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ABSTRACT

Burunat Pérez, Iballa

Brain integrative function driven by musical training during real-world music
listening

Jyvéskyld: University of Jyvaskyld, 2017, 74 p. (+ included articles)

(Jyvaskyla Studies in Humanities)

ISSN 1459-4323; 302 (nid.) ISSN 1459-4331; 302 (PDF)

ISBN 978-951-39-6908-0 (nid.)

ISBN 978-951-39-6909-7 (PDEF)

The present research investigated differences in the brain dynamics of
continuous, real-world music listening between listeners with and without
professional musical training, using functional magnetic resonance imaging
(fMRI).

A replication study was aimed at validating the reliability of the naturalistic
approach to studying brain responses to music, wherein the brain signal and
the acoustic information extracted from the musical stimulus were correlated.
After a successful replication, a series of three studies dealt with differences in
integrative brain function during music listening between musicians and
nonmusicians. Findings (a) emphasized the crucial role of the distinctive
postural and kinematic symmetry in instrument playing on the symmetry of
brain responses to music listening, evidencing a crossmodal transfer of
symmetry from sensorimotor to perceptual processing systems; (b) provided
novel evidence for increased cerebello-hippocampal functional coupling in
musicians as a function of musical predictability compared to nonmusicians,
likely mediated by action simulation mechanisms; (c) highlighted differences in
pulse clarity processing between groups and uncovered an associated
action-perception network overlapping with areas previously observed to
tightly interact in rhythm processing.

In conclusion, the present research findings, obtained using a naturalistic
auditory stimulation paradigm, will advance the understanding of brain
integrative function during real-world music listening, in listeners with and
without musical expertise. Particularly, this thesis has implications for a better
understanding of training-induced crossmodal reorganization. The new
evidence brought by the present findings will hopefully guide the generation
and development of future testable hypotheses.

Keywords: functional magnetic resonance imaging (fMRI), functional
connectivity, functional symmetry, musical training, predictive listening,
Independent Component Analysis (ICA), pulse clarity.
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1 INTRODUCTION

Everybody knows that the ability of a pianist [...] is unreachable for the untrained
human, as the acquisition of new skills [...] requires many years of mental and mus-
cular gymnastics. To fully understand this complex phenomenon, it is necessary to ac-
cept that, in addition to the strengthening of pre-established organic pathways, new
pathways are created by means of branching and progressive growth of dendritic rami-
fications and nerve endings.

—S. Ramon y Cajal, Textura del Sistema Nervioso del Hombre y los Vertebrados
(translated by the author)

Music provides an invaluable framework for attempting to understand the hu-
man brain. In this way, the study of the brain and the study of music can be
mutually revealing (Zatorre, 2005). Music is not only a universal constant in
human societies, but it is also old in evolutionary terms (Wallin & Merker, 2001).
However, because only a minority of individuals develop music-related exper-
tise through years of sensory-motor training — often with an early onset in life —
music has a privileged role in the study of brain adaptation (Peretz & Zatorre,
2003).

The growing interest in studying both the brain mechanisms involved in
processing music in humans and the impact of musical training on cerebral and
cerebellar function, has materialized over the last twenty years in a scientific
body of evidence that supports the existence of structural and functional cere-
bral characteristics in musicians. These characteristics seem to generally corre-
late with the intensity and onset age of musical activities, thus supporting the
hypothesis that structural and functional neuroplastic processes emerge as a
consequence of long-term musical training. For this reason, musicians represent
an ideal population to study experience-driven brain adaptation by investigat-
ing the relationship between brain dynamics and behaviour.

Comparable to how physical exercise impacts and shapes the body, music
is, in words of Kraus and Chandrasekaran (2010), a resource that tones the brain
for auditory fitness. Thus, music training primes the brain for processing musical
sounds, thereby rendering the musician’s brain a model of neuroplasticity
(Peretz & Zatorre, 2005; Zatorre, 2005; Zatorre, Chen, & Penhune, 2007).
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Why music training as a model to understand neuroplasticity?

SOCRATES: And therefore, I said, Glaucon, musical training is a more potent in-
strument than any other, because rhythm and harmony find their way into the inward
places of the soul, on which they mightly fasten.

—Plato, The Republic

First, the differences between natural and artificial training regimes should be
stressed. While natural training regimes (e.g., musical training, video games
and athletics) involve simultaneous engagement of tasks which demand highly
parallel processing across domains (Green & Bavelier, 2008), such a holistic
mode of learning is typically missing in artificial training programs, which sep-
arate the specific skills into blocks or subdomains to be trained in isolation. Alt-
hough this mode of learning leads to rapid acquisition, it is detrimental during
the retention phase and impairs transfer effects across tasks (Ahissar &
Hochstein, 2004; Schmidt & Bjork, 1992).

Musical training as a model of a natural training regime seems to be a su-
perior model for brain plasticity compared to other models available (e.g., mo-
tor or visual learning), especially due to its intricate complexity at varying lev-
els of scale. As discussed in Moreno and Bidelman (2014), producing music in-
volves both motor and visual engagement, thus sharing similar advantages
with alternate models. They argue, however, that musical training has unique
properties in terms of its breadth and permeation throughout the nervous sys-
tem, which makes it difficult to find comparable activities. Perceiving and espe-
cially producing music constitutes a multimodal phenomenon that requires
simultaneous processing and integrating of auditory, visual, somatosensory,
and motor information, thus engaging several systems beyond the auditory
domain (Christo Pantev, Lappe, Herholz, & Trainor, 2009; Wan & Schlaug, 2010;
Zatorre et al., 2007). Moreover, the interplay between perceptual and action sys-
tems is particularly strong in music. The motor system, as a result of intensive
musical practice, activates not only during the presentation of acoustic stimuli
(Chen, Penhune, & Zatorre, 2008), but also during visual presentation of musi-
cal actions (Hasegawa et al., 2004; Haslinger et al., 2005), and manifests in tight-
ly coupled substrates of action and perception (Bangert et al., 2006; Haslinger et
al., 2005; Haueisen & Knosche, 2001; Herholz & Zatorre, 2012; Zatorre, Chen, &
Penhune, 2007).

Zatorre (2005) calls music ‘the food of neuroscience’, and exemplifies this
point by alluding to how simply ‘humming a familiar tune” enforces complex
auditory pattern-processing mechanisms, attention, memory storage and retrieval, mo-
tor programming, sensory-motor integration, and so forth, which makes music an
ideal device to study wide-ranging topics in neuroscience from motor-skill
learning to prediction, imagery, and even emotion, providing a window to ex-
plore the brain-behaviour connection.

Although vision requires comparable skills to those of music, and may
represent an equivalent domain in terms of demands for the study of brain ad-
aptation (e.g., perceptual acuity and pleasurable outcomes; Gardiner, Fox,
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Knowles, & Jeffrey, 1996), recent longitudinal training studies indicate robust
advantages of music over visual arts training (Moreno et al., 2009; Moreno,
Bialystok, et al., 2011; Moreno, Friesen, & Bialystok, 2011). These studies posi-
tively relate musical —but not visual — training with enhances beyond the audi-
tory domain (speech), tapping into the visual modality and executive functions
(working memory, attention, and planning; Moreno, Bialystok, et al., 2011;
Moreno, Friesen, et al., 2011). As stated by Moreno and Bidelman (2014), it is
possible that limitations exist in the extent to which the visual system is able to
transfer skills to other cognitive abilities, perhaps because auditory skills are
developed very early in life compared to visuo-motor skills (Kakebeeke,
Locatell, Rousson, Caflisch, & Jenni, 2012). Empirical evidence furthermore in-
dicates that visual experience-induced changes are moderate (Op de Beeck &
Baker, 2010). Alternatively, visuo-spatial skills may need a more intensive or
longer training period to significantly influence behavioural skills (Moreno and
Bidelman, 2014).

In summary, studying musicians’ brains constitutes an advantageous op-
portunity to investigate neuroplasticity, particularly in the auditory and motor
domains.

1.1 Music processing in musicians and nonmusicians

A number of neuroimaging studies have indicated that brain adaptations in
terms of information processing and brain structure may occur in distributed
regions of the brain in accordance with the musical training history of the sub-
ject. This chapter includes a compendium of some of these findings.

Functional adaptations: Use-dependent plasticity in musicians (violin and
trumpet players) has been observed in terms of enhanced brain representations
for timbre-specific tones (Pantev, Roberts, Schulz, Engelien, & Ross, 2001). For
instance, early onset in musical training (piano) is associated with stronger cor-
tical auditory representations for piano as opposed to pure tones (Pantev et al.,
1998). Likewise, string players exhibit more extensive contralateral somatosen-
sory cortical representations of their left-hand fingers than nonmusicians (Elbert,
Pantev, Wienbruch, Rockstroh, & Taub, 1995; Schwenkreis et al., 2007), an effect
which is larger for those string players with an early onset age of practice. In
support of this, musicians’ motor areas seem to undergo extensive plastic
changes in response to transcranial motor stimulation (TMS) compared to non-
musicians (Rosenkranz, Williamon, & Rothwell, 2007). At the brainstem level,
musicians already show larger neural responses than controls (Musacchia, Sams,
Skoe, & Kraus, 2007; Wong, Skoe, Russo, Dees, & Kraus, 2007). They also exhibit
a mismatch negativity (MMN) in response to tones mistimed by only 20 ms
(Riisseler, Altenmitiller, Nager, Kohlmetz, & Miinte, 2001). Pianists show both
balanced motor cortical representations, indicative of a more symmetrical mo-
tor cortex organization, and inhibitory interactions between hemispheres
(Chieffo et al., 2016). This symmetry also concerns the visual domain, as musi-
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cal training seems to be associated with increased functional symmetry in the
interhemispheric transfer time and latency of visual responses (Patston, Kirk,
Rolfe, Corballis, & Tippett, 2007). Furthermore, musical training facilitates a
tighter auditory-motor coupling at the cortical level during rhythm processing
(Chen, Zatorre, & Penhune, 2006; Grahn & Rowe, 2009). For instance, musicians
show greater activation in frontocortical areas than controls during rhythm
production (Chen, Penhune, & Zatorre, 2008). In addition, resting state findings
indicate a significant increase in functional connectivity among motor, auditory,
somatosensory, and visual areas (Luo et al., 2012). Further evidence shows the
existence of a musicianship-specific network of frontocortical, temporal, and
secondary motor areas coactive during both passive listening and key pressing
on a mute keyboard (Bangert et al., 2006).

Anatomical adaptations: Grey matter volume in the anteromedial Heschl’s gyri
has been observed to be larger in musicians than in nonmusicians, and to corre-
late with musical aptitude (Schneider et al., 2002). Likewise, musicians show
increased grey matter volume in auditory, motor, and visual processing areas
(Gaser & Schlaug, 2003), after only fifteen months of musical training in child-
hood (Hyde et al., 2009). For cortical motor regions, musicians exhibit more ana-
tomical symmetry compared to controls (Amunts et al., 1997). Further evidence
indicates consistent instrument-specific anatomical differences within the right-
left precentral gyrus in musicians (Bangert & Schlaug, 2006). In keeping with
this, differences in the anatomy of the precentral gyrus can predict the kind of
instrument played (based on different manual dominance; Bangert & Schlaug,
2006). With regard to the cerebellum, its volume is positively associated with
the intensity of instrumental practice in musicians (Hutchinson, Lee, Gaab, &
Schlaug, 2003). Moreover, the anterior part of the corpus callosum (CC), which
connects mainly motor regions, is greater in early onset musicians (Lee, Chen, &
Schlaug, 2003; Schlaug, Jancke, Huang, Staiger, & Steinmetz, 1995). Along simi-
lar lines, early onset musicians possess larger ventral premotor cortices (vPMC),
which has been associated with improved auditory-motor synchronization per-
formance (Bailey, Zatorre, & Penhune, 2014).

The development of Diffusion Tensor Imaging (DTI) has made feasible the
study of white matter tracts, revealing training-related axonal differences be-
tween musicians and nonmusicians. In this regard, intermanual activity for in-
strument playing has an effect on fractional anisotropy (FA), a measure of the
directionality of water thought to reflect fibre density, axonal diameter, and
white matter myelination, within the anterior corpora callosa of musicians
(Schmithorst & Wilke, 2002). Similarly, there exists an association between early
musical training and FA values in musicians for the posterior corpus callosum
(Steele, Bailey, Zatorre, & Penhune, 2013). Supporting this, specific instru-
ment-training regimes may result in differences between callosal white matter
organization and interhemispheric inhibition (Vollmann et al., 2014). However,
findings on the effect of intensive musical training on white matter have not
been consistent. For instance, two studies have reported a positive correlation
between musical training and FA in the corticospinal tract (Bengtsson et al.,
2005; Han et al., 2009), indicating that it increases with the length of the training
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if this occurs within a sensitive period of development (Bengtsson et al., 2005).
This finding was inconsistent with different reports (Imfeld, Oechslin, Meyer,
Loenneker, & Jancke, 2009; Schmithorst & Wilke, 2002) which have indicated
the opposite trend in musicians (lower FA) in the same region. An explanation
for this discrepancy could lie in the degree of heterogeneity in terms of instru-
ments with different dexterity requirements played by the musician group in
the latter study (Merrett, Peretz, & Wilson, 2013; Ullén, 2009).

In brief, brain differences between musicians and nonmusicians at the
group level can be detected in auditory, motor (including primary motor and
premotor cortices and cerebellum), and somatosensory areas, in addition to
specific white matter bundles. Importantly, this training-induced functional
reorganization may be observed through an enlarged, reduced, or shifting sur-
face representation, which may indicate recruitment of more neurons, automa-
tization of function, or the use of new neural processes or the setting of new
representations, respectively (Habib & Besson, 2009).

1.2 Theoretical background

Because the experience of music strengthens a direct learned mapping between
movement and sound, this research has an emphasis on theories that stress the
embodied (i.e., grounded in perception and action; Barsalou, 2010) nature of
cognition, such as embodied cognition, motor cognition, common coding theory,
and (action-based) predictive coding, which relate in a general sense to the de-
stabilizing of the mind-body antagonism. These concepts rely on the notion that
sensory and cognitive systems evolved to support action, hence being dynami-
cally coupled.

From the perspective of embodied cognition, sensory-motor evolution
and cognitive evolution are not dissociable: this distinction is an arbitrary and
obstructs the understanding of brain function and evolution (Barton, 2012).
Both environment and body constitute the external informational structures
used by the ‘cognitive’ system to complement internal representations
(Barsalou, 2010; Gibbs, 2005). For instance, sensory-motor information can have
an impact on perceptual, memory, and linguistic tasks (Barsalou, 2008; Wilson
& Knoblich, 2005) and, similarly, manipulation of bodily states can affect deci-
sion making (Niedenthal, Barsalou, Winkielman, Krauth-Gruber, & Ric, 2005).
Even abstract and metaphorical concepts are grounded in bodily, physical ex-
perience (Wilson, 2002).

A similar notion is that of motor cognition, which states that the motor
system participates in high-level mental processes. Additionally, how we inter-
pret others” actions is functionally coupled with our own production and per-
ception of the same actions, a phenomenon that relies on common neural net-
works (Jackson & Decety, 2004). Thus, it emphasizes the processes of recogniz-
ing, anticipating, predicting and interpreting the actions of others.

Common coding theory (Prinz, 1997), inspired by the ideomotor principle
of voluntary action (James, 1890; imagining an action prompts us to execute it),
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suggests that perceiving is a way of acting. As a consequence of performing a
movement, a bidirectional association is forged between the motor pattern from
which it originates, and the sensory effects that it produces (Hommel, 2004),
and thus the same mental processes are shared for both observing and perform-
ing actions.

Predictive coding theory (Friston, 2002; Friston & Kiebel, 2009; Friston,
2005, 2009, 2010; Rao & Ballard, 1999) is a theory for understanding efficient
coding and redundancy reduction in the nervous system. It understands the
brain as an inference engine that optimizes probabilistic representations of the
perceived changing sensory environment. It does so by integrating top-down
expectations and bottom-up stimulus information across multiple hierarchical
levels (Friston, 2005; Friston & Kiebel, 2009; Rao & Ballard, 1999). Action-
oriented predictive coding emphasizes motor intentions as elicitors of the sen-
sory results predicted by our brains (Clark, 2013). In other words, the motor
system is thus actively engaged to fulfil prior expectations about the environ-
ment (Gebauer, Kringelbach, & Vuust, 2015).

Each of these theories emphasizes how humans understand all signals in
terms of motor actions. In music, this becomes relevant given the patent connec-
tion between music and motor function. Johnson (1987) stresses five “action
aspects” of dealing with music: (1) the sound producing actions proper, (2) the
effects of these actions, (3) the possibility of imagining the sonorous unfolding
as a kind of movement through time, (4) the mental simulation of this move-
ment in terms of bodily based image schemata and (5) the movements which
can be possibly induced by the sounds. Menin and Schiavo (2012) articulate this
point quite effectively: ” A skilled guitarist might be unable to say where to put
her/his finger to perform a solo, but s/he can use the motor knowledge of the
fingers to reconstruct the actual set of notes played, by just putting the hand on
the strings. We believe that this sensory-motor process not only represents the
basis of musical understanding, but it can also shed light on the notion of musi-
cal affordance, relying on a sub-cognitive, pre-linguistic, intrinsically motor
form of intentionality”.

1.3 Naturalistic fMRI

1.3.1 FMRI

Functional Magnetic Resonance Imaging (fMRI; Kwong et al., 1992; Ogawa et
al., 1992) is among the main non-invasive techniques that enables the study of
the brain in action in living humans. FMRI measures the relative amount of ox-
ygenated hemoglobin to deoxygenated hemoglobin in the blood, which is in-
terpreted as an indirect measure of neural activity. Animal studies have provid-
ed strong evidence in supporting this relationship between neural activity (local
field potentials) and measured fMRI signal (Logothetis, Pauls, Augath, Trinath,
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& Oeltermann, 2001). However, the coupling between neural activity and blood
flow remains to be fully understood.

The statistical analysis of fMRI data most commonly aims to (a) localize
brain areas activated by the task of interest, or (b) investigate relationships be-
tween brain areas. In the first case, the general linear model (GLM) is the most
frequently used statistical approach, and is useful in comparing different tasks
or events, or to map brain activity related to the performance of a task of inter-
est. This analysis is “massive univariate”, which means that a separate GLM
analysis is performed at each voxel, first assuming independence between
voxels but subsequently dealing with the actual dependency between voxels
through means such as random field theory (RFT). In the case of studying rela-
tionships between brain areas, connectivity studies have been of increasing in-
terest in recent years. These attempt to explore how different brain regions in-
teract, and to which extent these interactions depend on not only the experi-
mental tasks (Lindquist & Wager, 2014), but also during rest. During the so-
called resting-state fMRI (rsfMRI), brain responses are acquired while partici-
pants are not performing any specific task. Coactivation between brain areas
during rest is believed to reflect functional communication between brain re-
gions (van den Heuvel & Pol, 2010).

Several studies have investigated the degree of reliability of fMRI findings
(Specht, Willmes, Shah, & Jancke, 2003), suggesting ways to improve fMRI reli-
ability (Bennett & Miller, 2010), such as (a) increasing the signal-to-noise (SNR)
ratio and contrast-to-noise (CNR) ratio of the acquisition, (b) reducing inter-
subject differences in cognitive state, and (c) increasing the statistical power of
the experiment. It is also important to remark that validity is not guaranteed by
reliability. A controlled experiment yields more reliable brain responses than
one with increased ecological validity, but this is trading-off validity for reliabil-
ity. Thus, at the expense of decreasing reliability, by using naturalistic fMRI
paradigms the researcher may increase validity (Hasson & Honey, 2012; Hasson,
Malach, & Heeger, 2010).

Compared to other neuroimaging techniques, fMRI has some main ad-
vantages: (1) it is noninvasive: it does not require surgery or exposure to radia-
tion; (2) it provides high-resolution images of the different brain tissues, allow-
ing for high precision measurements of functional activation of subcortical are-
as that are almost invisible to other non-invasive techniques such as magne-
toencephalography (MEG), electroencephalography (EEG) or functional near-
infrared spectroscopy (fNIRS). The main disadvantage of fMRI is its lower tem-
poral resolution (1-3 s) compared to techniques like EEG, or MEG (in the order
of milliseconds), which is a result of the trade-off between spatial and temporal
accuracy. Another criticism relates to hemodynamics as the indirect measure of
neuronal activity on which fMRI relies. Lastly, another disadvantage of fMRI of
particular relevance to the study of auditory function in the brain is the acoustic
noise produced by the scanner (Formisano, Moerel, & Bonte, 2015). The most
recent scanner models produce noise at around 80 dB of loudness. Measures
can be taken to reduce the noise, such as noise-reducing headphones or foam
around the patients” head. Finally, it is important to stress that any fMRI exper-
iment is as good as its hypothesis, design and analysis, and to always keep in
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mind what research questions can be addressed by fMRI (Aue, Lavelle, &
Cacioppo, 2009).

1.3.2 Naturalistic paradigm

The fMRI experimental design refers to the temporal organization structure in
which participants perform cognitive or behavioural tasks during the fMRI ex-
periment. The optimal design will depend on many factors, such as the nature
of the task, the signal-to-noise ratio over time, and the specific comparisons
made. These factors are directly related to the efficacy of the subsequent statisti-
cal analysis. Depending on the way stimuli are presented, traditional fMRI de-
signs include blocked designs and event-related designs, where the main idea is
to space the experimental conditions into intervals or blocks, and determine the
differential activity between the two.

Controlled auditory paradigms and simple stimuli have been used tradi-
tionally in music neuroscience at the expense of ecological validity. In these
highly controlled experiments the use of parameterized stimuli has been crucial
in isolating the relevant dimensions from the multidimensional natural phe-
nomena. More recently, however, neuroscientists have attempted to capture
and investigate how the brain reacts to real world phenomena using naturalistic
or free-behaviour tasks, towards further understanding of how the brain per-
ceives complex, continuous multidimensional stimuli (Hasson, Nir, Levy,
Fuhrmann, & Malach, 2004). Traditional and naturalistic approaches are not
mutually exclusive.

Music is a rich, complex multidimensional phenomenon that unravels in
time. When listening to it, all acoustic elements are processed in parallel and
integrated into coherent percepts over time, producing a meaningful experience
(Bregman, 1994; Johnson, 1987). This integration process considers the interac-
tions between constituents, which are missing when processing static, simple
stimuli under unimodal stimulation. Notably, ecological stimulation generates
widespread activity beyond the sensory domain, such as motor-related regions,
which are absent under high controlled paradigms (Bartels & Zeki, 2004a;
Hasson et al., 2004). Thus, a transition to mapping brain activity using natural-
istic stimuli has been fostered by the recognition that the natural world bears
little resemblance to a highly controlled experimental setting, and that simple,
static, unimodal stimuli cannot capture the richness of dynamic, natural phe-
nomena (Maguire, 2012).

The dynamic quality of music is often overlooked in highly controlled lab
settings. However, our adaptive brains evolved in a complex auditory scene
environment, assimilating complex tones, segregating and reacting to them dy-
namically. To access specific aspects of the music listening experiencing it is
crucial to examine how this experience unfolds over time in naturalistic condi-
tions. Furthermore, by using a naturalistic approach to studying the brain there
is no need to rely on participants” ability to self-report, which may further con-
strain the very brain processes under investigation.

Investigating music perception in increased true-to-life environments is
not an easy undertaking, and comes at the cost of analysis complexity. With the
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recent developments in the field of Music Information Retrieval (MIR), new
techniques allow the extraction of meaningful acoustic features from the musi-
cal stimuli facilitating the use of natural stimuli to investigate how the brain
processes music. Similar computational approaches have been successfully
used during naturalistic movie-viewing experiments, evidencing the ecological
importance of such approaches (Hasson, Furman, Clark, Dudai, & Davachi,
2008; Hasson et al., 2004; Hutcherson et al., 2005). Consequently, naturalistic
paradigms are becoming more technically feasible for studying human brain
functions. In addition, for the analysis of naturalistic fMRI data, participants’
behavioural responses can be subsequently recorded to retrospectively analyze
their data, such as with a passive listening fMRI scanning. Alternatively, pat-
terns in brain activity can be found by employing computational feature extrac-
tion (Alluri et al., 2012) or mathematical algorithms such as multi-voxel pattern
analysis (MVPA; Norman, Polyn, Detre, & Haxby, 2006), Independent Compo-
nent Analysis (ICA; McKeown & Sejnowski, 1998), or complex network analysis
(Bullmore & Sporns, 2009).

The increasing use of naturalistic paradigms in neuroscience demonstrates
that true-to-life environments can yield reliable results, with increased ecologi-
cal validity.



2 RESEARCH AIMS

While traditional mass-univariate fMRI analyses target functional segregation
(also called differentiation), i.e., the relative independence of brain regions for
some aspect of a function, more recent approaches investigate integration,
which refers to the deviation from independence in large groups of neural ele-
ments (Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006). Because the corti-
cal substrate underlying a single function may require multiple other contribu-
tions which are mediated by functional integration among them, functional seg-
regation is only meaningful in the context of functional integration and vice versa, as
put by Friston (2011).

In music neuroscience, connectivity studies have provided new insights
into the relationship between integrative brain function and musical training.
By exploring interactions and internal dependencies within the functional brain
structure, such studies provide a complementary knowledge to that obtained
using segregation measures. However, often the materials and settings used are
not naturalistic. The main motivation of this research work is thus to investi-
gate integrative brain function in response to naturalistic, online listening of
complex music in listeners with and without professional musical training us-
ing fMRI, while trying to understand whether differential brain activity may be
accounted for by brain adaptations, as a consequence of intensive musical train-
ing. Special emphasis is laid on the sensorimotor aspect of music listening. In
the naturalistic paradigm used, participants have no specific task but to atten-
tively listen to continuous, real-world pieces of music of different genres (see
Figure 1 for a schematic view of the paradigm). Such a laboratory environment
relies on both complex and realistic auditory material and setting, resembling
more closely real-world music listening contexts. This has the potential to in-
crease the validity of the findings over those of controlled approaches, which is
critical to modelling how the brain understands the world.
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FIGURE1  Schematic view of the naturalistic paradigm used.

Four studies are included in this thesis:

(I) Burunat, 1., Toiviainen, P., Alluri, V., Bogert, B., Ristaniemi, T., Sams, M., & Brattico, E.
(2016). The reliability of continuous brain responses during naturalistic listening to music. Neu-
rolmage, 124, 224-231. doi:10.1016/j.neuroimage.2015.09.005.

First, a replication study (I) was conducted to test the reliability of a previous
naturalistic approach by Alluri et al. (2012), which uncovered the neural corre-
lates of timbral, tonal, and rhythmic feature processing during music listening,
wherein brain and acoustic signal were correlated. The successful replication
supported the study of brain processes using naturalistic stimulation, increas-
ing the ecological validity of the findings. Using the same naturalistic fMRI da-
taset, a series of four studies followed, all of which dealt with differences in in-
tegrative brain function during music listening between musicians and nonmu-
sicians.

() Burunat, 1., Brattico, E., Puolivili, T., Ristaniemi, T., Sams, M., & Toiviainen, P. (2015).
Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music
Listening. PLOS ONE, 10(9), e0138238. doi:10.1371/journal.pone.0138238

This hypothesis-driven study (II) investigated connectivity by computing
whole-brain interhemispheric homotopic functional connectivity, which pro-
vides a measure of the functional symmetry of the brain responses. The aim
was to study group differences in the extent and location of the functional
symmetry as a function of musical training. Differences were expected in soma-
tosensory and motor control areas in agreement with the specific motor de-
mands of musicianship, which require a higher level of dexterity compared to
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nonmusicians. Differences between keyboard and string players were also in-
vestigated.

(111) Burunat, 1., Brattico, E., Hartmann, M., Vuust, P., Sirkamd, T., & Toiviainen, P (under
review). Music training predicts cerebello-hippocampal coupling during music listening.

This hypothesis-driven study (III) investigated differences in cerebel-
lo-hippocampal (CER-HIPP) connectivity between listeners with and without
musical training. These were hypothesized based on between-group differences
in predictive listening abilities. The hypothesis was based upon the evidence
that coupling between cerebellum and hippocampus occurs during accurate
spatio-temporal prediction of movements (Onuki, Van Someren, De Zeeuw, &
Van der Werf, 2015). Thus, in the context of music listening, differences in
CER-HIPP connectivity may result from differences in predictive listening
accuracy.

(IV) Burunat, 1., Tsatsishvili, V., Brattico, E., & Toiviainen, P. (under review). Coupling of action-
perception brain networks during rhythm processing: Evidence from region-of-interest-based

independent component analysis.

This data-driven study (IV) investigated differences in the processing of pulse
clarity between musicians and nonmusicians during music listening using a
region-of-interest (ROI)-based independent component analysis (ICA) approach,
with an additional comparison of results using the GLM approach. In (IV)
group differences in pulse clarity processing were hypothesized based on mu-
sicians” improved models of beat induction (Aschersleben, 2002; Drake, Penel,
& Bigand, 2000; Hove, Keller, & Krumhansl, 2007; Krause, Pollok, & Schnitzler,
2010; Repp, 2010; Repp & Doggett, 2007). Additionally, functional networks
sustaining pulse clarity processing were expected to overlap with corti-
cal-subcortical auditory-motor networks observed in previous studies on
rhythm processing.

Various statistical univariate and multivariate analysis methods and nu-
merical tools were used in this research, including GLMs, ICA, psychophysio-
logical interactions (PPI), kernel density estimation (KDE), unconstrained non-
linear optimization, Dice coefficient, Principal Component Analysis (PCA), and
permutation-based nonparametric procedures. The implementation of these
techniques relied on customized scripts developed by the authors in the Matlab
environment and thus standard neuroimaging analysis software packages
available in the market were not employed for the statistical inference of the
present findings.

The studies included in this thesis combine both theory- and data-driven
approaches. As put by Makeig et al. (1998), “[...] These two approaches are
complementary and mirror the exploratory and confirmatory aspects of scien-
tific investigation. Imaging studies driven by hypotheses derived from cogni-
tive psychology and related disciplines can at best support or refute currently
formulated psychological models. Counterintuitive or unanticipated time
courses of activation of localized brain areas are less likely to be discovered
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with such analysis methods”. Thus, the interaction of the two approaches
would drive the most fruitful scientific investigation, especially when attempt-
ing to understand complex phenomena.



3 STUDY SUMMARIES

The papers included in this thesis used a common fMRI dataset. It comprised
brain responses from listeners (18 professional musicians and 18 controls) ac-
quired while they listened to natural music. The criteria for musicianship was
for participants to have more than five years of music training, have finished a
music degree in a music academy, report themselves as musicians, and having
worked professionally as a performer. In the scanner, participants’ only task
was to attentively listen to the music delivered via high-quality MR-compatible
insert earphones while keeping their eyes open. The three musical pieces used
in the experiment were presented in a counterbalanced order. The pieces were
(a) Stream of Consciousness by Dream Theater; (b) Adios Nonino by Astor Pi-
azzolla; and (c) Rite of Spring (comprising the first three episodes from Part I:
Introduction, Augurs of Spring, and Ritual of Abduction) by Igor Stravinsky.
These are a progressive rock/metal piece, an Argentinian New Tango, and an
iconic 20th century classical work, respectively, thus covering distinct musical
genres and styles. All three selected pieces are instrumental and each of them
has a duration of about 8 minutes. For Study I, only the brain responses to the
Piazzolla stimulus were used, given the replication nature of the study, whereas
for studies II, I1I, and IV, brain responses to the three stimuli were concatenated
(this made a total of ~24 minutes worth of data). The purpose of such concate-
nation was to combine brain responses to stimuli representing a broad range of
musical styles to cancel out confounding effects that the specific type music
may exert on the results, rendering findings more generalizable (see Figure 1).

3.1 Study I: Reliability of the naturalistic listening paradigm

Motivation: Scientific findings and paradigms are of little use unless their va-
lidity is widely accepted: a stage in scientific research reached by demonstrating
that the methods in question produce useful results. The purpose of this study
was to aim at replicating previous results on naturalistic musical feature pro-
cessing in the brain to test the robustness of the paradigm used.
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The novel naturalistic fMRI paradigm in question was employed by Alluri
et al. (2012; in the following, “the original study”). It allowed them to predict
the temporal evolution of brain activations to musical features at a voxel level.
Low-level (timbral) and high-level (tonal and rhythmical) musical features were
observed to elicit large-scale neural responses in cognitive, motor and limbic
brain networks. Using an identical methodological approach, the same musical
stimulus (Adios Nonino by Astor Piazzolla) and a similar group of participants,
Study I aimed to quantify the replicability of previous findings. Figure 2 illus-
trates the experimental design of Study L.

ORIGINAL REPLICATION

Adios Nonino, by A. Piazzolla Adids Nonino, by A. Piazzolla
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FIGURE2  Experimental design of Study I (color online).

Methods: Participants” fMRI responses to the musical stimulus were correlated
voxelwise against the six time series of perceptually validated musical features
used in the original study, which had been computationally extracted from the
musical stimulus using MIR Toolbox (Lartillot & Toiviainen, 2007), and percep-
tually validated. These musical features were Fullness, Brightness, Timbral
Complexity, Activity, Pulse Clarity, and Key Clarity (see Alluri et al.,, 2012 &
Alluri & Toiviainen, 2010 for a detailed description on the procedures to obtain
these musical percepts). The similarity of results between the original study and
our present study was assessed by two approaches: (a) correlating the respec-
tive activation maps (via the intraclass correlation coefficient, ICC); and (b)
computing the overlap of active voxels between datasets at variable levels of
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ranked significance. The approach in (a) measured the similarity of the whole
extent of spatial activations by correlating the resulting continuous spatial maps
from the original and replicated experiments. The statistical significance of the
ICCs was estimated via a non-parametric approach based on permutation tests
(see 4.1.2). The approach in (b) entailed comparing a proportion of the top sig-
nificant voxels from each pair of compared maps by computing the Dice over-
lap coefficient (Dice, 1945) between them as shown in (1),

_XNy]

Sey = T 1

where X and Y denote the proportion of the most significant voxel in the origi-

nal and replication studies, respectively, and s., yields the ratio of intersected
voxels to the number of voxels in the evaluated set, normalized to the range

[0,1]. The significance of the resulting overlaps was assessed by generating a Ho
distribution of overlaps by means of permutation tests for each of the propor-
tions of brain volume compared (see 4.1.3).

Both (a) and (b) reliability measures are intraclass measures, which tackle
similarities between group-level measurements in two different participant
pools. Additionally, the way these measures are implemented avoids relying on
a predefined significance threshold (e.g., a cut-off Z-value) because the maximal
significance level obtained for each experiment can differ due to existing SNR
differences between scanners and variances related to the different group of
participants.

Results: The approach in (a) revealed significantly similar spatial activations for
the pair of maps related to the timbral features (Fullness, Timbral Complexity,
and Activity), while for the tonal (Key Clarity) and rhythmical (Pulse Clarity)
features it did not reach significance at the conventional alpha levels (see Figure
3). The approach in (b) allowed the identification of brain regions with the most
significant overlaps, i.e., the best replicable areas for each of the musical fea-
tures. The focus of highest reliability across all maps was observed within the
auditory cortices, except in the case of Key Clarity, for which the focus of relia-
bility was scattered. Overall, timbral features were more successfully replicated
than tonal and rhythmical ones, which may suggest more universal processing
mechanisms for the low-level musical features as compared to higher-level fea-
tures. These may be more dependent on more cognitive, top-down mechanisms
associated with larger participant-dependent variability in the hemodynamic
responses, which would reduce replicability.
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FIGURE3  Results of the ICC measure. The spatial maps represent the brain correlates of
each musical feature from the original and replication experiments. The ICC
and its significance value are indicated for each pair of maps.

3.2 Study II: Functional symmetry and musical expertise

Motivation: Study II was largely motivated by previous findings relating to an
enlarged anterior corpus callosum (CC) in musicians (Lee et al., 2003; Schlaug et
al., 1995) and on the enhanced somatosensory left-hand finger representation in
string players (Elbert et al., 1995). As callosal volume has been found to be a
predictor of interhemispheric transfer capacity (Jaencke & Steinmetz, 1994;
Witelson, 1985), and a positive relationship seems to exist between callosal area
and the number of fibres crossing through the CC (Aboitiz, Scheibel, Fisher, &
Zaidel, 1992), differences in callosal size may relate to differences in interhe-
mispheric functional connectivity. However, it is important to note that there is
no scientific consensus on the relationship between callosal size and interhe-
mispheric transfer capacity (Banich & Shenker, 1994; Pizoli, Shah, Snyder,
Shimony, & Limbrick, 2011; Reilly et al., 2013; Tyszka, Kennedy, Adolphs, &
Paul, 2011; Uddin et al., 2008; Wang, Dai, Gong, Zhou, & He, 2014). Further-
more, studies on interhemispheric communication in musicians and nonmusi-
cians are limited. Thus, we aimed to investigate functional symmetry differ-
ences as a function of musical training during music perception (naturalistic
music listening). Here functional symmetry denotes the degree of temporal
synchrony between brain responses occurring at equidistant areas along the
midline of the brain (also called “voxel-mirrored homotopic connectivity”; Zuo
et al., 2010). We hypothesized that musicians would exhibit more prominent
functional symmetry compared to nonmusicians, particularly within the motor
system. Similarly, we hypothesized keyboard players (N=8) to show increased
functional symmetry compared to string players (N=7), based on string players’
cortical representational asymmetry (Elbert et al., 1995; Schwenkreis et al., 2007).
Additionally, morphometric analyses of participants” CC were performed. Fig-
ure 4 illustrates the experimental design of Study II.
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FIGURE4  Experimental design of Study II.

Methods: Because the brain is not symmetrical, homotopic voxels are not nec-
essarily anatomically analogous. In order to make the claim for homotopic
symmetry stronger, participants’ brains were transformed using a spatial map-
ping derived from an optimization approach, so that

A= mgmingos [ BUGR) <P @

where a denotes the optimal parameters for f, a transformation which maps
the right hemispheric intensity values b(r(x)) onto their homotopic ones b(x),
with x representing a 3D location (z,y,z) in the left hemisphere (x€By), so that

the cost function yields the minimum error.

To obtain functional symmetry maps, each participant’s fMRI brain re-
sponses to music were correlated at every voxel with their hemispheric coun-
terparts. Fisher Z-transformed spatial maps were subjected to t-tests between
groups (directional unpaired two-sample t-tests; alpha = 0.01, one-tailed), to ob-
serve the brain areas where each of the groups showed significantly greater
symmetry over the other. The resulting differential maps underwent multiple
comparisons correction using a cluster-wise significance approach (see 4.1.4).
Pairs of homotopic voxels for which symmetry indices did not reach signifi-
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cance at the group level (Fisher's combined probability test; Fisher, 1925,
p < 0.0005, right-tailed) were discarded from the final maps.

Morphometric analyses of the CC were performed using the FreeSurfer!
image analysis suite. T-tests were performed to investigate a potential relation-
ship between participants” callosal sizes and their group membership.

Results: Morphometric results revealed that only musicians’” posterior callosa
were significantly larger compared to those of nonmusicians (see Figure 5). This
result is in disagreement with previous findings (Lee et al., 2003; Schlaug et al.,
1995), which reported to find a larger anterior, and not posterior, callosum for
musicians. Additionally, no relationship was found between callosal volumes
and functional symmetry.
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FIGURES5  Results of the morphological analyses of the corpus callosum.

As for the functional connectivity analyses, musicians showed stronger func-
tional symmetry than nonmusicians, but not vice versa. Musicians’ prominent
functional symmetry was located within somatomotor regions, and to a lesser
extent within visual, temporal and prefrontal cortices. Keyboardists” increased
symmetrical responses, compared to string players, were most extensively ob-
served in visual processing areas, followed by motor areas. In addition, string
players exhibited more functional symmetry than keyboardists in one small
area within the middle and superior frontal gyri (see Figure 6).

1 Available online at https:/ /surfer.nmr.mgh.harvard.edu
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FIGURE 6  Symmetry profiles for the group comparisons. Abbreviations: MUS: musi-
cians; NMUS: nonmusicians; KEY: keyboard players; STR: string players;
PostCG: postcentral gyrus; PCL: paracentral lobule; PreCG: precentral gyrus;
PCUN: Precuneus; FFG: fusiform gyrus; ITG: inferior temporal gyrus; TPOm-
id: temporal pole (middle temporal gyrus); ORBinf: orbitofrontal cortex (in-
ferior frontal gyrus); TPOsup: temporal pole (superior temporal gyrus); CAL:
calcarine fissure and surrounding cortex; DCG: median cingulate and
paracingulate gyrus; MOG: middle occipital gyrus; CUN: cuneus; PCUN:
precuneus; SOG: superior occipital gyrus; FFG: fusiform gyrus; SPG: superior
parietal gyrus; PostCG: postcentral gyrus; PCL: paracentral lobule; PUT: pu-
tamen; CAU: caudate nucleus; MFG: middle frontal gyrus; ORBmid: orbito-
frontal cortex (middle frontal gyrus); SFG: superior frontal gyrus; ORBsup:
orbitofrontal cortex (superior frontal gyrus).

Because the increased symmetry in musicians was mainly observed within the
somatosensory and motor systems, findings are consistent with the specific mo-
tor demands of musicianship (Hyde et al., 2009), requiring a higher degree of
dexterity in musicians compared to nonmusicians. The higher symmetry of
keyboardists in mainly visual areas can be understood as resulting from the
demands of acquiring visual information during score reading for both hands,
while simultaneously monitoring their synchronized movements.

3.3 Study III: Cerebello-hippocampal connectivity

Motivation: Musical experience is crucially linked to prediction (Gebauer et al.,
2015; Huron, 2006; Maidhof, Vavatzanidis, Prinz, Rieger, & Koelsch, 2010;
Meyer, 1956, Narmour, 1990; Rohrmeier & Koelsch, 2012; Schenker, 1935;
Schoenberg, 1978; Vuust, Ostergaard, Pallesen, Bailey, & Roepstorff, 2009), and
musicians exhibit stronger brain responses to expectation violations in musical
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contexts compared to controls (James, Britz, Vuilleumier, Hauert, & Michel,
2008; Koelsch, Jentschke, Sammler, & Mietchen, 2007; Koelsch, Schmidt, &
Kansok, 2002; Oechslin, Van De Ville, Lazeyras, Hauert, & James, 2013; Vuust et
al., 2011; Vuust, Brattico, Seppédnen, Né&atdnen, & Tervaniemi, 2012). A recent
study by Onuki et al. (2015) found connectivity between posterior cerebellum
and left hippocampus when participants were predicting motor sequences fol-
lowing visual cues. This study investigates whether this network exists in the
context of music listening in musically trained and untrained individuals, and
in particular how the degree of CER-HIPP coupling depends on the predictabil-
ity of the music. A stronger CER-HIPP coupling in musicians compared to
nonmusicians could indicate improved predictive listening accuracy on the ba-
sis of action simulation mechanisms (i.e., during listening, musicians may be
mentally simulating sound-producing actions). This simulation would be facili-
tated via strengthened coupling between produced and heard sounds through
life-long instrument practice, which in turn would aid in generating predictions
about the future course of the perceived sounds (Pezzulo, Candidi, Dindo, &
Barca, 2013; Sebanz & Knoblich, 2009; Wilson & Knoblich, 2005). Figure 7 illus-
trates the experimental design of Study III.

music predictability ‘

FIGURE7  Experimental design of study III.

Methods: Functional connectivity was measured between four seed regions
within the bilateral hippocampus (along an anterior-posterior gradient accord-
ing to the uncus) and the cerebellum. The seeds represented the averaged he-
modynamic activity within each bilateral hippocampal division (see Figure 8).
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FIGURE 8  Hippocampal division used for the PPI analyses.

In addition, an information theory-based measure of the perceptual predictabil-
ity of the music was obtained by means of a perceptual experiment to conduct
second-order functional connectivity analyses. This measure described for each
group the moments with high information content? in the music, found at seg-
ment boundaries, after which upcoming auditory events were hardest to pre-
dict (cf. Cohen, Adams, & Heeringa, 2006; Narmour, 1990; Pearce, Ruiz, Kapasi,
Wiggins, & Bhattacharya, 2010; Pearce & Wiggins, 2006; Saffran, Johnson, Aslin,
& Newport, 1999). Thus, this variable made it feasible to conduct PPI analyses
to evaluate whether CER-HIPP connectivity was mediated by the degree of
predictability of the music. PPl analyses are task-dependent connectivity
analyses, which allow the study of how brain regions interact in a task-
dependent manner (Friston et al., 1997). PPI measures how connectivity is af-
fected by an external (psychological) variable, i.e., how the presence or absence
of it modulates the connectivity. The statistical model for PPI is the multiple
linear regression

X =X, X gy fi+ [ngpG] - Ba + €, (3)

where x, denotes the physiological responses (the fMRI signal at a seed region,

here the HIPP seed), g denotes the psychological variable (here the predictabil-
ity of the music) convolved with a canonical hemodynamic response function
(HRF), x, x g represents thus the psychophysiological interaction term be-
tween the HIPP seed activity and the predictability of the music (see Figure 9),
x, denotes the brain responses at each voxel within the cerebellum, B. denotes

2 The information content of an event is inversely proportional to its probability, and
thus it denotes its unexpectedness (Mackay, 2003).
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the beta parameter estimates corresponding to the PPI term; f3; is a matrix of

the beta estimates corresponding to x, and g, as confounding variables, and

other potential covariates of no interest (G); and e, is the error term. Thus, the
PPI term represents the explanatory variable in a multiple linear regression, and
the inclusion of x;, and g as nuisance regressors guarantees any confounding

effect induced by their variability alone to be ruled out. Cerebellar areas in
which activity is best predicted by the PPl term indicate areas with strongest
correlation with the hippocampal seed as a function of the predictability of the
music. The Z-transformed PPl beta parameter estimates were compared be-
tween groups by means of t-tests (alpha =0.01, one-tailed), and the resulting
maps were cluster-wise thresholded (see 4.1.4). Additional correlation analyses
tested a potential relationship between the duration of the musical training and
the predictability-driven functional connectivity.
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FIGURE9  Example of creation of a PPI term.

Results: Overall, statistical analyses revealed that musicians exhibited increased
and more extensive CER-HIPP coupling than nonmusicians during segments of
the music with low information content. In other words, musicians exhibited a
greater effect of music predictability on the CER-HIPP network than nonmusi-
cians. Specifically, this increased predictability-driven connectivity was ob-
served between the posterior CER and all HIPP seeds except for the right poste-
rior HIPP seed (see Figure 10). The fact that the areas involved represent cogni-
tive-related CER regions in the posterior lobe, implicated in higher-level tasks
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(Stoodley & Schmahmann, 2009), is in keeping with the notion that a cognitive
aspect—rather than a motor one—underlies the predictive component of the
CER-HIPP coupling. Moreover, the musicians’ network overlapped with find-
ings by Onuki et al. (2015), whose network comprised posterior CER and left
HIPP. On the other side, nonmusicians” predictability-driven connectivity was
observed between right posterior HIPP and CER lobules IV-V (anterior lobe)
and VI (posterior lobe). Because the anterior lobe has not been associated in
previous prediction tasks (Keren-Happuch, Chen, Ho, & Desmond, 2014;
Stoodly, Valera, & Schmahmann, 2012; Strick, Dum, & Fiez, 2009), nonmusi-
cians’ findings cannot be as clearly accounted for by previous work on cerebel-
lar predictive functions. Additionally, there was no overlap between nonmusi-
cians’ results and those by Onuki et al. (2015).

MUS > NMUS NMUS > MUS

\ Ant HIPP (L) Ant HIPP (R) Pos HIPP (L) | Pos HIPP (R)
2 $ ¢ d
o« vy % %

-th v .Crusl .Crusl\ Lob IV-V

superior view

coronal view

FIGURE 10 Results of the PPI analyses. Highlighted regions exhibited increased predict-
ability-driven CER-HIPP functional connectivity in musicians compared to
nonmusicians for three of the seeds, and in nonmusicians compared to musi-
cians for one of them. Abbreviations: Ant: anterior; Pos: posterior; HIPP: hip-
pocampus; L: left; R: right; MUS: musicians; NMUS: nonmusicians.

The stronger CER-HIPP coupling could hence be a marker of more accurate
predictive listening in musicians than in nonmusicians on the grounds of spa-
tio-temporal predictive mechanisms such as action simulation, allowing partic-
ipants to anticipate upcoming musical events. Additionally, musicians’ in-
creased predictability-driven connectivity was positively correlated with the
length of their musical training, supporting the role of musical training in driv-
ing the connectivity.
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3.4 Study IV: Pulse clarity processing

Motivation: Spontaneously moving to the beat may be one of the most, if not
the most, enthralling effects of music (Repp & Su, 2013; Zentner & Eerola, 2010).
Attempting to understand the brain processes sustaining rhythm perception
represents a major challenge in cognitive science (Clarke, 1989; Gabrielsson,
1987; Large & Palmer, 2002; Palmer, 1989; Repp, 1990). Neuroimaging evidence
indicates that the motor system (premotor cortex, supplementary motor area,
basal ganglia, and cerebellum) activates in response to rhythm perception, de-
spite the absence of manifest movement (Chen et al., 2008; Geiser, Notter, &
Gabrieli, 2012; Grahn & Brett, 2007; Schubotz, Friederici, & Von Cramon, 2000).
Recently, studies on brain connectivity have disentangled interactions between
activity in the auditory and motor systems during rhythm processing (Chen et
al., 2006; Grahn, 2009; Grahn & Rowe, 2009; Kung, Chen, Zatorre, & Penhune,
2013; Zatorre, Chen, & Penhune, 2007c), and also revealed musical training as
an enhancer of such auditory-motor connectivity at the cortical level (Chen et al.,
2008, 2006; Grahn & Rowe, 2009). However, rhythm processing and the impact
of musical training thereon need to be addressed in the context of complex, re-
al-life music, and explored by using methodological tools beyond the GLM, to
allow for the study of brain activity as modelled by the researcher. This study
employed ICA to decompose the brain activity into spatially independent but
functionally connected brain networks. Because ICA is a blind source separa-
tion technique, and therefore data-driven, it requires no prior model of the
temporal course of the hemodynamic activations, allowing for a more flexible
study of brain behaviour and a complementary technique more constrained
approaches such as GLM. In addition, ICA is becoming increasingly popular for
the analysis of fMRI signals acquired during the processing of complex stimuli
with reliable results (Bartels & Zeki, 2005; Bartels & Zeki, 2004b; Malinen,
Hlushchuk, & Hari, 2007; Wolf, Dziobek, & Heekeren, 2010).

The aim of Study IV was to investigate an aspect of rhythm processing,
namely clarity of the pulse, during naturalistic music listening. The hypotheses
proposed were that (a) group differences would exist in pulse clarity processing,
as suggested by musicians’ improved ability to internally keep the beat, as evi-
dent through tapping tasks (Aschersleben, 2002; Drake et al., 2000; Hove et al.,
2007; Krause, Pollok, et al., 2010; Repp, 2010; Repp & Doggett, 2007), and (b)
pulse clarity processing would be sustained by a cortical-subcortical auditory-
motor brain network, consistent with previous neuroimaging studies. Figure 11
illustrates the experimental design of Study IV.

Methods: Prior to ICA analysis, the dimensionality of participants” brain re-
sponses was first reduced at both the participant and group levels using PCA.
The dimensionally reduced data were then decomposed into independent com-
ponents (ICs) by means of ICA. The ICA model is defined as follows:

X = AS. 4)
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Here, X represents the time-by-voxel data matrix of observable brain signals, S
denotes an unknown time-by-voxel data matrix of source signals that are max-

imally independent, and A is an unknown mixing matrix. ICA estimates both

A and S by using only observations in the linear mixture X. The independence
assumption implies that the activations do not overlap in space (Lindquist, 2008;
see 4.2 for an extended description). Only brain responses from a ROI related to
rhythm processing observed in previous research were included in the analyses.
This ROI comprised auditory, somatomotor, basal ganglia, and cerebellar areas.
ICA was performed via ICASSO, a robust analysis tool that runs the IC algo-
rithm iteratively and clusters similar IC estimates (Himberg & Hyvarinen, 2003;
Himberg, Hyvarinen, & Esposito, 2004).

" A A Iy p
i s T 220 P b i A
W 'Jluﬂ\m\'l‘“-w’au\l‘\llf i l'quV‘J Nl J\u'ﬂ\" 'u'\‘lﬂ

~

.:G|CA3» RS;

"""""""""""""" i1

HAEME MR- L T

® @
L

- e e

R e—

N=10 N=20 N=30 N=100 {MODEL ORDER}

FIGURE 11 Experimental design of study IV (color online).

Because a model order (i.e,, number of sources) needs to be assumed prior to
source separation, a selection of ten different model orders (ranging from 10 to
100 in steps of 10) was chosen. From each model order, the IC that most signifi-
cantly correlated with a measure of the pulse clarity of the music was identified
and compared between groups. MIR Toolbox (Lartillot & Toiviainen, 2007) was
used to obtain the pulse clarity measure, which underwent a similar prepro-
cessing as applied to the fMRI data and further HRF convolution to conform
with the hemodynamic delay. This comparison was achieved by reconstructing
subject-specific IC temporal courses using the GICA3 algorithm (Erhardt et al.,
2011). For all pulse clarity-driven ICs, ICASSO stability indices (I;; Himberg et
al., 2004) were retrieved. The I; measures the compactness and isolation of a
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cluster of similar ICs extracted in each ICASSO run, and ensures that the ICs of
interest have high reliably, and thus are stable and robust (see Figure 12). Lastly,
the associated functional networks for each pulse clarity-driven IC were exam-
ined at the participant pool level, for which a one-sample Wilcoxon signed rank
test (alpha =0.001, cluster-wise corrected, FWE = 0.05) was used (see 4.1.4). In
addition, GLM analyses were conducted for comparison purposes by correlat-
ing the ROI brain responses against the measure of pulse clarity for both musi-
cians and nonmusicians. Figure 13 summarizes the ICA methodological pipe-
line.

FIGURE 12 ICASSO clustered IC estimates (showing the four first IC decompositions, i.e.,
model orders from 10 to 40). The selected pulse clarity-driven ICs are indicat-
ed in circles. Dots represent the IC estimates per each ICASSO run. I;values
indicate from 0 to 1 the cluster compactness (zero indicates an unreliable IC
estimate, one indicates the IC is stable; color online).

Results: ICA revealed significant differences in pulse clarity processing be-
tween musically trained and untrained participants, which were therefore likely
attributable to musical expertise. Examination of the IC time courses across
model orders indicated that nonmusicians’ brain activity was overall signifi-
cantly better predicted by the stimulus” pulse clarity than musicians’ (see Figure
14). This supports the notion that musicians possess improved models of pulse
clarity, which do not fit the model of pulse clarity derived from the acoustic
stimulus, and thus correlations would be expected to be low between musi-
cians’ responses and the temporal evolution of pulse clarity given by the model.
It can also be concluded that nonmusicians’ internal model of pulse clarity re-
lies on the stimulus” acoustical content to a greater extent than musicians’. The-
se inferences are in line with evidence stressing intense musical training as a
crucial factor that shapes beat processing.
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: TEMPORAL CONCATENATION

________________________ —

FIGURE 13  Pipeline of the different steps of the ICA approach used. Y denotes the sub-
ject data. Y* is the subject-level reduced data. X is the group PCA-reduced
matrix. A is the mixing matrix and S contains the N independent compo-

nents. S denotes the subject-specific IC spatial maps and R contains their
associated IC temporal courses. Abbreviations: M: number of participants; L:
size of subject level PCA reduced time dimension; K: number of fMRI time
points; V: number of voxels; N: number of estimated ICs.
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Examination of the different spatial components associated with pulse clarity
processing revealed consistent action-perception networks across model orders,
which seemed to reflect different functional hierarchies in the brain networks
responding to pulse clarity processing during continuous, real-world music
listening (see Figure 15). The observed networks at lower model orders com-
prised auditory-motor areas, while at higher model orders they recruited main-
ly auditory areas. The polarity of the constituent areas of the network was high-
ly consistent across model orders, with auditory areas showing positive sign,
and somatomotor and cerebellar areas showing negative sign. This could de-
note an excitatory-inhibitory response within the network. These results are in
line with previous findings (Chen et al., 2008, 2006; Grahn, 2009; Grahn & Rowe,
2009; Kung et al., 2013; Zatorre et al., 2007), particularly at low model orders (20
and 30), where auditory cortex along with basal ganglia (BG) areas, premotor
cortex (PMC) and supplementary motor area (SMA), were observed among

other areas (somatosensory cortex, Rolandic operculum, motor cortex and cere-
bellum).
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FIGURE 14 Pulse clarity-driven IC temporal courses per group. Significant
between-group differences are also indicated.

GLM analyses were consistent and overlapping with ICA results. In non-
musicians only, regional activity significantly and positively correlated with
pulse clarity. This activity was constrained only to the auditory cortices. Thus,
in comparison, ICA exposed areas hidden from GLM analyses.
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FIGURE 15

Pulse clarity-driven IC spatial maps. Abbreviations: + (plus): positive correla-
tion; - (minus): negative correlation; LAT: lateral view; POS: posterior view;
SUP: superior view; L: left; R: right; S1: primary somatosensory cortex; S2
secondary somatosensory cortex; HG: Heschl’s gyrus; PT: planum temporale;
ROper: Rolandic operculum; pSTG: superior temporal gyrus (posterior);
aSTG: superior temporal gyrus (anterior); PMC: premotor cortex.



4 METHODOLOGICAL CONSIDERATIONS

4.1 Nonparametric methods for significance estimation

According to Nichols & Holmes (2002), nonparametric tests require minimal
assumptions for validity and provide a flexible and intuitive methodology for
the statistical analysis of data from functional neuroimaging experiments, at
some computational expense. Traditionally, statistic images in fMRI are scruti-
nized for significance using parametric approaches (Friston et al., 1995;
Worsley, Evans, Marrett, & Neelin, 1992), which assume a specific shape of the
probability distribution of the voxel intensities in the statistic image. In those
cases where parametric assumptions are questioned, the nonparametric meth-
ods provide the only valid and almost exact analysis (Holmes, Blair, Watson, &
Ford, 1996). At worst, nonparametric methods may provide validation. The
main drawback of such approaches constitutes the computational demand that
they impose. In the current research work, nonparametric approaches were
used to compute the statistical significance of some of the parameter estimates.
Numeral simulations were run using the Taito HP super cluster3.

41.1 Effective degrees of freedom

The distribution of a statistic depends on the number of N independent obser-
vations or associated effective degrees of freedom (DoF), which denotes essen-
tially the amount of information on which an estimate is based. When working
with fMRI time series, data independency is no longer a valid assumption. De-
tecting significant correlations in fMRI data increases with smoothness, to the
extent that intrinsic autocorrelations lead to high test statistics even in the ab-
sence of activation (Friston, Jezzard, & Turner, 1994). The temporal autocorrela-
tion of the fMRI scans in combination with the use HRF-convolved regressors

3 taito.csc.fi; CSC - IT Center for Science Ltd., administered by the Ministry of Educa-
tion, Science and Culture of Finland. Taito provides an environment for a wide range
of scientific software packages, which require up to a few hundreds of cores per job.
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for correlation analyses has an impact on the effective DoF (Worsley, 2005;
Worsley & Friston, 1995), and thus an effect on the statistical inferences made
from the data. To ensure that the assumptions underlying standard significant
testing are satisfied, it is therefore necessary to consider this serial correlation in
the fMRI time series to accordingly modify the number of DoF that will ulti-
mately lead to detect significantly activated voxels.

The procedure performed to estimate the effective DoF of the correlation
coefficients is a simple function of the number of time points and the temporal
autocorrelation (Pyper & Peterman, 1998) shown in (5),

1
ENN —Z N Pm )Pyy(]) ©)

where N is the number of observations, p..(j) and p,,(j) are the autocorrelations
of the inputs z and y, which represent the appropriate data for each study case.

In Study [, for instance, z and y represent time series of a musical feature and a
voxel, respectively, whereas in Study II, they represent a pair of homotopic

voxel time series. The choice of lags j can influence type I error rates. The rec-

ommendation in Pyper & Peterman (1998) was followed, and j= N/5 was used,
shown to provide the best combination of accuracy and precision in error rates
with minimal variability across sample sizes and time series models. Effective

DoF were computed for each participant by randomly selecting the inputs for N
trials (N > 1000) and then averaging the estimates across participants.

41.2 Significance estimation of the ICCs

In Study I correlation coefficients were obtained between each of the original
and replicated group activation spatial maps. To quantify their significance, a
Ho empirical distribution of coefficients was estimated using ‘random’” versions
of each musical feature time series. Because merely randomizing the samples in
the time series does not preserve its temporal dependencies, leading to biased
estimates, a phase-scrambling procedure (Ebisuzaki, 1997; see 4.1.5) was used in
order to preserve the temporal smoothness of the data. According to this ap-
proach, the phases of the musical feature time series are scrambled in the fre-
quency domain and then inverse-transformed to the time domain. This results
in a time series with the same autocorrelation function (ACF) as the original
series and a different time-domain structure. This newly created variable was
then correlated against each of the participants” fMRI time series in both origi-
nal and replicated data, and the final group spatial maps were correlated
against each other yielding a correlation coefficient. This procedure was repeat-
ed 50000 times to create a Ho distribution of ICC values from which to derive
the significance of the ICCs.
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4.1.3 Significance estimation of the Dice coefficients

Dice coefficients were used to estimate the degree of spatial overlap at increas-
ing proportions of the most significant voxels between the original and replicat-
ed spatial maps. In order to assess the significance of the resulting overlaps, a
similar approach was employed as in 4.1.2. The Dice coefficient was computed
1000 times for each musical feature time series and for each proportion, to de-
rive a Ho distribution of overlaps as a function of each of the increasing propor-
tions. To assess the probability of getting the observed overlap between datasets
for each of the proportions, the empirically derived overlap values were con-
verted to Z-scores by subtracting their empirical means and then dividing by
their empirical standard deviations.

414 The problem of multiple comparisons

Clusterwise thresholding approaches are increasingly used to tackle the multi-
ple comparisons problem, i.e. the risk to make type I errors in large amounts of
data (Friston, Worsley, Frackowiak, Mazziotta, & Evans, 1994). They estimate

the probability that a cluster of size > v has occurred by chance. A cluster is a
number of adjacent voxels, each of which has exceeded a predetermined prima-
ry activation threshold (cluster-defining threshold). The cluster-wise method
attempts to detect statistically significant clusters defined by a second threshold
(cluster-size threshold) controlled by a predefined family-wise error (FWE) rate
(Hayasaka & Nichols, 2003). Inferences on the cluster size threshold can be de-
rived using parametric methods such as random field theory (RFT; Worsley et
al., 1992), or by means of nonparametric methods (Nichols & Holmes, 2002).

Clusterwise thresholding does not consider voxels as independent units,
but takes into account the activation of the neighbouring voxels, an advantage
over voxelwise thresholding (Heller, Stanley, Yekutieli, Rubin, & Benjamini,
2006). It also has higher sensitivity over traditional, more stringent voxelwise
correction methods, such as Bonferroni and RFT-based corrections, which in-
crease type II errors (Nichols & Hayasaka, 2003). However, the cluster level in-
ference has worse spatial specificity for large clusters (Nichols, 2012), because
the Ho of the entire cluster is accepted or rejected. If rejected, it can only be con-
cluded that one or more voxels in the cluster is active.

In the present studies, a nonparametric clusterwise approach was used
based on a combination of phase-scrambling and permutations. This was done
to obtain an estimate of an ACF representative of a null distribution, and use it

to generate random images S with the same spatial smoothness as the statistical
image (SI) subjected to clusterwise correction (Ledberg, Akerman, & Roland,
1998). It is crucial that the information about spatial smoothness is kept because
it defines the CS distribution. Additionally, because the ACF cannot be estimat-
ed directly from the SI, as it contains the signal of interest and may affect the

spatial dependency, new images P must be generated which contain no signal
of interest. To this end, the statistical test that produced the statistical images is
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rerun several times using phase-scrambling (see 4.1.5) several times. For in-
stance, in Study I the musical features time courses were phase-scrambled and
voxelwise correlated against the fMRI data, whereas in Study II the functional
symmetry maps were obtained by correlating the fMRI image with its own
flipped and phase-scrambled image, after which a between-groups t-test statis-
tical map was obtained. This produces an image identical to the SI in spatial
spectral properties except it shows no stimulus-dependent activations. From the

final image an estimate of the ACF filter kernel K can be computed as follows:
K =IFT|FT(P)|, (6)

where [FT and FT denote the inverse Fourier transform and the Fourier trans-
form, respectively. The average across all K is computed for greater accuracy in

the K estimate, and used to generate random images S with the same spatial
properties as the SI as indicated in (7)

S=UxK, 7)

where U denotes a normally distributed random image, and S is created by

convolving U with the filter kernel K. § is then normalized to zero mean and
unit variance, and thresholded according to the predefined cluster-defining

threshold. A sufficiently large number of .S images needs to be generated to cre-
ate a reliable Hy CS distribution, from which to estimate the critical cluster-size
according to an appropriate FWE rate.

The clusterwise approaches used in Studies III and IV did not use
phase-scrambling, but instead a bootstrap resampling technique, which was
relatively less computationally intensive (except for the GLM approach in Study
IV, for which phase-scrambling was also employed).

In Study III, the Ho CS distribution was derived through bootstrap
resampling group membership (musicians and nonmusicians), with replace-
ment prior to performing t-tests between the randomized groups. Each result-
ing t-test map was thresholded at the selected alpha level. A sufficiently large
number of iterations was run to derive a reliable critical cluster size. The whole
procedure was repeated for each of the hippocampal seeds. Mixing experi-
mental and control groups guarantees the estimation of a Ho CS distribution.

In Study IV, the approach was to sample from the pool of 36 back-

projected IC maps. For instance, for model order N, there were 36*N IC maps,
from which 36 were drawn randomly with replacement, then t-tested and
thresholded, from which the empirical CS distribution was generated after a
number of iterations. This way a CS distribution could be derived for each
model order. Bootstrap resampling from different ICs within a model order
guarantees the uncorrelatedness of the spatial maps, while ensuring the con-
sistent spatial autocorrelation structure among them.
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4.1.5 Phase-scrambling method

This approach (also known as Fourier resampling) is a nonparametric method
to create random time series with the same power spectra as the original series.
To this end, it Fourier transforms the data, randomizes the phase components
while keeping the magnitude of each frequency component, and then inverts
the transform (Schreiber & Schmitz, 1996). Thus, the resampled series retains
the same ACEF as the original series. These are the steps:

1. Let a(t) be the time series of interest, take the Fourier transform (FT) of

a(t):
F(k) = / a(t)e 2 kgt ®)

2. Convert to polar form:
F(k) = rpe'?". ©)

3. Randomize the phase at each frequency to create a Fourier transform
F(k) with the original transforms’ power spectrum but with random
phases.

F(k) = rpe'. (10)

0 random, uniformly distributed in [0,2n]

4. Take the inverse Fourier transform (IFT) of F(k), which gives a(t), a
random series with the same autocorrelation as the original series. The
power spectra of the randomly generated and original time series are the
same, except the phases of a(t) are random.

a(t) = / F(k)e* k. (11)

4.2 ROI-based ICA

Spatial ICA (sICA) is the ICA variety typically performed in fMRI, which as-
sumes that each voxel time series (observation) represents a linear mixture of a
number of unknown hidden underlying source signals that are maximally sta-
tistically independent, as opposed to temporal ICA (tICA), for which tem-
poral independence of sources is assumed. The main reason for this is computa-
tional feasibility: in fMRI the spatial dimension (number of voxels) is much
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larger than the temporal dimension (number of scans), which requires the com-
putation of a covariance matrix on the order of N? (N = number of voxels;
Calhoun, Adali, Pearlson, & Pekar, 2001). This linear mixture of underlying
source signals can be expressed as the product of the sources by a mixing ma-
trix as in (4). The goal of ICA is to separate the sources (S) from the linearly
mixed fMRI signals (X), in search of a solution in the form S=WX,

where W=A. The source estimates given by ICA are called ICs (independent
components). SICA assumes independence of spatial brain activations, where

the kth row of S indexes the ICs, and the kth column of A indexes its associated
temporal courses, which describes the relative projection weights of the corre-
sponding spatial ICs at each time point. It then defines ICs by grouping brain
regions showing synchronised source signals (Calhoun, Liu, & Adali, 2009;
McKeown et al., 1998, McKeown & Sejnowski, 1998). Different processes may
be captured by each IC, such as functionally relevant networks (e.g., visual, au-
ditory or motor), physiological processes (e.g., breathing), and artefacts (e.g.,
head motion; Damoiseaux et al., 2006).

As stated above, the independence criterion is the guiding principle of
ICA, and ICs are found by maximizing their statistical independence. Statistical
independence means that that the value of any of the ICs provides no infor-
mation on any value of the other ICs, and this characteristic can be defined by

the probability densities. Two random variables 2 and y with probability densi-
ties p.(z) and p,(y) are independent if the joint density exists

pw,y(xa y) = pa,(:v)py(y). (12)

The fundamental restriction to ICA is that the independent components must
be nongaussian for ICA to be possible, because the matrix A is not identifiable
for Gaussian independent components (with the exception of a maximum of
one Gaussian component; Hyvérinen & Oja, 2000). This principle draws from

the central limit theorem (CLT), which states that the sum of N independent

random variables approaches a Gaussian distribution as N = co. Thus, if mixed
observations become more Gaussian than any of the independent sources, it is

possible to find an unmixing matrix W=A-! that maximizes the nongaussianity

of WX.

A classical measure of nongaussianity is kurtosis (the normalized fourth
central moment), which measures the tailedness or flatness of a probability dis-
tribution*. However, as noted by Hyvérinen (1999), kurtosis is sensitive to out-
liers and thus not a robust method to estimate nongaussianity. A fundamental
theorem in information theory is that a Gaussian variable has the largest entropy
among all random variables of equal variance (Cover & Thomas, 2012; Hyvarinen &
Oja, 2000), thus the information-theoretic quantity called negentropy —a robust
measure of distance to normality based on differential entropy —can be used to
compute nongaussianity. Negentropy has the convenient property of being al-

4 A Gaussian distribution has zero kurtosis.
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ways non-negative for nongaussian distributions, and equal to zero if and only
if the measured distribution is Gaussian. Other quantitative measures of inde-
pendence exist, such as minimization of mutual information, maximum likeli-
hood estimation, or the infomax principle; however, they lead to the same prin-
ciple of finding the most nongaussian directions (Hyvérinen, Karhunen, & Oja,
2001).

All ICA methods are iterative optimization processes aimed at finding an
unmixing matrix that maximizes an objective function that measures the degree

of independence of the estimated components S= WX. In the case of the Fastl-
CA algorithm, non-gaussianity (the objective function) of the source estimates is
maximized using approximations to negentropy, since its calculation requires
the specific probability density functions (Hyvérinen, 1999; a Hyvarinen & Oja,
2000). Iterative algorithms such as FastICA have been reported to yield con-
sistent results for ICs of interest, which increase the confidence in the use of
ICA for fMRI analysis (Correa, Adali, & Calhoun, 2007).

ICA analysis usually undergoes a preprocessing stage, which includes
centering, dimension reduction, and whitening in order to reduce the complexi-
ty and data redundancy for the subsequent ICA decomposition. In group ICA
analysis of multi-subject fMRI data, two stages of dimension reduction prior to
applying ICA are often performed to reduce the computational load and avoid
overfitting (Calhoun et al., 2001; Calhoun, Adali, Pearlson, & Pekar, 2001). This
is typically done using PCA, which captures most of the variability in the data
while reducing their dimension. First, a subject-level dimension reduction is
performed in the temporal domain, followed by a second dimension reduction
stage, for which the reduced data from all subjects are concatenated. This is
necessary to make the data dimensions match the number of ICs estimated by

ICA (Erhardt et al., 2011). Once the unmixing matrix W has been estimated,
subject-specific IC spatial maps and associated temporal courses can be recon-
structed, enabling statistical inferences between groups, for which various mul-
ti-subject ICA approaches have been proposed (Calhoun et al.,, 2001; Guo &
Pagnoni, 2008; Schmithorst & Holland, 2004). Among the existing methods, re-
cent evidence (Erhardt et al., 2011) suggests that GICA3 provides both the most
robust results with the most intuitive interpretation derived from its mathemat-
ical properties, such as the aggregate IC spatial map being the sum of the
back-reconstructed subject-specific spatial maps.

Because ICA operates with high order statistics to achieve independence
of source signals, it enforces stricter criteria for spatial independence among IC
maps than e.g.,, PCA, which separates the sources by uncorrelating the data.
Thus, PCA estimates only uncorrelated and not independent components. This
could explain why ICA seems to outperform PCA in determining the spa-
tio-temporal extent of task-related activation, with increased robustness to the
addition of simulated noise across trials (McKeown et al., 1998).

4.2.1 Comparison with the General Linear Model (GLM)

ICA seems to have a higher sensitivity for detecting task-related changes in
fMRI signal compared to the widely used univariate GLM-based approach (Xu,
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Potenza, & Calhoun, 2013), which aims at fitting an a priori temporal model at
each voxel by minimizing the least squared error. The GLM model for a hemo-

dynamic response variable x; at given voxel j = I1,..,N, at time point (scan) ¢ =
1,..,Mis

Xij = 8i1P1j + 8iofoj + - - ik BKj + €ij, (13)

where the coefficients gix are the K explanatory variables, 8 ; are K parameter

estimates for each voxel j, and e is the error term. Thus, only the activation
modelled by the researcher can be studied (Friston et al., 1998). Accordingly,
the higher sensitivity of ICA is a consequence of a stricter criterion for spatial
independence between IC maps, which reduces noise in the final solution by
separating artefactual and other physiological fluctuations from the fMRI
signal of interest (McKeown et al., 1998).

As for seed-based connectivity methods, these investigate only bivariate
(pairwise) relationships, in which the choice of a seed region is required. How-
ever, ICA is multivariate and thus considers all reciprocal relationships between
voxels simultaneously. Additionally, ICA requires no a priori, explicit temporal
model of the signals to be extracted, and thus no need to specify the
HRF-convolved stimulus-related neuronal activation or the selection of a seed
voxel, because they are implicitly estimated in the ICA algorithm (Calhoun &
Adali, 2006; Svensén, Kruggel, & Benali, 2002).

Findings from GLM analyses are often inconsistent, which may expose the
limitations in sensitivity and specificity of the GLM approach resulting from
fundamental brain properties (i.e., functional heterogeneity and balanced exci-
tation and inhibition; Xu et al., 2015). Similarly, because GLM-based approaches
cannot segregate the signal mixture from each voxel into source signals, they
are not suited to detect overlaps of functional networks and their temporal
course modulation by cognitive tasks. Thus, GLM approaches conform to the
modular view of brain functional organization. However, the overlap of func-
tional networks with different temporal courses and their modulation by cogni-
tive tasks is critical for understanding brain functional organization (Fuster,
2009; Quintana & Fuster, 1999). ICA methods, conversely, are capable of disen-
tangling signal mixtures. It is thus not surprising that ICA may help reconcile
inconsistent GLM findings due to its suitability in detecting large-scale func-
tional network overlaps, and thus compatibility with this general property of
brain functional organization as evidenced recently (Xu et al., 2016; Xu, Zhang,
et al., 2013). Finally, as a consequence of its inherent properties, ICA is increas-
ingly gaining interest in the context of fMRI naturalistic paradigms, providing a
framework for reliable analyses of complex stimuli with increased ecological
validity (Bartels & Zeki, 2005; Bartels & Zeki, 2004b; Malinen et al., 2007;
Wolf et al., 2010).

In sum, although ICA is not model-free because it requires certain as-
sumptions (e.g., independence), it is in general more flexible with fewer as-
sumptions than other approaches, and constitutes a powerful complementary
tool to voxelwise analyses.
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4.2.2 Application of ICA to a region of interest

In Study IV ICA was applied in a constrained, hypothesis-driven ROI. Several
studies have shown that localization of fMRI data to specific brain region analy-
sis provides finer functional subdivisions (Beissner, Schumann, Brunn,
Eisentrdger, & Bdr, 2014; Formisano, Esposito, Di Salle, & Goebel, 2004;
Igelstrom, Webb, & Graziano, 2015; Sohn, Yoo, & Jeong, 2012). A ROI-based
ICA approach improves the separation and anatomical precision of the identi-
fied spatial components and enables only informative signals with respect to
potentially interesting sources to be included in the analysis since (a) the brain
volume does not affect the number of obtained components, and (b) informa-
tive signals with respect to potentially interesting sources are included in the
analysis, thus excluding contributions otherwise used to separate
non-interesting processes (e.g., artefacts; Beissner et al., 2014; Formisano et al.,
2004; Sohn et al., 2012). However, in order for ROI-based ICA analyses to be
beneficial, it is essential to have prior knowledge about the localized region be-
fore performing analyses (Sohn et al., 2015).

4.2.3 The problem of model order selection

The problem of model order selection refers to the assumption of the number of
sources to be extracted prior to performing ICA. In ICA, at least N observations

(fMRI time points or scans) are needed to recover N sources. Although rules of
thumb and recommendations exist in the literature (Abou-Elseoud et al., 2010;
Onton & Makeig, 2006; Sareld & Vigério, 2003), as well as model order selection
criteria (Akaike, 1974; Rissanen, 1983), the question of how to estimate the ap-
propriate true number of sources is still under investigation.

If the dimensionality of the data is underestimated, valuable information
may be discarded. However, overestimation may return a large number of ICs
that distort functional subdivisions due to underconstrained estimation and
overfitting (Beckmann & Smith, 2004), while, at the same time, the repeatability
or robustness of the IC estimates is degraded (Li, Adali, & Calhoun, 2007). By
altering the model order, different networks or subdivisions of networks can be
identified (Kalcher et al., 2012). At higher model orders, ICs show a finer-
grained subdivision of networks because the ICA algorithm is forced to find
more local nongaussianity maxima, whereas low model orders give a broad
picture of large-scale brain networks (Abou-Elseoud et al., 2010). Thus, model
order selection has a crucial impact on the spatial characteristics of the identi-
fied functional networks (Abou-Elseoud et al., 2011).

Parcellation of functional networks at different model orders may be ex-
plained from a graph theoretical perspective, which suggests a small-world and
scale-free organization of the functionally connected human brain (Achard,
Salvador, Whitcher, Suckling, & Bullmore, 2006; Buckner et al., 2009; Sporns &
Zwi, 2004; Stam, 2004; van den Heuvel, Stam, Boersma, & Hulshoff Pol, 2008;
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van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009). Small-worldness
guarantees high efficiency at different spatial and temporal scales with a very
low wiring and energy cost (Guye, Bettus, Bartolomei, & Cozzone, 2010; Lang,
Tomé, Keck, Gorriz-Saez, & Puntonet, 2012). According to Abou-Elseoud et al.
(2010), large networks observed at low model orders may be show weaker con-
nections compared to nonbranching ICs found at higher model orders, with
particular spatio-temporal profiles not shared by any other ICs and
therefore more functionally independent. Thus, functional connectivity
differences are associated with changes in ICA model order. From the point
of view of differences between or within groups of subjects, some model orders
may accentuate between-group or within-group differences compared to
other model orders (Abou-Elseoud et al, 2011). This means that model
order can convey information about the hierarchy level within the network
where differences are maximized.

Taking into consideration all of the above, it seems sensible to suggest that,
at least with neuroimaging data, there may not exist such a notion as a right
model order, and it would depend on the level of depth or breadth chosen
when investigating functional networks along with group- or task-related dif-
ferences. This was the stance taken in Study IV for presenting findings within a
range of model orders.



5 DISCUSSION

5.1 Main findings

5.1.1 Reliability of the naturalistic listening paradigm

Study I concluded that brain responses to timbral (low-level) feature processing
(Fullness, Brightness, Timbral Complexity, and Activity) were replicated with a
higher degree of reliability than those to tonal and rhythmical (high-level) fea-
tures (Key Clarity and Pulse Clarity). The latter may depend on cognitive
mechanisms associated with increased participant-dependent variability in the
brain signal, which may reduce replicability. Other alternative explanations for
the low replicability of the high-level musical features could lie in the use of an
unsuitable statistical approach for investigation of this phenomenon (e.g., iso-
morphic vs. second-order isomorphic approach).

The most reliable areas across all musical features (except for Key Clarity)
were found within the auditory cortices, with a right-ward asymmetry in the
case of Pulse Clarity and Activity. The case of Key Clarity seemed different be-
cause it was most replicable for voxels with a lower significant level compared
to the other musical features. We argue that this less significant map of reliable
areas could denote meaningful information in the encoding of tonal feature
processing. Multivariate studies in neuroscience have recently observed that
levels of activity considered subthreshold in univariate analysis succeed in re-
trieving relevant stimulus-specific information (Harrison & Tong, 2009; Reuter-
Lorenz & Sylvester, 2005; Riggall & Postle, 2013; Serences, Ester, Vogel, & Awh,
2009; Sreenivasan, Vytlacil, & D’Esposito, 2014).

The choice of a measurement tool to quantify reliability is a crucial ques-
tion that depends on the specific aspect of reliability targeted. In the present
approach, similarity between both experiments was estimated by (a)
comparing the whole-brain spatial extent of activations at the group level (by
means of the interclass correlation coefficient), and (2) identifying the ana-
tomical areas of most significant overlap for each of the features (by means of
the Dice’s coefficient), thus characterizing the stability over the extent of the
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most significant activations across experiments. An advantage of these ap-
proaches is that they do not only examine above-threshold activity, and are
therefore not reliant on arbitrary rules which determine whether or not a voxel
is “active” (McGonigle et al., 2000).

Finally, because unreliable results render the validity of any scientific en-
deavour meaningless (Bennett & Miller, 2010), the successful replication pro-
vided support for the use of naturalistic stimulation paradigms in music neuro-
science. This finding encourages scientific practices towards more real-life lab
environments which could capture the complexity of real-world experiences of
music listening, a crucial step when aiming at modelling how the brain interacts
with the world. However, non-replicable findings are not untrue by default,
because they may expose subtleties in the experimental design (e.g., variables
that were not considered in the first experiment). Therefore, replication is al-
ways positive even if not successful. However, encouraging replication is a fu-
tile endeavour so long as mainstream scientific publishing continues to promote
and reward novel and surprising results over studies that tackle other aspects
of scientific investigation.

5.1.2 Functional symmetry and musical expertise

Study II revealed different symmetry profiles as a function of musical training:
increased functional symmetry was found in musicians and keyboard players
compared to nonmusicians and string players, respectively. Overall, results
support the role of specific posture and kinematics in bimanual instrument
training along with unequal visual-processing requirements of instrument
score-reading and hand monitoring as drivers of this symmetry. All in all, find-
ings suggest a crossmodal transfer of symmetry from sensorimotor to perceptu-
al processing systems, because the apparent effects of motor training within the
motor system become evident in the brain responses to music perception. It is
speculated that this effect results from action-perception coupling through
life-long instrument training.

Musicians vs. nonmusicians: Compared to nonmusicians, musicians’ increased
symmetry was largely localized within the somatosensory and motor control
areas. These group differences may be largely driven by musicians” hand and
finger dexterity (Hyde et al., 2009). Enhanced symmetry within the motor sys-
tem may thus underlie a more efficient hemispheric communication in musi-
cians driven by the demands of musicianship, such as bimanual coordination of
finger movements, which would require greater communication between bilat-
eral motor regions for the necessary speed and efficiency required during music
performance.

Keyboard vs. string players: Keyboardists showed more pronounced sym-
metry mainly in visual areas and, to a lesser extent, in somatosensory areas
compared to string players. These group differences could be instru-
ment-specific. Both keyboard and string instrument playing demand fine motor
skills and bimanual hand coordination. However, string instrument playing
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enforces not only a more asymmetric position and movement between bilateral
hands and fingers, but also a strict asynchrony between left-hand finger move-
ments and right-hand bowing. This would account for the enhanced functional
symmetry observed in keyboardists’ motor-related areas. Moreover, left-hand
and fingers” asymmetry in the contralateral somatosensory cortical representa-
tions (Elbert et al., 1995; Schwenkreis et al., 2007) would only amplify this effect.
More demanding hand-eye coordination skills in keyboard playing may be ac-
companied by efficient hemispheric communication (resulting e.g., from multi-
ple-part reading, which requires transfer of visual information to contralateral
motor outputs, but also from hand monitoring). This may therefore account for
keyboardists’” prominent symmetry in the visual system compared to string
players, and is in accordance with previous findings on enhanced symmetric
visual responses in pianists (Patston et al., 2007).

Group differences in callosal size: while the posterior section of the corpus
callosum was larger in musicians compared to nonmusicians, there was no sig-
nificant difference between keyboard and string players. Previous studies ob-
served a significant difference in the anterior section of the callosum (Lee et al.,
2003; Schlaug et al., 1995). Despite studies linking volume of corpus callosum,
amount of fibres crossing through it, and enhanced interhemispheric connectiv-
ity (Aboitiz et al., 1992; Jaencke & Steinmetz, 1994; Witelson, 1985), no correla-
tion was found between callosal size and functional symmetry for any of the
groups compared. It should be noted that the literature on this issue presents
conflicting results (Banich & Shenker, 1994; Pizoli et al., 2011; Reilly et al., 2013;
Tyszka et al., 2011; Uddin et al., 2008; Wang et al., 2014).

5.1.3 Cerebello-hippocampal connectivity

Study Il revealed greater CER-HIPP functional integration in musicians, modu-
lated by the degree of predictability in the music during music listening, when
compared to controls. More specifically, musicians’ CER-HIPP connectivity in-
creased as information content in the music (i.e., degree of predictability) de-
creased, which was hypothesized as resulting from musicians’ improved pre-
dictive listening accuracy. This hypothesis was motivated by results from
Onuki et al. (2015), who found CER-HIPP coupling to be an indicator of partici-
pants” accurate predictions based on integrating both spatial and temporal in-
formation. Because musicians are known to posses optimized predictive models
of musical structure over nonmusicians, which facilitates anticipation of musi-
cal events (Drake & Palmer, 2000; Ericsson & Towne, 2010; Hansen, Vuust, &
Pearce, 2013; Lehmann & Gruber, 2006), especially in low information contexts
(Hansen & Pearce, 2014; Hansen et al., 2013), this CER-HIPP connectivity may
be indicative of musicians making more accurate predictions than controls as
they listen to music. This is in accordance with Onuki et al. (2015)’s results, de-
noting optimized behaviour as a consequence of predictive adaptation to musi-
cal structure. Moreover, this superior predictive ability may derive from action
simulation mechanisms enacted spontaneously during music listening, due to
years of intensive musical training, and rooted in the experience-dependent
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coupling of perception and sound-producing actions. This ability is also evi-
denced by the narrower temporal auditory-motor integration window observed
in musicians compared to controls when judging an action and its resulting ef-
fect, potentially due to more refined temporal prediction abilities (van Vugt &
Tillmann, 2014). Moreover, musicians, by virtue of their musical training, tend
to perceive auditory signals as intentional motor acts to a greater degree than
nonmusicians (Bangert & Altenmiiller, 2003; Bangert et al., 2006; Haslinger et
al., 2005).

Group differences in the functional integration of the CER-HIPP network
may therefore evidence for the impact of musical training on the listeners” un-
derlying strategies or modes of music listening. Accordingly, our findings may
indicate that musicians’ spatio-temporal prediction of fine motor actions, as
observed in the CER-HIPP connectivity, can also occur during music
perception through the process of action simulation.

The current results extend recent findings on the novel area of CER-HIPP
interactions by using a perceptual setting that is predictive in nature (music lis-
tening) and advance the understanding of its integrative function in the context
of prediction.

5.1.4 Pulse clarity processing

Study IV showed that musicians and nonmusicians process pulse clarity differ-
ently when listening to music. Particularly, nonmusicians’ perception of pulse
clarity seemed to be captured more reliably by the acoustic content of the music
than musicians’, given the high correlations between nonmusicians’ brain re-
sponses and the pulse clarity model extracted from the musical stimulus. How-
ever, this model did not succeed in predicting musicians” brain responses as
effectively. An explanation may lie in musicians” superior timekeeping abilities
(Chen et al., 2008, 2006; Krause, Schnitzler, & Pollok, 2010; Pollok, Gross, &
Schnitzler, 2006), advantageous for musical performance. As a consequence of
life-long musical training, pulse clarity processing in musicians relies less on the
stimulus properties and more on cognitive, top-down rules and processes of
metricality, facilitating enhanced internal beat generation, which stands as a
reliable marker of rhythmic skill (Grahn & Rowe, 2009). As for nonmusicians,
they would employ Gestalt principles of temporal proximity to a greater extent,
which are suboptimal for accurately encoding temporal information (Chen et al.,
2008).

A comprehensive ICA decomposition of the data across several model or-
ders revealed the corresponding functional networks subserving the processing
of pulse clarity during music listening. Overall, the associated spatial maps com-
prised a large-scale network of auditory and motor-related areas, with higher
model orders exposing fine-grained, small-scale networks, consisting almost
exclusively of the auditory cortices. These could be taken to denote universal
main hubs for a wider population, given the significant correlations with both
musicians” and nonmusicians’ temporal courses. Because ICA does not make a
priori assumptions on the number of sources, it is possible to find multiple
sources underlying a single component. Thus, lower model orders, enforcing
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the assumption of a smaller number of sources, tend to group singular ICs that
at higher model orders separate into their single functional units. Model orders
therefore represent the hierarchical organization or clustering of the functional
networks. The large-scale networks observed at lower model orders represent
brain networks underpinning exclusively nonmusicians’ processing of pulse
clarity, as musicians’ correlations between their temporal courses and pulse
clarity did not achieve significance at these low model orders.

One feature of the observed networks was their consistent polarity for all
decompositions. Positive sign was largely found for the auditory areas, whereas
negative sign was observed for the remaining circuitry. These results may be
construed as an action-perception functional network during pulse clarity pro-
cessing that maintains an excitatory-inhibitory relationship.

A key strength of the present study was the derivation of functional net-
works at a range of assumed number of sources. In addition, the fact that the
associated spatial maps were spatially consistent across decompositions sup-
ports the reliability of the approach. The complementary GLM analysis served
as an additional reliability check, by demonstrating the power of the ICA ap-
proach, which enabled the detection of networks undetectable through GLM.

5.2 Main contributions of the thesis

The main contributions of this dissertation are summarized as follows:

Contributions to knowledge:

e Low-level (timbral) features are reliably replicated compared to
high-level (tonal and rhythmical) features; a finding perhaps accountable
for by the sensitivity of the latter to large between-participant variance in
the brain responses to music, or alternatively by the use of an inappro-
priate statistical approach or acquisition method (e.g., insufficient tem-
poral resolution of the hemodynamic responses).

e Key Clarity processing can be successfully replicated in areas considered
subthreshold in univariate analyses, exposing that relevant stimu-
lus-specific information may be encoded in so-called subthreshold activi-
ty.

e A dependency between musical training and functional symmetry exists
as observed during music listening: symmetrical actions derived from
musical training manifest in symmetrical brain responses while listening
to music. Specific posture and kinematics in bimanual instrument train-
ing along with unequal hand-eye coordination requirements may be po-
tential drivers of this symmetry.

e Findings suggest a crossmodal transfer of symmetry from sensorimotor
to perceptual processing systems: the apparent symmetry effects of mo-
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tor training within the motor system manifest in the brain responses to
music perception.

Findings have broad implications for understanding how experience in
one modality (e.g., motor/visual processing) may alter the neural pro-
cessing in another modality (auditory perception). From a broader per-
spective, it highlights the significance of our multimodal musical experi-
ence in how our brains respond to music.

Musicians exhibit stronger CER-HIPP functional integration compared to
controls as information content in the music decreases (i.e., predictability
increases), which may result from musicians” improved predictive listen-
ing accuracy, as suggested by previous literature. As a novel finding, it
requires further study and replication for validation of the assumptions.
More generally, these current findings advance the understanding of
cerebellar integrative function in the context of prediction.

Pulse clarity-processing differences exist between musically trained and
untrained individuals when listening to music, as inferred in a da-
ta-driven manner, providing support for musicians” improved predictive
models of beat induction.

Pulse clarity processing is subserved by an action-perception functional
structure consistent with previous neuroimaging work on rhythm pro-
cessing. This functional structure reflects a hierarchy of large-scale net-
works of cerebellar, basal ganglia, cortical somatomotor and auditory ar-
eas, and small-scale networks involving mainly auditory cortices as po-
tential main hubs and common to both musicians and nonmusicians.

The functional networks implicated in pulse clarity processing reflect a
polarity, wherein auditory (positive sign) and somatomotor (negative
sign) regions are hypothesized to maintain an excitatory-inhibitory rela-
tionship.

Methods-related contributions and recommendations:

Support for the validity of the naturalistic listening stimulation paradigm
in the field of cognitive neuroscience, reinforcing the use of real-life lab
settings to capture the complexity of the real world in order to model
how the brain interacts with it.

Support for the use of reliability assessment in fMRI studies through rep-
lication.

Novel approach in the study of rhythm processing by using ICA within a
ROI informed by previous findings in combination with acoustic feature
extraction within a naturalistic auditory stimulation framework
(free-listening to continuous real-world music), and further reliability
check from GLM analyses.
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The inclusion of comprehensive results derived from a continuum of as-
sumed dimensionalities for the ICA data decomposition has not been
used previously in music neuroscience to study neural correlates of mu-
sical percepts. This procedure provides valuable information by expos-
ing a finer-grained and hierarchical functional organization of the net-
works involved in the phenomenon under investigation.

Recommendation towards the use of reliability measures that estimate
similarity of results based on ranked and continuous-valued (un-
thresholded) data (which take into account the overall shape of the acti-
vation map), rather than based on a binary division of the data by some
arbitrary threshold. This attenuates the effect of differential SNR between
experiments.



6 CONCLUSION

The inferences presented in this work speak to musicians” increased sensorimo-
tor functional integration in networks known to subserve aspects of the musical
experience. Particularly, this thesis has implications for training-induced cross-
modal reorganization. The functional adaptations observed in musicians during
mere music listening can be understood as crossmodal brain adaptations likely
resulting from an increased use-dependent plasticity.

This work contributes to the growing body of neuroscientific studies by
complementing and extending previous work in music neuroscience. It also
outlines a framework for the exploration and hypothesis-testing of neuroscien-
tific knowledge relating to the brain-music relationship in listeners. The new
evidence brought by the present findings, as well as the ideas derived from the
outlined experimental framework and analysis pipelines, should positively
guide the generation and development of future testable hypotheses.

From a wider perspective, this work illustrates how music constitutes a
rich framework to explore the phenomenon of plasticity. Understanding the
impact and magnitude of musical experience on our music-listening brains will
provide a more comprehensive account of the property of the brain to change
itself.
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YHTEENVETO (FINNISH SUMMARY)

Musiikillisen harjoittelun vaikutus aivojen integratiiviseen toimintaan
musiikinkuuntelun aikana

Viitoskirjassa tutkittiin aivojen magneettikuvantamismenetelméad (fMRI) hyo-
dyntden aivoalueiden toimintaa musiikin kuuntelun aikana, ja vertailtiin aivo-
jen aktiivisuudessa tapahtuvia eroja musiikillisesti koulutettujen ja koulutta-
mattomien kuulijoiden valilla.

Toistettavuustutkimuksen avulla haluttiin testata aiemmissa tutkimuksis-
sa kdytetyn naturalistisen koeasetelman luotettavuutta, jossa musiikin herat-
tamid aivovasteita tutkitaan tarkastelemalla aivoista mitatun aktiivisuuden
valistd yhteyttd musiikillisiin piirteisiin. Onnistuneen toiston jdlkeen dataa
analysoitiin kolmessa tutkimuksessa, joista kukin tarkasteli eroavaisuuksia
aivotoimintojen integraatiossa muusikoiden ja ei-muusikoiden valilld. Tutki-
musten tulokset (a) korostivat eri instrumenttien soittamiseen liittyvan erilaisen
posturaalisen ja kinemaattisen symmetrian vaikutusta musiikin kuuntelun
herittdmien aivovasteiden symmetriaan, tarjoten ndin todistusaineistoa aisti- ja
litkketoimintojen ja havaintojen prosessoinnin vilisestd yhteydestd; (b) tarjosivat
uudenlaista ndyttod pikkuaivojen ja aivoturson vilisestd toiminnallisesta
kytkoksestd, joka liittyy muusikoilla musiikilliseen ennakoimiseen
todennikdoisesti aivojen toimintasimulaatiomekanismien kautta; (c) toivat
nékyville erot musiikin pulssin selkeyteen liittyvéssd prosessoinnissa muus-
ikoiden ja ei-muusikoiden vilillg, ja paljastivat toimintaan ja havainnointiin liit-
tyvan hermoverkon limittyvén aivoalueisiin, jotka on aiemmissa tutkimuksissa
havaittu olevan kiinteésti yhteydessad rytmin prosessoinnin kanssa.

Tutkimustulokset, jotka saatiin kdyttamalld stimuluksena oikeaa musiik-
kia keinotekoisten dédnidrsykkeiden sijaan, lisddvat ymmaérrystd aivojen integra-
tiivisesta toiminnasta musiikillisesti koulutetuilla ja kouluttamattomilla henki-
loilld. Taman vdaitostutkimuksen tulokset tuottivat tietoa erityisesti musiikin
harjoittelun vaikutuksista aistipiirit ylittdvdan aivojen muokkautumiseen. Tu-
losten perusteella voidaan tulevaisuudessa kehittdd uusia testattavia hypoteese-
ja musiikin aivotutkimukseen.



60

REFERENCES

Aboitiz, F., Scheibel, A. B., Fisher, R. S., & Zaidel, E. (1992). Fiber composition
of the human corpus callosum. Brain Research, 598(1-2), 143-53.

Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi,
V. (2010). The effect of model order selection in group PICA. Human Brain
Mapping, 31(8), 1207-1214.

Abou-Elseoud, A., Littow, H., Remes, ]., Starck, T., Nikkinen, J., Nissilg, J., ...
Kiviniemi, V. (2011). Group-ICA Model Order Highlights Patterns of
Functional Brain Connectivity. Frontiers in Systems Neuroscience, 5, 37.

Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. T. (2006). A
resilient, low-frequency, small-world human brain functional network with
highly connected association cortical hubs. J. Neurosci., 26, 63-72.

Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual
perceptual learning. Trends in Cognitive Sciences, 8§(10), 457-464.

Akaike, H. (1974). A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6), 716-723.

Alluri, V., & Toiviainen, P. (2010). Exploring perceptual and acoustical
correlates of polyphonic timbre. Music Perception, 27(3), 223-242.

Alluri, V., Toiviainen, P., Jadskeldinen, I. P., Glerean, E., Sams, M., & Brattico, E.
(2012). Large-scale brain networks emerge from dynamic processing of
musical timbre, key and rhythm. Neurolmage, 59(4), 3677-3689.

Amunts, K., Schlaug, G., Jancke, L., Steinmetz, H., Schleicher, a, Dabringhaus,
a, & Zilles, K. (1997). Motor cortex and hand motor skills: structural
compliance in the human brain. Human Brain Mapping, 5(3), 206-15.

Aschersleben, G. (2002). Temporal control of movements in sensorimotor
synchronization. Brain and Cognition, 48(1), 66-79.

Aue, T., Lavelle, L. A., & Cacioppo, J. T. (2009). Great expectations: what can
fMRI research tell us about psychological phenomena? International Journal
of Psychophysiology : Official Journal of the International Organization of
Psychophysiology, 73(1), 10-6.

Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2014). Early Musical Training Is
Linked to Gray Matter Structure in the Ventral Premotor Cortex and
Auditory-Motor Rhythm Synchronization Performance. Journal of Cognitive
Neuroscience, 26(4), 755-767.

Bangert, M., & Altenmiiller, E. (2003). Mapping perception to action in piano
practice: a longitudinal DC-EEG study. BMC Neurosci, 4(1), 26.

Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., ...
Altenmtiller, E. (2006). Shared networks for auditory and motor processing
in professional pianists: evidence from fMRI conjunction. Neurolmage, 30(3),
917-26.

Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of
external human brain morphology. The European Journal of Neuroscience,
24(6), 1832-4.

Banich, M. T., & Shenker, J. I. (1994). Investigations of interhemispheric



61

processing: Methodological considerations. Neuropsychology, 8(2), 263-277.
Barsalou, L. W. (2008). Grounded Cognition. Annu. Rev. Psychol., 59, 617-645.
Barsalou, L. W. (2010). Grounded Cognition: Past, Present, and Future. Topics in

Cognitive Science, 2(4), 716-724.

Bartels, A., & Zeki, S. (2004a). Functional brain mapping during free viewing of
natural scenes. Human Brain Mapping, 21(2), 75-85.

Bartels, A., & Zeki, S. (2004b). The chronoarchitecture of the human brain--
natural viewing conditions reveal a time-based anatomy of the brain.
Neurolmage, 22(1), 419-33.

Bartels, A., & Zeki, S. (2005). Brain dynamics during natural viewing
conditions--a new guide for mapping connectivity in vivo. Neurolmage,
24(2), 339-49.

Barton, R. A. (2012). Embodied cognitive evolution and the cerebellum., 2097-
2107.

Beckmann, C. F., & Smith, S. M. (2004). Probabilistic Independent Component
Analysis for Functional Magnetic Resonance Imaging. IEEE Transactions on
Medical Imaging, 23(2), 137-152.

Beissner, F., Schumann, A., Brunn, F. Eisentrdger, D., & Bar, K.-J. (2014).
Advances in functional magnetic resonance imaging of the human
brainstem. Neurolmage, 86, 91-98.

Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F.
(2005). Extensive piano practicing has regionally specific effects on white
matter development. Nature Neuroscience, 8(9), 1148-50.

Bennett, C. M., & Miller, M. B. (2010). How reliable are the results from
functional magnetic resonance imaging? Annals of the New York Academy of
Sciences, 1191, 133-55.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006).
Complex networks: structure and dynamics. Phys. Rep., 424, 175-308.

Bregman, A. S. (1994). Auditory Scene Analysis: The Perceptual Organization of
Sound.

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., ...
Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional
connectivity: mapping, assessment of stability, and relation to Alzheimer’s
disease. | Neurosci, 29(6), 1860-1873.

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature Reviews. Neuroscience,
10(3), 186-98.

Calhoun, V. D. & Adali, T. (2006). Unmixing fMRI with independent
component analysis. I[EEE Engineering in Medicine and Biology Magazine,
25(2), 79-90.

Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001a). Spatial and
Temporal Independent Component Analysis of Functional MRI Data
Containing a Pair of Task-Related Waveforms. Human Brain Mapping, 13(1),
43-53.

Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001b). A Method for



62

Making Group Inferences from Functional MRI Data Using Independent
Component Analysis. Human Brain Mapping, 14, 140-151.

Calhoun, V. D,, Liu, J., & Adali, T. (2009). A review of group ICA for fMRI data
and ICA for joint inference of imaging, genetic, and ERP data. Neurolmage,
45(1 Suppl), S163-72.

Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms
recruits motor regions of the brain. Cereb. Cortex, 18, 2844-2854.

Chen, J. L., Penhune, V. B., & Zatorre, R. ]. (2008). Moving on time: Brain
network for auditory-motor synchronization is modulated by rhythm
complexity and musical training. Journal of Cognitive Neuroscience, 20(2),
226-239.

Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory
and dorsal premotor cortex during synchronization to musical rhythms.
Neuroimage, 32(4), 1771-1781.

Chieffo, R., Straffi, L., Inuggi, A., Gonzalez-Rosa, J. ]., Spagnolo, F., Coppi, E., ...
Leocani, L. (2016). Motor Cortical Plasticity to Training Started in
Childhood: The Example of Piano Players. PLOS ONE, 11(6), e0157952.

Clark, A. (2013). Predictive brains, situated agents, and the future of cognitive
science, 1-73.

Clarke, E. (1989). Considérations sur le langage et la musique. In S. McAdams &
L. Deliege (Eds.), Bruxelles: Pierre Mardaga.

Cohen, P., Adams, N., & Heeringa, B. (2006). Voting Experts : An Unsupervised
Algorithm for Segmenting Sequences. Intelligent Data Analysis, 11(6), 1-21.

Correa, N., Adali, T., & Calhoun, V. D. (2007). Performance of blind source
separation algorithms for fMRI analysis using a group ICA method.
Magnetic Resonance Imaging, 25(5), 684-694.

Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. John Wiley &
Sons.

Damoiseaux, J. S., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S.
M., & Beckmann, C. F. (2006). Consistent resting-state networks across
healthy subjects. Proceedings of the National Academy of Sciences, 103(37),
13848-13853.

Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between
Species. Ecology, 26(3), 297-302.

Drake, C., & Palmer, C. (2000). Skill acquisition in music performance: relations
between planning and temporal control. Cognition, 74(1), 1-32.

Drake, C., Penel, A., & Bigand, E. (2000). Tapping in Time with Mechanically
and Expressively Performed Music. Music Perception: An Interdisciplinary
Journal, 18(1), 1-23.

Ebisuzaki, W. (1997). A Method to Estimate the Statistical Significance of a
Correlation When the Data Are Serially Correlated. Journal of Climate, 10(2),
2147-2153.

Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased
cortical representation of the fingers of the left hand in string players.
Science (New York, N.Y.), 270(5234), 305-7.



63

Erhardt, E. B., Rachakonda, S., Bedrick, E., Allen, E., Adali, T., & Calhoun, V. D.
(2011). Comparison of multi-subject ICA methods for analysis of f{MRI data.
Human Brain Mapping, 32(12), 2075-2095.

Ericsson, K. A., & Towne, T. J. (2010). Expertise. Wiley Interdisciplinary Reviews:
Cognitive Science, 1(3), 404-416.

Fisher, R. A. (1925). Statistical methods for research workers. Genesis Publishing
Pvt Ltd.

Formisano, E., Esposito, F., Di Salle, F., & Goebel, R. (2004). Cortex-based
independent component analysis of fMRI time series. Magnetic Resonance
Imaging, 22(10 SPEC. ISS.), 1493-1504.

Formisano, E., Moerel, M., & Bonte, M. (2015). Functional MRI of the Auditory
Cortex. In fMRI: From Nuclear Spins to Brain Functions (pp. 473-507).
Springer.

Friston, K. J. (2005). A theory of cortical responses. Philosophical Transactions of
the Royal Society of London. Series B, Biological Sciences, 360(1456), 815-36.
Friston, K. J. (2009). The free-energy principle: a rough guide to the brain?

Trends in Cognitive Sciences, 13(7), 293-301.

Friston, K. J. (2010). The free-energy principle: a unified brain theory? Nature
Reviews Neuroscience, 11(2), 127-138.

Friston, K. J. (2002). Beyond phrenology: what can neuroimaging tell us about
distributed circuitry? Annual Review of Neuroscience, 25, 221-50.

Friston, K. J. (2011). Functional and effective connectivity: a review. Brain
Connectivity, 1(1), 13-36.

Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997).
Psychophysiological and modulatory interactions in neuroimaging.
Neurolmage, 6(3), 218-29.

Friston, K. ]., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R.
(1998). Event-related fMRI: characterizing differential responses.
Neuroimage, 7(1), 30-40.

Friston, K. J.,, Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D., &
Frackowiak, R. S. J. (1995). Statistical parametric maps in functional
neuroimaging. Neuroimage, 6, 218-229.

Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-
series. Human Brain Mapping, 1(2), 153-171.

Friston, K. J., Worsley, K. ], Frackowiak, R. S. ]., Mazziotta, J. C., & Evans, A. C.
(1994). Assessing the significance of focal activations using their spatial
extent. Human Brain Mapping, 1(3), 210-220.

Friston, K. J., & Kiebel, S. (2009). Predictive coding under the free-energy
principle. Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences, 364(1521), 1211-21.

Fuster, ]. M. (2009). Cortex and memory: emergence of a new paradigm. Journal
of Cognitive Neuroscience, 21(11), 2047-2072.

Gabrielsson, A. (1987). Once again: The theme from Mozart’s piano sonata in A
major (K. 331). Action and Perception in Rhythm and Music, 55, 81-103.

Gardiner, M. F., Fox, A., Knowles, F., & Jeffrey, D. (1996). Learning improved



64

by arts training. Nature.

Gaser, C., & Schlaug, G. (2003). Brain Structures Differ between Musicians and
Non-Musicians. J. Neurosci., 23(27), 9240-9245.

Gebauer, L., Kringelbach, M. L., & Vuust, P. (2015). Predictive coding links
perception, action, and learning to emotions in music. Comment on “The
quartet theory of human emotions: An integrative and neurofunctional
model” by S. Koelsch et al. Physics of Life Reviews, 1, 21-23.

Geiser, E., Notter, M., & Gabrieli, J. D. E. (2012). A Corticostriatal Neural System
Enhances Auditory Perception through Temporal Context Processing.
Journal of Neuroscience, 32(18), 6177-6182.

Gibbs Jr, R. W. (2005). Embodiment and cognitive science. Cambridge University
Press.

Grahn, ]. A. (2009). The role of the basal ganglia in beat perception:
Neuroimaging and neuropsychological investigations. Annals of the New
York Academy of Sciences, 1169, 35-45.

Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of
the brain. Journal of Cognitive Neuroscience, 19(5), 893-906.

Grahn, J. A, & Rowe, ]J. B. (2009). Feeling the beat: premotor and striatal
interactions in musicians and nonmusicians during beat perception. The
Journal of Neuroscience: The Official Journal of the Society for Neuroscience,
29(23), 7540-8.

Green, C. S., & Bavelier, D. (2008). Exercising Your Brain: A Review of Human
Brain Plasticity and Training-Induced Learning. Psychology and Aging, 23(4),
692-701.

Guo, Y., & Pagnoni, G. (2008). A unified framework for group independent
component analysis for multi-subkect fMRI data. Neuroimage, 41(3), 1078-
1093.

Guye, M., Bettus, G., Bartolomei, F., & Cozzone, P. J. (2010). Graph theoretical
analysis of structural and functional connectivity MRI in normal and
pathological brain networks. Magnetic Resonance Materials in Physics, Biology
and Medicine, 23(5-6), 409-421.

Habib, M., & Besson, M. (2009). What do music training and musical experience
teach us about brain plasticity? Music Perception: An Interdisciplinary Journal,
26(3), 279-285.

Han, Y., Yang, H., Lv, Y.-T., Zhu, C.-Z,, He, Y., Tang, H.-H., ... Dong, Q. (2009).
Gray matter density and white matter integrity in pianists’ brain: A
combined structural and diffusion tensor MRI study. Neuroscience Letters,
459(1), 3-6.

Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory
sequence processing. Frontiers in Psychology, 5(SEP), 1-17.

Hansen, N. C., Vuust, P.,, & Pearce, M. T. (2013). Predictive processing of
musical structure: Effects of genre-specific expertise. In Poster presented at
the 35th Annual Conference of the Cognitive Science Society. Berlin, Germany.

Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual
working memory in early visual areas. Nature, 458(7238), 632-5.



65

Hasegawa, T., Matsuki, K.-I., Ueno, T., Maeda, Y., Matsue, Y., Konishi, Y., &
Sadato, N. (2004). Learned audio-visual cross-modal associations in
observed piano playing activate the left planum temporale. An fMRI study.
Cognitive Brain Research, 20(3), 510-518.

Haslinger, B., Erhard, P., Altenmdiiller, E., Schroeder, U., Boecker, H., &
Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks
during action observation in professional pianists. Journal of Cognitive
Neuroscience, 17(2), 282-93.

Hasson, U., Furman, O., Clark, D., Dudai, Y., & Davachi, L. (2008). Enhanced
Intersubject Correlations during Movie Viewing Correlate with Successful
Episodic Encoding. Neuron, 57, 452-462.

Hasson, U., & Honey, C. ]J. (2012). Future trends in Neuroimaging: Neural
processes as expressed within real-life contexts. Neurolmage, 62(2), 1272~
1278.

Hasson, U., Malach, R., & Heeger, D. ]. (2010). Reliability of cortical activity
during natural stimulation. Trends in Cognitive Sciences, 14(1), 1-7.

Hasson, U., Nir, Y., Levy, I, Fuhrmann, G., & Malach, R. (2004). Intersubject
synchronization of cortical activity during natural vision. Science (New York,
N.Y.), 303(5664), 1634-40.

Haueisen, J., & Knosche, T. R. (2001). Involuntary motor activity in pianists
evoked by music perception. | Cogn Neurosci, 13.

Hayasaka, S., & Nichols, T. E. (2003). Validating cluster size inference: Random
field and permutation methods. Neurolmage, 20(4), 2343-2356.

Heller, R., Stanley, D., Yekutieli, D., Rubin, N., & Benjamini, Y. (2006). Cluster-
based analysis of FMRI data. Neurolmage, 33(2), 599-608.

Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain
plasticity: behavior, function, and structure. Neuron, 76(3), 486-502.

Himberg, J., & Hyvérinen, A. (2003). Icasso: software for investigating the
reliability of ICA estimates by clustering and visualization. 2003 IEEE XIII
Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03THS8718),
259-268.

Himberg, J., Hyvérinen, A., & Esposito, F. (2004). Validating the independent
components of neuroimaging time series via clustering and visualization.
Neurolmage, 22(3), 1214-1222.

Holmes, A. P., Blair, R. C., Watson, J. D. G., & Ford, 1. (1996). Nonparametric
analysis of statistic images from functional mapping experiments. Journal of
Cerebral Blood Flow & Metabolism, 16(1), 7-22.

Hommel, B. (2004). Event files: Feature binding in and across perception and
action. Trends in Cognitive Sciences, 8(11), 494-500.

Hove, M. ], Keller, P. E, & Krumhansl, C. L. (2007). Sensorimotor
synchronization with chords containing tone-onset asynchronies. Perception
& Psychophysics, 69(5), 699-708.

Huron, D. B. (2006). Sweet anticipation: music and the psychology of expectation.
MIT Press.

Hutcherson, C. A., Goldin, P. R., Ochsner, K. N., Gabrieli, J. D., Feldman Barrett,



66

L., & Gross, J. J. (2005). Attention and emotion: Does rating emotion alter
neural responses to amusing and sad films? Neurolmage, 27, 656-668.

Hutchinson, S., Lee, L. H.-L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume
of musicians. Cerebral Cortex (New York, N.Y.:1991), 13(9), 943-9.

Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C, &
Schlaug, G. (2009). The effects of musical training on structural brain
development: a longitudinal study. Annals of the New York Academy of
Sciences, 1169, 182-6.

Hyvarinen, A. (1999). Fast and Robust Fixed-Point Algorithm for Independent
Component Analysis. IEEE Trans. Neur. Net., 10(3), 626-634.

Hyvérinen, A., Karhunen, J., & Oja, E. (2001). Independent Component
Analysis. John Wiley&Sonr.

Hyvirinen, A., & Oja, E. (2000). Independent component analysis: algorithms
and applications. Neural Networks: The Official Journal of the International
Neural Network Society, 13(4-5), 411-30.

Igelstrom, K. M., Webb, T. W., & Graziano, M. S. A. (2015). Neural processes in
the human temporoparietal cortex separated by localized independent
component analysis. The Journal of Neuroscience, 35(25), 9432-9445.

Imfeld, A., Oechslin, M. S., Meyer, M., Loenneker, T., & Jancke, L. (2009). White
matter plasticity in the corticospinal tract of musicians: a diffusion tensor
imaging study. Neurolmage, 46(3), 600-7.

Jackson, P. L., & Decety, J. (2004). Motor cognition: A new paradigm to study
self-other interactions. Current Opinion in Neurobiology, 14(2), 259-263.

Jaencke, L., & Steinmetz, H. (1994). Interhemispheric transfer time and corpus
callosum size. Neuroreport, 5(17), 2385.

James, C. E., Britz, J., Vuilleumier, P., Hauert, C. A., & Michel, C. M. (2008).
Early neuronal responses in right limbic structures mediate harmony
incongruity processing in musical experts. Neurolmage, 42(4), 1597-1608.

James, W. (1890). The principles of psychology. 2 vols. New York: Henry Holt
and Company. GEN.

Johnson, M. (1987). The Body in the Mind: the Bodily Basis of Meaning, Imagination,
and Reason.

Kakebeeke, T. H., Locatell, 1., Rousson, V., Caflisch, 1., & Jenni, O. G. (2012).
Improvement in gross motor performance between 3 and 5 years of age.
Perceptual and Motor Skills, 114(3), 795-806.

Kalcher, K., Huf, W., Boubela, R. N., Filzmoser, P., Pezawas, L., Biswal, B., ...
Windischberger, C. (2012). Fully exploratory network independent
component analysis of the 1000 functional connectomes database. Frontiers
in Human Neuroscience, 6(November), 301.

Keren-Happuch, E., Chen, S.--H. A., Ho, M.-H. R., & Desmond, J. E. (2014). A
meta-analysis of cerebellar contributions to higher cognition from PET and
fMRI studies. Human Brain Mapping, 35(2), 593-615.

Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D. (2007). Untangling
syntactic and sensory processing: An ERP study of music perception.
Psychophysiology, 44(3), 476-490.



67

Koelsch, S., Schmidt, B.-H., & Kansok, J. (2002). Effects of musical expertise on
the early right anterior negativity: an event-related brain potential study.
Psychophysiology, 39(5), 657-663.

Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of
auditory skills. Nature Reviews. Neuroscience, 11(8), 599-605.

Krause, V., Pollok, B., & Schnitzler, A. (2010). Perception in action: The impact
of sensory information on sensorimotor synchronization in musicians and
non-musicians. Acta Psychologica, 133(1), 28-37.

Krause, V., Schnitzler, A., & Pollok, B. (2010). Functional network interactions
during sensorimotor synchronization in musicians and non-musicians.
Neurolmage, 52(1), 245-251.

Kung, S.-J., Chen, ]J. L., Zatorre, R. ]J., & Penhune, V. B. (2013). Interacting
cortical and basal ganglia networks underlying finding and tapping to the
musical beat. Journal of Cognitive Neuroscience, 25(3), 401-420.

Kwong, K. K,, Belliveau, J. W., Chesler, D. A., Goldberg, 1. E., Weisskoff, R. M.,
Poncelet, B. P., ... Turner, R. (1992). Dynamic magnetic resonance imaging
of human brain activity during primary sensory stimulation. Proceedings of
the National Academy of Sciences, 89(12), 5675-5679.

Lang, E. W,, Tomé, A. M., Keck, I. R., Gorriz-Séaez, J. M., & Puntonet, C. G.
(2012). Brain connectivity analysis: A short survey. Computational
Intelligence and Neuroscience, 2012(iii).

Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music.
Cognitive Science, 26, 1-37.

Lartillot, O., & Toiviainen, P. (2007). A Matlab Toolbox for Musical Feature
Extraction From Audio. In International Conference on Digital Audio Effects,
Bordeaux.

Ledberg, A., Akerman, S., & Roland, P. E. (1998). Estimation of the Probabilities
of 3D Clusters in Functional Brain Images, 128(8), 113-128.

Lee, D. J.,, Chen, Y., & Schlaug, G. (2003). Corpus callosum: musician and
gender effects. Neuroreport, 14(2), 205-9.

Lehmann, A., & Gruber, H. (2006). Music. In Ericsson, K. A., Charness, N.,
Feltovich, P. J., & Hoffman, R. R. (Eds.), Cambridge Handbook of Expertise and
Expert Performance (pp. 457-470). Cambridge: Cambridge University Press.

Li, Y.-O., Adali, T., & Calhoun, V. D. (2007). Estimating the number of
independent components for functional magnetic resonance imaging data.
Human Brain Mapping, 28(September 2006), 1251-1266.

Lindquist, M. (2008). The Statistical Analysis of fMRI Data. Statistical Science,
23(4), 439-464.

Lindquist, M. A., & Wager, T. D. (2014). Principles of functional Magnetic
Resonance Imaging. Handbook of Neuroimaging Data Analysis, 3-48.

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, a. (2001).
Neurophysiological investigation of the basis of the fMRI signal. Nature,
412(6843), 150-7.

Luo, C,, Guo, Z,, Lai, Y., Liao, W., Liu, Q., Kendrick, K. M., ... Li, H. (2012).
Musical training induces functional plasticity in perceptual and motor



68

networks: insights from resting-state FMRI. PLOS ONE, 7(5), e36568.

Mackay, D. J. C. (2003). Information Theory, Inference, and Leaning algorithms.

Maguire, E. A. (2012). Studying the freely-behaving brain with fMRL
Neurolmage, 62(2), 1170-1176.

Maidhof, C., Vavatzanidis, N., Prinz, W., Rieger, M., & Koelsch, S. (2010).
Processing expectancy violations during music performance and
perception: an ERP study. Journal of Cognitive Neuroscience, 22(10), 2401-
2413.

Makeig, S., Brown, G. G., Kindermann, S. S,, Jung, T.-P., Bell, A. ]., Sejnowski, T.
J., & McKeown, M. J. (1998). Response from Martin McKeown, Makeig,
Brown, Jung, Kindermann, Bell and Sejnowski. Trends in Cognitive Sciences,
2(10), 375-375.

Malinen, S., Hlushchuk, Y., & Hari, R. (2007). Towards natural stimulation in
fMRI—issues of data analysis. Neuroimage, 35(1), 131-139.

McGonigle, D. J., Howseman, A. M., Athwal, B. S,, Friston, K. J., Frackowiak, R.
S., & Holmes, A. P. (2000). Variability in fMRI: an examination of
intersession differences. Neurolmage, 11, 708-734.

McKeown, M. ], Jung, T. P., Makeig, S., Brown, G., Kindermann, S. S., Lee, T.
W., & Sejnowski, T. J. (1998). Spatially independent activity patterns in
functional MRI data during the stroop color-naming task. Proceedings of the
National Academy of Sciences of the United States of America, 95(3), 803-10.

McKeown, M. J., Makeig, S., Brown, G. G,, Jung, T. P., Kindermann, S. S., Bell, A.
J., & Sejnowski, T. J. (1998). Analysis of fMRI data by blind separation into
independent spatial components. Human Brain Mapping, 6(3), 160-188.

McKeown, M. J., & Sejnowski, T. J. (1998). Independent component analysis of
fMRI data: Examining the assumptions. Human Brain Mapping, 6(5-6), 368-
372.

Menin, D., & Schiavio, A. (2012). Rethinking Musical Affordances. Avant, I,
201-215.

Merrett, D. L., Peretz, 1., & Wilson, S. J. (2013). Moderating variables of music
training-induced neuroplasticity: A review and discussion. Frontiers in
Psychology, 4(SEP), 1-8.

Meyer, L. (1956). Emotion and Meaning in Music. Chicago, IL: University of
Chicago Press.

Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T.
(2011). Short-term music training enhances verbal intelligence and
executive function. Psychological Science, 22(11), 1425-1433.

Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive
benefit through the unique lens of musical training. Hearing Research, 308,
84-97.

Moreno, S., Friesen, D., & Bialystok, E. (2011). Effect of music training on
promoting preliteracy skills: preliminary causal evidence. Music Perception:
An Interdisciplinary Journal, 29(2), 165-172.

Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., & Besson, M.
(2009). Musical training influences linguistic abilities in 8-year-old children:



69

more evidence for brain plasticity. Cerebral Cortex (New York, N.Y.: 1991),
19(3), 712-23.

Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced
subcortical auditory and audiovisual processing of speech and music.
Proceedings of the National Academy of Sciences of the United States of America,
104(40), 15894-15898.

Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures: The
Implication-Realization Model. Chicago, IL: Chicago University Press.

Nichols, T. E. (2012). Multiple testing corrections, nonparametric methods, and
random field theory. Neuroimage, 62(2), 811-815.

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for
functional neuroimaging: a primer with examples. Human Brain Mapping,
15(1), 1-25.

Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in
functional neuroimaging: a comparative review. Statistical Methods in
Medical Research, 12(5), 419-446.

Niedenthal, P. M., Barsalou, L. W., Winkielman, P., Krauth-Gruber, S., & Ric, F.
(2005). Embodiment in attitudes, social perception, and emotion. Personality
and Social Psychology Review, 9(3), 184-211.

Norman, Polyn, Detre, & Haxby. (2006). Beyond mind-reading: multi-voxel
pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424-30.
Oechslin, M. S., Van De Ville, D., Lazeyras, F., Hauert, C. A., & James, C. E.
(2013). Degree of musical expertise modulates higher order brain

functioning. Cerebral Cortex, 23(9), 2213-2224.

Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., &
Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory
stimulation: functional brain mapping with magnetic resonance imaging.
Proceedings of the National Academy of Sciences, 89(13), 5951-5955.

Onton, J., & Makeig, S. (2006). Information-based modeling of event-related
brain dynamics. Progress in Brain Research, 159, 99-120.

Onuki, Y., Van Someren, E. ]. W., De Zeeuw, C. I, & Van der Werf, Y. D. (2015).
Hippocampal-Cerebellar Interaction During Spatio-Temporal Prediction.
Cerebral Cortex (New York, N.Y.:1991), 2, 313-321.

Op de Beeck, H. P., & Baker, C. I. (2010). The neural basis of visual object
learning. Trends in Cognitive Sciences, 14(1), 22-30.

Palmer, C. (1989). Mapping Musical Thought to Musical Performance. Journal of
Experimental Psychology: Human Perception and Performance, 15(2), 331-346.

Pantev, C., Lappe, C., Herholz, S. C., & Trainor, L. (2009).
Auditory - Somatosensory Integration and Cortical Plasticity in Musical
Training. Annals of the New York Academy of Sciences, 1169(1), 143-150.

Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M.
(1998). Increased auditory cortical representation in musicians. Nature,
392(6678), 811-4.

Pantev, C., Roberts, L. E., Schulz, M., Engelien, a, & Ross, B. (2001). Timbre-
specific enhancement of auditory cortical representations in musicians.



70

Neuroreport, 12(1), 169-174.

Patston, L. L. M., Kirk, L. J., Rolfe, M. H. S., Corballis, M. C., & Tippett, L. J.
(2007). The unusual symmetry of musicians: musicians have equilateral
interhemispheric transfer for visual information. Neuropsychologia, 45(9),
2059-65.

Pearce, M. T., Ruiz, M. H., Kapasi, S., Wiggins, G. a, & Bhattacharya, J. (2010).
Unsupervised statistical learning underpins computational, behavioural,
and neural manifestations of musical expectation. Neurolmage, 50(1), 302-13.

Pearce, M. T., & Wiggins, G. A. (2006). Expectation in melody: The influence of
context and learning. Music Perception: An Interdisciplinary Journal, 23(5),
377-405.

Peretz, 1., & Zatorre, R. J. (2003). The cognitive neuroscience of music. Oxford:
Oxford University Press.

Peretz, 1., & Zatorre, R. ]J. (2005). Brain organization for music processing.
Annual Review of Psychology, 56, 89-114.

Pezzulo, G., Candidi, M., Dindo, H., & Barca, L. (2013). Action simulation in the
human brain: Twelve questions. New Ideas in Psychology, 31(3), 270-290.
Pizoli, C. E., Shah, M. N,, Snyder, A. Z., Shimony, J. S., & Limbrick, D. D. (2011).
Resting-state activity in development and maintenance of normal brain

function.

Pollok, B., Gross, J., & Schnitzler, A. (2006). How the brain controls repetitive
finger movements. Journal of Physiology-Paris, 99(1), 8-13.

Prinz, W. (1997). Perception and action planning. European Journal of Cognitive
Psychology, 9(2), 129-154.

Pyper, B. J., & Peterman, R. M. (1998). Comparison of methods to account for
autocorrelation in correlation analyses of fish data, 2140, 2127-2140.

Quintana, J., & Fuster, J]. M. (1999). From perception to action: temporal
integrative functions of prefrontal and parietal neurons. Cerebral Cortex,
9(3), 213-221.

Ramoén y Cajal, S. (1904). Textura del Sistema Nervioso del Hombre y de los
Vertebrados (Vol. 2). Madrid Nicolas Moya.

Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects.
Nature Neuroscience, 2(1), 79-87.

Reilly, J. X. O., Croxson, P. L., Jbabdji, S., Sallet, ]J., Noonan, M. P., Mars, R. B., &
Baxter, M. G. (2013). Causal effect of disconnection lesions on
interhemispheric functional connectivity in rhesus monkeys.

Repp, B. H. (1990). Patterns of expressive timing in performances of a
Beethoven Minuet by nineteen famous pianists. The Journal of the Acoustical
Society of America, 93, 622-641.

Repp, B. H. (2010). Sensorimotor synchronization and perception of timing:
effects of music training and task experience. Human Movement Science,
29(2), 200-213.

Repp, B. H., & Doggett, R. (2007). Tapping to a very slow beat: a comparison of
musicians and nonmusicians. Music Perception: An Interdisciplinary Journal,



71

24(4), 367-376.

Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of
recent research (2006-2012). Psychonomic Bulletin & Review, 20(3), 403-452.

Reuter-Lorenz, P. A., & Sylvester, C. C. (2005). The Cognitive Neuroscience of
Working Memory and Aging, First(September 2014), 186-219.

Riggall, A. C., & Postle, B. R. (2013). The relation between working memory
storage and elevated activity, as measured with fmri. | Neuroscience, 32(38),
12990-12998.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum
description length. The Annals of Statistics, 416-431.

Rohrmeier, M. A., & Koelsch, S. (2012). Predictive information processing in
music cognition. A critical review. International Journal of Psychophysiology,
83(2), 164-175.

Rosenkranz, K., Williamon, A., & Rothwell, J. C. (2007). Motorcortical
excitability and synaptic plasticity is enhanced in professional musicians.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience,
27(19), 5200-6.

Risseler, J., Altenmiiller, E., Nager, W., Kohlmetz, C., & Miinte, T. F. (2001).
Event-related brain potentials to sound omissions differ in musicians and
non-musicians. Neuroscience Letters, 308(1), 33-6.

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical
learning of tone sequences by human infants and adults. Cognition, 70(1),
27-52.

Sareld, J., & Vigario, R. (2003). Overlearning in marginal distribution-based ICA:
analysis and solutions. Journal of Machine Learning Research, 4(Dec), 1447~
1469.

Schenker, H. (1935). Der freie Satz. Wien: Universal-Edition.

Schlaug, G., Jancke, L., Huang, Y. Staiger, J. F., & Steinmetz, H. (1995).
Increased corpus callosum size in musicians. Neuropsychologia, 33(8), 1047-
55.

Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice:
Common principles in three paradigms suggest new concepts for training.
Psychological Science, 3(4), 207-217.

Schmithorst, V. J., & Holland, S. K. (2004). Comparison of three methods for
generating group statistical inferences from independent component
analysis of functional magnetic resonance imaging data. Journal of Magnetic
Resonance Imaging, 19(3), 365-368.

Schmithorst, V. J., & Wilke, M. (2002). Differences in white matter architecture
between musicians and non-musicians: a diffusion tensor imaging study.
Neuroscience Letters, 321(1-2), 57-60.

Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A.
(2002). Morphology of Heschl’s gyrus reflects enhanced activation in the
auditory cortex of musicians. Nature Neuroscience, 5(7), 688-94.

Schoenberg, A. (1978). Theory of Harmony. London, Boston: Faber and Faber.

Schreiber, T., & Schmitz, A. (1996). Improved Surrogate Data for Nonlinearity



72

Tests. Physical Review Letters, 77(4), 635-638.

Schubotz, R. I, Friederici, A. D., & Von Cramon, D. Y. (2000). Time perception
and motor timing: a common cortical and subcortical basis revealed by
fMRI. Neuroimage, 11(1), 1-12.

Schwenkreis, P., El Tom, S., Ragert, P., Pleger, B., Tegenthoff, M., & Dinse, H. R.
(2007). Assessment of sensorimotor cortical representation asymmetries
and motor skills in violin players. The European Journal of Neuroscience,
26(11), 3291-302.

Sebanz, N., & Knoblich, G. (2009). Prediction in Joint Action: What, When, and
Where. Topics in Cognitive Science, 1(2), 353-367.

Serences, ]J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific
delay activity in human primary visual cortex. Psychological Science: A
Journal of the American Psychological Society / APS, 20, 207-214.

Sohn, W. S,, Yoo, K., & Jeong, Y. (2012). Independent component analysis of
localized resting-state functional magnetic resonance imaging reveals
specific motor subnetworks. Brain Connectivity, 2(4), 218-24.

Sohn, W. S., Yoo, K., Lee, Y.-B,, Seo, S. W,, Na, D. L., & Jeong, Y. (2015).
Influence of ROI selection on resting state functional connectivity: an
individualized approach for resting state fMRI analysis. Frontiers in
Neuroscience, 9, 280.

Specht, K., Willmes, K., Shah, N. J., & Jancke, L. (2003). Assessment of reliability
in functional imaging studies. Journal of Magnetic Resonance Imaging : JMRI,
17(4), 463-471.

Sporns, O., & Zwi, J. (2004). The small world of the cerebral cortex.
Neuroinformatics, 2, 145-162.

Sreenivasan, K. K., Vytlacil, ]J., & D’Esposito, M. (2014). Distributed and
dynamic storage of working memory stimulus information in extrastriate
cortex. Journal of Cognitive Neuroscience, 26(5), 1141-53.

Stam, C. J. (2004). Functional connectivity patterns of human
magnetoencephalographic recordings: a small-world network? Neurosci.
Lett., 355, 25-28.

Steele, C. ], Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early Musical
Training and White-Matter Plasticity in the Corpus Callosum: Evidence for
a Sensitive Period. Journal of Neuroscience, 33(3), 1282-1290.

Stoodley, C. J.,, & Schmahmann, J. D. (2009). Functional topography in the
human cerebellum: A meta-analysis of neuroimaging studies. Neurolmage,
44(2), 489-501.

Stoodly, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography
of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage,
59(2), 1560-1570570.

Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function.
Annual Review of Neuroscience, 32, 413-34.

Svensén, M., Kruggel, F., & Benali, H. (2002). ICA of fMRI group study data.
Neurolmage, 16(3 Pt 1), 551-563.

Tyszka, ]. M., Kennedy, D. P., Adolphs, R., & Paul, L. K. (2011). Intact bilateral



73

resting-state networks in the absence of the corpus callosum. The Journal of
Neuroscience : The Official Journal of the Society for Neuroscience, 31(42), 15154~
62.

Uddin, L. Q., Mooshagian, E., Zaidel, E., Scheres, A., Margulies, D. S., Kelly, a
M. C, ... Milham, M. P. (2008). Residual functional connectivity in the
split-brain revealed with resting-state functional MRI. Neuroreport, 19(7),
703-9.

Ullén, F. (2009). Is activity regulation of late myelination a plastic mechanism in
the human nervous system? Neuron Glia Biology, 5(1-2), 29-34.

van den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A
review on resting-state fMRI functional connectivity. European
Neuropsychopharmacology, 20(8), 519-534.

van den Heuvel, M. P., Stam, C. ]J., Boersma, M., & Hulshoff Pol, H. E. (2008).
Small-world and scale-free organization of voxel-based resting-state
functional connectivity in the human brain. Neuroimage, 43, 528-539.

van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009).
Efficiency of functional brain networks and intellectual performance. The
Journal of Neuroscience : The Official Journal of the Society for Neuroscience,
29(23), 7619-7624.

van Vugt, F. T., & Tillmann, B. (2014). Thresholds of auditory-motor coupling
measured with a simple task in musicians and non-musicians: Was the
sound simultaneous to the key press? PLOS ONE, 9(2), 1-8.

Vollmann, H., Ragert, P., Conde, V., Villringer, A., Classen, J., Witte, O. W., &
Steele, C. J. (2014). Instrument specific use-dependent plasticity shapes the
anatomical properties of the corpus callosum: a comparison between
musicians and non-musicians. Frontiers in Behavioral Neuroscience, 8(July), 245.

Vuust, P., Brattico, E., Glerean, E., Seppanen, M., Pakarinen, S., Tervaniemi, M., &
Néétéanen, R. (2011). New fast mismatch negativity paradigm for determining
the neural prerequisites for musical ability. Cortex, 47(9), 1091-1098.

Vuust, P., Brattico, E., Seppanen, M., Né&dtdnen, R., & Tervaniemi, M. (2012).
The sound of music: Differentiating musicians using a fast, musical multi-
feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432-1443.

Vuust, P., Ostergaard, L., Pallesen, K. J., Bailey, C., & Roepstorff, A. (2009).
Predictive coding of music—Brain responses to rhythmic incongruity.
Cortex, 45(1), 80-92.

Wallin, N. L., & Merker, B. (2001). The origins of music. MIT Press.

Wan, C. Y., & Schlaug, G. (2010). Music making as a tool for promoting brain
plasticity across the life span. The Neuroscientist : A Review Journal Bringing
Neurobiology, Neurology and Psychiatry, 16(5), 566-77.

Wang, Z., Dai, Z., Gong, G., Zhou, C, & He, Y. (2014). Understanding
Structural-Functional Relationships in the Human Brain: A Large-Scale
Network Perspective. The Neuroscientist: A Review Journal Bringing
Neurobiology, Neurology and Psychiatry.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin &
Review, 9(4), 625-636.



74

Wilson, M., & Knoblich, G. (2005). The Case for Motor Involvement in
Perceiving Conspecifics. Psychological Bulletin, 131(3), 460-473.

Witelson, S. (1985). The brain connection: the corpus callosum is larger in left-
handers. Science, 229(4714), 665-668.

Wolf, 1., Dziobek, 1., & Heekeren, H. R. (2010). Neural correlates of social
cognition in naturalistic settings: a model-free analysis approach.
Neuroimage, 49(1), 894-904.

Wong, P. C. M,, Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical
experience shapes human brainstem encoding of linguistic pitch patterns.
Nature Neuroscience, 10(4), 420-422.

Worsley, K. J. (2005). Spatial smoothing of autocorrelations to control the
degrees of freedom in fMRI analysis. Neurolmage, 26(2), 635-41.

Worsley, K. J., Evans, A. C., Marrett, S., & Neelin, P. (1992). A three-dimensional
statistical analysis for CBF activation studies in human brain. Journal of
Cerebral Blood Flow & Metabolism, 12(6), 900-918.

Worsley, K. J., & Friston, K. J. (1995). Analysis of fMRI time-series revisited -
Again. Neurolmage, 2(3), 173-181.

Xu, J., Calhoun, V. D., Worhunsky, P. D., Xiang, H., Li, J., Wall, J. T., ... Potenza,
M. N. (2015). Functional Network Overlap as Revealed by fMRI Using
sICA and Its Potential Relationships with Functional Heterogeneity,
Balanced Excitation and Inhibition, and Sparseness of Neuron Activity.
PLOS ONE, 10(2), e0117029.

Xu, J., Potenza, M. N., & Calhoun, V. D. (2013). Spatial ICA reveals functional
activity hidden from traditional fMRI GLM-based analyses. Frontiers in
Neuroscience, 7(7 AUG), 1-4.

Xu, J., Potenza, M. N., Calhoun, V. D., Zhang, R, Yip, 5. W., Wall, J. T,, ...
Moran, J. M. (2016). Large-Scale functional network overlap is a general
property of brain functional organization: Reconciling inconsistent fMRI
findings from general-linear-model-based analyses. Neuroscience &
Biobehavioral Reviews, 71, 83-100.

Xu, J., Zhang, S., Calhoun, V. D., Monterosso, J., Li, C.-S. R., Worhunsky, P. D,
Potenza, M. N. (2013). Task-related concurrent but opposite modulations of
overlapping functional networks as revealed by spatial ICA. Neurolmage, 79,
62-71.

Zatorre, R. ]. (2005). Music, the food of neuroscience? Nature, 434(7031), 312-315.

Zatorre, R. J., Chen, ]J. L., & Penhune, V. B. (2007). When the brain plays music:
auditory-motor interactions in music perception and production. Nature
Reviews Neuroscience, 8(7), 547-558.

Zentner, M., & Eerola, T. (2010). Rhythmic engagement with music in infancy.
Proceedings of the National Academy of Sciences, 107(13), 5768.

Zuo, X.-N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D. S., Bangaru,
S., ... Milham, M. P. (2010). Growing together and growing apart: regional
and sex differences in the lifespan developmental trajectories of functional
homotopy. The Journal of Neuroscience : The Official Journal of the Society for
Neuroscience, 30(45), 15034-43.



ORIGINAL PAPERS

THE RELIABILITY OF CONTINUOUS BRAIN RESPONSES
DURING NATURALISTIC LISTENING TO MUSIC

by

Iballa Burunat, Petri Toiviainen, Vinoo Alluri, Brigitte Bogert, Tapani Ristaniemi,
Mikko Sams & Elvira Brattico, 2016

Journal of Neuroimage vol 124, 224-231

Reproduced with kind permission by Elsevier.



Neurolmage 124 (2016) 224-231

journal homepage: www.elsevier.com/locate/ynimg

Contents lists available at ScienceDirect

Neurolmage

The reliability of continuous brain responses during naturalistic listening

to music

@ CrossMark

Iballa Burunat *>*, Petri Toiviainen ?, Vinoo Alluri ?, Brigitte Bogert ¢, Tapani Ristaniemi ®,

Mikko Sams ¢, Elvira Brattico ®<**

2 Finnish Centre for Interdisciplinary Music Research, Department of Music, University of Jyviskyld, Finland
b Department of Mathematical Information Technology, University of Jyviskyld, Finland

© Cognitive Brain Research Unit (CBRU), Institute of Behavioral Sciences, University of Helsinki, Finland

4 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Finland

€ Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University, Denmark

T Advanced Magnetic Imaging (AMI) Centre, Aalto University School of Science, Finland

ARTICLE INFO

ABSTRACT

Article history:

Received 31 March 2015

Accepted 3 September 2015
Available online 10 September 2015

Keywords:

Functional magnetic resonance imaging (fMRI)
Musical features

Naturalistic paradigm

Interclass correlation

Dice coefficient

Reliability

Low-level (timbral) and high-level (tonal and rhythmical) musical features during continuous listening to music,
studied by functional magnetic resonance imaging (fMRI), have been shown to elicit large-scale responses in cog-
nitive, motor, and limbic brain networks. Using a similar methodological approach and a similar group of partic-
ipants, we aimed to study the replicability of previous findings. Participants’ fMRI responses during continuous
listening of a tango Nuevo piece were correlated voxelwise against the time series of a set of perceptually validat-
ed musical features computationally extracted from the music. The replicability of previous results and the pres-
ent study was assessed by two approaches: (a) correlating the respective activation maps, and (b) computing the
overlap of active voxels between datasets at variable levels of ranked significance. Activity elicited by timbral fea-
tures was better replicable than activity elicited by tonal and rhythmical ones. These results indicate more reli-
able processing mechanisms for low-level musical features as compared to more high-level features. The
processing of such high-level features is probably more sensitive to the state and traits of the listeners, as well
as of their background in music.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Alluri et al. (2012) explored the neural correlates of music process-
ing as it occurs in a realistic or naturalistic environment, where partici-
pants’ only task is to attentively listen to the whole piece of music. They
observed large-scale brain responses in cognitive, motor and limbic
brain networks during continuous processing of low-level (timbral)
and high-level (tonal and rhythmical) acoustic features using fMRI.
This was among the first approaches at attempting to uncover the func-
tional brain topology of musical processing by jointly drawing on com-
putational feature extraction, behavioral, and brain-activity measures to
isolate the variance associated with a number of musical features. These
features, computationally extracted from a dynamic, complex stimulus,
represent the basic musical dimensions of the piece and their use con-
stitutes a central aspect of this naturalistic approach.

* Correspondence to: I. Burunat, Department of Music, University of Jyvaskyld, PL
35(M), 40014 Jyviskyld, Finland.
** Correspondence to: E. Brattico, Center for Music in the Brain (MIB), Department of
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(E. Brattico).
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1053-8119/© 2015 Elsevier Inc. All rights reserved.

The use of parameterized stimuli has been critical for isolating rele-
vant dimensions out of the multidimensionality inherent to natural
phenomena. In music neuroscience, previous research has focused on
identifying the functional neuroanatomy of particular musical percepts,
like pitch (Patterson et al., 2002; Warren et al., 2003), tonality (Janata
et al,, 2002a; Janata et al., 2002b), rhythm (Chen et al., 2008; Grahn &
Rowe, 2009), and timbre (Caclin et al., 2006; Halpern et al., 2004),
using controlled auditory paradigms and simple stimuli at the expense
of ecological validity. Although both traditional and naturalistic ap-
proaches are necessary, as they convey mutually different aspects
about the phenomenon under investigation, the literature has to date
focused on the former, while not giving a fair representation of the phe-
nomenon of musical processing in the brain in more naturalistic
environments.

Decoding perception using realistic settings represents a hard chal-
lenge. Music is multidimensional and all elements embedded in it
change in parallel over time. Compared to controlled auditory stimuli
used in most experimental settings, real music is both dynamic and
more complex. While listening to it we process these elements in paral-
lel and integrate them into coherent percepts over time (Bregman,
1994). This type of more ecological processing has been shown to en-
gage activity that includes brain areas beyond the sensory domain (for
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instance, areas concerned with motor control; Hasson & Malach, 2006)
not activated in traditional studies with static stimuli (Bartels & Zeki,
2004; Hasson et al., 2004). Moreover, the sensory dimension of the
stimulus is neither disconnected from its cognitive and affective dimen-
sion, nor from its context-driven goal and function (Hasson & Malach,
2006). It is the integration and interaction of all these aspects which
gives coherence to our experience (Johnson, 1987), and thus a con-
trolled setting falls short of all this complex multidimensionality.
Using more realistic environments can consequently have a strong im-
pact in the associated neural and cognitive processing of information
(Zaki & Ochsner, 2009). With the advance in computational methods,
new approaches are available to study the neural processing of natural
phenomena that have not been possible to study using conventional
methods. The viability of using these computational approaches has
been demonstrated in neuroimaging paradigms where participants
are shown movies, evidencing the ecological importance of such ap-
proaches (Hasson et al., 2004; Hutcherson et al., 2005; Hasson et al.,
2008). As a result, naturalistic paradigms in neuroimaging are becoming
more technically feasible for studying human brain functions.

The study by Alluri et al. (2012) (hereafter referred to as “the
original study”) involved the use of a continuous stimulus in a natu-
ralistic listening environment at the expense of added complexity to
identify the brain areas supporting the processing of individual mu-
sical features. The results showed large-scale activation in previously
unobserved areas such as the cerebellum and the basal ganglia in re-
sponse to timbral features and the limbic system in response to high-
level features, demonstrating the relevance of applying a naturalistic
paradigm to music research. However, scientific paradigms and find-
ings are of little use unless their validity and reliability is widely ac-
cepted (Bennett & Miller, 2010). Reliability can be defined as the
degree to which a result is replicable after repeated measurements.
In neuroscience reliability is a measure of the replicability of an acti-
vation map. Neuroimaging studies on reliability of findings are still
sparse (Chen & Small, 2007). Indeed, concerns about the low reliabil-
ity of fMRI finding have been recently voiced by the neuroimaging
community (Barch & Yarkoni, 2013). Among the causes for low reli-
ability and high discrepancy of findings fellow scientists have
brought to notice the pervasive low statistical power (Button et al.,
2013), prevalence of false positives, and overestimated effect sizes
(Vul & Pashler, 2012).

Different factors can influence fMRI reliability, including sample size
(Thirion et al., 2007). The signal-to-noise ratio (SNR) of the acquired im-
ages is often a measure of the data quality in fMRI and therefore needs
to be maximized. Even small modifications in the fMRI processing pipe-
line can also have an impact on the results (Shou et al., 2013). Addition-
ally, other sources of variation in the results are the analysis methods
and the individual traits of the subjects or even their current mental
state (Kriiger & Glover, 2001; Zilles & Amunts, 2013). For instance, dif-
ferences in the global SNR could be influenced by attentional effort on
the task being performed (Specht et al., 2003). Furthermore, when
assessing the reliability of results, different methods target different as-
pects of the results (e.g., stability of significant voxels across trials, or av-
erage signal magnitude) (Bennett & Miller, 2010).

The replicability of these aspects can be assessed in a within-subject,
inter-subject, or inter-stimulus manner. In other words, reliability can
be measured by examining how the results remain stable across trials
for the same subject, between different subjects, or for different stimuli.
The inter-stimulus reliability of the present auditory naturalistic
paradigm was assessed in Alluri et al. (2013) by means of a cross-
validation procedure. Results revealed the common functional anatomy
of music processing during naturalistic listening across different musical
contexts. Here, we aimed to quantify the inter-subject replicability of
the original findings by Alluri et al. (2012). In this replication experi-
ment, the musical stimulus was identical and the methodological pipe-
line was similar. The demographics of the participant pool as a group
were equivalent. We propose two interclass measures to assess the

similarity of the resulting functional group maps derived from the two
studies: (1) correlation of resulting whole-brain activation maps;
(2) overlap of active voxels in maps thresholded at variable levels of sig-
nificance. The first measure characterizes the similarity in terms of the
overall shape of the activation map, and the second measure focuses
on the areas of optimal reliability.

2. Material and methods
2.1. Participants

Eleven right-handed healthy participants (5 females; 29 +
1.4 years old) with no history of neurological or psychological disor-
ders and with formal musical training (styles: classical = 8, folk = 2,
pop/rock = 1; instruments: keyboard = 6, percussion = 3, string =
2, wind = 2; mean starting age = 8.4 4 5.7 years; mean total
training = 15 & 5 SD years; mean practice time = 2.5 +£ 1.2 SD
hours/day) took part in the fMRI experiment (see Table 1 for a com-
parison with the participant pool of the original study). This study
was part of a larger project (“Tunteet”) including several experimen-
tal sessions, fMRI paradigms, as well as questionnaires, and whose
findings will be reported in separate papers. The participants were
screened for inclusion criteria before admission to the experiment
(no ferromagnetic material in their body, no tattoo or recent perma-
nent colouring, no pregnancy or breastfeeding, no chronic pharma-
cological medication, no claustrophobia) and upon admission to
the experiment signed an informed written consent. The study pro-
tocol proceeded upon acceptance by the ethics committee of the Co-
ordinating Board of the Helsinki and Uusimaa Hospital District.

2.2. Stimulus material

The musical piece used in the experiment was the tango Adids
Nonino with a duration of 8 min and 8 s by the Argentinean composer
Astor Piazzolla (1921-1992). This piece of music had been selected in
the original study for its appropriate duration and high variance in sev-
eral musical features such as dynamics, timbre, tonality, and rhythm.

2.3. Procedure

Participants’ brain responses were acquired while they listened to
the musical stimulus following the protocol observed in the original
study. Listening to the music was the only task of the study. Before en-
tering the scanner room, the experimenter set up a 32-electrode elec-
troencephalography (EEG) cap on the participants’ heads. Preparation,
which included fixing EEG electrode impedance outside the scanner
and adjusting the stimulus level to a comfortable but audible loudness
inside the scanner room (around 75 dB), lasted about 40 min. In the
scanner, the participants’ only task was to attentively listen to the

Table 1
Demographic data used in the original and replication studies.
Original study Replication
Number 11 11
Age 23.2 £ 3.7 years 29 + 1.4 years
Gender 5 females 5 females
Music genre Classical = 5 Classical = 8
Folk = 2 Folk = 2
Pop/rock = 4 Pop/rock =1
Instrument String = 4 String = 2
Percussion = 3 Percussion = 1
Wind = 2 Wind = 2
Keyboard = 2 Keyboard = 6
Mean starting age 9.1 & 3.4 years 8.4 £ 5.7 years
Handedness 9right, 2 n/a 11 right
Total training years 16.1 + 6 years 15 + 5 years
Practicing time 2.5 4+ 1.2 h/day 2.6 &+ 2 h/day
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music delivered via high-quality MR-compatible insert earphones while
keeping their eyes open.

2.4. fMRI image acquisition and preprocessing

Scanning was performed using a 3 T MAGNETOM Skyra whole-body
scanner (Siemens Healthcare, Erlangen, Germany) and a standard 20-
channel head-neck coil, at the Advanced Magnetic Imaging (AMI) Cen-
tre (Aalto University, Espoo, Finland). Concurrent EEG was also acquired
with BrainVision amplifier. The data will be reported elsewhere, not
being of interest to the current study goal of fMRI signal reliability.
Using a single-shot gradient echo planar imaging (EPI) sequence,
thirty-three oblique slices (field of view = 192 x 192 mm; 64 x 64 ma-
trix; slice thickness = 4 mm, interslice skip = 0 mm; echo time =
32 ms; flip angle = 75°) were acquired every 2 s, providing whole-
brain coverage. T1-weighted structural images (176 slices; field of
view = 256 x 256 mm; matrix = 256 x 256; slice thickness = 1 mm;
interslice skip = 0 mm; pulse sequence = MPRAGE) were also collected
for individual coregistration. Functional MRI scans were preprocessed
on a MATLAB platform using SPM8 (Statistical Parametric Mapping),
VBM5 for SPM (Voxel Based Morphometry (Ashburner & Friston,
2000); Wellcome Department of Imaging Neuroscience, London, UK),
and customized scripts developed by the present authors. For each par-
ticipant, low-resolution images were realigned on six dimensions using
rigid body transformations (translation and rotation corrections did not
exceed 2 mm and 2°, respectively), segmented into grey matter, white
matter, and cerebrospinal fluid, and registered to the corresponding
segmented high-resolution T1-weighted structural images. These
were in turn normalized to the MNI (Montreal Neurological Institute
(Evans et al., 1994)) segmented standard a priori tissue templates
using a 12-parameter affine transformation. Functional images were
then blurred to best accommodate anatomical and functional variations
across participants as well as to enhance the signal-to-noise by means of
spatial smoothing using an 8 mm full-width-at-half-maximum Gaussian
filter. Movement-related variance components in fMRI time series
resulting from residual motion artefacts, as assessed by the six parame-
ters of the rigid body transformation in the realignment stage, were
treated as regressors of no interest to exclude movement-related vari-
ance from the image time series. Next, a high-pass filter of 0.008 Hz
was applied to the fMRI signal, followed by temporal filtering (Gaussian
smoothing with kernel width = 4 s).

As we are comparing data across two studies, we tested for differ-
ences in the amount of head movement between the groups by means
of an independent-samples t-test using participants’ standard devia-
tions of each of the 6 movement components. There were no significant
differences at alpha = 0.05 for any of the movement components.

2.5. Acoustic feature components

The time courses of perceptually validated acoustic features from the
stimulus (in the following referred to as ‘acoustic components’) were
provided by the main author of the original study. These acoustic com-
ponents (n = 6) correspond to the main timbral, tonal, and rhythmic
features in the stimulus (Fullness, Brightness, Timbral Complexity, Key
Clarity, Pulse Clarity, and Activity; see Alluri et al. (2012) for an in-
depth acoustic description). The acoustic components underwent the
same truncation as in the original study (first 13 and last 12 samples,
corresponding to the first 4 scans excluded due to T1 stabilizing effects,
plus subsequent 9 samples to avoid artefacts from the convolution oper-
ation; and the last 24 s of brain volumes corresponding to the applause
from the live performance). Next, the acoustic component time series
were convolved with a canonical double-gamma HRF and high-pass fil-
tered to match the preprocessing of the fMRI data, as indicated in the
original study. Lastly, the acoustic components were downsampled to
.5 Hz to match the sampling rate of the fMRI scanner. The final time se-
ries had a length of 231 samples.

2.6. Data analysis

Pearson’s correlation r coefficients were computed at participant
level for each acoustic component against each voxel time course.
These r coefficients were Z-Fisher transformed to make the sampling
distribution approximately normal, and their significance was subse-
quently corrected for serial correlation using Pyper and Peterman’s
method (Pyper & Peterman 1998).

On the same lines of the original study, group-level analysis was car-
ried out on these results to produce a group map of significant voxels. To
this end, and following the approach described in Lazar (2008), Fisher’s
method (Fisher, 1950) was used to obtain the pooled group-level Z-map
from the individual p-value images.

2.7. Estimates of reliability

Because the assessment of similarities between the results of the
original and the present studies is between measurements from two dif-
ferent groups of participants, the measures we propose are interclass
measures, i.e., they characterize the replicability of the activation maps
obtained at the group level.

To compare the reliability of the resulting activation maps, we pro-
pose two interclass measures: (1) interclass correlation coefficient be-
tween each pair of continuous-valued (unthresholded) maps and
(2) overlap of active voxels at variable levels of ranked significance.
Both approaches attempt to overcome the drawback of examining ex-
clusively above-threshold activity using one single threshold. This is
highly reliant on a relatively arbitrary procedure for defining whether
or not a voxel is active depending on whether its signal intensity ex-
ceeds a conventionally established statistical threshold in univariate
analyses (McGonigle et al., 2000).

2.7.1. Spatial correlation of the whole-brain maps (interclass correlation
coefficient)

The interclass correlation measure computes the similarity based
on the whole extent of spatial activations for each pair of the acoustic
components’ maps. Thus, it is not based on a relatively arbitrary
thresholding of the compared maps. We computed the Pearson’s cor-
relation coefficient between each of the original and replicated group
activation maps. To quantify their significance, we subsequently es-
timated the distribution of these coefficients under the zero reliabil-
ity assumption by permutation tests (non-parametric approach). In
this non-parametric approach, a randomized version of a randomly
chosen acoustic component is created using a random phase proce-
dure (Ebisuzaki, 1997), by which the phases of the acoustic compo-
nents’ time series are phase-scrambled in the frequency domain.
This preserves the autocorrelation of the original series, but not its
original time-domain structure. This newly created variable was
then correlated against each of the participants’ fMRI time series
(the original data was provided by the main author of the original
study). Finally, each groups’ maps were averaged, and subsequently
correlated against each other. This procedure was repeated 50,000
times, yielding a Hy distribution of correlation values from which to
derive the significance of the interclass correlation coefficients.

2.7.2. Overlap of active voxels between maps (Dice coefficient)

This approach consists of taking a proportion of the most significant
voxels for each pair of compared maps, and computing the Dice overlap
coefficient (Dice, 1945) between them.

The Dice coefficient is computed as shown in Eq. (1):

_2xny|
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M

where X and Y are voxel sets taken from the most significant voxels in
the original and replicated studies, respectively, and s, ranges between



1. Burunat et al. / Neurolmage 124 (2016) 224-231 227

0 for sets whose intersection is zero and 1 for sets that are identical (this
is, sets that fully overlap). In other words, it returns the ratio of
intersected voxels to the number of voxels in the evaluated set. Here,
the threshold is based on the ranked significance level, and not on a
predefined threshold for both sets. By considering the rank rather
than one single arbitrary cutoff alpha level, we take advantage of the
monotonic relationship between the distributions, compensating to
some extent for SNR differences emanating from the use of different
scanners and groups of participants. In the fMRI literature, the Dice co-
efficient has been extensively used to assess reliability generally be-
tween suprathreshold activity (Bennett & Miller, 2010; Gorgolewski
et al., 2013; Ferradal et al., 2014; Wagner et al., 2005), although it has
also been used with variable statistical thresholds to define active voxels
and thus avoid conditioning the results by an arbitrary choice (Duncan
etal,, 2009). This procedure is then repeated by gradually increasing the
proportion of voxels from 0.1% to 50% of the total amount of voxels, in
1000 logarithmic steps. A logarithmic scale allows a more comprehen-
sive analysis of the proportions that contain most significant voxels.
This way, an important reduction is achieved in the number of larger
proportions characterized by the inclusion of the most non-significant
voxels. The Dice coefficient was computed separately for positive and
negative correlating voxels (hereafter referred to as negative/positive
polarities) at each proportion. Thus, a Dice coefficient curve is obtained
that describes the amount of overlap as a function of the proportion of
total number of voxels considered in the computation of the Dice coef-
ficient (see Fig. 2A).

Next, to assess the significance of the resulting overlaps, we comput-
ed the probability of getting an overlap equal to the one found between
datasets at each of the increasing proportions of brain volume com-
pared. To this end, permutation tests were run to derive a null distribu-
tion overlap curve as a function of proportion. For each acoustic
component and predefined proportion, we created 1000 pairs of maps
with similar spatial properties to the original and replicated maps
being compared following the approach explained in 2.7.1. We then es-
timated the Dice coefficient between all pairs, and computed the mean
and standard deviation across all trials as a function of proportion. Using
the empirical data, we converted the overlap values per proportion to Z
scores by subtracting their empirical means and then dividing by their
empirical standard deviations. The resulting significance curves are
shown in Fig. 2B.

3. Results

3.1. Spatial correlation of the whole brain maps (interclass correlation
coefficient)

Overall, the results could be replicated with varying degrees of sig-
nificance: the functional topography underlying processing of timbral

LOW-LEVEL FEATURES

original

replication

features was significantly similar in both datasets (Fullness r = .40,
p <.005; Brightness r = .51, p <.001; Timbral Complexity r = .36,
p <.01; Activity r = .32, p <.05), whereas the functional topography as-
sociated with the processing of tonal and rhythmical features, although
positively correlated, did not reach significance at the conventional
alpha level (Key Clarity r = .15, p = .26; Pulse Clarity r = .14, p =
.29; see Fig. 1). We reran the analysis with a larger sample including
18 musicians and the obtained coefficients were very similar, on aver-
age, only within .05 points between the original and replication maps.
However, for the sake of replicability and to make the two datasets com-
parable in terms of their statistical power, we have adopted the same
sample size as in the original study (N = 11), including only participants
that best matched the characteristics of the original pool.

3.2. Overlap of active voxels between maps (Dice coefficient)

Compared to the interclass correlation approach, this approach is
more comprehensive. As can be seen from Fig. 2B, significant overlaps
can be found for most of the proportions for all acoustic components.
Furthermore, replicability for some acoustic components is different de-
pending on the polarity (i.e., negative or positive voxels). A quick look at
the significance curves reveals particularly salient significance for the
timbral features, all of which show a similar curve shape with peaks to-
wards the origin (i.e., Fullness, Brightness, and Activity for the positive
polarity, and Timbral Complexity, for the negative polarity), compared
to the tonal and rhythmical features. This is in agreement with the rep-
licability results obtained using the interclass correlation approach.

A deeper analysis can be done on the significance curves, in par-
ticular, by inspecting how the significance of the overlaps varies as
a function of the proportion in the comparison. A prominent curve
is observed for Fullness, Brightness, Activity (positive polarity) and Tim-
bral Complexity (negative polarity), where the replicability of overlap
generally increases as the proportion decreases. In other words, the rep-
licability improves with the significance level of the intersected voxels.
The curves for Pulse Clarity (positive polarity) and Key Clarity (negative
polarity) are smoother in comparison, with Key Clarity tending con-
versely to gradually grow as the proportion increases. The local maxi-
mum of each significance curve indicates the proportion at which the
overlap (Dice coefficient) is highest relative to the chance level. Finding
the local maxima reveals the associated brain area of overlap with the
highest degree of replicability for a particular acoustic component. For
each acoustic component, we will focus only on the polarity for which
the local maximum was found.

We observe highly significant maxima for Fullness, Brightness, Ac-
tivity, and Timbral Complexity located at smaller proportions and Dice
coefficients ranging between .35 and .56 (see Table 2). The extent of
the overlap for these acoustic components is unlikely to arise by chance
at the p < .00001 level (Z > 54). Replicability for these acoustic

HIGH-LEVEL FEATURES

Pulse Clarity

Key Clarity

Fig. 1. Continuous Z-maps from the original and replication studies indicating the Pearson’s r and p-value of the first reliability approach (interclass correlation).
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Fig. 2. (A) Curves representing the Dice coefficient as a function of proportion of most significant voxels considered for the intersection. (B) Significance curves computed from the em-
pirical null distribution obtained via permutation tests. The local maxima are represented as red diamonds for each of the curves.

components is thus more concentrated in voxels with increased degree
of activation (or deactivation, in case of the negative polarity; see Fig. 3).
For Pulse Clarity the local maximum appears at the very beginning of
the curve for the smallest proportion (.1%) with a Dice coefficient of
.11 and at a much lower significance over chance level than for the tim-
bral features. Finally, the significance curve for Key Clarity gradually in-
creases yet to a much smaller extent than for the other acoustic
components. A slight local maximum is observed in the curve at a larger
proportion (6.38%) compared to the rest of overlaps at maximal signif-
icances. This is associated with a relatively small overlap (Dice
coefficient = .14; see Fig. 3 and Table 3 for brain maps showing the
overlaps and the corresponding list of regions). In short, timbral fea-
tures exhibit larger Dice coefficients at their peak significant overlaps

Table 2
Table showing the local maxima for each of the significance curves with their associated
proportion of voxels compared, and their corresponding Dice coefficient.

Max Z % Total voxels Dice coeff.
compared
Fullness P 59.93 T1% 5
Brightness P 54.45 38% 4
Timbral Complexity N 90.45 A45% 61
Activity P 67.18 2% 35
Pulse Clarity P 303 A% 11
Key Clarity N 6.47 6.38% 14

Maxima are highlighted for the polarity with maximal significance. Abbreviations:
Max Z = maximal Z-value, Dice coeff = Dice coefficient, P = positive polarity, N =
negative polarity.

than tonal and rhythmical features. Also, significance is higher for the
timbral features compared to the tonal and rhythmical ones.

We can conclude that all timbral features plus Pulse Clarity are best
replicable for the conservative thresholds, i.e., the highest activated or
deactivated voxels can be replicated best. On the other hand, Key Clarity
is best replicable for a slightly more liberal threshold of activation.

4. Discussion

We aimed at quantifying the replicability of previous findings on
musical feature processing in the brain during naturalistic listening, by
using an identical methodological approach and a similar group of par-
ticipants as in the original study by Alluri et al. (2012). We computed
the pairwise similarity of original and replicated musical feature maps
using two measures of reliability: (1) interclass correlation, and
(2) amount of overlap (Dice coefficient) at variable levels of ranked sig-
nificance between the activation maps. Both approaches converge in
agreement indicating a higher degree of replicability for the processing
of timbral (low level) features (Fullness, Brightness, Timbral Complexi-
ty, and Activity) than for that of the tonal and rhythmical (high level)
features (Key Clarity and Pulse Clarity). Neither of the reliability mea-
sures relies on comparing binary maps based on a single arbitrary cutoff
p-value, but either on the whole extent of spatial activation (interclass
correlation) or on various levels of ranked significance (Dice coeffi-
cient). Since the level of statistical significance can be influenced by dif-
ferent sources of noise dependent on the specific pool of participants,
the experimental setting, and the fMRI scanner, the advantage of not re-
lying on one single significance threshold is that this helps override to
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Fig 3. Maps showing the overlaps of maximal significance for each acoustic component. See Table 3 for a corresponding list of regions.

some level the possible effect of different SNR between scanners and be-
tween participants’ responses at the group level.

The interclass correlation measure showed that the similarity based on
the whole extent of spatial activations for each pair of maps was significant
for the timbral features, while for the tonal and rhythmical features, it did
not reach significance at the conventional alpha levels. Using the Dice

Table 3
List of regions and their respective sizes (in number of voxels for left and right hemi-
spheres, respectively) corresponding to the overlaps of maximal significance.

Fullness (P)

Superior temporal gyrus (L/R) 270/448
Heschl's gyrus (R) 67
Middle temporal gyrus (L) 14
Brightness (P)

Superior temporal gyrus (L/R) 99/224
Heschl's gyrus (R) 19
Middle temporal gyrus (L) 7
Timbral Complexity (N)

Superior temporal gyrus (L/R) 208/353
Heschl's gyrus (R) 33
Middle temporal gyrus (L) 19

Key Clarity (N)

Middle temporal gyrus (L/R) 346/127
Postcentral gyrus (L/R) 104/175
Superior frontal gyrus (L/R) 145/18
Superior frontal gyrus, medial (L/R) 112/45
Angular gyrus (L/R) 15/82
Precentral gyrus (L/R) 16/77
Precuneus (L/R) 40/42
Posterior cingulate and paracingulate gyrus (L/R) 45/9
Median cingulate and paracingulate gyrus (L/R) 5/47
Rolandic operculum (L/R 36/11

Middle occipital gyrus (R) 44

Gyrus rectus (L/R) 18/10
Thalamus (L/R) 7/18
Superior temporal gyrus (L/R) 5/19

Inferior frontal gyrus, triangular part (L) 21

Inferior temporal gyrus (L/R) 15/5
Middle frontal gyrus (L/R) 5/10
Parahippocampal gyrus (L) 13
Lobules IV-V of cerebellum (L) 13
Paracentral lobule (L) 14
Inferior frontal gyrus, medial orbital (R) 13
Insula (R) 9
Superior occipital gyrus (R) 11
Cuneus (L) 9
Lobule 111 of cerebellum (R) 7
Hippocampus (R) 7
Pulse Clarity (P)

Superior temporal gyrus (R) 25
Activity (P)

Superior temporal gyrus (R) 93
Heschl's gyrus (R) 5

The labels were determined using Automated Anatomical Labeling (AAL). Regions of size <
5 voxels were excluded. See Fig. 3 for the corresponding maps. Abbreviations: P = positive
polarity, N = negative polarity.

coefficient measure allowed to identify the anatomical areas of most signif-
icant overlaps for each of the features. These are the best replicable areas
for the specific features. The anatomical foci of highest reliability for all
acoustic components’ maps are found within the auditory cortices, except
for Key Clarity, which shows a more scattered overlap (see Fig. 3 and
Table 3). We observed a rightward asymmetry of the most reliable areas
for Activity and Pulse Clarity within the right auditory cortex (see Fig. 3
and Table 3). In line with this, previous results attempting to assess
inter-stimulus replicability using a naturalistic paradigm identified
music-related activity during continuous listening as being most
predictable in this right-lateralized auditory area across various musical
genres (Alluri et al., 2013). This consistent finding further supports
hemispheric lateralization for music processing (Toiviainen et al., 2014;
Tervaniemi & Hugdahl, 2003; Riecker et al., 2002; Santosa et al., 2014).

The second reliability approach revealed a certain degree of replica-
bility for the two high-level features, yet to a much lesser extent (lower
Dice coefficients) than for the low-level ones. In the case of Pulse Clarity,
only a small set of voxels with the highest significance were best repli-
cable. In contrast, the most reliable areas for Key Clarity are associated
with below threshold activity. The fact that Key Clarity was best replica-
ble for voxels with a slightly more liberal threshold of activation com-
pared to the other acoustic components may reveal a property of this
particular feature. What is commonly regarded as subthreshold activity
has in recent times received an increased amount of attention. Assuring
results from multivariate approaches (e.g., multi-voxel pattern analysis
or MVPA) have found that activity that remains subthreshold in conven-
tional univariate (general linear model) approaches is often meaningful
by succeeding to recover stimulus-specific information (Riggall &
Postle, 2013; Harrison & Tong, 2009; Serences et al., 2009; Sreenivasan
et al.,, 2014; Reuter-Lorenz & Sylvester, 2005). According to this, the re-
liable area observed for Key Clarity (Fig. 3) may encode relevant infor-
mation in scattered foci across brain areas that would have remained
subthreshold in univariate analysis. Understanding the nature of this
brain activity is a crucial focus for future studies.

The overall success in recruiting similar brain circuits in the pro-
cessing of timbral features in two different population samples may
evidence more reliable processing mechanisms for low-level acous-
tic features in the music compared to high-level ones. Conversely,
high-level features may respond to more cognitive, top-down level
mechanisms associated with larger participant-dependent variabili-
ty in the BOLD responses, which may reduce replicability. A future
study should aim at including individual variables as covariates to ac-
count for the person-related variability, such as individual stable traits
and transient state, and test whether this inclusion alone would in-
crease replicability. For instance, the current experimental setting com-
prised a longer preparation of each participant and the wearing of an
electrode cap, whereas in the original study, only fMRI was measured.
This setting could have caused additional discomfort (as reported by
some participants in the post-experimental debriefing, affecting the
transient mental state of the subject), besides contributing to additional
noise during the fMRI measurements. The mental state and attention of
the participants represents a potential confound for replicability within
this paradigm. One way to control for attention in the future could be by
using an eye tracking system during the fMRI image acquisition, since
perceptual attention and memory encoding seem to be revealed by
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differences in eye-movement strategies (Lange & Engbert, 2013; Fischer
& Breitmeyer, 1987).

Other reasons for the lower replicability in the case of the high-level
features could lie in the limitations of the statistical approach used to
uncover their brain correlates. Time series correlation is an isomor-
phic approach (Uttal, 2011) that assumes brain representations to
be encoded by the same dimension used by the stimulus. However,
changes in the amplitude of brain responses may not explain the var-
iability in the measured phenomenon. An additional limitation could
lie in the lack of sufficient temporal resolution of the hemodynamics
that would allow a more accurate targeting of the brain correlates
underlying the phenomenon. These are some of the potential draw-
backs to overcome for providing both a more valid and reliable way
to study these phenomena.

It is important to emphasize the inherent limitations of the fMRI ex-
perimental setup that constrain ecological validity. For instance, acous-
tic scanner noise may affect neural processes (e.g., increasing arousal or
distraction), impacting cognitive control, and thus decreasing ecological
validity (Skouras et al.,, 2013). However, because the scope of the study
is replicability and the scanner noise was similar in the two scanning
sessions, its effect across studies would be comparable. Ecological valid-
ity could be further improved with the most recent noise attenuation
techniques beyond passive noise reduction and active noise cancella-
tion, by means of a silent pulse sequence design (burst imaging, low-
pass filtering gradient pulses, interleaved spiral k-imaging), by changing
the MR hardware configuration, although at the cost of resolution, SNR,
or motion sensitivity (Moelker & Pattynama, 2003).

In the present and original paradigm, the participants were musi-
cians. The motivation for this selection was to avoid differences in mu-
sical expertise as a potential confounding factor. In addition, musicians
exhibit larger blood oxygen level-dependent (BOLD) responses to mu-
sical sounds than nonmusicians (Pallesen et al., 2010; Brattico et al.,
2013; Schneider et al., 2002; Tervaniemi, 2009), which was expected
to improve SNR. It remains an open question whether musical expertise
affects the reliability of results.

It is important to remark that reliability is a necessary but not suf-
ficient condition for validity. Certain controlled paradigms that pro-
duce easily measured responses are more reliable, but often at the
cost of lower ecological validity. In the words of Krippendorf (1980), re-
liability often gets in the way of validity. In this sense, naturalistic para-
digms may inhibit reliability while increasing validity (Hasson & Honey,
2012; Hasson et al,, 2010). It is therefore the best practice to design ex-
periments that attain an appropriate balance between validity and
reliability.

5. Conclusions

In conclusion, the present study supports and validates approaches
of increased ecological validity over traditional paradigms in the field
of cognitive neuroscience of music. At the same time, it encourages reli-
ability assessment of fMRI studies through replication while exposing
the need to carefully tune the study methodology when investigating
cognitive phenomena with high inter-subject variability.
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Abstract

Musical training leads to sensory and motor neuroplastic changes in the human brain. Moti-
vated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor
representation in string players, we investigated the relationship between musical training,
callosal anatomy, and interhemispheric functional symmetry during music listening. Func-
tional symmetry was increased in musicians compared to nonmusicians, and in keyboard-
ists compared to string players. This increased functional symmetry was prominent in visual
and motor brain networks. Callosal size did not significantly differ between groups except
for the posterior callosum in musicians compared to nonmusicians. We conclude that the
distinctive postural and kinematic symmetry in instrument playing cross-modally shapes
information processing in sensory-motor cortical areas during music listening. This cross-
modal plasticity suggests that motor training affects music perception.

Introduction

Within-modality neuroplasticity has been investigated extensively in the sensory and motor
modalities, demonstrating the adaptive (or maladaptive [1] capabilities of the human brain to
shape its processing of a sensory stimulus or to perform motor acts after repeated sensory
exposure or action [2,3]). Comparing brain function and anatomy of musically trained and
untrained individuals is ideal for studying neuroplasticity because of a large difference between
groups in time spent with music-related activities.

Musical activities, such as playing an instrument from a musical score, involve cross-modal
orchestration of auditory, visual, somatomotor, and cognitive processes [4,5]. Nevertheless,
studies showing plasticity of brain function and structure associated with intensive musical
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training have thus far focused on within-modality brain measures. Early musical training has
been shown to correlate with stronger auditory-cortical representations of piano vs. pure tones
in pianists, supported by anatomical enlargements of the Heschl’s gyrus [6,7]. The left-hand
fingers of string players exhibit more extensive contralateral somatosensory cortical represen-
tations than those of nonmusicians. This effect is stronger for those string players who began
musical practice at an early age [8,9]. Musicians also show more anatomical symmetry in corti-
cal motor regions compared to controls [10]. The linking of brain anatomy and acquired senso-
rimotor skills is further evident in consistent within-musician differences observed in the
right-left precentral gyrus depending on the instrument played [11].

These findings have led to the hypothesis that functional reorganization may cause struc-
tural adaptation [12-14]. Thus, the asymmetrical hand-motor requirements may drive the
enlarged left-hand somatosensory representation in violin players. Even when limited to fifteen
months in childhood [14], musical training drives an increase in grey matter for areas involved
in motor, auditory, and visuo-spatial processing [15]. Similarly, an increase in cerebellar vol-
ume, presumably in response to the intensity of instrumental practice in musicians [16], sug-
gests structural reorganization induced by long-term motor and cognitive demands derived
from intense music-related auditory and motor practice. Furthermore, the size of the anterior
corpus callosum (CC), which mainly connects motor areas, is enlarged in individuals with an
early commencement of musical training [17,18].

The aforementioned findings motivate this study, in particular those on enlarged anterior
callosum in musicians, and on enhanced somatosensory left-hand finger representation in
string players. It could be assumed that morphological differences in CC are reflected in the
interhemispheric functional connectivity in musicians. Several morphometric studies suggest
that callosal volume predicts interhemispheric transfer capacity [19,20] and there exists evi-
dence of a positive correlation between callosal area and the amount of fibres crossing through
supporting this view [21]. However, the literature is not in agreement regarding a positive cor-
relation between callosal size and interhemispheric transfer capacity [22-27].

Furthermore, differences in interhemispheric information transfer deriving from musical
training have been only marginally investigated. While Patston and others [28] found an
unusual symmetry in musicians’ (mostly pianists) interhemispheric transfer speed of visual
information compared to nonmusicians, previous studies have not investigated this phenome-
non using musical stimulation, and have employed paradigms with controlled simple stimuli
thus not allowing generalization to real life situations. Increased communication between
hemispheres may extend beyond the somatosensory and motor system to other modalities that
are relevant to music processing.

Here we studied the relationship between musical training, callosal volume, and interhemi-
spheric functional symmetry in brain activity measured using functional magnetic resonance
imaging (fMRI) during continuous listening to natural music. By interhemispheric functional
symmetry we refer to the voxel-mirrored homotopic connectivity [29] as measured by the
coactivation of homotopic (i.e., topographically matched) brain areas. Our approach consisted
of three stages: (a) morphometry of participants’ callosa was computed to examine a possible
relationship between callosal volume and group membership; (b) symmetry indices were esti-
mated for all voxels in the brain; and (c) significant differences between groups (musicians vs.
nonmusicians and keyboard vs. string players) were assessed. We hypothesized that we would
find more prominent functional symmetry in musicians, particularly in keyboard players, and
particularly within motor-related brain areas. We also expected that this enhanced symmetry
be accompanied by an increase in callosal volume.
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Table 1. Demographic information about our sample.

group N age gender hand soc-eco WAIS-IlI active listening passive listening total listening
status PSI (h/week) (h/week) (h/week)
MUS 18 28.2:7.8 9F 18R 43.6 116.3 7.5¢5.8 10.6£7.5 18.2+11.2
KEY 8  26.4%7 4F 8R 37.7 119.8 9.746.3 11.5+8.3 21.2£13.4
STR 7 28.447.9 5F 7R 45.3 110 5.3+1.9 10+7.3 15.346.1
NMUS 18 29.2 10F 17R 35.4 115.7 5.3+4.8 7.1£3.9 12.446.7
+10.7

Abbreviations: MUS = musicians, KEY = keyboard players, STR = string players, NMUS = nonmusicians, class = classical, soc-eco = socioeconomic,
PSI = Processing Speed Index, WMI = Working Memory Index.

doi:10.1371/journal.pone.0138238.t001

Materials and Methods
Participants

The ethics committee of the Coordinating Board of the Helsinki and Uusimaa Hospital District
(Koordinoiva) approved this study with the approval number 315/13/03/00/11. Informed writ-
ten consent was obtained from all participants. Consent forms are stored in a locked cabinet of
NMG Data Repository. Ethics committee approved the form and the procedure. Thirty-six
healthy participants with no history of neurological or psychological disorders participated in
the fMRI experiment. The participants were screened for inclusion criteria before admission to
the experiment (no ferromagnetic material in their body; no tattoo or recent permanent col-
ouring; no pregnancy or breastfeeding; no chronic pharmacological medication; no claustro-
phobia). The participant pool was selected to be equally divided between musically trained

(n =18) and untrained participants (n = 18, left-handers = 1). The criteria for nonmusicianship
was having less than 5 years of music training, not having finished a Music degree in a Music
academy, not reporting themselves as musicians, and never earned money for playing. These
details were obtained and crosschecked via questionnaires and HIMAB [30] (Helsinki Inven-
tory for Music and Affect Behavior). Both groups were comparable with respect to gender, age
distribution, cognitive measures (Processing Speed and Working Memory Index Scores from
the WAIS-WMS 1III [31]), and socioeconomic status (according to Hollingshead’s Four-Factor
Index [32]; see Table 1 and Table 2 for demographic data). The musicians’ group was homoge-
neous in terms of the duration of their musical training, onset age of instrument practice, and
amount of years of active instrument playing.

Stimuli

Three musical pieces were used in the experiment: (a) Stream of Consciousness by Dream The-
ater; (b) Adios Nonino by Astor Piazzolla; and (c) Rite of Spring (comprising the first three epi-
sodes from Part I: Introduction, Augurs of Spring, and Ritual of Abduction) by Igor Stravinsky.

Table 2. Specific demographic information about musicians.

group instrument starting age instrument playing (years) instrument practicing (h/week) musical training (years) style

MUs 8.2+4 21.2+6.2 16.6+11 15+4.7 12 class | 4 jazz | 2 pop
KEY 7+2.6 20.1£7.2 15.6+13 14.4+4 5class | 2 jazz | 1 pop
STR 8.3+3.9 21.146.2 17.3+12.6 15.9+3.8 6 class | 1 jazz

Abbreviations: MUS = musicians, KEY = keyboard players, STR = string players.

doi:10.1371/journal.pone.0138238.t002
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These are a progressive rock/metal piece, an Argentinian New Tango, and an iconic 20th cen-
tury classical work, respectively, thus covering distinct musical genres and styles. All three
selected pieces are instrumental and have a duration of about 8 minutes.

Morphometric analyses of the corpus callosum

Volumetric whole brain segmentation was performed using the FreeSurfer image analysis suite
(stable Linux version 5.3.0 released on 15th of May 2013), which is available online at https://
surfer.nmr.mgh.harvard.edu/. It provides completely automated parcellation of cortical and
subcortical structures previously described [33-35] by assigning a neuroanatomical label to
each voxel in an intensity renormalized MRI volume based on probabilistic information esti-
mated from a manually labelled training set [33,35]. The method has been shown to be robust
and comparable in accuracy to manual labelling [33,36].

The CC was segmented into five equally spaced regions of interest along the primary eigen-
direction as per Freesurfer’s default settings (which segments the CC as a 5 mm thick slab, and
divides it into 5 segments of equal length). The five regions were posterior, middle posterior,
central, middle anterior, and anterior. Following this, the CC was then reorganized in two sec-
tions approximating the division used by Lee and others [18]: posterior (comprising posterior,
middle posterior, and central) and anterior (comprising middle anterior and anterior). Thus
the anterior CC contains interhemispheric fibres of primary somatomotor and other PFC
areas, and the posterior part contains those of posterior parietal, temporal, and occipital areas
[37]. Mean and standard deviation measures were extracted from posterior and anterior callo-
sal sections.

A significant correlation was found between total callosal volume and total brain volume
(r=0.46, p < 0.001). Since the cross-sectional area of a 3D object increases as the two/thirds
power of the object’s volume [38], relative callosal sizes to the two/thirds power of the total
brain volume were used [18].

T-tests were performed to investigate a potential relationship between participants’ callosal
volumes and their group membership. We hypothesized musicians’ callosa to be larger than
nonmusicians, and keyboardists’ to be larger than string players’. To this end, two directional
(right-tailed) t-tests were performed per callosal section to compare (a) musicians vs. nonmusi-
cians, and (b) keyboardists vs. string players.

fMRI experimental procedure

Participants’ brain responses were acquired while they listened to each of the musical stimuli in
a counterbalanced order. For each participant the stimuli loudness was adjusted to a comfort-
able but audible level inside the scanner room (around 75 dB). In the scanner, participants’
only task was to attentively listen to the music delivered via high-quality MR-compatible insert
earphones while keeping their eyes open.

fMRI scanning and preprocessing

Scanning was performed using a 3T MAGNETOM Skyra whole-body scanner (Siemens Health-
care, Erlangen, Germany) and a standard 20-channel head-neck coil, at the Advanced Magnetic
Imaging (AMI) Centre (Aalto University, Espoo, Finland). Using a single-shot gradient echo pla-
nar imaging (EPI) sequence thirty-three oblique slices (field of view = 192x192 mm; 64x64
matrix; slice thickness = 4 mm, interslice skip = 0 mm; echo time = 32 ms; flip angle = 75°) were
acquired every 2 seconds, providing whole-brain coverage were imaged per participant.
T1-weighted structural images (176 slices; field of view = 256x256 mm; matrix = 256x256; slice
thickness = 1 mm; interslice skip = 0 mm; pulse sequence = MPRAGE) were also collected for
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individual coregistration. Functional MRI scans were preprocessed on a Matlab platform using
SPM8 (Statistical Parametric Mapping), VBMS5 for SPM (Voxel Based Morphometry [39]; Well-
come Department of Imaging Neuroscience, London, UK), and customized scripts developed by
the present authors. For each participant, low-resolution images were realigned on six dimen-
sions using rigid body transformations (translation and rotation corrections did not exceed 2
mm and 2° respectively), segmented into grey matter, white matter, and cerebrospinal fluid, and
registered to the corresponding segmented high-resolution T1-weighted structural images. These
were in turn normalized to the MNI (Montreal Neurological Institute [40]) segmented standard
a priori tissue templates using a 12-parameter affine transformation. Functional images were
then blurred to best accommodate anatomical and functional variations across participants as
well as to enhance the signal-to-noise by means of spatial smoothing using a 8 mm full-width-at-
half-maximum Gaussian filter. Movement-related variance components in fMRI time series
resulting from residual motion artefacts, assessed by the six parameters of the rigid body transfor-
mation in the realignment stage were regressed out from each voxel time series. Following this,
spline interpolation was used to detrend the fMRI data, followed by temporal filtering (Gaussian
smoothing with kernel width = 4 sec).

Symmetrization of the brain template

Because the brain is not symmetrical (as manifested by the twisting effect, known as the Yakov-
levian torque, and the right frontal and left occipital protrusions, known as petalia), homotopic
voxels are not anatomically equivalent in some brain regions. To counterbalance these inherent
neuroanatomical asymmetries, and make the claim for homotopic equivalency stronger, partic-
ipants’ brains were transformed with a spatial mapping. The goal was to create a mirror image
of the continuous brain template, where voxel values represent the different intensities of the
neural tissue. We thus considered the symmetrization of the brain as an unconstrained nonlin-
ear optimization problem, aimed at minimizing a cost function—the mean squared error
(MSE)—between the intensity values of the homotopic voxels of the whole brain template, as
shown in Eq 1,

a= arg;ninﬁﬂ/ [b(f,(r(x))) — b(x)) dx (1)

Here x is any position (x, y, z) in the left hemisphere space (x € B, ); the function r maps
the 3D coordinate point onto its homotopic counterpart (r(x) : (x,y,z) — (—x,y,z)); the
function b returns the intensity values at the points x; & is the optimal set of parameters for the
transformation matrix f,which maps the right hemispheric intensity values b(r(x)) onto the
left ones b(x), so that the cost function yields the minimum error; f,(r(x))is a 5 order polyno-
mial transform. The formula is expressed as the integration of an idealized continuous 3D
space. However, in reality we only know the intensity values at the grid points of the brain tem-
plate, hence the other points are estimated via trilinear interpolation.

The search for the minimum was computationally expensive due to the high number of iter-
ations and the size of the augmented matrix, which required the use of a HP super cluster
(taito.csc.fi). The algorithm used for minimizing the objective function was the Nelder-Mead
simplex algorithm [41].

Individuals’ brains were symmetrized using the set of parameters that yielded the minimum
or stationary point of the cost function. This minimum depended on the point of departure of
initial conditions in the parameter space and different initial conditions do not necessarily
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converge to a minimizer. By randomizing the initial conditions we can reach different station-
ary points and chose the optimal minimizer.

The differences between the original and symmetrized brain templates were fairly minimal.
This can be explained by the smoothing kernel (width = 8 mm) used in the spatial preprocess-
ing of the fMRI data, which would override the potential asymmetries of the brain. The MSE
between hemispheres of the original and transformed template were 5.7 mm? and 2.37 mm?,
respectively.

fMRI functional symmetry analysis

Brain responses to the three stimuli were concatenated making a total of ~24 minutes worth of
data. The rationale behind this was to combine stimuli representing a wide range of musical
genres and styles in order to cancel out effects that the specific kinds of music may have on the
phenomenon under investigation. The final time series had 702 samples after the 4 first sam-
ples of each of the three runs were removed to avoid artefacts due to magnetization effects. Fol-
lowing this, symmetry indices per voxel were computed for all participants’ brains. The
symmetry index is the mirrored homotopic connectivity per voxel. It is obtained by correlating
each voxel time series with its homotopic counterpart, i.e., correlating the brain with its own
flipped image across the midsagittal plane. The results provide for each pair of homotopic vox-
els a measure of their degree of functional symmetry. Next, symmetry indices were transformed
using Fisher’s r-to-Z transformation [42] (see Eq 2) to make their sampling distribution
approximately normal.

z; = arctan(r) (2)

Significance had to be corrected due to the intrinsic serial correlation of the fMRI time
series. To this purpose, we estimated the effective degrees of freedom of the data following a
nonparametric permutation-based approach [43] as shown in Eq 3).

1 1 2N—j .
FENTN TM(J)PW(J) (3)

where N is the number of observations, p,.(j)and p,, (j) are the autocorrelations of the pair of
homotopic voxel time series at lag j. For each participant the effective degrees of freedom were
computed by randomly selecting 1,000 pairs of homotopic voxels as the inputs x and y in Eq 3.
Next, estimates from all trials across participants were averaged (mean = 110+9.6), and used to
compute the significance of the symmetry index scores by dividing these by the standard error
(see Eq 4).

Zeorrected — 2f\/ af —3 (4)

Once whole-brain functional symmetry maps were computed and corrected for each partic-
ipant, directional unpaired two-sample t-tests (alpha = 0.01, one-tailed) were performed on
participants’ symmetry indices in order to observe where in the brain each of the groups
showed significantly greater symmetry over the other. The resulting spatial maps were cor-
rected for multiple comparisons using the cluster-wise significance approach by Ledberg and
others [44]. This is based on a Monte Carlo procedure to assess the null distribution of the clus-
ter sizes (CS) at a particular significance level, from which the critical CS threshold can be
selected.

Following Ledberg and others” method, we first computed the functional symmetry maps
for all participants by correlating the brain with its own flipped and phase-scrambled image
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[45]. The phase-scrambling was done in the volume domain using the 3-D Fourier transform.
Once functional symmetry maps were computed, the between-groups t-test statistical map was
obtained, from which an estimate of the autocorrelation function (ACF) kernel was computed.

This procedure was repeated to obtain an estimate of the ACF kernel as the average of 10
runs. This averaging decreased the amount of error and led to a more accurate ACF kernel esti-
mate. Next, the ACF kernel was convolved with noise to generate statistical images with the
same spatial spectral properties as the resulting t-test maps without containing any signal of
interest. We generated 10,000 images from which we derived a probability distribution of clus-
ter sizes above a given threshold, which was subsequently used to estimate the critical cluster
size for our data. Finally, the spatial maps resulting from the t-tests were cleaned to retain clus-
ters with a cluster size probability p < 0.001 (critical cluster size > 55 voxels).

At this point the resulting spatial maps showed the brain areas that are significantly more
symmetrical for one group over the other (i.e., musicians > nonmusicians,
nonmusicians > musicians, keyboardists > string players, and string players > keyboardists).
Still, the mean symmetry index for a given voxel in group 1 may not be significantly different
from zero, even though it may be significantly different from group 2. To ensure that only sig-
nificantly functional symmetry is retained, t-test spatial maps were further masked with the
functional symmetry averaged Fisher Z-map of the group favoured in the right-tailed t-tests at
a significant level p < 0.0005 (right-tailed). Thus pairs of homotopic voxels whose symmetry
indices did not reach significance were discarded.

Anatomical labelling was based on the Automated Anatomical Labelling (AAL [46]) imple-
mented in the MarsBaR toolbox v0.43 (http://marsbar.sourceforge.net) and thus anatomical
regions within each cluster were determined. Regions of interest were visually inspected using
the MNI structural atlas and the Harvard-Oxford cortical and subcortical atlases implemented
in FSL to ensure that the automatic assignment was conforming to the neurological knowledge.
The x y z coordinates (in MNI space) of the maximum voxel Z-value within each anatomical
region were retrieved and accordingly labelled.

Results
Morphometric analysis of the corpus callosum

T-tests results comparing relative CC volume to total brain volume were nonsignificant except
for a larger posterior CC in musicians compared to nonmusicians (p = 0.05, one-tailed, 7.3%
difference between group means; for details on the analysis see Materials and Methods).

Functional symmetry

Measures of interhemispheric functional symmetry were obtained by correlating each partici-
pant’s fMRI brain responses to music at every voxel with their hemispheric counterparts. This
indicates how similar the time courses are for each pair of topographically matched voxels.
Musicians vs. nonmusicians. Musicians showed significantly more symmetrical responses
to music listening (brain volume = 21.42 cm’; brain volumes here refer to the amount of signif-
icant voxels, expressed in cm”, resulting from the t-test) than nonmusicians (brain volume =
0 cm’; one-tailed t-test, p < 0.01; see Fig 1 and Table 3 for a list of regions). The symmetry was
evident over a widely distributed brain area, including somatomotor regions (paracentral lob-
ule and pre- and postcentral gyri), occipitoparietal lobe (calcarine fissure, precuneus), temporal
areas (inferior/superior temporal gyrus [ITG, STG]), prefrontal cortical (PFC) areas (orbito-
frontal cortex [OFC]), cerebellum (lobules VI-VIII-VIIIB-IX, Crus II), temporal regions (infe-
rior temporal gyrus [ITG], fusiform gyrus), and a small area in the median cingulate gyrus.
Nonmusicians did not exhibit more symmetrical brain responses in any areas than musicians
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Fig 1. Symmetry maps showing significantly greater functional sy y for musici pared to nc ici Top of figure: Orthogonal

planes (lateral, frontal, transversal) showing significant clusters (voxelwise thresholded at p < 0.01 [z = 2.32]; cluster-wise corrected at p < 0.001). Bottom of
figure: Coronal slices showing the continuous Z-map for the respective comparison. Abbreviations: PostCG = postcentral gyrus, PCL = paracentral lobule,
PreCG = precentral gyrus, PCUN = precuneus, FFG = fusiform gyrus, ITG = inferior temporal gyrus, TPOmid = temporal pole (middle temporal gyrus),
ORBiInf = orbitofrontal cortex (inferior frontal gyrus), TPOsup = temporal pole (superior temporal gyrus), CAL = calcarine fissure and surrounding cortex,
DCG = median cingulate and paracingulate gyrus.

doi:10.1371/journal.pone.0138238.9001

at the chosen significance level. Effect sizes were computed for all voxels. Large effect sizes were
found more extensively for musicians (Cohen’s d > 0.8 = 39.26 cm® brain volume) than for
nonmusicians (Cohen’s d > 0.8 = 2.82 cm® brain volume).

Keyboard vs. string players. Keyboardists showed more prominent symmetrical
responses to music listening (brain volume = 10.37 cm®) than string players (brain vol-
ume = 0.90 cm?; one-tailed t-test, p < 0.01; see Fig 2 [top figure] and Table 4 for a list of
regions). Keyboardists’ brain responses were predominantly symmetrical in regions within the
occipital and parietal lobes (middle and superior occipital gyrus [MOG, SOG], cuneus, precu-
neus, superior parietal gyrus ([SPG]), somatosensory cortex (postcentral gyrus), temporal
areas (fusiform gyrus), cerebellum (lobules IV-V-VI), and a small subcortical area within the
dorsal striatum (caudate nucleus and putamen). For the string players, however, only one
small cluster in the middle frontal gyrus (MFG) and SFG displayed more prominent symmetry
over the keyboardists (see Fig 2 [bottom figure] and Table 5 for a list of regions). Effect sizes
revealed a greater brain volume showing large effect sizes for the keyboardists (Cohen’s
d > 0.8 =184.61 cm?) than for the string players (Cohen’s d > 0.8 = 49.31 cm?).

Discussion
Morphometric analysis of the corpus callosum

When comparing posterior and anterior callosal measures in musicians vs. nonmusicians, and
in keyboard vs. string players, only musicians’ posterior callosa were significantly larger com-
pared to those of nonmusicians. Lee and others [18] found a similar effect between musicians
and nonmusicians in their morphometric study. However, they found a significant difference
in the anterior section of the callosum, while a near-significant trend was observed in the
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Table 3. Functional symmetry results for musicians.

MUSICIANS k max Z X y z BA
Cluster 1
Postcentral gyrus 217 3.39 -18 -36 68 4
Paracentral lobule 99 3.55 -8 -36 70 4
Precentral gyrus 97 3.13 -30 -24 74 4
Precuneus 79 3.40 -16 -38 68 4
Cluster 2
Lobule VIII of cerebellum 153 3.49 -28 -64 -48 -
Lobule VIIB of cerebellum 82 3.56 -20 -70 -42 o
Lobule IX of cerebellum 29 3.12 -16 -48 -50 -
Crus Il of cerebellum 12 3.24 -24 -74 -46 -
Cluster 3
Fusiform gyrus 54 3.05 -28 0 -38 36
Inferior temporal gyrus 39 3.01 -34 2 -36 36
Temporal pole, middle temporal gyrus 32 2.80 -40 14 -32 38
Cluster 4
Inferior frontal gyrus, orbital part 69 3.54 -30 26 -18 47
Temporal pole, superior temporal gyrus 24 3.08 -28 24 -30 38
Cluster 5
Calcarine fissure and surrounding cortex 76 3.37 -14 -64 8 17
Cluster 6
Postcentral gyrus 54 3.18 -46 -22 54 3
Precentral gyrus 26 2.80 -42 -20 58 4
Cluster 7
Fusiform gyrus 38 3.56 -44 -50 -24 37
Inferior temporal gyrus 28 3.08 -40 -44 -18 37
Lobule VI of cerebellum 8 2.83 -40 -46 -28 37
Cluster 8
Inferior temporal gyrus 31 2.96 -52 4 -40 20
Temporal pole, middle temporal gyrus 12 2.76 -48 12 -36 20
Cluster 9
Median cingulate and paracingulate gyrus 25 2.98 -10 -20 44 -

Brain areas showing significantly greater functional symmetry for musicians compared to nonmusicians. Nonmusicians did not show greater symmetry
than musicians. Clusters were obtained via the 18-connectivity scheme employed in SPM. The table reports within-cluster region size (k; i.e., number of
voxels), peak Z-statistic value per region within the cluster, and its respective MNI coordinates and Brodmann area (BA). Labels here correspond to the

left-hemisphere. Voxels identified as white matter or voxels encroaching very small regions within the cluster (k< 5 voxels) were discarded from the

resulting table.

doi:10.1371/journal.pone.0138238.t003

posterior section. Additional correlational analyses were performed between callosal volumes

and symmetry indices. However, they did not yield any significant results.

Although there exists evidence linking increased callosal volume, number of fibres crossing
through the callosum, and enhanced interhemispheric connectivity [19-21] which suggests
that callosal size is a good a marker of information transfer between hemispheres, there does
not seem to be a consensus in the literature on a strict correlation between callosal size and the
efficiency of interhemispheric transfer, which obscures this relationship [22].
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Furthermore, interhemispheric functional connectivity can be widely preserved following
callosal agenesis [23] or surgical lesions of the callosum [24-27]. Thus, decreased structural
connectivity is not necessarily associated with decreased functional connectivity [25].

Although callosal structure comprises several independently functioning components that
under some conditions may produce contralateral inhibition [47], it is widely assumed that the
role of the corpus callosum is excitatory. However, the callosum may be a channel for both
interhemispheric excitation and inhibition [47]. It is a task for future research to investigate the
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Table 4. Functional symmetry results for keyboard players.

KEYBOARD PLAYERS k max Z X y z BA
Cluster 1
Middle occipital gyrus 170 4.55 -36 -84 14 19
Cluster 2
Cuneus 65 3.76 -14 -70 22
Precuneus 26 3.87 -10 -66 40 7
Superior occipital gyrus 10 3.47 -16 -72 22 18
Cluster 3
Fusiform gyrus 84 3.33 -30 -46 -22 37
Lobule VI of cerebellum 5 3.30 -28 -46 -22 37
Lobules IV-V of cerebellum 5 2.56 -26 -46 -22 37
Cluster 4
Superior parietal gyrus 83 4.30 -24 -70 58 7
Precuneus 6 3.65 -14 -64 58 7
Cluster 5
Superior parietal gyrus 50 3.62 -20 -56 60 5
Precuneus 7 2.66 -16 -58 62 5
Postcentral gyrus 5 3.22 -22 -52 58 5
Cluster 6
Paracentral lobule 59 2.83 -6 -32 62 4
Cluster 7
Putamen 34 3.55 -28 2 8 48
Cluster 8
Caudate nucleus 12 2.82 -20 0 20 -

Brain areas showing significantly greater functional symmetry for keyboard players compared to string players (see legend of Table 3 for further details).

doi:10.1371/journal.pone.0138238.1004

callosal structures in detail using appropriate methods to better characterize callosal fibres in
combination with interhemispheric functional measures [48].

The present non-conclusive result of the morphological analyses of the callosum exposes
the lack of agreement in previous neuroimaging results regarding the relationship between cal-
losal size and interhemispheric transfer.

Functional symmetry

Musicians vs. nonmusicians. The increased functional symmetry in musicians, mainly
observed in brain regions involved in somatosensory and motor control in the parietal and

Table 5. Functional symmetry results for string players.

STRING PLAYERS k max Z X y z BA
Cluster 1
Middle frontal gyrus 27 2.96 -32 50 6 10
Middle frontal gyrus, orbital part 10 2.78 -32 54 -4 47
Superior frontal gyrus 10 3.28 -30 52 0 11
Superior frontal gyrus, orbital part 9 3.12 -30 54 -2 11

Brain areas showing significantly greater functional symmetry for string players compared to keyboard
players (see legend of Table 3 for further details).

doi:10.1371/journal.pone.0138238.t005
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frontal lobes, is in agreement with the specific motor demands of musicianship. Instrument
practice has been shown to enhance motor ability as measured by finger dexterity in both
hands [14]. Also the prominent symmetry observed in musicians’ cerebellar responses con-
forms to the specific motor demands of musicianship. The cerebellum is central to motor pro-
gramming and learning and therefore play a crucial role in developing musical skills [49]. The
intensity of musical training manifests in cerebellar morphology, where cerebellar volume and
lifelong intensity of practice correlate positively [16].

Rather than being confined only to motor and perceptual processes, the demands of musi-
cianship are complex and multimodal, supported by several skills developed during years of
study [50]. These include bottom-up skills such as the ability to perceive and distinguish the
physical properties of music, and top-down skills such as the ability to predict musical events
based on prior musical exposure. Instrument practice seems to enhance auditory melodic and
rhythmic discrimination [14]. For instance, musicians react faster than nonmusicians to sound
stream presentation, especially to sounds consisting of familiar timbres [51,52], but also to
slight mistunings [53], indicating superior attentive auditory discrimination skills for musically
trained individuals. They also show a mismatch negativity (MMN) for tones mistimed by only
20 ms compared to nonmusicians [54]. Furthermore, when playing in an ensemble, ensuring
tight coordination and prompt responses to several sensory stimuli in the interaction with
other team members is crucial for a successful joint performance. Such expert skills may
require the symmetric use of both hemispheres for speed and efficiency (e.g., in multimodal
integration), reflecting greater functional connectivity between homotopic brain areas. Previ-
ous research has revealed a more balanced attentional capacity and faster choice reaction times
in musicians, as well as enhanced visuomotor ability, when compared to nonmusicians [55],
which was attributed by the authors to the cognitive demands of playing a bimanual instru-
ment from childhood.

We also observed symmetric brain responses in musicians’ fronto-parietal areas belonging
to the human mirror neuron system [56]. Listening to music may have hence activated neurons
that also govern the motor production of those sounds, extending findings obtained in studies
on music listening [57]. We speculate that musical training would shape the symmetry of the
brain responses mainly in fronto-parietal regions due to its coupling between production and
perception of music. One question that arises is whether the symmetrical motor activity is in
response to the music. It is known that the motor system is active in response to music listening
[58], and displays significant mean inter-subject correlation bilaterally [59], suggesting that the
bilateral motor responses are likely to be stimulus-driven.

Keyboard vs. string players. The enhanced somatomotor functional symmetry of the key-
board players over the string players may be understood as a result of a more mirrored use of
both hands and fingers in keyboardists than in string players. Furthermore, keyboardists had
enhanced functional symmetry in subcortical brain responses from the dorsal striatum (com-
prising caudate nucleus and putamen). This striatal area is an important hub, receiving input
from sensorimotor and association cortices. One of its functions is to mediate inhibition of vol-
untary fine-motor movements when required [60], and in holding back prepared motor
responses [61]. Thus, the different symmetry in keyboard and string players reflects specific
competences required for mastering each instrument: a midline, symmetrically bimanual
instrument like the piano [28] where exact motor timing for synchronization of both hands is
required [62], as opposed to a mediolateral, asymmetrically bimanual instrument like the vio-
lin, in which arms, hands and fingers play a different role when performing, namely, the right
hand controls the movement of the bow while the left hand is concerned with fingering the
strings, and where the coordination between fingering and bowing is not synchronous [63].
Thus, although playing a string instrument also requires fine motor skills and bimanual hand
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coordination, it enforces a strict asynchrony between finger movements (placing fingers on the
board) and the up and down bowing. This guides the differences between string players and
keyboardists, who instead need absolute synchrony between hands to achieve flawless
performance.

The prominent symmetry largely focalized in the visual areas in keyboardists compared to
string players may arise from the need to acquire visual information (i.e., score reading) for
both right and left hands, while simultaneously monitoring the synchronized movements of
both hands. Piano playing from a score is a complex transcription task with high-visual-load
activity that involves active, continuous, multiple-part reading of parallel sequences of events.
This requires efficient visual scanning strategies [64]. In contrast, score reading for string play-
ers is for the most part a serial process, that is, the reading of one melody line at a time. The
implications of these unequal visual-processing requirements may have an impact on the inter-
hemispheric synchrony and speed of the visual responses, which, in turn, would affect the
degree of functional symmetry in the implicated areas, as observed in the present study. The
observed functional symmetry in visual areas in musicians (specifically keyboardists) is in
agreement with work by Patson and others [28]. They observed an unusual lack of asymmetry
in the interhemispheric transfer time and latency of the visual responses of musicians vs. non-
musicians. In other words, their results indicated a more balanced visual processing in musi-
cians than in nonmusicians. Since in their study most of the musicians played a midline,
bimanual instrument (i.e., piano or clarinet), they hypothesized that the cognitive demands of
such instruments, and particularly the transfer of visual inputs from musical scores to bilateral
motor outputs, may produce equilateral neural connectivity and myelination in both hemi-
spheres, advantageous for speed and accuracy in musical performance. Our additional finding
of significantly stronger symmetry of string vs. keyboard players in the MFG/SFG is a novel
one and calls for further study.

These results are meaningful in the light of a recent study by Vollman and others [65]
which evidenced how different instrument training regimes may result in different structure-
function relationships. They observed that string players exhibited a significant positive rela-
tionship between fractional anisotropy, a measure of white matter organization, in the poste-
rior midbody of the corpus callosum, and interhemispheric inhibition (IHI), as examined by
transcranial magnetic stimulation. Interestingly, this relationship was not significant in pianists
or in non-expert controls. The microstructural white matter architecture of the corpus callo-
sum was thus assessed as a marker for interhemispheric information processing within the
motor system, replicating previous results in the literature, namely, that microstructural infor-
mation of the hand callosal motor fibres significantly correlates with functional connectivity
measures of IHI between the primary motor cortical hand areas in both hemispheres [66].
These findings indicate the existence of a link between the mode of bimanual training (piano
vs. string players), neurophysiology and brain anatomy, as seen in the white-matter structure
in the corpus callosum. Consequently, the characterization of the white matter tracts, rather
than the size of the corpus callosum, may better reflect a correlation with interhemispheric
functional connectivity measures.

Increased transfer of information across hemispheres does not necessarily result in
enhanced functional symmetry, unless it happens between anatomically equivalent areas. Thus
the condition of homotopicity needs to be satisfied. Functional brain asymmetries as a result of
violin practice (e.g., left-hand finger motor specialization [8]) render homotopic brain regions
not anatomically or functionally equivalent. This would explain why string players showed sig-
nificantly less symmetry than keyboardists in motor areas. Thus practice-dependent brain plas-
ticity seems to be a potential factor in the emergence of different symmetry patterns between
groups.
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The increased symmetric responses in motor and visual areas in musicians, particularly in
keyboard players, are assumed to derive from the intensive practice of symmetrical bimanual
movements and multipart reading. This would support the premise that functional symmetry
results from interhemispheric (thus transcallosal), rather than intrahemispheric, integration.
Thus, although functional symmetry could result from strengthened auditory-motor ipsilateral
connectivity, our results suggest that it occurs via contralateral connectivity. Moreover, there
seems to exists a consensus about the existence of training-induced plasticity in cross-hemi-
spheric connections in musicians, whereas findings on differences in intra-hemispheric fibres
between musically trained and untrained individuals have not always been replicated [67].

In view of our present findings on functional symmetry, distinctive kinematics and posture
of performing the instrument seem to be crucial factors in shaping the symmetry, although the
direction of the effect cannot be inferred from the data. Nonetheless, several studies have found
that long-term and intensive musical training may enhance the ability to integrate input from
several sensory modalities [14,15,68], which in turn, we hypothesize, may increase the degree
of functional symmetry between hemispheres for specific modalities.

Limitations. Our study does not directly assess whether increased symmetry is produced
by musical training. Previous research has established a positive correlation between brain
function, morphology, and early commencement of musical training [6-8,10,15-18,69]. How-
ever, whether it is an innate neuroarchitecture that induces functional plasticity predisposing
children to thrive musically, or whether the differential neuroarchitecture is an effect of the
functional requirements of a life-long, intensive musical training, has to date not been estab-
lished with a longitudinal study. Many significant aspects seem to influence children’s musical
instrument choices, such as sociocultural influences, gender stereotyping, instrument size or
timbre, and instrument availability and cost [70]. Thus, although preselectional bias cannot be
completely ruled out, functional symmetry differences between keyboard and string players
would seem to arise as a result of adaptation to intensive musical training rather than as result
of an intrinsic early predisposition [71].

Another limitation of the study is the lack of a behavioral task to support the claim of a
cross-modal transfer effect, given that musical training comprises both listening and perform-
ing. We argue that the listening side of the musical training is unavoidably influenced or cou-
pled by the motor training resulting from playing an instrument, and this would manifest in
the brain responses to music listening alone.

Similarly, one could argue that musicians demonstrated a higher degree of coupling in bilat-
eral motor areas because they were performing motor imagery when listening (i.e. imagining
themselves playing the piece), and hence the same could have been potentially true for nonmu-
sicians had they been asked to perform motor imagery. However, if the musical training is driv-
ing the coupling of the perceptual-motor system, one could speculate that the degree of
homotopic connectivity would be weaker in musically untrained individuals, even if they are
asked to perform motor imagery during the listening. These hypothesis-generating results pro-
vide a foundation for future studies.

Conclusion

We show here functional symmetry differences during music listening between musicians and
nonmusicians, in addition to functional symmetry profiles for different kinds of musicians
[49], thereby demonstrating a dependency between musical training and functional symmetry.
Our results indicate a cross-modal transfer effect between musical training and music percep-
tion: symmetrical actions derived from musical training manifest in symmetrical brain
responses while listening to music. The observed cross-modal transfer of symmetry from
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sensorimotor to perceptual processing systems suggests that motor training affects music per-
ception. This finding has major implications for a better understanding of cross-modal neuro-
plasticity, in other words, changes in neural processing in one modality driven by experience
or training in another modality [2], an area of increasing interest in neuroscience [50], which
investigates the ability of the brain to reconfigure itself to create alternate neural pathways.
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