensive and time-consuming in the later
stages of projects, especially after software delivery (Banker, Davis & Slaughter
1998, Van Emden & Moonen 2002). Therefore, such deficiencies should be
avoided in the first place, especially in more critical and complex systems
(Leveson & Turner 1993, Wijayasekara et al. 2012).

Recent literature hints that software deficiencies might be the result of
omitting proper software development practices or following "quick-and-dirty"
shortcuts by development teams (Ahonen & Junttila 2003, Austin 2001, Basker-
ville & Pries-Heje 2004, Baskerville et al. 2001, Baskerville et al. 2003, Vartiainen,
Siponen & Moody 2011). In such situations, developers may often, for example,
trade software quality for short-term gains by deciding to implement a task as
soon as possible rather than following best practices. In this study, we refer to
such quality-compromising decisions as “omission of quality practices.”

By omitting quality practices, software professionals (e.g., requirement
analysts, programmers, testers, or project managers) purposefully opt to not
follow proper software development practices that are recommended by either
development procedures and standards or the software community. Instead,
they choose to follow a questionable practice that might compromise the soft-
ware quality. For example, imagine that a programmer has a coding task that
can be performed in two alternative ways: A or B. Following A, the developer
spends enough time and effort to perform his task according to a certain coding
standard that is recommended to improve the quality of code. Alternately, by

42

following B, the developer knowingly ignores the coding standard and follows
a “quick-and-dirty” approach to finish the task quickly. When the developer
chooses to follow B while being aware of A, we call this an “omission of quality
practices.” Examining why software professionals engage in such questionable
practices is extremely important because any quality software development
practices become ineffective if software professionals purposefully ignore them.

In this article, our goal is to understand why software development teams
knowingly decide to omit quality practices as previously defined. To gain such
understanding, we decided to conduct a Systematic Literature Review (Kitch-
enham & Charters 2007, Okoli & Schabram 2010) to discover to what extent this
phenomenon has been investigated by previous research. Through an extensive
search performed on previous studies, only 19 studies were considered to be
relevant for answering our research questions. The results of our study show
that, despite its importance, several aspects of this phenomenon deserve further
scholarly investigation. In particular, further research is needed to deeply inves-
tigate the contextual factors and conditions under which the omission of quality
practices is initiated. Another area that requires further research is the psycho-
logical processes through which software professionals decide to perform such
questionable practices. Furthermore, while previous studies consider several
short-term consequences of omission of quality practices, future research needs
to study the long-term consequences of such questionable practices. Finally,
future research must identify and suggest different interventions and solutions
that could enable the software community to overcome the omission of quality
practices.

The rest of this study is structured as follows. In Section 3.3, the research
methodology is presented, and different stages of the planning and conduction
of the literature review are explained. In Section 3.4, the results of the literature
review are reported and discussed in detail. The paper continues by outlining
our proposal for the research agenda in Section 3.5. Finally, Section 3.6 summa-
rizes the key findings.

3.3 Research method

Conducting a literature review enables scholars to identify neglected research
themes and spot critical gaps in the body of knowledge that deserve further
scholarly investigation (Rowe 2014). It is suggested by previous studies that a
Systematic Literature Review (SLR) is a suitable methodology for aggregating
and evaluating completed and recorded research regarding a certain topic of
interest to both identify gaps in the body of knowledge and propose directions
for conducting future research to address these identified gaps (Kitchenham &
Charters 2007, Kitchenham et al. 2010, Okoli & Schabram 2010, Rowe 2014).
While proposing directions for future research might not include extensive and
detailed research plans, it is suggested that providing such deployment plans
can be an excellent added value to SLR articles (Rowe 2014).

43

In SLRs, following a well-defined methodology enables researchers to
identify and analyze a wider range of previous studies (Petersen et al. 2008).
Often these previous studies summarized and analyzed by SLRs are referred to
as primary studies (Kitchenham et al. 2010). Although conducting an SLR re-
quires a significant amount of time and effort due to the large number of previ-
ous studies that must be identified and evaluated (Okoli & Schabram 2010,
Kitchenham & Charters 2007, Petersen et al. 2008), following a well-defined and
reliable process can improve the comprehensiveness and scientific rigor of the
SLR while reducing researchers’ biases (Okoli & Schabram 2010, Petersen et al.
2008, Rowe 2014).

At the very beginning of this research project, we conducted an initial lit-
erature review to identify previous studies related to our research questions.
During this initial examination, we identified a limited number of studies rele-
vant to our research topic. Therefore, we decided to conduct an SLR according
to the guidelines suggested by Kitchenham (2004; 2007) and Okoli and Scha-
bram (2010). Both have been widely used for conducting SLRs in the Software
Engineering (SE) and Information Systems (IS) disciplines. According to the
results of our initial literature review, we decided to choose a wide range of
search terms to identify a larger number of studies and to cover all the poten-
tially relevant studies. By this, we aimed to indicate the gap in the literature
regarding the omission of quality software development practices and to pro-
vide directions for future research. Figure 12 shows an overview of the litera-
ture review process. In the following sections, we discuss different stages of the
process through which we planned and conducted our SLR.

FIGURE 12 Four stages of planning and conducting the SLR

3.3.1 Initial literature review Study (Stage 0)

To evaluate the state of research on the omission of quality software develop-
ment practices, we conducted an initial literature review study in which we

44

identified several studies reporting on the omission of software development
methods and practices. Following this, and using the snowball technique, we
searched the lists of references of these identified papers to discover additional
relevant studies. Although this preliminary literature review did not return a
considerable number of relevant studies, it helped us to identify a set of key-
words that have been used by previous studies and software professionals,
while also noting the issues regarding the omission of software development
methods and practices. These keywords were later used during Stage 1 of our
SLR to search for and identify relevant literature.

3.3.2 Planning the review (Stage 1)

During the planning stage, and according to the guidelines suggested by Kitch-
enham and Charters (2007), we prepared a search protocol to guide our SLR
and increase the rigor of the review process. This search protocol was then test-
ed by two of the authors and improved accordingly. This protocol consisted of
our research questions, our search strategy (i.e., the search terms and resources
which must be searched), study selection criteria and evaluation mechanism,
data extraction strategy, and review timetable. In the following sub-sections we
provide more detail about the contents of the review protocol.

Research questions
According to the objectives of our research, we try to answer our main research
question:

What is the state of research related to the customization of software development
methods?

Based on this research question, we have formed the following sub-
questions to be answered:

RQ1: How is the omission of quality practices reported by previous studies?

RQ2: What are the common instances of the omission of quality practices reported
by previous studies?

RQ3: Under what conditions does the omission of quality practices take place?

Search strategy
After formulating these research questions, the search terms were chosen by
identifying the keywords in the research questions and the results of our initial
literature review study (see Table 3). Because we are interested in software de-
velopers’ behaviors during the software development processes, “software de-
velopment” and “software design” were chosen as the main keywords, which
are used in the SE discipline. To extend the scope of the study to complemen-
tary fields, we also decided to use “system(s) development” and “system(s) de-

45

sign” as common alternatives, which are used in the IS and Computer Science
disciplines.

TABLE 3 The search terms identified based on research objectives

Search Arguments Selected words and phrases
First argument Software development, Software design, System* development,

System* design
Second argument Omission, Omit, Questionable, Shortcut, Quick-and-dirty, Trade off,

Technical debt, Dark side, Gray area, Dubious, Software quality

Additionally, based on our research questions, we used the terms “omis-
sion” and “omit” to capture all previous studies that could be relevant to our
research questions. However, according to our preliminary initial literature re-
view study, we recognized that terms such as “questionable”, “shortcut”,
“quick-and-dirty”, “trade off”, “technical debt”, “dark side”, “gray area”, “du-
bious”, and “software quality” could also be used by those studies that are rele-
vant to our research objectives (see Table 3).

Hence, we have combined the search arguments indicated in Table 3 to
form our search string as follows:

("Software development" OR "software design" OR "system* development" OR "system*
design") AND ("omission" OR "omit*" questionable OR shortcut OR "quick and dirty"
OR "quick-and-dirty" OR "trade off" OR "trade-off" OR "technical debt" OR "dark side"
OR "gray area" OR "grey area" OR "dubious" OR "Software quality")

To identify the relevant studies, we conducted several pilot tests on major
digital libraries, such as IEEE Xplore, ProQuest, ACM Digital Library, and Sci-
enceDirect. The combination of these searches showed that the two former li-
braries are able to handle more complex searches and that they have a wider
coverage because they retrieved considerably higher numbers of studies than
the two latter libraries. For that reason, we decided to conduct the search on the
IEEE Xplore (ieeexplore.ieee.org) and ProQuest (search.proquest.com) libraries.
In addition, we agreed to conduct manual searches to identify extra studies
missing from the automatic searches or cited by primary studies.

TABLE 4 The results of the search conducted in January 2015

Database Total number Date range
IEEE Xplore Digital Library 3787 1968-2014
ProQuest 1285 1978-2015
Manual search 17 1998-2014
Total 5089 1968-2015
Total after screening 4838 1968-2015

Note: Manual searches were performed mainly using Google Scholar (scholar.google.com).

We performed the search to identify relevant studies during January 2015.
After retrieving the results, we combined them into a single spreadsheet file
containing records of 5072 studies. We then went through the list to identify

46

and modify or remove any incorrect records or duplications. At this point, we
added 19 articles that were manually identified by researchers but were not re-
trieved by the automatic search. After this step, our list consisted of a total
number of 4838 unique studies.

Selection criteria and mechanism
In our review protocol, we agreed that each study must be evaluated by at least
two reviewers and based on the predefined inclusion and exclusion criteria. A
study was considered to be relevant if it recognizes the problem of ignoring
quality software development practices or that of software professionals engag-
ing in questionable practices during software or information system develop-
ment processes. Software professionals here refers to those individuals who are
involved in any step of software development processes, including require-
ments engineers, analysts, designers, coders, testers, product managers, and
project managers. Studies were excluded if they were not peer-reviewed journal
or conference articles published in English.

Due to the large number of identified studies, we agreed to conduct the
evaluation process in three consecutive rounds: first, based on title and abstract;
then, based on title, abstract, introduction, and conclusion; and finally, based on
the full papers. During these rounds, each paper was evaluated by at least two
reviewers. The results of these independent reviews were then combined to
identify relevant studies. We also agreed that, if two reviewers have contradic-
tory opinions about the relevance of a paper, this disagreement must first be
resolved through negotiation between those two reviewers, and if the disa-
greement cannot be resolved, then a third reviewer must evaluate the paper;
based on that review, the team decides whether the paper is relevant or irrele-
vant.

3.3.3 Conducting the review (Stage 2)

In the first round of Stage 2, two of the authors, Reviewers 1 and 2 inde-
pendently evaluated the relevance of each study by reading its title and abstract.
Following Kitchenham (2004; 2007), the reviewers tried to be quite liberal in
performing this evaluation to decrease the chance of excluding any relevant
studies. The results of the evaluation from each reviewer were then combined,
and the disagreements between them were identified. Although the majority of
these disagreements were resolved by reevaluating the studies and negotiation
between the two reviewers, the reviewers’ evaluations were contradictory in 26
cases. Therefore, Reviewer 3 evaluated each of these 26 studies, and based on
his evaluation, the disagreements between Reviewers 1 and 2 were resolved. At
the end of this stage, a total of 91 studies were selected for further evaluation.

During the second round of Stage 2, Reviewers 1 and 2 evaluated the 91
studies based on their title, abstract, introduction, and conclusion sections. As
in the previous round, when the reviewers’ independent evaluations were
completed, the results were combined, and disagreements were identified and
resolved. At the end of this stage, a total of 47 studies were selected for further

47

evaluation. Finally, during the third round of evaluation, the full texts of these
studies were evaluated based on the selection criteria, and a total of 19 papers
were considered to be, to some extent, relevant to our research questions and
were selected as primary studies. Table 5 indicates the number of studies ex-
cluded during the selection rounds.

TABLE 5 Primary studies selected through three rounds of evaluations

Evaluation
Round

Number of articles Excluded articles Evaluated based on

1st 4838 4747 title and abstract
2nd 91 44 introduction and conclusions
3rd 47 28 full paper

3.3.4 Data extraction and synthesis (Stage 3)

In stage 3 of the review process, data extraction, a set of relevant data items was
extracted from each primary study (see Table 6) and recorded into our data ex-
traction form, which was designed during the planning stage (i.e., Stage 1).

TABLE 6 The data items extracted from the primary studies

ID Data item ex-
tracted

Data item description Related
RQ

DI1 Article title The title of the primary study Overview
DI2 Author list The full list of authors of the primary study Overview
DI3 Year The year in which the primary study was published Overview
DI4 Publication

Forum
The name of the forum in which the primary study
was published

Overview

DI5 Publication
Type

Journal, conference, workshop, or book chapter Overview

DI6 Research Type Empirical or conceptual Overview
DI7 Research Set-

tings
Summary of the empirical research settings Overview

DI8 Research Focus The phenomenon under study in the primary study RQ 1
DI9 Omission In-

stantiations
The type of quality practices and in which stage of
software development they are omitted

RQ 1

DI10 Summary A summary of the explanation provided by the pri-
mary study regarding the omission of quality prac-
tices

RQ 2

DI11 Factors The factors causing the omission of quality practices RQ 3
DI12 Development

context
Is the omission of quality practices bound to any
specific software development method, process or
approach?

RQ 2, RQ 3

As observed from Table 6, we have extracted data items beneficial for
providing an overview of the primary studies (i.e., D1- D6), as well as those
necessary for answering our research questions (i.e., D7 – D12). After extracting
the data from primary studies, we further evaluated the relevance of each pri-
mary study to our research objectives based on short descriptive summaries of
primary studies prepared by each individual reviewer.

48

Finally, during the data synthesis process, each of the primary studies was
carefully analyzed to identify the suggested factors leading to the omission of
quality practices. In addition, we tried to identify any potential mechanism or
process through which software professionals decide to ignore quality software
development practices. The results from data extraction and synthesis are pre-
sented and discussed in the next section.

3.4 Results of the Literature Review

In this section, we present and discuss the results of our SLR. As mentioned
earlier, our initial sample included 4838 studies, from which we have selected
19 primary studies through 3 rounds of evaluations. These primary studies in-
clude both empirical and theoretical research published in peer-reviewed jour-
nals, conference proceedings, and workshops between 1994 and 2014. An over-
view of these primary studies is shown in Table 7.

TABLE 7 An overview of the primary studies (PS)

ID Author(s) Year Title Type Research Settings
PS1 Lim,

Taksande &
Seamn

2012 A Balancing Act: What
Software Practitioners
Have to Say about
Technical Debt

Empirical Data collected from 35 in-
terviews with software
professionals from the US
and Canada

PS2 Ahonen &
Junttila

2003 A case study on quality-
affecting problems in
software engineering
projects.

Empirical Interviews, modeling ses-
sions, archival materials,
and discussions with the
representatives of a multi-
national organization.

PS3 Potdar &
Shihab

2014 An Exploratory Study
on Self-Admitted Tech-
nical Debt

Empirical Data extracted from source
code comments in four
large open-source projects.

PS4 Martini,
Bosch, &
Chaudron

2014 Architecture Technical
Debt: Understanding
Causes and a Qualitative
Model

Empirical 7 focus groups with soft-
ware professionals from 5
large Scandinavian firms.

PS5 Murugesan 1994 Attitude towards test-
ing: a key contributor to
software quality

Theoretical No empirical data

PS6 McConnel 1996 Avoiding classic mis-
takes [software engi-
neering]

Theoretical No empirical data

PS7 Shah, Har-
rol, & Sinha

2013 Global software testing
under deadline pres-
sure: Vendor-side

Empirical 29 interviews, informal
discussions, observations,
and meetings of 3 teams in
India, the UK, and the US.

PS8 Çalikli &
Bener

2013 Influence of confirma-
tion biases of developers
on software quality: an
empirical study

Empirical Defect log-files and survey
from 5 projects in Turkish
firm

49

ID Author(s) Year Title Type Research Settings
PS9 Codabux &

Williams
2013 Managing technical

debt: An industrial case
study

Empirical Interviews, questionnaire,
and ethnography were used
to collect data from soft-
ware development depart-
ment of an industrial firm.

PS10 Seth, Tai-
pale & Smo-
lander

2014 Organizational and cus-
tomer related challenges
of software testing: An
empirical study in 11
software companies

Empirical Data were collected
through 18 interviews with
software professionals and
CEOs from 11 companies of
different sizes active in a
variety of business do-
mains.

PS11 Wang &
Zhang

2010 Penalty policies in pro-
fessional software de-
velopment practice: a
multi-method field
study

Empirical Interviews and recorded
log-files were used to col-
lect data from developers
involved in developing
games for one the key pro-
viders in Chinese online
entertainment market.

PS12 Baskerville
& Pries-Heje

2004 Short cycle time systems
development

Empirical 47 interviews with technical
and business staff of 12
firms of various sizes from
Denmark and the US.

PS13 Holvitie,
Leppänen,
&
Hyrynsalmi

2014 Technical Debt and the
Effect of Agile Software
Development Practices
on It - An Industry Prac-
titioner Survey

Empirical Data were collected by
questionnaire from 54 soft-
ware developers employed
by organizations engaged
in software development in
Finland.

PS14 Austin 2001 The effects of time pres-
sure on quality in soft-
ware development: An
agency model

Theoretical Conceptual modeling

PS15 Samalikova,
Kusters,
Trienekens,
Weijters, &
Siemons

2011 Toward objective soft-
ware process infor-
mation: experiences
from a case study

Empirical Data were extracted from
software configuration
management databases of
10 embedded-software
projects in a Dutch indus-
trial company.

PS16 Fleming 1999 A Fresh Perspective on
Old Problems

Empirical Observations from a project
in a small/rapidly growing
telecommunications com-
pany in the US.

PS17 Lindgren,
Wall, Land,
& Norström

2008 A Method for Balancing
Short- and Long-Term
Investments: Quality vs.
Features

Empirical Interviews and archival
documents from 7 interna-
tional firms in automation,
telecommunication, and
transportation domains.

PS18 Elssamadisy
& Schalliol

2002 Recognizing and Re-
sponding to “Bad
Smells” in Extreme Pro-
gramming

Empirical Observations over 3 years
in a large project with a
team of 50 software profes-
sionals from leasing indus-
try.

50

ID Author(s) Year Title Type Research Settings
PS19 Bayer &

Muthig
2006 A View-based Approach

for Improving Software
Documentation Practices

Empirical Observations during sever-
al experiments and case
studies in industrial firms.
Data are also collected from
subjects participating in
experiments.

In regard to the publication venues, while the majority of the primary
studies (i.e., 19 studies) are published in SE journals and conference proceed-
ings, only two of the primary studies are published in IS journals. From the 19
studies published in SE venues, 6 are journal articles, 8 are conference papers,
and 3 are workshop papers.

As it can be seen from Table 8, of the only two primary studies published
in IS venues, one is published in Information Systems Research (i.e., PS14), and the
other is published in Information Systems Journal (i.e., PS12), which are both
amongst the top IS journals. Because both of these studies were published in the
early 2000s and only one of these studies is based on empirical observations (i.e.,
PS12), it seems that the omission of quality practices has not received enough
attention from IS scholars in recent years.

TABLE 8 An overview of the publication forums

Publication Venue Type No REF.ID
IEEE Software Journal 3 PS1, PS6,

PS16
Software Quality Journal Journal 2 PS8, PS15
Information Systems Research Journal 1 PS14
Information Systems Journal Journal 1 PS12
Information and Software Technology Journal 1 PS7
ACM/IEEE International Conference on Software Engi-
neering (ICSE)

Conference 2 PS11, PS18

Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA)

Conference 2 PS4, PS17

IEEE International Workshop on Managing Technical
Debt

Workshop 2 PS9, PS13

IEEE International Conference on Research Challenges in
Information Science (RCIS)

Conference 1 PS10

IEEE International Conference on Software Science,
Technology and Engineering (SWSTE)

Conference 1 PS2

IEEE International Conference on Software Maintenance
and Evolution (ICSME)

Conference 1 PS3

IEEE International Conference on Software Testing, Reli-
ability and Quality Assurance

Conference 1 PS5

IEEE International Symposium and Workshop on Engi-
neering of Computer Based Systems (ECBS)

Workshop 1 PS19

Alternately, from the SE studies, 8 journal articles and conference papers
are published in reputable SE venues, including 3 articles in IEEE Software (i.e.,
PS1, PS6, PS16), 2 papers in Software Quality Journal (i.e., PS8, PS15), 1 paper in

51

Information and Software Technology journal (i.e., PS7), and 2 papers in the pro-
ceedings of the ACM/IEEE International Conference on Software Engineering (i.e.,
PS11, PS18). However, none of the primary studies are published in top SE
journals, such as IEEE Transactions on Software Engineering and ACM Transac-
tions on Software Engineering and Methodology. This, in addition to the number of
SE studies that were published in recent years (i.e., 10 studies since 2010), indi-
cates that, while there has been increasing interest amongst SE scholars in stud-
ying different aspects of the omission of quality software development practices
in recent years, these studies lack solid theoretical foundations.

After providing a short descriptive summary of the selected primary stud-
ies, we use data extracted from these primary studies and analyses prepared by
each of the individual reviewers to answer our research questions in the follow-
ing sections.

3.4.1 RQ1: How is the omission of quality practices reported by previous
studies?

As it can be seen in Table 9, the primary studies report the intentional omission
of quality practices from both organizational and individual perspectives.
While the former perspective suggests that the decision to omit quality software
development practices is made at the organizational level and due to certain
business motivations or obligations, the later perspective explains the omission
of quality practices as a result of developers’ thought processes in favor of cer-
tain personal goals.

TABLE 9 A summary of the main findings of the primary studies

ID Research focus Summary of findings
PS1 Technical debt Under time pressure and based on short-term thinking, develop-

ers ignore quality practices or perform temporary workarounds
while making tradeoffs between quality, time and cost.

PS2 Software Qual-
ity

Poor feasibility studies, estimation, and planning decisions cause
resource constraints in projects and, in the absence of proper con-
trol mechanisms, lead to the neglect of software testing.

PS3 Technical debt More experienced developers tend to produce more technical debt
due to personal goals (which are not mentioned) regardless of
release pressure or the complexity of the code.

PS4 Technical debt Poor requirement specifications, approaching deadlines, the evo-
lution of technology, and the splitting of development and
maintenance budgets lead to violations of the architecture and
ignoring refactoring, especially when firms are obliged to meet
deadlines.

PS5 Challenges of
software test-
ing

Because the delivery of software, rather than its quality, has high-
er priority for managers when coding and design are delayed,
they prefer to shortcut testing to catch up with deadlines.

PS6 Challenges of
software de-
velopment

Due to bad estimates, development plans and schedules are often
not accurate. Thus, time pressure leads to the elimination of ’non-
essential’ activities, such as requirements analysis, or software
design and QA activities, such as reviews, test planning, and test-
ing.

52

ID Research focus Summary of findings
PS7 Challenges of

software test-
ing

Although testers work under more time pressure than developers
and designers, their role is often underrated by managers. This
might lower their motivation in performing testing, especially
when they face the dilemma of missing deadlines or compromis-
ing the quality.

PS8 Software quali-
ty

Due to their confirmation bias, developers have a tendency to
verify the quality of their code. Thus, they may avoid performing
certain unit tests that would break the code and detect defects.

PS9 Technical debt Developers want to ensure speedy releases and responsiveness to
requirement changes. However, due to resource constraints and
the evolution of technology, and in the absence of a disciplined
development environment, they make trade-offs that lead to tech-
nical debt.

PS10 Software test-
ing

Managers sometimes over-trust developers to produce high-
quality software and therefore do not involve testers in planning,
which leads to overlooking testing scope and underestimating
necessary testing efforts. Thus, when managers decide to skip tests
due to a lack of resources, this puts developers under stress and
leads to low motivation for testing.

PS11 Software quali-
ty

Implementing penalty policies in software firms produces the fear
of punishment among developers. As a result, software develop-
ers, especially novice ones, try to pay extra attention to maximize
software quality and avoid intentional omission of quality practic-
es.

PS12 Short-cycle
time systems
development

Due to evolving market demands, development cycles are com-
pressed to enable developers to respond to constant market
change. In such a context, trading software quality for the rapid
delivery of high-priority features has become acceptable.

PS13 Technical Debt Due to frequent requirement changes and scarce resources, the
delivery of complete software becomes difficult, and therefore best
practices or design guidelines might be violated.

PS14 Shortcutting Due to poor resource estimation and allocation, developers may
face difficulties to meet deadlines. Especially in the absence of
proper control mechanisms, developers who are concerned about
quality of software may decide to take shortcuts to meet deadlines
and avoid negative consequences of missing deadlines on their
career.

PS15 Omission of
software tasks

When there is slow start-up in projects or the budget is wasted,
firms face problems delivering on time and within the budget.
Especially when managers do not have a commitment to the firm’s
official software processes, developers ease up on these processes
and omit important tasks.

PS16 Challenges of
software de-
velopment

Due to a lack of proper understanding of software quality
amongst software professionals and in the absence of clear soft-
ware development guidelines, software professionals may consid-
er QA activities to be a waste of time and take shortcuts with
them, hoping to improve productivity.

PS17 Software quali-
ty

Focusing on achieving short-term goals, such as shorter delivery
times and costs and higher productivity, motivates software firms
to minimize software processes. Resource constraints and manag-
ers’ low architectural awareness are other factors leading to the
taking of shortcuts.

53

ID Research focus Summary of findings
PS18 Extreme Pro-

gramming
Due to incorrect estimates, developers take shortcuts and ignore
refactoring to ensure speedy development and perform minimal
work, especially if they believe too much in their methods.

PS19 Omission of
software tasks

Often documentation is ignored or postponed in practice due to
the lack of proper documentation guidelines or due to a lack of
attention to the importance of documentation.

To explain such organizational and individual decisions, the primary
studies use a variety of terminologies, including ‘shortcutting’ (Austin 2001),
‘systematic omission of software tasks’ (Samalikova et al. 2011), ‘technical debt’
(Cunningham 1992), and ‘short-cycle time development’ (Baskerville & Pries-
Heje 2004). In addition, there are a few primary studies that report the research
problem by discussing the common issues and challenges of software develop-
ment projects in general and those of performing software quality assurance
and testing activities in particular.

In the following sections, we discuss each of these different viewpoints on
the omission of quality practices in more detail.

Omission of quality practices under organizational constraints
The majority of the primary studies explain the omission of quality practices in
terms of shortcuts taken by ignoring certain steps or activities recommended by
firms’ official software development processes (McConnell 1996, Fleming 1999,
Ahonen & Junttila 2003, Samalikova et al. 2011, Shah, Harrold & Sinha 2014,
Murugesan 1994, Seth, Taipale & Smolander 2014). Such quality-compromising
shortcuts are mainly taken under resource constraints (e.g., time and money) or
due to the lack of attention to certain software development tasks and activities
(e.g., documentation or testing) by managers and developers.

As argued by McConnel (1996), often due to incorrect estimations at the
beginning of software projects, development teams prepare inaccurate plans
and overly aggressive schedules, and therefore, often during the later stages of
projects, developers face scheduling problems. As a result, when a development
team is under time pressure, they often eliminate certain activities that they
consider to be ‘non-essential,’ such as requirements analysis or architectural
design, or quality assurance activities, such as reviews and testing (McConnell.
1996). These findings are in line with observations reported by Fleming (1999)
regarding an industrial software development and maintenance project. In this
study, the author explains how software development processes, and especially
quality assurance activities, such as design reviews, are ignored by managers
and developers simply because they consider such activities as wastes of time,
and therefore, they prefer to just concentrate on producing the “real” software
(Fleming 1999).

The omission of software development activities under the influence of re-
source constraints is also reported by Ahonen and Junttila (2003). Conducting
case studies and interviewing software developers Ahonen and Junttila (2003)
suggest that development teams usually face with lack of sufficient time and
resources because the early phases of software projects usually becomes longer

54

than what has been planned. As a result of such resource constraints the quality
assurance activities, such as inspection and testing, are often postponed and
eventually skipped entirely (Ahonen & Junttila 2003). Another primary study
that supports these findings is (Samalikova et al. 2011). This study reports that
due to delays in the initial phases of software development, development teams
are often faced with resource constraints. In such situations, especially when the
management is not committed to the firm’s official process, developers do not
pay attention to the quality practices, and they might take shortcuts to address
scarce resources (Samalikova et al. 2011).

An empirical study by Shah, et al. (2014) reports that test engineers often
experience more pressure while performing their tasks compared to other soft-
ware professionals, such as developers and designers. Such extra pressure is
because when software design and development phases are delayed, testers are
the ones who must accommodate such delays (Shah, Harrold & Sinha 2014).
However, the importance of testing activities and consequently the contribution
of testers to the software development is not highly appreciated by managers
and other stakeholders (Shah, Harrold & Sinha 2014). Thus, testers usually face
a dilemma: to either meet deadlines by compromising the quality of software or
miss the deadline but perform their tasks in a high-quality manner (Shah, Har-
rold & Sinha 2014). In such situations, developers’ motivations and the appreci-
ation of testing activities by managers and other stakeholders are considered to
be a key factor influencing how well testing activities are performed by testers.
Such negative attitudes towards testing are also reported by two other primary
studies (Murugesan 1994, Seth, Taipale & Smolander 2014). In his study,
Murugesan (1994) argues that, even though testing is “a key contributor to
software quality” assurance, it often receives less attention from management.
Additionally, the author suggests that, for many developers, testing is like a
‘cushion’ that can be squeezed whenever needed during the development pro-
cess. Therefore, whenever the design and coding stages take longer than
planned, project managers prefer to reduce the testing time to deliver the soft-
ware before the deadline (Murugesan 1994). Finally, the results from another
empirical study on software testing (Seth, Taipale & Smolander 2014) suggest
that project managers deliberately do not involve testers in various project ac-
tivities, mainly project planning, because they believe too much in the abilities
of development teams to produce high-quality software. Therefore, testing
scope and necessary testing efforts are often overlooked in the contracts. Con-
sequently, later on during the projects and due to the lack of sufficient resources,
project managers decide to skip important software tests (Seth, Taipale & Smo-
lander 2014).

As reported by the first group of primary studies, due to improper estima-
tion and planning activities, software projects are often faced with scarce re-
sources. In such situations, if quality practices do not receive sufficient attention
and appreciation from organizations, software developers might not be moti-
vated to perform such quality practices and, as a result, compromise software
quality.

55

Omission of quality practices for gaining strategic competitiveness
The second group of primary studies explains the omission of quality practices
in terms of strategic business decisions made by organizations to gain competi-
tive advantages in the market environment and to achieve short-term goals.
This group of primary studies uses either technical debt (Cunningham 1992) or
agile software development (Fowler & Highsmith 2001) terminologies to note
such strategic business decisions. These viewpoints are discussed next.

Technical Debt
A group of primary studies uses the metaphor of technical debt (Cunningham
1992) to explain the strategic omission of quality practices (Lim, Taksande &
Seaman 2012, Potdar & Shihab 2014, Martini, Bosch & Chaudron 2014, Codabux
& Williams 2013, Holvitie, Leppanen & Hyrynsalmi 2014, Lindgren et al. 2008).
Technical debt (Cunningham 1992) denotes the consequences of producing low-
quality software in situations where organizations make conscious business
decisions to achieve short-term goals by compromising or fully eliminating cer-
tain software development activities, such as architectural design, documenta-
tion, and testing (Lim, Taksande & Seaman 2012, Martini, Bosch & Chaudron
2014) to speed up delivery times (Brown et al. 2010, Lim, Taksande & Seaman
2012).

According to this group of primary studies, such quality-compromising
trade-offs are mainly tactically and reactively made by firms under the influ-
ence of market demands. From a business perspective, software companies are
motivated to increase their productivity mainly in terms of reducing time-to-
market and development costs (Lindgren et al. 2008). Alternately, software
companies need to be responsive to market demands and customers changes
(Codabux & Williams 2013). Therefore, in such a business environment, taking
on technical debt in the short-term might be beneficial or even unavoidable for
software companies (Brown et al. 2010) to catch market share (Lim, Taksande &
Seaman 2012, Lindgren et al. 2008) or fulfill their contractual obligations (Mar-
tini, Bosch & Chaudron 2014). However, because such short-term decisions af-
fect the quality of software, development teams are supposed to go back and fix
such workarounds as soon as possible to maintain the quality of the software
products in the long run (McConnell 2007, Brown et al. 2010). However, if the
skipped tasks are not implemented during the later stages of software devel-
opment (i.e., the short-term technical debt is not paid back), this leads to higher
levels of software deficiency and complexity and, as a result, incurs increased
maintenance costs over time (Codabux & Williams 2013).

Agile software development
Another group of primary studies reports the omission of quality practices in
terms of utilizing novel software development approaches, such as Internet-
speed or short-cycle time system development (Baskerville & Pries-Heje 2004)
and Extreme Programming (Beck 1999).

At the turn of the millennium, the rise of electronic commerce provided
firms with an opportunity to access a wider range of customers by distributing

56

their products or services through the Internet. However, fierce competition in
this fast-changing environment put firms under constant pressure to deliver
new software products to market faster (Baskerville et al. 2001, Baskerville et al.
2003). As a result of such ‘Internet Time’ (Baskerville & Pries-Heje 2004) rush to
the marketplace, companies had to shorten the length of their software devel-
opment cycles (Baskerville et al. 2001, Baskerville & Pries-Heje 2004). It must be
noted that Internet-speed and short-cycle time software methodologies are
similar to the agile school of thought (Baskerville et al. 2003).

As suggested by Baskerville and Pries-Heje (2004), Scrum (Schwaber &
Beedle 2001) and Extreme Programming (Beck 1999), which are two of the most
popular agile software development methods, were developed based on the
short-cycle development practices used by Microsoft and Netscape during their
competition in developing web browsers. Generally speaking agile software
development aim at minimizing development costs and delivery times by
avoiding nonessential activities during software development processes (Mar-
tin 2003, Codabux & Williams 2013). Due to such demands for shorter devel-
opment cycles, development teams might become more eager to focus on soft-
ware functionality and therefore do not pay enough attention to other software
activities, such as design, testing, and maintenance (Baskerville & Pries-Heje
2004, Codabux & Williams 2013, McConnell 1996). As a result, the overall com-
plexity of the software and the likelihood of producing defective software are
increased (Agrawal & Chari 2007, Gibson & Senn 1989).

Based on qualitative interviews conducted with members of 12 companies
from the US and Denmark producing software for fast changing markets, Bas-
kerville and his colleagues determined that such a fast-paced development re-
quires development teams to follow quick and parallel release-oriented proto-
typing approach in where “quality is negotiable” (Baskerville & Pries-Heje
2004). Another study by (Elssamadisy & Schalliol 2002) reports similar observa-
tions from a large 3-year-long software project. In this study, the authors sug-
gest that, following principals suggested by extreme programming in large pro-
jects, developers try to speed-up development and perform minimal work.
However, due to incorrect effort estimates and their excessive belief in the pro-
cesses, they have to take shortcuts and ignore refactoring to reach their goals
within short development cycles (Elssamadisy & Schalliol 2002).

According to the second group of primary studies, it seems that the over-
emphasis of short-term goals, such as the delivery of new software features and
shorter delivery times, by the software industry increases firms’ eagerness to
speed-up development processes and therefore might reduce developers’ atten-
tion to the importance of software quality. As a result, the omission of quality
practices with the hope of increasing productivity becomes acceptable within
the software community.

Omission of quality practices to achieve personal goals
Finally, a group of primary studies explain the omission of quality practices in
terms of developers’ thought processes towards achieving certain personal
goals (Austin 2001, Çalikli & Bener 2013, Wang & Zhang 2010).

57

 The first study by Austin (2001) suggests that under time pressure and in
response to unexpected difficulties during the software development processes,
developers might become motivated to take quality-compromising shortcuts to
stay on schedule, especially if they consider the deadline to be unachievable. In
this conceptual study, the author (Austin 2001) argues that taking shortcuts is
not necessarily a deliberate subversive act but rather the result of developers’
strategic decisions to address the situation in the most convenient way. In mak-
ing such quality-compromising decisions, developers often have two main con-
cerns: concern for their career and concern for the quality of the software (Aus-
tin 2001). From the career perspective, developers might take shortcuts to avoid
the consequences of being behind schedule and losing their professional reputa-
tion by being the only developer who cannot be on time. Alternately, from a
quality perspective, developers might avoid taking shortcuts because they are
concerned with being penalized for compromising the quality of the software
and, as a result, endangering the success of the project (Austin 2001).

Another study by (Çalikli & Bener 2013) explains how developers’ confir-
mation biases may cause the emergence of software defects. Confirmation bias,
as explained by Çalikli and Bener (2013), is a “tendency of people to seek evi-
dence that verifies hypotheses” rather than seeking evidence that could falsify
those hypotheses (Çalikli & Bener 2013). In this empirical study, the authors
found some indications that, under the influence of their confirmation biases,
developers might try to provide evidence that their code is working properly.
Therefore, they might only run certain unit tests that prove the code is working
and avoid performing those unit tests that break the code (Çalikli & Bener 2013).
As a result of such quality-compromising decisions, the defects in the code
might not be discovered.

Finally, in their field of study, Wang and Zhang (2010) discuss the influ-
ence of organizational punishment on the quality of software development. In
this study, the authors investigated the influence of penalty policies employed
by a large Chinese software company on the quantity of software defects identi-
fied in the code. Based on this penalty policy implemented in the company,
those individual developers who delivered defective software were punished
by taking away a specific amount of money, per defect, from their salary. The
results of the study suggest that penalty policies partly affect novice developers’
performances, leading to less defective software (Wang & Zhang 2010). As an
example, an interviewee explained that the penalty policy made them avoid
defects that were based on carelessness.

The results of the third group of primary studies suggest that the omission
of quality practices might be an individual decision privately made by develop-
ers to gain certain career-related advantages. It seems that, in such situations, if
developers perceive the omission of quality practices to be beneficial for them,
while there is a small chance that such quality-compromising decisions will be
revealed, they might decide to ignore the quality practices. This might be the
reason that implementing penalty policies could affect the avoidance of the
omission of quality practices.

58

3.4.2 RQ2: What are the common instances of the omission of quality prac-
tices reported by previous studies?

To answer our second research question, we have identified all instances of ig-
noring software development tasks and activities that are reported by primary
studies. We have categorized all of these instances into 6 groups according to
the nature of the software development activities that are ignored (see Figure
13).

FIGURE 13 Common instances of the omission of quality practices

As observed from Figure 13, the majority of primary studies (i.e., 57%) re-
ported at least one instance of testing and quality control activities being ig-
nored by development teams. Such activities include, for example, planning
and scoping testing activities (Lim, Taksande & Seaman 2012, McConnell 1996),
writing automated unit tests (Codabux & Williams 2013), conducting formal
reviews (Ahonen & Junttila 2003), and performing testing(Murugesan 1994,
Baskerville & Pries-Heje 2004).

In addition to this, 42% of the primary studies mention the occurrence of
quality-compromising activities during the design and implementation stages,
while 31% of the primary studies report instances of ignoring documentation.
Finally, 26% of the primary studies report that the omission of quality practices
takes place during the requirements analysis and specification phase. It must be
noted that 15% of the primary studies report the omission of quality practices in
general and do not provide any specific instance nor mention the particular
stages of software development that were compromised.

These results show that the omission of quality assurance and testing ac-
tivities is considerably high among development teams. Keeping in mind that
such activities play a vital role in ensuring the quality and reliability of software
products, it becomes obvious that this specific aspect of software development
has received less attention from the software community. It seems that the con-
stant demands from the software industry and fierce competition between
software companies motivate development teams to concentrate more on the
delivery of new functional features rather than evaluation of the quality of the
software. Such oversight can be a good explanation for high rates of software
defects and project failures.

59

3.4.3 RQ3: Under what conditions does the omission of quality practices
take place?

In response to our third research question, we identified a variety of factors
during the data analysis that are reported by previous studies as affecting de-
velopers’ behaviors during the software development processes and, as a result,
leading to the omission of quality practices (see Table 10).

TABLE 10 Factors causing the omission of quality practices

Identified
factors

Description Instances

Business
goals

From a business perspective, it is
desirable or even vital for compa-
nies to increase their market share
and consequently increase their
revenue. As a result, organizations
might ignore quality practices to
achieve such short-term goals.

Eagerness to increase sales (PS2, PS9),
Reduce development costs (PS2, PS3,
PS8, PS17), Rapid delivery of high-
priority features (PS4, PS17), Collect
external funding (PS1), Capture mar-
ket share (PS1, PS17), Reduce time-to-
market (PS1, PS3, PS6, PS9, PS12, PS14,
PS16, PS17, PS18)

Project con-
straints

The extent to which software ac-
tivities are followed highly de-
pends on the availability of neces-
sary resources, such as time,
budget, workforce, and the quali-
ty of official development guide-
lines and control mechanisms in
the company.

Lack of time (PS1, PS2, PS4, PS5, PS6,
PS7, PS9, PS10, PS13, PS15, PS18), Lack
of human resources (PS9, PS13, PS17),
Lack of financial resources (PS2 PS9,
PS13), Lack of technical skills (PS2,
PS9, PS13, PS17), Lack of clear process
guidelines (PS4, PS9, PS10, PS19), Lack
of clear architectural documentation
(PS4), Lack of effective quality control
mechanisms (PS14, PS15)

Customers’
requirements

Customers’ requirements are often
not clear at the beginning of pro-
jects, which makes requirement
changes unavoidable. Thus, some-
times developers might ignore
quality practices to address these
issues.

Collect early feedback from customers
(PS1), Customers’ wish lists are too
long (PS1), Fuzzy requirements (PS1,
PS12), Requirement changes (PS1, PS4,
PS12, PS13, PS17)

Technical
issues

In some situations, the perfor-
mance of quality practices is ig-
nored due to technical difficulties
associated with software devel-
opment.

Technology evolution (PS4, PS9, PS12),
Use of legacy code (PS4), Use of third-
party software (PS4)

Psychological
factors

In some cases, ignoring quality
practices is an individual decision
made by managers, developers, or
both and due to their attitudes,
feelings, beliefs, or cognitive char-
acteristics.

Lack of commitment to development
processes (PS1, PS5, PS15, PS16, PS19),
Lack of motivation to perform tasks
(PS7, PS19), Developers’ con rmation
bias (PS8), Interpret requirements con-
veniently (PS14), No fear of punish-
ment (PS11, PS14), Risk-taking behav-
ior (PS10), Poor buy-in for testing (PS5,
PS7, PS10)

60

As observed from Table 10, a variety of reasons are reported by primary
studies as possibly leading to the omission of quality practices. While the major-
ity of the primary studies emphasize the role of resource constraints as a key
driver of ignoring quality software development practices, other reasons, such
as constant market demands, lack of understanding of customers’ requirements,
individuals’ attitudes and motivations, and technical difficulties associated with
software development, are also suggested to cause such questionable practices.

Based on the nature and similarity of identified factors, we have divided
them into five main categories: Business goals, Customers’ requirements, Project
constraints, Technical issues, and Psychological factors. These categories are suc-
cinctly described and different instances of them are reported in Table 10. We
explain each of these identified factors in the next section and propose a theo-
retical model accordingly.

3.4.4 A Synthesis of the Literature Review

We produced a synthesis of the five categories of factors that entail the omission
of quality practices. By indicating their scope of effects and interrelationships
between these identified factors, our model represents the context in which the
psycho-social process of the omission of quality practices is initiated and
emerged overtime. We call this process psycho-social because the omission of
quality practices occurs in a social context but is implemented by single indi-
viduals involved in software development and under the influence of their psy-
chological factors. Based on their scope of effects, these categories are organized
into three contextual levels; the market level, organizational level, and individ-
ual level (see Figure 14).

FIGURE 14 The context of the psycho-social process of omitting quality practices

61

As shown in Figure 14, in the market level, business goals and customers’
requirements are two main factors influencing the extent to which quality soft-
ware practices are followed. In the organizational level, in contrast, the decision
to ignore quality practices is influenced by project constraints and technical is-
sues. Finally, in the individual level, psychological factors affect individuals’
decisions regarding the omission of quality practices.

These different levels of context, together with the psycho-social process
that entails omission instantiations and their consequences, are presented in the
following sections.

Market level
Based on our analysis, software development approaches and the extent to
which they are followed by organizations are influenced by the market envi-
ronments that firms are active in. Therefore, two main factors that influence
these approaches are firms’ business goals and customers’ requirements in such
market environments.

From a business perspective, increasing sales (Ahonen & Junttila 2003,
Codabux & Williams 2013) and extending market share (Lim, Taksande & Sea-
man 2012, Lindgren et al. 2008) play important roles in increasing firms’ reve-
nues. Alternately, reducing time to market (Potdar & Shihab 2014, McConnell
1996, Codabux & Williams 2013, Baskerville & Pries-Heje 2004) and develop-
ment costs (Ahonen & Junttila 2003, Potdar & Shihab 2014, Shah, Harrold &
Sinha 2014) enables software companies to increase their profits or might even
be critical for a firm’s survival in highly competitive markets. Achieving such
business goals in the short term might increase companies’ eagerness to speed
up their development processes and rapidly deliver new products or novel
functional features to the market. By this, not only are firms able to reach the
market before their competitors, but they also might be able to increase their
revenue and, in some cases, collect external funding (Lim, Taksande & Seaman
2012) to further develop and improve their products. Such strategies are espe-
cially vital for small companies active in highly competitive and turbulent mar-
ket environments with fierce competition. Therefore, and as a result of compa-
nies’ strategic decisions, development teams might decide to ignore certain
quality software development practices. As an example, Ahonen and Junttila
(2003) report that while preparing project offers for clients, it is tempting for
sales people to reduce unnecessary costs and delays by implementing feasibility
studies without proper technical and managerial knowledge. This is because
sales people might consider involvement of technical people in this process as
an additional cost and delay.

Another factor that influences firms’ strategic decisions to ignore certain
quality practices is customers’ requirements in markets. Customers’ needs and
requirements are often vague and fuzzy, especially in the initial stages of soft-
ware projects (Lim, Taksande & Seaman 2012, Baskerville & Pries-Heje 2004).
Lack of adequate understanding of requirements among software stakeholders
in general, and customers in particular, often leads to rework as developers
make design assumptions that later need to be changed (Lim, Taksande & Sea-

62

man 2012). Therefore, especially during the early stages of projects, develop-
ment teams might decide to follow “quick-and-dirty” practices to quickly deliv-
er mockups or even prototypes with minimal functionality to collect feedback
from customers (Lim, Taksande & Seaman 2012) and improve the requirements.

Alternately, stakeholders gain a better understanding of customers’ needs
over time, and therefore initial requirements need to be changed. To satisfy cus-
tomers, firms often try to increase their response to be able to accommodate
such requirement changes (Martini, Bosch & Chaudron 2014, Baskerville &
Pries-Heje 2004, Holvitie, Leppanen & Hyrynsalmi 2014, Lindgren et al. 2008).
Thus, development teams might decide to ignore certain quality practices to aid
in being responsive to customers’ needs. For example, as reported by Basker-
ville and Pries-Heje (2004), Internet-time development is characterized by fuzzy
requirements and market pressures. In such an environment, customers appre-
ciate the fast delivery of changing requirements, and they do not even expect
high-quality products. As a result of such “negotiable quality” (Baskerville &
Pries-Heje 2004), the omission of quality practices becomes acceptable to satisfy
customers’ needs and expectations.

Our interpretation is that these external market-level factors have a deter-
mining role in the omission of quality practices. This is because, depending on
the market environment, organizations follow different strategies to increase
their sales (and consequently profit) and to satisfy their customers. Such under-
lying factors motivate firms to speed up negotiation and development processes
and to extend their market share by delivering their products to market faster.

Organizational level
Based on our analysis, in the organizational level, project constraints and tech-
nical issues are the main factors influencing firms’ decisions regarding the
omission of quality practices.

Project constraints point to the lack of resources necessary for performing
quality software development practices. Such resources include time, budget,
skilled workforce, official development guidelines and procedures, and control
mechanisms in the company. In software projects, unreliable cost and effort es-
timation and schedule errors (McConnell 1996, Elssamadisy & Schalliol 2002)
often lead to a lack of necessary resources to perform each development phase.
A lack of sufficient time (Lim, Taksande & Seaman 2012, Ahonen & Junttila
2003, Martini, Bosch & Chaudron 2014, Murugesan 1994), financial resources
(Ahonen & Junttila 2003, Seth, Taipale & Smolander 2014, Holvitie, Leppanen &
Hyrynsalmi 2014), or skilled human resources (Codabux & Williams 2013, Hol-
vitie, Leppanen & Hyrynsalmi 2014, Lindgren et al. 2008) are among the main
reasons that often force development teams to ignore quality software devel-
opment practices. To deal with scarce resources, developers are often encour-
aged to skip those development tasks and activities that, from their perspective,
are considered unnecessary (McConnell 2007, Potdar & Shihab 2014, Fleming
1999). Additionally, when there is a split of budget and resources between dif-
ferent development phases, for example, between implementation and testing
or development and maintenance, software professionals might become moti-

63

vated to skip certain tasks and practices during the development phase and
postpone them to the maintenance phase (Martini, Bosch & Chaudron 2014).

While lack of time, financial, and human resources restrict developments
teams’ abilities to follow quality practices, the lack of clear software develop-
ment guidelines (Martini, Bosch & Chaudron 2014, Codabux & Williams 2013,
Seth, Taipale & Smolander 2014, Bayer & Muthig 2006) and inadequate inspec-
tion and quality control mechanisms (Austin 2001, Samalikova et al. 2011) facili-
tate the omission of quality practices (Martini, Bosch & Chaudron 2014,
Murugesan 1994, Codabux & Williams 2013, Seth, Taipale & Smolander 2014,
Austin 2001). In the absence of proper requirements identification and analysis
practices, not only is it very difficult for developers to identify and explicitly
document software requirements, but cost and effort estimation also becomes
unreliable. For example, according to Martini, et al. (2014) and Lim, et al. (2012),
inadequate requirements specification and a lack of clear architectural docu-
mentation might be misinterpreted by developers in subsequent development
stages and eventually lead to the implementation of incorrect functionalities
that must be fixed in the future.

Alternately, because software development processes are invisible to non-
developer stakeholders (Austin 2001), this might provide developers with an
opportunity to consciously ignore certain quality practices without managers or
customers being aware of it (Lim, Taksande & Seaman 2012, Austin 2001). In
such situations, the lack of adequate inspection and quality control mechanisms
facilitates the omission of quality practices. For example, Ahonen and Junttila
(2003) report that the lack of formal inspections causes obvious mistakes to be
retained in documents, as experienced people seem to think that an obvious
mistake must be there for a reason.

In the organizational level, technical issues are, in some situations, the un-
derlying reasons for the ignoring of quality practices. Such issues include tech-
nology evolution (Martini, Bosch & Chaudron 2014, Codabux & Williams 2013,
Baskerville & Pries-Heje 2004), the use of legacy code, and the use of third-party
software (Martini, Bosch & Chaudron 2014). The software field is a fast chang-
ing environment due to rapid technological improvements. With such techno-
logical evolution, it is possible for software and hardware to become obsolete
over time (Martini, Bosch & Chaudron 2014), and therefore it might not be ben-
eficial for firms to invest too many resources in improving the quality of their
software products. This creates a constant need to replace old software and
hardware components with new ones. If legacy code or third-party software
(Martini, Bosch & Chaudron 2014), for example, is used, any potential architec-
tural debt underlying these components will be transferred to the new software
(Martini, Bosch & Chaudron 2014). This means that, if refactoring is not per-
formed and the debt is not paid back, software complexity grows, and future
development of the software becomes problematic (Martini, Bosch & Chaudron
2014). In some situations, software developers might be forced to perform tem-
porary workarounds to address such structural issues and complexities. For
example, Murugesan (1994) suggests that, due to the complexity of systems,

64

software testing and evaluation become more challenging, and as a result, it is
more likely for developers to ignore quality practices.

As discussed in this section, different organizational-level factors, under
the influence of the market environment, might force or even motivate devel-
opment teams to ignore quality practices. However, such institutional-level
constraints or motivators cannot be seen as sufficient for the omission of quality
practices because the decisions to ignore such practices are made and imple-
mented by individuals. In the next section, we discuss the psychological factors
underlying the omission of quality practices.

Individual level
At the individual level, managers and developers engage with the decision-
making processes regarding the omission of quality practices. This decision-
making is a psycho-social process because it is influenced by individuals’ psy-
chological characteristics and thought processes, as well as the characteristics of
the development context (i.e., the market-level and organizational-level factors).
Here, the psychological factors relate to attitudes, beliefs, and cognitive tenden-
cies that may incline managers and developers to omit quality practices.

For example, as suggested by previous studies, the lack of commitment to
firms’ software procedures (Samalikova et al. 2011, Fleming 1999, Bayer &
Muthig 2006) and lack of appreciation for quality control and testing activities
(Murugesan 1994, Shah, Harrold & Sinha 2014, Seth, Taipale & Smolander 2014)
might decrease developers’ motivations to perform quality practices (Shah,
Harrold & Sinha 2014, Bayer & Muthig 2006). In the previous section, we ex-
plained that the lack of clear procedures might facilitate the omission of quality
practices. However, it must be noted that, even if there are proper software de-
velopment procedures available in firms, the lack of commitment to these
guidelines from managers might simply lead to the neglect of those procedures
by development teams (Ahonen & Junttila 2003, Murugesan 1994). In such situ-
ations, development teams might prefer to concentrate on producing ‘real soft-
ware’ (Fleming 1999) rather than planning (Lim, Taksande & Seaman 2012,
Murugesan 1994, Fleming 1999), and as a result, they decide to jump directly to
coding and skip project planning activities and other important steps, such as
requirements analysis and architectural design. It seems that such negative atti-
tudes towards quality practices are more common in the case of performing
quality control activities. Software testing has often received so-called ‘second-
rate’ consideration from stakeholders, which leads to the undermining of test-
ing activities, and therefore it is common for quality control and testing activi-
ties to be ignored (Murugesan 1994).

Underestimation of the importance of quality practices by managers
alongside cognitive characteristics of individuals, such as confirmation bias
(Çalikli & Bener 2013) and risk-taking (Seth, Taipale & Smolander 2014), might
lead to developers’ decisions to ignore quality practices. For example, Seth
(2014) reports that testers are not always involved in project planning because
managers overly trust development teams' abilities to produce high-quality
software and may take the risk of deciding to skip certain important tests (Seth,

65

Taipale & Smolander 2014). Çalikli and Bener (2013) suggest that, under the
influence of confirmation bias, developers might skip certain tests that could
possibly break their code and reveal its underlying defects. Such decisions are
more likely to be taken if developers do not have any fear of being caught and
being punished by organizations (Wang & Zhang 2010, Austin 2001). Because
such questionable practices are not easily observable, developers do not feel
any fear of facing punishment, and as a result, they might decide to ignore qual-
ity practices. The result from an empirical study by Wang and Zhang (2010)
supports this finding, as they show that implementing penalty policies could
lead to the avoidance of intentional technical debt (Wang & Zhang 2010). This
means that the existence of penalty policies may prevent intentional omission of
quality practices.

Based on these exemplary studies, we suggest that psychological factors
affect the decision-making processes regarding the omission of quality practices,
whether pro or against. For example, cognitive tendencies, such as risk-taking
or cognitive bias, may positively affect the emergence of omission behavior, and
the fear of penalties may work against omission behavior.

The psycho-social process and consequences of omission behavior
During the review and synthesis, we have tried to identify mechanisms or pro-
cesses through which software professionals decide to neglect quality practices.
The majority of the studies deemed that developers simply decide to neglect
quality practices, either under schedule and management pressure or based on
some personal motives. However, none of the primary studies provide any in-
depth explanation regarding the psycho-social mechanisms underlying the
omission of quality practices. While this psycho-social process is still unknown,
managers and developers go through it by producing omission instantiations
on a daily basis in every software development project.

The psycho-social process is likely to be affected by the factors we identi-
fied and discussed in this review. However, while this psycho-social process
and its underlying mechanisms are undiscovered, the current literature reports
a variety of possible factors that may affect this process. Our current under-
standing is that the identified factors may play different positive or negative
roles in the omission of quality practices depending on the context or situation.
Despite the fact that a group of studies suggest that the omission of quality
practices is associated with a lack of technical skill (Holvitie, Leppanen &
Hyrynsalmi 2014, Lindgren et al. 2008, Codabux & Williams 2013), Potdar and
Shihab (2014) found in their empirical study that a higher amount of technical
debt is produced by developers who are more experienced. These findings
show that, if the level of individuals’ skills is a factor influencing the psycho-
social process, it may have a negative or positive role, meaning that, in the case
of skills, both a lack of skill and skillfulness may positively affect the omission
behavior.

Based on our analysis, we believe that the values of both productivity and
quality seem to play an important role in the psycho-social process of the omis-
sion of quality practices. In the software industry, higher productivity is often

66

associated with faster delivery of more features (Fleming 1999, Lindgren et al.
2008). However, concentrating on producing more and doing so faster might
increase the number of software defects, which require extra effort and rework
to be fixed and consequently decrease both the quality of the software and the
long-term productivity (Lindgren et al. 2008). Therefore, from a technical per-
spective, producing high-quality software might be seen as the key to higher
productivity (Fleming 1999). It seems that a typical scenario of the omission of
quality practices relates to the conflict between these contradictory concerns of
developers and managers. Developers are mainly concerned with performing
quality work because they have to work with the code and face its issues on a
daily basis (Lim, Taksande & Seaman 2012). Managers, in contrast, experience
the pressures of business demands and therefore are concerned with getting
work done quickly and with the available resources. Such conflicts might trig-
ger the psycho-social processes that lead to the omission of quality practices.

Regarding its outcome, the omission of quality practices can have different
short-term and long-term consequences. In the short term, ignoring quality
practices might enable firms to speed up software delivery to capture market
share and obtain early feedback with which to improve the software (Lim,
Taksande & Seaman 2012). Alternately, the consequences of the omission of
quality practices might occur only after the completion of projects and have
long-term effects on the organizational level as well as with respect to the firm’s
position within the market environment. For example, because the omission of
quality practices increases software defects (Lim, Taksande & Seaman 2012),
organizations may spend extra time and resources to solve these defects, while
facing too many issues makes customers unhappy (Lim, Taksande & Seaman
2012) and eventually might decrease the firm’s market share.

As discussed earlier, the omission of quality practices might be unavoida-
ble in certain business contexts, and therefore, firms need to find the best possi-
ble compromises. Therefore, considering both the short-term and long-term
consequences of ignoring quality practices plays a key role in the psycho-social
process of the omission of quality practices.

3.5 Research Agenda

Based on the synthesis of the literature review presented in the previous section,
we suggest a research agenda that attempts to fill the identified gaps in the cur-
rent knowledge by addressing a number of main research questions discussed
in the following paragraphs.

Future research could approach these questions in several steps. First, in-
stantiations of the omission of quality practices and their nature must be pre-
cisely revealed. Second, future research needs to focus on investigating the sug-
gested psycho-social process and its underlying mechanisms that explain the
reasons and the processes of decision-making regarding the omission of quality
practices. Following this, the consequences of the omission of quality practices,

67

both short- and long-term, must be studied in more detail. Finally, this interpre-
tive knowledge must be used to develop means and solutions to address such
questionable behaviors in practice. These suggested steps are briefly described
in the following sections.

3.5.1 Research Area 1: What are the instantiations of the omission of quality
practices and their nature?

Our literature review suggested that the omission of quality practices may oc-
cur in the context of skipping stages of software development, for example, de-
sign and testing phases, or certain tasks or activities might be ignored, such as
the skipping of unit tests. However, there is no comprehensive description of
omission instantiations, no exact timings with respect to the stages of software
development, and no analysis of professionals’ key roles in such omission in-
stantiations (decision-makers and implementers, for example).

Furthermore, it is important to analyze the nature of omission instantia-
tions with respect to dimensions, such as voluntariness. A comprehensive de-
scription is needed to motivate future research that attempts to explain the
omission of quality practices (e.g., reasons) and target interventions that aim to
prevent omission instantiations to correct both tasks and stages of software de-
velopment.

3.5.2 Research Area 2: What is the psycho-social process of making deci-
sions regarding the omission of quality practices?

Previous studies mainly suggest that the omission of quality practices occurs as
a result of strategic organizational decisions under the influence of different
market-level, organizational-level, and human factors. However, there are no
studies that have specifically examined the individual and psychological un-
derpinnings of such questionable behaviors, and for that reason, it is not clear
why developers decide to omit appropriate software development practices
when they know that they could improve the overall quality of the software.
This shortcoming becomes even more meaningful when considering that soft-
ware developers have a tendency to develop high-quality and bug-free soft-
ware (Austin 2001, Yang, Hu & Jia 2008, McConnell 1996). Therefore, to gain a
better understanding of this phenomenon, it is necessary to further investigate
both the psychological and social processes through which developers decide to
ignore quality practices.

Future research needs to identify psychological processes in developers’
cognition and social processes that occur as developers interact with other enti-
ties in the development context. Therefore, we call this process psycho-social
because the omission of quality practices occurs in a social context but is im-
plemented by single individuals.

68

3.5.3 Research Area 3: What are the consequences of the omission of quality
practices?

In our literature review, we identified several short-term and long-term conse-
quences of the omission of quality practices that mainly concern organizations.
In the short term, the omission of quality practices might lead to a reduction of
development costs and delivery times or even higher levels of customer satis-
faction. Alternately, if quality practices are ignored, it might increase software
complexity and decrease software quality in the long term and, as a result, lead
to user dissatisfaction, escalating maintenance costs, and financial loss. While
such consequences have major importance in today’s competitive business en-
vironment, the identified primary studies do not provide any clear explanation
of how the omission of quality practices might affect software development
stakeholders and society beyond such financial factors. Therefore, further re-
search is needed to investigate how the omission of quality practices might af-
fect developers’ perceptions of “quality,” which eventually influences moral
standards and ethics in the software development community and society as
well. Furthermore, it is necessary to understand how the omission of quality
practices might affect customers’ expectations and users’ experiences and how
such influences might affect the role of information technology in society.

3.5.4 Research Area 4: How to consider omissions of quality practices

Our current wisdom is that the omission of quality practices is ultimately an
unwanted behavior that is caused by organizational constraints and incorrect
understandings of success, productivity, and quality within the software indus-
try. Therefore, there is a need to develop novel means and solutions to prevent
omission instantiations. Such means may be guidelines, methods, or programs
that aim to improve quality culture among organizations to consider omission
behaviors. Intervention research that aims to change the attitudes or the under-
lying values of software development, for example, may be used to develop
such means and solutions. The previous steps of this research agenda provide
knowledge as an input for such intervention studies.

3.6 Conclusions

In recent years, software has become an integrated part of everyday life. De-
spite the significant amount of resources that have been spent in software de-
velopment projects, problems in software are widely reported in the research
and practice literature. Recent literature hints that software deficiencies might
be the result of ignoring proper software development practices. We refer to
such ‘quick-and-dirty’ shortcuts as “omissions of quality software development
practices.” In such situations, to achieve some short-term gains, a software pro-
fessional purposefully opts to not follow a proper software development prac-

69

tice, and instead, the developer or the manager chooses to follow a questionable
practice that might compromise the software quality.

In this paper, our goal was twofold: first, to discover the state of research
on the omission of quality practices and to understand the extent to which this
phenomenon has been investigated previously; and second, to determine the
root causes underlying the omission of quality practices as suggested by previ-
ous studies. To reach these goals we conducted a systematic literature review
and produced a synthesis of our findings. We identified five categories of fac-
tors underlying the omission of quality practices. Each of these categories,
which are originated from different levels of context, affects the omission of
quality practices.

In the market level, specific characteristics of the business environment,
such as highly competitive and turbulent markets, put development teams un-
der pressure or encourage them to gain competitive advantages through the
omission of quality practices. In the organizational level, different factors, in-
cluding available resources and technical obstacles, might create conditions un-
der which developers decide to omit quality software development practices.
Finally, in the individual level, human factors, such as attitudes and cognitive
tendencies, under the influence of market- and organizational-level factors
might push managers and developers to neglect quality practices.

Based on the analysis of primary studies, we hypothesize that the deliber-
ation of omission behavior concerns the contradiction between quality and
productivity and that there is a psycho-social process pertaining to omission
instantiations. The current literature does not consider the omission of quality
practices adequately with respect to why and how software developers make
the decision to omit a quality practice and how to address this phenomenon in
practice. Therefore, we have proposed a research agenda with four research
areas.

The first research area concerns the determination of instantiations of the
omission of quality practices, their timing with respect to stages of software de-
velopment, tasks they relate to, and the nature of those instantiations. This in-
formation is needed to motivate further study to explain omission behavior and
to target the interventions that aim to prevent omission instantiations to correct
stages and tasks of software development. Alternately, the second research area
concerns revealing the psychosocial process of decision-making regarding
omission behavior. It is necessary to investigate the psychological processes in
developers’ cognition and social processes that occur as developers interact
with other entities in the development context.

The third research area concerns the consequences of the omission of qual-
ity practices. Further research is needed to investigate how such omission prac-
tices might affect developers’ perceptions of “quality practices” and, conse-
quently, moral standards and ethics within the software development commu-
nity and society as well. Furthermore, it is necessary to understand how the
omission of quality practices might affect customers’ expectations and users’

70

experiences and how such influences might affect the role of information tech-
nology in society.

Finally, the fourth area concerns possible solutions for considering the
omission of quality practices. Our current wisdom is that the omission of quali-
ty practices is undesirable behavior and that there is therefore a need to develop
novel means (e.g., guidelines, methods, culture) to prevent omission instantia-
tions.

To summarize, the goal of this research agenda is to provide computing
scholars research avenues for developing knowledge on the omission of quality
practices. New knowledge is needed to develop preventive or developmental
means for the practice of software development to consider the identified issue.

4 STUDY 2 - SEEKING TECHNICAL DEBT IN CRITI-
CAL SOFTWARE DEVELOPMENT PROJECTS: AN
EXPLORATORY FIELD STUDY6

4.1 Abstract

In recent years, the metaphor of technical debt has received considerable atten-
tion, especially from the agile community. Still, despite the fact that agile prac-
tices are increasingly used in critical domains such as aerospace and automotive
industries, to the best of our knowledge, there are no studies investigating the
occurrence of technical debt in critical software development projects. To fill
this gap we have conducted an exploratory field study. Data collected from dif-
ferent projects reveal that a variety of business and environmental factors cause
the occurrence of technical debt in critical domains. Using Grounded Theory
method, these factors are categorized as requirement ambiguity, diversity of
projects, inadequate knowledge management, and resource constraints to form
a theoretical model. Following previous studies we suggest that integrating ag-
ile practices such as iterative development, review meetings, and continuous
testing into common plan-driven processes enables development teams to bet-
ter identify and manage technical debt.

4.2 Introduction

Despite all the financial and human resources that have been spent on large
software and system development projects, the majority of these projects con-
tinue to fail or face severe challenges (The Standish Group International, Inc.
2009). Although different technical and human problems might be the potential

6 Ghanbari, H. (2016). Reproduced with kind permission by IEEE Computer Society.

72

cause for software vulnerabilities and failure, previous research has shown that
software defects are the main cause of most software vulnerabilities (Fonseca &
Vieira 2008, Wijayasekara et al. 2012).

Even though identifying and fixing software deficiencies such as bugs,
missing requirements or flaws in software design (Notander, Höst & Runeson
2013) has major importance in increasing the quality and reliability of software
products, some of these defects might stay hidden; even if they are identified,
they may not be fixed rapidly (Wijayasekara et al. 2012). In addition, fixing
software deficiencies at the later stages of projects becomes more expensive and
time consuming (Banker, Davis & Slaughter 1998, Van Emden & Moonen 2002).
Thus such deficiencies must be avoided in the first place, especially in critical
systems where software failure might cause devastating financial and infra-
structural consequences, or human life loss or injuries (Wijayasekara et al. 2012,
Sommerville 2015).

In response to these problems, the software community has been mainly
attempting to identify new software development tools and methods. Over time,
a large number of software development methods were designed to manage
complexity in software projects (Avison & Fitzgerald 2003, Iivari & Maansaari
1998). However, it is widely reported in previous studies that these software
development methods are rarely followed in their entirety but are customized
(Boehm & Turner 2003, Conboy & Fitzgerald 2010, Baskerville & Pries-Heje
2004). A group of scholars explain this customization mainly in terms of quality
compromising trade-offs for minimizing development costs and delivery times
(Vartiainen & Siponen 2012, Codabux & Williams 2013, McConnell 2007, Aho-
nen & Junttila 2003). In such situations, developers are often forced or motivat-
ed to cut back on software development processes or to postpone certain activi-
ties (Tom, Aurum & Vidgen 2013, Austin 2001). The metaphor of technical debt
(Cunningham 1992) has been increasingly used by scholars and practitioners to
point out such quality compromising shortcuts (McConnell 2007, Tom, Aurum
& Vidgen 2013, Kruchten, Nord & Ozkaya 2012, Brown et al. 2010, Lim,
Taksande & Seaman 2012).

While minimizing development time and costs might play a key role in
highly competitive markets (Eberlein & Leite, Julio, Cesar, Sampaio, do Prado
2002, Sommerville 2005), quality of software often has a higher priority in de-
veloping critical systems (Sommerville 2015). Since technical debt has a nega-
tive impact on software quality, it must be avoided when developing critical
systems. However, previous studies showed that technical debt does not al-
ways occur because of bad design and development decisions but also might be
due to environmental factors that cannot be controlled by development teams
(Tom, Aurum & Vidgen 2013, Brown et al. 2010). Therefore, it is important for
development teams to identify sources of technical debt in their context and to
properly manage it in order to maintain software quality (Kruchten, Nord &
Ozkaya 2012).

While in recent years technical debt has received considerable attention
from the agile community (Kruchten, Nord & Ozkaya 2012, Brown et al. 2010,

73

Bavani 2012, Holvitie, Leppanen & Hyrynsalmi 2014), to the best of our
knowledge, there are no studies that explore this phenomenon in critical soft-
ware projects. As it is suggested by (Brown et al. 2010), there is a need for em-
pirical studies to investigate the potential sources of technical debt across de-
velopment contexts. Therefore, we performed an exploratory field study to gain
a better understanding of the nature of technical debt and its potential sources
in critical domains.

The results of our study show that even in critical projects there are a set
of common issues and challenges that might lead to the occurrence of technical
debt. In particular our results provide an understanding of the circumstances
under which software developers might make quality compromising trade-offs.
These results can assist software development teams to better understand and
consider the consequences of their decisions while making trade-offs between
the productivity and quality of software processes. We propose that combining
agile practices with plan-driven processes brings flexibility into critical software
projects and, as a result, enables development teams to avoid or at least better
manage technical debt in these projects.

The rest of this paper is structured as follows. In the next section, a brief
overview of previous studies is provided. In the third section, the research
method and research settings are explained. The paper continues in the fourth
section with reporting research results and key findings. These findings are
then discussed in the fifth section. Finally, the sixth section provides some con-
cluding thoughts.

4.3 Related work

In today’s highly competitive business environment, development teams are
under constant pressure to produce high-quality software in a shorter time and
with minimum amount of costs (Eberlein & Leite, Julio, Cesar, Sampaio, do
Prado 2002, Sommerville 2005). However, since producing high-quality soft-
ware is usually associated with higher costs and delivery times (Sommerville
2015), maximizing both software development productivity and software quali-
ty simultaneously becomes challenging. Software development productivity is
often measured based on the number of lines of new code produced per person-
day (Cusumano et al. 2003, MacCormack et al. 2003) while software quality is
measured based on the number and frequency of defects identified in the soft-
ware products (Cusumano et al. 2003, MacCormack et al. 2003, Kan 2002).

Sometimes firms have to make trade-offs between long-term software
quality and short-term productivity (McConnell 2007, Lim, Taksande & Seaman
2012, Potdar & Shihab 2014). In such situations often quality practices are ne-
glected to deal with the urgent demands imposed by the business environment
(Vartiainen & Siponen 2012, Ahonen & Junttila 2003). For example, according to
(Ahonen & Junttila 2003), planned tests are often neglected or postponed due to
insufficient amount of time. A group of studies use the metaphor of technical

74

debt (Cunningham 1992) to explain such quality compromising trade-offs (Tom,
Aurum & Vidgen 2013, Brown et al. 2010, Lim, Taksande & Seaman 2012).

The term technical debt has been originally introduced by Cunningham
(1992) to point out poorly written code. However, in last two decades the meta-
phor has been used in a variety of ways to explain flaws and imperfections in
documentation, design, coding and testing activities (Tom, Aurum & Vidgen
2013, Kruchten, Nord & Ozkaya 2012, Brown et al. 2010, Lim, Taksande & Sea-
man 2012). In this study, following (McConnell 2007, Tom, Aurum & Vidgen
2013, Lim, Taksande & Seaman 2012) we use the definition of technical debt as
conscious decisions to cut back on software development processes in order to
minimize development costs and delivery times. The most common demands
reported in the literature to be the cause of technical debt are time pressure and
insufficient amount of budget and human resources (McConnell 2007, Brown et
al. 2010, Nan & Harter 2009). However, some studies show that technical debt
could be the result of environmental factors which are out of control of devel-
opment teams (Tom, Aurum & Vidgen 2013, Brown et al. 2010).

Even though it may sometimes be necessary for organizations to take on
technical debt, such decisions lead to higher levels of software deficiency and
complexity (Brown et al. 2010). This is even more problematic in bigger projects
where a larger number of developers simultaneously develop different parts of
the system, and the increased complexity makes it difficult—and sometimes
even impossible—for them to develop and maintain the software under devel-
opment (Banker, Davis & Slaughter 1998, Van Emden & Moonen 2002).

While development costs and delivery time are important aspects of every
software project, in developing critical systems factors such as software reliabil-
ity and maintainability are of major importance. Due to high failure costs and
consequences a set of expensive and trusted software development methods
must be utilized for developing critical systems (Sommerville 2015). Often in
such projects, developers follow plan-driven and document-centric software
processes to show compliance with certain standards (Notander, Höst & Rune-
son 2013). Despite using such strictly defined and heavily planned processes
(Notander, Höst & Runeson 2013), development teams might sometimes ignore
predefined processes and given standards due to the occurrence of unexpected
issues within business environments and organizations. As a result, the occur-
rence of technical debt becomes unavoidable even in critical software projects.
For that reason development teams must be aware of and properly manage
technical debt in order to maintain quality of software (Kruchten, Nord &
Ozkaya 2012, Brown et al. 2010).

4.4 Research method

In this research, our aim is to gain an understanding about the nature of tech-
nical debt and its potential sources in critical domains. As it is suggested by
(Runeson & Höst 2009), conducting exploratory studies is a suitable method for

75

gaining such knowledge and generating insights about the phenomenon under
study. Therefore, we decided to conduct a two-stage exploratory field study to
build an empirically grounded understanding about the nature of technical
debt in critical software projects.

4.4.1 Data collection

Following the qualitative interview guidelines suggested by (Myers & Newman
2007), two rounds of face-to-face, semi-structured interviews with international
software engineers were conducted (see Table 11).

TABLE 11 A summary of the interviewees characteristics

 Interviewee Position Years of
Experience

Domain

St
ag

e
1

Interviewee 1 Software Engineer 8 Commerce
Interviewee 2 Software Engineer 3 Healthcare
Interviewee 3 Software Engineer/ Process Manager 9 Automotive
Interviewee 4 Software Engineer 11 Automotive
Interviewee 5 Software Engineer 14 Automotive

St
ag

e
2

Interviewee 6 Software Engineer/ Business Manager 22 Aerospace
Interviewee 7 Software Engineer/Team Leader 7 Aerospace
Interviewee 8 Software/System Engineer 6.5 Aerospace
Interviewee 9 Software Engineer/ Project Manager 6 Aerospace
Interviewee 10 Software Engineer/ Team Leader 8.5 Aerospace
Interviewee 11 Software Engineer 20 Aerospace
Interviewee 12 Software Engineer/ Team Leader 8 Aerospace

An interview protocol was prepared and continuously improved to guide
all the interviews. Each of these interviews lasted from 60 to 120 minutes. After
obtaining permission from each interviewee, all the interviews were recorded
and transcribed for further data analysis.

4.4.2 Stage1: Preliminary interviews

In Stage 1, we interviewed five international software developers from the au-
tomotive, healthcare, and financial sectors between July and November 2013.
The aim of these interviews was to investigate whether technical debt might
occur in such critical domains. Since the results from these interviews provided
some initial evidence that technical debt occurs even in developing critical sys-
tems, we decided to further our investigation during the second stage.

4.4.3 Stage 2: Case study

In Stage 2, we conducted a single-case case study (Runeson & Höst 2009) in a
company called Beta7 that is active in the aerospace domain. During this stage
we interviewed seven international software engineers from Beta in January

7 Please note that Beta is a pseudonym.

76

2014. Due to the diversity of projects in Beta, we decided to interview software
experts with a variety of work experience levels from different teams. All of
these interviewees hold a university degree in Software Engineering or relevant
fields.

In addition to the interview data, supplementary data sources such as
firm’s official procedures, project documents and public information available
on their website were used to analyze different aspects of development pro-
cesses. Since a large amount of data was collected, we used a tool called NVivo8
for proper data analysis and management.

4.4.4 Case description

Beta is a private company that is active in the aerospace domain. The company
consists of several sites and teams—each of them formed by highly educated
international individuals with a wide range of technical skills and work experi-
ence. Each of these teams is focused on certain types of projects, including sys-
tems and software engineering and research and development (R&D) projects.
In general in Beta, the development teams are small and consist of a few Sys-
tems or Software Engineers. Thus instead of assigning dedicated experts to each
phase, often all of the team members are involved in every stage. Still some
team members might have more responsibilities (e.g. the team leader) depend-
ing on their individual skills and experience.

Due to the criticality of the aerospace domain, the companies active in this
field, including Beta, are expected to comply with certain standards and regula-
tions such as ECSS-E-ST-40C (European Space Agency 2009) and ECSS-Q-ST-
80C (European Cooperation for Space Standardization 2013). To comply with
these standards a V-model (Boehm 1984) is proposed by authorities to be fol-
lowed (see Figure 15).

FIGURE 15 An overview of the V-model used in Beta

8 http://www.qsrinternational.com/products_nvivo.aspx

77

Depending on the nature of the projects and teams, the V-model is often
customized in order to suit the development teams’ requirements. As a result,
the software development processes followed by some teams is closer to tradi-
tional linear models while in other teams, especially in R&D projects, flexible
and iterative approaches are followed.

At the moment, a wide variety of tools are utilized in the case company to
support its teams’ day-to-day activities. However, the extent to which Beta
teams utilize these tools highly depends on their projects. Some teams mainly
use simple tools and technologies, while in other teams more complex tool
chains and technologies are used in order to deal with the complexity and criti-
cality of products under development. In addition to common Integrated De-
velopment Environments, when needed, Beta teams use configuration man-
agement systems, code repositories, and other tools for reporting and tracking
bugs and source code documentation.

4.4.5 Data analysis

To build an understanding that is empirically grounded in the experience of
professionals involved in software processes, a systematic data analysis process
was conducted by following the techniques suggested by the Grounded Theory
method (Glaser & Strauss 1967, Glaser 1978, Glaser & Holton 2004, Glaser 1992).
Using NVivo, we first performed a line-by-line open coding (Glaser 1978, Glaser
1992, Glaser & Holton 2004)to closely examine fractures of data and to form cat-
egories of codes (Urquhart, Lehmann & Myers 2010).

During the next stage, selective coding (Glaser 1978, Glaser 1992, Glaser &
Holton 2004), we grouped these categories of codes into four higher levels of
abstraction (i.e., concepts) called Ambiguity of Requirement, Diversity of Projects,
Inadequate Knowledge Management, and Resource Constraints. These categories
represent the challenging aspects of software processes from our interviewees’
perspective, which might lead to the occurrence of technical debt in critical
software projects.

Finally, during the last stage of data analysis, theoretical coding (Glaser 1992,
Glaser & Holton 2004, Glaser 1978), a theoretical model was formed by indicat-
ing the relations between the identified selective codes. This theoretical model
and the relations between these theoretical concepts are explained in the next
section. It is worth noting that a constant comparison through iterative data col-
lection and analysis enabled us to enrich the emerging theoretical concepts by
identifying shortcomings in the collected data and to address them by collecting
more data.

4.5 Results

Integrating dependability and safety requirements into software has a signifi-
cant importance in the aerospace domain. Therefore, one of the key goals of Be-

78

ta is to constantly enhance software development processes that enable devel-
opers to better comply with aerospace standards. However, during the data
analysis phase, we identified four important categories of factors that make this
challenging. In the following sections, we describe these four categories and
explain how these factors might force developers to cut on software processes
or to postpone certain activities and, as a result, lead to the occurrence of tech-
nical debt.

4.5.1 Ambiguity of Requirements

The first issue is related to requirements analysis and specification. Require-
ments engineering and management activities in Beta highly depend on the de-
velopment teams and the nature of their projects. In more operational projects,
a statement of the work that consists of the main system requirements is usually
provided by the customer. In such projects, extensive requirements and engi-
neering approaches are followed by using different tools in order to identify,
document and trace the customers’ requirements during the project. On the
other hand, in more flexible R&D projects, informal and iterative approaches
are preferred. In such projects, the customers’ requirements are not reflected in
a clear and precise way but more in the form of a long-term vision for identify-
ing new and innovative solutions.

Even though a set of high-level requirements are suggested by the cus-
tomer in the statement of work, development teams need to break these re-
quirements down into a set of more detailed and feasible technical require-
ments. Following this stage, they need to prepare a convincing requirements
specification document that indicates all the suggested requirements comply
with the statement of work provided by customer. However, it is almost impos-
sible for developers to fulfill all the customers’ requirements within the fixed
budget assigned to projects. For example, one of our interviewees said:

“It is difficult to keep the requirements feasible within the agreed budget since it is
hard to anticipate the effort required to implement each of those requirements.” –
Interviewee 7

This issue is more problematic in competitive projects where an official
proposal must be prepared and sent to the customer. Usually in such projects
the development team has no opportunity to have a direct discussion and nego-
tiation with the customer before preparing the proposal. Depending on the
novelty of the system under development, these requirements might be de-
scribed precisely and in detail or in a high level and ambiguous way. Often in
R&D projects, the concept of the system and its requirements evolve over time.
Thus the identified requirements need to be changed and improved constantly
during the project and, as a result, more iterative and flexible practices are
needed to maintain and to keep track of these changes. Keeping in mind that in
critical domains projects are often planned in advance and within a fixed budg-

79

et, it becomes challenging for developers to follow predefined software pro-
cesses entirely. One of the interviewees describes this problem as follows:

“What [customers] think they can do, their requirements, everything is very dy-
namic over three years of the project. As the project will be evolving, there is a
very strong need for flexibility, which is one of the reasons why we are not apply-
ing a very formal process.”– Interviewee 12

Furthermore, our data show that the intangibility of software products
makes it hard for software stakeholders to trace their requirements carefully
during the development phase and to validate if all their needs and expecta-
tions are fulfilled properly by the final product. Often, only the final software
solution is delivered to the customer; therefore, the customer might not be able
to evaluate the quality of other artefacts (e.g. architectural design or require-
ments document) or processes. Since such aspects of software development are
not visible to customers and authorities, in case certain requirements are
dropped or practices ignored, it is almost impossible to identify them:

“We have standards for everything. We are supposed to comply with the coding
standards that are there. Now I'm saying ‘supposed to’ because who really verifies
them? From my own knowledge, nobody does.” – Interviewee 6

In addition to this and despite the fact that in each team there are several
internal technical reviews to evaluate the quality of the products and processes,
an official and precise quality review mechanism is missing in Beta. As a result,
it is very demanding for teams to indicate if the end results comply with the
recommended guidelines and standards. As can be seen from the following
quote mentioned by one of our interviewees, this becomes more problematic in
more research-oriented projects where no official feedback is provided by cus-
tomers and, as a result, developers do not have the opportunity to receive feed-
back regarding their performance or any potential defects.

“We haven’t had much luck in convincing the project partners who are playing
the role of the end-user to actually spend some time on using our deliveries and to
provide valuable feedback to us.” – Interviewee 9

Therefore, it becomes almost impossible for teams to identify and fulfill a
complete set of requirements based on customers’ expectations. As a result, it is
likely that some features or requirements are missing from the final product or
have not been implemented according to the standards requested by the cus-
tomers or authorities.

4.5.2 Diversity of Projects

In Beta, different teams are active in a variety of projects. The diversity of Beta
projects might reduce the quality of communication and information transmis-
sion between different teams and, consequently, the collaboration between

80

these teams becomes problematic. For example, several interviewees mentioned
that there might be similar activities and projects that are going on simultane-
ously in different teams but these overlapping efforts are not communicated
properly.

Additionally, due to the diversity of the projects going on in Beta, each
team might follow certain kinds of development processes and practices.

“Since there are really different projects here, each team defines its own ways of
doing their work and, because of that, everybody has a really different approach.”
– Interviewee 10

While in more critical and operational projects, Beta teams utilize ad-
vanced tools for preparing extensive design documents, in more flexible devel-
opment projects the architectural design is usually prepared in a more informal
and iterative manner to deal with the high rates of requirement change and the
evolving nature of the product. Thus there are obvious differences between the
software components and documents produced by different teams. This might
be problematic because sometimes the software components produced by one
team are needed to be used by other teams. Therefore, it might be challenging
for developers from other teams to understand and make sense of that compo-
nent.

“It [has] happened that I used code that is written by developers from other
groups and I could completely see the difference […] For me, it was hard to un-
derstand some parts of the comments that are very important.” – Interviewee 11

This becomes even more problematic if the person who has originally de-
veloped the component is not working in the team or company anymore, which
makes it impossible for other developers to easily solve potential ambiguities
and misunderstandings. Additionally, due to diversity of projects, Beta teams
need to use tools and technologies differently. While in large projects, there is
an inevitable need for different kinds of advanced tools to assist developers in
tracing a large number of requirements using such advanced tools in smaller
projects might be seen unnecessary.

“In bigger projects, tools are for sure necessary, but the risk of using a tool in
smaller projects, where things are done manually and quickly, is to spend more
time using the tools than doing the technical work” – Interviewee 7

Thus, using different kinds of tools with different functionalities seems to
be unavoidable among these teams and, as a result, interoperability between
different tools becomes difficult. The inconsistency between tools and technolo-
gies exchanging artefacts between teams might not be easy or straightforward,
and developers need to spend extra time on making these products usable.

Our data show that in Beta developers often learn to use those practices
and tools that are used within their teams. Therefore, in case they switch from
one team to another, they need to spend some time to familiarize with the tools

81

and practices utilized within the new team. From our data we realized that if
developers consider software development processes in the new team to be
outdated or time-consuming, they might underestimate the value of these pro-
cesses.

“That was my best practice five years ago. I mean, this is an obsolete practice for
me, it would be a regression to comply with certain rules of the company.” – In-
terviewee 6

Therefore, it seems that the diversity of projects makes it difficult for
teams to use a consistent set of software development practices and toolsets,
which makes it challenging for developers in Beta to follow planned software
processes.

4.5.3 Inadequate Knowledge Management

Both technical and product knowledge are among the most essential resources
for performing software development activities. It is suggested in previous
studies that knowledge documented in a software company or held by its em-
ployees is one of the key competitive assets of that firm (Notander, Höst &
Runeson 2013). In Beta, extensive documentation is often required by regula-
tions and, for that reason, development teams might spend a considerable
amount of time and effort to fulfill this requirement. The following quotation
indicates an example of such extensive documentation.

“In this company we follow a Waterfall approach because our projects are heavily
document-centric. That is the reason why we often develop more documents than
software.” – Interviewee 6

Using information from previous projects stored on company-wide data
servers is one of the core knowledge management sources in Beta. However,
according to our data, it seems that this information is not stored in a structured
way and is not maintained regularly. As a result, searching and finding the
needed information might be problematic and time consuming for developers.

“We have most of the documentation from past projects in a server, which you can
search to a certain degree. There isn’t such a big history or database, but it is just
a matter of trying and seeing what you can find.” – Interviewee 10

The majority of the employees in Beta has similar levels of education and
basic knowledge of the aerospace industry. Still, if individuals move from one
team to another, the information from previous projects stored on the server
can be a key source of information for them to familiarize themselves with the
overall responsibilities of the new team. Thus, the lack of a well-structured and
updated source of information forces them to spend extra time and effort to
gain the necessary knowledge for performing their tasks. Due to such shortcom-

82

ings, it is likely that technical debt occurs during knowledge-creation and man-
agement activities.

4.5.4 Resource Constraints

In Beta, the software processes are often extensively planned and a fixed budget
is allocated to projects. However, during the data analysis phase, we realized
that it is very common for development teams to run out of time and budget
before completing the software processes; in many cases, they are forced to
minimize the software development activities. Additionally, the lack of human
resources is another issue that makes performing activities challenging. In Beta,
teams comprise a small number of individuals. In some projects, especially if
there are insufficient human resources, the same developers are responsible for
performing all the software development activities—from requirements engi-
neering to system testing. Thus, it might be impossible for them to perform eve-
ry single step or activity as per the recommended standards.

Our data reveals that the lack of human resources becomes even more
challenging when projects are behind schedule and the deadline is closed. This
is problematic especially with software evaluation and testing due to the fact
that software evaluation is the last step in many projects. Therefore, testing and
verification activities might be postponed to the delivery time or even pushed
to the customer side. This issue was mentioned by one of the respondents as
follows:

“Let's be clear or honest. If we have one guy, we have one guy, huh? We have a
formal acceptance where the customer himself is supposed to be the independent
tester at the end. It's a way of pushing the verification to the customer side some-
how” – Interviewee 6

This is problematic if stakeholders do not have enough resources to con-
duct proper software testing and verification, which eventually might lead to
the delivery of defective software. As a result, the defects in the software prod-
ucts might not be identified at the time of delivery but only when the system is
in use. Fixing these bugs not only requires extra time and effort but also be-
comes more challenging when the software is complete and operational.

When projects are delayed, additional human resources might be needed
to accelerate the software processes and to follow the delivery schedule. In such
situations, if the agreement is more flexible the development teams might be
able to acquire additional resources (e.g. budget and time) from the customer.
However, in fixed-bid contracts where the budget and deadline cannot be ex-
tended, development teams must decide either to assign additional resources
themselves or to perform software development activities with the existing re-
sources. The first option often has some cost overloads for the firm, which
might lead to a reduction in turnover or even financial loss.

83

“We go to the customer, communicate the problem, and try to de-scope the things
that are less prioritized. We can only internally decide that we’ll accept less profit
or no profit from the project, so that we can invest more time.” – Interviewee 10

The second option, on the other hand, might motivate or even force them
to cut on software development activities to keep costs and delivery times fixed.
Thus, based on our data, it seems that resource constraints lead to the occur-
rence of technical debt even in critical projects.

4.5.5 Theoretical model

In previous sections, we discussed the four main factors that make software
processes challenging in critical domains, particularly in the case of Beta. As a
result, development teams might not be able to perform planned development
activities as recommended by given standards, which might eventually lead to
the occurrence of technical debt. These four categories include ambiguity of re-
quirements, diversity of projects, inadequate knowledge management, and re-
source constraints. Figure 16 shows our theoretical model, which is formed by
indicating the relations between these identified selective codes.

FIGURE 16 The occurrence of technical debt in Beta

As shown in Figure 16, the diversity of projects influences both the ambi-
guity of requirements and resource constraints. Depending on the project,
stakeholders’ requirements might be vague or well defined. On the other hand,
the amount of resources allocated to projects highly depends on the type of the
project. Inadequate knowledge management worsens the ambiguity of re-
quirements due to the fact that performing proper requirements engineering
and specification becomes challenging. Inadequate knowledge management
alongside with ambiguity of requirements makes it difficult for development
teams to perform a precise cost and effort estimation and, as a result, evaluation
of necessary development resources becomes difficult. This might lead to a lack
of necessary resources later in the project.

Under these conditions, it becomes very challenging for development
teams to follow planned software processes and to comply with recommended

84

standards. Therefore, certain practices or activities might be ignored or not per-
formed properly, which leads to the occurrence of technical debt.

4.6 Discussion

Depending on the development context, there might be different constraints
and regulations that force development teams to concentrate more on certain
aspects of software development processes. Often in critical domains, quality of
the systems and compliance with certain standards has a higher importance for
stakeholders, due to which plan-driven processes and expensive techniques are
followed by software development teams (Notander, Höst & Runeson 2013,
Sommerville 2015). However, our data collected from several projects indicate
that even in critical domains, pressure caused by different business and organi-
zational sources makes it challenging for developers to follow plan-driven pro-
cesses. In order to deal with such challenges, development teams might decide
to ignore or postpone certain software development activities (Notander, Höst
& Runeson 2013, Ahonen & Junttila 2003). As a result of this minimization,
technical debt might occur in such critical projects.

Ambiguity of requirements is one of the key factors that make software
projects challenging in critical domains. Requirement change is reported by
previous studies to be one of the biggest challenges of software projects (Som-
merville 2005). Even in critical domains that are considered to be more stable,
software requirements might change over the course of a project, especially if
these requirements are not clearly defined and specified at the beginning of the
project. Such deficiencies in requirements specification might lead to the occur-
rence of requirements debt (Tom, Aurum & Vidgen 2013, Brown et al. 2010, Lim,
Taksande & Seaman 2012).

Another issue identified in this study is the diversity of projects in the case
company. Despite the fact that all of these projects are performed in the aero-
space domain, a variety of processes and practices are followed in the company
which makes collaboration between teams challenging. Therefore, following
standards and procedures suggested by regulatory authorities becomes chal-
lenging.

The availability of necessary resources is another factor that directly af-
fects the way software processes are followed. Often cost and effort estimation
is challenging in software projects and it is almost impossible to clearly specify
the necessary development resources at the beginning of projects. Our results
show that due to a lack of necessary resources, development teams sometimes
have to omit certain steps of software processes. Resource constraints are wide-
ly reported by previous studies to cause technical debt (McConnell 2007, Tom,
Aurum & Vidgen 2013, Brown et al. 2010, Lim, Taksande & Seaman 2012, Yang,
Hu & Jia 2008).

Finally, inadequate knowledge management is another issue that makes
software projects challenging. Technical and product knowledge is one of the

85

key elements integrated into every software development process (Notander,
Höst & Runeson 2013). Thus any potential obstacle in proper knowledge crea-
tion and management might cause severe problems for individuals while per-
forming their activities and, as a result, lead to the occurrence of technical debt.
This kind of debt has been reported by previous studies as knowledge distribu-
tion and documentation debt (Tom, Aurum & Vidgen 2013, Brown et al. 2010,
Lim, Taksande & Seaman 2012).

Our analysis shows that the occurrence of technical debt becomes una-
voidable even in critical projects. Therefore, it is critical for development teams
to properly identify and effectively manage debt (Kruchten, Nord & Ozkaya
2012, Brown et al. 2010).

It is suggested by previous studies that using agile practices assist devel-
opment teams to reduce and manage technical debt (Codabux & Williams 2013,
Brown et al. 2010, Holvitie, Leppanen & Hyrynsalmi 2014, McCaffery, Pik-
karainen & Richardson 2008). On the other hand a group of studies (Notander,
Höst & Runeson 2013, McCaffery, Pikkarainen & Richardson 2008, Silva &
Cunha 2006), suggests that following a combination of plan-driven and agile
methods in critical projects not only allows teams to perform their tasks in a
cost-effective manner but also to comply with the different quality levels re-
quested by customers or regulatory authorities. Following these studies, we
suggest that integrating agile practices into common, plan-driven software pro-
cesses used in critical domains enables development teams to tackle technical
debt.

Following practices such as small releases, burndown charts, daily meet-
ings, test-driven development, and continuous testing might assist develop-
ment teams to avoid technical debt to accumulate in their projects. Using burn-
down charts and daily meetings help developers to monitor their progress and
to identify potential obstacles in performing their tasks (Codabux & Williams
2013, McCaffery, Pikkarainen & Richardson 2008, Silva & Cunha 2006). By this
they will be able to better estimate the cost and effort necessary for performing
their future tasks. In addition following test driven development and continu-
ous testing (Brown et al. 2010, Holvitie, Leppanen & Hyrynsalmi 2014) enables
developers to identify defects and problems in small releases (Codabux & Wil-
liams 2013, McCaffery, Pikkarainen & Richardson 2008). As a result, teams are
able to deal with their problems as soon as possible by renegotiating or even
changing their initial plans as needed (Silva & Cunha 2006). Especially in com-
panies like Beta that have small, collocated teams, communication and collabo-
ration between developers becomes easier and, as a result, teams are more flex-
ible to follow iterative methods.

 On the other hand, conducting review meetings and retrospectives and
preparing technical debt backlogs (Kruchten, Nord & Ozkaya 2012) enables de-
velopment teams to properly communicate, trace and manage their technical
debt. In addition, organizing company-wide review meetings enables individu-
als from different teams and departments to communicate their problems and
to identify possible solutions to deal with them (Notander, Höst & Runeson

86

2013, Codabux & Williams 2013). Using such meetings, as also suggested by a
number of previous studies (Codabux & Williams 2013, Holvitie, Leppanen &
Hyrynsalmi 2014, McCaffery, Pikkarainen & Richardson 2008), enables teams to
be engaged in more frequent and reciprocal information exchange and, as a re-
sult, better communicate and manage technical debt. In addition, the general
awareness of teams regarding the potential sources of technical debt increases.
One of the most important benefits of such awareness is to avoid spending re-
sources on overlapping attempts for identifying solutions that have already
been identified by other teams (Codabux & Williams 2013).

It must be noted that this study has some limitations that might affect the
validity of the results. First of all, our observations are based on a limited num-
ber of interviews. Even though we tried to compensate this threat by collecting
data from several critical projects, our results cannot be fully generalized to
other contexts. In addition, the data collected from interviewees were analyzed
and interpreted by the researcher and, therefore, the findings might be biased
by the researcher’s personal perspectives. To address these limitations and to
improve the generalizability of our results, further research is needed. In par-
ticular, there is a need for more empirical studies to further investigate the oc-
currence of technical debt and its underlying causes across critical domains and
in different types of software projects.

4.7 Conclusions

We conducted an exploratory field study to gain an understanding about the
nature of technical debt and its potential sources in critical domains. Upon col-
lecting data from several projects, we discovered a set of challenges that soft-
ware developers face in critical domains. Even though this study is a prelimi-
nary attempt at exploring the nature of technical debt in critical domains, it has
some lessons for both scholars and practitioners. Our results reveal technical
debt might occur even in critical software projects where certain standards and
costly software engineering processes must be followed. Often due to require-
ment ambiguity, diversity of projects, inadequate knowledge management, and
resource constraints software developers are forced to minimize software pro-
cesses by ignoring certain practices or postponing certain activities.

According to our observations and following previous studies, we suggest
that utilizing certain agile practices, such as conducting daily stand-up and reg-
ular review meetings, preparing burndown charts and technical debt backlogs,
following iterative development and dividing projects into small releases
alongside with continuous testing might assist developers to avoid, or at least
identify and manage, accrued technical debt. However, further research is
needed to support our suggestions and to investigate the effectiveness of agile
practices to manage technical debt in critical software projects.

5 STUDY 3 - WHY SOFTWARE DEVELOPMENT
METHODS ARE CUSTOMIZED IN PRACTICE - A
THEORY OF SOFTWARE DEVELOPMENT BAL-
ANCE9

5.1 Abstract

Over the last four decades, software development has been one of the main-
stream topics in the Software Engineering (SE) and Information Systems (IS)
disciplines. Thousands of methods have been put forward offering prescrip-
tions for software development processes. The goal of these methods is to pro-
duce high-quality software in a systematic manner. However, it is widely
known that these methods are rarely followed as prescribed; rather developers
often modify or ignore different steps and practices recommended by given
methods. While a group of previous studies suggests that maximizing the flexi-
bility and leanness of software development processes is the key driver of such
customizations, another group argues that the inadequacy of these methods to
fulfill stakeholders’ expectations is the main reason that they are ignored in
practice. However, to the best of our knowledge, there are no theory-based and
empirically grounded explanations elucidating why and under what conditions
software development methods are customized in practice. As a first step in
overcoming this gap in the research, we conducted a longitudinal field study,
using a Grounded Theory methodology, and built a process theory. This theory
explains the mechanisms through which software development methods are
customized in order to maintain balance between contrasting and sometimes
contradictory contextual forces associated with software development.

9 Ghanbari, H. and Siponen, M. (Under review at IEEE Transactions on Software Engi-
neering).

88

5.2 Introduction

Software development continues to be a popular topic in the Software Engi-
neering (SE) and Information Systems (IS) disciplines and at the same time re-
ceives a considerable attention from practitioners. Software development is a
highly dynamic and complex phenomenon (McLeod & Doolin 2012) consisting
of a set of interrelated steps and activities (Bourque & Fairley 2014) which its
purpose is to ensure that user requirements are transformed into working soft-
ware (Sabherwal & Robey 1993, Slaughter et al. 2006, Truex, Baskerville &
Travis 2000). To better manage these complex processes, a large number of
software development methods have been put forward by the SE and IS com-
munities. These methods often recommend a set of predefined steps, activities,
and best practices for developing and maintaining software products (Iivari
1991, Iivari, Hirschheim & Klein 1998b). While it is argued that the develop-
ment process to be followed is an important factor that may contribute to a pro-
ject’s success (Iivari 1991, Baskerville & Pries-Heje 2004), it has been widely re-
ported by previous studies that these methods are not followed as prescribed
(Truex, Baskerville & Travis 2000, Baskerville & Pries-Heje 2004, Avison & Fitz-
gerald 2003, Coleman & O’Connor 2007, Conboy & Fitzgerald 2010, Fitzgerald
1998, Iivari & Maansaari 1998, Huisman & Iivari 2006, Kiely & Fitzgerald 2002,
Ralph 2016, Fitzgerald, Hartnett & Conboy 2006); rather, software development
teams modify or skip certain steps or practices that are recommended by these
methods (Highsmith & Cockburn 2001, Sommerville 2005).

From an organizational perspective, maximizing the leanness of software
development processes is one of the main reasons for customizing methods
(Baskerville & Pries-Heje 2004, Fitzgerald, Hartnett & Conboy 2006, Boehm
2002, Baskerville et al. 2001, Lim, Taksande & Seaman 2012, Lindgren et al.
2008), while the lack of a universal method that is suitable for all types of soft-
ware projects (Truex, Baskerville & Travis 2000, Iivari 1991, Brinkkemper 1996,
Henderson-Sellers & Serour 2005) is another important reason forcing devel-
opment teams to modify and even combine different software development
methods and practices in each project (Conboy & Fitzgerald 2010, Boehm 2002,
Henderson-Sellers & Serour 2005, Leppanen 2006, Iivari & Iivari 2011).

While the selection of software development methods is an organizational
decision, developers are the ones who must apply these methods in practice
(Khalifa & Verner 2000). Despite the important role of individuals in imple-
menting software development methods, to the best of our knowledge, there
are no empirically grounded theories explaining how and under what condi-
tions developers may decide to modify software development methods or even
ignore best practices recommended by the software development community.
In this study, we aim to contribute to resolving this issue by proposing an em-
pirically grounded theory. To this end, we investigate the following research
questions:

89

• RQ 1: Under what conditions software development methods are customized in
practice?

• RQ 2: Through what causal mechanisms software development methods are cus-
tomized in practice?

Drawing from the experience of software professionals active in different
contexts, we built a process theory (Markus & Robey 1988, Van de Ven, A. H. &
Poole 2005, Van de Ven, A. H. 1992, Ralph 2015a) to explain the causal mecha-
nisms underpinning the customization of software development methods.

Our proposed theory contributes to both research and practice. Our theory
contributes to the research by explaining how the mechanisms of method cus-
tomization is initiated by the unique characteristics of software and how it pro-
gresses through a series of complex interactions among software stakeholders
under the influence of contextual forces. This theory indicates how developers,
depending on the development context, decide to modify or ignore certain
software development practices or activities to deal with such complex and in-
consistent contextual settings. Until now, the majority of research on software
development, especially in the SE field, has focused on identifying and improv-
ing novel methods and practices, while lacking firm theoretical foundations
(Ralph 2016, Zhang & Budgen 2012). Therefore, there is a need to propose novel
SE theories (Sjøberg et al. 2008, Wohlin, Šmite & Moe 2015, Johnson, Ekstedt &
Jacobson 2012) that explain why these software development methods are
widely ignored in practice. To that end, we propose a novel theory called the
Theory of Software Development Balance to explain the customization of software
development methods as mechanisms—at both individual- and organizational-
levels—for maintaining balance between stakeholders’ multi-concerns and con-
tradictory contextual forces over time.

Our theory also contributes to practice by indicating how developers
choose different strategies to balance inconsistent situations within software
projects that are caused by contrasting contextual forces and stakeholders’ con-
cerns. This explanation enables organizations to better understand developers’
attitudes toward firms’ business strategies and software development proce-
dures and how these procedures are followed in the face of contextual incon-
sistencies. Utilizing such insight may enable software firms to improve their
development approaches and to form integrated teams that are suitable for a
given context.

The rest of this paper is structured as follows. Section 4.3 reviews the prior
related research, followed by a description of the research methodology in Sec-
tion 4.5. Section 4.6 represents our theory, and Section 4.7 discusses our results
in light of the related literature and reports the implications and limitations of
our study. Finally, Section 4.8 concludes the paper.

90

5.3 Research Background

Software development is a dynamic (McLeod & Doolin 2012) and knowledge
intensive (Wohlin, Šmite & Moe 2015) phenomenon consisting of a set of inter-
related steps and processes such as requirements engineering, software con-
struction, evaluation, and maintenance (Bourque & Fairley 2014). During each
of these steps, a variety of activities are performed, and as a result of constant
interaction and collaboration between software stakeholders, different types of
software artifacts (e.g., requirement documents, architectural designs, code, and
test scripts) are produced.

Early computer systems were developed by individual programmers
without following any development methods (Avison & Fitzgerald 2003, Mac-
Cormack et al. 2003). Over time, as software projects failed or were faced with
severe challenges, organizations realized a need for more systematic and for-
malized approaches to manage complexity of software projects and to improve
the quality of software processes (Fitzgerald 1998, Avison & Fitzgerald 2003).
Consequently, during the 1960s, systems development methods emerged for
the purpose of managing software processes (Avison & Fitzgerald 2003). Since
that time, thousands of methods have been put forward (Conboy & Fitzgerald
2010, Huisman & Iivari 2006) to assist developers in improving the software
development processes (Iivari & Maansaari 1998, Iivari, Hirschheim & Klein
2004). To that end, these methods often provide guidelines for performing a set
of generally accepted practices and steps for developing and maintaining soft-
ware products (Iivari 1991, Iivari, Hirschheim & Klein 1998b), the assumption
being that software development is an orderly, progressive and systematic pro-
cess (Truex, Baskerville & Travis 2000). In the following sections we briefly dis-
cuss different viewpoints regarding the application of software development
methods in practice.

5.3.1 Software Development Methods

Using software development methods is traditionally seen as valuable (Fitzger-
ald 1998), since it facilitates management’s control over software projects and
enables firms to improve their software development processes (Bourque &
Fairley 2014, Fitzgerald 1998, Vavpoti & Vasilecas 2012). Advocates of software
development methods suggest that greater use of software development meth-
ods, alongside with skilled professionals and the appropriate resources, leads to
higher levels of productivity, product quality, budgetary and schedule adher-
ence, and customer satisfaction (Bourque & Fairley 2014, Coleman & O’Connor
2007, Fitzgerald 1998, Vavpoti & Vasilecas 2012, Carmel & Becker 1995, Cugola
& Ghezzi 1998, Shirado et al. 1996). Especially since software development prac-
tices have long-term consequences that are dif cult and costly to reverse (Bank-
er, Davis & Slaughter 1998), designing more effective and efficient methods has
received a great deal of attention from the software community (Leppanen 2006,
MacCormack et al. 2003, Banker, Davis & Slaughter 1998, Lyytinen 1989).

91

Despite the attention that has been given to suggesting and improving
software development methods, according to the literature, these methods are
rarely used effectively (Iivari & Maansaari 1998). In general, there are three
viewpoints regarding the use of methods in software and system development
processes (see Figure 17).

FIGURE 17 Different viewpoints about the use of software development methods

The first view considers software development as a systematic (Wynekoop
& Russo 1997) and highly rationalistic process (Hirschheim & Newman 1991)
that can be completed by following a method in a step-by-step fashion. Truex et
al. (2000) argue that such a viewpoint, where developers must follow a prede-
fined sequential development process, has dominated the majority of publica-
tions and textbooks on software and information system development (Truex,
Baskerville & Travis 2000). The wide range of available methods can be classi-
fied as traditional life-cycle methods such as waterfall (Royce 1970), iterative-
incremental methods like spiral (Boehm 1988), and lightweight methods such as
agile methods (Fowler & Highsmith 2001, Abrahamsson et al. 2003).

The second perspective regarding the application of methods suggests
that, like other production processes, software development and its outcomes
are subject to uncertainty and risk (Iivari & Lyytinen 1998), and almost every
software project has its unique characteristics, including individual goals, the
technological and business environment, and the organizational context (Truex,
Baskerville & Travis 2000, Conboy & Fitzgerald 2010, Brinkkemper 1996).
Therefore, software development cannot be conceived of as a systematic and
merely technical process but as a highly complex socio-technical process
(McLeod & Doolin 2012). This complex process is comprised of various social,
technical, and institutional entities (Orlikowski & Iacono 2001), and therefore is
influenced by different social and environmental factors, including but not lim-
ited to social interactions (Kiely & Fitzgerald 2002, Hirschheim & Newman
1991), contradictory stakeholder values, and chance occurrence (Truex, Basker-
ville & Travis 2000). From this perspective, since there is no single universally
applicable method that fits all types of projects (Iivari 1991, Brinkkemper 1996)
developers often prefer to adapt and combine different practices based on the
project characteristics instead of following one specific method (Baskerville &
Pries-Heje 2004, Conboy & Fitzgerald 2010, Boehm 2002, Iivari & Iivari 2011,
Wynekoop & Russo 1997). Two famous approaches stemming from this view-

92

point are contingent system development (Brinkkemper 1996), and method engineer-
ing (Brinkkemper 1996, Kumar & Welke 1992).

 Finally, amethodical software development (Truex, Baskerville & Travis 2000)
is the third perspective which can be viewed as an extreme case of the second
perspective. Advocates of the amethodical perspective suggest that each soft-
ware development project is so unique and unpredictable that its development
approach evolves over time as “an outcome of myriad development activities
that emerge more or less independently” (Truex, Baskerville & Travis 2000,
p.63). Therefore, this development approach cannot be viewed as a predefined
and controllable sequence of steps and activities (Truex, Baskerville & Travis
2000, Baskerville & Pries-Heje 2004). However, it is mentioned in (Truex, Bas-
kerville & Travis 2000) that while amethodical development rejects a predefined
sequence and structure, it “does not imply anarchy or chaos”(Truex, Baskerville
& Travis 2000, p.54).

Despite their differences, available software development methods share
some core development activities, such as requirements identification, imple-
mentation, and testing (Shirado et al. 1996). Even if development teams do not
use any specific method or explicit process, these core activities are necessary
for developing software (Zhang & Lyytinen 2001). Therefore, it can be said that
all software development projects clearly apply some sort of structure (Shirado
et al. 1996) or process (Hohmann 1997), although this process may not be de-
fined in the same way that the methods have been defined. What remains in
dispute is how these activities should be performed and documented.

5.3.2 Customizing Software Development Methods

A number of previous studies explain method customization from a business
perspective and as a result of organizational-level decisions for increasing the
leanness of software development processes (Baskerville & Pries-Heje 2004,
Fitzgerald, Hartnett & Conboy 2006, Sommerville 2005, Boehm 2002, Baskerville
et al. 2001, Lim, Taksande & Seaman 2012, Lindgren et al. 2008). The metaphor
of technical debt (Cunningham 1992) has been employed by the SE community to
point out to such organizational level trade-offs (Tom, Aurum & Vidgen 2013).
These studies suggest that certain elements of software methods are ignored
because of organizational level trade-offs often made to increase productivity
by reducing development costs and delivery times (Lim, Taksande & Seaman
2012, Lindgren et al. 2008, Tom, Aurum & Vidgen 2013). These studies assume
that developers, as a result of such organizational trade-offs, take shortcuts and
ignore best practices.

Another group of studies argue that while software methods fail to deliver
the expected benefits, such as increasing productivity (Avison & Fitzgerald
2003), they are usually complex and costly to use, since following methods of-
ten slows down development processes (Fitzgerald, Hartnett & Conboy 2006)
and requires expensive tools and high technical skills (Avison & Fitzgerald
2003). Additionally, because organizations lack the necessary knowledge for
choosing appropriate methods, they end up choosing methods that do not suit

93

their needs (Vavpoti & Vasilecas 2012). As a result, software development
methods are ignored, since development teams consider such expensive and
complex methods to be ineffective (Avison & Fitzgerald 2003, Fitzgerald 1998),
especially in smaller projects with scarce resources (Fitzgerald 1998, Giardino et
al. 2013). Additionally, if development teams consider a project to be simple or
if the product is not being developed for a major client, it is likely that devel-
opment methods are not followed to the letter, especially if the developers are
more experienced (Fitzgerald, Hartnett & Conboy 2006).

Finally, software development is a dynamic phenomenon and almost al-
ways unexpected circumstances arise during software projects that are not re-
flected in the initial plans (Kiely & Fitzgerald 2002, Cugola & Ghezzi 1998).
Therefore, development teams may decide to modify software processes to
cope with such unexpected situations (Fitzgerald 1998, Kiely & Fitzgerald 2002,
Cugola & Ghezzi 1998). Although it is widely acknowledged that developers
frequently customize software development methods, we find no explanation
in the literature clarifying why and under what conditions developers purpose-
fully decide to follow or neglect different software development practices.

While the behaviors of developers are influenced by the organizational
environment, software developers are human beings, and their actions are also
influenced by their motivations and intentions. Therefore, they should not be
viewed as obedient and subservient entities who blindly follow organizational-
level decisions. In this study, therefore, we argue that investigating the rationale
behind customizing software development methods is not possible unless both
the behavior of developers and their development context are taken into con-
sideration.

5.4 Research Methodology

In this study, we needed to employ a suitable research method to precisely
identify and analyze the mechanisms underlying the customization of software
methods while being able to explore contextual factors affecting these mecha-
nisms. The Grounded Theory Method (GTM) is a suitable methodology for
generating “conceptual theory that accounts for a pattern of behavior which is
relevant and problematic for those involved” (Glaser 1978, p.93). Such a theory
is generated through the systematic collection and analysis of empirical data
based on the experiences of humans and the contextual factors associated with
a phenomenon (Hoda, Noble & Marshall 2013, Glaser & Strauss 1967). In recent
years, the GTM has been used increasingly in the fields of SE and IS (Giardino
et al. 2013, Hoda, Noble & Marshall 2013, Birks et al. 2013, Urquhart & Fernan-
dez 2013). It has been suggested that this interest is due to the effectiveness of
the GTM to generate context-based and process-oriented explanations about
socio-technical phenomena (Urquhart, Lehmann & Myers 2010, Myers 1997),
such as software and information systems development.

94

Therefore, we decided to use the GTM (Glaser 1978, Glaser & Strauss 1967,
Glaser & Holton 2004, Glaser 1992) to develop a process theory (Mohr 1982)
that is grounded in the experience of software development professionals. Pro-
cess theories (Mohr 1982) are suitable means for providing explanations of how
emergent entities (e.g., software development processes) change and how
events occur (e.g., ignoring certain software development activities and practic-
es) over time (Van de Ven, A. H. & Poole 2005, Van de Ven, A. H. 1992, Ralph
2015a). With regard to “causality” (Markus & Robey 1988), what is necessary in
process theories is that the precursor produces the outcome through a dynamic
causal mechanism (Beach & Pedersen 2013). Therefore, a process theory re-
quires a satisfactory causal explanation (Markus & Robey 1988) that reveals
how a causal process composed of several necessary, albeit insufficient, inter-
acting parts contributes to producing the outcome.

5.4.1 Data Collection

We collected different types of qualitative data (i.e., interviews, field notes, pro-
ject reports, emails, and software procedures) during three years of field work
in an industrially led research and development project. Primarily relying on
qualitative interviews and following the guidelines suggested by (Myers &
Newman 2007), we conducted 17 semi-structured interviews with international
software professionals from six European companies. The interviewees held a
variety of positions and had different levels of work experience, with an aver-
age of 11 years. Table 12 shows a summary of the interviewees and their devel-
opment domain.

TABLE 12 A summary of the interviewees and their development contexts

Round Interviewee Position Years of
Experience

Domain Type(s) of Develop-
ment Projects

1st

Interviewee1 Software engineer 8 Commerce Cloud-based solutions,
web and mobile appli-
cations

Interviewee2 Software designer 3 Healthcare Web-based solutions
and mobile applica-
tions

Interviewee3 Team leader 6 Media Enterprise software
and web-based market
analysis solutions

Interviewee4 Software tester 9,5 Telecom Mobile applications,
web applications, en-
terprise and project
management systems
for energy sector

2nd

Interviewee5 Project manager 9 Automotive Embedded systems
including microchips
and sensors interfaces

Interviewee6 Project manager 22 Aerospace Simulators, monitor-
ing and control soft-
ware

95

Round Interviewee Position Years of
Experience

Domain Type(s) of Develop-
ment Projects

3rd

Interviewee7 Team leader 7 Aerospace Web-based knowledge
management systems,
semantic-based inter-
faces, and search en-
gines

Interviewee8 Software devel-
oper

6.5 Aerospace Embedded flight sys-
tems

Interviewee9 Software engineer 6 Aerospace Software solutions in
R&D projects

Interviewee10 Team leader 8.5 Aerospace Embedded software
and systems, flight
dynamics systems

Interviewee11 Software devel-
oper

20 Aerospace Software for defense
and space industries

Interviewee12 Team leader 11 Aerospace Robotics R&D projects
Interviewee13 Software engineer 8 Automotive Embedded systems
Interviewee14 Software engineer 14 Automotive Embedded software

4th

Interviewee15 Software engineer 10 Aerospace Avionics and embed-
ded software

Interviewee16 System engineer 8 Aerospace Avionics and embed-
ded software

Interviewee17 Software engineer 21.5 Aerospace Avionics systems

An interview protocol consisting of several high-level questions regarding
the research problem was prepared during the first round of interviews and
improved in each round of data collection. More-detailed questions were im-
provised during the interviews based on the answers provided and the termi-
nologies used by the interviewees (Myers & Newman 2007). All of the inter-
views, which lasted from one to two hours, were recorded and transcribed. It
must be noted that we asked for permission to record the interviews and as-
sured the interviewees in written form that their identities and answers would
be treated anonymously and would be accessible only to the research team.

We complemented the data collected from interviews with supplementary
data sources, including software development procedures, standards, and pro-
ject reports provided by the companies or publicly available on their websites.
Additionally, because of our close collaboration with two companies (i.e., Alpha
and Beta), from which we collected data in the 2nd, 3rd, and 4th rounds of in-
terviews, we were able to closely observe and better understand their organiza-
tional and business environments. In particular, we prepared field notes during
our four visits to these two companies and during regular face-to-face and tele-
conference meetings with company representatives throughout the project. By
using these supplementary data sources, we were attempting to identify contex-
tual factors or attributes that could be associated with developers’ behavior
during software development processes as well as instances of method custom-
ization.

We tried to make our data collection more productive by conducting the
interviews in an informal, quiet, and comfortable environment (Myers & New-
man 2007). Additionally, because of previous collaborations with some of the

96

interviewees or their companies, we were able to maintain trust (Myers &
Newman 2007) between the research team and the interviewees. Furthermore,
because the interviewers had several years of work experience in the software
industry, they were able to act as “cultural insiders” (Coleman & O’Connor
2007, Fitzgerald 1998) and were therefore able to overcome barriers in terms of
communication and professional knowledge during the field work. Professional
and scientific experience in software development also provided us with the
necessary theoretical sensitivity (Glaser 1978, Glaser & Strauss 1967, Glaser &
Holton 2004), which is the “ability to have theoretical insight into” the research
problem to “conceptualize and formulate a theory as it emerges from the data”
(Glaser & Strauss 1967, p.46). Due to the large amount of data collected during
this study, we used the QSR Nvivo tool to properly store and manage the col-
lected data and to perform data analysis.

5.4.2 Theoretical Sampling

A theoretical sampling strategy (Glaser & Strauss 1967, Glaser & Holton 2004)
was followed during data collection to further our understanding of the nature
of emerging theoretical concepts and to enrich these concepts (Birks et al. 2013).
In particular, these data were collected in four rounds between 2013 and 2015
(see Figure 18).

FIGURE 18 Different types of qualitative data collected in four rounds

97

During the first round of data collection, we conducted four interviews
with software professionals active in the e-commerce, healthcare, media, and
telecommunications industries. Based on the analysis of these preliminary in-
terviews, the characteristics of the software under development and contrasting
stakeholders’ concerns emerged as the key drivers influencing developers’ deci-
sions in customizing methods. Therefore, by focusing on these areas, we decid-
ed to conduct more interviews with developers active in diverse contexts. Thus,
we conducted two interviews with project managers from two companies in the
automotive and aerospace domains (i.e., Alpha and Beta) because the systems
developed in these domains are critical and their failure might have devastating
consequences in terms of finance, infrastructure, or human life (Sommerville
2015). After this round of data collection, we realized that even in critical do-
mains, development teams must often accommodate contradictory concerns
(e.g., increasing software quality while decreasing development time and costs);
therefore, there is a difference in terms of how rigorously the methods are fol-
lowed in different projects. Thus, we decided to extend the data collection with-
in these two companies and to conduct an additional eight interviews during
the 3rd round. To examine the differences between development contexts, we
collected data from four teams (i.e., one team from Alpha and three teams from
Beta) that were active in a variety of projects. Using data collected from these
interviewees, we were able to enrich our theoretical concepts. However, we re-
alized that further data collection could be beneficial to gain a better under-
standing of how quality control and assurance activities may influence the cus-
tomization of methods. Therefore, we conducted three more interviews (i.e., 4th
round) in Beta in which we mainly focused on quality management mecha-
nisms and practices. After the 4th round of data collection, we were confident
that theoretical saturation had been reached (Glaser & Strauss 1967, Glaser &
Holton 2004).

As explained in this section, using a constant comparison technique (Gla-
ser & Holton 2004, Glaser & Strauss 1967) through iterative data collection and
analysis enabled us to enrich the emerging theoretical concepts by identifying
and addressing shortcomings in the collected data.

5.4.3 Data Analysis

Next, we conducted a systematic data analysis process performing open coding,
selective coding, and theoretical coding (Glaser 1978, Glaser & Holton 2004, Glaser
1992, Urquhart, Lehmann & Myers 2010). Additionally, during the data collec-
tion and analysis phase, the first author prepared a considerable number of
memos to capture his thoughts and insights regarding the conceptual categories
and their interrelationships (Glaser & Strauss 1967).

In the first stage of analysis, namely, open coding (Glaser 1978, Glaser &
Holton 2004, Glaser 1992), data collected during the interviews were broken
down into small pieces, and conceptual labels (i.e., code) were given to them.
The purpose was to identify conceptually similar fractures of data that indicat-
ed instances where software development practices were ignored as well as the

98

contextual factors that lead to such actions. Figure 19 shows an example of open
codes produced during data analysis.

FIGURE 19 An example of open codes produced from interview transcripts

The codes identified during the open coding stage were constantly com-
pared with each other and assigned to different categories based on their simi-
larities and relations. We tried to saturate these emergent preliminary concep-
tual categories by identifying all the relevant indicators of these categories from
our data.

We moved to the second stage of data analysis, selective coding (Glaser
1978, Glaser & Holton 2004, Glaser 1992), as soon as we identified our core cat-
egory called Balancing Contradictory Contextual Forces. During the selective cod-
ing stage, the preliminary conceptual constructs were further developed and
refined through further data collection and coding only for those categories that
were sufficiently related and unified around the core category (Glaser 1978,
Glaser & Holton 2004). These categories include Requirements Evolution, Main-
taining Structural Balance, Maintaining Social Balance, and Loose Quality Manage-
ment. These conceptual constructs are the necessary parts (i.e., causal forces) of
a process that leads to the customization of software development methods. An
overall view of these necessary causal forces is shown in Figure 20.

FIGURE 20 An overview of the causal forces contributing to the customization of software
development methods

99

It is important to note that for software development practices to be ig-
nored, all the necessary causal forces must function together. However, we still
need to conceptualize how these causal forces are related and how they interact
with each other.

Finally, during the third stage of data analysis, theoretical coding (Glaser
1978, Glaser & Holton 2004, Glaser 1992), our grounded theory was formed by
conceptualizing the interrelationships between the necessary parts of the causal
mechanism through which software development practices are ignored.

In this process theory, we propose that software development is influ-
enced by the unique characteristics of software and the contrasting social and
structural forces imposed by software stakeholders and market environments.
Therefore, the software development context is stable as long as harmony exists
between these contextual forces, and change is unavoidable whenever the pow-
er between these opposing forces falls out of balance. Development teams often
decide to customize software processes to resolve such inconsistencies and to
maintain balance between contradictory contextual forces. In the next section,
we will discuss our theory in detail.

5.5 The mechanisms underlying the customization of methods

Despite differences in their domains and work experience, all of the interview-
ees indicated that software development methods are useful and should be uti-
lized in practice. However, they suggested that depending on the development
context, the characteristics of the software under development, and the needs of
the development teams, these methods must be customized.

If you go by the book, sometimes things become much bureaucratic that there is no
point of doing it. But of course you should always keep these main points in mind
[…] but sometimes it doesn’t matter if you do something before or after.”—
Interviewee 3

From our data, we identified a wide range of instances where software
development methods and practices were ignored. Such instances include, but
are not limited to, ignoring design and coding guidelines, skipping documenta-
tion and quality control activities, abandoning recommended tools, performing
workarounds, and postponing external quality assurance activities. During the
data analysis, we found that such changes in the software development pro-
cesses are caused by different factors, such as the complexity of the software
under development, the evolution of the requirements, technology advance-
ment, and contrasting and sometimes contradictory stakeholders’ expectations
and market forces.

Software development can be seen as a dynamic socio-technical system
consisting of different stakeholders in which the relations between entities are
formed around a set of common goals and are structured according to organiza-

100

tional strategies and agreements between internal (e.g., stakeholders) and ex-
ternal parties (e.g., regulatory authorities). According to our data, the disposi-
tional attributes of these entities, their structural arrangement, and their interac-
tions lead to instability in the software development context, and as a result,
changes in the software development process are unavoidable. Software stake-
holders may have inconsistent personal goals and contradictory opinions about
how these goals must be achieved. As a result, the perceptions of software
stakeholders regarding the success of the project vary. While some stakeholders
might consider faster delivery of functional software a success, others might
measure success based on the quality of the software. Because of these varying
goals and perceptions, which are sometimes contradictory, software stakehold-
ers might have contrasting perspectives regarding the necessity of following
software development processes. On the other hand, software is evolving and
being developing rather than being produced in the same way as other tangible
products are produced. Therefore, software development processes are dynam-
ic and often subject to change; as a result, software development steps and their
outcomes cannot be universally predefined.

Over time, software requirements evolve, and therefore, software firms
have to identify possible solutions to address these changes while fulfilling
their contractual obligations to deliver the software within an agreed-upon time
and budget. Additionally, from a business perspective, managers are motivated
to reduce development costs and delivery times in order to increase profit and
market share. In either of these situations, firms may decide to maximize the
leanness of software development processes by ignoring or minimizing the ex-
tent of certain software development activities.

In response to unexpected issues and evolving requirements as well as or-
ganizational-level decisions that are made to maintain strategic balance, devel-
opers are forced to perform additional tasks and activities that might not be
planned. In such situations, developers might decide to perform workarounds
by which they have to modify or ignore certain software development practices.
However, several interviewees mentioned that they were not comfortable with
performing such quality-compromising workarounds. Therefore, it can be said
that due to contradictions between contextual forces and developers’ personal
concerns, they experience inconsistent social situations. Our data show that de-
velopers try to resolve such inconsistent situations either by identifying alterna-
tive solutions to perform their tasks while avoiding quality-compromising prac-
tices or by justifying such compromises for themselves.

Although maintaining balance between contradictory structural and social
concerns is a key driver for customizing methods, a lack of proper quality con-
trol and assurance mechanisms makes it possible for development teams to ig-
nore software development practices. Controlling the quality of software prod-
ucts and processes is a very challenging task, often requiring a sufficient
amount of resources and technical skills. Therefore, in cases where proper qual-
ity management mechanisms are not in place or not rigorously followed, it is

101

very difficult for software stakeholders to identify compromises in software
development processes. Figure 21 represents our suggested theory.

FIGURE 21 The causal mechanisms underlying the customization of methods

In the following sections, we explain each part of the causal mechanisms
through which software development processes are modified or ignored.

5.5.1 Unique Characteristics of Software

Software artifacts are different from other kinds of engineering products due to
their unique characteristics, such as intangibility, upgradability, and unpredictabil-
ity. We believe that ignoring software development methods becomes possible
in the first place because of such unique characteristics of software artifacts.

Intangibility is one of the main characteristics making software a unique
product. It is therefore difficult to measure and evaluate software in the same
way as other traditional engineering artifacts, which are physical and tangible.
Estimation of the necessary resources for developing software is therefore ex-
tremely difficult and, in some cases, even impossible. As a result, software es-
timation is highly performed based on individuals’ subjective experiences, so
these estimates are often imprecise or inaccurate. For example, one of our inter-
viewees, a senior project manager, mentioned that:

“I’ve never seen anyone, not even a friend or whoever, in my professional network
who has ever managed to associate a cost in Euros or in manpower to [an] indi-
vidual requirement. It's always wild guesses; wrong guesses.”—Interviewee 5

Since the budget and resources are often agreed upon at the beginning of
projects, such inaccurate estimates lead to scarce resources during the projects.
This is even more problematic in projects where schedules and resources cannot

102

be extended. As a result, firms may face financial losses if their initial estimates
are not accurate.

On the other hand, intangibility makes software evaluation challenging.
Therefore, it is difficult to identify software deficiencies, while the consequences
of potential changes in software processes might not be immediately apparent.
Customers and end-users often receive the final software products, and they are
mainly able to interact with the software through its user interface. Therefore, it
is not possible, or even necessary, for them to observe different elements of the
software or how these components are developed. Thus, it was observed that
evaluating the quality of software development processes is nearly impossible
for non-technical stakeholders.

“Everyone can say something about GUI but maybe not about the performance
because they don’t know for instance, CPU or RAM consumption”—Interviewee
11

Even in the case of professional stakeholders, it is usually the final prod-
ucts delivered to customers that are evaluated, not the actual processes through
which those software products were developed. One exception may be certain
safety-critical projects in which a considerable amount of resources are spent
and every development phase and its deliverables are audited by regulatory
authorities. Thus, identifying deviations during the development process is ex-
tremely difficult, expensive, and, in some cases, even impossible.

Another characteristic that makes software unique is its upgradability.
Upgrading software products, during and after delivery, is often easier and
cheaper than other engineering artifacts. Thus, software development teams are
able to modify and update software products even after delivery. Such oppor-
tunity might motivate firms to postpone the delivery of certain features or the
implementation of certain activities (e.g., quality control) to the later stages of
the projects or even, in many cases, after the software is delivered. For example,
development teams may decide to deliver defective software rather than fail to
meet a deadline and solve the problems in future releases.

“Sometimes, you have to release that feature. So you deliver the feature and you
buy some time. Your customer is busy with that feature for a couple of days, and
then you go and test it and you release an update to fix those bugs.” —
Interviewee 4

Especially with the emergence of web- and cloud-based technologies, up-
grading the software has become easier and less apparent to end-users. Howev-
er, in other engineering artifacts, due to their physical nature, the delivery of
defective products and fixing post-delivery defects might be very expensive or
even impossible. This also applies to certain critical systems in which software
is embedded inside the hardware and upgrading becomes extremely difficult.

Unpredictability is another characteristic that differentiates software from
other engineering artifacts. Since the behavior of the software is unpredictable,

103

it is difficult for development teams to predict how complex the software will
be at the end of the projects and how it will behave when it is ready.

“You deliver a very complex system and then bugs start popping up from every-
where, then you have to dig in and pinpoint where the bugs are coming from,
there you lose time.”—Interviewee 6

This becomes even more challenging when there are a variety of software
modules and subsystems being developed in parallel and in many cases by dif-
ferent teams, not to mention that at the end of the projects, these modules must
be integrated.

“The typical thing [is that] everything is working fine when you develop individ-
ual components; then you put them all together and then the system is too slow
suddenly.” —Interviewee 10

Therefore, at the time of integration, developers must fix any unforeseen
issues, often within a limited time frame. Therefore, they may perform quick
fixes simply to make the software function and possibly perform refactoring in
the future to solve those problems.

The above-mentioned characteristics demonstrate that software is a
unique product, and software development is a highly complex, unpredictable,
and dynamic process that cannot be expected to adhere to a fixed, predefined
plan.

5.5.2 Requirements Evolution

Understanding customers’ expectations and specifying software requirements
at the beginning of the projects is often very challenging. At the beginning of a
project, when the software under development is not mature, development
teams might not have sufficient product knowledge to prepare a complete, clear,
and precise set of software requirements. Thus, as mentioned by the majority of
our interviewees, the initial set of software requirements must be updated con-
stantly to accommodate unforeseen issues and needs.

“Everything is very dynamic over three or four years of the project, and it changes
so much that everything [that] you would have consolidated in the first six or
nine months will, almost certainly, iterate very quickly.” —Interviewee 12

During the later stages of the project, when the software is being devel-
oped, the requirements become clearer, making changes to the initial require-
ments inevitable. Requirements evolve over time as software developers face
unexpected events or issues with the artifact under development. Additionally,
it is common for customers to ask for new requirements during a project. To
accommodate these changes, developers need to perform extra work and some-
times switch between tasks in response to high-priority requests.

104

“It happens that we are at the middle of coding, and then the requirements specifi-
er says that the requirements have to be changed, and then everything must
change accordingly.” —Interviewee 1

Because the project costs and timetable are agreed upon based on initial
estimates, changes in the requirements must be accommodated in contracts;
otherwise the changes will lead to project constraints, particularly during the
later stages of software development. In some projects, negotiations and re-
planning might be possible, but in many projects with fixed budgets and
schedules, changing the contractual terms is not possible.

“Once this deadline is there, it's really fixed and you cannot move it anymore.”—
Interviewee 6

Therefore, as requirements evolve, the initial plans need to be changed,
and development teams need to be able to accommodate these changes within
their budget and schedule.

“Usually, we don’t get more resources, so it’s mostly a discussion of which fea-
tures get the highest priority, and some of them get dropped.”—Interviewee 14

As can be seen from the above excerpt, one option is to cut corners and ig-
nore those features or activities that can be postponed to later phases or that can
be considered unnecessary for releasing the software.

5.5.3 Maintaining Structural Balance

While requirements evolution makes software development dynamic, the con-
trasting and sometimes contradictory concerns of stakeholders and contextual
forces make it highly complex. With the complex and dynamic nature of soft-
ware development in mind, it might be easier to understand the contradictory
forces software firms are faced with. For instance, software firms are often faced
with the dilemma of either increasing productivity or improving quality. While
software companies are willing to reduce development times and costs and in-
crease sales and revenue, they must also be able to accommodate extra work-
loads and costs associated with the evolution of requirements. On the other
hand, because the quality of the software is important for increasing customer
satisfaction and retaining market share, or because it may be demanded by reg-
ulatory authorities (Notander, Höst & Runeson 2013), software development
teams must spend more time and effort improving the quality of the software.
Therefore, software firms must be able to balance such contradictory concerns
and other contextual forces such as resource constraints and competitive market
environments.

Based on their business domain and market environment, organizations
might choose different strategies to maintain balance that influences their soft-
ware development approaches. For instance, in fast-moving environments, the
focus is on cost-effective and quick delivery of new and important features, and

105

therefore, firms will follow leaner processes. On the other hand, in critical do-
mains, where the quality and reliability of software products have significant
importance (Sommerville 2015), it is more likely that firms will utilize plan-
driven approaches to perform extensive development and quality assurance
activities (Boehm 2002).

Despite the importance of the development domain with respect to the
application of different methods, the objectives and characteristics of a certain
project also affect the extent to which methods are followed. Our data show that
even companies active in critical domains are sometimes faced with resource
constraints or market demand to reduce development costs and time. On the
other hand, a lack of quality in developing non-critical software, such as hedon-
ic mobile applications, might cause user dissatisfaction and eventually lead to a
loss of customers.

“We might be able to stay within budget and time by dropping, for example, test-
ing, but if some problem comes up, it’ll have the potential of bringing your relia-
bility down in the customer’s eyes. If you have a malfunctioning mobile app, you
might immediately lose your customers, and they might go to your competi-
tors.”—Interviewee 1

To deal with such contrasting forces, organizations often combine differ-
ent software development and quality control practices or even the principles of
different software development approaches. Some organizations might prepare
clear in-house software procedures, while others prefer to apply available soft-
ware development approaches in response to their needs and market demands.
For instance, Alpha is active in the automotive domain, and therefore, they
have to comply with a set of standards that are required by the regulatory au-
thorities. On the other hand, this firm is subject to market pressure to reduce
development time and costs. Therefore, it is common for software development
teams to work with scarce resources. In response to such contradictory forces,
the firm has decided to build an in-house software procedure based on automo-
tive standards while utilizing agile principles and practices to bring flexibility
to plan-driven processes that are recommended by the automotive standards.

“In the software group, we try to break the waterfall a little bit into small water-
falls and make it more iterative and [follow] some test-driven design as well.”—
Interviewee 6

Our data reveal that some of the organizations, especially the more-
mature ones, may go even further than combining elements from different ap-
proaches by strategically restructuring their teams while at the same time creat-
ing procedures to clearly indicate the development approaches and boundaries
within which those approaches must be applied. Thus, these organizations have
been able to create flexible structural units (e.g., teams or projects) within which
software developers are able to autonomously enact procedures while comply-
ing with structural rules and principles. In other words, developers have

106

enough freedom to utilize their creativity and skills to perform recommended
practices as needed as opposed to abandoning discipline altogether or slavishly
following procedures like robots. For instance, Beta, which is active in the aero-
space domain, has to comply with aerospace standards and regulations. How-
ever, the company is also active in a wide range of innovative research and de-
velopment projects within the aerospace domain; these projects often have a
fixed budget and high rates of change. Therefore, in this type of project, teams
must utilize flexible and cost-effective development approaches. To accommo-
date such contrasting forces, the company is divided into several development
teams with various missions, and an in-house software procedure is prepared
based on the aerospace standards to guide all these teams. However, based on
their needs and project characteristics, teams have the ability to customize this
method. Thus, while the key principles of the aerospace standards and the or-
ganizational strategies are taken into account, teams have the autonomy to use
different technologies while following different versions of the firm’s official
procedure.

As demonstrated in this section, performing or ignoring software devel-
opment practices can be seen as a strategic decision to maintain balance be-
tween contradictory contextual forces imposed by stakeholders’ concerns, mar-
ket environments, domain-specific regulations, organizational structures, and
project characteristics. If an organization has no clear strategy to maintain such
balance, their software procedures are most likely not flexible enough to ac-
commodate such contradictory concerns. As a result, when faced with unex-
pected contextual inconsistencies, developers might be forced to take shortcuts
and perform workarounds on the fly, which may be difficult to trace and fix.

5.5.4 Maintaining Social Balance

In addition to structural inconsistencies, software developers experience social
inconsistencies. Previous studies show that software developers like to produce
high-quality software (Lim, Taksande & Seaman 2012, Yang, Hu & Jia 2008)
they can be proud of (Katz 2005, Peters 2014). Additionally, developers are the
ones who deal with software artifacts on a daily basis. Thus, if there are defi-
ciencies in software artifacts, not only are developers responsible for these de-
fects, but they must also spend additional time and effort to fix them. Therefore,
it can be expected that developers prefer to perform their tasks properly in or-
der to produce high-quality software and avoid future difficulties.

“In my opinion, it's always best to keep good quality in what we do and skip a
part of the work instead of doing everything but with bad quality.”—Interviewee
7

However, in practice, developers experience situations in which they are
forced to deviate from the original plans and ignore recommended best practic-
es. Although individual developers have preferences on how to perform prac-
tices and tasks, sometimes they cannot act in accordance with their personal

107

desires, as they belong to their structural unit (i.e., team or firm) and their deci-
sions are influenced by constraints and opportunities within the unit.

“Me, as an engineer, I also would like to strive for excellence, but on the other side,
we have to also look at the budget.”—Interviewee 8

In cases where contextual factors force developers to ignore certain tasks
or practices they prefer to perform, they may face the dilemma of performing or
ignoring recommended practices. In other words, they must make trade-offs
between acting based on their personal desires or based on structural forces.

“I prefer to follow what is defined in the project […] for instance, all the unit tests
and integration tests. I prefer, but sometimes it’s not about preferences.”—
Interviewee 11

When faced with such socially inconsistent situations, individuals have a
tendency to resolve the tension by maintaining balance between contradictory
forces (Heider 1946, Heider 1958, Heider 1967, Cartwright & Harary 1956). Ac-
cording to our data, depending on the situation, developers choose different
strategies for maintaining social balance within their context. They may simply
ignore best practices or, if this is not personally acceptable to them, they may
try to identify an alternative solution to accommodate both concerns. Some of
our interviewees mentioned that in some cases, when they are under pressure
to deliver product within a limited time frame, despite having the opportunity
to cut corners, they might decide to stay at work longer or ask their teammates
for help to perform their task as they desire.

Similar to any other decision making processes, developers search within
their behavioral space (i.e., implicit and explicit knowledge) to identify availa-
ble alternatives to perform their tasks. Naturally, developers might choose a
solution that was learned previously, suggested by their colleagues, or recom-
mended in organizational archives or even on the internet. Since developers
belong to organizational units, the solution to be selected greatly depends on
other stakeholders’ viewpoints and organizational routines. If other teammates,
especially superior ones, do not consider certain practices important, or if ignor-
ing them is common within a certain context, developers might choose to ig-
nore these practices even if they know it is a questionable behavior.

“Our manager was saying just let it go, and we will improve the code and fix the
bugs during the next release. We were saying it shouldn’t be like this [because]
the code will be messy. Unfortunately, these next days never came; we were never
going back to fix the problem, except that the mess was coming up.”—Interviewee
2

If such “let it go” and “fix it later” attitudes become common within a giv-
en context, ignoring practices becomes legitimate from the unit’s perspective,
and it becomes acceptable for individuals as well.

108

Our data indicate that if developers are apprehensive about ignoring prac-
tices, they may justify their actions by, for example, blaming external forces or
diffusing the responsibility for their actions to others. For instance, in some cas-
es when managers suggest skipping certain activities to speed up the delivery
of certain features, developers blame managers for not being able to perform
their job well. Alternatively, as can be seen from the following excerpt, in some
cases where developers are under pressure to perform a task in an unachievable
timeframe, they try to delegate the responsibility of making decisions onto their
teammates.

“I put my effort, but sometimes it’s not achievable. Before coming closer to dead-
line, I talk to our manager, and he finds a way; he should find a way; his responsi-
bility is to manage this kind of problems.”—Interviewee 11

Our data also reveal that in maintaining social balance, developers with
higher levels of experience and decision making power rely more on their per-
sonal experience and intentions, while junior developers’ decisions are more
influenced by organizational guidelines and norms and the potential conse-
quences of their actions. In other words, the more experienced the developers
become, the greater is the chance that they will make decisions based on their
personal judgment as opposed to organizational guidelines. This can be seen
from the following statement made by a senior project manager:

“The rules that are imposed to me were my best practices five years ago; these are
obsolete for me; that for me is ridiculous; it would be a regression for me to comply
with certain rules of the company.”—Interviewee 5

Consequently, in the case of more-experienced developers, if they have a
tendency to ignore methods and recommended best practices, there is a higher
chance that they will decide to do so.

5.5.5 Interaction between Structural and Social Balance

The mutual reinforcement of maintaining structural balance and social balance
is a central driver of the customization of software development methods. The
behavior of developers is shaped by organizational strategies and routines, and
their perception of the benefits of following software development methods
will be adversely affected if doing so is viewed as non-critical in their context.
In such a situation, if from an organizational perspective ignoring certain prac-
tices or activities is viewed as beneficial for solving contextual inconsistencies
(i.e., structural balance), it is likely that developers will ignore these practices in
order to maintain social balance.

On the other hand, due to constant social interaction among team mem-
bers they may form a common understanding of the development context as
well as similar perceptions of the necessity of following methods over time. If
team members, especially more-senior ones, behave in certain ways, junior de-
velopers will most likely view their behavior as valuable and imitate it. In par-

109

ticular, the behavior of superiors influences the norms of the team because sen-
ior members often have the responsibility to provide guidance or to make criti-
cal decisions.

“My time is more dedicated to other things, but I can still help new guys [with]
the selection of the proper way, among the different palette of possibilities and ex-
plain [to] them why this or that is a good idea or a better idea.”—Interviewee 5

Additionally, due to close collaboration with other stakeholders, develop-
ers might form stronger social ties with other stakeholders, and their concerns
and actions might become more similar overtime. As a result, identifying com-
monly acceptable solutions that accommodate multiple concerns becomes easi-
er. For instance, close collaboration between stakeholders through iterative
planning and review meetings in agile projects not only enables developers to
respond to requirements changes by re-prioritizing backlogs, but it also makes
it possible for them to receive quick feedback about their actions and plan fu-
ture steps accordingly. Such information will become part of the organizational
behavioral space and be accessible to developers in the future. Enacting such
elements of experience may lead to changes in the norms and routines within
the software development context. Additionally, since more-senior members
are often involved in developing software development guidelines, they influ-
ence organizational norms and official guidelines based on their personal expe-
rience and preferences for certain methods and best practices.

5.5.6 Loose Quality Management

In software development, like any other production process, deviations from
plans become possible in the absence of proper control mechanisms. However,
a lack of proper knowledge and control mechanisms makes it more difficult for
software stakeholders to identify deviations in software development processes
as well as their potential consequences. In software development, such control
is maintained through quality management, which consists of quality assurance
and quality control activities (Bourque & Fairley 2014).

While quality control is performed to assess the level of quality built into
software artifacts, quality assurance is needed to evaluate the extent to which
quality practices and recommendations have been followed in developing these
artifacts (Bourque & Fairley 2014). In some domains, such as automotive and
aerospace, there are clear regulations and standards providing the quality as-
surance recommendations that firms are expected to comply with. However, in
other domains, there may be no clear definition of quality practices or no exter-
nal demands to comply with quality practices. Since in software projects quality
control is mainly achieved by performing a variety of tests, if there are no prop-
er quality assurance practices, it becomes possible for development teams to
ignore quality control activities.

110

“We would like to have a full review of our documentation and the code before we
release. Currently, this is not always the case, mainly due to time constraints.” —
Interviewee 6

If developers intentionally ignore recommended practices for personal
reasons, since their actions and their consequences cannot be easily observed by
other stakeholders, they have no fear of exposure. This becomes more problem-
atic if firms consider stakeholders’ inability to identify software defects or a lack
of proper quality assurance mechanisms as an advantage to strategically ignore
certain practices, making it is easier for software developers to neglect recom-
mended practices.

“There are coding standards that we are supposed to comply with. I'm saying
‘supposed to’ because who really verifies? From my own knowledge nobody; Now,
if we talk about more critical software, not only the coding standard [is] defined
but [also] verified.”—Interviewee 5

However, if developers know that their questionable practices could be
easily observed by other stakeholders, they would most likely avoid ignoring
recommended practices, as they do not want to be blamed for inferior work and
failure. It is apparent that such avoidance is especially vital in critical domains.

“If you leave some defect and you don’t report it or you pass some test without
making it work properly, anyway it ‘ll come back later to you because there is an
audit trial, and they can say why you didn’t do this.”—Interviewee 3

As discussed earlier, regardless of the context, in every domain there
might still be certain rules and constraints that restrict developers’ ability to
perform or ignore recommended practices. Thus, in some domains, ignoring
best practices might be more difficult and may have more severe consequences;
as a result, software developers may pay more attention to quality practices.

5.5.7 Ignoring Software Development Practices

Ignoring certain steps or practices in software development processes becomes
possible when the abovementioned parts of the causal process function together.
It is important to remember that these parts are necessary but not sufficient
(Markus & Robey 1988, Beach & Pedersen 2013) for the outcome to occur.

Our data show that in safety-critical projects within Alpha and Beta, cus-
tomers are often highly knowledgeable domain experts who are able to clearly
explain and provide details about their needs and expectations as well as the
expected methods and standards to be followed. Therefore, in these projects,
development teams might be able to specify a clear and complete set of re-
quirements and necessary resources from the outset. Since the requirements are
largely fixed and software development teams are faced with less resource con-
straints or external market pressure, they are able to better follow development
activities as planned. Additionally, proper quality management mechanisms

111

are utilized in such projects, and therefore, any unintentional or intentional de-
viations from the original plans can be identified and fixed before software de-
livery. Therefore, in such safety-critical settings, the possibility that best practic-
es will be ignored is farfetched.

An opposite case can be projects in software startups. Often software
startups are active in highly competitive and turbulent market environments
where customers’ requirements are vague, resources are often scarce, competi-
tion is fierce, and there are no external pressures to comply with quality stand-
ards. In such an environment, ignoring best practices is highly probable and
may even be vital for the survival of the company.

5.6 Discussion

In the previous section, we explained our process theory, which is grounded in
empirical data collected from different development contexts. In this section,
we first discuss how our findings stack up against previous studies as well as
our contributions to theory and research. Then, we outline the implications for
practice.

5.6.1 New Theoretical Contributions and Related Work

The main theoretical contribution of this study is a novel theory of Software
Development Balance. While the identification of novel software development
methods has been the focus of previous research, there has been a lack of empir-
ically grounded theories explaining why these methods have been ignored in
practice.

Our study is the first to provide a mechanistic explanation of the causal
forces leading to the customization of software development methods in prac-
tice. This process, which is initiated by the unique characteristics of software,
indicates how software development teams customize methods for balancing
contrasting and sometimes contradictory forces and concerns within their con-
text.

In our grounded theory, we propose that the evolution of requirements is
one of the main causal forces contributing to the customization of software de-
velopment processes. Previous studies have indicated that software projects are
subject to constant requirements changes due to turbulence in the business en-
vironment (Mathiassen et al. 2007, Highsmith & Cockburn 2001), ambiguous
customer requirements (Highsmith & Cockburn 2001, Mathiassen et al. 2007,
Ghanbari, Similä & Markkula 2015), and a lack of understanding of system
functionalities (Highsmith & Cockburn 2001, Ghanbari, Similä & Markkula
2015).

In addition to requirements evolution, software firms must often deal with
contrasting and contradictory concerns either caused by differences between
stakeholders’ needs and viewpoints (Truex, Baskerville & Travis 2000, Tsumaki

112

& Tamai 2005) or external forces such as market demands (Baskerville & Pries-
Heje 2004, Lindgren et al. 2008). To accommodate these contradictory forces in a
cost-effective way, organizations must follow more-flexible and leaner software
development approaches (Highsmith & Cockburn 2001, Baskerville et al. 2003).
A group of studies explains how software firms might increase the leanness of
software development methods by ignoring certain development practices
(Baskerville & Pries-Heje 2004, Fitzgerald, Hartnett & Conboy 2006, Boehm
2002, Baskerville et al. 2001, Lim, Taksande & Seaman 2012, Lindgren et al. 2008,
Tom, Aurum & Vidgen 2013). Most of the previous studies assume that method
customization is the result of such organizational-level decisions made for gain-
ing short-term benefits such as faster delivery times and lower development
costs (Baskerville & Pries-Heje 2004, Baskerville et al. 2001, Fitzgerald, Hartnett
& Conboy 2006, Boehm 2002, Lim, Taksande & Seaman 2012, Lindgren et al.
2008, Cunningham 1992, Tom, Aurum & Vidgen 2013).

In this study, however, we suggest that software methods should not be
customized randomly but strategically and by considering the organizational
structure and contextual characteristics of software firms. This is because cer-
tain software development practices and activities are “indispensable” (Zhang
& Lyytinen 2001), and ignoring them will compromise the quality of software
artifacts. For instance, using agile methods has been widely misinterpreted as
performing development activities without heeding any rules (Conboy & Fitz-
gerald 2010). However, advocates of agile methods dismiss such claims and
state that using agile methods requires greater discipline (Conboy & Fitzgerald
2010, Schwaber & Beedle 2001, Beck & Boehm 2003, Dyba 2000), and since using
agile methods “is not an excuse for unilateral behavior” (Beck & Boehm 2003,
p.44), agile teams should not “abandon discipline altogether” (Dyba 2000, p.83).

The concept of ambidexterity has been used in the field of organizational
sciences to explain such strategic approaches for dealing with conflicting de-
mands (Gupta, Smith & Shalley 2006, O Reilly & Tushman 2004, Tushman &
O'Reilly 1996, Gibson & Birkinshaw 2004). Recently, several studies have sug-
gested that using ambidextrous strategies might be suitable for addressing con-
tradictory demands in software development projects (Katz 2005, Dyba 2000,
Ramesh, Mohan & Cao 2012, Lee, DeLone & Espinosa 2006, Vinekar, Slinkman
& Nerur 2006). Based on such a perspective, combining agile and plan-driven
methods can be seen as a strategic solution for responding to requirements
changes while producing high-quality software (Boehm & Turner 2003,
McCaffery, Pikkarainen & Richardson 2008, Ghanbari 2016). However, our
study is unique in considering the role of developers in implementing such or-
ganizational-level ambidextrous strategies, an issue that has been widely over-
looked by previous studies.

Our study extends the previous literature by proposing that organization-
al-level decisions to customize software processes often force developers to take
quality-compromising shortcuts, which might not be appreciated from a tech-
nical perspective (Lim, Taksande & Seaman 2012, Lindgren et al. 2008, Katz
2005, Austin 2001). Drawing upon the concept of balance from the field of psy-

113

chology (Heider 1946, Heider 1967, Heider 1958, Cartwright & Harary 1956), we
argue that if developers are forced by structural arrangements to ignore certain
practices, they might experience social inconsistencies that would motivate
them to engage in mental or physical actions to resolve such tensions.

Our study is the first to suggest that in such inconsistent situations, devel-
opers will choose different strategies based on their personal experience and
organizational routines in order to perform tasks while at the same time balanc-
ing personal values with organizational demands. We also showed that devel-
opers with higher levels of experience and decision making power rely more on
their personal judgment while ignoring methods. Therefore, if senior develop-
ers are personally motivated to ignore recommended best practices, their deci-
sion and action is less influenced by structural constraints. This may explain the
findings of previous studies (Fitzgerald 1998, Potdar & Shihab 2014) suggesting
that more- experienced developers tend to ignore methods to a greater extent.

Finally, in this study, we suggest that ignoring software development
methods becomes possible due to improper quality management mechanisms.
This observation is in line with results reported by previous studies (Baskerville
& Pries-Heje 2004, Austin 2001, Wang & Zhang 2010, Ahonen & Junttila 2003),
which suggest that lack of attention to quality control and assurance activities is
one of the main reasons software developers engage in quality-compromising
workarounds and shortcuts.

Our findings highlight the importance of individual-level preferences and
decisions as well as organizational-level decisions in balancing contrasting and
sometimes contradictory contextual forces. Future field studies are needed to
reveal and provide in-depth explanations of processes through which structural
and social balance is maintained across development contexts. In doing so, our
proposed theory can be used as a lens for observing and analyzing software
development processes in different contexts so that future researchers will un-
derstand how software development methods are customized under the influ-
ence of different social and organizational settings. Consequently, future re-
search will be able to articulate how software firms must maintain balance be-
tween contradictory context-specific forces by clarifying the conditions under
which and the boundaries within which software development approaches
must be followed.

5.6.2 Implications for Practice

Our theory emphasizes the key role of software developers in implementing
organizational strategies and development approaches. Organizations should
both define clear strategies for balancing contrasting contextual forces within
software projects and understand how developers react to such organizational-
level strategies. In doing so, organizations must identify and consider the be-
havioral patterns shown by software developers in certain inconsistent situa-
tions to better understand the socio-structural factors influencing developers’
decisions to follow or ignore organizational procedures.

114

Such understanding enables firms to strategically define development ap-
proaches and recommend a set of consistent software development and quality
management practices to be used within their contextual boundaries. Thus,
firms are able to maintain balance between inconsistent contextual concerns as
well as promote a professional culture in which software professionals are en-
couraged to utilize their creativity to achieve high-quality work within the con-
textual boundaries.

Finally, by taking into account that developers tend to restructure their so-
cial arrangement, organizations can form integrated teams suitable for different
development contexts based on developers’ personality, contextual concerns,
and the collective skills of the team.

5.6.3 Limitations and Future Work

It must be noted that our study has some limitations that might affect the validi-
ty of the results. First, we primarily relied on interviews with software profes-
sionals. As a result, our results are influenced by the personal opinions and per-
ceptions of interviewees, which of course may be different from reality. This is
because interviewees may not have felt comfortable admitting that they or their
companies ignore recommended best practices and potentially compromise
software quality. We tried to compensate for this threat by collecting supple-
mentary data such as project reports, software development procedures, and
field notes that could support the interviewees’ statements. Additionally, we
tried to ensure our interviewees that any information provided by them would
be treated confidentially and would be accessed only by researchers.

Another potential limitation of interviewing software professionals is that
the outcomes could have been different if we had interviewed business person-
nel. Since we were aiming at capturing how software development methods are
customized across domains, software professionals, who are responsible for
implementing these methods on a daily basis, can provide a better perspective
on the phenomenon than high-level managers. One might also argue that high-
level managers are too far from the operational decisions of how to apply soft-
ware development methods, and therefore, are not good candidates for this
study. Team leaders, however, could be more-relevant informants. Therefore,
we also interviewed team leaders and department managers, as they are more
involved in organizational-level decision making and not solely in the technical
parts of software development.

Finally, as mentioned earlier, software development is an extremely com-
plex phenomenon that is affected by a variety of social, technical, and organiza-
tional factors. Therefore, it is very difficult to identify and consider every factor
that influences software development processes and their outcomes. Therefore,
in this study, we attempted to identify a set of necessary conditions and to pro-
vide a satisfactory mechanistic explanation of how software development
methods are ignored in practice.

To address these limitations and to improve the generalizability of our re-
sults, further research is necessary. Although our substantive grounded theory

115

provides an explanation of how and under what conditions software develop-
ment methods are customized in practice, future studies are necessary to fur-
ther improve our proposed theory. As suggested in (Glaser & Strauss 1967),
since theory evolves as “an ever-developing entity, not as a perfected product”,
the theory presented in this study can be improved by further scientific investi-
gation as well as practical application. In particular, there is a need for future
empirical studies to conduct in-depth investigations on the mechanisms
through which structural and social balance are maintained within different
development contexts.

5.7 Conclusions

In this study, we used GTM in a longitudinal field study to build an empirically
grounded theory. Our process theory reveals the causal mechanisms underly-
ing the customization of software development methods, indicating how and
under what conditions certain software development activities and practices are
ignored. In particular, this theory explains how the process of software devel-
opment customization is initiated by the unique characteristics of software, and
how it progresses through the interactions among several causal forces influ-
enced by inconsistent socio-structural settings.

In this study, we propose that development teams, depending on their
context, decide to customize software development processes to maintain bal-
ance between contrasting or even contradictory forces imposed by stakeholders’
concerns and contextual determinants. Therefore, we suggest that, if needed,
software development methods should be customized strategically and accord-
ing to the organizational structures of software firms and their development
contexts.

6 SUMMARY

In this doctoral research, we attempted to advance the SE and IS research and
practice by providing novel mechanism-based understandings of the customi-
zation of software development methods.

In doing so, we first identified and reported the shortcomings in the litera-
ture regarding this phenomenon. We then proposed a set of directions for fu-
ture research, in four areas, to address these identified gaps. The first research
area calls for in-depth empirical studies to investigate the contextual factors and
conditions under which the customization of software development methods
takes place. The second research area that requires further research is the psy-
chological processes through which software professionals decide to perform
such questionable practices. The third research area needs to study the long-
term consequences of such questionable practices. Finally, the fourth research
area must identify and suggest different interventions and solutions that could
enable the software community to overcome the omission of quality practices.

In this doctoral research, we have attempted to contribute to the first and
second research areas by conducting longitudinal field studies. In Study 2, we
conducted a case study to investigate the customization of software develop-
ment methods in a company active in a critical domain. The results of this case
study show that customization of software development methods is not limited
to highly turbulent and competitive business domains. Rather, the decision to
ignore certain software development activities and practices is influenced by
contextual factors including business-, organizational-, and project-level set-
tings. In Study 2, we proposed a theoretical model that shows how the customi-
zation of software development methods is initiated by several challenges with-
in the development context.

In Study 3, we conducted a field study across different development con-
texts (i.e., different domains and different organizational settings) and proposed
a novel process theory to indicate the causal mechanisms underlying the cus-
tomization of software development methods. In this theory, called the Theory of
Software Development Balance, we indicate how methods are customized as a re-
sult of organizational- and individual-level mechanisms to maintain balance

117

between contrasting or even contradictory forces imposed by stakeholders’ con-
cerns and contextual factors.

From an academic perspective, the proposed theory represents a deep
theoretical understanding of developers’ behavior in ignoring recommended
practices and the consequences of such decisions. The proposed process theory
also describes how software developers make quality-compromising decisions
in order to deal with inconsistent forces in their work environments. This un-
derstanding assists researchers in analyzing the effects of different contextual
determinants on developers’ tendency towards following software develop-
ment practices. In doing so, scholars are able to build new theories or to extend
existing theories to explain the differences between software development pro-
cesses across organizational and business environments.

Since “nothing is as practical as a good theory” (Lewin 1945), our suggest-
ed theory assists software practitioners in understanding the processes through
which and the conditions under which developers make quality-compromising
decisions and skip recommended practices and quality rules. Therefore, our
proposed theory enables managers to identify and promote a set of suitable
software development practices and quality control mechanisms based on their
organizational settings and the characteristics of their development teams. At
the same time, developers are able to better understand the reasons behind or-
ganizational-level trade-offs and to choose the best alternative for dealing with
such trade-offs.

Finally, according to our suggested theory, we recommend that if it is nec-
essary for a software firm to customize methods, they should do so strategically
and by considering organizational and social structures within their context.

118

YHTEENVETO (FINNISH SUMMARY)

Viimeisen neljän vuosikymmenen aikana ohjelmistokehitys on ollut yksi
ohjelmistotuotannon ja tietojenkäsittelytieteiden tärkeimmistä aiheista.
Tuhansia menetelmiä, jotka tarjoavat ohjeita ohjelmistokehityksen prosesseihin,
on ehdotettu. Näiden ohjelmistokehitysmenetelmien tavoite on systemaattinen
korkealaatuisten ohjelmistojen tuottaminen. Kuitenkin on laajalti tunnettua, että
näitä menetelmiä seurataan harvoin. Pikemminkin ohjelmistokehittäjät usein
muuttavat tai ohittavat erilaisia vaiheita, käytäntöjä ja laatusääntöjä, joita
suositellaan ohjelmistokehityksen menetelmissä. Joukko aiempia tutkimuksia
viittaa siihen, että joustavuuden maksimoiminen ja kehitykseen käytetyn ajan ja
resurssien vähentäminen ohjelmistokehityksen prosesseissa ovat keskeisiä
tekijöitä näiden muokkauksien takana. Toinen ryhmä väittää, että näiden
menetelmien riittämättömyys sidosryhmien odotusten täyttämisessä, on pääsyy
siihen, että niitä räätälöidään käytännön työssä. Kuitenkaan tiedossa ei ole
teorialähtöisiä ja empiirisesti todennettuja selityksiä valaisemaan syitä
metodien räätälöinnin taustalla. Väitöskirjassa on yritetty ottaa ensimmäinen
askel tämän tutkimusaukon täyttämiseen.

Tutkimuksen ensimmäisessä vaiheessa toteutettiin kattava kirjallisuuskat-
saus määrittämään puutteita ohjelmistokehitysmenetelmien räätälöinnin tutki-
muksessa ja selventämään tarpeita tutkimusaukkojen täyttämiselle. Toisessa
vaiheessa kolmivuotisen kenttätutkimuksen kautta pyrittiin täyttämään joitain
tunnistettuja puutteita. Keräämällä dataa useista ohjelmistoprojekteista eri teol-
lisuuden aloilla ja käyttämällä Grounded Theory -tutkimusmenetelmää raken-
nettiin prosessiteoria nimeltä Theory of Software Development Balance. Teoria selit-
tää ohjelmistokehitysmetodien räätälöinnin mekanismeja. Näiden mekanismien
avulla toimintaympäristön vastakkaiset voimat pyritään säilyttämään tasapai-
nossa.

119

REFERENCES

Abrahamsson, P., Warsta, J., Siponen, M. T. & Ronkainen, J. 2003. New Direc-
tions on Agile Methods: A Comparative Analysis. Proceedings of 25th In-
ternational Conference on Software Engineering, 2003. IEEE, 244.

Agrawal, M. & Chari, K. 2007. Software effort, quality, and cycle time: A study
of CMM level 5 projects. IEEE Transactions on Software Engineering 33 (3),
145-156.

Ahonen, J., J. & Junttila, T. 2003. A case study on quality-affecting problems in
software engineering projects. IEEE International Conference on Software:
Science, Technology and Engineering, 2003. SwSTE'03. , 145.

Alemzadeh, H., Iyer, R. K., Kalbarczyk, Z. & Raman, J. 2013. Analysis of safety-
critical computer failures in medical devices. Security & Privacy, IEEE 11
(4), 14-26.

Austin, R., D. 2001. The effects of time pressure on quality in software devel-
opment: An agency model. Information Systems Journal 12 (2), 195-207.

Avison, D. & Fitzgerald, G. 2003. Where Now for Development Methodologies?
Communications of the ACM 46 (1), 79-82.

Banker, R., D., Davis, G., B. & Slaughter, S., A. 1998. Software development
practices, software complexity, and software maintenance performance: A
field study. Management Science 44 (4), 433-450.

Bargh, J. A., Chen, M. & Burrows, L. 1996. Automaticity of social behavior: Di-
rect effects of trait construct and stereotype activation on action. Journal of
personality and social psychology 71 (2), 230.

Baskerville, R., Levine, L., Pries-Heje, J. & Slaughter, S. A. 2001. How Internet
software companies negotiate quality. IEEE Computer 34 (5), 51-57.

Baskerville, R. & Pries-Heje, J. 2004. Short cycle time systems development. In-
formation Systems Journal 14 (3), 237-264.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J. & Slaughter, S. A. 2003. Is
Internet-Speed Software Development Different ? IEEE Software , 70-77.

Bavani, R. 2012. Distributed Agile, Agile Testing, and Technical Debt. Software,
IEEE 29 (6), 28-33.

Bayer, J. & Muthig, D. 2006. A view-based approach for improving software
documentation practices. 13th Annual IEEE International Symposium and
Workshop on Engineering of Computer Based Systems, 2006. ECBS 2006.
IEEE, 10 pp.

Beach, D. & Pedersen, R. B. 2013. Process-tracing methods: Foundations and
guidelines. University of Michigan Press.

Beck, K. & Boehm, B. 2003. Agility through discipline: A debate. Computer (6),
44-46.

Beck, K. 1999. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional.

Birks, D. F., Fernandez, W., Levina, N. & Nasirin, S. 2013. Grounded theory
method in information systems research: its nature, diversity and opportu-
nities. European Journal of Information Systems 22 (1), 1-8.

120

Black, P., E. 2012. Static Analyzers: Seat Belts for Your Code. IEEE Security and
Privacy 10 (3), 48-52.

Boehm, B. W. 1984. Verifying and validating software requirements and design
specifications. IEEE Software 1 (1), 75.

Boehm, B. 2002. Get Ready for Agile Methods, with Care. IEEE Computer 35 (1),
64-69.

Boehm, B. 1988. A Spiral Model of Software Development and Enhancement.
IEEE Computer 21 (5), 61-72.

Boehm, B. & Turner, R. 2003. Observations on balancing discipline and agility.
Proceedings of the Agile Development Conference, 2003.ADC 2003 , 32-39.

Bourque, P. & Fairley, R. E. 2014. Guide to the Software Engineering Body of
Knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

Brinkkemper, S. 1996. Method engineering: engineering of information systems
development methods and tools. Information and Software Technology 38
(4), 275-280.

Brooks, F., P. 1995. The mythical man-month: Essays on software engineering.
(Anniversary Edition edition) Addison-Wesley.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., Mac-
Cormack, A., Nord, R., Ozkaya, I. & Others 2010. Managing technical debt
in software-reliant systems. Proceedings of the FSE/SDP workshop on Fu-
ture of software engineering research. , 47.

Burton-Jones, A., Mclean, E. R. & Monod, E. 2011. On Approaches To Building
Theories : Process, Variance and Systems. Sauder School of Business, UBC.

Çalikli, G. & Bener, A. B. 2013. Influence of confirmation biases of developers on
software quality: an empirical study. Software Quality Journal 21 (2), 377-
416.

Carmel, E. & Becker, S. 1995. A process model for packaged software develop-
ment. IEEE Transactions on Engineering Management 42 (1), 50-61.

Cartwright, D. & Harary, F. 1956. Structural balance: a generalization of Hei-
der's theory. Psychological review 63 (5), 277.

Codabux, Z. & Williams, B. 2013. Managing technical debt: An industrial case
study. Proceedings of the 4th International Workshop on Managing Tech-
nical Debt. IEEE Press, 8.

Coleman, G. & O’Connor, R. 2007. Using grounded theory to understand soft-
ware process improvement: A study of Irish software product companies.
Information and Software Technology 49 (6), 654-667.

Conboy, K., Fitzgerald, G. & Mathiassen, L. 2012. Qualitative methods research
in information systems: motivations, themes, and contributions. European
Journal of Information Systems 21 (2), 113-118.

Conboy, K. & Fitzgerald, B. 2010. Method and developer characteristics for ef-
fective agile method tailoring. ACM Transactions on Software Engineering
and Methodology 20 (1), 1-30.

Cugola, G. & Ghezzi, C. 1998. Software Processes: a Retrospective and a Path to
the Future. Software Process: Improvement and Practice 4 (3), 101-123.

121

Cunningham, W. 1992. The WyCash portfolio management system, Addendum
to the proceedings on Object-oriented programming systems, languages,
and applications (Addendum). British Columbia, Canada , 29-30.

Cusumano, M., MacCormack, A., Kemerer, C., F. & Crandall, B. 2003. Software
development worldwide: The state of the practice. IEEE Software 20 (6), 28-
34.

Dalcher, D. 1999. Disaster in London. The LAS case study. Engineering of Com-
puter-Based Systems, 1999. Proceedings. ECBS'99. IEEE Conference and
Workshop on. IEEE, 41.

Dyba, T. 2000. Improvisation in small software organizations. IEEE Software 17
(5), 82.

Eberlein, A. & Leite, Julio, Cesar, Sampaio, do Prado 2002. Agile Requirements
Definition : A View from Requirements Engineering. Proceedings of the In-
ternational Workshop on Time-Constrained Requirements Engineering
(TCRE’02). , 4.

Eklund, A., Nichols, T. E. & Knutsson, H. 2016. Cluster failure: Why fMRI infer-
ences for spatial extent have inflated false-positive rates. Proceedings of the
National Academy of Sciences , 201602413.

Elssamadisy, A. & Schalliol, G. 2002. Recognizing and responding to bad smells
in extreme programming. Proceedings of the 24th International conference
on Software Engineering. ACM, 617.

European Cooperation for Space Standardization 2013. Space engineering:
software. ECSS-E-ST-40C. Noordwijk, The Netherlands.

European Space Agency 2009. ECSS-E-ST-40C, SPACE ENGINEERING:
SOFTWARE. ESA Requirements and Standards Division.

Fitzgerald, B. 1998. An empirical investigation into the adoption of systems de-
velopment methodologies. Information & Management 34 (6), 317-328.

Fitzgerald, B., Hartnett, G. & Conboy, K. 2006. Customising agile methods to
software practices at Intel Shannon. European Journal of Information Sys-
tems 15 (2), 200-213.

Fleming, R. 1999. A fresh perspective on old problems [software industry].
Software, IEEE 16 (1), 106-113.

Fonseca, J. & Vieira, M. 2008. Mapping Software Faults with Web Security Vul-
nerabilities. IFIP International Conference on Dependable Systems and
Networks. IEEE, 257.

Fowler, M. & Highsmith, J. 2001. The agile manifesto. Software Development 9
(8), 28-35.

Fraser, S. & Mancl, D. 2008. No silver bullet: Software engineering reloaded.
IEEE Software 25 (1), 91-94.

Garousi, V. & Fernandes, J. M. 2016. Highly-cited papers in software engineer-
ing: The top-100. Information and Software Technology 71, 108-128.

Ghanbari, H. 2016. Seeking Technical Debt in Critical Software Development
Projects: An Exploratory Field Study. 2016 49th Hawaii International Con-
ference on System Sciences (HICSS). IEEE, 5407.

122

Ghanbari, H., Similä, J. & Markkula, J. 2015. Utilizing online serious games to
facilitate distributed requirements elicitation. Journal of Systems and Soft-
ware 109, 32-49.

Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T. & Abra-
hamsson, P. 2016. Software development in startup companies: The green-
field startup model. IEEE Transactions on Software Engineering 42 (6), 585-
604.

Gibson, C. B. & Birkinshaw, J. 2004. The antecedents, consequences, and medi-
ating role of organizational ambidexterity. Academy of management Jour-
nal 47 (2), 209-226.

Gibson, V., R. & Senn, J., A. 1989. System structure and software maintenance
performance. Communications of the ACM 32 (3), 347-358.

Glaser, B. G. 1992. Basics of grounded theory: Emergence vs. forcing. Mill Val-
ley, CA: Sociology Press.

Glaser, B. G. 1978. Theoretical sensitivity: Advances in the methodology of
grounded theory. Sociology Press.

Glaser, B. G. & Holton, J. 2004. Remodeling grounded theory. Forum Qualita-
tive Sozialforschung/Forum: Qualitative Social Research.

Glaser, B. G. & Strauss, A. 1967. The discovery grounded theory: strategies for
qualitative inquiry. Chicago, U.S.: Aldine Transactions.

Gregor, S. & Jones, D. 2007. The Anatomy of a Design Theory. Journal of the
Association for Information Systems 8 (5).

Gregor, S. 2006. The nature of theory in information systems. Mis Quarterly 30
(3), 611-642.

Guba, E. G. & Lincoln, Y. S. 1994. Competing paradigms in qualitative research.
Handbook of qualitative research 2 (163-194), 105.

Gupta, A. K., Smith, K. G. & Shalley, C. E. 2006. The interplay between explora-
tion and exploitation. Academy of management journal 49 (4), 693-706.

Heider, F. 1967. Attitudes and cognitive organization. Readings in attitude the-
ory and measurement , 39-41.

Heider, F. 1958. The psychology of interpersonal relations. New Jersey: Law-
rence Erlbaum Associates, Inc.

Heider, F. 1946. Attitudes and cognitive organization. The Journal of psycholo-
gy 21 (1), 107-112.

Henderson-Sellers, B. & Serour, M. K. 2005. Creating a Dual-Agility Method :
The Value of Method Engineering. Journal of Database Management 16 (4),
1-23.

Highsmith, J. & Cockburn, A. 2001. Agile Software Development : The Business
of Innovation. IEEE Computer (September), 120-122.

Hirschheim, R., Klein, H. K. & Lyytinen, K. 1995. Information systems devel-
opment and data modeling: conceptual and philosophical foundations.
Cambridge University Press.

Hirschheim, R. & Newman, M. 1991. Symbolism and Information Systems De-
velopment: Myth, Metaphor and Magic. Information Systems Research 2
(1), 29-62.

123

Hoda, R., Noble, J. & Marshall, S. 2013. Self-organizing roles on agile software
development teams. IEEE Transactions on Software Engineering 39 (3), 422-
444.

Hohmann, L. 1997. In methods we trust? Computer 30 (10), 119-121.
Holvitie, J., Leppanen, V. & Hyrynsalmi, S. 2014. Technical Debt and the Effect

of Agile Software Development Practices on It-An Industry Practitioner
Survey. Managing Technical Debt (MTD), 2014 Sixth International Work-
shop on. IEEE, 35.

Huisman, M. & Iivari, J. 2006. Deployment of systems development methodolo-
gies: Perceptual congruence between IS managers and systems developers.
Information & Management 43 (1), 29-49.

Hummon, N. P. & Doreian, P. 2003. Some dynamics of social balance processes:
bringing Heider back into balance theory. Social Networks 25 (1), 17-49.

Iivari, J. 1990. Hierarchical spiral model for information system and software
development. Part 1: theoretical background. Information and Software
Technology 32 (6), 386-399.

Iivari, J., Hirschheim, R. & Klein, H. K. 1998a. A paradigmatic analysis con-
trasting information systems development approaches and methodologies.
Information Systems Research 9 (2), 164-193.

Iivari, J. 1991. A paradigmatic analysis of contemporary schools of IS develop-
ment: The framework and literature analysis. European Journal of Infor-
mation Systems 1, 249-272.

Iivari, J., Hirschheim, R. & Klein, H. K. 2004. Toward a distinctive body of
knowledge for Information Systems experts: coding ISD process knowledge
in two IS journals. Information Systems Journal 14, 313-342.

Iivari, J., Hirschheim, R. & Klein, H. K. 1998b. Information Systems Develop-
ment Approaches and Methodologies. Information Systems Research 9 (2),
164-193.

Iivari, J. & Iivari, N. 2011. The relationship between organizational culture and
the deployment of agile methods. Information and Software Technology 53
(5), 509-520.

Iivari, J. & Lyytinen, K. 1998. Research on Information Systems Development in
Scandinavia-Unity in Plurality. Scandinavian Journal of Information Sys-
tems 10 (1\&2), 135-186.

Iivari, J. & Maansaari, J. 1998. The usage of systems development methods : are
we stuck to old practices ? Information and Software Technology 40 (Janu-
ary), 501-510.

Johnson, P., Ekstedt, M. & Jacobson, I. 2012. Where's the theory for software
engineering? IEEE Software (5), 96.

Judy, K. H. 2009. Agile principles and ethical conduct. 42nd Hawaii Interna-
tional Conference on System Sciences, 2009. HICSS'09. IEEE, 1.

Kan, S. H. 2002. Metrics and models in software quality engineering. Addison-
Wesley Longman Publishing Co., Inc.

Katz, R. 2005. Motivating technical professionals today. Research-Technology
Management 48 (6), 19-27.

124

Khalifa, M. & Verner, J. M. 2000. Drivers for software development method us-
age. IEEE Transactions on Engineering Management 47 (3), 360-369.

Khanafiah, D. & Situngkir, H. 2004. Social balance theory. arXiv preprint
nlin/0405041 .

Kiely, G. & Fitzgerald, B. 2002. An Investigation of the Information Systems
Development Environment: The Nature of Development Life Cycles and
The Use of Methods. Eighth Americas Conference on Information Systems,
1289.

Kitchenham, B. & Charters, S. 2007. Guidelines for performing systematic litera-
ture reviews in software engineering.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M.
& Linkman, S. 2010. Systematic literature reviews in software engineering–
a tertiary study. Information and Software Technology 52 (8), 792-805.

Klein, H. K. & Myers, M. D. 1999. A set of principles for conducting and evalu-
ating interpretive field studies in information systems. MIS quarterly , 67-
93.

Kruchten, P., Nord, R. L. & Ozkaya, I. 2012. Technical debt: from metaphor to
theory and practice. IEEE Software (6), 18-21.

Kumar, K. & Welke, R. J. 1992. Methodology Engineering R: a proposal for situ-
ation-specific methodology construction. Challenges and strategies for re-
search in systems development. John Wiley & Sons, Inc., 257.

Lann, G. L. 1997. An analysis of the Ariane 5 flight 501 failure-a system engi-
neering perspective. Engineering of Computer-Based Systems, 1997. Pro-
ceedings., International Conference and Workshop on. IEEE, 339.

Lee, G., DeLone, W. & Espinosa, J. A. 2006. Ambidextrous coping strategies in
globally distributed software development projects. Communications of the
ACM 49 (10), 35-40.

Leppanen, M. 2006. Conceptual evaluation of methods for engineering situa-
tional ISD methods. Software Process: Improvement and Practice 11 (5),
539-555.

Leveson, N., G. & Turner, C., S. 1993. An investigation of the Therac-25 acci-
dents. IEEE Computer 26 (7), 18-41.

Lewin, K. 1945. The research center for group dynamics at Massachusetts Insti-
tute of Technology. Sociometry 8 (2), 126-136.

Lim, E., Taksande, N. & Seaman, C. 2012. A balancing act: what software practi-
tioners have to say about technical debt. IEEE Software 29 (6), 22-27.

Linberg, K., R. 1999. Software developer perceptions about software project
failure: a case study. Journal of Systems and Software 42 (9), 177-192.

Lindgren, M., Wall, A., Land, R. & Norstrom, C. 2008. A method for balancing
short-and long-term investments: quality vs. features. 34th Euromicro Con-
ference Software Engineering and Advanced Applications, 2008. SEAA'08.
IEEE, 175.

Lyytinen, K. 1989. New challenges of systems development: a vision of the 90's.
ACM SIGMIS Database 20 (3), 1-12.

125

Lyytinen, K. 1987. A taxonomic perspective of information systems develop-
ment: theoretical constructs and recommendations. Critical issues in infor-
mation systems research. John Wiley & Sons, Inc., 3.

MacCormack, A., Kemerer, C., F., Cusumano, M. & Crandall, B. 2003. Trade-offs
between productivity and quality in selecting software development prac-
tices. IEEE Software 20 (5), 78-85.

Mancl, D., Fraser, S., D. & Opdyke, W., F. 2007. No silver bullet: a retrospective
on the essence and accidents of software engineering. Companion to the
22nd ACM SIGPLAN conference on Object-oriented programming systems
and applications. , 758.

Markus, L. M. & Robey, D. 1988. Information Technology and Organizational
Change : Causal Structure in Theory and Research. Management Science 34
(5), 583-598.

Martin, R., Cecil 2003. Agile software development: principles, patterns, and
practices. Upper Saddle River, NJ.: Prentice Hall PTR.

Martini, A., Bosch, J. & Chaudron, M. 2014. Architecture technical debt: under-
standing causes and a qualitative model. 40th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), 2014. IEEE, 85.

Mathiassen, L., Saarinen, T., Tuunanen, T. & Rossi, M. 2007. A Contigency
Model for Requirements Development. Journal of the Association for In-
formation Systems 8 (11), 569-597.

Maxwell, J. A. 2004. Using qualitative methods for causal explanation. Field
methods 16 (3), 243-264.

McCaffery, F., Pikkarainen, M. & Richardson, I. 2008. Ahaa--agile, hybrid as-
sessment method for automotive, safety critical smes. ACM/IEEE 30th In-
ternational Conference on Software Engineering, 2008. ICSE'08. IEEE, 551.

McConnell, S. 2007. Technical Debt. Available in:
http://www.construx.com/10x_Software_Development/Technical_Debt/.

McConnell, S. 1996. Avoiding classic mistakes. IEEE Software 13 (5), 112-112.
McLeod, L. & Doolin, B. 2012. Information systems development as situated

socio-technical change: a process approach. European Journal of Infor-
mation Systems 21 (2), 176-191.

Mohr, L. B. 1982. Explaining organizational behavior. Jossey-Bass San Francisco.
Murugesan, S. 1994. Attitude towards testing: a key contributor to software

quality. Proceedings of the First International Conference on Software Test-
ing, Reliability and Quality Assurance, 1994. IEEE, 111.

Myers, M. D. 1997. Qualitative research in information systems. Management
Information Systems Quarterly 21 (2), 241-242.

Myers, M. D. & Newman, M. 2007. The qualitative interview in IS research: Ex-
amining the craft. Information and Organization 17 (1), 2-26.

Nan, N. & Harter, D., E. 2009. Impact of budget and schedule pressure on soft-
ware development cycle time and effort. IEEE Transactions on Software
Engineering 35 (5), 624-637.

Newcomb, T. M. 1961. The acquaintance process. New York: Holt, Rinehart &
Winston.

126

Notander, J. P., Höst, M. & Runeson, P. 2013. Challenges in flexible safety-

critical software development–an industrial qualitative survey. In Product-
Focused Software Process Improvement. Springer, 283-297.

O Reilly, C. A. & Tushman, M. L. 2004. The ambidextrous organization. Har-
vard business review 82 (4), 74-83.

Okoli, C. & Schabram, K. 2010. A Guide to Conducting a Systematic Literature
Review of Information Systems Research. All Sprouts Content , Paper 348.

Orlikowski, W. J. & Baroudi, J. J. 1991. Studying information technology in or-
ganizations: Research approaches and assumptions. Information systems
research 2 (1), 1-28.

Orlikowski, W. & Iacono, S. 2001. Research Commentary: Desperately Seeking
the IT in IT Research--A Call to Theorizing the IT Artifact. Information Sys-
tems Research 12 (2), 121-134.

Peters, L. 2014. Technical Debt: The Ultimate Antipattern - The Biggest Costs
May Be hidden, Widespread, and Long Term. Managing Technical Debt
(MTD), 2014 Sixth International Workshop on. , 8.

Petersen, K., Feldt, R., Mujtaba, S. & Mattsson, M. 2008. Systematic mapping
studies in software engineering. 12th International Conference on Evalua-
tion and Assessment in Software Engineering. sn.

Potdar, A. & Shihab, E. 2014. An Exploratory Study on Self-Admitted Technical
Debt. IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME), 2014. IEEE, 91.

Poth, A. & Sunyaev, A. 2014. Effective Quality Management: Risk-and Value-
based Software Quality Management. IEEE Software 31 (6), 79-85.

Ralph, P. 2016. Software engineering process theory: A multi-method compari-
son of Sensemaking–Coevolution–Implementation Theory and Function–
Behavior–Structure Theory. Information and Software Technology 70, 232-
250.

Ralph, P. 2015a. Developing and evaluating software engineering process theo-
ries. Proceedings of the 37th International Conference on Software Engi-
neering-Volume 1. IEEE Press, 20.

Ralph, P. & Wand, Y. 2008. A teleological process theory of software develop-
ment. Proceedings of JAIS Theory Development Workshop 8 (23).

Ralph, P. 2015b. The Sensemaking-Coevolution-Implementation Theory of
software design. Science of Computer Programming 101, 21-41.

Ramesh, B., Mohan, K. & Cao, L. 2012. Ambidexterity in agile distributed de-
velopment: an empirical investigation. Information Systems Research 23
(2), 323-339.

Rothman, K. J. 2012. Epidemiology: an introduction. New York: Oxford Univer-
sity Press.

Rowe, F. 2014. What literature review is not: diversity, boundaries and recom-
mendations. European Journal of Information Systems 23 (3), 241-255.

Royce, W. W. 1970. Managing the Development of Large Software Systems.
IEEE WESCON. , 1.

127

Runeson, P. & Höst, M. 2009. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering 14
(2), 131-164.

Sabherwal, R. & Robey, D. 1993. An Empirical Taxonomy of Implementation
Processes Based on Sequences of Events in Information System Develop-
ment. Organization Science 4 (4), 548-576.

Samalikova, J., Kusters, R., Trienekens, J., Weijters, T. & Siemons, P. 2011. To-
ward objective software process information: experiences from a case
study. Software Quality Journal 19 (1), 101-120.

Sarker, S., Lau, F. & Sahay, S. 2000. Using an adapted grounded theory ap-
proach for inductive theory building about virtual team development.
ACM SiGMIS Database 32 (1), 38-56.

Schwaber, K. & Beedle, M. 2001. Agile Software Development with Scrum.
Prentice Hall PTR.

Seth, F. P., Taipale, O. & Smolander, K. 2014. Organizational and customer re-
lated challenges of software testing: An empirical study in 11 software
companies. Research Challenges in Information Science (RCIS), 2014 IEEE
Eighth International Conference on. IEEE, 1.

Shah, H., Harrold, M. J. & Sinha, S. 2014. Global software testing under deadline
pressure: Vendor-side experiences. Information and Software Technology
56 (1), 6-19.

Shirado, W., Straka, W., Arkwright, T., Levay, M. & Lundholm, D. 1996. Soft-
ware process in a mixed R&D environment. Proceedings of Aerospace Ap-
plications Conference, 1996. IEEE, 315.

Silva, J. G. A. & Cunha, P. R. d. 2006. Reconciling the irreconcilable? A software
development approach that combines Agile with Formal. Proceedings of
the 39th Annual Hawaii International Conference on System Sciences, 2006.
HICSS'06. IEEE, 216b.

Sjøberg, D. I., Dybå, T., Anda, B. C. & Hannay, J. E. 2008. Building theories in
software engineering. In Guide to advanced empirical software engineer-
ing. Springer, 312-336.

Slaughter, S. A., Levine, L., Ramesh, B., Pries-Heje, J. & Baskerville, R. 2006.
Aligning Software Processes with Strategy. MIS Quarterly 30 (4), 891-918.

Sommerville, I. 2015. Software engineering. (10th edition) Pearson.
Sommerville, I. 2011. Software engineering. (9th edition) Boston: Addison-

Wesley.
Sommerville, I. 2005. Integrated Requirements Engineering: A Tutorial. IEEE

Software 22 (1), 16-23.
Stol, K., Ralph, P. & Fitzgerald, B. 2016. Grounded theory in software engineer-

ing research: a critical review and guidelines. Proceedings of the 38th Inter-
national Conference on Software Engineering. ACM, 120.

Tassey, G. 2002. The economic impacts of inadequate infrastructure for software
testing. National Institute of Standards and Technology, RTI Project , 7007
(011).

128

Thanh, N. C. & Thanh, T. 2015. The interconnection between interpretivist par-

adigm and qualitative methods in Education. American Journal of Educa-
tional Science 1 (2), 24-27.

The Standish Group International, Inc. 2009. The Chaos Summary 2009.
Tighy, G. 2012. Evaluation of software engineering management best practices

in the Western Cape. Software Engineering Colloquium (SE), 2012 4th.
IEEE, 21.

Tom, E., Aurum, A. & Vidgen, R. 2013. An exploration of technical debt. Journal
of Systems and Software 86 (6), 1498-1516.

Truex, D., Baskerville, R. & Travis, J. 2000. Amethodical systems development:
the deferred meaning of systems development methods. Accounting, Man-
agement and Information Technologies 10 (1), 53-79.

Tsumaki, T. & Tamai, T. 2005. A Framework for Matching Requirements Engi-
neering Techniques to Project Characteristics and Situation Changes. , 44-
58.

Tushman, M. L. & O'Reilly, C. A. 1996. The ambidextrous organizations: man-
aging evolutionary and revolutionary change. California management re-
view 38 (4), 8-30.

Urquhart, C. & Fernandez, W. 2013. Using grounded theory method in infor-
mation systems: the researcher as blank slate and other myths. Journal of
Information Technology 28 (3), 224-236.

Urquhart, C., Lehmann, H. & Myers, M. D. 2010. Putting the ‘theory’back into
grounded theory: guidelines for grounded theory studies in information
systems. Information Systems Journal 20 (4), 357-381.

Van de Ven, A. H. 1992. Suggestions for studying strategy process: a research
note. Strategic Management Journal 13 (5), 169-188.

Van de Ven, A. H. & Poole, M. S. 2005. Alternative approaches for studying or-
ganizational change. Organization Studies 26 (9), 1377-1404.

Van Emden, E. & Moonen, L. 2002. Java quality assurance by detecting code
smells. Ninth Working Conference on Reverse Engineering, 2002. Proceed-
ings. , 97.

Vartiainen, T. & Siponen, M. T. 2012. What Makes Information System Devel-
opers Produce Defective Information Systems For Their Clients? Proceed-
ings of Pacific Asia Conference of Information Systems (PACIS).

Vartiainen, T., Siponen, M. T. & Moody, G. 2011. Gray-Area Phenomenon In
Information Systems Development: A Call For Research. PACIS. , 198.

Vavpoti , D. & Vasilecas, O. 2012. Selecting a methodology for business infor-
mation systems development: decision model and tool support. Computer
Science and Information Systems 9 (1), 135-164.

Vinekar, V., Slinkman, C. W. & Nerur, S. 2006. Can agile and traditional sys-
tems development approaches coexist? An ambidextrous view. Information
Systems Management 23 (3), 31-42.

Wang, Y. & Zhang, M. 2010. Penalty policies in professional software develop-
ment practice: a multi-method field study. Proceedings of the 32nd

129

ACM/IEEE International Conference on Software Engineering-Volume 2.
ACM, 39.

Wijayasekara, D., Manic, M., Wright, J., L. & McQueen, M. 2012. Mining bug
databases for unidentified software vulnerabilities. 5th International Con-
ference on Human System Interactions (HSI), 2012. , 89.

Wohlin, C., Šmite, D. & Moe, N. B. 2015. A general theory of software engineer-
ing: Balancing human, social and organizational capitals. Journal of Sys-
tems and Software 109, 229-242.

Woodside, A. G. & Chebat, J. 2001. Updating Heider's balance theory in con-
sumer behavior: A Jewish couple buys a German car and additional buy-
ing–consuming transformation stories. Psychology & Marketing 18 (5), 475-
495.

Wynekoop, J. L. & Russo, N. L. 1997. Studying system development methodol-
ogies: an examination of research methods. Information Systems Journal 7
(1), 47-65.

Wynekoop, J. L. & Russo, N. L. 1995. System development methodologies: un-
answered questions. Journal of Information Technology 10, 65-73.

Yang, B., Hu, H. & Jia, L. 2008. A study of uncertainty in software cost and its
impact on optimal software release time. IEEE Transactions on Software
Engineering 34 (6), 813-825.

Zhang, C. & Budgen, D. 2012. What do we know about the effectiveness of
software design patterns? IEEE Transactions on Software Engineering 38
(5), 1213-1231.

Zhang, Z. & Lyytinen, K. 2001. A framework for component reuse in a meta-
modelling-based software development. Requirements Engineering 6 (2),
116-131.

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	FIGURES
	TABLES
	CONTENTS
	1 INTRODUCTION
	1.1 Research objectives
	1.2 Overview of Chapters
	1.2.1 Study 1 - Omission of Quality Software Development Practices: A Sys-

tematic Literature Review and Research Agenda2
	1.2.2 Study 2 - Seeking Technical Debt in Critical Software Development

Projects: An Exploratory Field Study
	1.2.3 Study 3 - Why Software Development Methods are Customized in

Practice - A Theory of Software Development Balance

	1.3 Publication Status

	2 RESEARCH APPROACH
	2.1 Interpretive Research
	2.1.1 Ontology
	2.1.2 Epistemology
	2.1.3 Methodology

	2.2 Theory Construction
	2.2.1 Process vs. Variance Theory
	2.2.2 Grounded Theory Method
	2.2.3 Balance Theory

	3 STUDY 1- OMISSION OF QUALITY DEVELOPMENT PRACTICES SOFTWARE
	3.1 Abstract
	3.2 Introduction
	3.3 Research method
	3.3.1 Initial literature review Study (Stage 0)
	3.3.2 Planning the review (Stage 1)
	3.3.3 Conducting the review (Stage 2)
	3.3.4 Data extraction and synthesis (Stage 3)

	3.4 Results of the Literature Review
	3.4.1 RQ1: How is the omission of quality practices reported by previous

studies?
	3.4.2 RQ2: What are the common instances of the omission of quality prac-

tices reported by previous studies?
	3.4.3 RQ3: Under what conditions does the omission of quality practices

take place?
	3.4.4 A Synthesis of the Literature Review

	3.5 Research Agenda
	3.5.1 Research Area 1: What are the instantiations of the omission of quality

practices and their nature?
	3.5.2 Research Area 2: What is the psycho-social process of making deci-

sions regarding the omission of quality practices?
	3.5.3 Research Area 3: What are the consequences of the omission of quality

practices?
	3.5.4 Research Area 4: How to consider omissions of quality practices

	3.6 Conclusions

	STUDY 2 - SEEKING TECHNICAL DEBT IN CRITICAL SOFTWARE DEVELOPMENT PROJECTS
	4.1 Abstract
	4.2 Introduction
	4.3 Related work
	4.4 Research method
	4.4.1 Data collection
	4.4.2 Stage1: Preliminary interviews
	4.4.3 Stage 2: Case study
	4.4.4 Case description
	4.4.5 Data analysis

	4.5 Results
	4.5.1 Ambiguity of Requirements
	4.5.2 Diversity of Projects
	4.5.3 Inadequate Knowledge Management
	4.5.4 Resource Constraints
	4.5.5 Theoretical model

	4.6 Discussion
	4.7 Conclusions

	STUDY 3 - WHY SOFTWARE DEVELOPMENT METHODS ARE CUSTOMIZED IN PRACTICE - A THEORY OF SOFTWARE DEVELOPMENT BALANCE
	5.1 Abstract
	5.2 Introduction
	5.3 Research Background
	5.3.1 Software Development Methods
	5.3.2 Customizing Software Development Methods

	5.4 Research Methodology
	5.4.1 Data Collection
	5.4.2 Theoretical Sampling
	5.4.3 Data Analysis

	5.5 The mechanisms underlying the customization of methods
	5.5.1 Unique Characteristics of Software
	5.5.2 Requirements Evolution
	5.5.3 Maintaining Structural Balance
	5.5.4 Maintaining Social Balance
	5.5.5 Interaction between Structural and Social Balance
	5.5.6 Loose Quality Management
	5.5.7 Ignoring Software Development Practices

	5.6 Discussion
	5.6.1 New Theoretical Contributions and Related Work
	5.6.2 Implications for Practice
	5.6.3 Limitations and Future Work
	5.7 Conclusions
	6 SUMMARY
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

