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To my parents Alicia and Tomás

This part is saddening, right? Because the music is very bendy. . . 1
— Rafael, 3 years old, watching the film My neighbor Totoro

1 Esta parte da pena, no? Porque tiene música muy blandita. . .



ABSTRACT

Hartmann, Martín Ariel
Modelling and Prediction of Perceptual Segmentation
Jyväskylä: University of Jyväskylä, 2017, 94 p.(+included articles)
(Jyväskylä Studies in Humanities
ISSN 1459-4323; 303 (nid.) ISSN 1459-4331; 303 (PDF))
ISBN 978-951-39-6902-8 (nid.)
ISBN 978-951-39-6903-5 (PDF)
Finnish summary

Diss.

While listening to music, we somehow make sense of a multiplicity of auditory 
events; for example, in popular music we are often able to recognize whether the 
current section is a verse or a chorus, and to identify the boundaries between these 
segments. This organization occurs at multiple levels, since we can discern motifs, 
phrases, sections and other groupings. In this work, we understand segment 
boundaries as instants of significant change.
Several studies on music perception and cognition have strived to understand 
what types of changes are associated with perceptual structure. However, effects of 
musical training, possible differences between real-time and non real-time segmen-
tation, and the relative importance of different musical dimensions on perception 
and prediction of segmentation are still unsolved problems. Investigating these 
issues can lead to a better understanding of mechanisms used by different types of 
listeners in different contexts, and to gain knowledge of the relationship between 
perceptual structure and underlying acoustic changes in the music.
In this work, we collected segmentation responses from musical pieces in two 
listening experiments, a real-time task and a non real-time task. Boundary data 
was obtained from 18 non-musicians in the real-time task and from 18 musicians 
in both tasks. We used kernel density estimation to aggregate boundary responses 
from multiple participants into a perceptual segment density curve, and novelty 
detection to obtain computational models based on audio musical features ex-
tracted from the musical stimuli.
Overall, our findings provide evidence for an effect of experimental task on per-
ceptual segmentation and its prediction, and clarify the contribution of local and 
global musical characteristics. However, the findings do not resolve discrepancies 
in the literature regarding musicianship. Furthermore, this investigation high-
lights the role of local musical change between homogeneous regions in boundary 
perception, the impact of boundary indication delays on segmentation, and the 
problem of segmentation time scales on modelling.

Keywords: musical structure, kernel density estimation, novelty detection, musical

features, musical training, perceptual segmentation task
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1 INTRODUCTION

Humans possess the ability to perceptually parse ongoing streams into discrete,
meaningful events. This perceptual operation, which is called segmentation, makes
it possible to understand continuous information or activities that involve sound
and movement, just like it is possible, in a messy room, to recognize each of its
objects (Zacks & Swallow, 2007). Besides being a general necessity regarding
human perception and cognition that applies to different modalities, segmentation
has central importance, for instance, in the area of speech perception, as it is needed
for language acquisition (Johnson & Jusczyk, 2001; Seidl, 2007). In everyday music
listening experiences, musical events that share related characteristics or high
temporal proximity are often grouped into sequences. It is noteworthy that
different music listeners can often distinguish the same sections in popular songs.

Temporal psychological processes of integration of musical events into larger
units might be involved and could even be universal in music listening (Drake
& Bertrand, 2001; Mungan, Yazıcı, & Kaya, in press). An inverse formulation of
these processes would be that listeners segment long musical streams when they
perceive unexpected changes. Besides other cues related to, e.g., similarity and
repetition, musical feature change commonly prompts segmentation: listeners
indicate segment boundaries if they easily perceive that there is a contrast, such as
a stark change in dynamics or instrumentation. Multiple strategies are exploited by
composers, improvisers and performers to induce perception of musical changes
and communicate musical structure to the listener (Deliège, 2001; Dean, Bailes, &
Drummond, 2014; Poli, Rodà, & Vidolin, 1998).

Segment boundaries can be understood as a representation of the perceptual
structure, which involves hierarchies assigned to different events in music. In this
sense, boundaries indicated by listeners may differ from each other regarding their
salience due to acoustic characteristics of perceived changes, such as contrasts
in instrumentation. Besides the temporal location and salience of the change,
other relevant aspects regarding indicated boundaries include associated acoustic
phenomena, time scale of changes, and reliability of segmentation (i.e., level
of agreement between subjects). In sum, a number of variables associated to
perceptual boundaries can be studied with regards to music listening: temporal
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location (when), perceptual salience (how strong), temporal scale (how often),
description cues (what type), and perceptual agreement (how reliable). Our
investigation addresses these aspects using a particular conception of perceptual
segmentation. We refer to segmentation in its broader sense, understanding
perceptual segment boundaries as instants of significant musical change.

A number of scholars have attempted to understand the possible role of
musical expertise on boundary perception. Lerdahl and Jackendoff (1983) claim
that it is unlikely that a particular piece is heard by listeners in exactly the
same way, although they should all agree on the most natural ways of hearing a
piece. Results from experimental studies rooted in this theory suggest that both
musicians and non-musicians are able to represent the hierarchical structure of
the music from its perceived surface, but that differences in musical skills have an
effect on these representations (Koniari & Tsougras, 2012; Peretz, 1989; Deliège,
1987). Indeed, musically trained children (Koniari, Predazzer, & Mélen, 2001) and
adults (Bruderer, 2008) exhibited higher within-subject agreement in segmentation,
showing more consistency across repeated segmentations of a target stimulus
than untrained listeners. In addition, studies focusing on different aspects of
segmentation have reported that musically trained participants indicate more
boundaries than untrained ones (Bruderer, 2008; Deliège, 1987). A possible reason
for these differences might be that musicians rely more on musical schemata
during segmentation than non-musicians. Thanks to explicit schematic knowledge,
musicians might be able to anticipate subsequent changes in the music, and group
together a melodic line, thus indicating fewer boundaries instead of stumbling on
local surface discontinuities elicited by embellishments.

However, there has been skepticism regarding the effect of musicianship on
segmentation, since the literature presents conflicting findings and results that do
not reach statistical significance (Bruderer, 2008). For example, although musically
trained subjects have been found to segment more in accordance with musicological
rules than untrained ones (Koniari & Tsougras, 2012; Peretz, 1989; Deliège, 1987),
the opposite was found for more general rules (Schaefer, Murre, & Bod, 2004).
Also, studies on processing and perception of structure (see Tillmann & Bigand,
2004) showed that both groups focus on “musical surface” (melodic contour and
rhythm) and deeper aspects of structure during tasks involving harmonic priming
and manipulation of global organization of pieces. Another issue is small sample
size; Bruderer (2008), for example, included only 7 participants in the sample, none
of whom were professional musicians.

Various methods have been used to gather boundary data in segmentation
studies. Examples of segmentation tasks include listening to the example once
followed by three consecutive real-time segmentation trials (Bruderer, 2008), and
segmenting into two clusters online during listening (Peretz, 1989) or offline after
listening (Deliège, 1987). Other studies asked subjects to listen to the example,
then segment in real-time, and finally make changes or deletions to their boundary
profiles to obtain a precise, non real-time annotation for use in further experiments
(Wiering, de Nooĳer, Volk, & Tabachneck-Schĳf, 2009; Ayari & McAdams, 2003;
Clarke & Krumhansl, 1990). Non real-time (or offline) segmentation has been
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posited to provide a different understanding of the musical structure because some
boundaries cannot be perceived until they occur, or are perceived retrospectively,
i.e., ulterior to the actual musical change (Lerdahl & Jackendoff, 1983). In this
respect, boundary perception should be affected by musical expectancies; some
boundaries are easier to anticipate as music temporally unfolds in real-time whereas
others can be totally unexpected. That is, heard musical events not only resignify
previous events and boundary indication decisions, but prompt predictions about
possible future events (Hansen & Pearce, 2014). In this regard, only one study
has investigated segmentation in real-time and non real time contexts (Peretz,
1989); this work on clustering of short melodies compared an online indication
and an offline probe recognition task, aiming to understand possible differences
between online organization of sequences and the representation of structure in
our memory.

The literature shows that the role of both musicianship and experimental task
(i.e., online vs offline) in perceptual segmentation remain a question. Furthermore,
other possibly associated issues, such as relative delay between participant groups
or tasks, have not yet investigated. Understanding the role of musical training in
participants’ segmentation can yield clues about transfer effects of musicianship
and guide recruiting of participants for further music listening studies. Also,
the effect of task on segmentation should be further explored to, for instance,
compare real-time brain activity during music listening against expert annotations
of musical structure.

Audio-based automatic segmentation algorithms are currently widely inves-
tigated, as they have many applications in music information retrieval, including
music summarization (or thumbnailing), chord detection, music transcription, and
music classification. Music Information Retrieval (MIR) studies have proposed a
variety of automatic segmentation algorithms with a focus on evaluating model
performance against ground truth data using accuracy measures (Aljanaki, Wier-
ing, & Veltkamp, 2015). For evaluation purposes, predicted segmentation is
compared to ground truth data, which often involve a set of isolated time points;
studies on this area are typically based on a large number of stimuli, so ground
truth segmentation data is obtained from at most few annotators. Only relatively
recent work has focused on the possibility of designing new types of ground
truths that involve multiple annotators, musical dimensions, and temporal scales
(Nieto, 2015; Smith, Burgoyne, Fujinaga, De Roure, & Downie, 2011; Peeters &
Deruty, 2009). In contrast to MIR ground truth data, studies focusing on listeners’
perception of boundaries often collect data from many participants and aggregate
their boundary indications (Deliège, 1987; Krumhansl, 1996; Ayari & McAdams,
2003; Frankland & Cohen, 2004); the most common aggregation method is based
on the proportion of listeners responding within a beat, note event, or fixed time
window.

Despite the increasing interest in audio-based prediction for a large number of
listeners (e.g., Nieto, 2015; Müller, Chew, & Bello, 2016), to our knowledge this has
not yet been done. Furthermore, the role of musical training and experimental task
in prediction of segmentation remains to be clarified. For example, it is plausible
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that automatic prediction models may yield higher segmentation accuracy for non-
musicians than for musicians. This would be the case assuming that non-musicians
would tend to indicate more boundaries due to lack of explicit schematic knowledge,
and that bottom-up prediction models focusing on local discontinuities may be
rather sensitive to acoustic changes in the music. Regarding segmentation tasks,
one could expect that the annotation task would yield higher prediction accuracy
than the real-time task based on the assumption that annotation segmentations
would involve higher temporal precision with respect to changes in the musical
signal. In this regard, utilizing ground truth data based on many listeners can help
to increase its reliability, and investigating the role of musicianship and conducted
experimental task in prediction can lead to a better understanding of what types
of acoustic musical features are processed by different listeners and in different
listening contexts during segmentation.

Related to this, studies have investigated the role of different cues evoking
boundary perception, and the use of musical features for prediction of segmentation.
Listeners group sequences of musical events when these are delimited by temporal
gaps, changes in register, or dynamics (Bruderer, 2008). Studies related to
segmentation prediction have proposed rules to find boundaries based upon
different musical features (e.g. Cambouropoulos, 2001; Bohak & Marolt, 2016).
In the audio domain, the performance of the prediction has been observed to
depend more on musical stimuli than on the algorithm used or the choice of
parameters (Peiszer, Lidy, & Rauber, 2008). This means, in principle, that the
characteristics of different dimensions of individual pieces are key for optimal
prediction of segmentation accuracy. However, the extent to which musical stimuli
characteristics related to, e.g., spectral, rhythmic or pitch related change, have an
effect on prediction accuracy of segmentation models still needs to be investigated.
Addressing this issue would allow for the possibility to automatically select a
feature or set of relevant musical features for optimal segmentation prediction
based on distinctive characteristics of each stimulus.

The following research questions are addressed in our investigation:

1. What is the role of musical training and experimental task on perceptual
segmentation?

2. What factors related to musicianship and conducted experimental task may
have an important role in prediction of perceptual segmentation?

3. What is the contribution of intrinsic aspects of musical stimuli (e.g., spectral,
rhythmic or pitch related change) to segmentation model prediction accuracy?

Our first main hypothesis was that musical training and experimental task has an
effect on listeners’ segmentation; for instance, more indication delays are expected
for non-musicians compared to musicians, and for real-time contexts. Our second
hypothesis was that bottom-up audio-based models would more accurately predict
non-musicians’ responses due to differences in schematic knowledge, and that
non real-time responses would yield higher accuracy than real-time responses due
to more precise indication data. Our third hypothesis was that musical pieces
characterized by high local continuity of a given musical feature such as spectrum,
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rhythm or tonality would yield higher segmentation prediction rates for that
feature: the perceived strength of changes in a given musical dimension should be
higher if these are more infrequent.

At this point, it is worth mentioning some aspects of segmentation that are
not covered in this approach, as it will help to circumscribe the scope of our
endeavor. One of them is repetition in music, which has a clear effect on listeners’
representations of structure, but it is difficult to study because it involves a complex
operationalization of perceptual similarity. In addition, hierarchical aspects of
structure cannot be fully investigated with this approach, because we focused on
segment boundaries, which can be considered a flat projection of a more complex
representation.

The remainder of this thesis is organized as follows. Chapter 2 presents
the theoretical foundation of our work, including music-theoretical approaches
to segmentation, behavioral and computational studies related to the analysis
of structure and some of the general challenges that are faced in this area of
research. Chapter 3 recapitulates the aspects of segmentation that are covered in
this thesis by describing its main goals and how they are addressed in the studies.
Chapter 4 focuses on methodological procedures that were employed in our
studies, namely data collection, perceptual and computational modelling, analyses
regarding comparisons between groups and tasks, and the issue of temporal scales
in segmentation modelling. Chapter 5 offers a concise account of the three articles
included in this dissertation. Chapter 6 elaborates on theoretical and practical
implications of our main findings, gives a remark on limitations regarding our
approach, and proposes a number of suggestions for future research in music
segmentation. Finally, we complete this dissertation with general conclusions
(Chapter 7).

Author’s contribution: The author was the primary contributor for the experi-
mental design, collection of empirical data, implementation, data analysis,
and writing of the three articles. The coauthors of the papers, Olivier Lartillot
and Petri Toiviainen, advised on experimental design, suggested how the
data could be analyzed, helped with the interpretation of the results, and
contributed to writing.



2 A REVIEW OF THE LITERATURE ON MUSIC

SEGMENTATION

The complex acoustic phenomena that determine boundary perception have been
a center of attention in the realm of music segmentation. For example, behavioral
studies have analyzed verbal description cues associated with musical changes
indicated by listeners (Deliège, 1987; Clarke & Krumhansl, 1990; Bruderer, 2008).
Sets of musicological rules to parse scores of musical pieces based on their content
have also been proposed (Lerdahl & Jackendoff, 1983; Tenney & Polansky, 1980).
These and other formalizations of musical structure have been included in symbolic
computational models for automatic detection of segment boundaries or to estimate
boundary probabilities of events (Wiering et al., 2009). Beyond MIDI-based models,
which have often been oriented towards monodic pieces, the study of structural
analysis for polyphonic audio has gained momentum over the last decade (Paulus,
Müller, & Klapuri, 2010). This chapter aims to present the state of the art of music
segmentation, focusing on various study areas and emphasizing topics that are
pertinent to our investigation, such as musicianship and segmentation tasks.

2.1 Music-theoretical analysis of segmentation

Music listeners perform some sort of organization during music listening; sequences
of auditory events are usually heard as organized units rather than as isolated
sounds (Krumhansl, 2001). The mechanisms involved in the organization of
sensory information are difficult to study regardless of the perceptual field under
investigation, but it is generally agreed (e.g., Deutsch, 1999; Deliège, 1987) that
auditory processes of segregation, grouping, and segmentation (Bregman, 1994)
should apply to music. We can identify different voices (or streams) and the
instruments that play them, we can notice that temporally long entities such as
motifs and ostinati are being repeated, even in altered form as patterns or variations,
and we also can agree that certain series of musical events, even very long ones, are
different enough from other series and may be called phrases, sections, etc. The
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grouping phenomena involved have been associated (Handel, 2006) with general
perceptual organization rules (e.g., proximity, similarity, and good continuation) that
have classically been explored in the visual field (Koffka, 1935). Musical events
share similar characteristics in this respect, although the properties that contribute
to perceptual grouping often cannot be directly related with those in visual and
auditory perceptual organizations. For instance, sequences of musical events are
grouped if delimited by temporal gaps (following the proximity principle), or by
changes in register or dynamics (following the (dis)similarity principle).

Segmentation and grouping are linked together: the perception of distinct
groups in music, such as melodies and musical phrases, often involves the
identification of instants of musical change, which serve as delimiters. These
instants can be referred to as segmentation points or segment boundaries. To give
an example, a long silence in between two groups of notes may be perceived as a
segment boundary; this change follows the Gestalt rule of proximity, which states
that temporally (or spatially) close events are grouped together. Another example,
which follows the similarity rule (elements that share similar attributes are grouped
together) is that dissimilarity between sequences due to different instrumentation
or harmony would induce boundary perception.

These principles can be condensed into one of the most basic Gestalt princi-
ples, the law of Prägnanz, which states that, under given conditions, perceptual
organization will be as “good” as possible; that is, percepts tend to have the
simplest, most stable and most regular organization that fits the sensory pattern
(Koffka, 1935). Maximum-minimum simplicity is characteristic of “good” perceptual
organizations, as in a soap bubble, which has the highest possible volume for its
surface and the lowest possible surface for its volume (Koffka, 1935). One could
imagine, for instance, a musical piece characterized by long and uniform segments
with respect to instrumentation that would be delimited by few, though stark
timbral changes. These highly contrasting timbral changes would probably be
indicated as boundaries according to the Prägnanz principle.

The cue abstraction model (Deliège, 1989; Deliège, Mélen, Stammers, & Cross,
1996; Deliège, 2001, 2007) elaborates on the organization processes involved in
real-time music listening and their influence on, e.g., grouping. Briefly, cues (or
indices) are comparable to input tags, signposts, or salient elements that emerge at
the musical surface. The most relevant cues are extracted to act as boundaries of
the grouping that is being formed and aid in the organization of information (e.g.,
localization), and to obtain abbreviations with the aim of reducing the amount
of stored information. This model has different phases, such as perception of
same/difference (similarity) relations within a musical piece as a group formation
process, formation of memory imprints or prototypical patterns, and progressive
development of a schema of the piece; this framework has been investigated in
empirical studies (Deliège, 1987, 1989; Deliège et al., 1996; Deliège, 2007).

Another approach to the understanding of perceptual organization of music,
in this case aimed towards non real-time segmentation, is the Generative Theory
of Tonal Music (GTTM, Lerdahl & Jackendoff, 1983). Their investigation of musical
structure concerns the search for a musical grammar and its rules; here, musical
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grammar is understood as a hierarchical model of the relationship between the
musical surface of a given piece and the perceptual structure that it generates.
Lerdahl and Jackendoff (1983) proposed a set of Grouping Preference Rules (GPR)
as local and global considerations that determine listeners’ perception of structure;
each grouping would be delimited by event transitions that should be heard
as boundaries. These rules have been categorized into three types (Clarke &
Krumhansl, 1990): acoustic and temporal rules of proximity (GPR 2: temporal
gaps) and similarity (GPR 3: change in register, dynamics, etc), “deeper” rules
(GPR 7: tonal structure), and abstract rules (GPR 6: parallelism). Some of these
rules, such as GPR 2, are defined in more detail, as they are supposed to be more
associated with the musical surface (see Cambouropoulos, 2010, for a critical
discussion on this assumption), whereas other rules, including GPR 5, which
deals with issues associated with musical parallelism, are less formalized. This
approach aims to offer a systematic alternative to structural analysis that could be
applied to any Western musical work, without the need of amendments according
to the particular piece under study (Lerdahl & Jackendoff, 1983). In practice, this
can be very difficult due to conflict between rules. Deliège (1987) discusses these
situations: for instance, there are cases in which one rule may suggest a certain
segmentation point due to preference to group events that, for example, are joined
by legato (GPR 2), whereas another rule could suggest another boundary instead
due to a change in register (GPR 3). It may not be possible to superimpose these
two segmentations to form three groups, because one group would only include a
single event, which is not allowed by another rule (GPR 1).

Tightly associated with the issue of perceptual organization, work on musical
expectation investigates the effect of likelihood of events upon segmentation; for
instance, in the audiovisual domain, boundary perception occurs when changes of
a salient sensory (e.g., color) or conceptual (e.g., cause-effect relationship) feature
are unpredictable (Zacks, Speer, Swallow, Braver, & Reynolds, 2007). In the
context of music, and within a real-time perspective, the implication-realization
model (Narmour, 1992) focuses on listeners’ expectations regarding future events,
which may or may not be confirmed by the music. According to this model,
these expectations emerge based upon musical implication; for instance, one of
the theoretical principles is that a large interval implies a change of direction
(Schellenberg, 1997). This implication may be realized in the music, in which case
listeners’ expectations will be confirmed. If this implication does not occur (i.e, if
change of direction does not occur after a large interval), listeners will perceive a
sense of closure due to violation of expectation. In the context of segmentation,
violation of expectation would be associated with boundary indication. This
theoretical approach proposed two general constants, A + A → A, meaning that
successive events that are identical or similar with each other generate expectation
of identical or similar events, and A + B → C, which denotes that dissimilarity
between successive events leads to the expectation of another event that is dissimilar
to the preceding ones. One could therefore associate expectation violation with two
scenarios: A + A → B and A + B → A. Cambouropoulos (2006) has questioned
the generality of these principles: in many cases, two subsequent events do not
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suggest anything about the nature of a third event, or may even suggest an outcome
that would contradict Narmour’s constants. Although these constants illustrate
the common tendency of repetition to imply repetition and of difference to imply
difference, it is problematic to treat them as general cognitive principles.

One of the commonalities of these three theoretical approaches is that they
consider the hierarchical aspects involved in the representation of structure. For
instance, the similarity between abstracted cues determines the formation of
groupings of groups (Deliège, 1989). Further, metrical structure position and
tonal hierarchy are considered to define the relative importance of certain musical
events with respect to others within a given time span (Lerdahl & Jackendoff, 1983).
Tonality also largely contributes to perceived musical structure due to expectancy:
unimportant events in a tonal hierarchy generate expectations of musical relaxation
that are often confirmed when more important events evoke resolution (Bigand,
Parncutt, & Lerdahl, 1996; Margulis, 2005).

The hierarchical representation of structure can be associated with the
concept of schemata. This notion stems from the psychological construct of memory
schema, which can be defined as the formation of “general or associative semantic
representations” (Agres & Wiggins, 2015) of new information based on previous
experience. In this regard, it has been proposed that knowledge about goals
and intentions underlying sequences has an effect on segmentation, particularly
upon grouping at larger scale (Kurby & Zacks, 2008). Some examples of musical
schemata include gap-fill and changing note archetypes (Rosner & Meyer, 1982),
deemed to generate schematic expectations (as opposed to veridical, which are
expectations that are intrinsic to specific musical pieces only, see Justus & Bharucha,
2001); another example is cadential closure (Sears, Caplin, & McAdams, 2014;
Peebles, 2011). Since some patterns or groupings can be better associated with
schematic knowledge than others, this implies that not all of them are equally
important, which relates to the idea of hierarchies in segmentation (Hard, Tversky,
& Lang, 2006). It could be stated in this regard that the concept of schemata
intertwines functional and temporal hierarchies.

One of the common questions regarding musical schemata in the area of
music concerns the role of enculturation and training; for instance, due to schematic
knowledge, musicians would tend to segment at hierarchically superior levels,
whereas a finer segmentation would be expected for non-musicians. From a
music-theoretical point of view, it is important to define who is the listener; for
instance, Deliège (1989) investigated how the cue abstraction model applies to
different groups of listeners, and also explored the relationship between the
composers’ intentions and the perceptual structure (see Deliège, 2001, on imprint
formation). Musical training has been regarded, in this respect, to facilitate the
formation of prototypical patterns due to a higher ability to memorize musical
events (Deliège, 1989). In contrast, GTTM focuses on a listener that may be
experienced, but depending on the artistic issue she may be less sophisticated,
closer to perfection, and so on (Lerdahl & Jackendoff, 1983); in other words,
some musical works would yield higher agreement between listeners regarding
grouping preferences. In practice, however, it may be difficult to establish how much



22

agreement between listeners could be considered to be enough agreement, and
what types of commonalities or dissimilarities between different representations
of structure should be taken into consideration.

2.2 Perceptual segmentation of music

Experimental work on the psychological problem of how temporal sequences can
be represented and understood by listeners has often been addressed via real-time
segmentation paradigms (e.g. Newtson & Engquist, 1976). As pointed by Zacks
and Swallow (2007), real-time segmentation is characterized by the following: I) it
occurs for both spatial and temporal information processing and shapes memory
and learning; II) it is an operation that generally does not require special knowledge;
III) it occurs spontaneously, and can be considered to be an automatic process in
some cases; IV) it is a hierarchically structured representation of events, which
means that multiple events with high level of detail can be grouped together into
larger units (Kurby & Zacks, 2008; Hard et al., 2006), and not all event boundaries
have the same level of importance; V) it may involve specialized neural mechanisms.
In the study of music and other information streams, the distinction between
real-time and non real-time segmentation is particularly interesting: it can help to
explain how structural representations of a piece are gradually constructed. In
everyday life, we may take advantage of both types of music segmentation: we
segment in real-time when dancing to music that we never have heard before in
order to change our dance moves in synchrony with the beginning of musical
sections, and we segment in non real-time while trying to find the time position of
our favorite part of a musical piece by navigating through a recording.

In theory, temporary and final states of listeners’ understanding are separable.
It would be possible to make segmentation predictions that would correspond
to that of an ‘ideal listener’ whose intuitive representation of musical structure
would not be subject to concomitants of real-time processing. Real-time perception
can be associated with a temporal logic: the confidence that a given instant
of change should (or should not) be indicated as a boundary varies over time.
In practice, these aspects are not so easy to study because temporary states of
listeners’ understanding may not be well represented by real-time indications:
real-time segmentation involves the anticipation of future boundaries, and also
critical retrospection regarding past boundaries or events. In this sense, real-time
perception does not follow the linear sequence of the acoustic phenomena but rather
a non-linear path. This is somehow associated with other questions regarding
the order of occurrence of events on segmentation. Studies on the effect of event
order on perceptual musical structure (Tillmann & Bigand, 1998, 2004; Lalitte
& Bigand, 2006) show that coherence between local structures is much more
important for the experience of a listener than coherence between global structures.
This would imply, in the context of boundary perception, that anticipation and
critical retrospection of boundaries involve relatively short temporal contexts, such
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that listeners’ representation of structure may more or less resemble real-time
indications. That is, listeners probably build more hypotheses regarding future
boundaries that are proximal in time than with respect to temporally distant ones.
Although experimental segmentation studies on music segmentation have not
investigated differences between indications in real-time and in non real-time, they
have often focused on differences between repeated segmentation trials for the
same stimulus, finding an increase in the number of indications over repeated
segmentations of the target stimulus (Deliège, 1987; Bruderer, 2008; Deliège et al.,
1996; Krumhansl, 1996). This trend did not reach statistical significance, however,
and Bruderer (2008) found differences for audio but not for MIDI versions of the
stimuli.

Following efforts by Lerdahl and Jackendoff (1983) to formalize the under-
lying rules behind the cognition of musical structure, a number of perceptual
segmentation studies focused on their perceptual validation (Deliège, 1987; Peretz,
1989; Clarke & Krumhansl, 1990; Krumhansl, 1996; Frankland & Cohen, 2004;
Bruderer, 2008; Koniari & Tsougras, 2012). Different methodologies were used,
for instance, regarding the duration of the stimuli to segment or the number
of allowed boundary indications, but an underlying question was common for
all studies: how do grouping preference rules relate to segmentation boundary
indications? Often, the approach consisted of finding whether the locations of
listeners’ indications coincide with the GTTM predictions (e.g., Koniari & Tsougras,
2012); another method was to collect justifications behind participants’ indications
(verbal description cues) which are then compared with the types of rules that
would predict the boundaries (e.g., Deliège, 1987). Since the GTTM predictions are
attributable to an ideal listener, musicianship (Deliège, 1987; Frankland & Cohen,
2004; Bruderer, 2008) and age (Koniari & Tsougras, 2012; Koniari et al., 2001) have
been investigated as possible factors. All in all, significantly more segmentation
boundaries in accordance with GTTM rules were indicated by 8-year-old children
when compared to 6-year-olds, but regarding the role of musicianship, which has
been investigated more, findings have been rather inconclusive. For instance, both
musicians and non-musicians seem to segment based on aspects related to musical
’surface’ (pauses, changes in register, dynamics, see Bruderer, 2008), although
musicians’ segmentation may better correspond with musicological rules (Deliège,
1987) and with offline expert annotations (Mungan et al., in press).

Another pertinent issue is that the cultural background of listeners could
determine segmentation strategies; musicians from different cultural backgrounds
seem to differ in their segmentations (see Ayari & McAdams, 2003; Lartillot &
Ayari, 2011), but this does not seem to be the case for non-musicians (Mungan
et al., in press). It is also plausible that musicians and non-musicians differ in
the speed at which they recognize boundaries in order to indicate them. In this
respect, psychological studies reported faster capture of statistical structure of
perceived streams (François, Jaillet, Takerkart, & Schön, 2014) and larger auditory
memory spans (Tierney, Bergeson-Dana, & Pisoni, 2008) in musicians.

Focusing on the stimulus to be segmented, one could suspect that different
styles of music would lead to similar segmentation strategies from listeners; for
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instance, although tonality, timbre, and repetition of sequences may be very
important aspects in music segmentation, listeners may focus on other types of
change (e.g., solely on rhythm) for certain pieces. This relates to the distinction
between veridical versus schematic expectations (Justus & Bharucha, 2001); such a
differentiation between event models and event schemata is plausible but not well
supported by experimental tasks (Zacks et al., 2007). It is also important to consider
the extent to which the use of naturalistic stimuli is crucial for studying segmenta-
tion; according to a study on Western music (Bruderer, 2008), different versions
of the same musical piece (a synthesized melodic line, a synthesized polyphonic
line, and a real polyphonic example) lead to essentially the same segmentation,
meaning that listeners focus mainly on melodic lines. It is possible, in this respect,
that perceptual processing into musical stream segments (Cambouropoulos, 2010;
Rafailidis, Nanopoulos, Manolopoulos, & Cambouropoulos, 2008), which might be
involved in the representation of structure, may often lead to similar segmentations
for polyphonic and monophonic versions of the same piece.

2.3 Computational segmentation of music

The possibility of modelling listeners’ segmentation and structural annotations
with fair accuracy has been of great interest among music researchers coming
from different areas. Since musical structure is an essential attribute associated
with the perceptual integration of different musical elements, the prediction of
perceptual structure in music can help explain the extent to which, given a context,
specific features of music can systematically prompt a representation of structure.
By estimating the prediction accuracy of different segmentation models, we can
gain knowledge of the role of perceptual organization rules, and memory-based
and attentional processes on the perception of structure. In addition, automatic
segmentation of music has a plethora of applications: it can used, for example, for
music navigation and visualizations, or to facilitate other automatic tasks such as
music transcription or genre classification.

The first attempts to approach segmentation prediction were carried out over
monophonic music in the symbolic domain. The two approaches that encompass
most of the work on segmentation prediction in the symbolic domain are rule-based
and data driven (Ellis, 1996; Parncutt, 1998). The greatest difference between
them is that rule-based approaches are short-term and whereas data driven are
long-term. Rule-based approaches offer a description of musical structure based
on a set of principles of perceptual organization, which may reinforce each other or
enter into conflicts depending on the characteristics of the percept under analysis.
Out of the many ways to structure the perceptual field, organizations characterized
by their simplicity are given privilege, following psychological principles from
Gestalt theory. To give an example, the Temporal Gestalt Units (TGU) segmentation
model (Tenney & Polansky, 1980), which is based on pitch, duration, dynamics
and timbre, follows the assumption that elements in a sequence that differ from
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previous elements by an interval that is greater than preceding and following
intervals are perceived as change with respect to a given musical dimension. The
minimal context required to define a segmentation is four notes (three intervals),
although the approach can be extended for the analysis at larger time scales,
forming a hierarchical representation. Here, the simplest organization would
group together subsequent events that do not differ much between each other with
regards to a given dimension.

Another rule-based example is the Local Boundary Detection Model (Cam-
bouropoulos, 1998, 2001). Roughly, it is obtained as a weighted sum between three
measures of boundary strength, which are absolute pitch interval, inter-onset
interval, and offset-to-onset interval. The main difference with the previous
model is that here, the focus is on any change between two subsequent intervals.
Compared to Tenney and Polansky (1980), this model does not require an interval
to be preceded and followed by shorter intervals to increase boundary likelihood.
Instead, the likelihood of indicating a boundary at a given target event increases
if it introduces a change with respect to both past and future events, unless the
events are characterized by ascending or descending equidistant steps (such as a
regular increase or decrease in pitch or length of events). The temporal context for
determining boundary likelihood is also shorter, as the Local Boundary Detection
Model uses three events (two intervals) at a time in the estimation. In addition,
we mention a rule-based approach proposed by Temperley (2001) called Grouper,
which consists of a gap rule (preference to locate boundaries at large inter-onset
intervals and offset-to-onset-intervals), a phrase length rule (preference for phrases
having 8 notes), and a metrical parallelism rule (preference to begin successive
groups at parallel points in the metrical structure). Also Frankland and Cohen
(2004) quantified some of the grouping preference rules proposed in GTTM with
the purpose of validation via perceptual experiments.

Data driven approaches (Bod, 2002c, 2002b, 2002a; Pearce, 2005; Pearce &
Wiggins, 2006; Pearce, Müllensiefen, & Wiggins, 2010) are based on the idea
that statistical regularities determine perceptual grouping. Under this approach,
segmentation may occur due to a change associated with a feature, but hearing a
rare sequence or relationship between notes should also contribute to boundary
perception. Listeners focus on simplicity but are biased by likelihood; for instance,
Gestalt rules predict that large pitch jumps are supposed to be separated by
boundaries, but this may not apply for musical pieces characterized by frequent
pitch jumps. Since here, the likelihood of occurrence of intervals and sequences
determine grouping, these approaches are considered to be memory-based: statistical
regularities are ’learned’ from other (e.g., previous) parts of a piece or from a large
musical corpus. These approaches follow the idea that the simplest organizations
are preferred but the most likely organizations prevail (Bod, 2002b). Hence,
while rule-based approaches follow a priori assumptions to determine whether a
sequence should be grouped together or clustered, data driven approaches use
the a posteriori assumption that if a series of events occurs frequently, it is more
likely to be grouped by listeners. In both cases, however, the quantification of
relationships between events (e.g., inter-onset intervals) is required. Since data



26

driven models can be trained using previous knowledge, they can be used to study
schematic and veridical expectations in music: for instance, a major second is in
principle unlikely to be a significant change because it is rather ubiquitous in music,
and a motif is likely to be grouped together as it reappears in a musical piece.
Another advantage of this approach is that it potentially offers a better account
of short-term memory processes in real-time segmentation, as it can consider
recent occurrences of material. Also, since different music corpora can be used for
training, data driven approaches may be applied for modelling segmentation from
different types of listeners (e.g., rock and jazz enthusiasts), provided that the model
is based on actual relationships between events that listeners focus on. A possible
problem with data driven approaches is that they are often based on the repetition
of notes or of relationships between notes; exact repetition is often not enough for
accurate prediction of musical structure, because the statistical regularity of an
input is also determined by the similarity between events or their relationships. In
this sense, data driven approaches may offer only a partial solution to the problem
of musical parallelism: for example, motifs of equal length, similar durational
values and different pitch may yield inaccurate patterns of melodic expectation.

Studies on motivic pattern extraction (Lartillot & Toiviainen, 2007b; Cam-
bouropoulos, 2006; Conklin & Anagnostopoulou, 2001) are related to data driven
approaches as both can be based on pattern matching techniques (Bod, 2002c, uses
stochastic grammar instead), but they differ in their target (to find motifs vs. to
estimate expectancy of events); despite their differences, both approaches can be
used to find segment boundaries. Motivic pattern analysis techniques also incor-
porate perceptual organization rules, for instance, to avoid obtaining redundant
long pattern candidates when sequences are repeated (see the problem of cyclic
patterns in e.g. Lartillot & Toiviainen, 2007b), or two match sequences that contain
variations, for instance in their endings. Again, issues of similarity and parallelism
pose challenges to pattern analysis: for example, two patterns might be identical
except for differences in ornamentation (Cambouropoulos, 2006). Another issue
in pattern analysis is polyphony, which can increase the complexity of heuristics;
geometric pattern discovery has been applied over pitch-time representations to
address this issue (Meredith, Lemström, & Wiggins, 2002; Meredith, 2015). The
extension of these methodologies to the audio domain is difficult, but has great
potential with regards to other problems including music transcription.

Prediction of musical structure in the audio domain is currently a much
investigated issue, especially with regards to the development of automatic
segmentation and structural analysis algorithms, but also within the contexts
of music summarization (or thumbnailing), chord extraction (Mauch, Noland, &
Dixon, 2009), music transcription (Maddage, Xu, Kankanhalli, & Shao, 2004), and
music classification (Barbedo & Lopes, 2007). The main advantage of such an
approach is the use of real-world polyphonic signals: the automatic analysis of
real performances has a very clear musicological, industrial, and societal impact.
Currently, the focus of research in this area is mainly on segmentation into structural
sections that can be labelled, such as intro, verses and choruses (see Paulus et al.,
2010). Several approaches to automatic structural analysis of musical audio have
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been proposed. These have been categorized into three types (Paulus et al., 2010;
Serrà, Muller, Grosche, & Arcos, 2014): homogeneity-based or “state” approaches,
repetition-based or “sequence” approaches, and novelty-based approaches.

The first of these methods is based on Hidden Markov Models (HMMs), the
main assumption of which is that sections such as verses and choruses should be
homogeneous with respect to a given musical property, so the challenge involves
finding what makes a section homogeneous in order to detect transitions between
sections. For instance, given a specified number of possible states (Rabiner, 1989),
each of them corresponding to a possible combination of instruments in a piece of
music, state transition probabilities can be used to determine the points at which
the combination changes over time (Aucouturier & Sandler, 2001); most often, the
interest is in finding points of change between structural sections (Levy & Sandler,
2008). By assigning a different state to each time point, HMMs can be used to
directly find boundaries without the need of peak picking. In these approaches,
the number of states must be defined in order to model probabilities of being in a
state. Hence, HMMs are more suitable for categorical data (such as key and chord
labels, see Pauwels, Kaiser, & Peeters, 2013); however, varied implementations
based on HMMs have been used in structural analysis (Paulus et al., 2010).

The repetition approach for structural analysis is based on time lag rep-
resentations (Goto, 2003). These methods aim to find repetitions and similar
segments with respect to a given feature based on similarity matrices (see further
in Chapter 4). To obtain similarity matrices, first the dissimilarity (obtained via
Euclidean distance) between all possible pairs of points of a multidimensional,
frame-decomposed feature (see 4.3.2) is computed (Foote, 1999). The result is a
dissimilarity matrix, which is then inverted. Points in the main diagonal represent
similarity between adjacent frames; other diagonals compare similarity between
frames that are temporally more distant with each other, such that the further the
diagonal is from the main diagonal, the larger the temporal distance between pairs
of frames will be. While all musical pieces tend to show clear stripes in the main
diagonal (due to high similarity between adjacent frames), similarity matrices of
pieces with repeated segments exhibit stripes in non-main diagonals, provided
that the extracted features yielded similar descriptions for repeated parts. The
position and duration of the stripes can be used to easily indicate which parts are
being repeated and when the repetition occurs. However, extracting these paths
is computationally not so simple because they are placed over diagonals. Time
lag representations offer a simpler representation of the duration and temporal
difference between repeated parts, because all the diagonals of the similarity matrix
are transformed into horizontal lines. These representations are especially useful
for music with a stable tempo, because music with tempo changes will result in
curved lines which are more difficult to trace; however, methods for tracing these
paths from similarity matrices have been proposed (Müller & Kurth, 2006).

The third approach to audio-based structural analysis, which is related to the
previous approach, is based on analysis around the main diagonal of the similarity
matrix (Foote, 2000). Novelty-based approaches work under the assumption that
structural segments can be found via the detection of high dissimilarity between
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subsequent regions, provided that each of these regions is characterized by high self-
similarity. Detection of novelty points is obtained via convolution of a checkerboard
kernel with Gaussian taper along the main diagonal of the similarity matrix (or
equivalently, cross-correlation between these two). Often, from the resulting
novelty curves, segmentation points are selected via a peak detection algorithm;
these points are evaluated against perceptual boundary indications (ground truth
data). A variety of implementations based on novelty curves has been proposed,
for instance using summation of spectral and chroma features (Paulus & Klapuri,
2009; Eronen, 2007; Peeters, 2007) and different kernel sizes (e.g., Gaudefroy,
Papadopoulos, & Kowalski, 2015). The original implementation, however, still
yields satisfactory results for segmentation prediction when compared to newer
methods (Aljanaki et al., 2015), even for challenging music (Bohak & Marolt, 2016).

Although similar aims apply to both symbolic and audio-based approaches
to segmentation, segmentation in the symbolic domain can be considered to have
a more straightforward relationship with music-theoretical studies. The compu-
tational validation of musicological rules is more difficult in the audio domain,
since these are essentially focused on on analytical readings of the musical score.
Audio-based approaches are often oriented towards real-world stimuli, which are
often polyphonic, whereas theoretical approaches often focus on monophonic
representations such as melodies. Also, studying the relationship between, for
example, note onsets, offsets and rests in audio depends on developments in the
area of audio-based transcription.

However, audio-based approaches to segmentation prediction that incorpo-
rate musicological models have been proposed (e.g. Pauwels et al., 2013). One could
also claim that novelty detection implicitly relates with similarity and proximity
principles. To give an example of audio-based rules that somehow resemble these
models, Bohak and Marolt (2016) applied the assumption that any time point
that follows a region of loudness below a given threshold is a segment boundary
candidate, and the larger the preceding region of low loudness is, the higher the
likelihood of placing a boundary at that time point will be. It could be asked
which of these two conditions (low loudness or relatively constant loudness) is
more important for boundary perception. Regardless, although loudness can
be a relevant segmentation cue, it should be noted that the types of change that
determine segmentation can be stimulus dependent; for instance, McFee and
Ellis (2014) point out that structure in pop and rock is frequently determined by
harmonic change, whereas in jazz it is often based on instrumentation.

2.4 Limitations and challenges in music segmentation

A problem to highlight in segmentation of perceived streams is the difficulty of
studying how subjects represent a structure that evolves through time; experimental
approaches may often face issues of test validity. Related to this, we should mention
another validity issue related to the relevance of boundary indication data in the
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study of perceptual segmentation. Music segmentation can be understood as a
passive, automatic process, but explicit segmentation tasks involve attention and
decision making processes (Zacks & Swallow, 2007; Bigand & Poulin-Charronnat,
2006). Because of this, it is important to discuss how can music segmentation be
explored from a more naturalistic point of view. We believe that it is problematic
to use explicit tasks to study segmentation, as they might provide information
only about some of its aspects.

An issue associated with the use of explicit tasks is that task instructions or
other factors could influence the time scale of the segmentation used by listeners.
It is important to study the contribution of the operational definition used to define
musical boundaries (‘landmark points while taking a walk in an unfamiliar forest’,
Deliège et al., 1996; ‘listen to the music as if it was a story and mark its punctuation’,
Koniari et al., 2001; ‘tell how strong the punctuation was’, Deliège, 2007) and
musicological terms (‘press space-bar when you hear a segment boundary [phrase,
section, passage]’, Bruderer, McKinney, and Kohlrausch, 2006) to the resulting
boundary profiles. Also, it is important to better understand the link between
musical segment boundaries and attentional processes: segment boundaries can
sometimes be understood as points that capture our attention, although not all
points in the music that capture our attention may be considered boundaries. It
might be interesting to compare segment boundaries obtained via explicit tasks
with points of increased attention to the music, and further understand how these
points relate to realization of goals (Peebles, 2011; Baldwin, Baird, Saylor, & Clark,
2001; Zacks & Swallow, 2007).

We should also remark that even if numerous stimuli are used in segmentation
tasks, not all kinds of music will be represented: this illustrates the need for standard
data collection methods for music segmentation. Indeed, using a single method to
collect a large amount of compatible data through different experiments may better
approach the issue of music segmentation. A tradeoff between participant and
example size could be obtained from social tagging (e.g., in the likes of listeners’
comments over a representation of the audio waveform), but this would have an
impact on the reliability of the data.

Another important question concerns the “semantic gap” problem: how fair
is it to “jump” from basic audio features to perceptual structure? Lerdahl and
Jackendoff (1983) mention that only partial representations of musical structure
can be obtained from musical scores and sound waves. To put it differently,
listeners derive a complex representation of structure from the acoustic signal; this
operation should not be understood as mere mnemonic processing of multiple
musical examples (Lerdahl & Jackendoff, 1983). Other more complex aspects
regarding cognition, culture, and our embodiment, to mention a few, must play
a role here. This problem extends to musicological analyses of segmentation,
which also fail to yield the whole picture. Lerdahl and Jackendoff (1983) mention
that although their set of rules had been constantly revised, there are always
examples that do not conform to predictions. We also mention another related
problem, which is the assumption that listeners’ segmentation can lead to a
better understanding of perceptual structure. It is important to understand that
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segment boundaries involve a reduction of dimensionality with regards to more
complex and abstract representations, so in this sense it is problematic to yield
interpretations on how musical structure is represented based on findings from
segmentation studies.

It should also be highlighted that some musical dimensions (rhythm, tonality)
can be understood as being more hierarchical than others (timbre, loudness).
GTTM chooses not to formalize “non-hierarchical” dimensions, although they
are regarded to contribute to the hierarchical structure that listeners perceive
(Lerdahl & Jackendoff, 1983). To our view, studying the contribution of other
features besides metrical and tonal hierarchy might help to understand other
possible hierarchical organization factors in music: for instance, one could imagine
a timbral structure in pop music, where changes in percussion and bass would
involve larger time scales than changes in piano, guitar or vocals.

Also, some questions regarding generalizability remain to be asked. It would
be important to understand to what extent the results of segmentation studies
are representative of the population, especially considering differences between
cultures regarding their understanding of what is an instant of significant change
in the music. In addition, it would be interesting to compare the results obtained
with those from other groups of participants, including listeners from different
cultures, experienced listeners, amateur musicians, and amusics.

Further, we mention problems in audio-based structural analysis that concern
the evaluation of algorithms (Paulus et al., 2010). For example, multiple ground
truths can be obtained for a single piece and may be equally valid. In addition,
models often yield higher accuracy for specific musical styles (e.g., pop-rock
music), but may fail in other cases. Also, comparisons between models are hard to
establish due to the use of multiple evaluation metrics (see Lukashevich, 2008);
some measures might be inappropriate from a perceptual viewpoint, because
listeners prefer segmentations that score higher on some measures (i.e., precision)
than on others (Nieto, Farbood, Jehan, & Bello, 2014). Further, retrieval of boundary
detection systems is based on the use of thresholds (e.g., 0.5 s and 3 s, see Ehmann,
Bay, Downie, Fujinaga, & De Roure, 2011), a problem that relates to the issue of
temporal scales. To address this problem, multi-scale models have been proposed
in audio music description, for instance, to study tonality (Martorell Dominguez,
2013; Gómez, 2006a; Gómez & Bonada, 2005). Our work on multi-scale modelling
of segmentation is based on these efforts.

Other issues worth mentioning concern investigation of structure analysis in
the audio domain. First, dealing with a mixture of sounds that overlap in frequency
and in time may result in very general representations of structure. Second, audio
musical features that are typically used for structural segmentation are far from
ideal. That is, Mel-Frequency Cepstral Coefficients (MFCCs Logan, 2000) are still
utilized for extraction besides their problems regarding perceptual interpretation:
MFCCs describe energy at broad frequency ranges for low coefficient values
(e.g., MFCC 1 yields higher values if there is energy at low frequencies), but
as the coefficient value increases, the frequency ranges described are so narrow
that it is hard to understand what is being described from a perceptual point of
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view. Also, MFCCs are sensitive to many different types of changes, including
changes of instrumentation, register, voicing, articulation, and loudness. Similarly,
changes in chroma features can be due to pitch steps, pitch jumps, or changes
of chords. This is particularly problematic when it comes to the contribution of
different features to segmentation, since some features focus on more dimensions
of musical change than others, and there might also be overlapping between the
dimensions that different features describe. Further, rhythmic descriptors are not
often extracted; effects of rhythm on musical structure are only accounted by the
use of beat synchronous features. Loudness descriptors are not prevalent either: a
reason might be that they do not fit the novelty-based approach since they are not
multidimensional; MFCCs and chromagram may also implicitly describe amplitude
to some extent. The third problem is that deeper analyses of structural aspects in
polyphonic music are very complex to achieve; polyphonic audio transcription and
pattern discovery based on relationships between notes in the polyphonic signal
are still at a relatively early stage. In sum, many problems in structural analysis
are associated to general limitations in audio-based music information retrieval
regarding audio feature description, transcription, and pattern discovery that will
hopefully be solved in the near future.



3 AIMS OF THE THESIS

The study of music segmentation can help us understand the complex perceptual
mechanisms involved in the organization of streams in time. Furthermore, it may
contribute to solve various challenges regarding automatic prediction of musical
structure. Our work examines a particular understanding of music segmentation:
the indication of points or instants in which the music changes significantly.
These instants are assumed to relate to the perceptual structure of music. Other
components related to segmentation, including repetition (within the piece and
with respect to other pieces), symmetry, variation, and the influence of schematic
knowledge upon e.g. perception of cadential closure, need to be regarded for
a thorough understanding of listeners’ segmentations. These components are
especially important because they can partially or completely change the likelihood
that a given local change evokes boundary perception. However, for the most part
we excluded these higher level factors from analysis in favour of a greater focus on
identification of local musical changes.

A central issue in this endeavor is the relationship between musical boundaries
indicated by listeners and changes in the music such as contrasts in instrumentation.
Since similarity, repetition and other complex aspects also prompt boundary
perception, not all boundaries should be considered as points of significant change;
this is the reason why, in our experiments, listeners were asked to focus on
significant changes. For the sake of simplicity, we regard all indicated points of
significant change as musical boundaries, even though this may not necessarily
apply to all indications; in any case, the notion of musical boundaries is rather
fuzzy.

It may be useful at this point to recapitulate our main research problems.
One can start with an ambitious question: are segmentation strategies universal, or
conversely, would different levels of cultural exposure or experience influence these
strategies (Drake & Bertrand, 2001)? If universality holds, then listeners of different
cultural background, and musical expertise should indicate segment boundary
indications at similar time points while listening to music. This work focuses on one
aspect of this question, namely on the effect of musicianship upon segmentation.
As stated in the previous chapters, the current evidence is insufficient to reach
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conclusions, but studies have shown that non-musicians tend to indicate more
segment boundaries than musicians, and also other differences were reported. In
this respect, finding out whether or not musical training shapes our perception
and our appreciation of music might help us gain deeper insights about possible
universals in music listening. To add more complexity to this question, music
is a dynamic process that evolves over time, so our understanding of a piece of
music changes as we listen to it. In this sense, we can distinguish segmentation in
real-time from non real-time segmentation, a more refined annotation of indicated
boundaries which involves having heard the piece as a whole. However, to our
knowledge no studies have closely examined possible differences between these
two modes of perceptual segmentation. In this sense, a better understanding of
listeners’ representation of musical structure requires to isolate the characteristics
of online processing of musical material from those related to offline processing.

The second problem that is investigated in this thesis concerns the way
actual musical changes point to phenomena of boundary perception. State of
the art models in automatic audio segmentation are often based on timbral and
harmonic changes, suggesting that these musical dimensions may be useful to
predict boundaries (Serrà et al., 2014). However, these studies are usually based
on a single annotation of the music that is obtained from one or few listeners
with a given level of musical experience. To this date, we do not know about
possible effects of musical training and experimental task on prediction accuracy of
segmentation. In this respect, it would be relevant to know what musical elements
(as described by acoustic features) would different listeners pay attention to in
different scenarios.

The third main issue that we examined is the role of particular musical
content of a piece on the accuracy of prediction. According to studies, segmentation
accuracy depends on the particular characteristics of musical pieces (Peiszer et
al., 2008). However the relationship between model accuracy and the musical
content of a piece remains unclear. It would be important to understand what
manifest characteristics of musical stimuli determine their prediction accuracy.
Understanding this would allow to select a prediction strategy, for example tonal
or rhythmic, that would better suit a particular piece.

This thesis examined various aspects of music segmentation regarding
perceptual modelling, computational modelling and characteristics of individual
musical works. We can summarize this work into three main aims:

– To investigate the role of musical training on segmentation and explore
possible differences between real-time and non real-time segmentation

– To devise audio-based computational approaches to model perceptual seg-
mentation for different tasks and groups of listeners

– To understand what characteristics of musical pieces that are described
by audio musical features would be associated with segmentation model
accuracy

Figure 1 shows a general overview of the main topics covered in this thesis and
their corresponding studies. Boxes with rounded corners refer to the conducted
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FIGURE 1 Schematic overview of topics and studies included in this thesis.

listening experiments and to the perceptual modelling of segmentation, whereas
boxes with sharp corners relate to computational modelling of segmentation
based on extracted musical features. There are commonalities between the studies
regarding their procedures: boundary data obtained from listeners’ segmentations
of musical stimuli is used to generate perceptual segmentation boundary density,
and musical features are extracted from the audio signal in order to understand
different aspects related to segmentation. In both PII and PIII, we investigated
the use of novelty detection based on musical features to obtain computational
models of segmentation for prediction of segmentation boundary density; different
models were compared based on their accuracy. In PI, we explored the relationship
between different aspects related to the segmentation boundary density curves
and global musical features extracted from the audio stimuli. PIII focused on
global characteristics of audio musical features and their potential as predictors of
segmentation accuracy.



4 METHODS

This section focuses on a selection of the methodological approaches utilized
in our studies regarding modelling of segment boundaries and audio-based
computational prediction of perceptual segment boundary density. We cover
methods related to data collection and analysis of perceptual segment boundaries,
audio-based modelling of segmentation, similarity between different sets of
boundary data or data derived therefrom, and finding suitable segmentation
time-scale parameters.

4.1 Boundary data acquisition

As mentioned in previous chapters, perceptual segment boundary data can be
acquired in real-time and in non real-time contexts. In our experiments, both tasks
involved the indication of boundaries during music listening, but the non real-time
segmentation (annotation task) involved a higher familiarity with the stimuli, and
the possibility to modify the location of indicated boundaries or to remove them
after the segmentation.

4.1.1 Participants

We obtained segmentation data responses from 18 non-musicians (11 males, 7
females) and 18 musicians (10 females, 8 males). The mean age was similar across
groups: 27.28 years (SD � 4.64) for non-musicians and 27.61 years (SD � 4.45)
for musicians. All the participants were local or foreign students and graduates
from the University of Jyväskylä and Jyväskylä University of Applied Sciences.
Musicians had an average of 14.39 years (SD � 7.49) of training, and most (12
participants) played classical styles; the rest of the musicians (6 participants)
played non-classical musical styles such as rock. They played piano (5), guitar
(4), flute (2), bass guitar, clarinet, saxophone, cello, violin, viola and voice as main
instrument. All the musicians considered themselves either as semiprofessional
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(12 participants) or professional (6 participants); they also reported having 6 or
more years of training. Non-musicians reported being musically untrained (except
for compulsory musical training during school); none of the participants reported
skills in dance or sound engineering.

4.1.2 Musical stimuli

For the listening tasks, we selected 6 multi-instrumental pieces and 3 polyphonic
piano pieces comprising various styles. The examples were mainly excerpts
extracted from longer pieces, with a duration ranging from 2 to 8 minutes. For
some analyses of PI and all analyses of PII and PIII, we used 6 of the mentioned
pieces; two of them lasted 2 minutes and the other four were trimmed down to
around this length for a total experiment duration of around one hour. These pieces
considerably differ from one another in terms of musical form and emphasize
aspects of musical change of varying nature and complexity:

Genesis: experimental pop-rock instrumental piece that is characterized by the
use of different types of electronic percussion and synthesizers within rather
long and homogeneous sections in terms of melody, harmony, and in some
cases also loudness and number of instruments.

Smetana: extract from a romantic symphonic poem including a long cantando
theme played by clarinets and horns that is followed by a stringed fugato
theme (De Lisa, 2009); these two parts later return as reprises in different
keys and with larger instrumentation.

Morton: fox-trot piano piece with a 4-bar introduction that is followed by variations
over a 12-bar blues progression; its rather catchy melodic line is often intruded
by sudden breaks, which are responded with rhythmic chordal clusters
(Trythall, 2002).

Ravel: impressionist piano composition that experiments with whole-tone and
pentatonic scales and is characterized by its high technical virtuosity due
to the constant use of arpeggio, glissando and tremolo (Sonntag, 2011); the
piece includes changes in dynamics, register, and tempo that may be heard
as highly unexpected.

Couperin: piano rendition of a baroque piece for harpsichord that is characterized
by highly ornamented semiquaver melodies, which are accompanied by a
quaver or semiquaver bass lines; closed cadences are common in the piece
but the use of triads is very rare (the piece only contains four triads).

Dvořák: symphonic piece that is mainly based on a traditional Czech folk dance
but also suggests a polonaise rhythm; its main theme is introduced by winds
and horns, and is later played by the whole ensemble and transposed up a
fourth (Šupka, 2013).

In addition, 3 longer pieces that were segmented only in the real-time task
were included in PI: Piazzolla, a modern Argentinian tango piece, Dream Theater, a
progressive metal song, and Stravinsky, an avant-garde ballet and orchestral concert
work. These 8-minute examples were trimmed into chunks of approximately 2
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minutes to avoid fatigue of participants; their boundary indications were later
concatenated across chunks for analysis.

The main reason for focusing on polyphonic musical pieces was to prompt
segmentation relying on processes of texture change; these types of changes are
most noticeable in Genesis, Stravinsky, and Dream Theater. These musical pieces,
however, did contain repetitions or similar sections (e.g. Genesis, Smetana, Couperin,
Dvořák and Dream Theater); although the effect of repetition was not our focus of
analysis, we were interested in employing ecologically valid stimuli, and repetition
is a common characteristic of most music. Similarly, we aimed to obtain more
generalizable results by including musical pieces with varying degrees of structural
complexity. For example, Genesis, Smetana and Dream Theater may induce high
level structural boundaries whereas the opposite may be the case for Ravel, Morton,
or Piazzolla. Other criteria for selecting the stimuli are mentioned in PI; web links
for listening to the musical pieces (using the music streaming service Spotify) were
included in the Abbreviations at the beginning of this thesis.

4.1.3 Experiment I: Real-time task

To obtain real-time segmentation responses, we devised a Max/MSP computer
patch that presented the stimuli through headphones and involved the use of
keyboard and mouse to record listeners’ responses (see Figure 2, top). The interface
included a play bar to give listeners an idea of the relative duration of the stimulus
and to indicate the current time position; a visual feedback was triggered by
each boundary indication. The main task for listeners was to indicate instants of
significant change by pressing the space bar key of the computer. The stimuli were
presented in randomized order. The boundary data was recorded in a single pass,
meaning that listeners neither had the possibility to listen to the stimuli before the
segmentation nor were able to modify their boundary indications. The following
instructions were given to participants: “Your task is to mark instants of significant
musical change by pressing the space bar of the computer keyboard. Whenever
you find an instant of significant change, please press the spacebar key to mark
it as you listen to the music. You will not have a chance to listen to the whole
example before you start marking. Instead, during your first and only listen of
each example, you will give us your ‘first impression”’.

4.1.4 Experiment II: Annotation task

The second experiment aimed towards obtaining more comprehensive and precise
boundary data. The same group of musicians that participated in Experiment I
was recruited for this experiment, because they all reported experience in basic
audio editing. For this experiment, we prepared an interface in Sonic Visualiser
(Cannam, Landone, & Sandler, 2010) that recorded boundary time points and
boundary strength ratings for six two-minute stimuli (see Figure 2, bottom). For
each stimulus, a waveform was shown as a visual guide; it was possible to zoom the
time scale of the waveforms (horizontal zoom). The interface offered the possibility
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FIGURE 2 Top: Trial instructing subjects to indicate instants of significant change during

music listening (Experiment I). Bottom: Part of an annotation segmentation

(Experiment II) for stimulus Ravel; red vertical bars refer to boundaries

indicated by the listener, and numbers situated next to the bars are perceived

boundary strength ratings.

to play back the music, add indications, reposition them, remove them, and rate
their strength using keyboard and mouse. Listeners were asked to focus on the
music rather than on visual content to avoid a bias towards boundary indications
based on amplitude changes. Headphones were used to playback the music at a
comfortable listening level.

Each of the target stimuli was first presented for listening from beginning
to end before segmentation in order to prompt more deliberate indications. Sub-
sequently, subjects were asked to indicate instants of significant change while
listening to the music. Finally, listeners could freely play the music from any time
point in order to correct the time location of the indications for higher precision or
remove any unwanted boundaries, and were asked to rate the perceived strength of
each indication. They were asked not to add any new indications, as we assumed
that they would tend to “over-segment” the stimuli while focusing on musical
excerpts of short duration (see Krumhansl, 1996).

In the written instructions, we included a presentation of the different tools
in the interface (also, the experimenter ensured that the interface was understood)
and a description of the task, which consisted of five steps:
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– Listen to the complete musical example.

– Listen to the complete example, and at the same time mark instants of
significant change by pressing the Enter key.

– Freely playback the musical example from different time points and correct
marked positions to make them more precise, or remove them if these were
added by mistake. Do not to add any new marks at this stage.

– Mark the strength of the significant change for each instant with a value
ranging from 1 (not strong at all) to 10 (very strong).

– Move to the next musical example and start over from the first step.

4.2 Perceptual segment boundary data

The aforementioned experiments were used to obtain different boundary data sets
based on participant groups and experimental tasks. We then generated models
with the collected boundary location data and ratings of boundary strength to
obtain intermediate results regarding segmentation across participants.

4.2.1 Boundary data comparison

Analyses of indicated boundaries often involve making comparisons between sets
of boundary data. Most commonly, these are done to evaluate performance of
algorithms; for instance, MIR studies compare actual and predicted segmentation
using performance measures, such as precision, recall and F-measure. In some
cases, however, it may be necessary to compare different actual segmentations with
each other, for instance if two or more listeners yield rather dissimilar boundary
indications for a same musical piece. To this end, one can regard the problem of
boundary data comparison as a particular case of the more general problem of
comparison between point processes (Dauwels, Vialatte, Weber, & Cichocki, 2009).
A point processes a sequence of discrete binary events that occur over time, such
as the firings of a neuron. Analogously to boundary indication data from different
participants, a group of neurons may or may not send nerve impulses in relative
synchrony, although there may be some delays between neurons.

A number of metrics have been suggested to analyze the similarity between
pairs or groups of point process data directly. Depending on the problem, one
similarity measure may be more appropriate than the other. For example, it could
be that two point processes are identical except for one event, which appears in one
process but not in the other one; some similarity metrics, such as Victor-Purpura,
would penalize each event deletion (or conversely, insertion), whereas other metrics
may allow a relative number of event deletions . A common issue among most
measures is the requirement of a time constant or time scale parameter: how
proximal (e.g., in time) would two events need to be in order to define these as
related with each other (or conversely, how distant from each other would events
need to be to consider these as isolated events)? Finally, some of these measures
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are characterized by the ability to control for delays between point processes: using
these measures, two identical point processes should yield high similarity even
if one of them was time shifted. This is a potentially interesting characteristic
considering perceptual segmentation of music, as different segmentation contexts
may be associated with higher indication delays.

4.2.2 Modelling boundary data
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FIGURE 3 Top: Boundary Indications from each listener for stimulus Ravel. Middle:

Perceptual segment boundary density at a time scale of 1.5 s. Bottom: Multi-

scale modelling of density at 16 time-scales ranging logarithmically between

0.5 s and 10 s. Warm colors denote high density (i.e., simultaneous boundary

indications by multiple listeners), whereas cool colors denote low density.

Some scenarios might benefit from an alternative approach, which consists
of aggregating multiple point processes into a density curve; this method might be
useful for comparison between different sets of point processes. For instance, it may
be relevant to compare boundary data from a group of musicians with boundaries
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FIGURE 4 Top: Boundary Indications from each listener for stimulus Ravel, weighted

according to perceived boundary strength ratings. Middle: Perceptual

segment boundary density at a time scale of 1.5 s. Bottom: Multi-scale

modelling of density at 16 time-scales ranging logarithmically between 0.5 s

and 10 s.

obtained from a group of non-musicians. In this case, Kernel Density Estimation
(KDE, Silverman, 1986) can be used to obtain a value estimating the probability
of boundary indication for each time point. Figure 3 (middle, top) illustrates
the modelling of boundary data collected from different listeners as perceptual
segmentation density via KDE. High segmentation activity from multiple listeners
for a given temporal region yields peak values at the middle of that region: for
instance at around 40 seconds the curve reaches its maximum density, because
all listeners indicated a change at about the same time. One of the advantages of
this method is that the obtained model offers a tradeoff between listeners who
indicate more often (listener 1) and those who indicate seldom (listener 4). The
model also yields a balance between listeners who tend to segment relatively early
with respect to other listeners (listener 14) and those who seem to be more delayed
(listener 15).
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KDEs are similar to histograms, which are also density estimators. However,
Kernel Density Estimation does not separate data points into bins, but yields a
smooth distribution via the application of a (usually normal) kernel function to
each data point. Kernels of larger variance allow us to describe the contribution
of each segment boundary to a larger temporal context, and vice versa. In this
sense, this method is optimal for the analysis of perceptual segment boundary
data. In our case, it allows for a perceptual modelling of each participant group
and experimental task, which simplifies the analysis because it is based on a
representative estimate of the segmentation across all listeners. Also, assessing
similarity between time series instead of between point processes can be more
convenient because comparable time series would share the same number of points,
whereas this is not necessarily the case for point processes.

In our analyses, Kernel Density Estimation (Silverman, 1986) was applied
to a vector of superimposed boundary indications from multiple participants.
The method consists of centering a Gaussian kernel at each boundary, and then
summing the kernels together. The result is a smoothed curve where each peak
indicates that multiple listeners indicated a boundary around that point; this curve
is further normalized to sum 1 for further comparison between different density
curves. A set of weights associated with boundary indications can also be included
in the computation, so that boundaries that are perceived as stronger would yield
higher density, and vice versa. A smoothing parameter, the bandwidth of the
Gaussian kernel, needs to be defined in Kernel Density Estimation; this time scale
parameter is studied in PI, where different bandwidths are used to obtain multiple
curves of perceptual segment boundary density for the same boundary data in
order to find an optimal parameter value. It is possible to obtain a representation
of the segmentation density at multiple time scales by organizing the perceptual
segment boundary density curve into an array according to their bandwidth.
The result is a multi-scale model of perceptual segmentation density, where each
column refers to density at a given time point for different time scales, and each
row corresponds to the perceptual segmentation density curve at a given time
scale. Figure 5 shows multi-scale models for non-musicians and musicians in the
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FIGURE 5 Modelling of indicated boundaries via a multiple time scale approach. The

kernel density over time (stimulus Morton is represented for 16 time scales.
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real-time task (stimulus Morton).

4.2.3 Boundary density and boundary strength

Figure 3 illustrates how boundary indications from different listeners are rep-
resented as a single-scale curve of boundary density and as a multi-scale rep-
resentation. Boundary indications by 18 musicians in the annotation task are
aggregated into a single-scale model using KDE; 16 single-scale models, each at
a different KDE bandwidth, are aggregated to form a multi-scale representation.
This could be considered an interesting representation of the musical structure:
segments of around 11 s are recurrent (26-39 s, 39-51 s, 76-87 s, 87-97 s, 97-106 s),
although perceptually it seems to be very difficult to estimate that these are of
similar duration since the rhythmic characteristics of the music vary considerably
due to changes in tempo and pulse. The single-scale model, in turn, allows for
a visual comparison against a representation that includes boundary strength
ratings. Figure 4 shows how these three graphs change when boundary strength is
taken into account. In particular, the single-scale perceptual boundary density is
different to some degree: for instance, the highest peak in Figure 3 (40 s) becomes
the second highest in Figure 4. Although all participants indicated a boundary at
this point, 10 participants (3, 5, 6, 7, 8, 12, 15, 16, 17, and 18) rated lower strength for
this boundary than for a boundary at around 27 seconds that was indicated by less
listeners. It is also clear that some participants (1, 3, 6, 15, and 16) indicated strong
boundaries (Figure 4) for time points that do not correspond with high density
in Figure 3, although in some cases this seems to be due to lack of agreement
regarding the exact location of changes. Even though the density curves in Figure
3 and Figure 4 correlate almost perfectly (r � .97), according to these differences
the strength of boundary indications does not necessarily relate with the boundary
density for the corresponding time points; PI elaborates further on this finding.

4.3 From audio-based features to computational segmentation
models

An important part of the conducted analyses in our studies aimed towards finding
possible relationships between several characteristics of the musical structure and
musical features extracted from the audio signal. Audio musical features and
estimates derived therefrom allowed us to understand the obtained segmentation
data as responses to acoustic phenomena related to the musical signal. We
investigated possible relationships between: I) musical features and optimal time-
scales for correlation between segmentation density for different experimental
tasks; II) musical features and optimal time lag between multi-scale models for
different segmentation tasks; III) changes regarding frame-decomposed musical
features (obtained via novelty detection) and segmentation density; IV) musical
feature characteristics and computational segmentation model accuracy.
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4.3.1 Global musical features

Acoustic musical descriptors of global properties can offer an overall estimate
of musical characteristics across the entire duration of a piece. This approach
to musical feature extraction cannot account for dynamic evolution (e.g., tempo
changes in musical pieces), but can offer useful summaries of the musical pieces
under study. In PI, we extracted global rhythmic features in order to understand
whether rhythmic characteristics of the stimuli would relate, for example, to
listeners’ perceptual delays or to the optimal time scale of the segmentation of each
piece. For this purpose, we used features dependent on onset detection (Bello et al.,
2005): event density, tempo, and pulse clarity (Lartillot & Toiviainen, 2007a; Lartillot,
Eerola, Toiviainen, & Fornari, 2008). We chose the default strategies implemented
in MIRToolbox 1.6.1 (Lartillot & Toiviainen, 2007a) for their computation. Event
density is computed as the number of note onsets per second, for note onsets
obtained from an amplitude envelope via peak picking. Tempo is estimated by
obtaining the lag of the highest peak from the positive half of the autocorrelation
of the amplitude envelope. Pulse clarity basically refers to the coefficient of the
highest peak of the aforementioned positive half of the autocorrelation. From
these computed features we also obtained average note duration (inverse of event
density) and beat length ( 60

tempo ).

4.3.2 Frame-decomposed musical features

In order to describe the dynamic evolution of different musical dimensions, frame
decomposition is applied as a previous step to feature extraction. This procedure
consists of dividing an audio signal into short chunks (i.e., frames) in order to later
perform feature extraction over each frame separately and obtain a feature time
series. The duration of each chunk is an important parameter: for instance, the
description of tonal features requires larger temporal contexts than in the case of
timbral features. The process of frame decomposition actually involves “sliding”
a short-term window of a specified duration (called window length) along the
signal. The idea of sliding involves that two subsequent positions of the window
may either correspond to subsequent chunks of the signal or be overlapped with
each other by a specified amount; in other words, the size of the window “hop”
is a parameter in frame decomposition. Overlapping is used to partially smooth
the representation, which is important taking into account that the time points at
which the signal is divided are rather arbitrary (they do not necessarily coincide
with perceptible signal changes).

In our work, we extracted five frame-decomposed features: a spectral feature,
a rhythmic feature, a chroma feature and two tonal features. These were used
for novelty detection in PII and to derive a global feature estimate in PIII. To
describe timbre we used subband flux (Alluri & Toiviainen, 2010), a 10-dimensional
feature that describes spectral fluctuations at octave-scaled subbands of the audio
signal. The first step to compute this is to divide the signal into subbands using
ten second-order elliptic filters (to achieve a sharp cutoff). For each frequency
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channel, a spectrogram is computed using a window length of 25 ms and 50\Finally,
dissimilarity between successive spectral frames is computed via pairwise nor-
malized Euclidean distance (spectral flux). Unlike the commonly used MFCCs,
subband flux features have been specifically designed to model musical polyphonic
timbre perception; also, they have shown higher separation ability between genre
classes than MFCCs in the context of musical genre classification (Hartmann, Saari,
Toiviainen, & Lartillot, 2013).

For rhythmic description, we extracted fluctuation patterns (Pampalk, Rauber,
& Merkl, 2002), a psychoacoustics-based representation of rhythmic periodicities in
the audio signal that is obtained via estimation of spectral energy modulation over
time at different frequency bands. First, a spectrogram in dB scale with frequencies
bundled into 20 critical bands is computed using a window length of 23 ms and
a hop rate of 80 Hz. Following an outer ear model (Terhardt, 1979), frequencies
between 2000 Hz and 5000 Hz are emphasized, whereas energy outside this range
is attenuated. Further, the spectrogram is weighted based on a perceptual model
of spectral masking that, given a high-energy frequency band, attenuates energy
at a region of frequencies below that band. Subsequently, for each separate critical
band, a second spectrogram is computed (window length 1 s, hop rate 10 Hz)
where the highest frequency taken into consideration is 10 Hz (which corresponds
to 600 beats per minute). This yields, for each critical band and each frame, a
description of loudness modulation. Each modulation coefficient is then weighted
based on a psychoacoustic model of fluctuation strength sensation (Fastl, 1982)
in order to give emphasis to modulation frequencies that are optimal for the
perception of strong fluctuation (e.g., a steady beat). Finally, for each frame, the
modulation coefficients are summed together; the result is a description of the
dynamic evolution of periodicity for each modulation frequency.

We also computed chromagram (pitch class profile, see Fujishima, 1999;
Gómez, 2006b), a 12-dimensional feature describing the energy distribution of
each pitch class per spectrogram frame. To obtain this feature, a spectrogram for
the highest energy over a range of 20 dB and for frequencies ranging between
100 Hz and 6400 Hz is first computed. Then, frequency bins are combined into
chroma, corresponding to the different absolute pitches. To each chroma a central

frequency cl is associated; it is calculated as cl � 12 × lo g2( f
c f ), where c f is the

central frequency related to C4 (set to 261.6256 Hz). The audio waveform is
normalized before the spectrogram computation, and each frame of the resulting
chromagram is also normalized by the maximum local value. The chromagram is
then wrapped into one octave, by summing together chroma values of same pitch
classes, leading to a 12-dimensional feature. We computed the spectrogram using
a 3 s window length and 100 ms overlap to obtain a sufficiently high temporal
resolution (see Hartmann, Lartillot, & Toiviainen, 2015, for comparisons between
different window length parameters).

For description of tonality, we estimated key strength (Krumhansl, 1990;
Gómez, 2006b), a 24-dimensional feature that represents how well the chromagram
fits the different tonal profiles for major and minor keys. The key profiles are based
on the probe-tone experimental method and represent the contribution of each of
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the 12 chromatic tones to a given key. The key strength values of each frame are
estimated via correlation between the pitch class profile and each of the 24 key
profiles.

We also extracted tonal centroid (Harte, Sandler, & Gasser, 2006) to describe
tonality. This 6-dimensional feature describes a projection of the pitch class profile
onto interior spaces of the circle of fifths, the circle of minor thirds and the circle
of major thirds, which are based on a toroidal representation of the harmonic
network (Tonnetz) and are used in the Spiral Array model (Chew, 2002) for key
boundary detection. At each frame, the chromagram is multiplied with the basis
of a 6-dimensional pitch space in order to obtain three co-ordinate pairs, one per
circularity inherent in the harmonic network.

Finally, in PIII we proposed a global estimate of amount of local variation
(Feature Flux) of a given frame-decomposed musical feature. Our goal was
to gain a better understanding of the relationship between characteristics of
musical features, especially with regard to the suitability of novelty curves for
segmentation prediction of a given stimulus. Feature Flux is the mean of the
Euclidean distance between successive feature frames; it is calculated by obtaining
the squared difference between successive time points for each feature dimension,
then computing the squared root of the sum across dimensions, and taking
the mean across time points. This estimate allowed us to investigate whether
segmentation accuracy of different stimuli would relate to differences in feature
local variation.

4.3.3 Novelty detection

Our approach for computational modelling of segmentation consisted of the
extraction of frame-decomposed musical features for the computation of novelty
curves. These curves describe, for each time point t, the amount of dissimilarity
between two consecutive groups of feature frames (t is located in between these
groups); this amount of dissimilarity is penalized by the amount of similarity
within each of these groups. For instance, subsequent segments in the music that
are in different keys would show high novelty for the tonal features at the point in
which the key changes (which would delimit these two segments). Stark novelty
peaks would be exhibited for high similarity within subsequent segments and
high dissimilarity between subsequent segments.

To compute novelty curves, a dissimilarity matrix is first obtained from
the audio feature of interest by computing the Euclidean distance between all
possible pairs of points in the time series. This matrix is inverted element-wise
into a similarity matrix, where important local contrast around the main diagonal
represents high dissimilarity between neighboring events. A novelty curve is
subsequently obtained via convolution with a checkerboard kernel across the main
diagonal of the similarity matrix (see Foote, 2000; Lartillot & Toiviainen, 2007a;
Paulus et al., 2010, for detailed explanation). This is illustrated in Figure 6; for
each time point t, a novelty score is determined based upon the similarity between
the checkerboard kernel (centered at t) and the portion of the similarity matrix
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FIGURE 6 Convolution of a checkerboard kernel along the main diagonal of a

chromagram-based similarity matrix (stimulus Genesis)

that is covered by the kernel. The width of this kernel is a crucial parameter in
novelty detection; in PII, we proposed an optimal width for prediction of segment
boundary data.

4.3.4 Interaction of novelty features

Besides the computation of novelty features such as chromagram-based novelty
(henceforth called basic novelty features), we also investigated the possibility of
computing new novelty features based on interactions between different novelty
curves. We created interactions of basic novelty features via point-by-point
multiplication between each pair of basic novelty features; this process is illustrated
in Figure 7. For instance, a spectral novelty feature and a tonal novelty feature can
be used to generate a spectral-tonal novelty feature: subband flux ◦ tonal centroid
would be the result of the interaction of subband flux novelty and tonal centroid
novelty, and would only exhibit novelty peaks for simultaneous change in both
spectral and tonal dimensions.

4.3.5 Novelty-based modelling of segmentation density

One of the main goals of our investigation was to compare actual segmentation
density based on listeners’ responses with predicted segmentation density yielded
via novelty detection. We used two approaches to compare perceptual segment
boundary density with novelty curves. The first one consisted of computing
correlations between these two, and the second one involved generating a model
from an optimal subset of novelty features. To perform correlations between
perceptual segmentation density and novelty curves, each novelty curve was first
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FIGURE 7 Method used to obtain interaction features via pairwise multiplication

between novelty curves (stimulus Genesis).

normalized to sum 1. Besides the correlation coefficient (r) we obtained p values via
Fisher’s z transformation of r, with standard scores adjusted for effective degrees
of freedom (i.e., corrected for temporal autocorrelation, see Pyper & Peterman,
1998; Alluri et al., 2012). Effective degrees of freedom are calculated based on part
of the positive half of the autocorrelations of the novelty curve and the density
curve: a high slope means that these are very noisy (i.e., the correlation of the
time series with itself would only yield high values at zero lag), whereas a more
gradual slope at around zero lag means that the time series are smoother. Since
smoother time series have fewer independent time points, these would yield lower
effective degrees of freedom than noisier time series.

The second approach was also based on correlation, but involved generating
a model based on a combination of an optimal subset of novelty curves. We used
combinatorial optimization for this problem. A Genetic Algorithm (Popov, 2005;
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Eiben & Smith, 2003) was applied to avoid getting trapped in local minima in
the search space; one advantage of this over other search algorithms (such as
hill climbing) being that Genetic Algorithms are more likely to find the global
optimum (i.e., the solution with the highest fitness value) instead of converging on
local optima (a solution that will be the best among solutions that are very similar
to each other, but not the best one out of all possible solutions). This is because
of mutation, which prevents older and newer generations from being too similar
from each other, and thus from stalling the evolution.

Genetic Algorithms can greatly differ in their approach, so here we focus on
the particular functions and parameter values used in this study. The optimization
was initialized with a set of random subsets of normalized novelty curves, which
can be called a first generation population of candidate solutions; each generation
had a population of 20 candidate solutions. In our execution, each subset of novelty
features was a candidate solution, and was represented as a bit string: for example,
10100 means that for a set of 5 novelty features, feature 1 and 3 were included in
the subset, whereas features 2, 4 and 5 were excluded.

At each step, the Genetic Algorithm calls a cost function to obtain the fitness
values of each candidate solution, selects candidate solutions in the population
(based on fitness values), and generates a new population based on them. In our
case, each fitness value is the negative of the correlation between a model derived
from a candidate solution and the perceptual segment boundary density; lowest
values yield maximum fitness.

New candidate solutions are generated for the next population via uniform
mutation or scattered crossover between the selected candidate solutions. In
uniform mutation, some of the bit positions from a candidate solution are chosen
(e.g., Feature 1 and Feature 4) and a random value (either 0 or 1) is assigned to
each position; this mutated solution is passed to the new population. Scattered
crossover is applied to a pair of candidate solutions to generate a candidate solution
that will be included in the new population; the value of each bit position of the
new candidate solution will be the value that either one of the pair has for that
position. To ensure that the fitness obtained by at least some of the candidate
solutions will not decrease from generation to generation, elitist selection is also
applied: two of the candidate solutions are passed on to the next generation based
on their fitness values. The Genetic Algorithm stops either after it has iterated 100
times the number of novelty features or if the average relative change in the fitness
value over 50 generations is below 1× 10−6.

We used a cost function that finds an optimal value of the correlation
coefficient y by minimizing the negative of the correlation (i.e., maximiizing the
correlation) between actual and predicted segment boundary density,

yopt � argmin
y

− corr(x, pα)

where x is the segmentation density and pα is the α percentile along features of a
given subset. The approach consisted in finding a subset of novelty curves whose
α percentile would optimally correlate with the segmentation density curve. By
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taking the percentile, we perform a non-linear aggregation of novelty features that,
for each time point, ranks the features based on their values. In soft computing, the
percentile aggregation involves a monotonically increasing mapping that follows a
continuous logic function called conjunction/disjunction function (Dujmović &
Larsen, 2007). The 0th percentile (equivalent to the min function) can be roughly
understood as a pure logical AND conjunction (“all criteria are satisfied”) because
if the minimum among features is high, then all features should have high values;
conversely, the 100th percentile (max function) represents pure OR disjunction
(“at least one criterion is satisfied”) because a high maximum value among features
implies that at least one of the features has a high value. Following this logic,
1th-99th percentiles lie between AND and OR, exhibiting varying levels of orness
(closeness to maximum). The 50th percentile across features would in this sense
be comparable to a majority judgement, because it would only result in high values
if at least half of the features exhibited high values. We found α � 50, which
is the median ordinal position, to yield the highest accuracies with the Genetic
Algorithm when compared to α � 25 and α � 75.

4.3.6 Novelty-based predictors of segmentation accuracy

We also investigated whether musical feature and novelty curve characteristics
would serve as predictors of segmentation accuracy. Our aim was to understand
whether stimuli whose novelty curves of a given feature exhibited certain character-
istics would yield high prediction rates for that feature. PIII examines the use of a
global estimate derived from novelty curves as an indicator of prediction accuracy
with respect to segment boundary data in the annotation task. This approach
might help to clarify which characteristics are common for novelty curves that
yield high accuracy, and also better explain how the choice of musical feature(s)
used to compute novelty curves depends on the stimulus under investigation.

Figure 8 serves as illustration of this method for the tonal centroid feature. For
novelty features derived from tonal centroid, Smetana exhibited high segmentation
accuracy, whereas Couperin yielded relatively lower accuracy. The figure allows us
to identify three reasons why the segmentation accuracy is higher for Smetana. First,
the boundary density (bottom) yields a lower number of stark peaks for Smetana,
whereas for Couperin there seem to be more highly agreed significant changes: some
of the multiple significant peaks of Couperin do not correspond only to changes in
tonality, but also by clear rhythmic changes (e.g. 37 s and 84 s). Second, the novelty
curves (middle) show a larger temporal distance between highest novelty score
peaks for Smetana than for Couperin: it is possible that novelty peaks that are more
distant between each other correspond to instants of change that are perceived as
stronger. Third, tonal centroid representations (top) show more distinct sections in
Smetana than in Couperin, probably because many dimensions tend to remain rather
constant over time and change simultaneously at few time points; in this respect,
Smetana shows smoother transitions of tonal features whereas Couperin exhibits
higher feature fluctuation. In PIII, we systematically investigated these two last
possibilities by computing two global descriptors: the aforementioned Feature Flux,
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FIGURE 8 Left: Tonal centroid, novelty of tonal centroid and perceptual boundary

density in the annotation task for stimuli Smetana and Couperin.

which characterizes musical features, and the Mean Distance between Subsequent
Peaks (MDSP), which characterizes novelty features. MDSP is based on peak
detection and describes the peak-to-peak duration (in seconds) of novelty curves.
We investigated whether, for a given stimulus, the MDSP of a feature can be used
to estimate its segmentation accuracy; our underlying hypothesis was that higher
mean inter-peak distance would be associated with higher prediction accuracy. We
also explored, for each musical piece individually, how the changes suggested by
perceptual boundary density, musical feature, and novelty curve representations
corresponded with noticeable changes of specific musical dimensions or patterns.
Our aim was to better explain the accuracies obtained by clarifying both the types
of changes that were attended by the listeners and the musical changes that the
algorithms were sensitive to.

4.4 Comparisons between groups and experimental tasks

A number of methods have been utilized in the studies to compare listeners’
segmentation for different groups and experimental tasks. Some of the analyses
involved indirect comparison between point processes; for instance, in PI we
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calculated the mean number of boundary indications for each segmentation task
and participant group. In other cases, we estimated how adequate the perceptual
density curves were with respect to perceptual point process data: in PI we assessed
the goodness of model-to-data fit to find which kernel density estimation time
scale would offer the best fit to the data. On multiple occasions we used Pearson
correlation coefficient to perform comparisons between time series or between
points corresponding to boundary indications in the time series. For instance,
in PII we correlated perceptual segmentation density curves and novelty curves
for each stimulus at different checkerboard kernels to find an optimal novelty
kernel width for prediction of perceptual segmentation density. Also, in PI, we
correlated the boundary strength ratings of the indications from the annotation
task with density values in the real-time task for time points that corresponded
with boundary indications in the annotation task. In addition, in the same study
we computed individual multi-scale models (one model per participant) in order
to obtain mean inter-subject correlations based on the correlation between each
pair of models.

A potential factor that was taken into account in some of the comparisons was
the possible indication delay for different groups and tasks (PI and PII). We therefore
focused on the estimation of response delays for different participant groups and
experimental tasks, following the hypothesis that controlling for such delays
would increase correlations between perceptual density curves corresponding to
different groups and tasks, and between perceptual density curves and novelty
curves. In PI, we compared different groups and tasks via two-dimensional
cross-correlation between multi-scale models. For each time scale, we obtained a
time lag at which the cross-correlation was maximum. Subsequently, we computed
the mean time lag across time scales. This method helped us to determine whether
there were delays between boundary data of different segmentation tasks and
different participant groups, and to understand the possible relationship between
indication delays and rhythmic characteristics of the stimuli. In PII, we applied
time shifting to each single-scale model, and obtained a computational model
based on a subset of novelty curves that would be optimal for a given time shift of
the single-scale model. This procedure allowed us to investigate the segmentation
accuracy obtained at different time lags, and find the time lag that would yield
maximum accuracy in order to compare prediction for different segmentation sets.

4.5 Segmentation and temporal scales

We also examined the issue of temporal scales in segmentation, which is a problem
that concerns not only the comparison between groups and tasks, but also the way
segment boundary likelihood is represented. In this sense, appropriate temporal
scales need to be specified in the modelling of perceptual segment boundary data
via KDE (PI) and also for musical novelty detection (PII). In fact, this is a more
general problem related to the analysis of multiple point processes (Dauwels et al.,
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2009). For instance, MIR studies on segmentation often need to evaluate model
performance via the comparison of two point processes: a predicted segmentation
and an actual segmentation or “ground truth”. As previously mentioned, to solve
the time constant issue, rather arbitrary tolerance windows are used: for instance,
a predicted boundary is correct if it is at least half a second apart from an actual
boundary (Turnbull, Lanckriet, Pampalk, & Goto, 2007). Our approach is different
in this regard, as it prioritizes number of listeners over number of stimuli (cf. Nieto,
2015, for a MIR approach to the multiple human annotations problem), but also
needs to address the same issue.

4.5.1 Time scale in kernel density estimation

One of the challenges of our investigation was to find a way to aggregate the
boundary indications obtained from multiple listeners that would allow for a
comparison between different segmentation sets. To this end, it was necessary to
estimate a time scale parameter that would do justice to the segmentation profiles
from all or at least most of the listeners. In PI we proposed methods to estimate
an optimal segmentation time scale for each stimulus and to find a time-scale for
comparison between multi-scale models of perceptual segmentation density.

To find an optimal time scale for each stimulus, we studied the probability of
the boundary indication data given a single-scale model of perceptual segmentation
density. One option was to compute, for each time scale, the log-likelihood of
each boundary indication; that is, the natural logarithm of the density value
corresponding to each boundary indication was divided by the total number of
boundary indications. Subsequently, we summed the log likelihoods. However,
this method leads to results that are biased towards the shortest time scale, which
are due to overfitting: at the shortest time scales there tends to be a perceptual
boundary density peak for each boundary indication, which results in high log-
likelihood for all boundary indications. To avoid overfitting, the estimates were
obtained with a leave-one-out procedure, such that for each subject we computed a
single-scale model that did not include the boundary indications from that subject
(see Duin, 1976, for a similar approach). This procedure is able, for instance, to
yield relatively low likelihood at the shortest time scales, because the indications
of a given listener may not correspond exactly with other listeners’ indications.
For each subject, we obtained the log-likelihood between a single-scale model
and individual data. Then, we summed for each time scale the individual log-
likelihoods together, and subsequently selected the time scale that yielded the
maximum sum of log-likelihoods.

To find a time scale at which segmentation densities from different groups
and tasks would be most similar, we examined the relationship between groups
and between tasks at different time scales. We determined which time scales
yielded the highest similarity between models by computing correlations between
single-scale models. Again, we found that this approach leads to a bias, in this case
favoring the longest time scales, due to the smoothing of boundary indications,
which reduces the number of effective degrees of freedom. To solve this issue,
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we debiased the correlation via a Monte Carlo simulation (10000 iterations). This
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FIGURE 9 Left: Correlation between real-time (Mrt) and annotation (Ma) task boundary

density at each segmentation time scale. Middle: correlation baseline ob-

tained via Monte Carlo simulation. Right: Debiased correlation obtained via

subtraction of correlation baseline from the original correlation. Maximum

points for each curve are highlighted with markers.

approach is illustrated in Figure 9: we computed a correlation baseline for each
combination of example and time scale, and subsequently subtracted it from
the original correlation. For instance, to compare real-time and annotation task
perceptual segmentation density for a given stimulus and time scale, we first
obtained the (biased) correlation coefficient between these two curves. The next
step was to obtain a correlation generated by two random density curves with the
same number of boundaries as the density curves and the same duration. For
this purpose, we generated two random sets of boundary indications, each one
with identical number of boundaries to that of the actual boundary data, and with
a duration between 0 s and the total stimulus duration. We generated density
curves from these random sets and correlated them. The process of creating
random boundary sets, perceptual segmentation density curves and obtaining a
correlation coefficient between curves was done 10000 times to obtain a distribution
of random correlation coefficients. Finally, the mean of the random correlation
distribution was subtracted from the actual correlation coefficient between real-
time and annotation task perceptual segmentation density to obtain a debiased
estimate of the correlation. After computing a Monte Carlo simulation for each
time scale, we could determine the optimal time scale for comparison between
single-scale models by selecting the time-scale with maximum debiased correlation
coefficient.

4.5.2 Time scale in novelty detection

A similar constraint regarding temporal scales applies to musical novelty detection.
The size of the checkerboard needs to be specified, at least for the original Foote
approach, which is most commonly used. Based upon our results regarding
perceptual modelling of boundary indications, we chose a single-scale model
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that would be compared against novelty curves obtained from different musical
features. Once an optimal time scale of the segmentation was obtained, it was
necessary to find an optimal novelty kernel width for the purpose of prediction of
segmentation.

The width of the Gaussian kernel bandwidth used for kernel density estima-
tion is not homologous to the width of the checkerboard kernel used for novelty
detection. One reason for this is that musical features are often very sensitive, so
novelty curves can be relatively noisy. Another reason is that, unlike segment
boundary density peaks, novelty peaks are only situated between homogeneous
regions, because a checkerboard kernel is cross-correlated along the main diagonal
of a self-similarity matrix. In contrast, in kernel density estimation, a normal
kernel function is usually used; a Gaussian kernel is situated at each boundary and
then the kernels are summed together. Segment boundary density peaks can be
situated between heterogeneous regions, leading to areas covering larger temporal
regions than novelty curves.

In PII, we employed a systematic approach to find an optimal novelty kernel
width based upon correlation between novelty curves and perceptual segment
boundary density. We also obtained 26 novelty-based computational models at
varying novelty widths in the search for an optimal kernel width value.



5 STUDY SUMMARIES

This chapter presents a concise description of the main problems addressed,
methodologies used and results obtained in the three studies that are included
in this thesis. The most relevant analyses have been described in the previous
chapter; the reader is encouraged to refer to the studies for an explanation of other
analyses. The general designs of Study I, Study II and Study III are shown in
Figures 10, 18, and 21, respectively.

5.1 Study I

– Hartmann, M., Lartillot, O., & Toiviainen, P. (2016). Multi-scale modelling
of segmentation: effect of musical training and experimental task. Music
Perception, 34(2).

5.1.1 Introduction

While listening to music, people, often unwittingly, break down musical pieces into
constituent chunks such as verses and choruses. Music segmentation studies and
music-theoretical work suggests that people share a common sense of the instants
at which the music in a piece changes in a significant way (Clarke & Krumhansl,
1990; Lerdahl & Jackendoff, 1983), despite varying frequency of indications among
individuals (Koniari et al., 2001; Bruderer, 2008). However, neither the effects of
experimental task (i.e., real-time vs annotated segmentation), nor of musicianship
on boundary perception are clear. This study investigates the contribution of
musical training and experimental task in phrase-level segmentation, estimates
optimal time scales for segmentation modelling, and proposes an approach for
modelling perceptual boundary density. Our work was guided by the following
research questions:

– What is the effect of musical training on the indication of musical segment
boundaries by listeners in a real-time type of experimental setup?
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– What are the differences between a first impression of musical structure as it
unfolds over time and an offline, more knowledge-driven music segmenta-
tion?

– Which global characteristics of musical stimuli modulate the optimal time
scale for modelling perceptual segmentation?

5.1.2 Methods

Two listening experiments on perceptual segmentation were conducted. In the first
experiment, we collected real-time segmentation responses from 18 musicians and
18 non-musicians for 9 audio musical stimuli comprising various styles. Listeners
were asked to indicate instants of significant musical change by pressing a key
on a computer keyboard; they did not have the possibility neither to listen to
the example beforehand nor to revise their indications. The second experiment
involved the same 18 musicians as in Experiment I and was based on 6 of the 9
stimuli used in that experiment. Participants were asked to listen to the stimulus,
perform the same task as in Experiment I, and playback the example from different
time points to correct the position of the indications, or remove indications that
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were added by mistake. Finally, they were asked to indicate the strength of each
instant of significant change with a value ranging from 1 (not strong at all) to 10
(very strong).

The data was organized into three segmentation sets based on listeners’
musical training and on the performed task: non-musicians in the real-time task
(NMrt), musicians in the real-time task (Mrt), and musicians in the annotation
task (Ma). We then estimated the mean number of indicated boundaries across
examples for each participant.

Subsequently, we computed segment boundary probability curves using
Kernel Density Estimation (Silverman, 1986) to obtain smooth distributions across
participants. We obtained a multidimensional representation of smoothness
(multi-scale model) by utilizing varying kernel bandwidths; these corresponded
to 16 time scales logarithmically ranging from .5 s to 10 s. In addition, a fourth
segmentation set of perceptual density curves was obtained by weighting the
annotation task boundaries based on listeners’ boundary strength ratings. This
weighted version of the annotation task set was called Maw.

The possible relationship betweeen perceived boundary strength and per-
ceptual segment boundary density was analyzed by correlating the perceived
boundary strength values with the real-time task model values at the respective
time points (these two sets were time-aligned with each other). Also, the degree of
cohesion in each segmentation set was studied by obtaining mean inter-subject
correlations. Another aim was to find a time scale that provided an optimal
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model-to-data fit and to compare segmentation sets. We computed maximum
likelihood time scales based on comparison between listeners’ boundary data and
perceptual boundary density. After this, we looked for possible lags between
tasks and groups; to this end, we examined the degree of alignment between
segmentation models via a two-dimensional cross-correlation. We investigated
whether these possible lags would be associated with rhythmic characteristics of
the stimuli. Also, we conducted similarity analyses based on correlations between
models: we correlated each multi-scale model column-wise and also at each time
scale separately to find an optimal time scale to compare perceptual segment
density curves. In addition, we investigated possible links between the optimal
time-scale of each stimulus and rhythmic characteristics of the stimuli.

5.1.3 Results

Regarding boundary strength, we did not find a relationship with perceptual
boundary density (Figure 11), which suggests that the frequency of indications
of a boundary does not necessarily relate to its perceived strength. This result is
contradictory with respect to previous findings (Bruderer, 2008); we should men-
tion, however, that Bruderer restricted the analysis to a subset of boundary peaks
with different indication frequencies, whereas we analyzed complete boundary
data. Also, analysis on cohesion revealed similar inter-subject correlations for each
group (Figure 12), suggesting no effect of musicianship, and higher inter-subject
correlations for the annotation task, indicating effects of task on between-subject
agreement. Analyses regarding optimal time scales showed that bandwidths
of around 1.5 seconds are optimal for comparison between segment boundary
densities of different groups and tasks provided that the tasks are time aligned
by delaying the real-time task by approximately 1 second (Figure 13). We also
found effects of task on the mean number of boundary indications across musical
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examples from each participant (Figure 14); participants indicated nearly double
the mean number of boundaries in the annotation task (x � 11.33 boundaries
per example, SD � 8.1) compared to the real-time task (x � 5.8 boundaries per
example, SD � 4.1) for the six musical examples that were common to both. We
additionally found that the annotation tasks yielded lower optimal time scales
(Figure 15) compared to the real-time task. Also, the time lag between tasks
increased for stimuli with higher beat length, and vice versa (Figure 16). This result
suggests that the real-time segmentation lag might stem from a recognition delay
of around 3

4 of a beat and a response delay of about 2
3 of a second. Further, we

found a negative link (r(4) � −.83, p < .05) between pulse clarity and optimal time
scale to compare real-time task and annotation task, and a negative relationship
(r(4) � −.82, p < .05) between frequency of events and optimal time scale for
task comparison (Figure 17); the optimal time scale for comparison between tasks
increased when the pulse clarity or event density of the music decreased.

5.1.4 Conclusion

Overall, musicians tended to segment less (and at a higher time scale) than non-
musicians, but our findings did not provide support for the hypothesis of an effect
of musicianship upon segmentation. With the caveat that boundary indication
data is not enough to understand structural representation, one could interpret that
musical training may not have an effect on how structure is mentally represented.
However, it is possible either that the real-time task or an analysis oriented towards
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global estimates could not reveal actual differences between groups. Our findings
do support the view that the experimental task used to collect boundary data
has an effect on perceptual segmentation. Significant differences between tasks
were found regarding number of boundary indications: listeners segmented more
in the annotation task, suggesting that they may have failed to indicate some of
the boundaries in real-time. Real-time task responses exhibited a latency with
respect to those in the annotation task; the magnitude of this lag was found to
depend on rhythmic characteristics (global beat length) of the music. This finding
suggests that the latency of participants’ responses in the real-time task consists of
a recognition delay dependent on stimulus beat length, plus a constant response
delay. Also, the correlation between tasks increased after the tasks were aligned;
this contribution of the real-time task lag to the difference between tasks illustrates
the importance of accounting for lags in real-time segmentation. In addition,
time scales for optimal fit of models to data were shorter for the annotation task,
suggesting that this segmentation was more hierarchical, whereas real-time task
boundaries tended to be indicated at large time-scales.

Another interesting finding was that perceived strength of a boundary might
not be equivalent to its frequency of indications. This suggests that not all changes
indicated by few listeners are weak, probably because the perceptual salience of
a change depends on what particular musical dimensions and time scales are
different listeners attending to. Similarly, not all significant changes indicated
by many listeners are strong, as musical context might deter participants from
indicating high strength for certain noticeable changes. Finally, we found that
optimal segmentation time scales may depend on global rhythmic pulsation,
amount of events, and duration of events. In this respect, the time scale for
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modelling perceptual segmentation could be measured in terms of rhythmic
characteristics rather than in seconds; for instance, music with unclear pulse may
optimally be modelled at larger time scales, probably because rhythmic cues for
segmentation may become less salient for listeners.

5.2 Study II

– Hartmann, M., Lartillot, O., & Toiviainen, P. (in press). Interaction features
for prediction of perceptual segmentation: effects of musicianship and
experimental task. Journal of New Music Research.

5.2.1 Introduction

As music unfolds in time, listeners are able to mentally represent different aspects
related to its structure, regardless of their level of musical expertise. A number of
studies have proposed alternatives to model the perception of segment boundaries
between structural sections, and found for example, that rhythmic and spectral
changes in the music to predict listeners’ indications (Jensen, 2007). However, the
effects of musical expertise and experimental task on computational modelling of
structure are not yet well understood. These issues need to be addressed to further
understanding of how listeners perceive the structure of music and to improve
automatic segmentation algorithms. This study investigated computational pre-
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diction of perceptual segmentation density via novelty detection (Foote, 2000). We
attempted to shed light on the following research questions:

– To what extent does musicianship affect segmentation, and more specifically,
how does computational prediction of segmentation for musicians differ
from that of non-musicians?

– What is the effect of experimental task on segmentation, particularly on the
modelling of real-time and non real-time segmentation tasks?

– What is the contribution of perceived boundary strength ratings on prediction
of non real-time segmentation?
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5.2.2 Methods

We focused on boundary indication data for six of the stimuli that were utilized
in PI due to their similar duration; these responses were concatenated across
musical stimuli. A perceptual segment boundary density curve was computed for
each participant group and segmentation task; we chose a time scale parameter
of 1.5 s following results from PI and other work (Befus, 2010; Bruderer, 2008).
Subsequently, these density curves were computationally modelled via an approach
based on novelty detection. First, for each stimulus, we extracted 5 frame-
decomposed musical features describing timbre, rhythm, pitch class and tonal
context. Novelty curves were computed from these features and concatenated
across stimuli; interaction features were also derived from these curves via point-
by-point multiplication between each pair of novelty features. We conducted
various systematic explorations to find a novelty kernel width that would yield
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optimal prediction with respect to the perceptual segment boundary density
curves. Combinatorial optimization was used to find subsets of novelty curves
whose derived model prediction would optimally correlate with the perceptual
segmentation density curves. Novelty feature subsets were aggregated by taking
the 50th percentile (median ordinal position) across features. Figure 19 (middle)
shows how the percentile model relates to the feature subset it is based on; since
the number of feature subsets is even in this case, the model is the mean of the two
middle feature values for each time point. This is a non-linear modelling approach
because it assigns weights to features for each time point based on ranked values,
so the contribution of each feature to the prediction varies over time. In particular,
the median operator offers a ‘majority judgement’ since prediction values will
be high if at least half of the features yield high values. We obtained models for
26 different novelty kernel widths. In addition, the segmentation data was time
shifted with respect to novelty curves in order to study the effect of indication
delay upon prediction rates.

5.2.3 Results

We found that musicians’ segmentation yielded lower accuracy (Table 1), and
involved a more varied set of features for prediction (key strength did not appear
in NMrt model) and more feature interactions than non-musicians’. Prediction of
the annotation task yielded higher rates than for the real-time task, which required
time shifting of the segmentation data for optimal modelling (Figure 20); in fact,
time shifting reverted the result, resulting in higher accuracy for the real-time
task when compensated for delays. Also, this prediction involved more novelty



66

NMrt Mrt Ma Maw

Fluct. Pat. Fluct. Pat. Subband Flux Fluct. Pat.
Chromagram Key Strength Fluct. Pat. Tonal Centroid
Tonal Centroid Subband Flux ◦ Fluct. Pat. Tonal Centroid Subband Flux ◦ Fluct. Pat.

S
u

b
se

t

Subband Flux ◦ Fluct. Pat. Subband Flux ◦ Tonal Centroid Subband Flux ◦ Tonal Centroid Subband Flux ◦ Tonal Centroid
Fluct. Pat. ◦ Chromagram Fluct. Pat. ◦ Chromagram Fluct. Pat. ◦ Chromagram Fluct. Pat. ◦ Chromagram

Fluct. Pat. ◦ Tonal Centroid Fluct. Pat. ◦ Tonal Centroid

Rhythmic Rhythmic Spectral Rhythmic
Chroma Tonal Rhythmic Tonal
Tonal Spectral ◦ Rhythmic Tonal Spectral ◦ Rhythmic
Spectral ◦ Rhythmic Spectral ◦ Tonal Spectral ◦ Tonal Spectral ◦ Tonal

C
a
te

g
o
ry

Rhythmic ◦ Chroma Rhythmic ◦ Chroma Rhythmic ◦ Chroma Rhythmic ◦ Chroma
Rhythmic ◦ Tonal Rhythmic ◦ Tonal

r .47*** .43*** .48*** .56***

***p < .001

TABLE 1 Correlations between perceptual segmentation density and computational

models’ predictions obtained via percentile optimization. P-values adjusted

for effective degrees of freedom.

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
0.2
0.3
0.4
0.5
0.6

Time Lag (τ)

r

NMrt Mrt Ma Maw

FIGURE 20 Correlation between perceptual segment boundary density and models’

predictions obtained after time lags ranging from –2 s to 2 s, incremented by

steps of 100 ms. Positive time lags refer to delay of novelty with respect to

perceptual segment boundary density, and vice versa. Maximum points for

each curve are highlighted with markers.

features, particularly rhythmic and tonal features (Table 1), than the prediction
of the real-time task. Further, annotation task models that were weighted based
upon boundary strength ratings yielded maximum accuracy, and involved more
interaction features. Another finding was that the use of relatively large novelty
kernel widths (half checkerboard kernel width of 11 s) was required to obtain
novelty curves that would optimally predict perceptual segmentation density;
similar kernel widths have been previously used to overcome high levels of detail
in novelty curves (Pauwels et al., 2013; Liem, Bazzica, & Hanjalic, 2013; Klien,
Grill, & Flexer, 2012). Finally, an interesting methodological result was that, for all
segmentation sets, interaction novelty features yielded higher correlations with
perceptual segment boundary density than basic novelty features. For instance,
the highest correlation between a basic novelty feature and the density in the
annotation task with added boundary strength weights was r � .39, p < .001
(fluctuation patterns), whereas in the case of interaction novelty features the
highest correlation was r � .49, p < .001.
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5.2.4 Conclusion

Comparing groups, musicians’ segmentation may rely more on schematic knowl-
edge, involve more dimensions of musical change and levels of the structural
hierarchy, and result from faster musical structure processing. Regarding the tasks,
real-time segmentation was associated with larger response delays and a focus on
fewer musical dimensions than in the case of annotation segmentation. Also, the
increase in accuracy found for perceptual density curves with added boundary
strength weights was associated with higher emphasis given to acoustically stark
musical changes, which are the ones that novelty curves would better predict. Mod-
els that include boundary strength weights might yield a clearer representation of
a hierarchy of high-dimensional musical change, because adding strength weights
increased the number of interaction features selected; it may be, for example, that
rhythmic-tonal novelty could often be perceived as more perceptually salient than
spectral-rhythmic novelty. Finally, we should highlight that both the proposed
interaction features and the percentile optimization modelling approach yielded a
correlation increase with respect to the use of basic novelty features only.

5.3 Study III

– Hartmann, M., Lartillot, O., & Toiviainen, P. (submitted). Musical Feature and
Novelty Curve Characterizations as Predictors of Segmentation Accuracy.

5.3.1 Introduction

Novelty detection is a well-established method for analyzing the structure of music
based on acoustic descriptors. Work on novelty-based segmentation has mainly
concentrated on enhancement of these descriptors and similarity matrices derived
therefrom (Paulus et al., 2010). Studies have also focused on improving novelty
detection via alternative novelty kernels (Kaiser & Peeters, 2013) and peak detection
(Gaudefroy et al., 2015) approaches. Less attention, however, has been paid to
possible global characteristics of musical features and novelty curves that could
determine segmentation accuracy. This is an important issue as it may help unearth
acoustic cues prompting perceptual segmentation and find predictors of accuracy.
This study focused on estimating segmentation accuracy from a characterization of
the musical features themselves, as well as a characterization of the novelty curves.
For perceptual density curves obtained from six individual musical examples
via an annotation segmentation task, we investigated spectral, rhythmic and
harmonic predictors of accuracy. Specifically, our aim was to understand whether
local variability of musical features and distance between novelty peaks would
be associated with segmentation accuracy. Two research questions guided this
investigation:
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– What specific aspects of musical stimuli that account for segmentation
accuracy can be directly described from musical features?

– What stimulus-specific attributes of novelty curves determine optimal seg-
mentation accuracy?

5.3.2 Methods

For each stimulus, segmentation accuracies were obtained by correlating perceptual
segment boundary density in the annotation task with 5 novelty curves describing
timbre, rhythm, pitch class, and tonal context; the resulting coefficients were
z-transformed for further comparisons. Two global characterizations derived from
musical features and novelty curves were computed: amount of local variation
(mean Feature Flux) in the musical feature, and mean distance between subsequent
peaks (MDSP) in the novelty curve. Subsequently, we correlated across stimuli
and for each musical feature the aforementioned estimates with the obtained
segmentation accuracy. We then focused on the correlation ranks to better
understand possible relationships between segmentation accuracy and feature
estimates. Explorations of perceptual segment boundary density, musical features
and novelty curves were conducted for each stimulus to offer an in-depth analysis
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of the results.

5.3.3 Results

Segmentation accuracies varied both depending on stimulus and on type of feature
used for novelty detection; no single novelty feature yielded maximum accuracies
for all stimuli. Regarding the global characterizations computed (Table 2), we found

Musical Feature Feature Flux MDSP

Subband Flux .54 –.03
Fluctuation Patterns –.30 .11
Chromagram –.68 .27
Key Strength –.74 .47
Tonal Centroid –.66 .50

TABLE 2 Correlation between z-transformed accuracy and characterizations of musical

features (Feature Flux) and novelty curves (MDSP).

that, for rhythmic and tonal features, segmentation accuracies tended to increase for
stimuli with milder local changes and fewer novelty peaks. Spectrum yielded a less
clear trend: stimuli with high local variability for subband flux exhibit increased
accuracy, and no relationship was found between MDSP and accuracy. Also, an
exploration of musical and perceptual factors that may have contributed to accuracy
showed that novelty detection accuracy may drop due to temporal imprecision of
perceptual boundaries, and to knowledge-driven or other biases of attention from
listeners. In some cases, they seem to focus on style specific, ‘decorative’ aspects of
the music if other features change too often, for instance, in Couperin tonal centroid
novelty peaks can detect the chord changes, but these changes occur very frequently,
so listeners’ boundary placements seem to be prompted by ornamentation (e.g.
mordents) instead. Additionally, musical changes occurring in a single dimension
may mask other prominent changes, e.g., musical changes triggering peaks for
multiple novelty features may not prompt boundary perception if these occur in
the middle of a ritardando (Ravel, 60 s) or a melodic phrase (Morton, 114 s, and
Dvorak, 75 s). Further, large temporal gaps between endings and beginnings of
melodies may cause a disjunction between actual and predicted segmentation, for
instance in Couperin listeners tend to segment melodic endings probably because
these are evoked by cadences (89 s), whereas novelty peaks tend to appear at
beginnings due to clear local discontinuities (90 s).

5.3.4 Conclusion

Overall, the findings suggest that, at least for rhythmic and pitch-based features,
stimulus-dependent characteristics derived from musical features and novelty
curves can be utilized as predictors of segmentation accuracy. High segmentation
accuracy seems often to be associated with novelty profiles that yield high scores for
few temporal regions; that is to say, listeners might pay more attention to musical
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dimensions that change significantly but not too frequently during segmentation.
Regarding the results for spectrum, it is possible that high local variability was
related to high accuracy because only a small fraction of the spectral changes
achieved stark novelty peaks; these may have corresponded with actual boundaries.
Another interpretation is that the results for spectrum were influenced by music
with high local spectral change (due, e.g., to vast and diverse percussion) but few
structural sections of long duration. In this respect, a larger sample size is needed
to better understand how the possible relationships between characterizations and
accuracy are affected by musical styles.



6 DISCUSSION

The perceptual organization processes that are involved in perception of musical
structure are not well understood; for instance, the association between musical
dimensions and listeners’ interpretations of musical structure remains unclear.
Understanding how listeners parse musical pieces and represent their structure
can be useful in gaining deeper insights on the perceptual and cognitive aspects
of listening that are intrinsic to music, and for the development of technological
applications such as automatic structural segmentation systems. For instance, a
systematic investigation of what types of acoustic changes in the music to which
listeners would attend could be used to predict listeners’ segmentation and help
towards development of real-world applications, including smart music players
(e.g., that could find guitar solo parts from an album or collection), editing aids for
audio engineers, DJ and remixing applications, and interactive music visualizations.
Another concrete benefit would be the potential to overcome, via audio music
segmentation, the tape recorder paradigm (Tzanetakis & Cook, 1999) in musical
playback, which currently makes it difficult to find interesting points of change in
the music. Meaningful information related to the structure of musical pieces could
be at listeners’ disposal in the context of digital audio, just like modern musical
notation offers a regular segmentation scheme with barlines providing reference
points for easier score reading, or like the grooves of vinyl records can offer visual
descriptions of structural changes in musical works.

One of the hypotheses that were formulated in this investigation was that
the conducted experimental task does have an effect on perceptual segmentation.
The results supported this assumption: real-time and annotation segmentation
data yielded different number of boundaries (Figure 14), inter-subject correlations
(Figure 12), temporal scales (Figure 15), and time lags. According to this, listeners’
offline annotations of musical structure should not be compared with real-time
responses to music listening, which in practice means that annotation segmen-
tation data may not be comparable to descriptions related to physiological (skin
conductance, heart rate variability, pupil dilation) or psychological (valence and
arousal) determinants of emotional state, spontaneous movement to music, or
brain responses. These descriptions are possible correlates of perceptual musical



72

structure and should be compared against real-time segmentation data (compensa-
tion for boundary indication delays may be required), but not with non real-time
data such as “expert” annotations (Mungan et al., in press) and ground truths used
in MIR structural analysis tasks. One may ask, at this point, whether or not a real-
time segmentation task with multiple indication (and possibly also listening only)
trials per participant would lead to segmentation density data that would highly
correspond to the responses obtained in the annotation task. If this happened to be
the case, it could be argued that real-time segmentations of unfamiliar pieces are
snapshots of the gradual understanding of the structure of musical pieces. In this
respect, a study of real-time segmentation of an acousmatic music piece reported
that the similarity between subsequent trials neither increased monotonically nor
reached its global maximum at the last trial (Mendoza Garay, 2014).

With regard to musical training, we assumed that there would be an effect
on boundary perception: for instance, musicians would exhibit longer indica-
tion delays. This result, however, remains unclear because we observed high
similarity between segmentations from musicians and non-musicians (Figure
13), few differences between groups regarding inter-subject correlations (Figure
12), and relatively similar mean number of boundary indications (Figure 14); for
example, the optimal time lag for alignment between groups was negligible. In
this respect, it is likely that the real-time task does not offer the chance to display
higher level knowledge in listeners’ responses; in other words, both musicians
and non-musicians may have focused on the detection of local changes, which is a
low level bottom-up segmentation process. In contrast, an annotation task would
possibly have revealed differences between groups, as top-down processing may
have been utilized, for instance, to remove inappropriate boundaries; in offline
contexts, it may be that repeated listening and experience would have played a role
in the placement of boundaries. Another possibility is that a direct comparison
between perceptual segmentation density curves cannot reveal differences between
groups, whereas more detailed analyses of boundary data for specific musical
excerpts may be needed to discern these.

In contrast with the previous result, musical training was found to have
an effect on model prediction rates and musical features involved in novelty-
based segmentation models (Table 1), and on optimal lag of models (Figure
20). This suggests that differences between groups seem to be clearer after their
segmentations are compared against computational models based on musical
features: effects of musicianship upon segmentation may be observable if acoustic
musical changes are taken as a reference point, but not if the segmentations are
compared directly. If this was the case, then this would point to an influence
of explicit schematic knowledge on musicians’ segmentation. In this respect,
non-musicians seemed to stumble more on local surface discontinuities, elicited
for example by embellishments, instead of grouping short sequences of events
together into larger sequences; this phenomenon was also observed by Mungan
et al. (in press). This brings us back to results obtained via comparison between
perceptual density curves, as differences in optimal time scales and number of
indicated boundaries might be related with the model prediction rates found.
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According to analyses regarding maximum likelihood time-scales for each group
and stimulus (Figure 15), non-musicians seem to segment at lower time-scales
than musicians. This finding corresponds to the observation that, altogether, non-
musicians indicated nearly double the amount of boundaries than musicians (note
that both groups are similar, however, regarding the mean number of boundaries
indicated by each participant). The results from PI might explain why novelty
curves yielded higher prediction rates for non-musicians than for musicians in
PII (Table 1). Taking into account that novelty curves are highly sensitive to
local discontinuities in the music (because the approach is “bottom-up”), lower
prediction rates for musicians could imply that they are able to anticipate future
changes that might be much more important than ongoing ones (possibly in some
cases by relating to past changes or patterns).

We also found that the experimental task seems to have an impact on
prediction and on features involved in segmentation modelling (Table 1). This
implies that annotation segmentation data is not suitable for testing computational
models tailored to real-time processes, such as segmentation and expectation
models that focus on short-term memory or preceding musical context (Pearce,
2005; Lartillot, Cereghetti, Eliard, & Grandjean, 2013). It is noteworthy that, the
result was inverted when the real-time task was compensated for delays (Figure
20), suggesting that the main assumption involved in novelty detection may apply
to real-time perception of boundaries: stark discontinuities occurring between
self-similar regions are optimal boundary candidates. This view is also supported
by the observation that annotation task models with added strength weights
yielded maximum accuracies (Table 1). The main difference between non real-time
segmentation and real-time segmentation compensated for delays could be the
indication of local discontinuities that are less prominent as they would serve
secondary functions, exhibit lower intensity, or evoke changes in a shorter temporal
scale; the contribution of these ’extra’ indications to the annotation task models
is diminished when boundary strength weights are included. Regarding the lag
found between tasks, we highlight that two different approaches showed that
real-time segmentation is delayed with respect to annotation segmentation by
approximately 1 second. In PI, we used two-dimensional cross-correlation to
compare multi-scale models from different tasks and found a mean optimal time
lag for alignment of 1.05 s; in PII we obtained segmentation models for perceptual
boundary density curves at different time shifts (Figure 20) and found optimal
prediction rates based on a delay of about 0.5s for Ma and 1.5s for Mrt (from this
we can assume that Mrt is delayed by about 1 second with respect to Ma, although
different optimal models were obtained for each task).

We also highlight that the differences found between tasks with respect to
boundary indications (Figure 14) and to time scales (Figure 15) are particularly
interesting. The result is surprising because one would expect that listeners would
segment less often as they get familiarized with the music, due to increased
knowledge regarding goals and intentions (Zacks et al., 2007). There are several
ways to interpret this finding. One of them is to point to actual differences between
the characteristics of the conducted tasks: the real-time task may be more difficult
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so listeners failed to indicate some of the boundaries, or perhaps in the annotation
task they tried to indicate boundaries as often as possible so as to be able to assign
different ratings of boundary strength. Another interpretation is to associate
it with an increase of familiarity: as listeners apprehend the general structural
aspects and get familiar with the music, they may discover other changes that may
be deemed significant. In this respect, previous findings suggest that listeners
tend to indicate more boundaries as they focus on shorter excerpts of the same
stimulus (Krumhansl, 1996). We believe that, due to the effect of alignment between
tasks, listeners did not fail to indicate very many boundaries in the real time task,
and that since participants tended to indicate a large amount of low strength
indications in the annotation task, both of the remaining explanations are possible.
First, we cannot rule out the possibility that listeners were biased to include more
indications of low strength due to the task instructions. Second, it is likely that
higher familiarity was associated with more frequent segmentation. If this was
the case, it might be that knowledge regarding future goals does not increase
with familiarity, but can be better associated with schematic knowledge instead.
Alternatively, it is possible that knowledge about goals leads to fewer indications
at a given time scale, but also that increased familiarity with the music prompts
representations that involve more levels of the structural hierarchy, resulting in a
higher number of boundaries at multiple time scales.

Regarding the role of musical stimuli characteristics on segmentation mod-
elling, we found that rhythmic and pitch-based changes seem to generally be
relevant for modelling of segmentation (Table 1); timbre-based features, in contrast,
may yield less clear descriptions regarding structure as they might be more sensi-
tive to various types of acoustic changes (e.g. instrumentation, register, voicing,
articulation, loudness). Furthermore, we found that accuracies obtained via novelty
detection can be foreseen from extracted acoustic features: music characterized
by low local discontinuity of a feature would yield high segmentation accuracy
for that feature, at least in the case of rhythmic and pitch-based features (Table
2). From a perceptual viewpoint, the aforementioned finding seems to support
the assertion that listeners tend to segment at time points that introduce stark
discontinuity with respect to a rather homogeneous context; in other words, few
rare changes in the music are more prominent perceptually. This relates to a result
reported in PI: music with a clearer pulse is optimally modelled at shorter time
scales (Figure 17). It could interpreted that if the pulsation in the music is unclear,
this frequent lack of regularity may hinder the perception of strong boundaries.
In other words, music with unclear pulse could be associated with the proposed
theoretical constant A + B → C (Narmour, 1992), according to which expectation
is not violated for repeated discontinuity (because discontinuity should occur in
between homogeneous contexts to be perceived as a strong boundary). Similarly,
music with high local discontinuity of a feature would yield low predictability for
that feature as listeners may tend not to indicate too many boundaries for features
that change often (e.g., for varying rhythmic pulsation).

We also found in PI that music with higher frequency of events tends to
be modelled at shorter time scales (Figure 17). A plausible interpretation is that



75

music with very frequent events is often likely to exhibit more local discontinuity,
so listeners will tend to indicate boundaries at shorter time scales, and these
boundaries will tend to be relatively less salient. We additionally found a positive
relationship between beat length and the optimal time lag for alignment between
real-time and annotation tasks (Figure 16); this result suggests that the indication
delay could be understood as the summation of a delay dependent on stimulus
beat length (recognition delay) and a constant time lag among stimuli (response
delay). The nonzero intercept of the regression line indicates a constant time lag,
suggesting an identical response delay for all stimuli: listeners may have required
over half a second to respond to the recognized change by indicating a boundary.
The recognition of a perceived change as significant probably varied depending
on the stimuli beat length: listeners possibly required less than a beat (between 0.4
s and 0.9 s, depending on the stimulus) to pass in order to recognize a musical
change as significant.

6.1 Summary of contributions to music segmentation

– We utilized an interdisciplinary approach, lying in between the fields of
music perception and cognition and music information retrieval, that relied
on both statistical analysis and on a careful exploration of the musical stimuli
and indicated boundaries.

– Our work examined various materials involved in the audio-based modelling
and prediction of segmentation: boundary data from multiple listeners,
its perceptual modelling using kernel density estimation, computational
modelling of segmentation density via novelty detection, and characteristics
of musical features and novelty curves with regards to this modelling.

– For the first time, two boundary indication tasks that are commonly used for
segmentation were experimentally compared; a deep understanding of the
differences between different segmentation tasks is key to gain new insights
about the representation of musical structure by listeners.

– The issue of temporal scales was systematically studied for the first time in
the context of perceptual segmentation, addressing the problem of temporal
scales which is an important contribution to the study of similarity in music
segmentation.

– We contributed to the understanding of a perceptual interpretation regarding
novelty detection, since we examined, in the light of listeners’ responses,
the contribution of different musical features to novelty-based prediction of
structure and the relationship between acoustic characteristics of the stimuli
and segmentation accuracy.

– We proposed the generation of interaction novelty features for segmentation,
which yielded an increase of accuracy with respect to basic novelty features.

– We suggested an optimization modelling approach that exhaustively looks
for optimally performing sets of features for segmentation, allowing a better
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understanding of the relative contribution of different musical dimensions
and the effect of time lag upon segmentation modelling.

6.2 Main findings and implications

Regarding the role of musicianship in perceptual segmentation, we found high
similarity between segmentation densities from musicians and non-musicians, as
well as similar inter-subject correlations and high mean alignment between their
segmentation densities. We did not find clear differences neither in mean number
of boundary indications, nor in time scales of the segmentation. We observed,
however, that altogether musicians segmented less and at slightly higher time scales
than non-musicians. In regards computational modelling of segmentation, we
found that musicians’ segmentation yielded lower accuracies, and involved more
musical features and less time shifting of data for optimal prediction. In sum, we
lack sufficient evidence for an effect of musicianship on perceptual segmentation.

Examining the influence of experimental tasks upon perceptual segmentation,
we found differences regarding number of boundary indications, inter-subject
correlations, time scale of the segmentation, and a time lag between tasks. Further-
more, in computational modelling analyses the annotation task density yielded
higher accuracies, required smaller time shifting for optimal prediction, and in-
volved more features for modelling than the real-time task. However, data time
shifting led to higher accuracy for the real-time task than for the annotation task.
An associated finding was that listeners’ ratings of perceived boundary strength in
the annotation task were not related to segmentation density at boundary time
points, and that annotation task models that were weighted based on these ratings
yielded maximum segmentation accuracy. These findings support the view that
the experimental task used (real-time vs. non real-time) has an effect on perceptual
segmentation.

With regard to musical features, the optimal time scale for comparison
between segmentation tasks was found to be associated with rhythm characteristics
of the music, as it increased for stimuli with lower pulse clarity or event density,
and vice versa. Also, we found that the optimal time lag for comparison between
segmentation tasks was shorter for stimuli with shorter beat length. We observed
that simultaneous changes in rhythm and pitch-based features contributed to the
prediction of both groups and tasks. In addition, for pitch-based and rhythmic
features, we found that music with lower local discontinuity and larger distance
between subsequent novelty peaks for a given feature yielded higher segmentation
accuracy for that feature. According to these findings, rhythmic and pitch-related
aspects of the stimuli are relevant for computational modelling of segmentation
and can be used as predictors of segmentation accuracy; rhythmic characteristics
also contribute to time scale and time lag of boundary indications.

Results regarding segmentation prediction and musical training suggest that
musicians’ segmentation would involve more schematic knowledge, attention
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paid to a higher number of dimensions of musical change and more levels of the
structural hierarchy, and higher speed of musical structure processing. However, it
is also possible that both groups of participants focus generally on similar instants
of change, since the examination of boundary data and perceptual segmentation
density derived therefrom did not provide evidence supporting the hypothesis of
an effect of musical training.

In contrast, our analyses suggested a clear effect of experimental task upon
segmentation; this finding implies that different experimental paradigms can
lead to clear differences (i.e., beyond occasional “missed” or delayed indications)
regarding segmentation responses, such as segmentation at different time scales
and systematic time lags. Furthermore, according to the results obtained via
computational modelling, real-time segmentation may be associated with higher
response delays and attention to fewer dimensions of musical change than an-
notation segmentation; compensation for delays revealed interesting similarities
between novelty detection and real-time perception. Further, our results imply
that weighting of the density in the annotation task is associated with more
emphasis towards stark musical changes and clearer representation of a hierarchy
of high-dimensional musical change.

Regarding musical features, the results imply that the time scale of the
segmentation can be measured in number of events rather than in seconds. The
findings also suggest that listeners pay attention to interactions between musical
dimensions, particularly between rhythm and pitch-based changes; these may be
associated with higher levels of the structural hierarchy; listeners may also focus
on musical dimensions that change less frequently. In addition, the suitability of
novelty curves for prediction of a particular stimulus can be directly estimated
from acoustic features, that is, without the requirement of a novelty detection step,
which is much more efficient taking into account the computational cost of novelty
detection.

6.3 Methodological considerations

One of the problems of our investigation is the lack of a set of indications from
non-musicians in the annotation task (NMa), which creates difficulties for the
analysis of some of our results. Based on the obtained results, one could expect
that a NMaw set would yield maximum prediction rates, as it would offer a precise
representation of the most salient changes from non-musicians, which seem to
be more accurately predicted than musicians. Unfortunately, we cannot test this
hypothesis with the current material.

It is also important to mention an issue regarding the multi-scale approach
conducted to derive a representation of musical structure from listeners’ indications.
The different levels of representation obtained by multi-scale models can be used
to represent perceptual musical structure with regards to a given temporal context,
but they differ in their precision regarding the location of musical change. This
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leads to a representation of structure that fails to inform the exact location of
structural boundaries for large temporal scales. While smoothing is beneficial to
aggregate indications by different listeners that refer to the same perceived instant
of change, it is problematic for localization of hierarchically superior boundaries.
Since boundaries yield very broad density peaks for larger kernel bandwidths, it
is difficult to locate them in the music. This is because a large time scale parameter
for Kernel Density Estimation reduces the bias of the estimation, but increases
its variance, which results in higher similarity in density between neighboring
regions. To illustrate this, at large time scales it becomes difficult to estimate
whether listeners’ indications of a given musical change are relatively isochronous.

Regarding the analysis of time shifting the perceptual segment density to
compute different computational models of the segmentation (Figure 20), we
remark that the segmentation sets were compared against different models. For
each segmentation set, this approach finds the time lag that would yield the best
performance for prediction, but it is not the optimal way to compare segmentation
sets with each other. Bruderer (2008) computed the cross-correlation between
perceptual segmentation density of participants and perceptual segmentation
densities of symbolic musical features. This allowed examination of whether all
musical features were either advanced or delayed with respect to the perceptual
segmentation density. Bruderer (2008) did not find a trend in this regard. In this
respect, it may be challenging to find an appropriate reference point for assessment
of time lags in perceptual segmentation.

In regards to the lack of relationship found between boundary strength and
boundary density, this result can be seen as counterintuitive and it conflicts with
the study by Bruderer (2008). We should highlight, however, that the boundary
density corresponding to a given indication time point does not necessarily
correspond with the peak density for that boundary; for instance, the density
for listeners that placed a boundary earlier or later than the rest of the listeners
may be relatively low regardless of their indicated strength. In this respect,
comparisons of strength ratings with boundary density peaks would perhaps be
more appropriate to investigate the relationship between boundary density and
indications of boundary strength.

Another issue is that other musical dimensions that may contribute to
segmentation were not covered; for instance, the role of loudness has not been
investigated. Novelty curves based on acoustic features often describe contrast
between absence and presence of events, which is an aspect that is associated
to loudness. Further, subband flux is sensitive to loudness because it describes
spectral magnitude changes over time. Loudness should be disentangled as
much as possible from other musical dimensions to study its role on perceptual
segmentation, although this is not an easy task, as many musical features are
derived from spectral energy. We should also add at this point that novelty
detection is designed for modelling changes in the spectrogram, so it is suitable
for multidimensional features but not for unidimensional ones such as loudness.

An associated problem is about the validity of the extracted musical features
with regards to representation of musical dimensions. In particular, rhythmic and
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key descriptors may yield unreliable information for certain stimuli. Also, different
features may not be entirely independent from each other. This collinearity issue is
problematic because it can hinder evaluation of the contribution of each feature to
the obtained models. For instance, if the obtained optimal subset is almost equally
optimal to other possible subsets, then slightly different segmentation density
curves could have a great effect on the feature subsets selected by the models.

We also remark that the number of examples used in this work is insufficient
to generalize our results regarding musical features and automatic segmentation.
Peaks selected from the obtained optimal models for segmentation, for instance,
should be further tested against existing datasets such as SALAMI (Smith et al.,
2011). Another possibility in this respect would be to also evaluate other structural
segmentation approaches on the stimuli used in our work to examine the reliability
of the findings.

Finally, we should also mention that our investigation could have benefited
more from more music-theoretical perspectives, especially with regard the analysis
of specific musical excerpts and the contribution of higher-level components
of segmentation, such as musical parallelism. It is useful to remark, however,
that interpretations of the results in finer detail can get rather convoluted when
dealing with real-world, polyphonic audio stimuli, when compared to, for instance,
sequences of notes.

6.4 Future directions

To better understand the observed differences between tasks, future studies could
empirically examine other types of real-time and non real-time tasks. For instance,
it may be useful to investigate multiple real-time segmentation trials for the same
piece, as well as to record reposition of boundaries in annotation segmentation
tasks. Also, it would be interesting to use a between-group design in order to
avoid too much familiarity with the stimuli in the annotation task; this might
help to better explain the effect of familiarity upon the differences between tasks.
Regarding indication delays, the real-time task setting could involve asking listeners
to indicate instants of significant change as soon as they are noticed, to make sure
that they react as fast as possible to the perceived changes.

It should also be noted that other possible solutions can be applied regarding
kernel density estimation; notably, it has been found that adaptive kernel density
estimation may yield better results for large samples (Shimazaki & Shinomoto,
2010). In addition, rhythmic characteristics of the stimuli seem to allow for
estimation of required time shifts and segmentation time scales for perceptual
boundary data modelling of a given stimulus; this possibility could be further
explored. Also, regarding novelty detection, and considering that a fixed common
time scale should not be appropriate for all stimuli, multi-granular approaches to
novelty (Lartillot et al., 2013) could be investigated for prediction of segmentation
density. In addition, we believe that interaction features may be useful for further
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investigation: it might be interesting to generate interactions between more than
two features to help reduce the number of novelty peaks, potentially leading to
fewer “false positives”.



7 CONCLUSIONS

The study of music segmentation can offer insights into the way acoustic events in
music are organized and understood by listeners as meaningful content involving
multiple time granularities. Drawing inspiration from unresolved issues in
previous perceptual segmentation studies, we investigated the role of musical
training and experimental task on music segmentation. We also focused on the
problem of computational modelling of perceptual segmentation as a way to
elucidate possible differences between participant groups and segmentation tasks.
We were interested in pinpointing the relative contribution of different musical
features upon prediction, and understanding the possible relationship between
segmentation accuracy of a musical example and characteristics of musical features
used for prediction. Our methodological framework for the study of modelling of
music segmentation tried to maximize external validity by using a relatively large
participant size, and sought to satisfy aspects of ecological validity by including
real-world musical stimuli. We also aimed to strengthen the internal validity of the
approach: we carefully considered the temporal scales used in the analysis of the
magnitude of musical changes, and took into account the possibility of indication
delays in perceptual segmentation.

Our findings suggest that a number of aspects related to segmentation
depend on the setting used to collect boundary indication responses; in real-time
segmentation, listeners indicate less boundaries and at larger time scales, are less
consistent with each other, and exhibit higher time lags than in non real-time
segmentation. We also observed differences for segmentation prediction based
on audio-based descriptors of musical change. Real-time segmentation involved
models of lower dimensionality and yielded lower accuracy than non real-time
segmentation; compensation of real-time data for indication delays inverted this
last result. Furthermore, boundary strength ratings from participants were shown
to improve segmentation accuracies when included in non real-time segmentation
models, and did not correspond with likelihood of boundary indication based on
perceptual data.

The role of musicianship in segmentation remains unclear: we found high sim-
ilarity between perceptual segmentation models, similar inter-subject correlation
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for both groups, similar number of boundary indications, and no trend regarding
possible delays between one group and another. However, non-musicians tended
to segment at shorter time scales, and optimal computational prediction models
for this group yielded higher segmentation accuracy, involved a less varied set of
optimal features, and required larger time shifting than for musicians.

We observed interesting results regarding the contribution of musical features
on perceptual segmentation and its prediction. According to our findings, features
describing simultaneous changes in rhythm and pitch were often involved in
optimal computational prediction models. In addition, for features describing
rhythm, pitch, and tonality, musical pieces exhibiting lower local fluctuation for a
given feature yielded higher prediction accuracy for that feature; a similar trend
was found regarding the mean distance between peaks of musical novelty detected
from these features. Moreover, we found that the global beat length of the music
is associated with differences in optimal time lag between segmentation tasks: the
higher the beat length (i.e., the slower the tempo), the higher the lag, and vice
versa. Also, we observed a relationship between rhythmic characteristics of stimuli
and optimal time scales for modelling of segmentation responses: music with
higher pulse clarity and higher frequency of onset events involved shorter optimal
time scales for segmentation.

Overall, our work sheds light on the relevance of audio-based musical features
for prediction of perceptual segmentation density obtained via aggregation of
multiple listeners’ responses, as well as other aspects of segmentation derived
therefrom. The results provide evidence regarding the perceptual validity of
rhythmic and pitch-based audio musical descriptors for prediction of segmentation.
We also found that the accuracy of segmentation prediction can be traced by
characteristics of acoustic musical features. This finding can be applied to the
optimization of automatic segmentation techniques, as it might be possible to
predetermine what musical features would yield higher accuracy for a given
stimulus in order to implement appropriate segmentation strategies.

Finally, our investigation represents a new step in the study of music segmen-
tation by combining music perception and cognition with state-of-the-art methods
in music information retrieval. This interdisciplinary approach incorporated multi-
ple viewpoints, as we examined listeners’ responses, different segmentation tasks,
musical stimuli and audio-based musical features. Approaches incorporating vari-
ous strategies to approach segmentation can help to gain a deeper understanding
of how the structure of music is perceived and how can it be predicted.
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YHTEENVETO (FINNISH SUMMARY)

Musiikkia kuunnellessa havaitsemme moninaisia äänellisiä tapahtumia. Pystym-
me esimerkiksi populaarimusiikkikappaleesta erottelemaan säkeen ja kertosäkeen,
sekä kykenemme paikallistamaan milloin kappale siirtyy osasta toiseen. Tällaiset
tapahtumat ilmenevät monella tasolla; musiikissa voi erottaa esimerkiksi motii-
veja, fraaseja ja osia. Tässä työssä käsitellään musiikin rakenteen muutoksia, eli
merkittävän muutoksen hetkiä.

Useissa musiikin havaitsemista ja kognitiota käsittelevissä tutkimuksissa
on pyritty ymmärtämään minkä tyyppiset muutokset musiikkikappaleessa muo-
dostavat kappaleessa havaitun rakenteen. Edelleen ratkaisematta on kuitenkin,
miten musiikillinen harjautuneisuus, rakenteen reaaliaikainen ja ei-reaaliaikainen
jaottelu sekä eri musiikillisten elementtien suhteellinen merkittävyys vaikuttavat
rakenteen havaitsemiseen ja ennustamiseen. Näiden kysymysten tarkastelu voi
johtaa parempaan ymmärrykseen niistä mekanismeista, jotka ovat käytössä eri
ihmisillä eri tilanteissa, sekä antaa tietoa musiikin havaitun rakenteen ja akustisten
piirteiden välisistä yhteyksistä.

Työssä järjetettiin kaksi kuuntelukoetta, joissa koehenkilöiden tehtävänä oli
kuunnella musiikkikappaleita ja segmentoida ne kahdessa havaitsemistehtäväs-
sä: reaaliaikaisesti ilman kuuntelun keskeytystä sekä ei-reaaliaikaisesti vapaassa
tahdissa. 18 muusikkoa osallistui kumpaankin tehtävään, minkä lisäksi 18 ei-
muusikkoa osallistui reaaliaikaiseen tehtävään. Tulosten analysoinnissa käytettiin
ydinestimointimenetelmää, jolla yhdistettiin koehenkilöiden vastaukset kappalees-
sa havaittujen muutosten tiheyttä kuvaavaksi ajalliseksi käyräksi, sekä akustisiin
piirteisiin pohjautuvaa muutoksen havaitsemismenetelmää.

Tutkimuksen tulokset osoittivat segmentointitehtävätyypin merkityksen ra-
kenteen erottelussa ja ennustamisessa, sekä selvensivät yleisten ja paikallisten
musiikillisten elementtien merkittävyyttä tässä prosessissa. Tulokset eivät kuiten-
kaan selittäneet tutkimuskirjallisuudessa esiintyviä musiikilliseen harjautunei-
suuteen liittyviä eroja. Tutkimus lisäksi korostaa musiikin homogeenisten osien
väleissä esiintyvien paikallisten muutosten merkitystä musiikin rakenteellisten
muutosten havaitsemisessa, kuulĳoiden merkintäviiveiden vaikutusta rakenteen
segmentoinnissa, sekä segmentoinnin aikaskaalan määrittelystä johtuvia ongelmia
mallinnuksessa.

Avainsanat: musiikin rakenne, ydinestimointimenetelmä, muutoksen havait-
semismenetelmä, musiikilliset piirteet, musikillinen harjautuneisuus, segmentoin-
nin havaitsemistehtävä.



APPENDIX 1 FUNCTIONS USED IN THE STUDIES

Some of the MATLAB functions written for the analyses described in this thesis
are available in YouSource: https://yousource.it.jyu.fi/dissertation/appendix

The repository can be cloned using git:
git clone git://yousource.it.jyu.fi/dissertation/appendix.git

– Paper I

segread.m: reads in boundary indication data from listeners for further
processing

segdensity.m: computes a normalized density curve of boundary indica-
tions

– Paper II

segnovelty.m: computes a set of novelty features from a musical file

seginteract.m: creates interactions between novelty features via pairwise
multiplication

segcorrelation.m: correlation between density curve and normalized
novelty features

segoptimize.m: percentile-based model of the density curve based on
computed novelty curves

– Paper III

segfeatures.m: computes a set of frame-decomposed features from a
musical file

segcharact.m: computes global characterizations derived from musical
features and novelty curves
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WHILE LISTENING TO MUSIC, PEOPLE OFTEN

unwittingly break down musical pieces into constituent
chunks such as verses and choruses. Music segmentation
studies have suggested that some consensus regarding
boundary perception exists, despite individual differ-
ences. However, neither the effects of experimental task
(i.e., real-time vs. annotated segmentation), nor of musi-
cianship on boundary perception are clear. Our study
assesses musicianship effects and differences between
segmentation tasks. We conducted a real-time experi-
ment to collect segmentations by musicians and nonmu-
sicians from nine musical pieces. In a second experiment
on non-real-time segmentation, musicians indicated
boundaries and their strength for six examples. Kernel
density estimation was used to develop multi-scale seg-
mentation models. Contrary to previous research, no
relationship was found between boundary strength and
boundary indication density, although this might be con-
tingent on stimuli and other factors. In line with other
studies, no musicianship effects were found: our results
showed high agreement between groups and similar
inter-subject correlations. Also consistent with previous
work, time scales between one and two seconds were
optimal for combining boundary indications. In addition,
we found effects of task on number of indications, and
a time lag between tasks dependent on beat length. Also,
the optimal time scale for combining responses increased
when the pulse clarity or event density decreased. Impli-
cations for future segmentation studies are raised con-
cerning the selection of time scales for modelling
boundary density, and time alignment between models.

Received: December 13, 2014, accepted March 9, 2016.

Key words:music segmentation,music training, segmen-
tation task, segmentation modelling, musical features

L ISTENERS PARSE THE STRUCTURE OF MUSIC BY

focusing attention on musical feature change and
repetitions of sequences. They can spontaneously

predict and detect relevant changes that demarcate the
beginning and end of verses, choruses, and other types
of musical structures. Many gaps in our knowledge on
temporal processing of perceptual streams such as
music, speech, and movement still need to be bridged.
Indications of musical change are complex to study,
since they stem from our memory-guided perception
and cognition of points deemed to be musically salient
(Deliège, 2007). The role of musicianship in the listener
remains an important question, as it can help explain
possible transfer effects of music learning. In addition,
the difference between listeners’ real-time and non-real-
time (‘‘annotation’’) indications of change is still
unclear, although this difference can shed light on the
assimilation of musical structure as a temporal process.
Moreover, the study of the perceived structure in music
can encourage developments in automatic systems to
facilitate music editing and playback, such as adding
music to family videos.
Perceived contrasts, discontinuities, changes, and

repetitions at multiple hierarchical levels commonly
serve as heuristics that guide the identification of musi-
cal segment boundaries (Addessi & Caterina, 2000).
Studies in automatic segmentation often refer to these
musical novelty points simply as instants of significant
change (Foote, 2000). In this paper we will use segment
boundaries and instants of significant change inter-
changeably, since we will investigate a particular aspect
of music segmentation that is more related to musical
change than to repetition or similarity.
As a general rule, people share a common sense of the

instants at which the music in a piece changes in a sig-
nificant way (Clarke & Krumhansl, 1990). This asser-
tion is backed by evidence from listening studies on
segmentation that shows a consensus despite varying
frequency of indications (Bruderer, 2008; Clarke &
Krumhansl, 1990; Koniari, Predazzer, & Mélen, 2001).
Besides boundary indication time points, analyzed seg-
mentation data in these studies include verbal justifica-
tions of segment boundaries, judged time positions, and
duration of segments. In particular, boundary indications
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have been defined according to perceived tension
(Addessi & Caterina, 2000; Krumhansl, 1996), expecta-
tions and closure (Peebles, 2011), descriptors (Bailes &
Dean, 2007; Krumhansl, 1996), and grouping rules
(Clarke & Krumhansl, 1990; Deliège, 1987; Frankland &
Cohen, 2004; Temperley, 2001). Automatic segmentation
systems have been implemented in corpus-based studies;
these systemswere based onmusical features (Hargreaves,
Klapuri, & Sandler, 2012; Sanden, Befus, & Zhang, 2012;
Smith, Chuan, & Chew, 2013), sets of rules (Bruderer,
2008;Cambouropoulos, 2006; Lartillot&Ayari, 2009; Lar-
tillot, Yazıcı, & Mungan, 2013), or probabilistic methods
(Ferrand, Nelson, & Wiggins, 2003; Lattner, Grachten,
Agres, & Chacón, 2015; Pearce, Müllensiefen, & Wiggins,
2010), and generally compared against ground-truth data
(cf. Paulus, Müller, & Klapuri, 2010; Peeters & Deruty,
2009). Bruderer (2008), Wiering, de Nooijer, Volk, and
Tabachneck-Schijf (2009), and Pearce et al. (2010) have
compared the performance of some segmentation sys-
tems.Other workon segmentation includes a neural study
on finding working memory triggers (Burunat, Alluri,
Toiviainen, Numminen, & Brattico, 2014) and a perfor-
mance study on improvisational structure (Dean, Bailes,
&Drummond, 2014).Outside our scope,work onmusical
closure has explored the role of musicianship and experi-
ence on boundary perception of classical music (Peebles,
2011; Sears, Caplin, & McAdams, 2014).
Recently, Bruderer (2008) investigated participants’

perceptual segmentation of music in three formats:
polyphonic audio, MIDI melodic lines, and polyphonic
MIDI. This work tackled the effect of polyphony in
music on segmentation, the role of perceived boundary
strength on segmentation, and the prediction of percep-
tual segmentation via different melodic parsing models.
The main findings by Bruderer included: 1) a similar
pattern of results for all three versions of the stimuli, 2)
a positive relationship between the frequency of indica-
tions of boundaries and their perceived strength ratings,
3) a positive relationship between the actual segmenta-
tion by listeners and three segmentation cues of parsing
models: timbral changes, rest onsets, and attack-points
(i.e., a long note in between two short notes). Bruderer
also investigated the effects of musicianship on segmen-
tation, but the approach was limited mainly by small
sample size and a lack of professional musicians in the
sample. In addition, the time scale parameter (see
below) used for modelling boundary density across par-
ticipants was adjusted based on multiple segmentation
trials. Due to the need of several trials from the same
participant, this method could result in rather lengthy
data collection tasks if the issue under study does not
involve repeated segmentation.

In this study, which can be considered a follow-up to
the work by Bruderer (2008), we suggest a novel
approach for modelling segmentation boundary density.
We apply a comparable methodological approach (i.e.,
based on kernel smoothing) to study effects of music
training upon participants’ segmentation of polyphonic
audio stimuli. We introduce alternatives to find optimal
segmentation boundary density parameters (compari-
son between groups or tasks, and estimation of
model-to-data fit; see Results).
Regarding the issue of experimental segmentation

tasks, various methods have been used to gather seg-
mentation boundary data, as there is no established
approach and data collection method and comparison
studies are scarce. Examples of segmentation tasks
include listening to the example once followed by three
consecutive real-time segmentation trials (Bruderer,
2008), and segmenting into two clusters online during
listening (Peretz, 1989) or offline after listening
(Deliège, 1987). Another study asked subjects to listen
to the example, segment in real-time, and make changes
or deletions to their boundary profiles to obtain a pre-
cise, non-real-time annotation for use in further experi-
ments (Clarke & Krumhansl, 1990). Previous work on
melodic clustering suggests the possibility that the data
collection method has an effect on the boundary indica-
tions by listeners: Peretz (1989) compared an explicit
segmentation task with an offline retrospective recogni-
tion memory task and an online prospective probe rec-
ognition task. Differences were found between tasks in
the role of critical boundaries upon probe identification,
suggesting that the mnemonic role of clustering for tune
recognition is task dependent, and that similar tasks
may, however, capture distinct stages of musical analysis.
Several studies investigated the differences between
repeated segmentations of the same stimuli, and reported
an increase in the number of indications over repeated
segmentations of the target stimulus (Bruderer, 2008;
Deliège, 1987; Deliège, Mélen, Stammers, & Cross,
1996; Krumhansl, 1996). However, this trend did not
reach statistical significance, and it was found for audio
but not for MIDI versions of the stimuli (Bruderer, 2008).
Frankland and Cohen (2004) asked listeners to parse
MIDI melodies in three consecutive trials, and found
an increase of within-subject correlation throughout
repetitions. Koniari et al. (2001) compared children who
listened to stimuli once prior to segmentation with chil-
dren who had listened to the stimuli three times; no
statistically significant effects of familiarization with the
target stimuli were found over the segmentation profiles.
Regarding the role of musicianship on boundary per-

ception, studies have reported effects of music training
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on subject agreement and on number of indications.
Results from studies rooted on the Generative Theory
of Tonal Music (GTTM, see Lerdahl & Jackendoff,
1983) suggest the possibility that both musicians and
nonmusicians can represent the hierarchical structure
of the music from its perceived surface, but these repre-
sentations would differ due to differences in musical
skills (Deliège, 1987; Koniari & Tsougras, 2012; Peretz,
1989). Children (Koniari et al., 2001) and adults (Bru-
derer, 2008) with music training exhibited higher
within-subject agreement: they showed more consis-
tency across repeated segmentations of a target stimulus
than untrained listeners. As regards inter-subject con-
sistency, Schaefer, Murre, and Bod (2004) reported
higher agreement between musically experienced listen-
ers than between inexperienced ones. In addition, stud-
ies focusing on different aspects of segmentation have
reported that participants with music training indicate
roughly twice the number of boundaries than untrained
ones (Bruderer, 2008; Deliège, 1987). Other studies
investigated agreement of the segmentation with respect
to Gestalt or GTTM rules, with the hypothesis that these
rules would better predict musicians’ segmentation.
Subjects with music training segmented more in accor-
dance with GTTM rules than untrained ones (Deliège,
1987; Koniari & Tsougras, 2012; Peretz, 1989), but the
direction was inverse for general Gestalt rules (Schaefer
et al., 2004).
An unsolved methodological issue in music segmen-

tation studies is how to combine boundary indication
profiles from multiple participants to obtain a represen-
tative model. This is not a trivial step since participants
can greatly differ from one another with respect to the
location of segment boundaries and to the number of
indications. Moreover, it can be problematic to system-
atically match boundaries from different listeners that
are close in time, since it requires researchers to deter-
mine whether listeners were indicating the same musi-
cal change. In order to estimate the temporal proximity
between participants’ indications that correspond to the
same perceived event, the time constant or time scale of
the segmentation should be optimized; for instance, if
listeners’ indications of the same musical change are
quite distant in time from one another, larger time scales
will be required for their aggregation, and vice versa.
Since there is no commonmodelling approach to reliably
obtain aggregate distributions of point process data or to
measure their similarity (Dauwels, Vialatte, Weber, &
Cichocki, 2009), multiple methods have been used in
music perception, from sampling responses that are
roughly close enough in time (Koniari & Tsougras,
2012; Koniari et al., 2001) to summing indications within

each musical beat (Krumhansl, 1996) and note (Deliège,
1987; Deliège et al., 1996; Frankland & Cohen, 2004).
These models are best suited for monophonic music,
especially for discrete events in the symbolic domain, but
not for polyphonic audio music, which involves overlap-
ping events and frequent timbral change.
An alternative approach that has not received enough

attention in music segmentation studies is Gaussian
kernel smoothing. This method models segmentation
data by placing a Gaussian curve at each boundary to
estimate an underlying probability density function
(Silverman, 1986). The result is a curve of perceptual
segment boundary density over time; its local peaks
represent regions where multiple boundary indications
are close enough in time. The smoothness of this rep-
resentation can be modified by increasing the width of
the Gaussian kernel used. If participants’ indications of
the same musical change are not close enough, the
smoothness parameter of the curve should be increased
to reduce its noisiness. However, very high smoothness
results in an inaccurate curve that would represent dif-
ferent musical changes with only one peak. To offer an
optimal representation of perceived musical change
across multiple listeners, an appropriate level of smooth-
ness needs to be found. Segmentations at a high time
scale are optimally represented with larger kernel widths,
and vice versa.
Smooth density profiles of 1 s (Burunat et al., 2014)

and 1.25 s (Bruderer, 2008) have been suggested for
modelling the distribution of boundary indications.
Burunat et al. (2014) found after repeated optimization
trials that a time scale parameter of 1 s could optimally
group together motif-level segmentation data of a stim-
ulus. Using six stimuli, Bruderer (2008) found an opti-
mal width of 1.25 s based on differences between
individual data for three consecutive segmentation
trials. This method yields a length at which most win-
dows include marks for all trials, but least windows
include more than one mark within any trial. This
approach exhibits some limitations: it requires each par-
ticipant to segment the same stimulus multiple times,
uses an arbitrary number of trials, and assumes similar-
ity of profiles across trials. One of the main findings
obtained via this approach was that the estimated
boundary density corresponded to boundary strength
ratings, since the rated strength of a subset of indicated
boundaries correlated strongly with the frequency of
indications, as previously predicted by Clarke and
Krumhansl (1990) and Frankland and Cohen (2004).
Another approach to obtaining a representation of seg-
mentation density would be to use multi-scale models;
these have been applied for music visualization and
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analysis of structure (Kaiser & Peeters, 2013; Martorell
Dominguez, 2013; Mauch, MacCallum, Levy, & Leroi,
2015). Multi-scale models of density offer a more com-
prehensive representation of hierarchical aspects of seg-
mentation than density profiles.
The literature shows at least three aspects of segmen-

tation that remain to be tackled regarding musicianship,
experimental tasks, models, and stimuli. First, the effect
of music training remains an open question in phrase-
level segmentation. One reason for this is the lack of
assessment of differences in music training among par-
ticipants (Krumhansl, 1996). Another issue is small
sample size. Bruderer (2008) included only 7 partici-
pants in the sample, none of whom were professional
musicians. Other related questions, such as relative
delay between participant groups, were not investigated.
Understanding the role of music training on partici-
pants’ segmentation can yield clues on transfer effects
of musicianship and guide recruiting of participants
for further music listening studies. Second, listeners in
segmentation tasks get familiar with target stimuli in
initial ‘‘listening only’’ or practice trials. This procedure
is based on the assumption that a complete hierarchical
mental representation of a stimulus can only be
achieved after it is heard in its entirety (Lerdahl & Jack-
endoff, 1983), hence boundary indication tasks require
a familiarization step. According to this principle, real-
time segmentation tasks should be preceded with ‘‘lis-
tening only’’ trials or repeated multiple times with the
same stimulus, and offline segmentation tasks would pro-
vide a more complete representation of the perceived
structure. It has been shown that repetition of real-time
segmentation increases within-subject consistency, sug-
gesting an effect of retrospective aspects upon segmenta-
tion. However, to our knowledge few studies have
investigated the effect of real-time compared to offline
segmentation, particularly when it comes to clustering of
relatively large examples into multiple parts. The effect of
task should be further explored to, for instance, compare
real-time brain activity during music listening against
expert annotations of musical structure. Third, few per-
ceptual segmentation models based on indications by
participants have been suggested, and versatile strategies
are required to find optimal time scales for modelling.
The relationship between the optimal segmentation time
scale of a stimulus and its musical characteristics also
remains a question. Robust models of multiple segmen-
tations oriented towards naturalistic stimuli can provide
further insights on perceived structure and be advanta-
geous for automatic structural analyses.
The aims of this study, which investigates the con-

tribution of music training and segmentation task in

phrase-level segmentation, and estimates optimal time
scales for segmentation modelling, can be condensed
into the following questions:

1. What is the effect of music training on the indica-
tion of musical segment boundaries by listeners in
a real-time type of experimental setup?

2. What are the differences between a first impres-
sion of musical structure as it unfolds over time
and an offline, more knowledge-driven music
segmentation?

3. Which global characteristics of musical stimuli
modulate the optimal time scale for modelling per-
ceptual segmentation?

Regarding the first question, we expected to find dif-
ferences between segmentation profiles due to music
training. We hypothesized that nonmusicians’ segmenta-
tion would be delayed compared to musicians’ segmen-
tation, due to lower recognition delay of boundaries
found for musicians and attributed to processing of
shorter auditory time-spans (Tierney, Bergeson-Dana,
& Pisoni, 2008). We also expected that musicians would
exhibit higher inter-subject correlation compared to non-
musicians, who would be less likely to segment in accor-
dance with internalized perceptual rules regarding
musical form (Koniari & Tsougras, 2012). Also, it was
expected that nonmusicians would indicate more bound-
aries than musicians, as previously suggested by Bruderer
(2008) and Deliège (1987). Another specific hypothesis
derived from previous studies was that some dissimila-
rities between musicians’ and nonmusicians’ multi-scale
segmentation models would be exhibited, as previous
differences have been shown; for example, in segmenta-
tion of short melodies (Deliège, 1987; Peretz, 1989). We
also expected to find differences in optimal segmentation
time scales due to musicianship: segmentation by non-
musicians would be optimally represented by lower levels
of smoothness (short time scales), under the assumption
that they would focus predominantly on lower levels of
the hierarchical grouping structure, including changes of
loudness, timbre, pitch, and duration. In contrast, we
expected high smoothness (large time scales) to be more
suitable for estimation of boundary distribution from
musicians as they would focus not only on dynamics,
instrumentation, register, and pace, but also on higher
structural levels (chord and key changes, metric modu-
lation,multiple concurrent changes). For instance, a study
on perceived closure of classical cadences (Sears et al.,
2014) showed that nonmusicians focus mainly on the
leading voice, whereas musicians pay attention to multi-
ple voices, suggesting greater salience of harmonic
change for musicians. (Tierney et al., 2008).
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For the second research question, we expected to find
an effect of experimental task on segmentation: the real-
time task was expected to prompt more inaccurate and
incomplete segmentations than the annotation task.
Since certain aspects of segmentation might only be
perceived in retrospect, the real-time task should make
it difficult for listeners to anticipate development or
repetition of ongoing phrases, and hence to decide
whether to indicate a boundary or not. Specifically,
real-time segmentation contexts should exhibit rela-
tively delayed boundaries due to the time required by
participants to recognize musical changes as significant
and respond by indicating them: if the musical context
does not facilitate boundary anticipation, listeners
might need to pay attention to subsequent musical
events in order to recognize and indicate a boundary.
We also expected that real-time task segmentations
would be more dissimilar with each other than non-
real-time segmentations due to variation among parti-
cipants in their ability to anticipate boundaries and in
their delay to respond to recent musical changes. Also,
the non-real-time task would probably exhibit more
boundary indications, such as those prompted by ret-
rospectively perceivable musical changes, whereas in the
real-time task only stark musical contrast (e.g., simulta-
neous change in instrumentation, harmonic function,
melodic contour, and rhythmic patterns) would be indi-
cated. We hypothesized, however, that both tasks would
share some commonalities. First, the perceived strength
ratings of a boundary in the non-real-time task would
somewhat reflect the proportion of participants that
indicated it in the real-time task. For example, the
real-time task would mostly prompt indication of stark
and predictable boundaries, which should be among
those boundaries perceived as strongest in the annota-
tion task. We also expected that, at a general level, both
tasks would exhibit relatively high similarity since the
real-time task would still yield a broad representation of
the perceived musical structure. These tasks would
become comparable when using large time scale para-
meters, because high levels of smoothness would reduce
differences between tasks caused by recognition delay
and retrospective aspects of segmentation (which are
only compensated in the annotation task). Each task,
in this sense, was expected to involve different optimal
time scales for its representation: real-time segmenta-
tions should describe simultaneous change of multiple
musical attributes, which would be optimally estimated
with large time scales. In contrast, comprehensive, non-
real-time annotation tasks might induce segmentation
at multiple hierarchical grouping levels, ranging from
beats to larger patterns such as melodic sequences. This

type of annotation would be comparable to a GTTM
time-span reduction; according to this, a single time scale
cannot suffice for density estimation, but small time
scales can still offer an appropriate representation of the
trend across listeners towards frequent segmentation.
Regarding our third research question, we expected

that optimal segmentation time scales for modelling
responses across participants would relate to global
rhythmic description cues of each stimulus, such as
estimated beat length, pulse clarity, duration, and num-
ber of note events. The underlying assumption was that
the optimal time scale for modelling responses would
not be stimulus invariant; it would instead depend on
rhythmic properties of each stimulus, such as ability to
evoke a sense of beat and meter. For instance, musical
pieces with lower rhythmic stability would induce less
precise annotations by participants, so larger time scales
would be required for modelling segmentation density.
Similarly, segmentation of music with a relatively low
number of events should hinder listeners’ boundary
anticipation, resulting in sparser boundary profiles that
would require higher levels of smoothness for density
estimation. Support for this hypothesis would shed light
on the relationship between perceptual boundary data
and audio rhythmic features, and lend validity to the
proposed modelling approach for estimation of optimal
time scales for segmentation.

Method

We conducted two listening experiments on perceptual
segmentation at the Music Department of the University
of Jyväskylä. Figure 1 illustrates the computer interfaces
that were utilized to collect segmentation responses.

Experiment 1: Real-time Task

The first experiment collected significant instants of
change that were indicated by participants as they lis-
tened to unfamiliar stimuli. Our general aim for this
experiment was to capture a fresh, ‘‘live’’ description
or first impression of the music as it unfolded over time.

APPARATUS AND STIMULUS MATERIALS

We collected real-time segmentation responses, stimuli
familiarity, and background information from subjects
via a Max/MSP computer patch. The stimuli used in the
experiment were 18 excerpts from 9 multi-instrumental
and polyphonic piano musical pieces (see Appendix for
abbreviations and information) comprising various
styles. The musical examples were mainly excerpts
extracted from longer pieces, and their duration ranged
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from 2 to 8 min. We trimmed the 8-min examples into
chunks of around 2 min for an even length distribution
and to avoid fatigue of participants. In order to contex-
tualize the section ends and beginnings, these were
overlapped with each other by 3 s, which corresponds
to the duration of the echoic memory store (Toiviainen
& Krumhansl, 2003). After the experiment we concate-
nated the segmentation data from these chunks to
obtain sets of boundary data for entire musical exam-
ples. The root mean square (RMS) energy level was
normalized for the level of the stimulus with the lowest

value, and the peak intensity was adjusted for each stim-
ulus. The whole set thus exhibited approximately homo-
geneous loudness so participants could listen via
headphones at comfortable volume levels.
The musical pieces that were selected for the experi-

ments do not only differ in style; the temporal structure
varies in quantity and type of dimensions that manifest
musical progression: harmony (Morton), instrumenta-
tion, and harmony (Dream Theater), tempo and har-
mony (Couperin), dynamics, instrumentation and
harmony (Genesis), tempo, instrumentation, and

FIGURE 1. Upper image (Experiment 1): Trial instructing listeners to indicate instants of significant change while listening to the music. Lower image

(Experiment 2): Part of an annotation segmentation performed by a musician for the stimulus Ravel; vertical bars indicate marked boundaries, and

numbers situated next to the bars indicate perceived boundary strength ratings.
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harmony (Smetana), dynamics, tempo, and harmony
(Ravel), and dynamics, tempo, instrumentation, and
harmony (Dvořák, Piazzolla, Stravinsky). Other criteria
were also used for selecting the stimuli; we focused on
polyphonic material, in the sense of music containing
simultaneous note events, to prompt segmentation rely-
ing on processes of texture change. We included only
music without lyrics since these were found to have an
important effect on boundary perception (Bruderer,
2008), and hence would have posed difficulties for esti-
mation of general trends across stimuli. The duration of
the stimuli had to be long enough to invoke segmenta-
tion (over a minute of music), but short enough to avoid
fatigue of participants (our upper limit was of 10 min).
Besides the selection of multiple musical idioms, we
aimed to obtain more generalizable results by including
stimuli with varying structural complexity, and whose
boundaries would be induced by different musical ele-
ments (timbre, rhythm, harmony) or interactions
thereof. We also considered the availability and ade-
quacy of MIDI versions of the stimuli for future work
that could take advantage of symbolic musical descrip-
tions (large interonset intervals in Smetana and Dvořák,
long rests inMorton, Ravel, and Piazzolla). We included
music that would induce segmentation due to complex
processes such as similarity (Genesis,Morton, Couperin,
Dvořák, and Piazzolla), symmetry (Dvořák) and texture
change (Genesis, Stravinsky, and DreamTheater). More-
over, in most cases the stimuli presented in the real-time
task would not be known to the participants in order to
reduce artifacts due to familiarity.
We believe that some of the stimuli might be relatively

more challenging to segment, particularly in real-time
contexts. Stravinsky and Ravel are characterized by
unexpected but highly contrasting musical changes in
loudness, texture, rhythm, and tonality. For Couperin,
on the other hand, some boundaries are more subtle
and can only be anticipated due to underlying tonal
context. The rhythmic organization of this piece also
induces phrase grouping, but some local temporal dis-
continuities might be difficult to anticipate in real-time
contexts. Morton is also characterized by rhythmic dis-
continuity, here perceived as sudden breaks followed by
long pauses, which are likely very hard to anticipate
during the first listening. Also, the introduction of Piaz-
zolla could sound erratic due to lack of key clarity and
abrupt changes and pauses.

SUBJECTS

We obtained segmentation data from 18 nonmusicians
(11 males, 7 females) and 18 musicians (10 females,
8 males). One of our aims was to collect data from

even-participant samples regarding demographic infor-
mation (gender and age) and musical styles played by
musicians. The mean age was similar across groups: non-
musicians ¼ 27.28 years (SD ¼ 4.64), musicians ¼ 27.61
years (SD ¼ 4.45). The subjects were local and foreign
students and graduates from the University of Jyväskylä
and Jyväskylä University of Applied Sciences. The musi-
cians had an average of 14.39 years (SD ¼ 7.49) of music
training and played classical (12 participants) and non
classical musical styles (6 participants) such as rock. The
main instruments played by the musicians were piano
(5), guitar (4), flute (2), bass guitar, clarinet, saxophone,
cello, violin, viola, and voice. All the musician partici-
pants considered themselves either semiprofessional (12
participants) or professional (6 participants) musicians
with 6 or more years of training. All nonmusicians self-
reported as untrained, and none of the participants
reported skills in dance or sound engineering.

PROCEDURE

The experiment took place in two sound-attenuated
rooms with a computer. The average duration was
around 50 min for nonmusicians and 47 min for musi-
cians. The main experiment task was described to par-
ticipants as follows: ‘‘Your task is to mark instants of
significant musical change by pressing the space bar of
the computer keyboard. Whenever you find an instant
of significant change, please press the spacebar key to
mark it as you listen to the music. You will not have
a chance to listen to the whole example before you start
marking. Instead, during your first and only listen of
each example, you will give us your ‘first impression.’’‘
After reading instructions and completing a trial, they
segmented each of the musical stimuli, which were pre-
sented in randomized order. Participants did not have
an opportunity to listen to the whole example before-
hand. The interface had a play bar that offered basic
visual-spatial cues regarding the beginning, current time
position, and end of the stimuli. After the segmentation
of each target stimulus, participants indicated their
familiarity with it via a 5-point Likert scale.
After the segmentation of all the target stimuli, parti-

cipants filled out a questionnaire including demo-
graphic and music-related questions. We gathered
information regarding music training, weekly frequency
of music listening, and favorite musical genres of the
participants. Participants who reported music training
accessed an additional questionnaire regarding musi-
cianship and including professional status. This ques-
tionnaire also asked about main instrument and other
instruments played, musical styles played, and number
of years of training. This information was further
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utilized to match participants from both groups, remove
outliers, and include a diverse sample of participants
(e.g., different kinds of instrumentalists and styles per-
formed). After this, the experimenter asked subjects for
some feedback on the task and rewarded them with
a movie ticket.

Experiment 2: Annotation Task

We conducted a second experiment with the purpose of
obtaining a more comprehensive and precise set of seg-
mentations from participants. For this experiment, we
recruited musicians who had participated in Experi-
ment 1 and who had reported experience in audio edit-
ing tasks. We did not include nonmusicians in this
experiment because only a small number of them had
reported previous audio editing experience. In this
experiment, each target stimulus was presented for lis-
tening before the segmentation task to prompt more
deliberate indications. Subjects were asked to mark
instants of significant change while listening to stimuli,
similar to what they had done in Experiment 1. The last
steps were to correct imprecise time locations or discard
unwanted marks, and to rate the perceived strength of
each boundary. Participants were asked not to add new
marks at that point, under the assumption that they
would tend to over-segment while focusing on short
excerpts of the stimuli (following Krumhansl, 1996).

APPARATUS AND STIMULUS MATERIALS

We prepared an interface in Sonic Visualiser (Cannam,
Landone, & Sandler, 2010) to collect time points and
strength ratings of indicated boundaries from 6 musical
examples. Participants used headphones to playback the
music at a comfortable listening level and a keyboard
and mouse for the segmentation task. To keep the total
duration of Experiment 2 at around one hour, we used 6
stimuli from Experiment 1 that lasted around 2 min
each. We did not include Piazzolla, Dream Theater or
Stravinsky in Experiment 2 since these were 6 min lon-
ger than the other stimuli.

SUBJECTS

The same 18 musicians of Experiment 1 participated in
Experiment 2, and they were all familiar with the use of
audio editing software.

PROCEDURE

The experiment was conducted in a room with a com-
puter with the exception of two subjects who participated
at the same time in a computer laboratory. Contrary to
Experiment 1, which did not require assistance, in this

case the experimenter remained in the room during the
training to make sure that the task was clear. The exper-
imenter read each step of the instructions together with
the participant and occasionally answered questions
regarding the task. The participant performed the task
via two trial stimuli by following the instructions, and
after this the experimenter left the room. The written
instructions included a presentation of the interface tools
and a task description, which consisted of the following
steps:

1. Listen to the complete musical example.
2. Listen to the complete example, and at the same

time mark instants of significant change by press-
ing the Enter key.

3. Freely playback the musical example from differ-
ent time points and correct marked positions to
make them more precise, or remove them if these
were added by mistake. Do not to add any new
marks at this stage.

4. Mark the strength of the significant change for
each instant with a value ranging from 1 (not
strong at all) to 10 (very strong).

5. Move to the next musical example and start over
from the first step.

The interface showed stimuli waveforms over which
subjects would play back the music, add marks, reposi-
tion them, and rate their strength. The waveforms could
bias participants towards boundary indications based
on amplitude changes, so they were asked to focus on
the music rather than on visual content. These visual-
spatial cues, which are often used for expert annotation
of structure in Music Information Retrieval (MIR), were
needed due to the detailed audio editing that was
needed for the task. After the participants completed
the task, which lasted an hour on average, they provided
feedback and were rewarded with a movie ticket.

Results

Table 1 includes information about age, training, and
listening habits of participants. The mean listening
habits (music listening hours per week) of participants
were significantly higher for the group of musicians,
t(34) ¼ 2.26, p < .05, although they showed more dis-
persion in this respect (two musicians explained that
they seldom listen actively to music as a primary activity
although their whole day is usually consumed with musi-
cal activity). Five musicians and one nonmusician were
familiar with at least one target stimulus, but nobody
reported having performed any of the examples. The
mean familiarity rating (1 ¼ not at all familiar; 5 ¼ very

Multi-scale Modelling of Segmentation 199



familiar) per stimulus across participants was 2.4 (mean
SD ¼ 1.4) for musicians and 2.1 (mean SD ¼ 1.1) for
nonmusicians. The most familiar pieces for musicians
were Stravinsky (x ¼ 3.1, SD ¼ 1.3), Piazzolla (x ¼
2.9, SD ¼ 1.6), and Ravel (x ¼ 2.4, SD ¼ 1.4). Regarding
nonmusicians, they were most familiar with Stravinsky
(x ¼ 2.7, SD ¼ 1.5), DreamTheater (x ¼ 2.6, SD ¼ 1.1),
and Piazzolla (x¼ 2.4, SD ¼ 1.4).
The responses collected from participants were fur-

ther processed in order to enable comparisons between
the data structures of each task. For the trimmed 8-min
examples, we corrected overlapped chunk ends and
beginnings by discarding data from the first 3 s of each
chunk, except for the initial chunk. For each of these
examples, we then concatenated the data across chunks
to obtain a set of boundary indications for the full musi-
cal example length.
Subsequently, we organized the data as three main

sets based on the music training of the participants and
the segmentation task that was performed. We allocated
162 segmentations per participant group in the real-
time task, since 18 participants per group segmented 9
musical stimuli. For the annotation task set, we allo-
cated 108 segmentations by 18 musicians as each subject
segmented 6 musical examples. For brevity’s sake we
abbreviate the real-time task by nonmusicians to NMrt
and by musicians toMrt, and for musicians in the anno-
tation task to Ma (see Table 2).
To yield global trends across listeners, we utilized

a systematic and multi-hierarchical approach. For each
group and task we computed segment boundary prob-
ability curves using Kernel Density Estimation (KDE,

Silverman, 1986). KDEs are comparable to histograms,
which are also density estimators, but yield smooth dis-
tributions because a kernel function is applied to each
data point (in this case each boundary indication)
instead of separating data points into bins. For distribu-
tion smoothing, we chose a normal kernel function fol-
lowing previous studies (Bruderer, 2008; Burunat et al.,
2014). To compare different participant groups and
experimental tasks, we obtained perceptual segment
boundary density curves at varying smoothing band-
widths; these corresponded to 16 time scales logarith-
mically ranging from .5 s to 10 s in order to model
multiple hierarchical levels. Previous studies (Bruderer,
2008; Burunat et al., 2014) showed that short time scales
are optimal for segmentation, so we chose logarithmic
scales to efficiently cover these in detail while also pro-
viding information regarding larger time scales. We
combined single-scale models of different time scales
to build matrices in which each row included a percep-
tual segment boundary density curve at a given time
scale, and each column included boundary density for
a given time point at different time scales. This multi-
scale model of segmentation follows previous work on
tonality (Martorell Dominguez, 2013) and musical nov-
elty description (Kaiser & Peeters, 2013; Mauch et al.,
2015). We obtained a multi-scale model for each stim-
ulus and segmentation task; Figure 2 shows each of the

TABLE 1. Age, Performance Training, and Listening Habits (Hours Per Week) of Participants

Group x age (SD) Range x years training (SD) Range x hours/week listening (SD) Range

NM 27.28 (4.64) 20 - 34 0 0 10.7 (8.6) 1 - 30
M 27.61 (4.45) 22 - 36 14.39 (7.49) 4 - 32 19.9 (15.7) 2 - 70

TABLE 2. Sets of Indicated Boundaries Used For Segmentation
Modelling and Their Respective Abbreviations

Nonmusicians Musicians

Real-time Task NMrt Mrt
Annotation Task
Annotation

Taskboundary strength weights

Ma
Maw

Note: NMrt ¼ boundary indications by nonmusicians in the real-time task (Exper-
iment 1). Mrt ¼ boundaries indicated by musicians in the real-time task (Experi-
ment 1). Ma ¼ boundary indications by musicians in the annotation task
(Experiment 2). Maw ¼ indications by musicians in the annotation task with the
addition of perceived boundary strength weights (Experiment 2).
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FIGURE 2. Each of the four sets of indicated boundaries was modelled

via a multiple time scale approach. The kernel density over time of

stimulus Morton is represented for 16 time scales.
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four multi-scale models obtained for stimulus Morton.
Within each KDE matrix there are 16 single-scale mod-
els, which are ordered along the vertical axis based on
their time scale (�), which ranges from 0.5 s to 10 s.
We included an additional data set with responses by

musicians in the annotation task to analyze the role of
perceived boundary strength; this set was abbreviated as
Maw. To generate Maw, each of the single-scale models
of the annotation task (Ma) was weighted based on
listeners’ boundary strength ratings. This fourth set
contained boundary indications at the same time
instants as Ma, allowing to estimate the boundary
strength effect. We mapped for each participant sepa-
rately minima and maxima strength values to 1 and 10,
since only a few subjects used the full range of values.

NUMBER OF BOUNDARY INDICATIONS

We looked at the total number of indicated boundaries
by each participant with the primary purpose of remov-
ing outliers from the sample. We found that all partici-
pants were located within 3 standard deviations from
the mean, so no sample subjects were removed. Figure 3
compares segmentation tasks and participant groups
based on the number of boundary indications per min-
ute for each stimulus. In this and the following box
plots, whiskers describe about +2.7 SD (for normally
distributed data), hence covering 99.3% of the total
data; mean values are shown with diamond marks. For
the first 6 stimuli, the number of boundary indications
per example by musicians ranged in the real-time task
between 0 and 49, and in the annotation task between 1
and 47. Regarding the real-time task, the number of
indicated boundaries for each of the 9 musical stimuli
ranged between 0 and 90 for nonmusician participants

and between 0 and 64 for musicians. All participants
indicated at least a total of 14 boundaries in the real-
time task. Some participants mentioned after the task
that they indicated few musical changes due to focus on
those that were sufficiently significant; four musicians
and two nonmusicians segmented once or not at all in
some of the segmentation trials, comprising 7% of the
324 collected trials in the real-time task.
We compared the mean number of boundary indica-

tions for each segmentation task and participant group
(Figure 4). The task comparison showed that partici-
pants indicated nearly double the number of boundaries
in the annotation task (x ¼ 11.33, SD¼ 8.06) compared
to the real-time task (x ¼ 5.81, SD ¼ 4.09) for the six
stimuli that were common to both. We computed paired
samples, two-tailed t-tests to determine whether the
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difference between tasks was statistically significant
(H0: mean difference between tasks in the number of
boundary indications by participants is equal to zero).
We found that musicians indicated significantly more
boundaries in the annotation task than in the real-time
task for 5 out of 6 stimuli; the difference was significant
at a ¼ .01 for the stimulus Couperin, t(17) ¼ 3.33, p <
.01, and at a ¼ .05 for the examples Genesis, t(17) ¼
2.32, p < .05, Smetana, t(17) ¼ 2.14, p < .05, Morton,
t(17) ¼ 2.83, p < .05, and Ravel, t(17) ¼ 2.24, p < .05.
However, we did not find a statistically significant dif-
ference between tasks for the example Dvořák, t(17) ¼
1.77, p > .05, since p slightly exceeded .05. The group
comparison showed that nonmusicians indicated more
boundaries (2285) than musicians (2076), but the dif-
ference between groups was not statistically significant
for any of the stimuli.

BOUNDARY STRENGTH RATINGS AND LOCAL BOUNDARY DENSITY

Subsequently, we focused on the possible relationship
betweeen perceived boundary strength and segment
boundary density in order to estimate the external valid-
ity of the main finding by Bruderer (2008). We investi-
gated whether musicians’ ratings of boundary strength in
the annotation task corresponded with the modelled den-
sity from the real-time task. For each considered time
scale, we correlated the perceived boundary strength
values with the real-time task model values at the respec-
tive time points (H0: no correlation between boundary
strength and segmentation density values of boundary
indications); for this analysis we used a version of the
real-time task model that was time-aligned with the
annotation task model (see below). In addition, we
included a time scale of 1.25 s into the KDE matrix for
this analysis, since this value was considered optimal by
Bruderer (2008) for single-scale modelling of boundary
data. We obtained weak mean correlation (around r ¼
.20) across stimuli for all the 17 time scales (Figure 5),
although the stimulus Smetana exhibited moderate cor-
relations —peaking at a time scale of 1.11 s, r(159)¼ .54,
p < .001 — for time scales below 5.5 s, and weak results
above this time scale. We repeated this procedure for the
boundary density in the annotation task to find out
whether the rated strength of a boundary correlated with
its corresponding density value. The overall correlation
between perceived strength values and boundary density
at the respective time points was in this case very low
(around r ¼ .10). In sum, the obtained results suggest
that boundaries perceived as strong were not more likely
to be indicated by participants.
Since these findings contradicted previous research, it

was hypothesized that in the annotation task

participants did not limit their segmentation to signifi-
cant instants of change only, but indicated boundaries at
multiple hierarchical levels instead. The reason for this
would have been that the task induced participants to
modify their segmentation strategies, because partici-
pants were aware from the instructions that they would
have to rate the strength of each boundary after the
segmentation. To test this possibility, we calculated the
distribution of boundary indications into each strength
rating, expecting a large frequency of low strength
annotations. The results (1 ¼ 14%, 2 ¼ 11%, 3 ¼
14%, 4 ¼ 10%, 5 ¼ 15%, 6 ¼ 6%, 7 ¼ 4%, 8 ¼ 8%,
9 ¼ 4%, 10 ¼ 13%) showed indeed a tendency towards
low strength boundary indications, since the strength of
49% of the indications was rated between 1 and 4. This
suggests that participants tended to indicate all possible
boundaries, not only the most significant ones, and thus
might explain why boundary strength ratings did not
correlate with boundary density. Altogether, we could
not find a relationship between boundary strength rat-
ings by participants and boundary density at indicated
instants. Because of this, we left the weighted data out of
most of the subsequent analyses to focus on the effect of
training and task on segmentation.

MEAN INTER-SUBJECT CORRELATION

Next, we examined the degree of cohesion in each seg-
mentation set; to this aim we calculated the mean cor-
relation between subjects within each set and for each
example. For each segmentation set and stimulus we
computed 18 individual multi-scale models, one model
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per participant, and correlated each pair (H0: the mean
inter-subject correlation is equal to the mean of empir-
ical distribution). Figure 6 presents, for each stimulus,
the inter-subject correlation coefficient of each segmen-
tation task and group of participants; high mean inter-
subject correlation coefficients indicate similar segmen-
tations between most or all participant pairs within a set.
Regarding segmentation tasks, the annotation task
yielded higher mean inter-subject correlations than the
real-time task for all 6 stimuli. Apart from two excep-
tions, the addition of boundary strength weights to the
annotation task led to an increase in cohesion, particu-
larly for 3 stimuli for which the mean inter-subject cor-
relation reached over r ¼ .50.
In contrast, the profiles between participant groups

were highly alike; nonmusicians, however, exhibited
lower mean inter-subject correlations than musicians
did for the musical stimulus Ravel. All the reported
mean inter- subject correlations were significant at
a ¼ .001 after the adjustment of p values for multiple
comparisons via a Benjamini-Hochberg correction pro-
cedure (q¼ .05). For each pair of participants and stim-
ulus, p values here indicate the probability of obtaining
the actual results if the boundaries corresponding to one
of the participants had been randomly placed. To obtain
the p values, we performed a Monte Carlo simulation
with 10,000 iterations for each of the stimuli and task: 1)
we produced 18 random segmentations (the number of
boundaries of each segmentation matched the total
number of boundaries marked by each participant); 2)
we obtained 18 multi-scale models, each one based on
a random segmentation; 3) we computed their mean
inter-subject correlation. These steps were repeated
10,000 times to generate a random distribution of mean

inter-subject correlation. Finally, we calculated how
many times this random distribution yielded larger
values than the mean inter-subject correlation obtained
from participants, and divided this result by the length
of the distribution (10,000).

TIME SCALE FOR BEST MODEL FIT TO BOUNDARY INDICATIONS

Subsequently, we focused on which time scales were
optimal for obtaining aggregate segment boundary data
distributions. To this aim, we estimated the level of
smoothing that provided an optimal fit of single-scale
model to the boundary data for each segmentation set
and musical example. For each subject, we obtained the
log-likelihood between each single-scale model and
individual data. To find which level of smoothing would
offer the best fit to the data, for each time scale we
summed the individual estimates together, and subse-
quently selected the time scale with the maximum sum
of log-likelihoods. To avoid overfitting, the estimates
were obtained with a leave-one-out procedure, such that
for each subject we computed a model that did not
include that subject. Figure 7 shows maximum likeli-
hood time scales for each of the 6 stimuli that are com-
mon to all segmentation sets.
Comparing groups, musicians exhibited in average

higher time scales than nonmusicians. We computed
paired samples t-tests to find out whether the maximum
likelihood time scales of musicians and nonmusicians
were significantly different from each other (H0: mean
difference between the maximum likelihood time scales
of nonmusicians and musicians is equal to zero). We did
not find a significant difference between groups for the
first 6 stimuli, t(5) ¼ 1.02, p > .05, nor for all 9 stimuli,
t(8) ¼ 1.79, p > .05. Comparing segmentation tasks, the
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maximum likelihood time scale of each stimulus was
larger in the real-time task than in the annotation task.
A paired samples t-test between tasks was computed to
find out whether their maximum likelihood time scales
differed (H0: mean difference between the maximum
likelihood time scales of real-time and annotation task
is equal to zero). We found a significant difference
between real-time and annotation tasks, t(5) ¼ 3.39,
p < .05; the optimal time scales were hence significantly
larger for the real-time task than for the annotation task.

ALIGNMENT BETWEEN TASKS AND GROUPS

Our next objective was to examine whether different
segmentation models were aligned with each other.
We estimated the delay in the real-time task with respect
to the boundary placements in the annotation task. To
this end, for each musical example we computed a two-
dimensional cross-correlation between the real-time
and annotation task models. We found that the real-
time task was lagged from the annotation task and
a mean optimal time lag between tasks across stimuli
at 1.05 s (SD ¼ 0.15). For subsequent analyses, we
shifted backward the real-time task indications by 1.05
s for all stimuli because the optimal time lag variation
among stimuli was small (from 0.9 s to 1.3 s).
We also investigated whether musicianship had an

effect upon relative lags in the real-time task indications.

We therefore compared musicians and nonmusicians
in the real-time task via the aforementioned cross-
correlation procedure. We found high alignment
between segmentations made by musicians and nonmu-
sicians in this task, as shown in Table 3; the mean align-
ment between groups for each stimulus at a time scale of
1.6 s was 0 s (SD ¼ 0.33). The delays found were min-
imal and did not follow a particular trend, even for
other considered time scales, suggesting no time lag
between groups.
Continuing, we assessed whether the variability of the

optimal time lag among stimuli could be attributed to
rhythmic differences between examples. We extracted
global rhythmic descriptions from the music (beat
length, average note duration, event density, and pulse
clarity, usingMIRToolbox 1.5, see Lartillot & Toiviainen,
2007) and compared these with the optimal time lags of
the stimuli between segmentation tasks (H0: no corre-
lation between rhythmic features and optimal time lag).
We found a significant correlation, r(4) ¼ .87, p < .05,
between optimal time lag and stimulus global beat
length (BL ¼ 60

tempo). This result indicates that real-
time and annotation data are more closely aligned to
each other for stimuli with shorter beat length, and vice
versa. A simple linear regression was done to examine
the impact of beat length on the optimal time lag
between tasks (H0: beat length does not predict optimal
time lag). Beat length significantly predicted optimal
time lag, �1 ¼ .72, t(4) ¼ 3.48, p < .05; �2 ¼ .66, t(4)
¼ 5.5, p < .01. Beat length also explained a significant
proportion of variance in optimal time lag, adjusted R2

¼ .69, F(1, 4) ¼ 12.10, p < .05. The obtained simple
linear regression equation (� ¼ .72 � BL þ .66), and
particularly the nonzero intercept suggests that the lag
in the real-time task can be explained not only by a delay
dependent on beat length, but also by a constant time
lag among stimuli. Figure 8 illustrates the prediction of
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TABLE 3. Optimal Time Lag For Alignment Between Groups

Stimulus Optimal Time Lag (�) Delayed Group

Genesis 0.6 M
Smetana 0 —
Morton 0.2 NM
Ravel 0.4 NM
Couperin 0.2 M
Dvořák 0.2 NM
Piazzolla 0.4 M
Dream Theater 0.2 NM
Stravinsky 0.2 NM
Mean (SD) 0 (0.33) —

Note: KDE time scale ¼ 1.6 s, M ¼ delay by musicians,
NM ¼ delay by nonmusicians.

204 Martı́n Hartmann, Olivier Lartillot, & Petri Toiviainen



optimal alignment between real-time and annotation
segmentations based on beat length. Correlations with
other rhythmic features were not significant, although
correlation directions were as expected; average note
duration: r(4) ¼ .71, p > .05; pulse clarity: r(4) ¼ �.31,
p > .05; event density: r(4) ¼ �.25, p > .05.

SIMILARITY BETWEEN TASKS AND GROUPS

Our following analyses focused on the similarity
between segmentation sets for different participant
groups and tasks; multiple approaches can be imple-
mented to investigate this. One possible way to perform
this analysis involves a detailed exploration of the seg-
mentation profiles for particular excerpts based upon
GTTM or other rules. For instance, Figure 9 illustrates
the location in the score of some of the boundary indi-
cations for the example Morton. This fox-trot piano
piece consists of a 4-bar introduction followed by
a 12-bar blues progression. Differences between the
profiles of musicians and nonmusicians in the real-
time task include a boundary indication from a nonmu-
sician at bar 15 (eleventh bar of the blues progression),
which was probably elicited by the V7-I progression of
the last two beats. Since the motif of bar 14 is repeated in
bar 15, this segmentation is in agreement with GPR 6
(Parallelism), according to which parallel musical seg-
ments should be analyzed as parts of groups, and not as
forming entire groups. This individual-level difference
does not clearly show up from the multi-scale models,
because the proposed approach highlights segmentation

responses at a group level. Interestingly, two musicians
in the real-time task indicated a boundary at the begin-
ning of the triplet in bar 14, perhaps due to boundary
perception evoked by the C9-D9 chord change. In con-
trast, the annotation task exhibits a rather different
multi-scale model and boundary profile, with two dis-
tinct boundary regions. The first region lies around the
second note of bar 14 whereas the second region,
located in bar 16, can be predicted by the parallelism
rule; both boundary regions are in agreement with the
attack-point proximity rule (GPR 2b). The annotation
task profile suggests that boundary indications between
these regions in the real-time task correspond to
delayed responses, at least in the case of musicians.

CORRELATION BETWEEN MULTI-SCALE MODELS

In this study we opted to focus on a similarity analysis at
a global level in search of trends based on whole musical
stimuli. This choice is motivated, among other reasons,
by the fact that real-world polyphonic music is not opti-
mally suitable for rule-based approaches, or at least not
as much as monophonic music in the symbolic domain
is. For each musical stimulus, we compared each pair
of multi-scale models; Figure 10 presents obtained
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correlations between groups, between tasks, and
between alignment strategies (H0: the correlation
between models equals the mean of empirical distribu-
tion). For groups, we found strong correlations between
multi-scale models corresponding to musicians and
nonmusicians. The task comparison also showed mostly
strong correlations between real-time and annotation
tasks by musicians for aligned segmentation models.
For time alignment, the correlations between tasks for
nonaligned models were weaker; the mean correlation
reached r ¼ .58 compared to r ¼ .81 for aligned models.
The reported p values (***p < .001) were drawn from
a Monte Carlo simulation and were later adjusted for
multiple testing using Benjamini-Hochberg correction
(q ¼ 0.05).

CORRELATION BETWEEN SINGLE-SCALE MODELS

We also examined the relationship between groups and
between tasks at each time scale separately to determine
which time scales yielded highest similarity between
models. To this end, for each stimulus and time scale
we computed correlations between participant groups
and between segmentation tasks. A bias in the correla-
tion coefficients caused by the smoothing of boundary
indications was removed by using Monte Carlo simula-
tion (10,000 iterations). We computed a correlation
baseline for each combination of example and time
scale, and then subtracted it from the original correla-
tion. Figure 11 shows the mean and standard deviation
of the debiased correlations across musical examples at

each time scale; the markers correspond to mean opti-
mal time scales across stimuli for comparison between
segmentation models. Figure 11a shows the similarity
between musicians and nonmusicians at each of the 16
time scales that were used for segmentation modelling.
The mean correlation between musicians and nonmu-
sicians in the real-time task ranged from high to mod-
erate, and peaked at a time scale of 1.7 s. Figure 11b
shows the mean debiased correlation between tasks
across stimuli for both nonaligned and aligned analysis.
The exhibited correlations were higher for aligned mod-
els than for nonaligned models, with peaks at time
scales of 1.4 s and 2.5 s, respectively. Comparing Figure
11a and Figure 11b, the correlation between groups was
higher than the correlation between tasks, which yielded
higher dissimilarity for both aligned and nonaligned
models.

LINK BETWEEN OPTIMAL TIME SCALE FOR SET COMPARISON AND

RHYTHMIC FEATURES

Following this analysis, we investigated the possible
relationship between optimal time scales for segmenta-
tion and global rhythmic descriptions of each stimulus.
We calculated the similarity between optimal time scales
found for comparing tasks and four acoustic features.
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For each musical stimulus we estimated pulse clarity
(underlying rhythmic pulsation), event density (average
frequency of events), average note duration (inverse of
event density), and global tempo using MIRToolbox 1.5;
subsequently we correlated the optimal time scales for
task comparison with each feature (H0: no correlation
between optimal time scales for task comparison and
rhythmic features). We obtained strong negative correla-
tions between the optimal time scales for task compari-
son and both pulse clarity, r(4)¼�.83, p < .05, and event
density, r(4) ¼ �.82, p < .05; the left and right plots in
Figure 12 show the inverse link between optimal time
scales and pulse clarity and event density, respectively.
We obtained lower correlations with the other rhythmic
features, namely average note duration, r(4) ¼ .66, p >
.05, and tempo, r(4)¼�.11, p > .05, and these results did
not reach significance.

Discussion

From a methodological viewpoint, this study contri-
butes to state of the art research in boundary perception
on a number of accounts. We introduced a real-time
data collection task in order to analyze spontaneous
boundary indications. Compared to previous work, here
the target stimuli were heard for the first time in the
segmentation step, rather than during previous listening
only conditions or practice trials. Another novel aspect,
which aimed to illuminate the difference between intu-
itive and more conscious boundary indications, was to
thoroughly compare how the examples were segmented

by the same listeners in this task and in an annotation
task that resembles previous data collection methodol-
ogies (Clarke & Krumhansl, 1990; Wiering et al., 2009).
In addition, we expanded previous studies on musician-
ship by collecting spontaneous indications from musi-
cians and nonmusicians using diverse stimuli. Unlike
previous work that included only a small number of
nonprofessional musicians (Bruderer, 2008), we aimed
to reach optimal validity for group comparisons by
using stringent criteria for musicianship.
Another contribution of our study for music segmen-

tation was the implementation of a multi-scale analysis
approach to represent the boundary indications of the
participants as Kernel Density Estimation matrices. In
comparison to the approach used by Bruderer (2008),
we did not need to obtain repeated segmentations of the
same stimulus from each participant to find an optimal
time scale of the segmentation, because multi-scale
modelling allows the estimation of which time scales
offer optimal fit based on a single segmentation trial.
In contrast to previous studies, via this approach we
investigated how optimal time scales for segmentation
and inter-task delays are linked to rhythmic character-
istics of the audio stimuli.

NUMBER OF INDICATIONS

Our analysis of mean number of boundary indications
for each group and task revealed no significant differ-
ences between participant groups (Figure 3). We did not
find a significant effect of music training on the number
of indications per minute for any of the examples. It must
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be noted, however, that nonmusicians indicated in total
9.1% more segments than musicians (which could be
partly attributed to the outliers of Figure 3). Although
the median of participants in Figure 4 showed an oppo-
site trend for the mean number of indications across
stimuli, this result should not be disregarded. For
instance, Bruderer (2008) reported, for a smaller partic-
ipant pool, that musically trained participants indicated
significantly fewer boundaries. Also, following the event
segmentation theory (see Peebles, 2011), it could be that
some nonmusicians have difficulties predicting goals and
intentions in the music, and hence segment into shorter
units. For example, the exposition of the Piazzolla theme
(1:08 - 1:26) is highly ornamented, which camouflages its
symmetry and underlying melodic parallelism (equal
duration and durational values but different note
pitches). Nonmusicians probably failed to integrate
non-neighboring patterns, since they tended to cluster
the ornaments, and divided the theme into more frag-
ments than musicians. In contrast, musicians’ schematic
knowledge might have enabled them to anticipate future
changes and group the melodic line together, instead of
stumbling on local surface discontinuities elicited by
embellishments. However, musicians segmented more
than nonmusicians in Couperin, a stimulus that exhibits
few musical changes other than those prompted by
underlying tonal context. Regarding this, it is possible
that nonmusicians tend to segment into larger units if
they have difficulties discovering changes in the music.
Overall, we did not find effects of musicianship at a global
level of analysis, but some effects may be evidenced via
exploration of specific musical passages.
Regarding the task comparison, we found that musi-

cians indicated more boundaries in the annotation task
than in the real-time task for all 6 stimuli, a trend that
reached significance for most examples; this suggests an
effect of the data collection task upon the number of
boundary indications. We put forward three possible
explanations for these (and other) differences between
segmentation tasks. The first one is that during the exe-
cution of the second task, participants discovered other
plausible boundaries for indication, perhaps due to
familiarity with the underlying musical structure; in this
vein, the number of listeners’ judgments of section ends
has been found to increase throughout progressively
shorter presentations of the same piece (Krumhansl,
1996).
Another possibility is that the annotation task

instructions biased listeners towards frequently indicat-
ing boundaries to be later able to give different ratings of
boundary strength. The salience rating instructions may
have influenced listeners in the annotation task to

annotate as many boundaries as possible and at multiple
time scales, whereas in the real-time task listeners may
have indicated boundaries at a single time scale, perhaps
at a rather large one due to focus on significant changes.
If this was the case, then listeners may not have utilized
the same concept of segmentation across tasks, lowering
the validity of the annotation segmentation data; this
might explain the extreme outliers in the annotation
task (Figure 3). To address this, future segmentation
task instructions should ask participants to indicate
boundary strength ratings only after they have seg-
mented all the stimuli, and they should not be informed
about the salience rating step beforehand.
A third explanation is that the real-time task not only

involves more sustained attention and concentration
than the annotation task, but also hinders segmentation
based on repetition and other retrospective aspects of
segmentation. Some musical events are recognized
a posteriori as instants of significant change due to the
effect of ulterior events; for example, two motives can be
identical except for a local difference (e.g., an alteration)
in the middle of the second motif that, when perceived,
prompts boundary perception between motives. Also,
the use of ornamentation during cadences such as the
trills in Morton (0’25’’) might disguise imminent musi-
cal changes, which become more evident retrospec-
tively; this might partly explain the notable difference
between tasks shown in Figure 3. Future work could
analyze which particular time points of the stimuli
exhibit high contrast in boundary density between tasks
by subtracting segmentation models from one another;
also, initial and final positions of boundaries in the
annotation task can be recorded to explore boundary
replacements.

BOUNDARY STRENGTH AND DENSITY

We next examined the relationship between boundary
strength ratings and boundary density. We investigated
whether model density, which is a local estimate of fre-
quency of boundary indications, correlated with bound-
ary strength ratings. The mean correlation across
stimuli was low for all time scales (Figure 5), although
Smetana exhibited moderate correlations. This suggests
in principle no relationship between rated strength and
frequency of indications, although this could be contin-
gent on the stimuli.
We calculated the distribution of boundary indications

into boundary strength ratings under the hypothesis that
the annotation task instructions indirectly induced par-
ticipants to indicate all possible boundaries so that these
could be assigned different strength ratings. We found
that about half of the indicated boundaries were given
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relatively low strength ratings, which suggests that the
correlation between strength ratings and density is low
because participants indicated both highly significant
boundaries and less salient ones. This result may also
explain why participants indicated twice as many bound-
aries in the annotation task than in the real-time task.
Since the annotation task seemed to include addi-

tional ‘‘weak’’ boundaries compared to the real-time
task, we investigated whether subjects agreed more
about the location of boundaries rated as strong than
about those rated as weak. We then correlated strength
ratings in the annotation task with boundary density in
the same task at the respective time points. We obtained
a lower correlation than for the comparison between
strength in the annotation task and density in the
real-time task. This suggests that boundary strength
informs more about the frequency of boundary indica-
tions for strong boundaries than for weak boundaries,
and that participants agreed more about the location of
boundaries rated as strong than about boundaries rated
as weak. We remark that a visual comparison of the
segmentation models suggested that all the boundaries
with high density in the annotation task with added
weights also showed high density in the real-time task;
future studies should restrict the annotation task model
to boundaries with the highest strength ratings to find
out whether this creates an increase in the correlation
between tasks.
According to our findings, the relative frequency of

boundary indications does not predict the boundary
strength ratings. Bruderer (2008) compared frequency
of indications for a subset of boundaries within a win-
dow of 1.25 s with mean ratings of boundary salience. In
contrast to our findings, Bruderer did find moderately
high to high correlations across diverse musical stimuli,
but our analysis is not identical. Bruderer restricted the
analysis to a subset of boundary peaks with different
indication frequencies, whereas we analyzed complete
boundary data. In addition, we did not choose bound-
ary indications via analysis windows but picked density
values corresponding to each boundary. Also, most of
the stimuli utilized by Bruderer (2008) were popular
music with lyrics; this could have induced a relatively
high agreement regarding boundary strength ratings,
and could partly explain why we found difficulties in
replicating his finding with instrumental and more var-
ied musical stimuli. Overall, it is possible that partici-
pants were biased by the task instructions or that they
had difficulties in assigning relative weights to bound-
aries. Alternatively, it could be that the frequency of
indications does not inform about boundary strength:
a stark drum pattern change should be indicated by

multiple participants, but in order to be rated as strong
it may need to be accompanied by silences, modal
change, changes of instrumentation, musical novelty,
or other aspects evoking boundary perception. Also,
boundaries prompted by diminished triads or musical
quotation may be indicated by few participants but still
be rated as strong.

INTER-SUBJECT CORRELATION

We next compared the relationship between subjects for
different groups and tasks via the correlation of pairs of
individual segmentation models. Regarding tasks, we
found the annotation task to exhibit higher mean
inter-subject correlation than the real-time task (Figure
6). This suggests an effect of task on inter-subject cor-
relation: in the real-time task, probably participants
could not anticipate some boundaries and missed indi-
cating them if the stimuli were relatively unpredictable
(unlike Smetana, which exhibited similar inter-subject
correlation across tasks). We also observed an improve-
ment of the inter-subject correlation for the annotation
task with added weights for Smetana, Dvořák, and Gen-
esis. This suggests that for these stimuli listeners
assigned similar strength ratings (or gave weak strength
ratings to boundaries that others did not indicate). In
contrast, a more ‘ambiguous’ stimulus (Couperin)
exhibited an opposite trend: inter-subject correlation
dropped for the model with added strength.
Comparing groups, both musicians and nonmusi-

cians exhibited very similar mean inter-subject correla-
tion. This result, in line with previous findings
(Bruderer, 2008), suggests that musicianship may not
have an effect on inter-subject correlation. It should
be noted, however, that the relatively complex stimulus
Ravel exhibited relatively higher inter-subject correla-
tion for musicians. An exploration of the multi-scale
models for a subtle tonal change that is induced by rapid
arpeggios (1’ 34’’, Un peu marqué) shows differences
between groups. The boundary density corresponding
to this change is relatively higher for musicians than for
nonmusicians, suggesting higher consensus between
musicians. Hence, no effects of musicianship were
found but further qualitative analyses are required to
observe possible effects when focusing on particular
musical motives.
Overall, for both groups and tasks, we found low

mean inter-subject correlations and great variability of
the obtained coefficients. In principle, this suggests that
participants were attending to different features (such as
change in timbre or tonality) or to different hierarchical
levels of segmentation; however, the approach used is
sensitive to small timing variations between profiles.
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This is because, unlike multi-scale models across parti-
cipants, individual multi-scale models involve high den-
sity peaks of relatively short time spans. Because of this,
small differences in the perceptual delay of participants
can have a considerable effect on their inter-subject
correlation; hence, participants who exhibited very high
inter-subject correlation did not only segment the same
musical changes, but were also highly synchronized
with each other. In any case, future studies should fur-
ther examine variance in inter-subject correlation and
in number of boundary indications, considering that
different participants may pay attention to different
hierarchical levels (suggested by Bruderer, McKinney,
& Kohlrausch, 2006), musical features, interactions of
features, or top-down structural aspects (similarity,
symmetry, and so forth). For instance, participants
could be clustered into subgroups to explore the validity
of grouping them based on i.e., musicianship or
instrument.

TIME SCALE FOR BEST MODEL FIT TO INDICATIONS

We next estimated an optimal time scale for each exam-
ple and set for modelling boundary data across partici-
pants; these optimal time scales correspond to the
segmentation models that obtained the best fit to parti-
cipants’ boundary indications. The group comparisons
for the real-time task (Figure 7) showed higher mean
optimal time scales for musicians, although we did not
find significant differences. The result is difficult to
interpret since two stimuli exhibited opposite trends,
but it could be that for most stimuli musicians focused
on higher levels of the hierarchical grouping structure
(such as changes of key, and of rhythmic and metrical
patterns), or that they were less isochronous in their
indications. The results were clearer for the task com-
parison, since we found larger optimal segmentation
time scales for the real-time task and this difference was
significant. This suggests that participants segmented at
multiple levels of grouping or at relatively lower levels in
the annotation task compared to the real- time task. We
highlight, however, two outliers that exhibited a similar
pattern across segmentation sets: the optimal time scale
for Genesis was the largest for all segmentation sets,
whereas Morton exhibited relatively low time scales for
all sets. The music of Genesis combines multiple exper-
imental sounds and effects within relatively long, homo-
geneous melodic-harmonic sections, and in this respect
a segmentation at large time scales would be expected.
Conversely, shorter time scales for Morton could be
explained by ambiguity in harmonic progression, which
has been found to decrease feeling of completion
(Cuddy, Cohen, & Mewhort, 1981) and hence might

induce boundary perception due to expectancy
violation.

ALIGNMENT BETWEEN TASKS AND GROUPS

We investigated the degree of alignment between real-
time and annotation task segmentation; this possible lag
in the real-time task compared to the annotation task is
evidenced in Figure 2, which shows that the models are
not perfectly aligned. We found that the indications
obtained from the task were delayed, and a mean opti-
mal time lag across stimuli at 1.05 s for alignment of
real-time and annotation tasks. In other words, it took
participants an average of 1.05 s in the real-time task to
recognize perceived boundaries and respond to these by
pressing a key on the computer, suggesting that in this
task they were usually unable or did not intend to antic-
ipate upcoming musical changes.
Another goal was to find out whether the optimal

time lag between tasks was dependent on temporal
characteristics of the stimuli. Our results showed that
global beat length (and, equivalently, global tempo) of
the stimuli can predict the dispersion of the optimal
time lag (Figure 8). This means that faster stimuli with
shorter beat length would yield higher alignment
between real-time and annotation task segmentation,
and vice versa. In addition to the regression coefficient
from which we derived this interpretation, the regres-
sion equation included a nonzero constant term, in
other words a stimulus invariant time lag. This suggests
that boundary indications in the real-time task are
delayed at least by a number of beats (stimulus depen-
dent) plus a constant time lag (stimulus independent).
A plausible interpretation of the regression equation
(� ¼ .72 � BL þ .66) is that the real-time segmentation
lag might stem from a recognition delay of around 3=4 of
a beat and a response delay of about 2=3 of a second:
listeners possibly required less than a beat (between
0.4 s and 0.9 s depending on stimulus) to pass in order
to recognize a perceived change as significant, and over
half a second to respond to the change by indicating
a boundary. Future work should compare the time lag
between tasks for different portions of the stimuli to
find out if the lag is reduced as engagement with the
stimulus increases during real-time segmentation.
We also analyzed the level of alignment between

musicians’ and nonmusicians’ segmentation models.
We expected nonmusicians to be delayed compared to
musicians, due to the effects of music training in audi-
tory working memory. For example, musicians seem to
be faster in capturing the statistical structure of per-
ceived streams (François, Jaillet, Takerkart, & Schön,
2014) and exhibit larger auditory memory spans
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(Tierney et al., 2008) than nonmusicians. However, we
found the overall lag between musicians and nonmusi-
cians to be practically zero, and focusing on the lag for
each stimulus did not show a trend towards any partic-
ular group. These results suggest that music training has
no effect upon indication time lag, as the negligible lags
reported in Table 3 could be attributed to noise. This
should, however, be explored in future studies including
more varied stimuli such as highly predictable pop bal-
lads and contemporary classical music with unexpected
changes, and also assessing whether the delay increases in
the initial stimuli sections but progressively decreases.

SIMILARITY BETWEEN TASKS AND GROUPS

Correlation between multi-scale models. We examined
the relationship between groups, tasks, and alignment
strategies by computing correlations based on the multi-
scale models of the collected boundary data. It was
found (Figure 10) that boundary data from musicians
and nonmusicians yielded very similar multi-scale
models for all stimuli. This result suggests that music
training did not have an effect on the real-time multi-
scale segmentation models, and that musicians and
nonmusicians indicated similar structural descriptions,
at least at a general level.
Regarding tasks, we observed for the aligned multi-

scale models that musicians segmented very similarly in
both real-time and annotation tasks. This suggests that
if both tasks are time-aligned, the effect of segmentation
task is not that evident. We also observed that the cor-
relations were overall lower for the aligned task com-
parison than for the group comparison. Possible
dissimilarity factors in the annotation task include the
chance to indicate perceivable boundaries retrospec-
tively, reduce perceptual delays via reposition of bound-
aries, and also the task instruction requirement to rate
perceived strength, which could have led to the afore-
mentioned bias. Another finding regarding the effect of
alignment strategy was that the similarity between tasks
was notably lower for nonaligned models; this suggests
that alignment is needed for comparisons between real-
time and annotation tasks in order to compensate for
the latency of participants in the real-time task.

Correlation between single-scale models. We further
investigated mean similarity between segmentation
models at each time scale. As shown in Figure 11, the
optimal time scale for comparison between tasks was
larger for the nonaligned models (2.5 s) than for the
group comparison (1.7 s). In other words, relatively
large time scales are optimal for comparison between
tasks, whereas smaller segmentation time scales yield

dissimilarity between tasks, which is probably due to
recognition delay and retrospectively perceivable
boundaries. Also, we found that the peak correlations
were higher for the group comparison than for both
aligned and nonaligned task comparisons. This means
that the similarity between participant groups was
higher than the similarity between tasks, which suggests
effects of segmentation task but no effects of group. In
addition, we obtained mean optimal time scales across
stimuli for group comparison and aligned task compar-
ison at 1.4 s and 1.7 s respectively. These rather low
optimal time scales suggest that both participant groups
focused on chord, dynamics, pulse, and other relatively
frequent changes rather than key or melodic bound-
aries. Also, these mean time scales are possibly indica-
tive of the relative variance between subjects regarding
the indication of single boundaries; for instance, indica-
tions within a 1.7 s span may relate to the same bound-
ary, whereas those that are further apart might
correspond to different perceived boundaries.

Optimal time scale for set comparison and rhythmic fea-
tures. We additionally investigated whether there was
a relationship between optimal time scales for task com-
parison and musical rhythm descriptors. We found
moderate to strong links between the optimal time
scales of the stimuli and three descriptors: pulse clarity,
event density, and average note duration. Our results
suggest that the time scale for comparison between seg-
mentation tasks can be measured in terms of rhythmic
clarity, event density, or average note duration rather
than in seconds: short time scales are optimal to com-
pare segmentations for music, characterized by a clear
pulse and a relatively large number of short note events.
It can be further argued that music with high global
pulse clarity and event density facilitates forecast of
boundaries because large interonset intervals and long
rests (common cues for melodic segmentation) may
appear more contrasting. Future work could test this
possibility by estimating whether pulse clarity and event
density predict segmentation model entropy, although
other structural features such as loudness, instrumenta-
tion, cadences, and tonal closure might play a more
prominent role.
Finally, we investigated a possible link between musi-

cal tempo and optimal time scale for comparison
between tasks. It was expected that music with fast
tempo would exhibit short optimal time scales for task
comparison, and vice versa. We found only a weak neg-
ative correlation between optimal time scales and global
tempo, although the direction of the relationship was
according to our expectation and in line with findings
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suggesting general increase of asynchrony with lower
metronome tempo in finger tapping tasks (Repp & Su,
2013).

General Discussion

Regarding the first hypothesis of the study, our findings
did not provide support for an effect of music training
on musical segmentation. Musicians exhibited very high
model alignment with nonmusicians, which is inconsis-
tent with our prediction that nonmusicians would be
delayed compared to musicians and also with findings
suggesting differences in auditory memory spans
between groups (Tierney et al., 2008). Another unex-
pected result was the similar inter-subject correlation
for both groups; musicians did not exhibit higher con-
sensus than nonmusicians, hence musicians’ schematic
knowledge may not increase group homogeneity
regarding segmentation. Furthermore, multi-scale
model similarity analyses showed very strong resem-
blance between musicians and nonmusicians in the
real-time task, suggesting a relatively similar pattern
of segmentation responses between groups. We also
found that musicians and nonmusicians’ time scales for
optimal model-to-data fit were similar, which, unlike
our expectation, suggests that both groups segmented
at similar time scales. Moreover and also contrary to our
expectations, we did not find a significant difference
between groups in the number of boundary indications,
although nonmusicians indicated more boundaries than
musicians in the real-time task. This suggests no effect
of musicianship on number of boundaries, although
future studies should investigate in what musical con-
texts nonmusicians segment more often than musicians,
and the contribution of expectation violation to this
phenomenon.
In sum, we could not find sufficient evidence to reject

the null hypothesis (no difference between segmenta-
tion from musicians and nonmusicians); hence, only
limited implications can be derived from these findings.
Perhaps musical boundary data analysis in the context
of real-time segmentation does not reveal effects of
music training despite having different representations
of musical structure; it could also be that effects of
musicianship can be only identified for shorter musical
passages; alternatively, music training may not modu-
late musical structure representations. The first possi-
bility assumes that differences due to musicianship only
become apparent in implicit segmentation scenarios
(Bigand & Poulin-Charronnat, 2006). The second alter-
native is supported by findings indicating group effects
in melodic segmentation of short tunes (Peretz, 1989).

On the other hand, the third possibility implies that
structure boundary perception is independent of instru-
ment skills and of cognitive loads associated with inten-
sive training. We remark, however, that nonmusicians
indicated more boundaries than musicians; future stud-
ies should gain further understanding on the additional
boundaries indicated by nonmusicians via analysis of
boundary taxonomies. Related to this, musicians tended
to exhibit overall larger optimal time scales for data
modelling; this finding requires future investigation
since it suggests that musicians could pay attention to
higher-level musical features.
In line with our second hypothesis, we did find effects

of experimental task on perceptual segmentation. As
expected, the real-time task set was delayed with respect
to the annotation task. This finding suggests that during
real-time segmentation listeners did not segment impul-
sively but ensured themselves that their predictions
were correct before indicating a boundary. Related to
this finding, rhythmic characteristics (global beat
length) of the stimuli had an effect on the magnitude
of the real-time task lag. This suggests that the latency of
participants’ responses in the real-time task consists of
a recognition delay dependent on stimulus beat length,
plus a constant response delay. We also found that lis-
teners’ segmentations were more similar to each other
in the annotation task than in the real-time task. This
suggests that they indicated boundaries less isochro-
nously in the real-time task, because some boundaries
could only be retrospectively perceived, or because of
individual differences in perceptual delay. Moreover,
listeners indicated significantly more boundaries in the
annotation task than in the real-time task. This is
a highly expected result since the annotation task offers
more time to determine boundaries in finer detail, but
also suggests that listeners focused not only on a single
and large time scale, but also on other time scales of the
segmentation, providing support to the aforementioned
GTTM postulate (Lerdahl & Jackendoff, 1983). We also
found that the alignment of real-time and annotation
task models notably increased the correlation between
them. This suggests that the real-time task lag made
a major contribution to the task effect; further studies
should consider other segmentation alignment strate-
gies as well. In addition, single-scale model analyses
showed that relatively long time scales (2.5 s) were opti-
mal for comparison between segmentation tasks. This
result suggests that time scales below 2.5 s are not
smooth enough for task comparison, probably due to
response delays in the real-time task and retrospective
aspects of segmentation. Furthermore, we found that
the time scale for optimal fit of the single-scale models
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to the data was shorter in the annotation task than in the
real-time task. This suggests that boundaries tend to be
indicated in the real-time task within a larger time span,
following simultaneous change of multiple musical fea-
tures. In contrast, the annotation task may prompt clus-
tering patterns at different hierarchical levels. A related
issue, for which we could not replicate previous findings
(Bruderer, 2008), was the relationship between per-
ceived strength in the annotation task and the density
of the real-time task segmentation model at the respec-
tive time points. Since we failed to find a link between
these two, the frequency of indications of a boundary
may not necessarily inform about its mean salience rat-
ing, but about acoustic or contextual aspects of segmen-
tation. However, our results elicited questions about
a possible bias due to the annotation task instructions,
which might at least partly explain differences between
tasks and require further investigation. Overall, among
the main contributors to the effect of task we could find
the real-time task lag and the differences in number of
boundary indications. The lag depends to some extent
on rhythmic characteristics of the stimuli, whereas the
differences in number of boundaries are due to the
impossibility to indicate boundaries retrospectively in
the real- time task, and possibly to the strength rating
task, which encouraged over-segmentation.
Regarding optimal segmentation time scales for task

comparison, we found, in accordance with our third
hypothesis, a dependence on global rhythmic pulsation,
on amount of events, and on duration of events. This
suggests that the time scale for modelling perceptual
segmentation could be measured in terms of these
rhythmic characteristics rather than in seconds; for
instance, segmentation of music with unclear pulse and
few note events of usually long duration requires to be
modelled at large time scales. Noteworthy, rhythmic
features extracted from the audio stimuli can be used
to systematically predict aspects of segmentation from
participants, as evidenced by analyses on optimal time
scale and task alignment. Further work on alternatives
to fixed time scales such as variable density estimation
methods could gain new insights regarding this issue,
because rhythmic features are not static but dynamic.

CONSIDERATIONS FOR FUTURE RESEARCH

An assessment of the validity of our findings should
note that these are restricted to segmentation based
on musical contrast, and to the assumption that signif-
icant musical changes prompt perception of structural
boundaries. Future work could compare our operational
definition of musical boundaries (significant instants
of change in the music) with more complex definitions

including metaphors (‘‘landmark points while taking
a walk in an unfamiliar forest,’’ Deliège et al., 1996; ‘‘listen
to the music as if it was a story and mark its punctua-
tion,’’ Koniari et al., 2001; ‘‘tell how strong the punctua-
tion was,’’ Deliège, 2007) and musicological terms (‘‘press
space-bar when you hear a segment boundary [phrase,
section, passage],’’ Bruderer et al., 2006); the effect of
a given definition on the resulting boundary profiles
should be analyzed. In addition, work on implicit tasks
related with segmentation (see Peretz, 1989) could pro-
vide insights on retrospective, memory, repetition-based,
and other top-down processes that underlie explicit seg-
mentation. For example, we should further examine
whether perception of short musical material should suf-
fice to prompt higher-level groupings of longer material
(see cue-abstraction theory, Deliège et al., 1996).
Further segmentation studies should overcome meth-

odological issues concerning the validity of the partici-
pant sample by including an established questionnaire,
such as the Goldsmith’s Musical Sophistication Index
(Gold-MSI, see Müllensiefen, Gingras, Musil, & Stewart,
2014), which has been recently used for assessments in
musicianship studies (Carey et al., 2015; Schaal, Banissy,
& Lange, 2015). This can be helpful not only for com-
paring research findings but also for improving recruit-
ment and classification: Gold-MSI takes into account
that training may not determine musical abilities such
as perception of form (Bigand & Poulin-Charronnat,
2006; Lalitte & Bigand, 2006), and also that some musi-
cal skills do not result from formal music training
(Müllensiefen et al., 2014). It is also recommended for
future studies to employ full factorial designs to inves-
tigate effects of musicianship and experimental task.
Collecting segmentation data by nonmusicians in the
annotation task would enhance our understanding of
commonalities and differences between groups and
tasks. Although our sample of nonmusicians reported
having no experience in audio editing software, it is very
likely that they could have completed the task without
problems. Many youth and adults possess the editing
skills required for structural annotation tasks as it is
common to record and edit videos for web sharing and
social networking. Also regarding the effect of musi-
cianship on segmentation, many confounding variables,
including level of attention, current state of participants,
and aspects of musical structure could have contributed
to our negative results. In our view, replication with
other participant samples and more musical stimuli is
required to understand whether these findings are gen-
eralizable to other scenarios. It is possible that local
group differences did not show up in the reported global
results; for instance, it could be that specific musical
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passages may show interesting group differences with
respect to accordance with grouping preference rules or
indication delays. These and other results remain to be
approached at a finer scale to allow for more musically
interesting insights; also, new experiments should be
devised to understand the role of specific local Gestalt
rules and other factors upon segmentation of a rich real-
world dataset. Another issue that deserves further study
is why the correlations between groups in both single-
scale and multi-scale similarity analyses are not higher;
as illustrated above, small dissimilarities between mod-
els from musicians and nonmusicians might derive
from systematic differences between groups with
respect to particular aspects of segmentation such as
parallelism, instead of from data noise.
Future studies are needed to also clarify the role of

experimental task on segmentation, since methodological
issues could have hampered our results. Contrary to the
annotation task, in the real-time task listeners did not
hear the music before responding, they could not amend
their responses after segmentation, and they were not
asked to rate boundary strength. Future studies should
compare different versions of the real-time task that vary
only in one way to understand the contribution of dif-
ferent factors. For instance, four real-time segmentation
versions could be compared: 1) real-time segmentation,
2) familiarization with stimulus followed by real-time
segmentation, 3) real-time segmentation and subsequent
boundary reposition, and 4) real-time segmentation fol-
lowed by boundary strength indication.
New perceptual segmentation modelling approaches

should be developed to clarify the interpretation of our

results regarding optimal segmentation time scales and
contribution of musical features. Our multi-scale mod-
elling method yields ambiguous results, because small
optimal time scales for segmentation may indicate any
or both of these propositions: 1) participants pay atten-
tion to low hierarchical levels of the musical structure,
2) participants are isochronous in their indications. It is
difficult to know whether participants pay attention to
low grouping levels (e.g., segmenting each note), or
exhibit little timing dispersion in their indications; also
both cases could also be correct. Further research
should also focus on which specific rhythmic, metrical,
and grouping structure rules are emphasized via our
modelling approach. Finally, systematic time series
comparisons between different musical features and
perceptual segmentation models could provide thought-
ful insights upon description cues involved in segmen-
tation for different tasks and groups.
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Appendix

Musical Stimuli - List of Abbreviations

Genesis Banks, T., Collins, P. & Rutherford, M. (1986).
The Brazilian. [Recorded by Genesis]. On Invisible
Touch [CD]. Virgin Records. (1986)

Spotify link: http://open.spotify.com/track/7s4hAEJup
ZLpJEaOel5SwV

Excerpt: 01:10.200-02:58.143.

Smetana Smetana, B. (1875). Aus Böhmens Hain und
Flur. [Recorded by Gewandhausorchester Leipzig -
Václav Neumann]. On Smetana: Mein Vaterland
[CD]. BC - Eterna Collection. (2002)

Spotify link: http://open.spotify.com/track/2115JFwiN
vHxB6mJPkVtbp

Excerpt: 04:06.137-06:02.419.

MortonMorton, F. (1915). Original Jelly Roll Blues. On
The Piano Rolls [CD]. Nonesuch Records. (1997)
Spotify link: http://open.spotify.com/track/6XtCier
LPd6qg9QLcbmj61

Excerpt: 0-02:00.104.

Ravel Ravel, M. (1901). Jeux d’Eau. [Recorded by Mar-
tha Argerich]. On Martha Argerich, The Collection,
Vol. 1: The Solo Recordings [CD]. Deutsche Grammo-
phon. (2008)

Spotify link: http://open.spotify.com/track/27oSfz8D
KHs66IM12zejKf

Excerpt: 03:27.449-05:21.884

Couperin Couperin, F. (1717). Douzième Ordre / VIII.
L’Atalante. [Recorded by Claudio Colombo]. On Fra-
nçois Couperin: Les 27 Ordres pour piano, vol. 3
(Ordres 10-17) [CD]. Claudio Colombo. (2011)

Spotify link: http://open.spotify.com/track/6wJyTK8SJA
mtqhcRnaIpKr

Excerpt: 0-02:00

Dvořák Dvořák, A. (1878). Slavonic Dances, Op. 46 /
Slavonic Dance No. 4 in F Major. [Recorded by Phil-
harmonia Orchestra - Sir Andrew Davis]. On Andrew
Davis Conducts Dvořák [CD]. Sony Music. (2012)

Spotify link: http://open.spotify.com/track/5xna3brB1
AqGW7zEuoYks4

Excerpt: 00:57.964-03:23.145
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Piazzolla Piazzolla, A. (1959). Adiós Nonino. [Recorded
by Astor Piazzolla y su Sexteto]. On The Lausanne
Concert [CD]. BMG Music. (1993)

Spotify link: http://open.spotify.com/track/6X5Szblo
yesrQQb3Ht4Ojx

Excerpt: 0-08:07.968
Used for Experiment 1 only. Presented to participants as
four musical examples: 0-02:00, 01:57-03.57, 03:54-
05:54, 05:51-08:07.968

Dream Theater Petrucci, J., Myung, J., Rudess, J. &
Portnoy, M. (2003). Stream of Consciousness (instru-
mental). [Recorded by Dream The- ater]. On Train of
Thought [CD]. Elektra Records. (2003)

Spotify link: http://open.spotify.com/track/3TG1GHK8
2boR3aUDEpZA5f

Excerpt: 0-07:50.979

Used for Experiment 1 only. Presented to participants as
four musical examples: 0-02:00, 01:57-03.57, 03:54-
05:54, 05:51-07:50.979

Stravinsky Stravinsky, I. (1947). The Rite of Spring
(revised version for Orchestra) Part I: The Adoration
of The Earth (Introduction, The Augurs of Spring:
Dances of the Young Girls, Ritual of Abduction).
[Recorded by Orchestra of the Kirov Opera, St.
Petersburg - Valery Gergiev]. On Stravinsky: The
Rite of Spring / Scriabin: The Poem of Ecstasy [CD].
Philips. (2001)

Spotify link: http://open.spotify.com/album/22LYJ9
orjaJOPi8xl4ZQSq (first three tracks) Excerpts:
00:05-03:23, 0-03:12, 0-01:16 - total duration:
07:47.243.

Used for Experiment 1 only. Presented to participants as
four musical examples: 00:05-02:05, 02:02-04:02,
03:59-05:59, 05:56-07:52.243
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Abstract

As music unfolds in time, structure is recognised and under-
stood by listeners, regardless of their level of musical exper-
tise.Anumber of studies have found spectral and tonal changes
to quite successfully model boundaries between structural
sections. However, the effects of musical expertise and expe-
rimental task on computational modelling of structure are not
yet well understood. These issues need to be addressed to
better understand how listeners perceive the structure of music
and to improve automatic segmentation algorithms. In this
study, computational prediction of segmentation by listeners
was investigated for six musical stimuli via a real-time task
and an annotation (non real-time) task. The proposed approach
involved computation of novelty curve interaction features
and a prediction model of perceptual segmentation boundary
density. We found that, compared to non-musicians’, musi-
cians’ segmentation yielded lower prediction rates, and invo-
lved more features for prediction, particularly more interac-
tion features; also non-musicians required a larger time shift
for optimal segmentation modelling. Prediction of the anno-
tation task exhibited higher rates, and involved more musical
features than for the real-time task; in addition, the real-time
task required time shifting of the segmentation data for its
optimal modelling. We also found that annotation task models
that were weighted according to boundary strength ratings
exhibited improvements in segmentation prediction rates and
involved more interaction features. In sum, musical training
and experimental task seem to have an impact on prediction
rates and on musical features involved in novelty-based seg-
mentation models. Musical training is associated with higher
presence of schematic knowledge, attention to more dimen-
sions of musical change and more levels of the structural
hierarchy, and higher speed of musical structure processing.
Real-time segmentation is linked with higher response delays,

less levels of structural hierarchy attended and higher data
noisiness than annotation segmentation. In addition, bound-
ary strength weighting of density was associated with more
emphasis given to stark musical changes and to clearer repre-
sentation of a hierarchy involving high-dimensional musical
changes.

Keywords: segmentation density, novelty detection, musical
training, segmentation task, boundary strength

1. Introduction

Humans possess the ability to perceptually parse ongoing
streams into discrete events. This perceptual operation, which
is called segmentation, makes it possible to understand activ-
ities that involve sound and movement, just like it is possible,
in a messy room, to recognise each of its objects (Zacks &
Swallow, 2007). It has central importance, for instance, in
the area of speech perception, as it is needed for language
acquisition: infants exploit different speech segmentation cues
to identify words in sequences of syllables and to recognise
larger groupings such as clauses (Johnson & Jusczyk, 2007;
Seidl, 2014). Similar but specialised psychological processes
may apply to music listening, since musical events that share-
related characteristics or high temporal proximity are often
grouped into sequences, even in passive listening contexts.
This temporal psychological process of integrating musical
events into larger units, which has been proposed to be uni-
versal (Drake & Bertrand, 2001), can be inversely formulated:
listeners segment long musical streams when they perceive
changes and repetitions. Musical feature change is a common
cue for segmentation: listeners indicate segment boundaries
if they easily perceive that there is a contrast, such as a stark
change in dynamics or instrumentation. Multiple strategies are
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exploited by composers (Deliège, 2001), improvisers (Dean,
Bailes, & Drummond, 2014) and performers (Poli, Rodà, &
Vidolin, 2007) to induce perception of musical changes, and
communicate musical structure to the listener. This paper foc-
uses, however, on musical listeners only, and on a particular
conception of segmentation. We refer to segmentation in its
broad sense, as we understand perceptual segment boundaries
as significant instants of musical change; implications of this
choice are discussed further.

Listeners often indicate long notes and rests as segment
boundaries during segmentation of songs (Bruderer, 2008);
generally, temporal patterns upon which phrase and metri-
cal units emerge have been deemed a crucial factor in the
perception of musical structure (see Dawe, Plait, & Racine,
1994). Also melodic and harmonic changes, including pitch
jumps, changes in register, and especially chord changes and
modulations have been regarded to influence segmentation
decisions. Tonality largely contributes to perceived musical
structure, because unimportant events in a tonal hierarchy
generate expectations of musical relaxation that are often con-
firmed when more important events evoke resolution (Bigand,
Parncutt, & Lerdahl, 1996). Both metrical structure position
and tonal hierarchy are considered to define the relative impor-
tance of certain musical events with respect to others within a
given time span (Lerdahl & Jackendoff, 1983), and may have
an impact on one another: musicians tend to infer metrical
structure on the basis of chord changes when note duration
and harmony imply different meters (Dawe et al., 1994). In
this sense, boundary perception results from an intertwined
mix of musical feature changes and it can be challenging to
disentangle the contribution of different aspects of segmenta-
tion, especially for real-world music.

Music information retrieval (MIR) studies have proposed
a variety of automatic segmentation algorithms with a focus
on evaluating model performance against ground truth data
using accuracy measures such as precision, recall and
F-measure (for instanceAljanaki,Wiering, &Veltkamp, 2015);
few studies in this area (e.g. Jensen, 2007) have systematically
assessed the relevance of different musical features for seg-
mentation. In most cases, automatic segmentation of music in
audio format is done via novelty detection (Foote, 1997, 1999,
2000) approaches, which roughly consist in the extraction of
frame-decomposed musical features and the computation of
novelty curves. These curves describe, for each time point, the
amount of dissimilarity between a certain number of feature
frames before and after that point. For instance, points in the
music that are characterised by tonal change would show high
novelty for the tonal features.

The potential of combining different acoustic features for
segmentation and structural analysis has been mentioned in
MIR studies (Turnbull, Lanckriet, Pampalk, & Goto, 2007;
Paulus & Klapuri, 2009). Few novelty-based studies (Paulus
& Klapuri, 2009; Eronen, 2007; Peeters, 2007) have yielded
enhanced automatic structural analyses via the summation of
spectral and chroma features; this operation can be considered
as a logical disjunction (OR), because changes of either or

both spectral and chroma features would result in novelty
peaks. To our knowledge, no studies in this area have imple-
mented logical conjuction (AND) operations, which would
yield novelty peaks only after concurrent change of both fea-
tures. For example, an interaction feature resulting from a
spectral novelty curve and a chroma novelty curve would not
register a given spectral change unless it was accompanied
by a simultaneous chroma change, and vice versa. From a
computational perspective, such a novelty feature interaction
approach seems appropriate because it can reduce the effect of
spurious novelty peaks derived from high feature sensitivity;
it may also be relevant from a perceptual viewpoint, since lis-
teners probably pay most attention to changes that are evoked
by more than one musical dimension (see Smith, Schankler,
& Chew, 2014).

For evaluation purposes, novelty peaks are compared to
the ground truth data, which often involve a set of isolated
time points; MIR studies on this area are typically based
on a large number of stimuli, so ground truth segmentation
data is obtained from at most few annotators (e.g. Smith,
Burgoyne, Fujinaga, De Roure, & Downie, 2011). In con-
trast to MIR ground truth data, studies focusing on listeners’
perception of boundaries often collect data from many par-
ticipants and aggregate their boundary indications (Deliège,
1987; Krumhansl, 1996; Frankland & Cohen, 2004). To max-
imise estimation accuracy, recent studies (Bruderer, 2008;
Burunat, Alluri, Toiviainen, Numminen, & Brattico, 2014;
Hartmann, Lartillot, & Toiviainen, forthcoming-b) have used
kernel density estimation (KDE) (Silverman, 1986), a method
that generates a smooth probability density estimate of the
data via a Gaussian or other kernel function. This proce-
dure is comparable to drawing a histogram, where each bin
would aggregate listeners’responses within a temporal region;
roughly, KDE is like a histogram that is smoothed into a
curve. This approach yields more accurate representations of
segmentation and allows to perform group comparisons, for
instance between musicians and non-musicians.

Musical experience seems to have an impact on listeners’
focus of attention during music listening and on their represen-
tation of structure. Non-musicians are often considered to pay
more attention to aspects related to the musical surface; they
often tap with the fastest pulse during finger tapping tasks
(Martens, 2011), and tend to place more boundary indica-
tions than musicians in segmentation studies (Hartmann et al.,
forthcoming-b; Bruderer, 2008; Deliège, 1987), suggesting
that non-musicians focus more on changes in timbre, fast
rhythmic layers, and pitch jumps. Most research has found
that non-musicians focus less on harmonic functions than
musicians, for instance in a task that consisted in rearrang-
ing musical segments, non-musicians paid more attention to
rhythmic and metric aspects than to tonality (Deliège, Mélen,
Stammers, & Cross, 1996). Moreover, a rhythm identification
study showed that musicians’ perception of rhythmic pat-
terns for temporal sequences with harmonic accompaniment
was more influenced by location of chord changes than non-
musicians’, whose answers were less consistent, and biased
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towards responses that fitted the inferred meter (Dawe, Platt,
& Racine, 1995). Based on these findings, it could be posited
that non-musicians’segmentation can be more accurately pre-
dicted from the audio signal than musicians’; musicians would
pay also attention to deeper aspects such as tonal context,
which cannot be accurately modelled since they are rooted
on implicit knowledge of Western tonal hierarchies. Other
studies on processing and perception of musical structure (see
Tillmann & Bigand, 2004) however suggest that schematic
knowledge (see Justus & Bharucha, 2001) is built through
mere exposure to music, as both groups focused on musical
surface and deeper aspects of structure during tasks involving
harmonic priming and manipulation of global organisation of
pieces. Hence, it becomes unclear if musically trained listeners
are more influenced by schematic expectancies during seg-
mentation than untrained listeners or, conversely, if for both
groups few musical events suffice to generate accurate fore-
casts about mode or upcoming chords in the music (Tillmann
& Bharucha, 2002). Thus far, no studies have investigated
the prediction of musicians’ and non-musicians’ segmenta-
tion, nor systematically examined whether or not these groups
pay attention to same or different acoustic features during
segmentation tasks. A deeper understanding on how musical
training shapes our perception and understanding of structure
and an examination of what musical dimensions listeners are
attending to are needed in order to gain further insights on
how musical structure is processed.

Boundary perception is affected by musical expectancies;
some boundaries are easier to anticipate as music temporally
unfolds in real-time, whereas others are totally unexpected
percepts. Listening to the whole stimulus has been posited to
provide a better understanding of the musical structure bec-
ause some boundaries cannot be perceived until they occur, or
are perceived retrospectively, i.e. ulterior to the actual musical
change (Lerdahl & Jackendoff, 1983). In this respect, different
methods to gather segmentation responses from participants
have been used in studies on musical structure processing.
Hartmann et al. (forthcoming-b) found differences between
real-time and non real-time segmentation in boundary den-
sity, number of boundary indications (more boundaries in
the annotation task than in the real-time task), optimal seg-
mentation time scales, and also a time lag between tasks;
these differences were attributed to the inaccuracy of real-
time task data, which contains delayed or ‘missed’indications,
especially for boundaries that are only perceived retrospec-
tively. If annotation tasks are less noisy, they should be more
accurately predicted by segmentation systems; probably due
to this assumption, annotation task data seems to be regarded
as a more reliable ground truth for evaluation of MIR segmen-
tation systems. However, to our knowledge no studies have
compared real-time and annotation segmentation tasks with
regard to their predictability from the audio signal content.
It would be important to shed more light on this possible
difference between tasks, because collection of segmentation
data from listeners is lengthy, particularly when it comes to
annotation tasks; also, both experimental tasks are used (e.g.

real-time segmentation is common in brain and music studies)
so it would be beneficial to know whether or not they yield
similar models to better understand how musical structure is
processed.

The third issue, which is related with the previous one, is
about perceived boundary strength, its relationship with bound-
ary density and its acoustic basis. Boundary strength ratings
seem to be associated to listeners’ preference towards cer-
tain types of grouping of musical events; for instance, short
melodic sequences including contour changes or gaps (e.g.
rests) tend not to be heard as groups (Lerdahl & Jackendoff,
1983; Deliège, 1987), but gaps are perceived as stronger bound-
aries than changes in melodic contour (Deliège, 1987; Clarke
& Krumhansl, 1990). It has been also found that listeners
generally agree about which musical boundaries are perceived
as strongest (Clarke & Krumhansl, 1990). Further, Bruderer
(2008) found a positive relationship between the mean strength
ratings of a boundary across participants and its relative fre-
quency of indications. This suggests that boundary strength
ratings can be estimated from listeners’ boundary density; in
other words, boundary strength ratings are superfluous data in
segmentation tasks involving multiple participants. Hartmann
et al. (forthcoming-b) could not replicate Bruderer’s result,
suggesting that boundaries perceived as strong are not neces-
sarily more likely to be indicated and vice versa. On top of that,
it is currently neither known whether or not weighting bound-
ary density according to boundary strength ratings would have
an effect on prediction of segmentation, nor what would be
the direction of this effect. Tackling this issue would help
clarify what boundary strength ratings inform about perceived
musical structure, and what is their relationship with local
boundary density and local musical contrast. In particular,
it would be interesting to better understand what aspects of
musical change are associated to perceived boundary strength
in real-world music.

Recently, Hartmann et al. (forthcoming-b) investigated
effects of musicianship, differences between real-time and
annotation segmentation tasks, and optimal time scales for
comparison between segmentations. This study can be consid-
ered a follow-up to Hartmann et al. (forthcoming-b), because
the same boundary data and methodology for aggregation of
indications is applied in this study. Our main goal is to investi-
gate prediction of perceptual segmentation, and further study
the effect of musicianship and experimental task on segmenta-
tion. Due to the complexity of this psychological process, we
focused mainly on the study of segment boundaries that are
prompted by significant instants of musical change. This paper
attempts to shed light on the following research questions:

• To what extent does musicianship affect segmentation,
and more specifically, how does computational predic-
tion of segmentation for musicians differ from that of
non-musicians?

• What is the effect of experimental task on segmentation,
particularly on the modelling of real-time and non real-
time segmentation tasks?
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• Related to the previous question, what is the contribution
of perceived boundary strength ratings on prediction of
non real-time segmentation?

As a first hypothesis, we expected to find an effect of
musicianship on model prediction, as non-musicians should
be more accurately predicted by the segmentation models:
they would focus more on perceived local acoustic changes,
which could be accurately detected via novelty-based meth-
ods. Musicians would instead segment more based on other
aspects, such as learned musical schemata, and find relatively
irrelevant surface events to be context and cues for ulterior
changes that may be much more significant. Also, more fea-
tures were expected to be involved in musicians’ prediction,
particularly more interaction novelty features, because musi-
cians would pay attention to more musical dimensions and to
co-occurring feature changes at multiple levels of the musical
structure. In addition, we expected smaller response delays for
musicians than for non-musicians due to extensive training on
sense of timing cues.

Our second hypothesis is that the experimental segmen-
tation task used for data collection has an effect on model
prediction rates. We expected the real-time task segmentation
to be less accurately predicted because the high cognitive load
of the task would lead to imprecise, redundant and missing
boundary indications; for instance, real-time tasks should pose
difficulties to indicate boundaries as soon as these are per-
ceived, leading to delayed or ‘missed’boundary indications. In
addition, the annotation task prediction models would involve
a higher number of musical features, since listeners would
have the possibility to focus on more levels of the structural
hierarchy, whereas the cognitive load required to complete
the real-time task would bias listeners towards a single level.
Also, while the annotation task would require little or no time
shifting of the boundary data for its optimal modelling, real-
time task modelling would benefit from compensation for
response delays.

A third hypothesis, connected with the previous one, is that
weighting the annotation task according to perceived bound-
ary strength has an effect on model prediction. Boundary
strength ratings would yield an increase in segmentation
prediction rates because they should describe the amount of
perceived musical change more accurately than boundary
density. These ratings are likely to correspond with the
magnitude of feature discontinuity; for instance, musical
boundaries perceived as stark may yield high novelty values
because both would stem from discontinuity of musical fea-
tures. In addition, prediction of models weighted according
to boundary strength ratings should involve more novelty
interaction features, because strength ratings should describe
concurrence of different musical novelty descriptions; in other
words, listeners should indicate high strength for boundaries
that involve high-dimensional musical change, so interaction
features should highly contribute to the prediction of strength-
weighted segmentation density.

Fig. 1. General design of the study.

2. Method

The first phase of the experimental design consisted in con-
ducting two listening experiments, a real-time task, and a
non real-time task called annotation task. A more thorough
description of the experimental procedure, musical stimuli
and recruited participants can be found in Hartmann et al.
(forthcoming-b). From the segmentation data collected in these
experiments we derived segmentation density curves, which
in turn were computationally modelled in a second phase of
the design. Figure 1 illustrates the design of this study and
highlights the approach used to computationally model the
perceptual data.

2.1 Experiment I: Real-time task

2.1.1 Subjects

Eighteen musicians (11 males, 7 females) and 18 non-musicians
(10 females, 8 males) participated in the experiment. The mean
age of non-musician participants was 27.28 years (SD = 4.64)
and for musicians it was 27.61 years (SD = 4.45). The subjects
were local and foreign university students and graduates. The
average musical training of musicians was 14.39 years (SD =
7.49); all non-musicians reported being musically untrained.
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2.1.2 Stimuli

We used six stimuli of around 2 min of duration that were
relatively unfamiliar to participants and comprised a variety of
styles (seeA.1); the stimuli considerably differ from each other
in terms of musical form, and emphasise aspects of musical
change of varying nature and complexity.

2.1.3 Apparatus

The listening experiment interface was designed using
Max/MSP; it presented the stimuli through headphones and
involved the use of keyboard and mouse to record listeners’
responses. The interface included a play bar to show listeners
the relative duration of the stimulus and the current time
position; each boundary indication triggered a visual feed-
back.

2.1.4 Procedure

Participants were asked to indicate significant instants of
change while listening to the music by pressing the space bar
key of the computer; the stimuli were presented in random
order. For each participant and stimulus the boundary data was
recorded in a single pass: they neither had the chance to listen
to the stimuli before the segmentation nor were able to modify
their boundary indications after the task. The task instructions
were as follows: ‘Your task is to mark instants of significant
musical change by pressing the space bar of the computer
keyboard. Whenever you find an instant of significant change,
please press the spacebar key to mark it as you listen to the
music. You will not have a chance to listen to the whole
example before you start marking. Instead, during your first
and only listen of each example, you will give us your ‘first
impression’.

2.2 Experiment II: Annotation task

2.2.1 Subjects

After Experiment I, we asked all participants if they were
familiar with editing software, and while all musicians men-
tioned having some experience, only four non-musicians
expressed familiarity. Since this familiarity was required for
the annotation task, we only recruited musicians for Experi-
ment II; all of them had participated in Experiment I.

2.2.2 Stimuli

In this task we utilised the same set of stimuli as in
Experiment I.

2.2.3 Apparatus

We used Sonic Visualizer (Cannam, Landone, & Sandler,
2010) to obtain segmentation boundary indications and also

ratings of boundary strength. The interface included wave-
forms of the stimuli to offer visual-spatial cues for indicating
boundaries and edit their time locations. The music was played
back via headphones, and both keyboard and mouse were used
to complete the task.

2.2.4 Procedure

In this task participants were first asked to listen to the whole
stimulus. Then, they would listen to the stimulus again and
indicate instants of significant change at the same time, just
as they had done in the real-time task. Next, they were free
to playback from different parts of the stimulus and make
their segmentations more precise by adjusting the position of
boundaries. In this step, listeners could remove boundaries
if these were indicated by mistake. To avoid the tendency to
over-segment the stimuli (following Krumhansl, 1996) par-
ticipants could not add any new boundaries at this stage.
Finally, the last step was to rate the perceived strength of
each boundary. Since the stimuli waveforms shown in the
interface could bias listeners towards segmentation based on
amplitude changes, they were verbally asked to focus on the
music rather than on visual content. The instructions included
a presentation of the segmentation interface and the following
task description:

(1) Listen to the complete musical example.
(2) Listen to the complete example, and at the same time

mark instants of significant change by pressing the Enter
key.

(3) Freely playback the musical example from different time
points and correct marked positions to make them more
precise, or remove them if these were added by mistake.
Do not add any new marks at this stage.

(4) Mark the strength of the significant change for each
instant with a value ranging from 1 (not strong at all)
to 10 (very strong).

(5) Move to the next musical example and start over from
the first step.

2.3 Perceptual segment boundary density

For each stimulus, the collected boundary indication data from
different listeners was aggregated into a perceptual segmen-
tation density curve for each participant group and segmen-
tation task. First, we organised the segmentation data into
three groups: musicians in the real-time task, non-musicians
in the real-time task, and musicians in the annotation task.
Next, we aggregated boundary indications from all partici-
pants so as to obtain a single profile of indications per stimulus.
Subsequently, we concatenated the boundary data from each
stimulus to obtain three boundary profiles spanning a duration
of 12 min 5 s each. For each profile we derived a time series of
density of segmentation. These segment boundary probability
curves were obtained via KDE. This approach is illustrated in
Figure 4 (upper plot), where segmentation density peaks in
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Fig. 2. Method used to obtain interaction features via pairwise multiplication between novelty curves.

the curve imply that multiple participants indicated bound-
aries at relatively close time points. The amount of closeness
required between two boundary indications for them to be rep-
resented by the same density peak is defined by the time scale
parameter τ , which corresponds to the bandwidth of the KDE
Gaussian kernel; in other words, this parameter determines
the degree of smoothness of the KDE. We chose a segmen-
tation density time scale of τ = 1.5 s following previous
studies that focused on the Gaussian kernel bandwidth for
modelling perceptual segmentation (Befus, 2010; Bruderer,
2008); particularly, Hartmann et al. (forthcoming-b) found a
mean optimal time scale for comparison between real-time
and annotation task boundary density curves at 1.4 s and a

mean optimal time scale for comparison between musicians’
and non-musicians’boundary density at 1.7 s. The sample rate
of the KDE was set to 10 Hz since it was deemed sufficiently
accurate for point process data of this nature. Besides the three
obtained segmentation density curves, the annotation task data
was also modelled taking into account listeners’ boundary
strength ratings, yielding a weighted boundary density curve.
In total, we obtained four curves describing probability density
estimates of the boundary data: boundary density for non-
musicians in the real-time task (NMrt), musicians in the real-
time task (Mrt), musicians in the annotation task (Ma) and
musicians in the annotation task with added boundary strength
weights (Maw).
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Fig. 3. Convolution of a Gaussian checkerboard kernel along the
main diagonal of a chromagram-based similarity matrix.

2.4 Computational modelling

The structure of the six audio stimuli used in the experi-
ments was systematically analysed via a computational ap-
proach based on musical novelty detection that is illustrated in
Figures 1 (right side) and 2. Computational models of percep-
tual segmentation density curves were obtained to estimate the
relative predictability of these curves and study which musical
features were involved in the prediction.

2.4.1 Feature extraction

This stage of the experimental design included extraction of
musical features from the audio stimuli using MIRtoolbox
(Lartillot & Toiviainen, 2007a). We extracted five features
describing timbre, rhythm, pitch class and tonal context (see
A.2). These features were frame-decomposed, in the sense
that they were computed on short time frames along the audio
stimuli.

2.4.2 Novelty detection

For each of the features and stimuli, a novelty curve was
obtained; to this end, a dissimilarity matrix is first obtained
from the audio feature of interest by computing the Euclidean
distance between all possible pairs of points in the time ser-
ies. This matrix is inverted element-wise into a similarity
matrix, where important local contrast around the main dia-
gonal represents high dissimilarity between neighbouring
events (Figure 2). A novelty curve is subsequently obtained
via convolution with a Gaussian checkerboard kernel across
the main diagonal of the similarity matrix (see Foote, 2000;
Lartillot &Toiviainen, 2007a; Paulus, Müller, & Klapuri, 2010
for detailed explanation). The Gaussian checkerboard kernel
is illustrated in Figure 3. For each time point t, a novelty
value is determined based upon the similarity between the
Gaussian checkerboard kernel (centred at t) and the portion

of the similarity matrix that is covered by the kernel. The width
of this kernel, here understood as the span of the kernel to both
directions from the reference point, is a crucial parameter in
novelty detection. This is because it determines the smooth-
ness of the novelty curve: larger widths produce smoother
representations, and vice versa. To find an optimal novelty ker-
nel parameter we obtained checkerboards for widths ranging
between 0.5 and 13 s in steps of 0.5 s. Next, we concatenated
the novelty curves of each stimulus and obtained a time series
of 12 min 5 s for each combination of feature and novelty
width. In total, we obtained five novelty features for each of
the 26 novelty widths considered; these are hereafter called
basic features (e.g. novelty based on chromagram).

Subsequently, we created 10 interaction features that
resulted from the pairwise interaction of basic features; for
example, we obtained spectral–tonal, rhythmic–tonal, chroma-
tonal and tonal–tonal features. This was done via point-by-
point multiplication between each pair of novelty features
(Figure 2). Using this method, we obtained for instance a curve
via pairwise multiplication between novelty based on fluctu-
ation patterns and novelty based on chroma, which would be
called a rhythmic-chroma feature.

To compare novelty features extracted from the audio with
boundary density of participants, both basic and interaction
novelty features were resampled to 10 Hz to match the length
of the boundary density curves; also, the novelty curves were
normalised to sum 1. Altogether, we computed a total of 15
novelty features for each of the novelty widths.

2.4.3 Optimal checkerboard kernel width

Next, we examined the relationship between novelty curves at
different Gaussian checkerboard kernel widths and segmen-
tation density. The aim was to evaluate segmentation models
that would be most comparable to the obtained segmentation
density. Boundary density was correlated with each of the
novelty curves to find a checkerboard kernel width that would
yield segmentation models with optimal prediction rates.

2.4.4 Non-linear modelling

We investigated the prediction of perceptual data from combi-
nations of novelty curves via a non-linear modelling approach.
The approach consisted in finding a subset of novelty curves
whose 50th percentile (median ordinal position) would opt-
imally correlate with the segmentation density curve. This
procedure involves a non-linear aggregation of novelty fea-
tures that assigns weights to features for each time point based
on ranked values. From the perspective of soft computing,
the percentile aggregation involves a monotonically increas-
ing mapping that follows a continuous logic function called
conjunction/disjunction function (Dujmović & Larsen, 2007).
Roughly, the 0th percentile (equivalent to the min function)
can be understood as a pure logical AND conjunction (‘all
criteria are satisfied’) because if the minimum among features
is high, then all features should have high values;
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conversely, the 100th percentile (max function represents pure
OR disjunction (‘at least one criterion is satisfied’) because
a high maximum value among features implies that at least
one of the features has a high value. Following this logic, 1–
99th percentiles lie between AND and OR, exhibiting varying
levels of orness (closeness to maximum). Hence, taking the
50th percentile across features would be comparable to a
‘majority judgement’, because it would only result in high
values if at least half of the features exhibited high values.
Several statistics, including arithmetic mean, median, min,
max and percentile belong to the family of ordered weighted
averaging operators (Yager, 1988, 2006), but have different
characteristics; for example in arithmetic mean aggregation
all data elements get equal weights, whereas percentiles use
only one argument to determine the aggregated value (for an
odd number of arguments).

2.4.5 Combinatorial optimisation

In order to find an optimal subset of features for computational
modelling we performed discrete combinatorial optimisation.
Via this approach we searched for a combination of novelty
features whose percentile-based model would yield highest
prediction rates, i.e. maximum correlation with the perceptual
segmentation density. A generalised conjunction/disjunction
correlation was used as a cost function criterion within a
combinatorial optimisation routine. The cost function finds
the optimal value of the correlation coefficient y by min-
imising the negative of the correlation between actual and
predicted density, yopt = argminy − corr(x, pα), where x
is the segmentation density and pα is the α-percentile along
features of a given subset. The reason for using combinatorial
optimisation was the high number of possible feature combi-
nations per perceptual segmentation density curve (215). We
used a Genetic Algorithm search heuristic to find an optimal
feature subset for each perceptual segmentation density curve.
The optimisation cost function was initialised with a random
subset of features. Since the algorithm employs a stochastic
selection at each iteration, it tends to avoid local optimal
solutions, i.e. subsets that are only best within the context of
neighbouring combinations. As a result, we obtained for each
segmentation density curve an optimal percentile model, the
correlation between these two curves and an optimal subset of
features for computing the model. Correlation p-values (H0:
no correlation between observed and predicted segmentation
density) were obtained via Fisher’s z-transformation of r, with
standard scores adjusted for effective degrees of freedom (i.e.
corrected for temporal autocorrelation, see Pyper & Peterman,
1998; Alluri et al., 2012).

3. Results

We conducted three main analyses via the proposed experi-
mental design: a comparison between perceptual segmenta-
tion sets based on model prediction rates, an examination of
the novelty features involved in the prediction models, and

an assessment of the model prediction rates for time lagged
perceptual segmentation density. Figure 4 illustrates the main
outcomes of the approach: for non-musicians’segmentation of
2 min 20 s of music (stimulus Dvořák) in the real-time task, it
compares boundary indication data, perceptual segmentation
density, selected novelty features and computational model
prediction.

3.1 Novelty kernel width

To find accurate novelty curves for computational modelling,
we initially examined the effect of modifying their kernel
widths. To this end, we computed correlations between seg-
mentation density curves and novelty curves for each of the
26 novelty widths obtained. Figure 5 shows the correlation
profiles of the novelty features for each segmentation density
curve. The global maxima of each curve, highlighted with
markers, tend to be situated at large novelty widths in all cases.
To find an optimal kernel width for further prediction of seg-
mentation density, we computed a mean optimal novelty width
across curves for each of the four segmentation densities, and
finally a mean novelty width across segmentation densities.
Via this method we found an optimal width of 11 s across
novelty features and segmentation density curves (please refer
toA.3 for correlation values at this width). We also obtained z-
values for these correlation profiles to estimate significance of
correlation, although a figure is not included for succinctness;
z-values around 4, indicating significant results at the p <

.001 level.
We further tested if a novelty width of 11 s would be appro-

priate for prediction of density. The mean temporal distance
between peaks of each density curve was estimated; given the
results of the aforementioned correlations, we expected that
this distance would be around 11 s. For each density curve, we
picked each time point that had a larger density value than its
two neighbouring time points and than 20% of the maximum
density value in the curve. We found that the temporal distance
between peaks in the density curves tended to be about as large
(NMrt: 13.07 s ± 8.16 SD; Mrt: 12.82 s ± 8.72; Ma: 10.13 s
± 7.33; Maw: 11.27 s ± 8.90) as the optimal novelty kernel
width. The requirement of a minimum peak height was used
to disregard peaks with very low density values, since these
would correspond to indications from few listeners. Without
this restriction, the temporal distance between peaks was still
relatively large (NMrt: 8.19 s ± 2.97 SD; Mrt: 9.46 s ± 4.64;
Ma: 7.54 s ± 3.04; Maw: 7.86 s ± 3.10).

Comparing density curves, Figure 5 shows that the anno-
tation task density curve with added weights tended to yield
the highest correlations for most features. Adding weights to
the annotation task lead to an increase in correlation (with
respect to Ma) for all but three features when using a novelty
width of 11 s (A.3). A possible reason for this correlation
increase could have been the larger variance of the boundary
density in the annotation task with added weights, which might
have increased similarity with novelty curves due to their
high variance. If the increase in correlation was the result of
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Fig. 4. Perceptual segment boundary density and computational segmentation model for non-musicians in the Real-time task (stimulus Dvořák).
Upper graph: Boundary indication data and segmentation boundary density. Middle graph: Model predictors and computational model prediction.
Lower graph: Perceptual segmentation boundary density and computational model prediction. The model was computed using a time lag of
1.7 s.

Fig. 5. Correlation between perceptual segment boundary density and novelty curves at novelty widths ranging from 0.5 to 13 s. Maximum
points for each curve are highlighted with markers.

simply adding variance to the boundary density via addition of
weights, then a random set of weights would be likely to yield
a density curve that would result in increased correlation with
respect to the weighted annotation task density. To test this
possibility, we performed a Monte Carlo permutation (20,000
iterations). At each iteration, (1) a random vector of boundary
weights (between 1 and 10) of length equal to the number of
boundary indications in the annotation task was generated, and
a kernel density curve of the annotation task that included the
random vector of weights was correlated with each of the 15
novelty curves. This resulted in a correlation distribution per
novelty feature; for each distribution, the sum of the values that
were equal or higher than the correlation reported in the study
(A.3) for Maw was divided by the length of the distribution.
Features that showed an improvement after adding weights
to the annotation task tended to yield correlations for Maw
that were unlikely to be reached by using a random set of
strength weights (p < .001 for eight features; p < .01 for
one feature; p > .05 for key strength, chromagram ◦ key

Fig. 6. Correlation between perceptual segmentation density and
computational model prediction obtained via percentile optimisation
for novelty widths ranging from 0.5 to 13 s. Maximum points for each
curve are highlighted with markers.

strength, and key strength ◦ Tonal centroid). This suggests
that higher variance of the boundary density was probably not
an important factor in the correlation increase obtained from
listeners’ boundary strength ratings; in other words, boundary
strength ratings from listeners include relevant information
that lead to an increase of segmentation prediction accuracy.
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Fig. 7. Correlation between perceptual segment boundary density
and models’ predictions obtained after time lags ranging from
−2 to 2 s, incremented by steps of 100 ms. Positive time lags
indicate delay of novelty curves with respect to perceptual segment
boundary density, and vice versa. Maximum points for each curve
are highlighted with markers.

3.2 Model prediction rates

We next examined the prediction obtained from novelty-based
computational models for different participant groups and
segmentation tasks. To achieve this, we performed combina-
torial optimisation using generalised conjunction/disjunction
correlation as a cost function. We further investigated at this
stage the novelty kernel width parameter by obtaining 26
computational models at varying novelty widths. Figure 6
shows that prediction rates tend to increase as a function of
novelty but gradually reach a plateau; novelty curves based
on a kernel width of 11 s yielded the highest overall pre-
diction rates. Table 1 shows the correlation between optimal
models and segmentation density for each participant group
and segmentation task at a novelty width of 11 s; interaction
features include the symbol ◦, which indicates pairwise multi-
plication between two basic features. Notably, prediction rates
were lower for musicians than for non-musicians in the real-
time task. This result suggests that musicians’ segmentation
relies more on schematic knowledge than in the case of non-
musicians. Comparing experimental tasks, we found higher
prediction rates for the annotation task. This suggests that
some boundaries are difficult to anticipate in real-time seg-
mentation, and are hence either indicated after longer delays
or not indicated at all, leading to more noisy segmentation
data. Related to this finding, the effect of experimental task
was clearer for the annotation task density curve with added
weights, which yielded the highest prediction rates. This in-
dicates that the strength attributed by listeners to boundaries
aids to the computational prediction and suggests a positive
relationship between musical novelty and perceived boundary
strength.

3.3 Selected feature subsets

We examined the categories of musical novelty features that
were involved in the computational models’ predictions. Ta-
ble 1 presents the musical feature subsets that were selected
via combinatorial optimisation. Compared to non-musicians’
model, the predicted segmentation density for musicians inv-
olved all the extracted musical features (i.e. key strength was
not included in non-musicians’ model). This suggests that,

compared to non-musicians, musicians paid attention to more
levels of the structural hierarchy during segmentation, and that
local key context changes had a larger influence in musicians’
segmentation. In addition, the model for musicians involved
more interaction features than the model for non-musicians.
This suggests that musicians paid more attention to high-
dimensional features, in other words, to simultaneous change
of multiple features. It is also noteworthy that the annotation
task model involved more features than the real-time task
model; rhythmic and tonal features in particular had more
representation in the subsets. This result suggests that in the
annotation task listeners followed a more complex pattern of
segmentation and focused on multiple hierarchical levels of
metrical and tonal structure. In addition, we found that the
model for annotation task density with added weights involved
the largest amount of feature interactions. This finding sug-
gests the possibility of a positive relationship between dimen-
sionality of musical feature change and perceived boundary
strength.

3.4 Time lag between actual and predicted density

Our next step aimed to examine whether or not boundary
indication delays had an effect on the model prediction. To ap-
proach this goal, we computed prediction models for different
time lags of the segmentation density curves. We used 41 lag
values ranging between −2 and 2 s and incremented by steps
of 100 ms. Figure 7 shows the correlation between segmenta-
tion density and computational model prediction for different
segmentation density time lags. Each global peak corresponds
to the optimal time lag for a given segmentation set. We found
a larger optimal time lag for non-musicians (1.7 s, r = .59)
than for musicians (1.5 s, r = .54). A larger (200 ms) optimal
lag for comparison between actual and predicted segmentation
density suggests a larger response delay during segmentation
for non-musicians. Comparing tasks, the annotation task ex-
hibited an optimal lag of 400 ms (r = .48), which is over a
second shorter than the real-time task (1.5 s); this finding was
replicated for a curve of log-likelihood as a function of time
lag, which was not included here for brevity. This suggests
that listeners’ response delay in real-time segmentation can
often reach 1.5 s in the real-time task, whereas in the anno-
tation task the delay is unsurprisingly shorter (due to task
characteristics including boundary reposition and increased
familiarity with stimuli) but it is still observable and can be
addressed. Noteworthy, the prediction rate of most models
increased after applying the optimal time lag, illustrating the
importance of accounting for listeners’ response delays for
optimal segmentation modelling.

4. Discussion

This section will discuss three hypotheses that have been
formulated with regard to prediction of music segmentation.
It is important to highlight at this point that the approach
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presented in this article is tailored to an understanding of
segment boundaries as instants of significant change in the
music. The main advantage of this circumscription of the
notion of music segmentation is that it allows for a systematic
analytic approach ultimately based on correlation between
two time series. However, an important shortcoming should
be mentioned at this point: musical segments are viewed as
built upon boundary indications, whereas as a matter of fact,
segments are concomitants of hierarchical representations of
musical structure (Marsden, 2005). Moreover, our approach is
not conceptually driven, as it disregards higher level notions
of musical motives, phrases, melodies and themes, which
embrace the complexity inherent in musical structures and
point to the necessity of taking musical repetition and variation
(i.e. parallelism) into account (see Cambouropoulos, 2006;
Lartillot & Toiviainen, 2007b). In other words, this paper only
partially addresses segmentation as a multi-level problem,
because the hierarchical architecture of musical structure gets
reduced to a single dimension. The second issue is that aspects
related to recurrence in musical structure and perception of
motivic patterns are omitted. Although a broader model is
clearly required, such reductionism may be justifiable for ana-
lytic purposes, and could help to elucidate the applicability of
some music-theoretic predictions to actual segment bound-
ary perception. Furthermore, our approach includes current
methodology in MIR, but for a different aim: our main focus
is on listener’s perception of local musical changes rather
than system evaluation or comparison between human and
algorithmic performance.

4.1 Musicianship

We obtained three main results supporting our first hypoth-
esis, which asserts that musicianship has an effect on seg-
mentation model prediction. First, the segmentation models
for non-musicians yielded higher prediction rates than for
musicians, so overall prediction based on novelty curves is
presumably more reliable for non-musicians (Figures 5, 7 and
Table 1). This suggests that segmentation by non-musicians
is more guided by ‘bottom-up’ acoustic local change (as det-
ected via novelty curves) than for the case of musicians, who
probably relied more on schematic knowledge; in other words,
non-musicians yielded higher prediction rates because nov-
elty curves do not model schematic knowledge. Second, pre-
diction of musicians’ segmentation involved more musical
features (key strength was selected in musicians’ model but
not in non-musicians’) and more novelty interaction features
than for non-musicians. This suggests that musicians focus
on high-dimensional musical change and more levels of the
structural hierarchy; for example they may focus on more
obvious changes such as instrumentation and rhythm, but
also on subtle changes in tonality even if these are implied
changes. Several studies support the notion that musicians
pay attention to more aspects determining musical change;
for instance, musicians’ ratings of tension of chords within
sequences were mostly influenced by both tonal functions and

specific roughness, whereas non-musicians’ ratings tended
to be mostly prompted by horizontal motion, i.e. melodic
arrangement between successive chords due to voicing and
use of inversions (Bigand et al., 1996). In addition, a study
on perceived cadences (Sears, Caplin, & McAdams, 2014)
showed that, compared to non-musicians, musicians do not
only pay attention to the most salient melodic line, but also to
complex texture changes involving multiple voices. Our third
result regarding musicianship was a larger optimal time lag
for segmentation prediction in the case of non-musicians than
of musicians, which points to a negative relationship between
musical training and response delay in segmentation. This ef-
fect of musicianship on speed of detecting and indicating seg-
ment boundaries is partly not surprising because musicians are
explicitly trained to follow musical cues that trigger their en-
trance during performances; however this result still suggests
that non-musicians process perceived musical structure at a
slower rate than musicians. In this line, effects of musical train-
ing on auditory working memory have been previously shown,
since faster ability to capture the statistical structure of per-
ceived streams (François, Jaillet, Takerkart, & Schön, 2014)
and larger auditory memory spans (Tierney, Bergeson-Dana,
& Pisoni, 2008) have been found for musicians when com-
pared to non-musicians. A direct comparison between bou-
ndary density curves via cross-correlation (Hartmann et al.,
forthcoming-b) showed that non-musicians were delayed with
respect to musicians for most of the stimuli, although it did
not result in differences between groups based on the mean
lag across stimuli.

A general implication of these findings is that both partici-
pant groups pay attention to local discontinuities in the music,
so specific knowledge of structure may not be required for
perception of segment boundaries that emerge due to novelty;
in this respect Tillmann and Bigand (2004) suggested that,
regardless of musical training, the succession of local struc-
tures prevails over the succession of global structures in music
processing. However, our results suggest that musicians may
pay less attention to local discontinuities than non-musicians;
so global structures could have a greater role for musicians,
who might build more veridical expectancies (see Justus &
Bharucha, 2001) for events that are likely to occur in a given
piece of music.

4.2 Experimental task

Three results were found to support our second hypothesis,
which states that the conducted experimental task has an effect
on model prediction. First, prediction rates for the annotation
task were higher than for the real-time task, but controlling
for delays inverted this result. This suggests that listeners’
delayed indications are responsible for the relatively lower
prediction rates in the real-time task, and that once these are
compensated, this task yields higher similarity with ‘bottom-
up’ novelty-based predictions since listeners neither know
with certainty about the unfolding patterns and developments
of a piece of music, nor can clearly estimate the relative
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significance of a given musical change. The second result
concerning segmentation tasks is that prediction of annotation
task involved more novelty features, particularly rhythmic and
tonal features. This result suggests that listeners pay attention
in this task to more levels of the structural hierarchy. The third
result with respect to this hypothesis is that the annotation task
exhibited a shorter optimal time lag for segmentation predic-
tion than the real-time task. This result is highly expected
mainly because the annotation task allowed participants to
modify the position of boundaries, but it is noteworthy that
the alignment between segment boundaries and instants of
musical novelty leads to an increase in prediction rates for
offline segmentation tasks as well.

4.3 Boundary strength weights

Finally, two main results were found supporting the third
hypothesis, which posits that weighting the annotation task
segmentation density has an effect on model prediction. First,
we found that adding weights to the annotation task increases
the model prediction rates. This suggests that the novelty
detection approach predicted perceived boundary strength rat-
ings, which is a plausible interpretation because the most stark
musical changes should often coincide with high discontinuity
of musical features. Moreover, the improvement of prediction
rates shows that the strength of a boundary is not equivalent
to its density, which suggests that boundary strength weights
aid to the prediction of listeners’ segment boundaries. This
result might seem surprising, considering that Bruderer (2008)
found a relationship between frequency of indications of a
boundary and mean ratings of boundary strength. However,
Bruderer’s task instructions referred specifically to the indi-
cation of phrases, sections, and passages, whereas our task
instructed listeners to indicate significant instants of change,
which would have prompted more frequent indications. Pos-
sibly, the addition of strength weights in the annotation task
highlighted points of relatively high acoustic local change,
which could have increased prediction accuracy for musical
features that could have been sensitive to these changes. The
second result found regarding this hypothesis was that adding
weights to the annotation task also increases the number of
feature interactions involved in models. This suggests that
listeners’ boundary strength ratings relate to different interac-
tions, resulting in a hierarchy of high-dimensional features; for
instance rhythmic–tonal musical novelty could be perceived
as more perceptually salient than spectral-rhythmic novelty.

4.4 General discussion

We may now recapitulate the main conclusions reached here.
Regarding musicianship, our results suggest that musicians’
schematic knowledge is a potential factor in lower prediction
rates compared to non-musicians’; in addition, musicians may
pay attention to more dimensions of musical change spanning
multiple hierarchical levels of structure, and seem to res-

pond faster to perceived musical change than non-musicians.
Comparing experimental tasks, listeners’ response delays in
the real-time task seem to be a major factor in lower model
performance with respect to the annotation task; they may
also pay attention to more hierarchical levels of structure in
the annotation task, particularly regarding rhythmic and tonal
descriptions of change, which possibly make a major contri-
bution in perceptual segmentation. Also, boundary strength
ratings in the annotation task may be more associated with
perceived concurrence of multiple descriptions of musical
change.

The models presented in Table 1 can be sorted based on
their prediction rates to find the most satisfactory scenarios
for novelty-based prediction of segmentation. For instance,
annotation task models yielded higher prediction rates than
real-time task models, a result that makes sense because nov-
elty detection does neither account for listeners’ response de-
lays nor for difficulties to indicate retrospectively perceivable
boundaries. In particular, adding weights to the annotation task
boundary density led to a clear increase of prediction rates,
showing that novelty curves can model listeners’ assignment
of hierarchies to boundaries, which might depend on the num-
ber of perceived dimensions of musical change. Although the
frequency of indications of a boundary (which is equivalent
to its density) should to some extent also describe this hier-
archy of events, boundary strength weights contribute to the
description of boundaries’ relative structural importance. In
contrast to the annotation task results, real-time segmentation
(not adjusted for response delays) resulted in lower prediction
rates, especially for musicians (Table 1 and Figure 5), even
though their segmentations were less delayed than those from
non-musicians. This further supports the interpretation that
schematic knowledge had a larger influence on musicians’
segmentation decisions, or at least that they paid more at-
tention to aspects such as repetition and musical parallelism
instead of solely focusing on local discontinuity.

The compensation for response delays had an effect on the
real-time task model performance because novelty detection
provides immediate feedback for a given context, whereas lis-
teners’ responses to perceived musical change are not instan-
taneous; the annotation task did not greatly benefit from this
compensation because listeners repositioned their boundary
indications. A different interpretation of the results is required
for optimal models that account for response delays (Figure 7),
because real-time task models exhibited a clear increase in
prediction rates, and the difference between tasks in this re-
spect became smaller. Overall, larger prediction rates show
the need for controlling for response delays in novelty-based
segmentation modelling, especially when it comes to real-time
segmentation and to non-musicians. Two other contributors
to differences between optimal models have been schematic
knowledge, which cannot be modelled by the novelty curves
and could explain lower prediction rates for musicians’
segmentation, and boundary strength ratings, which yielded
density curves that emphasised obvious, probably
high-dimensional musical changes.
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A general result to highlight concerning the features
involved in the prediction models is the contribution of feature
interactions, which suggests that listeners pay attention to
high-dimensional musical change; for instance, simultaneous
change in rhythm and tonality or in timbre and tonality seemed
to often evoke listeners’ perception of segment boundaries.
In particular, the feature interaction Fluctuation Patterns ◦
Chromagram was selected in all models, suggesting that lis-
teners pay attention to simultaneous changes in pitch class and
rhythm during segmentation.

Regarding the proposed non-linear combination approach,
it resulted in improved prediction rates with respect to any
of the novelty curves extracted (A.3). This means that the
combined novelty detected by a majority of the features at
each time point yielded better performance than any novelty
feature alone, which results from the fact that the contribution
of different features to perception of musical change varies
over time and over stimuli. For instance, some boundary ind-
ications may be represented more by rhythmic than by tonal
change, whereas others may exhibit the opposite trend.

4.5 Considerations for future research

Our findings suggest that an ideal scenario for accurate bound-
ary density prediction via novelty detection would be based
on indications not only of high time precision (i.e. compen-
sated for response delays) and describing only local discon-
tinuities, but also weighted based on perceived strength. To
better understand the relative importance of these factors,
non-musicians should also be recruited to segment in an
annotation task; this addition to the experimental design is
feasible because the skills required in an annotation task can be
quickly learned. Possibly, an offline annotation would further
increase non-musicians’ prediction rate with respect to the
delay-compensated real-time task.

Future studies on annotation segmentation tasks should sys-
tematically study the effect of different task instructions upon
segmentation. For instance, allowing addition of new bound-
aries during the reposition stage of the task might lead to more
detailed representations of structural change. In addition, a
focus on the final state of an annotation should not ignore other
relevant information that can be collected in this task: steps
such as boundary reposition and removal should be recorded
in order to better understand, for instance, the extent to which
a shorter optimal time lag in the annotation task compared to
the real-time task could be attributed to boundary reposition
or to other factors such as familiarity with the stimuli and task.

In regards prediction rates, the proposed approach, which
consisted in computing interaction novelty features and non-
linear modelling, yielded up to moderately high correlations
with boundary density. These results outperform those
reported in a preliminary version of this article (Hartmann,
Lartillot, & Toiviainen, 2015), in which a smaller novelty
kernel width was used and the effect of response delay was dis-
regarded. Our evaluation of prediction performance was, how-
ever, not an end but rather a means by which we could compare

different listener groups and segmentation tasks. Benchmark
studies on segmentation could further explore compensation
for response delays, which led to highest prediction rates.

Focusing further on listeners’ response delays, our findings
showed that segmentation data can often exhibit up to 1.7 s
delays with respect to musical changes; this compensation
for response delays increased prediction rates in all models
except for the annotation task without added weights. In this
regard, retrieval evaluation of boundary detection systems is
commonly based on both 0.5 and 3 s thresholds (Ehmann,
Bay, Downie, Fujinaga, & De Roure, 2011), however accord-
ing to our findings, 3 s would yield overly optimistic results,
especially considering that the segmentation ground truth data
for these evaluations is collected via annotation tasks; future
research on MIR should consider hit rate evaluation only at a
time threshold of 0.5 s.

In regards the effect of segmentation boundary strength
weights, we believe that further exploration is needed to unde-
rstand its impact for novelty-based prediction; for instance
boundary strength could be correlated with musical novelty
at the respective time points in order to better understand
their similarity and explore what musical dimensions prompt
perception of stark boundaries. This is an important issue to
tackle, not only because boundary strength seems to offer
descriptions that do not necessarily relate to boundary density,
but also because it clearly contributed to the computational
prediction and might offer new insights about the structural
hierarchy of perceived musical boundaries.

As a methodological consideration, we remark that the nov-
elty kernel width used in this study was rather large. An
optimal kernel width spanning large time regions was needed
due to noisiness of novelty curves, and to the ample distance
between the main peaks in density curves. Although the use of
short window lengths and high overlapping between frames
are necessary for highly accurate feature extraction, this leads
to very detailed similarity matrices, which in turn produce
noisy novelty curves. Future studies should consider the use of
smoothing filters (e.g. Serrà, Muller, Grosche, & Arcos, 2014)
to improve computational efficiency of the models. A related
issue pertains to the aggregation of multiple novelty features
based upon a single novelty width; for instance, spectral and
rhythmic features tended to yield lower optimal kernel widths
than chroma and tonal features, so it is difficult to choose a
novelty width that gives justice to various features operating
on different temporal contexts. To address this issue, it is
possible to compute an optimisation model for each density
curve that could involve a subset of novelty curves with dif-
ferent kernel widths; this promising approach would require
finding, for each feature, a novelty kernel width that yields
optimal correlation with the density curves. Another matter
of concern regarding novelty widths is their relationship with
the Gaussian bandwidth of the segmentation density, which
was a fixed parameter in this study and requires further asse-
ssment using different musical features to better understand
the relationship between these two parameters. It should also
be remarked that the need to choose a novelty kernel width
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can be circumvented; for instance, a recently proposed multi-
granular method (Lartillot, Cereghetti, Eliard, & Grandjean,
2013) detects novelty by considering both the amount of con-
trast between neighbouring homogeneous passages and the
temporal scale of the preceding passage.

Regarding the non-linear optimisation approach used in
this study, other strategies including alternative cost func-
tions could be implemented; we have utilised mean-based
optimisation and cross-entropy minimisation as alternatives
to percentile-based correlation optimisation, but these yielded
lower prediction rates. In addition, further work on percentile-
based optimisation could focus on the improvement of pre-
diction rates using various percentiles (though we observed
that 50th percentile offered higher rates than 25th and 75th
percentiles) or other summarising statistics, including compu-
tation of aggregations that specify different weights to features
depending on their rank (Yager, 2006). Other combinatorial
optimisation algorithms are also possible; we also experi-
mented with simulated annealing and forward–backward fea-
ture selection; but these approaches yielded models with lower
prediction rates than the genetic algorithm method. We
assumed that this method did not stumble on local minima,
however other methods might get closer to the global mini-
mum of the solution space.

A question that may arise is whether or not a linear mod-
elling approach could have resulted in comparable results.
Stepwise regression models offer the possibility to rank
selected features based on standardised beta coefficients, how-
ever these models assume a constant contribution from each
feature across time and musical stimuli. We computed the
same analysis via this approach, which yielded a similar pat-
tern of results, but these were left out from our analyses due
to the presence of negative coefficients in the models. A rea-
son for this is that some interaction novelty features highly
correlate with each other, for instance Chromagram ◦ Key
Strength is highly similar to Chromagram ◦ Tonal Centroid
(r = .98); future work could perform feature selection based
on collinearity as a prior step to stepwise regression.

It should also be mentioned that model prediction rates
might be optimistic due to relatively low amount of musi-
cal stimuli and correlating novelty features, which puts the
optimisation at risk of yielding an ‘optimal’subset that may be
equally optimal to other subsets, and of generating
optimal subsets and models that are highly affected by trivial
modifications of the segmentation density curves. Besides the
elimination of redundant features, cross-validation with other
stimuli or with other groups of listeners should be used in
future studies to overcome model over-fitting and increase
robustness.

We also remark that, depending on the musical stimulus
and especially on musical style, listeners should probably
use different segmentation strategies. Hence, it is possible
that a methodological approach focused on individual stimuli
would have led to different results; e.g. individual stimuli may
require different feature subsets for optimal prediction, and
variation in prediction accuracy could occur; some of these

issues, which are crucial for the development of segmentation
systems that automatically adjust their parameters depend-
ing on various characteristics of the target stimulus, are cur-
rently under investigation (Hartmann, Lartillot, & Toiviainen,
forthcoming-a).

Finally, we should highlight the differences reported in this
study between musicians and non-musicians; a clear trend
was found in this respect and the results seem plausible. First,
higher prediction rates for non-musicians imply that they
focus more on local acoustic change than on other aspects
such as schematic expectations. Second, more features in pre-
diction models for musicians, particularly more interaction
features, suggest that they pay attention to more musical
dimensions and levels of the musical structure. Third, differ-
ences in response times between groups could reflect a faster
processing of perceived structure in musicians. Although
explicit segmentation tasks are not enough to investigate how
underlying musical structures are processed, it is possible that
learning processes involved in intensive musical training and
development of motor skills for musical performance have
an effect on the perception of musical structure. A plausible
explanation is that musical training leads to different expecta-
tions between groups; musicians’anticipation of future events
may be facilitated e.g. by schemata that cannot be learned
from mere exposure to music, resulting in increased attention
to specific types of musical change, such as those prompted by
interaction of different acoustic features. Further work should
further explore this possibility by comparing experienced mu-
sical listeners and musicians in their processing of musical
structure.
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Appendix A. Appendices

A.1. Musical stimuli—List of abbreviations

Genesis Banks, T., Collins, P. & Rutherford, M. (1986). The
Brazilian. [Recorded by Genesis]. On Invisible Touch [CD].
Virgin Records. (1986)

Spotify link: http://open.spotify.com/track/7s4hAEJupZLp
JEaOel5SwV

Excerpt: 01:10.200-02:58.143. Duration: 01:47.943
Smetana Smetana, B. (1875).Aus Böhmens Hain und Flur.

[Recorded by Gewandhausorchester Leipzig—Václav Neu-
mann]. On Smetana: Mein Vaterland [CD]. BC—Eterna Col-
lection. (2002)

Spotify link: http://open.spotify.com/track/2115JFwiNvHx
B6mJPkVtbp

Excerpt: 04:06.137-06:02.419. Duration: 01:56.282
Morton Morton, F. (1915). Original Jelly Roll Blues. On

The Piano Rolls [CD]. Nonesuch Records. (1997)
Spotify link: http://open.spotify.com/track/6XtCierLPd6qg

9QLcbmj61
Excerpt: 0-02:00.104. Duration: 02:00.104
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Ravel Ravel, M. (1901). Jeux d’Eau. [Recorded by Martha
Argerich]. On Martha Argerich, The Collection, Vol. 1: The
Solo Recordings [CD]. Deutsche Grammophon. (2008)

Spotify link: http://open.spotify.com/track/27oSfz8DKHs
66IM12zejKf

Excerpt: 03:27.449-05:21.884. Duration: 01:54.435
Couperin Couperin, F. (1717). Douziéme Ordre / VIII.

L’Atalante. [Recorded by Claudio Colombo]. On François
Couperin : Les 27 Ordres pour piano, vol. 3 (Ordres 10-17)
[CD]. Claudio Colombo. (2011)

Spotify link: http://open.spotify.com/track/6wJyTK8SJA
mtqhcRnaIpKr

Excerpt: 0-02:00.863 Duration: 02:00.863
Dvořák Dvořák, A. (1878). Slavonic Dances, Op. 46 /

Slavonic Dance No. 4 in F Major. [Recorded by Philharmonia
Orchestra—Sir Andrew Davis]. On Andrew Davis Conducts
Dvořák [CD]. Sony Music. (2012)

Spotify link: http://open.spotify.com/track/5xna3brB1Aq
GW7zEuoYks4

Excerpt: 00:57.964-03:23.145. Duration: 02:25.181

A.2. Extracted musical features

Basic novelty curves were obtained from similarity matrices
of musical features (cf. 2.4). To this end, the following five
musical features describing spectral, rhythmic, chroma and
tonal attributes were extracted from the musical signal:

Spectral

• Subband flux (Alluri & Toiviainen, 2010):
10-dimensional feature describing spectral fluctuations
at octave-scaled subbands of the audio signal. First, ten
second-order elliptic filters are used to divide the signal
into subbands. For each frequency channel, a spectro-
gram is computed using a window length of 25 ms and
50% overlapping. Finally, dissimilarity between succes-
sive spectral frames is computed via pairwise normalised
Euclidean distance (spectral flux). Unlike other common
spectral features such as Mel-frequency cepstral coeffi-
cients, subband flux features have been found to predict
perceptual aspects of musical polyphonic timbre such as
activity, brightness and fullness.

Rhythmic

• Fluctuation patterns (Pampalk, Rauber, & Merkl,
2002): Psychoacoustics-based representation of rhyth-
mic periodicities in the audio signal via estimation of
spectral energy modulation over time at different
frequency bands. First, a spectrogram in dB scale with
frequencies bundled into 20 Bark bands is computed
using a window length of 23 ms and a hop rate of 80 Hz.
Following an outer ear model (Terhardt, 1979), frequen-
cies between 2000 and 5000 Hz are emphasised, whereas
energy at frequency range extremes is attenuated. Fur-
ther, the spectrogram is weighted based on a perceptual
model of spectral masking that, given a high-energy fre-
quency band, attenuates energy at a region of frequencies

below that band. Subsequently, for each separate Bark
band, a second spectrogram is computed (window length
1 s, hop rate 10 Hz) where the highest frequency taken
into consideration is 10 Hz (600 beats per minute). This
yields, for each Bark band and each frame, a description
of loudness modulation. Each modulation coefficient is
weighted based on a psychoacoustic model of fluctuation
strength sensation to emphasise modulation frequencies
that are optimal for the perception of a strong fluctuation
such as a steady beat. Finally, for each frame, the mod-
ulation coefficients are summed together. The result is a
description of the dynamic evolution of periodicity for
each modulation frequency.

Chroma

• Chromagram (pitch class profile, see Fujishima, 1999):
12-dimensional feature describing the energy distribu-
tion of each pitch class per spectrogram frame. First, a
spectrogram for the highest energy over a range of 20 dB
and for frequencies ranging between 100 and 6400 Hz
is computed. Frequency bins are then combined into
chroma, corresponding to the different absolute pitches.
To each chroma is associated a central frequency cl,
which is calculated as cl = 12×log2(

f
c f ), where c f is the

central frequency related to C4 (set to 261.6256 Hz). The
audio waveform is normalised before the spectrogram
computation, and each frame of the resulting chroma-
gram is also normalised by the maximum local value.
The chromagram is then wrapped into one octave, by
summing together chroma values of same pitch classes,
leading to a 12-dimensional feature. The spectrogram
was computed using a 3 s window length and 100 ms
overlapping to obtain a sufficiently high time resolution.
The following two features use chromagram as input.

Tonal

• Key strength (Krumhansl, 1990): 24-dimensional feature
that represents how well the chromagram fits the different
tonal profiles for major and minor keys. The key profiles
are based on the probe-tone experimental method and
represent the contribution of each of the 12 chromatic
tones to a given key. The key strength values of each
frame are estimated via correlation between the pitch
class profile and each of the 24 key profiles.

• Tonal centroid (Harte, Sandler, & Gasser, 2006):
6-dimensional feature that describes a projection of the
pitch class profile onto interior spaces of the circle of
fifths, the circle of minor thirds and the circle of ma-
jor thirds, which derive from a toroidal representation
of the harmonic network (Tonnetz). The spaces are de-
rived from the Spiral Array model (Chew, 2002) for key
boundary detection. For each frame, the chromagram
is multiplied with the basis of a 6-dimensional pitch
space in order to obtain three co-ordinate pairs, one per
circularity inherent in the harmonic network.
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A.3. Correlations between perceptual segment boundary
density and novelty features

Table A1. Correlations between perceptual segmentation density and basic features. Maximum coefficients of each set are indicated in boldface.
Coefficients from features selected via optimisation are highlighted. P-values adjusted for effective degrees of freedom, and for multiple
comparisons via Benjamini–Hochberg correction (q = 0.05).

Feature type Basic feature NMrt Mrt Ma Maw

Spectral Subband flux .10 .14* .07 .17**
Rhythmic Fluctuation patterns .38*** .32*** .31*** .39***
Chroma Chromagram .32*** .31*** .36*** .35***
Tonal Key strength .21*** .19** .25*** .26***

Tonal Centroid .23*** .21*** .31*** .30***

*p < .05; **p < .01; ***p < .001.

Table A2. Correlations between perceptual segmentation density and feature interactions. Maximum coefficients of each set are indicated in
boldface. Coefficients from features selected via optimisation are highlighted. P-values adjusted for effective degrees of freedom, and for
multiple comparisons via Benjamini–Hochberg correction (q = 0.05).

Type Feature interaction NMrt Mrt Ma Maw

Spectral ◦ Rhythmic Subband flux ◦ Fluctuation Patterns .21*** .22*** .17** .27***
Spectral ◦ Chroma Subband flux ◦ Chromagram .30*** .30*** .31*** .39***
Spectral ◦ Tonal Subband flux ◦ Key strength .29*** .28*** .30*** .38***
Spectral ◦ Tonal Subband flux ◦ Tonal centroid .31*** .31*** .35*** .42***
Rhythmic ◦ Chroma Fluctuation patterns ◦ Chromagram .44*** .37*** .43*** .49***
Rhythmic ◦ Tonal Fluctuation patterns ◦ Key strength .37*** .31*** .41*** .45***
Rhythmic ◦ Tonal Fluctuation patterns ◦ Tonal centroid .40*** .33*** .44*** .49***
Chroma ◦ Tonal Chromagram ◦ Key strength .22*** .20*** .25*** .26***
Chroma ◦ Tonal Chromagram ◦ Tonal centroid .23*** .21*** .28*** .28***
Tonal ◦ Tonal Key strength ◦ Tonal centroid .17** .15** .22*** .22***

**p < .01; ***p < .001.
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