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ABSTRACT

Piret Avila
New insights on the role of ecology and life-history in social evolution
Jyväskylä: University of Jyväskylä, 2017, 29 p.
(Jyväskylä Studies in Biological and Environmental Science
ISSN 1456-9701; 326)
ISBN 978-951-39-6905-9 (nid.)
ISBN 978-951-39-6904-2 (PDF)
Yhteenveto: Uusia oivalluksia ekologian ja elinkierron merkityksestä sosiaalisuuden 
evoluutiossa
Diss.

Biological altruism, defined as a behaviour that benefits others at an apparent cost 
to the focal individual, is found abundantly across different levels of biological or-
ganization. While kin selection has been useful for explaining both cooperation and 
conflict in specialized cooperative societies, more theoretical work has to be done to 
develop models for realistic ecological and life-history contexts. This thesis aims to 
fill this gap by providing several new insights on the role of ecology and life-history 
in various social systems. Firstly, I propose a model that incorporates realistic eco-
logical mechanisms of population regulation and study how different population 
regulation mechanisms affect the evolution of helping behaviour. I show that nest-
site limitation strongly favours evolution of helping behaviour even if the helpers 
are relatively inefficient. I also find that interactions between density dependent 
mechanisms and life-history traits affect the evolution of social behaviour. Secondly, 
I consider a resource allocation model for eusocial insect colonies that incorporates 
the dynamics of colony growth and the conflict between the queen and the workers 
over the sex ratio. I show that conflict over sex allocation gives rise to a suboptimal 
pattern of colony growth, while the queen wins the sex allocation conflict. Thirdly, 
I study optimal reproductive tactics in facultatively cooperative wasps. I show that 
co-foundress nests and costly helping can evolve even with a low average relatedness 
between co-foundresses, but only during the initial stages of the nesting cycle. Costly 
helping during the reproductive phase can only evolve if the relatedness between 
co-foundresses is high. In conclusion, this thesis demonstrates the importance of con-
sidering ecological and life-history aspects in the study of social interactions from 
early stages of helping behaviour to resolving conflicts in eusocial insect colonies.

Keywords: Eusociality; cooperative breeding; social evolution; evolutionary model; 
dynamic optimization; game theory; life-history theory.
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INTRODUCTION

Kin selection and its different formulations

The question of how the cooperative social behaviours have evolved has been one of
the fundamental questions of evolutionary biology since the time of Darwin. The idea
that organisms are a subject to constant ‘struggle for existence’ seems to superficially
imply that natural selection favours individuals who behave in their own selfish
interests. However, animals do not behave selfishly all the time and some animals
can even sacrifice their lives for the benefit of other individuals. We can observe a
variety of altruistic behaviours in nature and such behaviours are especially common
in social insects (ants, bees, wasps and termites), humans, and birds. More generally,
all levels of biological organization exhibit some forms of altruistic and cooperative
behaviours: different cells in multicellular organisms rely on the cooperation between
each other, genes in genomes cooperate with one another, and various cooperative
behaviours can be observed in different microorganisms etc. How, then, can altruistic
behaviours be so abundant in nature if they appear to make organisms less fit?

In the early 1960s, a graduate student Bill Hamilton proposed a solution to
this puzzle. Hamilton argued that if the purpose of reproduction (at least from an
evolutionary viewpoint) is to transmit one’s genes into the future generations, then
the same purpose can also be accomplished by helping relatives to reproduce, taking
into account the fraction of genes they are likely to share with the focal individual
(Hamilton 1964a, b). This insight led him to derive a fundamental condition that
allows altruistic behaviour to evolve, which became known as the Hamilton’s rule.
Hamilton’s rule states that a gene coding for a social behaviour will be favoured by
selection, if and only if, the following condition holds

rb > c, (1)

where b is the benefit that the behavioural trait confers to the social partner, c is
the cost the behaviour imposes on the actor, and r is the relatedness between the
actor and its social partner (Hamilton 1964a, b). The benefit as well as the cost are
measured in the units of reproductive fitness. In general, the coefficient of relatedness
encompasses any relevant genetic similarity between the actor and its social partner,
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including genealogical kinship as well as green-beard (Dawkins 1976, Gardner and
West 2010) and pleiotropic effects (Hamilton 1975).

Hamilton’s theory for explaining altruistic behaviour became known as ‘kin
selection’ theory, although he never used this term himself. Kin selection theory
represents an extension to the classical theory of evolution, since it shifted the unit of
selection from an individual’s level to the level of the gene. This ‘gene’s-eye view of
evolution’ puts genes at the centre stage of evolution and individual organisms can
be viewed as mere ‘vehicles’ that genes use to aid their own propagation (Dawkins
1976, 1982). However, kin selection can also be formulated from the organism’s
point of view if we extend the classical notion of reproductive fitness. According
to the theory of kin selection, individuals appear to be maximizing their ‘inclusive
fitness’, which is a sum of the reproductive success they acquire through reproducing
themselves (‘direct fitness’) and through helping relatives to reproduce (‘indirect
fitness’). Hamilton defined inclusive fitness in his own words as follows:

Inclusive fitness may be imagined as the personal fitness which an indi-
vidual actually expresses in its production of adult offspring as it becomes
after it has been first stripped and then augmented in a certain way. It is
stripped of all components which can be considered as due to the indi-
vidual’s social environment, leaving the fitness which he would express
if not exposed to any of the harms or benefits of that environment. This
quantity is then augmented by certain fractions of the quantities of harm
and benefit which the individual himself causes to the fitnesses of his
neighbours. The fractions in question are simply the coefficients of re-
lationship appropriate to the neighbours whom he affects. (Hamilton
1964a)

Using the concept of inclusive fitness is not the only way to formulate the kin selec-
tion theory at the individual’s level. An alternative formulation can be obtained if
relatedness is interpreted as a degree of correlated interactions. This formulation of
kin selection theory is called the ‘neighbour-modulated fitness’ (or ‘direct fitness’)
framework. In this framework, an individual who carries a gene for altruism has a
higher expectation for receiving benefits from its social environment if the related-
ness is high enough (Taylor and Frank 1996, Frank 1998, Roze and Rousset 2004). It
should be mentioned that indirect fitness and neighbour-modulated fitness formu-
lations are usually considered to be equivalent, since they yield identical results for
the evolution of altruistic traits (Taylor and Nowak 2007).

Hamilton derived the original formulation of kin selection theory from a pop-
ulation genetic model based on a single locus, assuming weak selection, additive
gene action, and the additivity of the fitness components behind individual actions.
Since then, kin selection theory has been developed for more general conditions by
numerous authors (e.g., Michod (1982), Queller (1984, 1992), Lehmann and Keller
(2006), Lehmann and Rousset (2010, 2014a, b), Lehmann et al. (2016)). Kin selection
has been instrumental in understanding various aspects on queen-worker conflict
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in insect societies, sex ratio evolution, genomic imprinting, reproductive skew, dis-
persal in animal groups, and the evolution of multicellularity (Abbot et al. 2011,
Bourke 2011). Yet, surprisingly, for a theory so central to its field and with all of its
empirical success, there has been a considerable amount of debate over the accuracy
of the mathematical tools it uses, the generality of its implications, and its connection
to evolutionary theory in general, especially in the recent years (e.g., Nowak et al.
(2010), Abbot et al. (2011), Nowak et al. (2011), Gardner et al. (2011), Rousset and Lion
(2011), Allen et al. (2013), Rousset (2015), Allen and Nowak (2016)).

Eusociality and cooperative breeding in social insects

Social insects are central to the study of social evolution theory, since they represent a
vast range of different cooperative social systems. At one end of the extreme, one can
find highly complex eusocial societies which include those of many ant and termite
species. At the other extreme, there are small groups of cooperatively breeding
insects that exhibit a high degree of conflict, such as seen in many species of social
wasps.

As we have learned more about the social behaviour of vertebrates and inver-
tebrates, the demarcation between eusociality and cooperative breeding has become
blurred, as the existing variation of social systems resembles more of a continuum
more than a dichotomy (Sherman et al. 1995).

Crespi and Yanega (1995) have proposed one of the clearest definitions of eu-
sociality, as a society that consists of at least two castes of individuals that become
irreversibly distinct in behaviour before reaching their reproductive maturity, and
in which the members of a less-reproductive caste behave altruistically towards the
more-reproductive caste. According to this definition, cooperative breeders differ
from eusocial colonies because they do not exhibit irreversible, behaviourally distinct
castes, since all individuals in these groups are capable of reproducing. Throughout
this thesis, I have adopted these definitions for eusociality and cooperative breeding.

Mechanisms that promote helping

Mechanisms affecting relatedness

According to the kin selection theory, high relatedness between social partners facil-
itates the evolution of helping behaviour. Here, I discuss two mechanisms that are
thought to influence relatedness between social partners.

Monogamy is considered to be important in the systems where helping has
evolved via the subsocial route (i.e., where the individuals stay with their mother
to help raise siblings) (Boomsma 2007). This is because strict monogamy maintains
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high relatedness between the offspring of an individual. Empirical evidence, in gen-
eral, provides support for the importance of monogamy in the evolution of helping
behaviour, as many eusocial species exhibit a lifetime of monogamy (Boomsma 2007).

As eusociality is particularly common among the order Hymenoptera, Hamilton
conjectured that the Hymenoptera may be predisposed to become eusocial because
of their haplodiploid genetic system. In haplodiploids, (diploid) females develop
from fertilized eggs and (haploid) males develop from unfertilized eggs. This cre-
ates asymmetry of relatedness within family groups. For example, the life-for-life
coefficient of relatedness between haplodiploid sisters is 0.75, while between sisters
and brothers it is only 0.25. In addition, a haplodiploid mother is equally (0.5) re-
lated to her sons and daughters. Here, the life-for-life coefficient of relatedness is
the augmented basic (regression) relatedness that also takes into account the relative
reproductive value of females compared to males (Bulmer 1994). According to the
haplodiploidy hypothesis, daughters possess a large incentive to help their mother to
produce sisters, since they are more related to their sisters than to their own offspring
(Hamilton 1964a, b, 1972). However, Trivers and Hare (1976) have pointed out that,
given an even sex ratio, the average relatedness between a female and her siblings
does not differ between diploids and haplodiploids, since in haplodiploids the high
relatedness towards sisters is offset by the low relatedness towards brothers (Trivers
and Hare 1976). Additional mechanisms have been invoked that could permit the
haplodiploidy hypothesis to work (Seger 1991), but even these mechanisms have
been shown to be problematic (Gardner et al. 2012). Nevertheless, Fromhage and
Kokko (2011) have shown that haplodiploidy can promote evolution of helping via
the effect of positive assortment between rare phenotypes.

Intriguingly, social systems where relatedness between social partners is re-
latively low or consists of completely unrelated individuals can also be found.
These examples are more commonly found in cooperative vertebrates (Clutton-Brock
2002, 2009), but there are also some of these instances among ants and social wasps
(Bernasconi and Strassmann 1999, Liebert et al. 2005, Gadagkar 2016, Field and Lead-
beater 2016). In the third chapter of this thesis, I will propose a context-dependent
dynamic model to explain how this behaviour could evolve.

Ecological factors

For altruism to be able to evolve there has to be a sufficiently high benefit-to-cost ratio
associated with the act of helping. Two main mechanisms for creating high benefit-
to-cost ratios have been suggested. One of these, the ‘life insurance’ mechanism
can occur in species displaying parental care. According to the ‘life insurance’
mechanism, the individuals raise their offspring in such groups that the orphaned
offspring will be brought up by other individuals belonging to the same group
(Gadagkar 1990). The other, a so-called ‘fortress defence’ mechanism can arise in the
context of agonistic interactions, where the group of individuals have a better chance
to defend a shared resource that they would not be able to defend on their own
(Queller and Strassmann 1998). However, these mechanisms are relatively specific
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and neither of them appear to apply to most of the social vertebrates, which led
Queller and Strassmann (1998) to conclude that the hope for a universal ecological
explanation of cooperative social systems may be in vain.

It has also been proposed that ecological constraints can facilitate helping beha-
viour. The ecological constraints hypothesis proposes that helping could be favoured
in the environments in which the perspective of gaining direct fitness through inde-
pendent breeding is limited and by helping relatives, individuals are simply making
the best out of a bad situation (Emlen 1982, Dickinson and Hatchwell 2004). The
ecological constraints hypothesis is supported by the substantial empirical evidence
obtained from the cooperatively breeding vertebrates (Hannon et al. 1985, Pruett-
Jones and Lewis 1990, Komdeur 1992, Harris et al. 1995, Dickinson 2004, Bergmüller
et al. 2005, Stiver et al. 2006, Lucia et al. 2008, Heg et al. 2010, Schoepf and Schradin
2012). However, there is a lack of theoretical support for this hypothesis without
invoking direct fitness benefits of helping (Pen and Weissing 2000).

Conflict over sex allocation

Sex allocation refers to the problem of allocating parental resources into producing
male and female offspring. In the simplest scenario, selection should favour an
unbiased sex allocation at the population level (Fisher 1930). Trivers and Hare (1976)
were first to formalize the conflict over sex ratio between the mother-queens and
daughter-workers in the eusocial Hymenoptera that arises from the asymmetries
relatedness between the members of the colony. They combined sex ratio theory
(Fisher 1930) with inclusive fitness theory (Hamilton 1964a, b) and parent-offspring
conflict (Trivers 1974) to show that, while the queen prefers an equal allocation
between the two sexes, workers prefer to allocate three times as many resources to
the females than to the males.

Resource allocation to reproduction versus growth

One of the most important trade-offs in the life-history of an organism is the allocation
of resources between reproduction and growth (Stearns 1992). Allocating resources
to somatic growth increases the expected future reproduction, while reproduction
provides immediate gains in fitness. The morphological castes of an eusocial insect
colony can be interpreted as representing different kinds of effort of a superorganism:
workers represent the somatic effort and sexual offspring (new queens and males)
represent the reproductive effort. Analogous to the life-history studies of individual
organisms one can therefore ask: what is the optimal resource allocation strategy in
an eusocial insect colony?
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Macevicz and Oster (1976) showed that the optimal resource allocation schedule
of an annual eusocial colony proceeds in two distinct phases. First, all effort is
directed towards producing workers (ergonomic phase) until a switch happens and
then all effort is directed towards producing sexual offspring (reproductive phase)
(Macevicz and Oster 1976). This evolutionarily stable strategy of optimal growth is
called a ‘bang-bang’ strategy and it is also found in many annual organisms.

I pointed out in the previous section that there is a conflict between the queen
and the workers over sex ratio, such that the queen prefers an unbiased sex ratio
whereas the workers prefer a female-biased sex ratio. Can the conflict over sex ratio
between the queen and the workers influence the resource allocation between colony
growth versus reproductive effort? In past decades, there has been considerable
debate over this question. Pamilo (1991) argued that workers should prefer to invest
more resources into new queens than workers in contrast to the preference of the
queen. Bourke and Chan (1999) pointed out that both parties should prefer the same
allocation in order to maximize the production of sexual individuals. Subsequently,
Bourke and Ratnieks (1999) suggested that conflict between workers and the queen
could arise over the developmental fate of female larvae, with workers preferring
a higher amount of female larvae to develop into new queens. Reuter and Keller
(2001) showed that, if both parties have means to influence the resource allocation
decision, then the conflict over sex allocation results in an overall loss in productivity
of the colony, as less than the optimal amount of resources are allocated to worker
production. The authors also predicted that the sex ratio among sexual offspring
in such a colony should be intermediate between the optima of the queen and the
workers. However, their model did not explicitly include time-dependent decision
making throughout a colony’s ontogeny.

Aims of the thesis

My thesis provides new insights into the theory of social evolution by linking ecology
and life-history to some of the fundamental questions of social evolution theory:
origin of altruism, conflict between the queen and the workers over sex allocation in
eusocial colonies, and the evolution of co-foundress associations with low average
level of relatedness.

More specifically, in the first chapter (study I), I demonstrate how ecology and
life-history characteristics of a species can affect the origin of altruistic behaviour. I
compare how different population regulation mechanisms can effect the evolution of
altruistic traits.

In the second chapter (study II), I consider the classical sex ratio conflict between
the queen and the workers, taking into account colony ontogeny by explicitly ac-
counting for the population dynamics of colony growth. I study the conflict res-
olution under different scenarios of power that the workers and the queen have
over resource allocation decisions. My analysis provides predictions that make these
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scenarios empirically distinguishable.
In the third chapter (study III), I considered the optimal reproductive tactics of

facultatively cooperative insects. I wanted to study how co-foundress associations
and costly helping can evolve in species with a low average level of relatedness.



METHODS

In Chapter I, I use a general population genetic model (Oster et al. 1977, Nowak
et al. 2010, Fromhage and Kokko 2011) which allows to track the demographic and
genotypic composition of a population over ecological and evolutionary time. I
consider the stable asymptotic state of the population in order to study the long-term
evolutionary outcomes of the population under different ecological conditions. I
also re-derive some of these results using a direct fitness approach (Taylor and Frank
1996, Pen and Weissing 2000) to show how they relate to previous work on ecological
constraints and the evolution of helping behaviour.

In Chapter II, I first use an invasion fitness approach (Lehmann et al. 2016).
Invasion fitness which is defined as the geometric growth rate (or growth ratio)
of the mutant allele in a population, where the mutant allele remains rare in the
population. I then use optimal control theory (Sydsæter et al. 2008, Bryson and Ho
1975) together with dynamic game theory (Bryson and Ho 1975, Mazalov 2014) to
derive the first-order conditions for uninvadability. An uninvadable strategy, in this
context, is a strategy that is resistant to the invasion of any mutant strategy and
hence it is evolutionarily stable. In addition to finding the first-order conditions for
uninvadability, I also used a computational method called the iteration of the best
response map (Houston and McNamara 1999), combined with a numerical solver
for the problems of optimal control theory, called GPOPS (Patterson and Rao 2014),
which uses a direct collocation approach along with various non-linear optimization
methods to determine the uninvadable strategies.

In Chapter III, I develop a time and context-dependent model of cooperative
breeding, using the iteration of the best response map (with errors in decision making)
to find evolutionarily stable strategies (Houston and McNamara 1999).

Note that in Chapter II I use the term ’uninvadable strategy’ and in Chapter III, I
use ’evolutionarily stable strategy’. I make this distinction because in the first chapter
I also provide the local first order conditions for stability in addition to the (global)
optimum found by iteration of the best response map. More detailed information
about the mathematical methods of these models can be found in the respective
chapters.



RESULTS

Chapter I: No synergy needed: ecological constraints favor the evol-

ution of eusociality

The aim of this study is to show how different types of density dependence mechan-
isms can affect the evolution of eusociality and helping behaviour in general. I also
demonstrate that density-dependent mechanisms can interact with the life-history
traits to create favourable conditions for the altruistic behaviour to evolve, even if
the helpers are relatively inefficient at helping. I use a general population genetic
model that incorporates two realistic ecological mechanisms of population regula-
tion: (1) ‘fecundity limitation,’ in which the resources that affect fecundity are limited
and shared between the breeding individuals, and (2) ‘nest-site limitation,’ where
population growth is regulated by having a fixed number of breeding positions
or territories available to the individuals. My model allows to draw comparisons
between the two density-dependent mechanisms under different genetic systems
(haplodiploidy and diplodiploidy), mating systems (monandry and biandry), and
the sex-specific predispositions for helping.

I show that nest-site limitation strongly favours the evolution of helping beha-
viour even if the helpers are relatively inefficient. I also find that the interactions
between density dependent mechanisms and life-history traits can have a strong
effect on the evolution of social behaviour. For example, I found that high intrinsic
fecundity promotes altruistic behaviour if subjected to the nest-site limitation, but
not in the case of fecundity limitation. Conversely, high mortality of dispersing in-
dividuals promotes altruistic behaviour in the event of fecundity limitation but not
in the case of nest-site limitation.

Existing models of social evolution incorporate density dependence by either
assuming nest-site limitation or fecundity limitation, but there is only one theoretical
study (Pen and Weissing 2000) that has attempted a comparison between these two.
Surprisingly, Pen and Weissing (2000) reached the contradictory conclusion mainly
that, in the absence of direct fitness benefits of helping, such as nest (territory) inher-
itance, ecological constraints become irrelevant to the evolution of helping. At the
heart of this apparent discrepancy with my results is their implicit assumption that
efficiency of helping (number of individuals reared by the helper) is independent
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of ecological conditions (density dependent mechanisms that regulate population
growth) and species-specific characteristics, such as the average number of individu-
als raised by the mother on her own (intrinsic fecundity of the species). I argue that
this assumption is potentially misleading by giving the following example. Let us
say that in a given species and at an ecological setting, unaided breeders can rear
0.5 offspring per time unit. Then, for a helper to rear one additional sibling per time
unit, the helper would need to be twice as efficient as her mother, which implies
synergistic interactions of an improbable magnitude. However, in species in which
unaided breeders are able to rear 10 offspring per time unit, the same absolute in-
crement of one extra sibling could be achieved by a considerably less efficient helper
and less stringent assumptions about the benefits of helping.

In order to demonstrate that my results are consistent with the direct fitness
model (Taylor and Frank 1996) used by Pen and Weissing (2000), I re-derive their
results with modifications that allow helping to be influenced by density depend-
ence mechanisms and species-specific intrinsic fecundity. A major contribution of
my analysis is to resolve the schism between empirical evidence supporting the hy-
pothesis that ecological constraints can facilitate helping behaviour (Hannon et al.
1985, Pruett-Jones and Lewis 1990, Komdeur 1992, Harris et al. 1995, Dickinson 2004,
Bergmüller et al. 2005, Stiver et al. 2006, Lucia et al. 2008, Heg et al. 2010, Schoepf and
Schradin 2012) and the lacking theoretical support for this hypothesis. We do not
need to invoke direct fitness benefits of helping, such as nest (territory) inheritance,
to predict that ecological constraints can influence the evolution of helping.

Chapter II: Sex ratio conflict affects colony growth in annual hap-

lodiploid social insects

Colonies of eusocial insects, much like individual organisms, have to decide how to
allocate resources between reproduction and growth. This represents a central life-
history trade-off, common to all organisms and super-organisms alike. However, in
contrast to different cells in multicellular organisms, individuals in eusocial insect
colonies have diverging reproductive optima. For example, in an outbred population,
with a single monandrous queen per colony, queens prefer to allocate resources
equally among male and female (sexual) offspring, while the workers prefer to invest
three times as much resources to females than to males. I study how the conflict over
sex allocation can affect the ontogeny of the colony by linking together the dynamics
of colony growth with the conflict over sex allocation.

In my analysis, I consider different scenarios of power that workers and the
queen can have over the reproductive decisions in the colony, ‘power’ being the
ability of a certain party to act towards their fitness optimum. I show that if both
parties have some control over the reproductive decision making, then the conflict
over sex allocation can give rise to a suboptimal pattern of colony growth, in a
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way that worker production halts earlier in the season than it would be optimal for
maximizing the overall productivity of the colony. The timing of the switch from
worker production (ergonomic phase) to producing sexual offspring (reproductive
phase) depends on how the power over resource allocation decisions is distributed
between the queen and the workers. I reveal how the timing of the switch is affected
by life-history traits, such as mortality rates of the individuals in the colony and
the per capita productivity of the colony. I also show that the queen is in a strong
position to enforce her preference of allocating resources between different sexual
offspring. I also show that the queen mating frequency reduces the conflict between
the workers and the queen and thus affects the switching time. My model provides
testable predictions for the determination of how reproductive decision making is
divided between the workers and the queen.

My study shows that conflict resolution which incorporates time-dependent
decision making can be different from conflict resolution that averages decisions
over time. This highlights the importance of considering the dynamic properties of
conflict resolution mechanisms, since the predictions can be qualitatively different
compared to time independent conflict resolution mechanisms.

Chapter III: Co-foundress associations in primitively eusocial wasps:

a game theoretical approach

Most social insect groups are overwhelmingly composed of close relatives. In-
triguingly, there are examples of unrelated helpers in some co-foundress associations
that occur in certain ant (Bernasconi and Strassmann 1999) and wasp species (Gad-
agkar 2016, Field and Leadbeater 2016, Liebert et al. 2005). Although relatedness
between social partners will, in general, facilitate the evolution of helping behaviour,
kin selection seems to be less important in these systems. Moreover, empirical evid-
ence suggests that unrelated females join other nests as subordinates because of the
possibility of ultimately inheriting the nest (Leadbeater et al. 2011). Nevertheless, for
closely related subordinates in the nest, the indirect fitness benefits usually outweigh
the direct fitness benefits in this species (Leadbeater et al. 2011). The reason behind
the unrelated helpers engaging in costly helping behaviour that reduces their chances
of inheriting the nest and the low level of re-occurring associations between related
wasps remains perplexing.

I show that the high pre-reproductive investment into the nest facilitates co-
foundress associations and costly helping even in a population with low average
relatedness between the co-foundresses. However, costly only helping takes place
during the initial stages of the nesting cycle and halts when the production of sexual
offspring begins. Hence, costly helping during the reproductive phase can only
evolve if the relatedness between the co-foundresses is high. My model shows that
helping at different life cycle stages can be promoted by different ecological factors,
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sometimes this being followed by aggressiveness in an ultimately selfish strategy.
My model suggests that high costs of building the structure of the nest and

producing the first non-reproductive brood may be an important factor in wasp
species with very low average relatedness between the co-foundresses. Indeed, there
is some empirical evidence to suggest that the structure of the nest of wasp species
that exhibit alloparental care is more costly to produce since it contains more protein
(Hunt 2007). However, the amount of pre-reproductive investment observed in social
wasps today may not be representative of the ancestral conditions under which the
co-foundress associations evolved. Since the solitary ancestors of such species must
have been reasonably capable of reaching the reproductive phase alone, it appears
likely that high requirements of pre-reproductive investment may have evolved after
cooperative nesting was already common. Therefore, high relatedness between co-
foundresses may have been more important in the initial stages of the evolution of
co-foundress associations.



CONCLUSIONS

The fundamental premise of the social evolution theory is that altruistic behaviour can
arise through natural selection only if altruistic acts are directed towards the other in-
dividuals who also carry the altruistic genes. Hamilton’s rule outlines the theoretical
foundation for explaining the fundamental conditions under which the altruistic be-
haviours can evolve. Consequently, determining the underlying factors that increase
relatedness between social partners and produce sufficiently high benefit-to-cost ra-
tios associated with the act of altruism are of paramount importance.

Whilst making predictions solely based on relatedness has been relatively
straightforward, deriving the benefits and costs of helping in an ecological and life-
history context is often challenging. This thesis extends the social evolution theory
by showing which ecological conditions and life-history traits are able to facilitate
the emergence of specialized cooperative societies. This study resolved some of the
issues arising with earlier theoretical work, that provided little support for the hypo-
thesis that ecological constraints can favour helping behaviour, a hypothesis which
currently possesses substantial empirical support. I also showed that incorporating
life-history and population dynamics of the colony can significantly improve the
classical understanding of conflict and cooperation within insect societies. I studied
the classical problem of sex ratio conflict in the light of life-history theory and showed
that the theoretical predictions differ significantly between the classical models and
models that incorporate the life-history of the species. I also proposed a new model
for the cooperatively breeding societies, in which time and context-dependent de-
cisions reveal a huge variation between conflict and cooperation at different phases
of the life cycle. This model assists in clarification of the role of relatedness for group
formation, nest building, and helping during different phases of the life cycle.
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YHTEENVETO (RÉSUMÉ IN FINNISH)

Uusia oivalluksia ekologian ja elinkierron merkityksestä sosiaalisuuden evoluu-
tiossa

Darwinistinen ajatus ”olemassaolon kamppailusta” sisältää näennäisesti ajatuksen,
että luonnonvalinta suosii itsekkäästi toimivia yksilöitä. Eläimet eivät kuitenkaan
aina toimi itsekkäästi ja toisinaan jokin yksilö saattaa jopa uhrata oman henkensä
toisten puolesta. Havaitsemme tällaista altruistista toimintaa luonnossa, ja erityisesti
sitä esiintyy sosiaalisten hyönteisten (muurahaiset, mehiläiset, ampiaiset ja termiitit),
ihmisten ja lintujen keskuudessa. Yleisesti ottaen epäitsekästä ja yhteistyötä tekevää
käytöstä tavataan kaikilta biologisten organisaatioiden tasoilta, esimerkiksi solujen,
geenien ja mikro-organismien välillä. Kuinka luonnonvalinta voi suosia yksilöitä,
jotka toimivat altruistisesti?

Luonnonvalinta suosii epäitsekästä toimintaa, jos sitä ohjaavien geenien ko-
pioita siirtyy menestyksekkäästi sukupolvelta toiselle. Yksilöt voivat siirtää altruis-
tista toimintaa ohjaavia geenejä eteenpäin lisääntymisen ohella myös auttamalla su-
kulaisiaan lisääntymään, sillä heillä voi myöskin olla suurella todennäköisyydellä
kopioita näistä geeneistä. Hamiltonin säännön mukaan luonnonvalinta voi suosia
altruismiin ohjaavaa geeniä, jos hyöty b vastaanottajalle kerrottuna vastaanottajan
ja toimijan välisen geneettisen sukulaisuuden asteella r on suurempi kuin haitta c
toimijalle, toisin sanoen luonnonvalinta voi olla suosiollinen jos rb > c. Hamiltonin
sääntö ottaa huomioon molemmat tavat siirtää geenejä seuraavalle sukupolvelle ja
asettaa yleisen ehdon sille, milloin luonnonvalinta suosii altruistista käyttäytymistä.
Tässä väitöskirjassa hyötyjä ja haittoja mitataan lisääntymiskelpoisuuden mukaan.
Yksilöiden välisen sukulaisuuden mittaaminen on suoraviivaista, mutta mitä Hamil-
tonin säännön hyöty b ja haitta c tarkoittavat ekologiassa ja yksilön elämänkierron
suhteen on vähemmän selkeää. Suuri osa teoreettisesta tutkimuksesta on toistaiseksi
keskittynyt kehittämään yleisiä malleja sosiaalisesta käyttäytymisestä ja erityisesti
on painotettu mekanismeja, jotka lisäävät sosiaalisten partnereiden sukulaisuuden
astetta. Edelleen on kuitenkin tarvetta yksityiskohtaisemmille malleille, jotka anta-
vat selkeitä ennusteita, ja joita voi soveltaa todellisiin ekologisiin ja elinkierrollisiin
systeemeihin. Tämä väitöskirja täyttää tätä aukkoa ja tarjoaa useita uusia oivalluk-
sia liittyen ekologian ja elinkierron rooliin erilaisten sosiaalisten vuorovaikutusten
yhteydessä.

Ensimmäisessä kappaleessa kehitän mallin, joka sisältää realistisia ekologisia
populaation sääntelymekanismeja ja vertaan kuinka erilaiset sääntelymekanismit
vaikuttavat auttamiskäyttäytymisen evoluutioon. Osoitan, että pesäpaikkojen rajoit-
taminen suosii vahvasti auttamiskäyttäytymisen evoluutiota, ja että tämä pätee vaik-
ka auttaminen olisi suhteellisen tehotonta. Osoitan myös, että populaatiotiheydestä
riippuvien ja elinkierrollisten ominaisuuksien vuorovaikutukset voivat merkittäväs-
ti vaikuttaa sosiaalisen käyttäytymisen evoluutioon. Korkea luontainen fertiliteetti
edistää altruistista käyttäytymistä, kun pesäpaikkoja on rajallisesti, mutta tämä ei pä-
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de, jos fertiliteettiä rajoitetaan. Kääntäen, korkea kuolleisuus liikkuvien yksilöiden
kesken edistää altruistista käyttäytymistä, kun fertiliteettiä rajoitetaan, mutta ei jos
pesäpaikkojen määrää rajoitetaan.

Toisessa kappaleessa kehitän aitososiaalisille hyönteisyhdyskunnille resurssial-
lokaatiomallin, joka sisältää pesän kasvudynamiikan ja mallintaa kuningattaren ja
työläisten välisen epäsuhtaisen sukupuolijakauman konfliktin. Osoitan, että konflik-
ti sukupuolijakaumassa johtaa epäoptimaaliseen kolonian kasvuun samalla kun ku-
ningatar voittaa kyseisen konfliktin. Mallini tuottaa testattavia ennusteita siitä, miten
lisääntymispäätökset jakautuvat kuningattaren ja työläisten välillä. Se myös koros-
taa konfliktien ratkaisumekanismien dynaamisia ominaisuuksia, sillä sen ennusteet
voivat olla kvalitatiivisesti erilaisia verrattuna ajasta riippumattomiin ratkaisumeka-
nismeihin.

Kolmannessa kappaleessa tutkin optimaalisia lisääntymistaktiikoita fakulta-
tiivisesti yhteistyötä tekevillä ampiaisilla. Osoitan, että pesien yhteisperustamista
ja auttamista oman edun kustannuksella voi kehittyä jopa sellaisissakin populaa-
tioissa, joissa keskimääräinen sukulaisuuden aste pesän perustajien välillä on pieni.
Tämä on kuitenkin mahdollista vain pesimissyklin alkuvaiheessa eikä enää lisään-
tymisvaiheessa. Auttaminen oman edun kustannuksella lisääntymisvaiheessa voi
kehittyä vain, jos perustajien välinen sukulaisuuden aste on korkea. Mallini osoit-
taa, että erilaiset ekologiset tekijät voivat edistää auttamisen kehittymistä eri elämän
vaiheissa, ja toisinaan tämä on osa pohjimmiltaan itsekästä strategiaa johon liittyy
auttamisen jälkeinen aggressiivisuus.

Yhteenvetona tämä väitöskirja havainnollistaa ekologisten ja elinkierrollisten
tekijöiden tärkeyttä sosiaalisten vuorovaikutusten tutkimisessa aina yleisesti autta-
miskäyttäytymisen alkuvaiheista konfliktien ratkaisemiseen aitososiaalisissa hyön-
teisyhdyskunnissa.



26

REFERENCES

Abbot, P., Abe, J., Alcock, J., Alizon, S., Alpedrinha, J.A., Andersson, M., Andre, J.B.,
Van Baalen, M., Balloux, F., Balshine, S. et al. 2011. Inclusive fitness theory and
eusociality. Nature 471: E1–E4.

Allen, B. & Nowak, M.A. 2016. There is no inclusive fitness at the level of the
individual. Curr. Opin. Behav. Sci. 12: 122–128.

Allen, B., Nowak, M.A. & Wilson, E.O. 2013. Limitations of inclusive fitness. Proc.
Natl. Acad. Sci. 110: 20135–20139.

Bergmüller, R., Heg, D. & Taborsky, M. 2005. Helpers in a cooperatively breeding
cichlid stay and pay or disperse and breed, depending on ecological constraints.
Proc. R. Soc. B 272: 325–331.

Bernasconi, G. & Strassmann, J.E. 1999. Cooperation among unrelated individuals:
the ant foundress case. Trends Ecol. Evol. 14: 477–482.

Boomsma, J.J. 2007. Kin selection versus sexual selection: why the ends do not meet.
Curr. Biol. 17: R673–R683.

Bourke, A.F. 2011. Principles of social evolution. Oxford University Press, New York.
Bourke, A.F. & Chan, G.L. 1999. Queen-worker conflict over sexual production and

colony maintenance in perennial social insects. Am. Nat. 154: 417–426.
Bourke, A.F. & Ratnieks, F.L. 1999. Kin conflict over caste determination in social

Hymenoptera. Behav. Ecol. Sociobiol. 46: 287–297.
Bryson, A.E. & Ho, Y.C. 1975. Applied optimal control: optimization, estimation and

control. Taylor & Francis Group, New York.
Bulmer, M. 1994. Theoretical evolutionary ecology. Sinauer Associates, Inc., Sunderland,

MA.
Clutton-Brock, T. 2002. Breeding together: kin selection and mutualism in cooperat-

ive vertebrates. Science 296: 69–72.
Clutton-Brock, T. 2009. Cooperation between non-kin in animal societies. Nature 462:

51–57.
Crespi, B.J. & Yanega, D. 1995. The definition of eusociality. Behav. Ecol. 6: 109–115.
Dawkins, R. 1976. The selfish gene. Oxford University Press, Oxford.
Dawkins, R. 1982. The extended phenotype. WH Freeman & Co, Oxford.
Dickinson, J.L. 2004. Facultative sex ratio adjustment by western bluebird mothers

with stay-at-home helpers-at-the-nest. Anim. Behav. 68: 373–380.
Dickinson, J.L. & Hatchwell, B. 2004. Fitness consequences of helping. In: Koenig,

W.D. & Dickinson, J.L. (eds.), Ecology and Evolution of Cooperative Breeding in
Birds, Cambridge University Press, Cambridge, MA, pp. 48–66.

Emlen, S.T. 1982. The evolution of helping. I. An ecological constraints model. Am.
Nat. 119: 29–39.

Field, J. & Leadbeater, E. 2016. Cooperation between non-relatives in a primitively
eusocial paper wasp, Polistes dominula. Phil. Trans. R. Soc. B 371: 20150093.

Fisher, R.A. 1930. The genetical theory of natural selection. The Clarendon Press, Oxford.
Frank, S.A. 1998. Foundations of social evolution. Princeton University Press, Princeton.



27

Fromhage, L. & Kokko, H. 2011. Monogamy and haplodiploidy act in synergy to
promote the evolution of eusociality. Nat. Commun. 2: 397.

Gadagkar, R. 1990. Evolution of eusociality: the advantage of assured fitness returns.
Phil. Trans. R. Soc. B 329: 17–25.

Gadagkar, R. 2016. Evolution of social behaviour in the primitively eusocial wasp
Ropalidia marginata: do we need to look beyond kin selection? Phil. Trans. R.
Soc. B 371: 20150094.

Gardner, A., Alpedrinha, J. & West, S.A. 2012. Haplodiploidy and the evolution of
eusociality: split sex ratios. Am. Nat. 179: 240–256.

Gardner, A. & West, S.A. 2010. Greenbeards. Evolution 64: 25–38.
Gardner, A., West, S.A. & Wild, G. 2011. The genetical theory of kin selection. J. Evol.

Biol. 24: 1020–1043.
Hamilton, W.D. 1964a. The genetical evolution of social behaviour. I. J. Theoret. Biol.

7: 1–16.
Hamilton, W.D. 1964b. The genetical evolution of social behaviour. II. J. Theoret. Biol.

7: 17–52.
Hamilton, W.D. 1972. Altruism and related phenomena, mainly in social insects.

Annu. Rev. Ecol. Syst. 3: 193–232.
Hamilton, W.D. 1975. Innate social aptitudes of man: an approach from evolutionary

genetics. In: Fox, R. (ed.), Biosocial anthropology, Malaby Press, London, pp.
133–153.

Hannon, S.J., Mumme, R.L., Koenig, W.D. & Pitelka, F.A. 1985. Replacement of breed-
ers and within-group conflict in the cooperatively breeding acorn woodpecker.
Behav. Ecol. Sociobiol. 17: 303–312.

Harris, R.N., Hames, W.W., Knight, I.T., Carreno, C.A. & Vess, T.J. 1995. An ex-
perimental analysis of joint nesting in the salamander Hemidaetylium scutatum
(Caudata: Plethodontidae): the effects of population density. Anim. Behav. 50:
1309–1316.

Heg, D., Rothenberger, S. & Schürch, R. 2010. Habitat saturation, benefits of philo-
patry, relatedness, and the extent of co-operative breeding in a cichlid. Behav.
Ecol. 22: 82–92.

Houston, A.I. & McNamara, J.M. 1999. Models of adaptive behaviour: an approach based
on state. Cambridge University Press, Cambridge.

Hunt, J.H. 2007. The evolution of social wasps. Oxford University Press, Oxford.
Komdeur, J. 1992. Importance of habitat saturation and territory quality for evolution

of cooperative breeding in the seychelles warbler. Nature 358: 493–495.
Leadbeater, E., Carruthers, J.M., Green, J.P., Rosser, N.S. & Field, J. 2011. Nest

inheritance is the missing source of direct fitness in a primitively eusocial insect.
Science 333: 874–876.

Lehmann, L. & Keller, L. 2006. The evolution of cooperation and altruism–a general
framework and a classification of models. J. Evol. Biol. 19: 1365–1376.

Lehmann, L., Mullon, C., Akçay, E. & Van Cleve, J. 2016. Invasion fitness, inclusive
fitness, and reproductive numbers in heterogeneous populations. Evolution 70:
1689–1702.



28

Lehmann, L. & Rousset, F. 2010. How life history and demography promote or inhibit
the evolution of helping behaviours. Phil. Trans. R. Soc. B 365: 2599–2617.

Lehmann, L. & Rousset, F. 2014a. Fitness, inclusive fitness, and optimization. Biol.
Philos. 29: 181–195.

Lehmann, L. & Rousset, F. 2014b. The genetical theory of social behaviour. Phil. Trans.
R. Soc. B 369: 20130357.

Liebert, A.E., Nonacs, P. & Wayne, R.K. 2005. Solitary nesting and reproductive
success in the paper wasp Polistes aurifer. Behav. Ecol. Sociobiol. 57: 445–456.

Lucia, K.E., Keane, B., Hayes, L.D., Lin, Y.K., Schaefer, R.L. & Solomon, N.G. 2008.
Philopatry in prairie voles: an evaluation of the habitat saturation hypothesis.
Behav. Ecol. 19: 774–783.

Macevicz, S. & Oster, G. 1976. Modeling social insect populations II: optimal repro-
ductive strategies in annual eusocial insect colonies. Behav. Ecol. Sociobiol. 1:
265–282.

Mazalov, V. 2014. Matematical game theory and applications. Wiley-Blackwell, New
Jersey.

Michod, R.E. 1982. The theory of kin selection. Annu. Rev. Ecol. Syst. 13: 23–55.
Nowak, M.A., Tarnita, C.E. & Wilson, E.O. 2010. The evolution of eusociality. Nature

466: 1057–1062.
Nowak, M.A., Tarnita, C.E. & Wilson, E.O. 2011. Nowak et al. reply. Nature 471:

E9–E10.
Oster, G., Eshel, I. & Cohen, D. 1977. Worker-queen conflict and the evolution of

social insects. Theor. Popul. Biol. 12: 49–85.
Pamilo, P. 1991. Evolution of colony characteristics in social insects. I. Sex allocation.

Am. Nat. pp. 83–107.
Patterson, M.A. & Rao, A.V. 2014. GPOPS-II: A MATLAB software for solving

multiple-phase optimal control problems using hp-adaptive Gaussian quad-
rature collocation methods and sparse nonlinear programming. ACM Trans.
Math. Softw. 41: 1.

Pen, I. & Weissing, F.J. 2000. Towards a unified theory of cooperative breeding: the
role of ecology and life history re-examined. Proc. R. Soc. B 267: 2411–2418.

Pruett-Jones, S.G. & Lewis, M.J. 1990. Sex ratio and habitat limitation promote
delayed dispersal in superb fairy-wrens. Nature 348: 541–542.

Queller, D.C. 1984. Kin selection and frequency dependence: a game theoretic ap-
proach. Biol. J. Linn. Soc. 23: 133–143.

Queller, D.C. 1992. A general model for kin selection. Evolution 46: 376–380.
Queller, D.C. & Strassmann, J.E. 1998. Kin selection and social insects social insects

provide the most surprising predictions and satisfying tests of kin selection.
BioScience 48: 165–175.

Reuter, M. & Keller, L. 2001. Sex ratio conflict and worker production in eusocial
Hymenoptera. Am. Nat. 158: 166–177.

Rousset, F. 2015. Regression, least squares, and the general version of inclusive
fitness. Evolution 69: 2963–2970.



29

Rousset, F. & Lion, S. 2011. Much ado about nothing: Nowak et al.’s charge against
inclusive fitness theory. J. Evol. Biol. 24: 1386–1392.

Roze, D. & Rousset, F. 2004. The robustness of Hamilton’s rule with inbreeding and
dominance: kin selection and fixation probabilities under partial sib mating.
Am. Nat. 164: 214–231.

Schoepf, I. & Schradin, C. 2012. Better off alone! reproductive competition and eco-
logical constraints determine sociality in the african striped mouse (Rhabdomys
pumilio). J. Anim. Ecol. 81: 649–656.

Seger, J. 1991. Cooperation and conflict in social insects. In: Krebs, J.R. & Davies,
N.B. (eds.), Behavioural ecology: an evolutionary approach, Blackwell Scientific
Publications, Oxford, pp. 338–373.

Sherman, P.W., Lacey, E.A., Reeve, H.K. & Keller, L. 1995. The eusociality continuum.
Behav. Ecol. 6: 102–108.

Stearns, S.C. 1992. The evolution of life histories. Oxford University Press, Oxford.
Stiver, K.A., Fitzpatrick, J., Desjardins, J.K. & Balshine, S. 2006. Sex differences in

rates of territory joining and inheritance in a cooperatively breeding cichlid fish.
Anim. Behav. 71: 449–456.

Sydsæter, K., Hammond, P. & Seierstad, A. 2008. Further mathematics for economic
analysis. Pearson education limited, Essex.

Taylor, C. & Nowak, M.A. 2007. Transforming the dilemma. Evolution 61: 2281–2292.
Taylor, P.D. & Frank, S.A. 1996. How to make a kin selection model. J. Theoret. Biol.

180: 27–37.
Trivers, R.L. 1974. Parent-offspring conflict. Am. Zool. 14: 249–264.
Trivers, R.L. & Hare, H. 1976. Haplodiploidy and the evolution of the social insects.

Science 191: 249–263.



ORIGINAL PAPERS 

I 

NO SYNERGY NEEDED: ECOLOGICAL CONSTRAINTS 
FAVOR THE EVOLUTION OF EUSOCIALITY  

by 

Piret Avila & Lutz Fromhage 2015 

The American Naturalist 186: 31-40. 

Reprinted with kind permission of 
© 2015 The University of Chicago 



No Synergy Needed: Ecological Constraints

Favor the Evolution of Eusociality

Piret Avila and Lutz Fromhage*

Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014, Finland

Submitted August 27, 2014; Accepted March 5, 2015; Electronically published April 30, 2015

Online enhancements: appendixes.

abstract: In eusocial species, some individuals sacrifice their own
reproduction for the benefit of others. It has been argued that the
evolution of sterile helpers in eusocial insects requires synergistic ef-
ficiency gains through cooperation that are uncommon in coopera-
tively breeding vertebrates and that this precludes a universal ecolog-
ical explanation of social systems with alloparental care. In contrast,
using a model that incorporates realistic ecological mechanisms of
population regulation, we show here that constraints on indepen-
dent breeding (through nest-site limitation and dispersal mortality)
eliminate any need for synergistic efficiency gains: sterile helpers may
evolve even if they are relatively inefficient at rearing siblings, reduc-
ing their colony’s per-capita productivity. Our approach connects re-
search fields by using hypotheses developed for cooperative breeding
to explain the evolution of eusociality. The results suggest that these
hypotheses may apply more generally than previously thought.

Keywords: social evolution, altruism, helping, ecological constraints,
evolutionary simulation.

Introduction

An apparent implication of the “struggle for existence” in
nature is that organisms are predisposed to be selfish and
fierce competitors. Nonetheless, highly social (eusocial) in-
sect species exhibiting altruistic behavior have come to
dominate many terrestrial ecosystems (Wilson 1990). Eu-
social societies (sensu Crespi and Yanega 1995) consist of
at least two castes of individuals that become irrevers-
ibly behaviorally distinct before reproductive maturity, with
members of a less reproductive caste behaving altruistically
toward a more reproductive caste. When eusociality evolves
via the subsocial route, as considered in this article, the less
reproductive caste originates from nondispersing offspring
helping their mother. Eusociality is distinguished from coop-
erative breeding, which is defined as alloparental care with-
out castes. The transition to eusociality has occurred repeat-
edly during the course of evolution (Crespi 1996), but its

underlying causes remain a subject of debate (Nowak et al.
2010; Abbot et al. 2011). Because sterile helpers, as found
in eusocial insects, should generate benefits to their colony
that outweigh their lack of own reproduction, explaining
their evolution has been linked to the question (Queller
and Strassmann 1998, p. 169) “how can an individual pro-
vide greater gains to a colony than to her own offspring,
even though she carries out the same kinds of tasks in each
case?” The suggested answers to this question invoke syner-
gistic mechanisms by which colony members are more ef-
fective jointly than individually, such that their coordinated
or complementary actions elevate colony productivity be-
yond the expectation of linear increase based on colony size.
Two main mechanisms for creating synergy have been sug-
gested. The “life insurance”mechanism assumes that, while
n individuals may jointly produce n times as many off-
spring as any of them alone, the expected number of sur-
viving offspring may increase more than n-fold if the colony
ensures the survival of the dependent young even in the
event of their mother’s death (Gadagkar 1990). The “for-
tress defense” mechanism assumes that synergy arises in
the context of agonistic interactions, where groups of in-
dividuals may jointly be able to defend a resource that they
could not defend alone (Queller and Strassmann 1998).
Since these mechanisms are distinct from each other and
neither appears to apply to most social vertebrates, Queller
and Strassmann (1998) concluded that the hope for a uni-
versal ecological explanation of cooperative social systems
may be doomed. It has also been argued that strict monog-
amy, by ensuring that helpers are equally related to their
siblings as they would be to their own offspring, is the only
mating system that will make weak synergistic effects suffi-
cient to select for sterile helpers, whereas other mating sys-
tems require larger and less plausible synergistic effects
(Boomsma 2007; West and Gardner 2010). In contrast to
these views, we show here that sterile helpers can evolve
in the absence of synergy, defined here as any mechanism
that would increase colony productivity beyond the ex-
pectation of linear increase based on (constant) colony size.
Provided that ecological constraints strongly limit their op-
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portunities for independent breeding, sterile helpers can
evolve even if they are far less efficient than their mother
at raising offspring, thus reducing their colony’s per-capita
productivity.

Ecological constraints that have been suggested to favor
cooperative breeding include mortality faced by dispersing
individuals and scarcity of available nest sites (or territo-
ries; Emlen 1982). To evaluate the impact of these factors
on the evolution of eusociality, we use a population dy-
namics model that quantifies the conditions under which
a sterile helper caste can evolve, and subsequently be sta-
ble, from a solitary ancestral species. We vary the mortal-
ity faced by dispersing individuals under two modes of
population regulation, which for simplicity we model as al-
ternatives: (1) “fecundity limitation,”where fecundity is den-
sity dependent because of competition for biotic resources
that can be transformed into offspring, and (2) “nest-site
limitation,” where the transition toward becoming a breeder
is density dependent because of competition for nest sites
or territories. We also vary our assumptions regarding the
genetic system (haplodiploidy vs. diplodiploidy), the mat-
ing system (monandry vs. biandry), and the sex-specific
predisposition for helping.

Methods

We use a modeling approach that tracks the demographic
and genotypic composition of a population over ecologi-
cal and evolutionary time, rather than considering what
is optimal from the perspective of some focal individual or
colony (Nowak et al. 2010; Fromhage and Kokko 2011).
Our model is designed to reflect the empirical viewpoint
that transitions to eusociality have occurred overwhelm-
ingly via the subsocial route (i.e., parents and offspring re-
mained in association through nondispersal of offspring;
Bourke 2011), from monogamous ancestors (Hughes et al.
2008; Boomsma 2009; Cornwallis et al. 2010) with some de-
gree of maternal care (progressive provisioning; Andersson
1984). However, we consider both monandry and biandry
to compare the effect of the mating system to those of other
potential promoters of social behavior. We do not aim to
model any particular species or to cover the full diversity
of ecological and life-history details of social insects. Instead,
we assume a simplistic life cycle that allows us to focus on
the processes we consider essential to the point we wish to
make.

Consider a class-structured, infinite, panmictic popula-
tion, where females of the breeder class rear their offspring
and, once matured, offspring leave their natal nest to join
the classes of dispersed males and dispersed females. Dis-
persed males remain in this class, continuously searching
for mating opportunities, until they die. Dispersed females
join the breeder class, thus completing the life cycle, when

they find a mate and a nest site. We call this a solitary life
cycle. For simplicity, we consider a single locus with two
alleles affecting offspring dispersal: the wild-type (solitary)
allele a and the mutant (eusocial) allele A. This single mu-
tation can be thought of as a switch that can suppress a
preexisting behavior, such as dispersal from the nest. Such
a phenotypic effect is consistent with findings that some
known genes (or small ensembles of genes) can cause ma-
jor changes in social behavior by silencing mutations in
preexisting traits (Ross and Keller 1998; Abouheif and
Wray 2002). If A is expressed, the carrier stays in her natal
nest as a sterile helper and helps her mother to rear more
offspring. We consider that expression of A may be sex
limited, so that only females may become helpers. Colo-
nies of size n have (n 2 1) helpers, since every colony
has to have a breeder. We assume that beyond some max-
imum colony size N there is no space for further helpers,
leading to unconditional dispersal of offspring produced
in size N colonies. Depending on the dominance/reces-
siveness assumption (table A5; tables A1–A11 available
online), offspring who carry allele A stay as helpers in col-
onies of size n<N . Theoretically, N can be arbitrarily
large. Biologically, however, since we are interested in the
origin of eusociality, we choose N to be a relatively small
number, and we are not focusing on how maximum colony
size can itself be subject to selection when sociality has al-
ready been initiated. To reflect empirical findings suggest-
ing that helpers can increase both colony productivity and
survival (Hogendoorn and Zammit 2001; Langer et al. 2004;
Zammit et al. 2008; Brand and Chapuisat 2014), we use
functions f (n) and m(n) to define the breeder’s fecundity
and mortality, respectively, in a nest of size n as

f (n)p f0½11 b n2 1ð Þ� (1)

and

m(n)p
m0

11a(n2 1)
, (2)

where the parameters f0 and m0 are a breeder’s intrinsic fe-
cundity and mortality rate, respectively, in the absence of
helpers and density dependence, and b and a are the in-
crements to a breeder’s fecundity and life expectancy, re-
spectively, caused by adding one more helper to her nest.
The primary sex ratio is even, with equation (1) describing
production of each offspring sex. We distinguish between
K colony types (based on genotype combinations of breed-
ers and their mates; tables A1–A4) and N colony sizes, de-
noting as Xk, n the density of colonies of type k and size n.
Offspring with genotype p, born in a colony of size n, be-
come helpers with probability qp, n (table A5). Thus, the
probability of any given offspring becoming a helper in a
colony of type k and size n is given by φk, n p op qp, kqp, n,
where qp, k is the proportion of offspring (of a given sex) be-
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ing born with genotype p (tables A1–A4) and the summa-
tion is over all offspring genotypes. The dynamics of the
population can be described by the following system of or-
dinary differential equations. The density xp of unmated dis-
persed females with genotype p changes with time t as

dxp
dt

p o
K

kp1
o
N

np1
½ f (n)Xk, n(12 qp, n)qp, k�2 xp

�
mx 1bo

p
yp
�

(3)

(see table A6 for more details on the terms). Here, the sum-
mation covers colonies of any type k and size n from which
unmated females with genotype p disperse at the rate given
in square brackets. The negative term to the right of the
square brackets represents dispersed females who either
die (at rate mx) or become breeders (at rate bop yp). Here,
b is a parameter controlling mate search efficiency and yp
is the density of potential mates of any genotype p. To facil-
itate comparison between mating systems, we assume that
monandry and biandry do not differ in the rate at which dis-
persed females establish colonies. Biologically, this can be
interpreted as males occurring in aggregations, such that a
female always finds a second male once she finds a first.
The density of dispersed males of any genotype p changes
over time, according to similar influx and decay rates, as

dyp
dt

p o
K

kp1
o
N

np1
½ f (n)Xk, n(12 qp, n)qp, k�2 ypmy (4)

(see table A7 for more details on the terms), wheremy is the
mortality rate of males. We assume that males can mate
multiple times, but their matings are limited by their short
life span. The density of colonies of type k and size n p 1
changes over time as

dXk, 1

dt
pbxk 2 ½φk, 1 f (1)1m(1)�Xk, 1 1mhXk, 2 (5)

(see table A8 for more details on the terms), wheremh is the
mortality rate of helpers. Here, xk is the number of matings
giving rise to colonies of type k (see tables A1–A4), and
hence the term bxk is a measure of successful matings giving
rise to colonies of type k. This formulation allows two inter-
pretations. First, the transition toward becoming a breeder
may be instantaneous upon mating, implying either that
nest sites are abundant or that mating takes place at empty
nest sites. Alternatively, bxk can be interpreted as an aver-
age rate at which dispersed females (who may or may not
have mated but have yet to find a nest site) become breed-
ers. In any case, the proportionality between search effi-
ciency b and the transition rate toward the breeder class
offers a convenient way of modeling nest-site limitation
(see below). The terms in square brackets represent colonies
that leave size category n p 1 because of colony growth or

breeder death, and the rightmost term represents colonies
that enter this size category through death of a helper in a
colony of size n p 2. Following similar logic, the density
of type k colonies of intermediate size (where 1 ! n ! N)
changes as

dXk, n

dt
pφk, n21 f (n2 1)Xk, n21

2 ½φk, n f (n)1m(n)1 (n2 1)mh�Xk, n 1 nmhXk, n11

(6)

(see table A9 for more details on the terms), and the den-
sity of type k colonies of maximum size (where n p N)
changes as

dXk,N

dt
pφk,N21 f (N2 1)Xk,N21 2 ½m(N)1 (N2 1)mh�Xk,N

(7)

(see table A10 for more details on the terms). To apply the
concept of density dependence to an infinite population,
we envisage a population inhabiting an infinite area, in
which ecological processes depend on the number of entities
present per area unit (i.e., density). Specifically, we model
density dependence by letting vital rates depend on density
Di and carrying capacity Ci as

f(Di, Ci)p
12

Di

Ci

Di ≤Ci

0 Di > Ci

8<
: . (8)

In order to model fecundity limitation, we limit breed-
ers’ fecundity by replacing f (n) with f(DT, CT)f (n), where
DT p onok nXk, n 1 op (xp 1 yp) is total population den-
sity and CT is its carrying capacity. Alternatively, to model
nest-site limitation, we replace b with f(DB, CB)b, where
DB p onok Xk, n is breeder density and CB is its carrying ca-
pacity. This substitution gradually reduces the rate of col-
ony foundation toward 0, as empty nest sites become rare.
It is worth noting that, under nest-site limitation, compe-
tition between dispersed females implies lower per-capita
chances of colony foundation when there are more compet-
itors. Our model accounts for this via a series of feedbacks:
other things being equal, increasing the density of dispersed
females in our model will increase population-wide colony
foundation in the short term, which in turn reduces nest-
site availability (i.e., the difference CB 2 DB), which in turn
reduces the per-capita rate of colony foundation.
We implement this model computationally by project-

ing the population toward its asymptotic state, using the
Euler approximation. We focus on stable asymptotic states
rather than initial transient dynamics, because we are in-
terested in long-term evolutionary outcomes. However,
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we provide some examples of initial transient dynamics
of colonies of different size, when eusocial allele A invades
(fig. 1).

Results

To show under what conditions eusociality is predicted to
evolve, we plot evolutionary outcomes in parameter space.
First we assume that the eusocial allele A is initially rare;
then we reverse this situation and assume that the eusocial
allele is initially common. In this way, we account for both
invasion and stability of the eusocial strategy. The model
allows us to distinguish three areas of parameter space:
(1) a “eusocial area,” where the eusocial allele spreads to
fixation for any initial condition, (2) a “mixed area,” where
either allele spreads if rare, leading to stable polymor-
phism, and (3) a “solitary area,” where the solitary allele
spreads to fixation for any initial condition.

Nest-site limitation greatly broadens the conditions of
social benefits under which a sterile helper caste can evolve
and be stable (figs. 2, 3). Compared to the effect of nest-site
limitation, the qualitatively similar effects of haplodiploidy
and monandry are of much smaller magnitude (figs. 2,

B5; figs. B1–B10 available online). Under fecundity limita-
tion, many colonies fail to reach the size at which offspring
of any genotype disperse (fig. 1). We find the following
interacting effects between life-history traits and density-
dependence modes: high intrinsic fecundity promotes eu-
sociality under nest-site limitation but not under fecundity
limitation (fig. 3); conversely, high mortality of dispersing
individuals (mx and my) and low search efficiency b pro-
mote eusociality under fecundity limitation (fig. 4) but
not under nest-site limitation (fig. B4).
Our definition of synergy requires that a colony held con-

stant at size n obtains more than n times the lifetime repro-
ductive success of a solitary breeder; formally, f (n)=m(n) >
nf0=m0. Expressed in terms of equations (1) and (2), this
can be written as a1 b1ab(n2 1) > 1, which simplifies
to b > 1 in the simplest case, where helpers affect only fe-
cundity but not longevity (i.e., ap 0), and to a > 1 if
helpers affect only longevity but not fecundity (i.e., bp 0).
If helpers elevate both breeder fecundity and longevity, the
interaction term is positive (ab(n2 1) > 0), and it in-
creases with the number of helpers present in a colony.
Under both density-dependence modes, there are param-
eter combinations where eusociality evolves even when

Figure 1: Dynamics of colonies of different size and the respective equilibrium colony size distributions when a recessive eusocial allele A
invades: frequency of eusocial allele A (bold solid line), colonies of size np 1 (solid line), colonies of size np 2 (dashed line), colonies of size
n p 3 (dotted line), colonies of size n p 4 (dash-dotted line). The helper phenotype is expressed only in females. Parameter values: b p 5
(for the fecundity limitation case): helpers are relatively efficient at raising offspring; b p 0.5 (for the nest-site limitation case): helpers are
relatively inefficient at raising offspring; ap 0, Np 4, f0 p 1, bp 0.1, m0 pmx pmy pmh p 0.1, CT p 400, CB p 20. Initial condition: the
frequency of allele A is 1%.
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helpers are much less efficient than their mother at rearing
offspring (b< 1 and ap 0), that is, in the absence of
synergy (figs. 1–4). Note that eusociality can evolve even
when helpers increase only breeder longevity (see the re-
gion where a > 0 and bp 0 in fig. 2), in contrast to a re-
sult presented by Nowak et al. (2010). These results are ro-
bust regarding the dominance/recessiveness assumption of
the eusocial allele (figs. B1–B3, B6) as well as regarding the
assumption about sex-limited expression of the helper phe-
notype (figs. B7, B8). They are also robust to limiting the
number of helpers to one per colony (i.e., N p 2), an as-
sumption that excludes any cascading effects of helpers
producing more helpers, which produce more helpers, and
so on (figs. B9, B10).

Next, we analyze the mechanisms behind these numer-
ical results. A comprehensive analytic solution is beyond
our reach because selection at the focal locus depends on
colony dynamics in complicated ways. (Note that related-
ness at the focal locus between a helper and its dispersing
siblings does not follow simple pedigree relations, because
the eusocial allele affects dispersal.) Nevertheless, we can
gain insight into the link between ecology and selection
on the basis of the heuristic principle that, other things be-
ing equal, selection for helping will be stronger when more
siblings are raised per helper. For simplicity, we focus on
the case where helpers provide social benefits in terms of

fecundity (b > 0) but not longevity (ap 0; the argument
can also be extended for a > 0).
Consider a helper who raises siblings at b times the rate

at which its mother could raise offspring alone. From
equation (1) and the expected duration 1=(m0 1mh) while
both helper and mother remain alive, this amounts to B
additional siblings raised during the helper’s lifetime, where
Bp 2bf0f=(m0 1mh) under fecundity limitation and Bp
2bf0=(m0 1mh) under nest-site limitation. These expres-
sions for B illustrate several points. (1) Fecundity limitation
reduces B, thus weakening selection for helping, because
f< 1 (see eq. [8]). (2) Under nest-site limitation, higher
intrinsic fecundity f0 increases B. Under fecundity limita-
tion, however, higher f0 also has a counteracting effect,
namely, increasing population density DT, which lowers
f. (3) Dispersal mortality does not affect B under nest-site
limitation. Under fecundity limitation, however, increase
in dispersal mortality and/or decrease in search efficiency
increases f, and hence B, via its negative effect on popu-
lation density DT. (4) Under nest-site limitation, even rel-
atively inefficient helpers (i.e., with 1 > b > 0) may raise
many siblings, provided that intrinsic fecundity f0 is suffi-
ciently high.
It is interesting to note how B relates to breeders’ repro-

ductive value in an initially solitary population. Demo-
graphic equilibrium implies that each breeder produces,

Figure 2: Evolution and stability of a recessive eusocial allele A in social benefits parameter space (b; a) under monandry. The helper phe-
notype is expressed only in females. Observed areas: eusocial area (white), mixed area (gray), solitary area (black). Parameter values: Np 4,
f0 p 1, bp 0.1, m0 pmx pmy pmh p 0.1, CT p 400, CB p 20. Initial conditions: (1) the frequency of allele A is 1%; (2) the frequency of
allele A is 99%. The lines satisfy the expression f (n)=m(n)p nf0=m0 for np 2, 3, 4, such that synergy exists above the line for colony size n.
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on average, exactly one new breeder during its lifetime;
otherwise the population would grow or shrink. This im-
plies that dispersing daughters become breeders with prob-
ability 1/d, where d is the expected number of daughters
produced during a breeder’s lifetime. Dispersing daugh-
ters’ reproductive value (Vd), expressed in terms of breed-
ers’ reproductive value (Vb), is therefore Vd p (1=d)Vb.
Setting Vd p 1 by convention, this yields Vb p d. Calculat-

ing d as the product of breeders’ life expectancy (1/m0) and
rate of producing daughters, breeders’ reproductive value is
Vb p f0f=m0 under fecundity limitation and Vb p f0=m0

under nest-site limitation. Comparing the expressions for
Vb and B reveals that any parameter that affects Vb also af-
fects B in the same direction. In other words, helpers of
given efficiency (in terms of b) can expect to raise more
siblings in ecological settings in which breeders have high

Figure 4: Evolution and stability of a recessive eusocial allele A in parameter space (b; (mx, my)) under fecundity limitation and monandry.
The helper phenotype is expressed only in females. Observed areas: eusocial area (white), mixed area (gray), solitary area (black). Parameter
values: Np 4, f0 p 100, m0 pmh p 0.1, bp 0.5, ap 0, CT p 400. Initial conditions: (1) the frequency of allele A is 1%; (2) the frequency of
allele A is 99%.

Figure 3: Evolution and stability of a recessive eusocial allele A in parameter space (b; f0) under monandry. The helper phenotype is ex-
pressed only in females. Observed areas: eusocial area (white), mixed area (gray), solitary area (black). Parameter values: Np 4, bp 0.1,
m0 pmx pmy pmh p 0.1, ap 0, CT p 400, CB p 20. Initial conditions: (1) the frequency of allele A is 1%; (2) the frequency of allele A
is 99%.
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reproductive value. Furthermore, since there is no limiting
term f in the reproductive value of breeders under nest-
site limitation, the difference in reproductive value between
breeders and dispersers can be much larger in ecological
settings where nest-site limitation is the main constraint
on population growth.

Discussion

Our model shows that ecological constraints can strongly
favor the evolution of eusociality. Intuitively, this can be
explained as follows. If empty nest sites are rare, dispers-
ing daughters have a low chance of becoming breeders, es-
pecially when they are numerous because of high fecundity.
Low chances of independent breeding imply that daugh-
ters have low reproductive value compared to their moth-
ers. In this situation, even a small proportional increment
made to a mother’s fecundity can outweigh a daughter’s
low chance of own reproduction, meaning that helping
need not be very efficient in order to evolve. A similar ar-
gument holds if dispersing daughters have low chances of
independent breeding for other reasons, such as high dis-
persal mortality (fig. 4). This result was partly anticipated
by Queller (1989), on the basis of a model that did not in-
clude population regulation but instead specified a priori a
focal individual’s probability s of raising independent off-
spring (see app. C; apps. A–D available online). He con-
cluded that, by choosing to help, the individual can raise
brood sooner and can therefore shorten the period in which
its own death would result in reproductive failure. Put an-
other way, his model suggests that, when given a choice
between raising siblings or accepting probability s ! 1 of
raising the same number of (equally valuable) offspring,
the individual should choose the former option. However,
while Queller defined s as the survival probability between
egg laying and offspring independence, in the present con-
text it is more pertinent to define s as a focal individual’s
probability of raising independent offspring if it attempts
to disperse, accounting for any risks between dispersal and
the onset of reproduction. We elaborate below how Quell-
er’s perspective complements our insights regarding the
link between population regulation and selection for help-
ing.

Existing models of social evolution with population reg-
ulation have assumed either nest-site limitation (Lehmann
et al. 2008; Nonacs 2011; McLeod andWild 2013) or fecun-
dity limitation (Nowak et al. 2010; Fromhage and Kokko
2011), but we are aware of only one model that has at-
tempted a comparison between these two, that of Pen and
Weissing (2000). Surprisingly, Pen and Weissing (2000)
came to the opposite conclusion that, in the absence of
nest (or territory) inheritance, ecological constraints are
irrelevant for the evolution of helping. This apparent con-

tradiction with our results stems from their implicit as-
sumption (see app. D) that the number of siblings raised
per helper is independent of ecological conditions (density
dependence) and species-specific characteristics (intrinsic
fecundity). We find this assumption potentially mislead-
ing, for the following reason. In species in a given ecolog-
ical setting where unaided breeders can rear (say) 0.5 off-
spring per time unit, to rear one additional sibling per
time unit a helper would need to be twice as efficient as
her mother, implying synergistic interactions of improba-
ble magnitude. Compared to this, in species where un-
aided breeders rear 10 offspring per time unit, the same
absolute increment of one extra sibling seems trivial and
could be achieved by a much less efficient helper. To avoid
this problem and to make species comparable despite eco-
logical differences, here we describe brood-rearing effi-
ciency of helpers in relation to that of their mothers. In
appendix D, we show that an accordingly modified ver-
sion of Pen and Weissing’s model yields results consistent
with ours. Perhaps surprisingly, as recognized by Pen and
Weissing (2000), ecological constraints do not affect a dis-
persing offspring’s expected reproductive success, because
“the smaller the probability that a disperser ever obtains
a territory, the larger must be the reward for those that
eventually do obtain a territory, because fewer individuals
will be the progenitors of the next generation” (p. 2415).
Even so, ecological constraints affect selection for help-
ing through their effect on fecundity, which determines
how many siblings can be reared by a helper of given effi-
ciency. If dispersers have low chances of becoming breed-
ers (s≪ 1), population stability requires that breeders raise
many offspring, which occurs under conditions where help-
ers can also rear many siblings with relative ease (see
above). This allows helpers to outweigh their lack of own
reproduction, or, paraphrasing Haldane (1955), to “save”
enough siblings to give up their own life. These considera-
tions are consistent with, and complementary to, Queller’s
insight of how low s favors the evolution of helping.
Here we have modeled eusociality without the possibil-

ity of nest inheritance by helpers. While we recognize that
nest inheritance can provide a strong additional incentive
for philopatry (Pen and Weissing 2000), we have excluded
it here because it is not compatible with caste specializa-
tion involving helper sterility. By focusing on helping that
is not selfish reproductive queuing in disguise (or caused
by manipulative mothers temporarily getting the upper
hand in a parent-offspring conflict; Craig 1979), we aim
to make our model more suitable for predicting long-term
evolutionary trends toward advanced eusociality.
It has long been hypothesized that nest-site (or terri-

tory) limitation can promote temporary helping behavior
in cooperatively breeding vertebrates, such as birds (Koenig
and Dickinson 2004), voles (Lucia et al. 2008), salamanders
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(Harris et al. 1995), and ciclids (Bergmüller et al. 2005; Sti-
ver et al. 2006; Heg et al. 2011), and that high dispersal
mortality may have a similar effect (Emlen 1982). Although
temporary helping may be less costly than permanent com-
mitment to a helper caste, our study supports earlier verbal
arguments (Andersson 1984; Keller 1995) that both phe-
nomena could nevertheless be shaped by similar selective
forces. Consistent with our results, there is much evidence
that dispersing females’ probability of successfully start-
ing a new nest is extremely low in ants, bees, and termites
(Hölldobler and Wilson 1990, 2009; Thorne 1997). While
the precise mechanisms responsible for this are notori-
ously hard to quantify (Keller 1995), scarcity of suitable
nest sites probably plays a major role in this context, at
least in cavity-dwelling species that are incapable of con-
structing their own nests (Foitzik and Heinze 1998; Langer
et al. 2004; Dew et al. 2012; Yip et al. 2012) and in insects
that build energetically costly nests and therefore prefer
to reuse old nests (Field et al. 1998). It is unclear, however,
to what extent these contemporary findings are represen-
tative of ancestral conditions. Comparative analyses of es-
timated ancestral states are necessary to test our prediction
that eusociality should evolve more readily in lineages char-
acterized by low success of independent breeding attempts
(because of high dispersal mortality and/or nest-site limi-
tation combined with high fecundity).

The role of haplodiploidy and frequency-dependent se-
lection in our model is also worth mentioning. The posi-
tive effect of haplodiploidy on eusociality is mediated by
positive assortment between cooperative genotypes, the
underlying mechanism of which is explained by Fromhage
and Kokko (2011). We have assumed that expression of
helper phenotypes depends on colony size, such that newly
produced offspring of any genotype will disperse while a
colony is at its maximum size. Dispersers from such colo-
nies therefore carry an unbiased sample of their founders’
alleles, whereas dispersers from smaller colonies carry a
sample biased toward solitary genotypes. This bias against
the eusocial allele is less prevalent if colonies reach their
maximum size quickly, as happens under haplodiploidy
because of positive assortment of cooperative genotypes
(Fromhage and Kokko 2011). Similar effects of haplodip-
loidy are absent in models that do not include colony dy-
namics (Gardner et al. 2012; Rautiala et al. 2014). The stable
coexistence of both eusocial and solitary alleles in a mixed
area of parameter space indicates negative frequency-
dependent selection. This arises by a “free-rider” effect at
the allelic level, whereby rare solitary alleles increasingly
participate in obtaining social benefits when they co-occur
with eusocial alleles in the same colony.

A common formulation of Hamilton’s rule, rBB > rCC,
states that an altruistic behavior is favored by selection
when the number of relatives gained (B; here, expected ad-

ditional siblings), weighted by the actor’s relatedness to
them (rB), exceeds the number of relatives lost (C; here,
expected own offspring), weighted by the actor’s related-
ness to them (rC). This formulation assumes that relatives
gained and relatives lost have the same reproductive value,
as would be the case if they were otherwise indistinguish-
able offspring who were raised either by their sister or by
their mother, respectively. In this context it has been ar-
gued that at the origin of eusociality, before the evolution
of specialized adaptations for group living, the ratio B/C
cannot be expected to greatly exceed 1, because, “for exam-
ple, feeding a sibling is unlikely to be hugely more benefi-
cial than feeding an offspring by the same amount” (West
and Gardner 2010, p. 1342). This view has been used to
support the claim that origins of eusociality must pass
through a narrow “monogamy window,” where potential
helpers’ equal relatedness to their offspring (rC) and their
(full) siblings (rB) is necessary to fulfill Hamilton’s rule de-
spite B/C being only marginally greater than 1 (Boomsma
2007, 2009, 2013). However, in the light of Queller’s (1989)
model as well as our own, we argue that ecological con-
straints on independent breeding make B=C≫ 1 plausible
even at the origin of eusociality, if any relatives lost as a
consequence of helping were only a remote possibility in
the first place (limiting the expected number of own off-
spring, C, in Hamilton’s rule), whereas relatives gained (ex-
pected additional siblings, represented by B) are an im-
mediate possibility. This eliminates the need to postulate
mechanisms at the origin of eusociality by which helpers
could increase the per-capita productivity of their colony.
This argument is consistent with Queller’s (1989) model,
by setting rp r�, bp b�, and s≪ s� in his equation (2)
(app. C) and adapting the notation s�b� pB and sbpC.
Doing so also clarifies which factors are incorporated above
in the coefficients C (namely, survival during dispersal,
probability of successful nest establishment, and offspring
produced over the life time of a breeder) and B (a helper’s
survival until raising the first sibling and the expected num-
ber of siblings raised from that point onward).
Since we have modeled the evolution of eusociality from

a solitary life cycle, our model does not predict the taxo-
nomic distribution of eusociality, as compared to that of
cooperative breeding. For example, our model does not ex-
plain why birds have repeatedly evolved cooperative breed-
ing but never eusociality, whereas both cooperative breed-
ing and eusociality are well represented in insects. In this
respect, we agree with earlier suggestions that remating
promiscuity may preclude eusociality in some systems by
eroding within-nest relatedness over time, to the disadvan-
tage of permanently committed helpers (Boomsma 2007,
2009, 2013). In addition, any trade-offs between behavioral
flexibility and other aspects of helper performance might
well operate somewhat differently across taxa.
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One limitation of our model is that it assumes a nonsea-
sonal environment, thus excluding any effects that a bi-
voltine life history might have on the evolution of eusoci-
ality in temperate climates (Seger 1983; Stubblefield and
Charnov 1986). Nevertheless, we expect that processes sim-
ilar to those described in our model may operate also in
temperate climates. For example, even if nest sites are easy
to find for the first swarming insects in spring, any poten-
tial dispersers of their offspring generation will still face
a situation where many nest sites are already occupied,
which may limit their chances of independent breeding.
It is also worth noting that Queller’s (1989) model, whose
results are consistent with ours, made no particular as-
sumption about seasonality.

In conclusion, we have identified two mechanisms, nest-
site limitation and high dispersal mortality, that can impose
ecological constraints favoring the evolution of eusocial-
ity. Both mechanisms work by creating a mother-daughter
asymmetry in reproductive value, whereby helping daugh-
ters have little to lose compared to the potential indirect
benefits available to them through helping. Both mecha-
nisms also allow breeders to express high fecundity, making
it tempting to speculate that high fecundity per se could be
regarded as a promoter of eusociality. It is worth noting,
however, that high fecundity will not create a mother-
daughter asymmetry in reproductive value unless mothers
also possess some advantage over their daughters, for ex-
ample, in terms of resource possession or life expectancy.
We argue that density-regulation mechanisms, acting in
concert with life-history traits and relatedness-enhancing
mechanisms, are key to understanding the origin of altruis-
tic behavior.

We end by quoting Dawkins (1989, p. 295): “Your [mo-
nogamous] mother is as genetically valuable to you as
an identical twin, or as yourself. Think of yourself as an
offspring-producing machine. Then your monogamous
mother is a (full) sibling-producing machine, and full sib-
lings are as genetically valuable to you as your own offspring.
Of course, this neglects all kinds of practical considera-
tions. For instance, your mother is older than you, though
whether this makes her a better or worse bet for future re-
production than you yourself depends on particular cir-
cumstances.” Here we have highlighted circumstances that
make mothers a “better bet” for future reproduction, pre-
disposing them as recipients of their offspring’s help.
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Appendix A from P. Avila and L. Fromhage, “No Synergy Needed:
Ecological Constraints Favor the Evolution of Eusociality”
(Am. Nat., vol. 186, no. 1, p. 000)

Supplementary Tables for Methods

Table A1: Colony types and offspring genotypes under haplodiploidy and monandry

k Female Male xk qAA, k qAa, k qaa, k qA, k qa, k

1 AA A xAAyA 1 0 0 1 0
2 AA a xAAya 0 1 0 1 0
3 Aa A xAa yA 1/2 1/2 0 1/2 1/2
4 Aa a xAa ya 0 1/2 1/2 1/2 1/2
5 aa A xaa yA 0 1 0 0 1
6 aa a xaa ya 0 0 1 0 1

Note: xk is proportional to the rate of type k colony foundation (reflecting availability of dispersers with suitable genotypes); qp, k is
the proportion of offspring of a given sex with genotype p born in colony k, assuming haplodiploidy and monandry.

Table A2: Colony types and offspring genotypes under diplodiploidy and monandry

k Mate 1 Mate 2 xk qAA, k qAa, k qaa, k

1 AA AA xAAyAA 1 0 0
2 AA Aa xAA yAa 1 xAa yAA 1/2 1/2 0
3 AA aa xAA yaa 1 xaa yAA 0 1 0
4 Aa Aa xAa yAa 1/4 1/2 1/4
5 Aa aa xAa yaa 1 xaa yAa 0 1/2 1/2
6 aa aa xaa yaa 0 0 1

Note: xk is proportional to the rate of type k colony foundation (reflecting availability of dispersers with suitable genotypes); qp, k is
the proportion of offspring of a given sex with genotype p born in colony k, assuming diplodiploidy and monandry.

Table A3: Colony types and offspring genotypes under haplodiploidy and biandry

k Female Males xk qAA, k qAa, k qaa, k qA, k qa, k

1 AA (A, A) xAA y2A=op yp 1 0 0 1 0
2 AA (A, a) or (a, A) 2xAA yAya=op yp 1/2 1/2 0 1 0
3 AA (a, a) xAA y2a=op yp 0 1 0 1 0
4 Aa (A, A) xAa y2A=op yp 1/2 1/2 0 1/2 1/2
5 Aa (A, a) or (a, A) 2xAa yAya=op yp 1/4 1/2 1/4 1/2 1/2
6 Aa (a, a) xAa y2a=op yp 0 1/2 1/2 1/2 1/2
7 aa (A, A) xaa y2A=op yp 0 1 0 0 1
8 aa (A, a) or (a, A) 2xaa yAya=op yp 0 1/2 1/2 0 1
9 aa (a, a) xaa y2a=op yp 0 0 1 0 1

Note: xk is proportional to the rate of type k colony foundation (reflecting availability of dispersers with suitable genotypes); qp, k is
the proportion of offspring of a given sex with genotype p born in colony k, assuming haplodiploidy and biandry. In column xk, the
division byop yp ensures that mating with two males takes the same amount of time as mating with one male in the monandry case. We
make this assumption to focus on the effect of shared paternity in the comparison between monandry and biandry. This assumption is
reasonable if males are numerous and/or occur in the habitat in a clumped fashion, so that a female that finds one male usually find a
second male close by.

q 2015 by The University of Chicago. All rights reserved. DOI: 10.1086/681637
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Table A4: Colony types and offspring genotypes under diplodiploidy and biandry

k Female Males xk qAA, k qAa, k qaa, k

1 AA (AA, AA) xAA y2AA=op yp 1 0 0
2 AA (AA, Aa) or (Aa, AA) 2xAA yAAyAa=op yp 3/4 1/4 0
3 AA (AA, aa) or (aa, AA) 2xAA yAAyaa=op yp 1/2 1/2 0
4 AA (Aa, Aa) xAA y2Aa=op yp 1/2 1/2 0
5 AA (Aa, aa) or (aa, Aa) xAA yAayaa=op yp 1/4 3/4 0
6 AA (aa, aa) xAA y2aa=op yp 0 1 0
7 Aa (AA, AA) xAa y2AA=op yp 1/2 1/2 0
8 Aa (AA, Aa) or (Aa, AA) 2xAayAAyAa=op yp 3/8 1/2 1/8
9 Aa (AA, aa) or (aa, AA) 2xAayAAyaa=op yp 1/4 1/2 1/4
10 Aa (Aa, Aa) xAay2Aa=op yp 1/4 1/2 1/4
11 Aa (Aa, aa) or (aa, Aa) xAayAayaa=op yp 1/8 1/2 3/8
12 Aa (aa, aa) xAay2aa=op yp 0 1/2 1/2
13 aa (AA, AA) xaay2AA=op yp 0 1 0
14 aa (AA, Aa) or (Aa, AA) 2xaayAAyAa=op yp 0 3/4 1/4
15 aa (AA, aa) or (aa, AA) 2xaayAAyaa=op yp 0 1/2 1/2
16 aa (Aa, Aa) xaay2Aa=op yp 0 1/2 1/2
17 aa (Aa, aa) or (aa, Aa) xAayAayaa=op yp 0 1/4 3/4
18 aa (aa, aa) xaay2aa=op yp 0 0 1

Note: xk is proportional to the rate of type k colony foundation (reflecting availability of dispersers with suitable genotypes); qp, k is
the proportion of offspring of a given sex with genotype p born in colony k, assuming diplodiploidy and biandry.

Table A5: Probability of helping gene being expressed

qp, n (colony size) Dominant allele A Recessive allele A

qAA, n (n ! N ) 1 1
qAa, n (n ! N ) 1 0
qaa, n (n ! N ) 0 0
qAA, n (n p N ) 0 0
qAa, n (n p N ) 0 0
qaa, n (n p N ) 0 0
qA, n (n ! N ) 1 1
qa, n (n ! N ) 0 0
qA, n (n p N ) 0 0
qa, n (n p N ) 0 0

Note: The probability qp, n of an offspring of genotype p staying in a colony of size n as a
helper if the eusocial allele A is dominant or recessive. If only females can become helpers,
then qp, n p 0 for all males, regardless of genotype and colony size.

Table A6: The dynamics of dispersed females with genotype p follow dxp=dtp o vi,
with summands vi as specified

Term Biological meaning

v1 p ok on f (n)Xk, n(12 qp, n)qp, k Daughters disperse from colonies of any type and size
v2 p 2xpbop yp Dispersed females become breeders
v3 p 2xpmx, Dispersed female mortality

Table A7: The dynamics of dispersed males with genotype p follow dyp=dtp o vi,
with summands vi as specified

Term Biological meaning

v1 p ok on f (n)Xk, n(12 qp, n)qp, k Sons disperse from colonies of any type and size
v2 p 2ypmy Dispersed male mortality
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Table A8: The dynamics of colonies Xk, n of type k and size n p 1 (breeders without
helpers) follow dXk, n=dtp o vi, with summands vi as specified

Term Biological meaning

v1 p bxk Rate at which new colonies of type k are founded
v2 p 2φk, n f (n)Xk, n Colonies leave the focal size category by helper production
v3 p 2m(n)Xk, n Colonies decay through breeder death
v4 pmhXk, n11 Colonies enter the focal size category by helper death in a larger colony

Table A9: The dynamics of colonies Xk, n of type k and intermediate size n (with 1 ! n ! N )
follow dXk, n=dtp o vi, with summands vi as specified

Term Biological meaning

v1 pφk, n21 f (n2 1)Xk, n21 Colonies enter the focal size category by helper production in a smaller colony
v2 p 2φk, n f (n)Xk, n Colonies leave the focal size category by helper production
v3 p 2m(n)Xk, n Colonies decay through breeder death
v4 p 2 (n2 1)mhXk, n Colonies leave the focal size category through helper death
v5 p nmhXk, n11 Colonies enter the focal size category through helper death in a larger colony

Table A10: The dynamics of colonies Xk, n of type k and maximal size n p N follow dXk, n=dtp
o vi, with summands vi as specified

Term Biological meaning

v1 pφk, n21 f (n2 1)Xk, n21 Colonies enter the focal size category by helper production in a smaller colony
v2 p 2m(n)Xk, n Colonies decay through breeder death
v3 p 2 (n2 1)mhXk, n Colonies leave the focal size category through helper death

Table A11: Overview of symbols and variables

Symbol Meaning

A, a Eusocial allele, solitary allele
b Number of extra siblings raised by a helper (per offspring the mother could raise alone)
a Increment to a breeder’s life expectancy caused by adding one more helper to her nest
b Search efficiency coefficient
f0 Breeders’ intrinsic fecundity
f (n) Breeders’ fecundity in a size n colony
m0 Breeders’ intrinsic mortality
mx, my, mh, m(n) Mortality of dispersed females, dispersed males, helpers, and breeders in size n colonies, respectively
xk Mate encounters that give rise to colonies of type k (see tables A1–A4)
qp, k Proportion of offspring (of a given sex) with genotype p being produced in a type k colony
qp, n Probability that an offspring of genotype p, produced in a colony of size n, becomes a helper
φk, n Probability that any given offspring, produced in a colony of type k and size n, becomes a helper
Xk, n Density of colonies of type k and size n
xp Density of dispersed females of genotype p

yp Density of dispersed males of genotype p

n, N Colony size, maximum colony size
DT, DB Total population density, breeder density
CT, CB Carrying capacity of total population density, carrying capacity of breeder density
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Appendix B from P. Avila and L. Fromhage, “No Synergy Needed:
Ecological Constraints Favor the Evolution of Eusociality”
(Am. Nat., vol. 186, no. 1, p. 000)

Supplementary Figures

Figure B1: Evolution and stability of a dominant eusocial allele A in social benefits parameter space (b; a) under monandry. The helper
phenotype is expressed only in females. Observed areas: eusocial area (white), mixed area (gray), solitary area (black). Parameter
values: N p 4, f0 p 1, bp 0.1, m0 pmx pmy pmh p 0.1, CT p 400, CB p 20. Initial conditions: (1) the frequency of allele A is
1%; (2) the frequency of allele A is 99%. The lines satisfy the expression f (n)=m(n)p nf0=m0 for n p 2, 3, 4, such that synergy exists
above the line for specified colony size n.

q 2015 by The University of Chicago. All rights reserved. DOI: 10.1086/681637
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Figure B2: Evolution and stability of a dominant eusocial allele A in parameter space (b; f0) under monandry. The helper phenotype
is expressed only in females. Observed areas: eusocial area (white), mixed area (gray), solitary area (black). Parameter values: N p 4,
bp 0.1, m0 pmx pmy pmh p 0.1, ap 0, CT p 400, CB p 20. Initial conditions: (1) the frequency of allele A is 1%; (2) the frequency
of allele A is 99%.

Figure B3: Evolution and stability of a dominant eusocial allele A in parameter space (b; (mx, my)) under fecundity limitation and mon-
andry. The helper phenotype is expressed only in females. Observed areas: eusocial area (white), mixed area (gray), solitary area
(black). Parameter values: N p 4, f0 p 100, m0 pmh p 0.1, bp 0.5, ap 0, CT p 400. Initial conditions: (1) the frequency of allele
A is 1%; (2) the frequency of allele A is 99%.
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Figure B4: Evolution and stability of a recessive eusocial allele A in parameter space (b; (mx, my)) under nest-site limitation and mon-
andry. The helper phenotype is expressed only in females. Observed areas: eusocial area (white), mixed area (gray), solitary area
(black). Parameter values: mx pmy p 0.1 (if b is a variable), bp 0.1 (if mx and my are variables), N p 4, f0 p 1, m0 pmh p 0.1, ap
0, CB p 20. Initial conditions: (1) the frequency of allele A is 1%; (2) the frequency of allele A is 99%.

Figure B5: Evolution and stability of a recessive eusocial allele A in social benefits parameter space (b; a) under biandry. The helper
phenotype is expressed only in females. Observed areas: eusocial area (white), mixed area (gray), solitary area (black). Parameter
values: N p 4, f0 p 1, bp 0.1, m0 pmx pmy pmh p 0.1, CT p 400, CB p 20. Initial conditions: (1) the frequency of allele A is
1%; (2) the frequency of allele A is 99%. The lines satisfy the expression f (n)=m(n)p nf0=m0 for n p 2, 3, 4, such that synergy exists
above the line for colony size n.
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Figure B6: Evolution and stability of a dominant eusocial allele A in social benefits parameter space (b; a) under biandry. The helper
phenotype is expressed only in females. Observed areas: eusocial area (white), mixed area (gray), solitary area (black). Parameter
values: N p 4, f0 p 1, bp 0.1, m0 pmx pmy pmh p 0.1, CT p 400, CB p 20. Initial conditions: (1) the frequency of allele A is
1%; (2) the frequency of allele A is 99%. The lines satisfy the expression f (n)=m(n)p nf0=m0 for n p 2, 3, 4, such that synergy exists
above the line for colony size n.

Figure B7: Evolution and stability of a recessive eusocial allele A in social benefits parameter space (b; a) under monandry. The helper
phenotype is expressed in both males and females. Observed areas: eusocial area (white), mixed area (gray), solitary area (black). Pa-
rameter values: N p 4, f0 p 1, bp 0.1, m0 pmx pmy pmh p 0.1, CT p 400, CB p 20. Initial conditions: (1) the frequency of allele A
is 1%; (2) the frequency of allele A is 99%. The lines satisfy the expression f (n)=m(n)p nf0=m0 for np 2, 3, 4, such that synergy exists
above the line for colony size n.
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Figure B8: Evolution and stability of a dominant eusocial allele A in social benefits parameter space (b; a) under monandry. The helper
phenotype is expressed in both males and females. Observed areas: eusocial area (white), mixed area (gray), solitary area (black). Pa-
rameter values: N p 4, f0 p 1, bp 0.1, m0 pmx pmy pmh p 0.1, CT p 400, CB p 20. Initial conditions: (1) the frequency of allele A
is 1%; (2) the frequency of allele A is 99%. The lines satisfy the expression f (n)=m(n)p nf0=m0 for np 2, 3, 4, such that synergy exists
above the line for colony size n.

Figure B9: Evolution and stability of a recessive eusocial allele A in social benefits parameter space (b; a) under monandry, when there
can be only one helper in a nest (N p 2). The helper phenotype is expressed only in females. Observed areas: eusocial area (white),
mixed area (gray), solitary area (black). Parameter values: N p 2, f0 p 1, bp 0.1, m0 pmx pmy pmh p 0.1, CT p 400, CB p 20.
Initial conditions: (1) the frequency of allele A is 1%; (2) the frequency of allele A is 99%. The line satisfies the expression f (n)=m(n)p
nf0=m0 for n p 2, such that synergy exists above the line for colony size n.
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Figure B10: Evolution and stability of a dominant eusocial allele A in social benefits parameter space (b; a) under monandry, when
there can be only one helper in a nest (N p 2). The helper phenotype is expressed only in females. Observed areas: eusocial area
(white), mixed area (gray), solitary area (black). Parameter values: N p 2, f0 p 1, bp 0.1, m0 pmx pmy pmh p 0.1, CT p 400,
CB p 20. Initial conditions: (1) the frequency of allele A is 1%; (2) the frequency of allele A is 99%. The line satisfies the expres-
sion f (n)=m(2)p nf0=m0 for n p 2, such that synergy exists above the line for colony size n.
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Appendix C from P. Avila and L. Fromhage, “No Synergy Needed:
Ecological Constraints Favor the Evolution of Eusociality”
(Am. Nat., vol. 186, no. 1, p. 000)

Queller’s (1989) Inequality (2)
For the reader’s convenience, here we reproduce inequality (2) from Queller (1989), which states that selection will favor
genes promoting worker behavior over those promoting solitary reproduction when rsb< r*s*b*. Here, r is a solitary
female’s relatedness to her brood and s is her survival probability until the time she rears her first offspring to
independence. Given that she survives this long, b is the number of adult offspring that result from her efforts. On
the right-hand side, r*, s*, and b* are the corresponding parameters for a worker, with the latter being what a worker’s
efforts add to the colony’s production of reproductives.

q 2015 by The University of Chicago. All rights reserved. DOI: 10.1086/681637
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Appendix D from P. Avila and L. Fromhage, “No Synergy Needed:
Ecological Constraints Favor the Evolution of Eusociality”
(Am. Nat., vol. 186, no. 1, p. 000)

A Modified Version of Pen and Weissing’s (2000) Model
Here we show that the results of Pen and Weissing’s (2000) model (without territory inheritance) become similar to ours
if we express helpers’ brood-rearing efficiency as a fixed proportion of solitary breeders’ brood-rearing efficiency. For
more details, see Pen and Weissing’s (2000) original paper. Readers familiar with that work may focus their attention
to our equations (D1), (D16), (D25), and (D26).

We assume that breeders’ reproductive output has the form

F(�x)pF0(11 h�n(�x)) (D1)

(corresponding to eq. [1] in Pen and Weissing 2000), where x∈ ½0, 1� is the genetically determined tendency to become
a helper, �x is average helping tendency of female offspring, F0 is the breeder’s reproductive output without helpers, h is
the contribution per helper, and �n(�x) is a breeder’s expected number of helpers. The crucial modification here is that, in
contrast to Pen and Weissing’s (2000) equation (1), the contribution of helpers is now proportional to F0, implying that any
population-level processes that limit F0 will also limit the number of siblings raised per helper. For example, if high
population density makes finding food difficult for solitary breeders, it should also be difficult for helpers.

This modification carries over to the transition matrix, which describes the transitions between breeder, waiter, and
helper classes. The transition matrix has the form

Ap
ShSb 0 xSbF(�x)

(12 k)Sh(12 Sb) (12a)Sw (12 k)(12 xSb)F(�x)
0 aSw Sb

2
4

3
5 (D2)

(eq. [2] in Pen and Weissing 2000), where Sb, Sw, and Sh are survival probabilities of breeders, waiters, and helpers,
respectively. Waiters have per-capita probability a of obtaining a territory in a given season, and individuals pay survival
cost k when dispersing. The transition matrix describes the population dynamics of females following strategy x in a
population where the resident strategy is x*.

We want to know whether a rare mutant with helping tendency x > 0 can invade a resident population with mono-
morphic helping tendency x* p 0. Therefore, we need to assess how this small change in mutant behavior influences the
fitness function of the rare mutant W (x, �x, x*). Using the direct fitness approach, a small change in mutant behavior x
induces the following change in the mutant’s fitness

DW p

�
∂W
∂x

1 r
∂W
∂�x

������
xp�xpx*

(D3)

(eq. [4] in Pen and Weissing 2000).
In a class-structured population, this can be written as

DW p o
i, j
u*
j v*i

�
∂aij

∂x
1 r

∂aij

∂�x

������
xp�xpx*

(D4)

(eq. [5] in Pen and Weissing 2000), where aij is an element of the transition matrix, u*
j is the relative frequency of class j

in demographic equilibrium, and v*i is a class i individual’s reproductive value in the resident population. The reproductive
values are normalized such that oi u*

j v*i p 1, and if the behavior is expressed only in a single class k, then terms j(k
vanish. Since the positive constant u*

k does not affect the direction of selection, we can write the fitness function
as follows:

W (x, �x, x*)p o
i
aik(x, �x, x*)v*i (D5)
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(eq. [6] in Pen and Weissing 2000). After substituting the appropriate elements of the transition matrix, we obtain the
following fitness function:

W (x, �x, x*)p xSbF(�x)v*h 1 (12 k)(12 xSb)F(�x)v*w 1 Sbv*b, (D6)

where vb, vw, and vh are reproductive values of breeders, waiters, and helpers, respectively, in the resident population.
The reproductive values v*j are the elements of a dominant left eigenvector of the matrix A* that results from

matrix A when replacing x with x*; that is,

A* p
ShSb 0 0

(12 k)Sh(12 Sb) (12a)Sw (12 k)F0

0 aSw Sb

2
4

3
5. (D7)

Thus, we can find the reproductive values v*j by solving the system of equations

v*j p o
i
a*
ijv*i (D8)

(eq. [8] in Pen and Weissing 2000). Because only relative reproductive values matter in this context, we can set wait-
ers’ reproductive value to be equal to unity, v*w p 1, without loss of generality (eq. [9] in Pen and Weissing 2000),
leading to the following system of two equations:

v*h p a*
11v*h 1 a*

21 1 a*
31v*b, (D9)

v*b p a*
13v

*
h 1 a*

23 1 a*
33v

*
b. (D10)

After substituting the appropriate elements of the transition matrix A* and solving the system of equations, we find that

v*b p
(12 k)F0

12 Sb

, (D11)

v*h p
(12 k)Sh(12 Sb)

12 ShSb

(D12)

(eqq. [10], [11] in Pen and Weissing 2000). Substituting equations (D11) and (D12) and v*w p 1 into equation (D8) leads to
the following equation, which holds in a stationary population:

aSw

12 (12a)Sw

p
12 Sb

(12 k)F0

. (D13)

(eq. [13] in Pen and Weissing 2000).
If competition for breeding sites is density dependent, then

ap
(12 Sw)(12 Sb)

Sw½(12 k)F0 2 (12 Sb)� (D14)

(eq. [14] in Pen and Weissing 2000), where F0 is a constant that has to be assigned a priori. If breeders’ fecundity is
density dependent, then

F0 p
(12 Sb)½12 (12a)Sw�

(12 k)aSw

(D15)

(eq. [15] in Pen and Weissing 2000), where now a is a constant that has to be assigned a priori. We investigate the effect of
selection on helping behavior by applying equation (D3) to equation (D6) and assuming that x* p 0, which entails

DW p SbF0½v*h 2 (12 k)v*w�1 rF0h�n0(0)(12 k)v*w (D16)

(corresponding to eq. [16] in Pen and Weissing 2000), where a prime denotes differentiation. Note that F0 appears
in the second term on the right-hand side, in contrast to Pen and Weissing’s equation (16). Under the condition for
demographic equilibrium,
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u*
h p ShSbu*

h 1�xSbF(�x)u*
b (D17)

(eq. [17] in Pen and Weissing 2000), the expected number of helpers �np u*
h=u

*
b in demographic equilibrium can be

expressed as

�n(�x)p
�xSbF0

12 Sb(Sh 1 h�x)
(D18)

(eq. [18] in Pen and Weissing 2000).
Differentiation yields

�n0(0)p
SbF0

12 SbSh

(D19)

(eq. [19] in Pen and Weissing 2000). The change in the mutant’s fitness can now be rewritten as

DW p SbF0½v*h 2 (12 k)v*w�1 rhF0(12 k)v*w
SbF0

12 SbSh

. (D20)

This equation resembles Hamilton’s rule, rb2 c > 0 (up to the factor SbF0), such that

DW p 2c1 rb (D21)

(eq. [20] in Pen and Weissing 2000), where

cp (12 k)v*w 2 v*h, (D22)

bp
hF0(12 k)v*w
12 SbSh

(D23)

(see eqq. [21a] and [21b] in Pen and Weissing 2000 for comparison). Substitution of the expressions of reproductive
values yields

cp
(12 k)Sh(12 Sb)

12 SbSh

, (D24)

bp
hF0(12 k)

12 SbSh

. (D25)

As in Pen and Weissing’s model, b can be interpreted as the expected number of siblings raised per helper, which is
now, however, proportional to F0. Helping behavior is favored by selection if rb > c, that is, if

rhF0 > 12 Sh. (D26)

In contrast to Pen and Weissing’s (2000) corresponding equation (24), a breeder’s fecundity without helpers F0

appears on the left-hand side. Depending on the mode of density limitation, this condition can be interpreted as follows.
Under territory limitation, F0 is a positive constant that has to be assigned a priori to reflect the focal species’ capacity
of converting (a constant supply of ) resources into offspring; that is, it reflects what we have called “intrinsic fecundity.”
Since high F0 makes it easier to fulfill equation (D26), it follows that high intrinsic fecundity facilitates the evolution
of helping under territory limitation. Under fecundity limitation, by contrast, F0 is implicitly a decreasing function of
a (according to eq. [D15]), indicating that low probabilities of obtaining a territory facilitate the evolution of helping.
This confirms our main result: ecological constraints facilitate the evolution of helping. Moreover, because fecundity
limitation acts by reducing the realized value of F0 (as compared to an otherwise identical species that is subject to
territory limitation), our result that territory limitation facilitates the evolution of helping is also implicit in equation (D26).
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ABSTRACT

In general, the optimal life-history strategy for an annual eusocial colony is thought
to proceed in two phases: in the ergonomic phase, all effort is directed towards pro-
ducing workers; in the reproductive phase, all effort is directed towards producing
sexual offspring. Using optimal control theory, we show that conflict over sex alloca-
tion between the queen and the workers gives rise to a suboptimal pattern of colony
growth while, surprisingly, the queen wins the sex allocation conflict. The subop-
timal colony growth is characterized by a premature switch from the ergonomic to
the reproductive phase. The timing of the switch depends on how the power over re-
source allocation is distributed between the queen and the workers, where the power
is the ability of a party of interest to act towards their fitness optimum. The timing
of the switch is also affected by the life-history traits, such as mortality rates of the
individuals in the colony and the per capita productivity of the colony. Our model
can be useful for empiricists studying conflict resolution in life-history decisions in
annual eusocial insects.

Keywords: Social insects; conflict; sex allocation; colony growth; evolutionary model.
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INTRODUCTION

Eusocial colonies, much like individual organisms, have to find a way to resolve
the major life history trade-off between reproduction and growth. While unitary
organisms consist of clonal cells, eusocial colonies consist of non-clonal individ-
uals whose relatedness to each other is lower than one. Furthermore, the sex-
determination system in eusocial Hymenoptera causes relatedness asymmetries
among colony members, such that in a colony headed by a singly mated queen
the workers are 3/2 more related (genetically) to their sisters than to their brothers,
while the queen is twice as related to her sons than to her daughters (in terms of
the often used class reproductive value weighted relatedness, the workers are 3
time more “related” to their sisters, while the queen is equally “related” to her
sons and daughters). Non-clonal social groups with relatedness asymmetries are
subject to potential conflict over resource allocation because different parties in the
colony have diverging reproductive optima (Ratnieks et al. 2006). For example,
in an outbred population, with a single monandrous queen per colony, natural
selection on allocation will depend on life-to-life relatedness and favours alleles
in queens to equally allocate towards males and females, and alleles in workers
to allocate three times as much resources to females than males (Trivers and Hare
1976). Factors, such as multiple related queens per nest, multiple matings by the
queen, and worker production of males reduce the extent of the conflict over sex
allocation because they cause the worker and queen optima to converge (Ratnieks
et al. 2006).

Observed colony allocations represents a “conflict resolution”, which hap-
pens according to the power different parties have over reproductive decisions,
where power is the ability of a certain party to act towards their fitness optimum
(Beekman and Ratnieks 2003, Helanterä and Ratnieks 2009). Both, workers and
the queen, have means to manipulate sex allocation towards their fitness optima.
For example, queens control the primary sex ratio by laying fertilized diploid
eggs, that develop into females, and haploid unfertilized eggs, that develop into
males. Queens can also alter the caste determination of females by producing dif-
ferent types of eggs (Wheeler 1986). Workers can alter the proportion of females
developing into queens and workers, as in many species the diet provided to the
larvae by workers determines the caste of the female offspring (Ratnieks et al.
2006, Schwander et al. 2010, Berens et al. 2015). Workers can also eliminate male
eggs or larvae to redirect resources from male brood to female brood (Sundström
et al. 1996, Chapuisat et al. 1997).

It has been been shown in a static allocation model that if both parties
have some control over the resource allocation decision, then the conflict over
sex allocation can result in the overall loss in productivity of the colony, as less
than the optimal amount of resources are allocated to worker production (Reuter
and Keller 2001). In the absence of such conflict, colony productivity should be
optimized to allow the maximal amount of sexual offspring to be produced. For
this case, it has been shown that by allowing for temporal allocation to occur over
the course of colony ontogeny, the optimal resource allocation schedule for an
annual eusocial colony proceeds in two distinct phases: in the ergonomic phase,
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all effort is directed towards producing workers; in the reproductive phase, all
effort is directed towards producing sexual offspring (Macevicz and Oster 1976).

In this study, we bring these two approaches on resource allocation in eu-
social insects together and show how sex allocation conflict can affect the colony
ontogeny by linking together the dynamics of colony growth with the conflict
over sex allocation. In our analysis we consider different scenarios of power
that workers and the queen can have over reproductive decisions in the colony.
Our study shows that conflict resolution over time can be different from conflict
resolution that averages decisions over time. This highlights the importance of
considering the dynamic properties of conflict resolution mechanisms, since the
predictions can be qualitatively different compared to time independent conflict
resolution mechanisms.

Our model assumes constant returns to scale between the number of workers
and colony productivity in an annual eusocial insect colony with a haplodiploid
sex determination system. We assume that the colony is initiated by a single queen
(“monogyny”) and workers are completely sterile. The queen can be mated with
only one male (“monandry”) or with multiple males (“polyandry”). We use optimal
control theory and dynamic game theory to determine the uninvadable resource
allocation strategy of producing workers, queens and males throughout the colony
ontogeny for different scenarios of power. Fitness is gained by producing sexual
offspring (males and queens) but producing more workers will increase the rate
at which resources are acquired from the environment and turned into offspring.

MODEL

Biological scenario

We consider a seasonal population of haplodiploid eusocial insects consisting of
a constant number (n) of colonies or breeding sites each occupied by a single
queen, where n is a very large number (ideally infinite). The life cycle over
a season is assumed to consist of the following four events occurring in cyclic
order. (1) Reproduction: at the start of a reproductive period of total length T,
each queen occupying one of the n breeding sites initiates a colony that grows
throughout the period, and where workers, males and new queens are produced.
(2) Dispersal: juvenile queens and males are assumed to fully disperse out of
their natal colony so that no inbreeding, local mate competition, or local resource
competition occur. (3) Mating: random mating occurs and queens mate with
M ≥ 1 males. (4) Regulation: individuals of the parental generation and workers
die and juvenile queens randomly compete for vacated breeding slots to form the
next generation of adults.
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Colony growth

We model explicitly colony population dynamics during stage (1) of the life cycle
so that at time t ∈ [0,T] a focal colony consists of a number xw(t) of sterile workers,
x♀(t) (juvenile) queens, and x♂(t) (juvenile) males. By the term “juvenile” we only
want to emphasize that these sexual individuals are regarded as offspring in the
current generation and that they will reproduce in the next generation. We are
not specifying the ontogenetic state of the offspring at any point in our model. We
assume that all such types of individuals are equally costly to produce. Workers
acquire resources from the environment to produce offspring. For simplicity, we
assume that the availability of resources in the environment is constant in time
and the rate at which resources are acquired scales linearly with the colony size.
The latter assumption implies that there are enough resources in the environment
to sustain constant per worker productivity and the egg-laying rate of the queen
is constrained only by the resources available to the colony. Let r denote the net
rate at which a worker acquires resources for the colony, measured in offspring
produced per unit time. Hence, the parameter r gives the per worker contribution
to queen fecundity. We count the colony founding queen as a worker, since she can
recover some resources from her body fat and may even forage some additional
resources to initiate the colony after which she specializes in egg laying. The
number xk(t) of type k ∈ {w, ♀,♂} individuals in the colony grows according to
the equation

ẋk(t) = rak(t)xw(t) − μkxk(t), xk(0) = xk0, (1)

where the “over-dot” notation stands for the time derivative, ak(t) is the fraction of
resources allocated into producing type k individuals at time t, μk is the mortality
rate of individuals of type k, and xk0 is number of type k individuals in the colony
in the beginning of the season. The initial condition (number of individuals at the
beginning of the season) for the colony is xw0 = 1 (one colony founding queen who
is counted as a worker), x♀0 = 0 (no juvenile queens), and x♂0 = 0 (no juvenile
males).

Evolving phenotypes

The dynamics of colony size, given by eq. (1), is governed by the allocation
schedule ak(t), which in turn is determined by two underlying traits. The first trait,
vf(t) gives the proportion of resources allocated to producing females (individuals
destined to become workers or queens) at time t. The quantity 1−vf(t) determines
the proportional allocation to males at time t. The second trait, vg(t) gives the
proportion of resources allocated to producing queens from resources allocated
to females at time t. Hence, 1 − vg(t) of resources allocated to females at time
t are directed towards producing workers. The schematic description of these
assumptions is illustrated in fig. 1 and it leads to

aw(t) = vf(t)(1 − vg(t)), a♀(t) = vf(t)vg(t), a♂(t) = 1 − vf(t). (2)

Hereinafter, if we do not want to specify the trait in question, we write vτ(t), where
τ ∈ {

f,g
}
. Note that the resource allocation trait vτ(t) is a function of time, and is

defined over the entire growth phase (t ∈ [0,T]).
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We consider that allocation strategy to females vf(t) and to juvenile queens
vg(t) are evolving traits. We will examine three possible scenarios of genetic
control over these traits. First, we consider the case where these traits are under
the full genetic control of the colony founding queen. Second, we consider the
case where workers obtain full control over the reproductive decision making.
In the majority of eusocial species, however, it is believed that the most likely
scenario is that the queen and the workers share control over the the resource
allocation decisions (Trivers and Hare 1976, Bourke and Franks 1995, Helanterä
and Ratnieks 2009). Hence, as a third case, we consider the scenario of mixed
control, where the queen controls the proportional investment into females versus
males vf(t) and the workers control the proportional investment into new queens
versus workers vg(t). Yet, to be clear, these traits determine the behaviour at
the level of the colony rather than behaviour at the level of the individual. Our
model of conflict resolution is in accordance to the model by Reuter and Keller
(2001), where they also considered these three scenarios. However, the traits in
their model were independent of time and thus their conflict resolution was an
approximated average over the entire season.

Mutant-resident system

In order to analyse the evolution of vf(t) and vg(t) we will perform an evolutionary
invasion analysis (e.g., Fisher 1930, Eshel and Feldman 1984, Charlesworth 1994,
Ferrière and Gatto 1995, Caswell 2000, McNamara et al. 2001, Otto and Day 2007,
Metz 2011). That is, we consider the fate (invasion or extinction) of a single mutant
allele introduced into a population of resident individuals, where a mutant allele
determines the whole allocation schedule throughout colony growth (i.e., an allele
determines a trajectory of a trait over t ∈ [0,T]). We thus define a resident resource
allocation vector v = {vf(t), vg(t)}Tt=0, which gives the full allocation schedule of a
colony, where individuals in control of the resource allocation trait vτ(t) carry
only resident alleles. It will turn out to be useful to let the mutant resource
allocation vector u = {uf(t),ug(t)}Tt=0 to be the full allocation schedule of a colony,
where individuals in control of the resource allocation trait vτ(t) carry only mutant
alleles.

However, since the fate of a mutant is determined when it is rare in the pop-
ulation, we need to consider the frequency of the mutant allele in the individuals
who are in control of the resource allocation trait vτ(t) when only one of the colony
“founding” individuals is carrying a single mutant allele. We also have to take
into account that in a haplo-diploid sex-determination system, where females are
diploid and males are haploid, the phenotypes of colonies “founded” by mutant
females and mutant males will be different, and we thus need further to distin-
guish the allocation strategy of a colony founded by a focal mutant heterozygous
female, u♀

τ
(t), from that of mutant haploid male, u♂

τ
(t) (for τ ∈ {

f,g
}
). By writing

that a mutant male “founds” a colony, we mean that a mutant male has mated
with a resident female that gives rise to a focal colony, where the mutant allele
is present in the genes of the workers. The distinction between mutant male and
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female will also turn out to be useful when expressing the colony phenotypes
under the various cases of power over the traits.

When party c ∈ {♀,w} is in full control of the trait vτ(t), then the average
phenotype of the colony founded by an individual of sex s ∈ {♀,♂}, who carries a
mutant allele, can be written as

us
τ
(t) = ps

cuτ(t) + (1 − ps
c)vτ(t) (3)

and is thus expressed in terms of the allocation strategy of colonies founded by a
homozygous individual uτ(t). Here, ps

c is the frequency of the mutant allele in the
average individual, who belongs to the party c in control of the trait in the colony,
founded by a mutant of sex s ∈ {♀,♂}.

For queen control, the colony phenotype us
τ
(t) is determined by the average

frequency of the mutant allele in the colony founding queen. If the colony is
founded by a heterozygous mutant female then the frequency of the mutant allele
in the colony founding queen is p♀♀ = 1/2. Under queen control males have no

genetic influence on the resource allocation decisions and thus p♂♀ = 0. Note that
female mating frequency will not affect these frequencies under queen control
because mutant males have no genetic control over the expression of the trait.

For worker control, the colony phenotype us
τ
(t) is determined by the average

frequency of the mutant allele in workers. The average phenotype of the colony
that is founded by a heterozygous mutant female is p♀

w = 1/4 and this frequency
is not affected by the number of matings by the queen because a mutant female
will only encounter resident males since the mutant allele is considered to be
rare. The average phenotype of the colony that is founded by a mutant male is
p♂

w = 1/(2M), where M is the number of matings by a female.
Let as

k,u(t) be the the proportion of resources allocated to producing type
k ∈ {w, ♀,♂} individuals in the colony founded by a mutant individual of sex
s ∈ {♀,♂}, where the subscript “u” in as

k,u(t) emphasizes that it is the mutant
allocation strategy, which, according to eq. (2) is

as
w,u(t) = us

f(t)(1 − us
g(t)), as♀,u(t) = us

f(t)u
s
g(t), as♂,u(t) = 1 − us

f(t). (4)

In a colony founded by a mutant individual of sex s, type k ∈ {w, ♀,♂} individuals
grow according to the equation

ẋs
k,u(t) = ras

k,u(t)xs
w,u(t) − μkxs

k,u(t), xs
k,u(t0) = xk0, (5)

where xs
k,u(t) denotes the number of individuals of type k in a colony founded by

a mutant individual of sex s.

Invasion fitness

We now have all the elements to obtain an expression for invasion fitness, which
allows to ascertain the fate of the mutant allele. Since we have a discrete time
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reproductive process, invasion fitness is here taken as being the geometric growth
rate (or growth ratio) of the mutant. This is the asymptotic per capita number of
mutant copies produced by an average trajectory of the mutant lineage descending
from the initial mutation, and when overall still rare in the population (Cohen
1979, Tuljapurkar et al. 2003).

We will express invasion fitness in terms of fitness functions of juvenile indi-
viduals and gene transmission frequencies. The fitness of the juvenile individual
alive at T in the current season is its expected number of sexual offspring pro-
duced in the following season. The life cycle and our fitness accounting method
are illustrated in fig. 2.

Let ws′s(us
,v) denote the expected number of juveniles of sex s′ ∈ {♀,♂} that

descend from a juvenile of sex s ∈ {♀,♂} carrying the mutant allele. Note, that the
fitness function ws′s(us

,v) is a function of the allocation strategy us = {us
f(t),u

s
g(t)}Tt=0

of the colony founded by the mutant individual of sex s, and thus a function of the
mutant strategy u (by way of eq. (3)–(5)), and of the population average allocation
strategy v. But since the mutant can be considered to be rare for the invasion
analysis, this fitness function is independent of the number (or frequency) of
mutants in the population.

Next, we derive the fitness functions w♀♀(u♀
,v), w♂♀(u♀

,v), and w♀♂(u♂
,v).

To that end it will be useful to set

xs
k,u(T) = xk(us), (6)

which gives the number of individuals of type k at the end of the season and we
emphasize the functional dependence of colony dynamics on the trait us; hence,
xk(v) is colony size at the end of the season for a colony monomorphic for the
resident.

Because population size is large, a focal (mutant) colony has no impact on
the average number of individuals produced in a population and so each season,
an average number nx♀(v) of juvenile queens and nx♂(v) males mate randomly,
after which females compete for the n breeding spots. The probability that a
female will gain any of one of the n breeding spots is n/nx♀(v), and she produces
x♀(u♀) daughters and x♂(u♀) to sons. Hence,

w♀♀(
u♀
,v

)
=

x♀(u♀)

x♀(v)
and w♂♀

(
u♀
,v

)
=

x♂(u♀)
x♀(v)

. (7)

The probability that any of the n new queens who have gained a breeding spot
have previously mated with a focal male is M/x♂(v), and under worker control he
will sire x♀(u♂)/M daughters, while under queen control, the male has no control
over resource allocation and the fitness function depends only on the resident
strategy so that he will sire x♀(v)/M daughters, whereby

w♀♂
(
u♂
,v

)
=

x♀(u♂)

x♂(v)
(queen control), (8)

w♀♂
(
u♂
,v

)
=

x♀(v)

x♂(v)
(worker control). (9)
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Let us denote by n♀,m (n♂,m) the number of mutant allele copies in females
(males) in the population. The change in the vector nu = (n♀,u,n♂,u)ᵀ of number
of gene copies from one generation to the next generation n′u = (n′♀,u,n′♂,u)ᵀ, when
the mutant allele is rare is given by the matrix

A(u,v) =

⎡⎢⎢⎢⎢⎢⎣ γ♀♀w♀♀(
u♀
,v

)
γ♀♂w♀♂

(
u♂
,v

)
γ♂♀w♂♀

(
u♀
,v

)
γ♂♂w♂♂

(
u♂
,v

)
⎤⎥⎥⎥⎥⎥⎦ (10)

where γs′s is the probability that a gene sampled in an individual of sex s′ ∈ {♀,♂}
was contributed by an individual of sex s ∈ {♀,♂}; i.e. transmission frequency
of sex s to sex s′ (for haplodiploids γ♀♀ = 1/2, γ♀♂ = 1/2, γ♂♀ = 1, γ♂♂ = 0).
Hence, elements as′s of matrix A give the expected number of mutant gene copies
in sex s′ ∈ {♀,♂} that descend from an individual of sex s ∈ {♀,♂} carrying the
mutant allele.

The invasion fitness W(u,v) of the mutant is then given by the leading
eigenvalue of the matrix A, and this can be expressed as (see Appendix C for the
derivation)

W(u,v) =
[
γ♀♀w♀♀(

u♀
,v

)
+ γ♂♀w♂♀

(
u♀
,v

)]
q♀(u,v)

+

[
γ♀♂w♀♂

(
u♂
,v

)
+ γ♂♂w♂♂

(
u♂
,v

)]
q♂(u,v), (11)

where q♀(u,v) (q♂(u,v) = 1− q♀(u,v)) is the asymptotic probability that a mutant
allele is sampled in a female (male)1. Hence, invasion fitness is the average number
of mutant copies produced over one time step of the reproductive process by a
randomly sampled carrier of the mutant allele from its lineage (Lehmann et al.
2016). Because the weights (q♀(u,v) and q♂(u,v)) depend on the evolving traits
themselves, this expression makes it clear that it is neither colony fitness nor
the fitness of a particular individual that is maximized by natural selection, but
the asymptotic replication rate of the allele under selection (Dawkins 1978, Haig
2012), which depends on both the fitness of carriers of the mutant allele (the
ws′s(us

,v) functions) and how the mutant allele is distributed across classes (the
qs(u,v) functions).

Uninvadable strategies

Single party control

A mutant strategy b̂(v) that yields the highest invasion fitness for an environment
determined by the resident strategy v is said be the best response to the resident
strategy, i.e.

Wc(b̂(v),v) = max
u∈U

Wc(u,v), (12)

1
(
q♀(u,v), q♂(u,v)

)
) is the leading right eigenvector of matrix A(u, v)
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where U is the set of strategies, and we have emphasized in the expression of
invasion fitness the mode of control of the trait c ∈ {w, ♀} (which means that u♀
and u♂ in eq. (11) depend on how we model the control over the trait, by way of
eq. (3)). The problem of finding the best response b̂(v) for a given environment v
is an optimal control problem (Sydsæter et al. 2008, Bryson and Ho 1975), and if
the best response of a mutant results in an invasion fitness equal or lower to one
(Wc(b̂(v),v) ≤ 1), then the mutant allele will go extinct with probability one (when
n→∞).

A resident strategy u∗ that is resistant to the invasion of any mutant u ∈
U strategy, is a candidate endpoint of the evolutionary process and is thus an
uninvadable strategy. It thus follows from eq. (12), that a necessary condition for
a strategy u∗ to be uninvadable is that it satisfies

u∗ ∈ arg max
u∈U

Wc(u,u∗), (13)

that is, be a best response to itself. A necessary first-order condition for unin-
vadability can be obtained by considering a variation in invasion fitness due to a
variation in resident schedules for trait type τ ∈ {

f,g
}

only by a small amount ετ
(“weak phenotypic deviation” or “weak selection”) relative to the resident (e.g.,
Taylor 1989, Rousset 2004), so that the mutant can be written as

uτ(t) = vτ(t) + ετη(t), (14)

for some change in schedule η(t). Hence, we look at a change in the function
vτ(t) that remains very close to it along the whole trajectory when ετ 	 1. Then a
candidate uninvadable strategy for queen (c = ♀) or worker (c = w) control of the
trait must satisfy

dWc(u,v)
dετ

∣∣∣∣∣∣
εf=0,εg=0

= 0 for τ ∈ {
f,g

}
, (15)

which is the functional (or variational) derivative of invasion fitness; namely,
the infinitesimal change in fitness resulting from a change in the whole mutant
schedule. This is an analogue for functions valued traits of the classic first order
condition for evolutionary stability (e.g., Eshel 1983: eq. 3, Taylor 1989: eq. 2.1).

Mixed party control

Under mixed control we can no longer use eq. (13) to find the evolutionary stable
strategies, since the joint actions of the queen and the workers affect colony state
variables (number of different types of individuals in the colony) and through
that they affect each other’s objectives (invasion fitness functions). For this case,
we assume that the queen chooses uf in order to maximize W♀(uu,u) and workers
choose ug in order to maximize Ww(uu,u). This problem can then be seen as
a so-called differential game (Kamien and Schwartz 2012) with two players (the
queen and the workers), who interact repeatedly through colony ontogeny. Under
mixed control, the resource allocation schedule u∗ = (u∗f ,u

∗
g) is uninvadable if

u∗f ∈ arg max
uf∈U

W♀(
(uf,u∗g),u∗

)
and u∗g ∈ arg max

ug∈U
Ww

(
(u∗f ,ug),u∗

)
(16)
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According to eq.(16) the workers and the queen choose the best strategy possible
given what the other party chooses and neither party has an incentive to deviate
from their choice (also known as the Nash equilibrium).

RESULTS

In order to determine the uninvadable (evolutionarily stable) strategies, we used
an analytical approach to derive the first order results by way of optimal control
theory, and a numerical method called the iterative scheme of the best response
map (Houston and McNamara 1999, see Appendix C in S.I.), combined with a
numerical solver for problems of optimal control theory called GPOPS (Patterson
and Rao 2014), which uses a direct collocation approach along with various non-
linear optimization methods.

Single-party control

The uninvadable resource allocation schedule u∗ consists of two distinct phases of
colony growth: the ergonomic phase and the reproductive phase (see figs. 3-4 and
eqs. (B48) and (B49) in Appendix B). Colony growth starts with the ergonomic
phase t ∈ [0, t∗c] during which only workers are produced. It is followed by the
reproductive phase t ∈ [t∗c,T] during which only sexual offspring are produced.
Here, t∗c is called the switching time from the ergonomic to the reproductive
phase and the subscript c ∈ {♀,w} emphasizes the mode of control. Hence, the
uninvadable allocation schedule in the ergonomic phase is (see Appendix B for
the derivation)

u∗
∣∣∣∣∣∣
[0,t∗]
=

(
u∗f(t) = 1,u∗g(t) = 0

)
. (17)

What about the reproductive phase under single party control? In Appendix
B, we show that the first order condition for allocating resources to type τ ∈ {

f,g
}

individuals under control mode c ∈ {♀,w} (given by eq. (15)) yields the following
male to female (queen) sex-ratio at the terminal time

x♂(v)
x♀(v)

= −dx♂(z)/dετ
dx♀(z)/dετ

× Rc, (18)

where Rc is the so-called relatedness asymmetry (Boomsma and Grafen 1991). This
is the ratio of the relatedness weighted reproductive values of recipients of each
sex, from the perspective of a given actor (Boomsma and Grafen 1991: p. 386, see
also eq. (B19) in Appendix B). Here, both quantities are evaluated in the absence
of selection (as it should be for any first-order condition of evolutionary stability,
e.g., Taylor 1989, Rousset 2004). The relatedness asymmetry gives the sex-specific
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ability of an actor of category c of transferring its genes to the future of the gene
pool and is given by

R♀ = 1 (queen control), Rw =
M

2 +M
(worker control). (19)

The left-hand side of eq. (18) also depends on the ratio of males to females marginal
products (i.e., the marginal rate of substitution of producing new queens instead
of males). This is expressed in terms of the variational derivative dxs(z)/dετ
measuring the change in the number of individuals of sex s ∈ {♀,♂} produced by
a colony, where individuals express phenotype z = {zf(t), zg(t)}Tt=0, where zτ(t) =
vτ(t) + ετη(t). If males and females are equally costly to produce and they have
the same mortality rate (μ♀ = μ♂ = μ) and the same growth schedule, then the
marginal product is 1. Then, eq. (18) returns the classical primary sex-ratio.

Eq. (18) is a dynamic version of the standard static marginal results of sex-
ratio theory (e.g., Taylor and Frank 1996: eq. 22). The novelty of eq. (18) is
that it results from a time-dependent model, which shows that the relatedness
asymmetry and marginal product determine the primary sex ratio regardless of
the exact details of colony growth dynamics, and thus returns qualitatively the
same results as under any static sex-ratio model for the productivity at the end
of the season. Indeed, when males and new queens are equally costly to produce
under monandry (M = 1), workers prefer to allocate three times as much resources
to producing new queens than to males, while the queen prefers equal allocation
(respectively R♀ = 1/3 and R♀ = 1, see also figs. 5-6). This result is in line with
the earlier work on sex allocation preferences of workers and queens in eusocial
colonies (Trivers and Hare 1976, Reuter and Keller 2001). In general, under any
queen mating frequency (M ≥ 1) and assuming equal male parentage, the workers
prefer to allocate 1/Rw = (2 + M)/M times as much resources to queens than
males. We can easily see that polyandry reduces the conflict between the queen
and the workers, because the sex allocation optimum of the workers approaches
the queen’s sex optimum as queen mating frequency increases, i.e. (2+M)/M→ 1
as M increases. This effect comes from the diminishing relatedness asymmetry
within the colony with polyandry, with relatedness asymmetry between workers
and their male and female siblings being totally absent, when all the daughters
of the queen are inseminated by different fathers (Trivers and Hare 1976, Reuter
and Keller 2001).

In conclusion, the uninvadable resource allocation strategy in the reproduc-
tive phase, given that mortality of males and new queens is equal to produce,
is

u∗
∣∣∣∣∣∣
[t∗,T]

=

(
u∗f(t) =

1
Rc + 1

,u∗g(t) = 1
)
. (20)

However, note that u∗f(t) in eq. (20) is not the only solution that satisfies the first
order condition (15). Indeed, it is the only constant function that satisfies the
first order condition (given that the mortality rates of new queens and males is
equal), but in general, there can be many functions that can produce a sex ratio Rc

and thus satisfy eq. (15). In biological terms it means, given that the males and
queens have equal mortality, the order of producing males and new queens in the
reproductive phase does not affect fitness, as long as they are produced according
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to the sex ratio Rc by the end of the season T. We can see from fig. 4 that u∗f(t) in
the reproductive phase is not a constant function, but the the average allocation
over the reproductive phase is indeed u∗f(t) = 1/(Rw + 1).

If we assume that the mortality rate of juvenile queens and males is equal (i.e.
μ♀ = μ♂ = μ), we can explicitly calculate the switching time for the uninvadable
allocation strategy (see derivation in Appendix B), which is

t∗c = T −
ln

(
1 + μ−μw

r

)
μ − μw

, c ∈ {♀,w} . (21)

Hence, the timing of the switch from the ergonomic to the reproductive phase
is equal for queen control and worker control, i.e., t∗♀ = t∗w and is independent
of the number of matings M per queen. This means that both parties agree on
the worker production schedule that maximizes the number of sexual offspring
produced and disagree only in the reproductive phase about how to allocate
resources between new queens and males.

Equation (21) implies that lower worker mortality and higher queen mor-
tality rates result in switching time occurring later in the season. This expression
turns out to be identical to eq. (6) of Macevicz and Oster (1976), by setting r = bR,
μw = μ, and μ = ν. Note that in our model 1/r can be loosely interpreted as the
time it takes for one worker to help produce one offspring, i.e. a generation time.
For negligible mortality of sexuals (μ ≈ 0), we can see that as worker mortality
approaches zero (i.e. μw → 0), the switching time approaches to a single gener-
ation time, i.e. tc → T − 1/r. This can be loosely interpreted to mean that in an
environment where mortality is low compared to the length of the season T, the
switch happens one generation time before the end of the season, i.e. only the last
generation of brood is reproductive.

Mixed control

Under mixed control over the resource allocation schedule, the queen controls
the primary sex ratio of the colony u∗f(t) and the workers control the proportional
allocation to queens versus workers u∗g(t). The uninvadable allocation schedule
under mixed control constitutes a situation where the queen cannot increase her
fitness by altering u∗f(t) and workers cannot increase their fitness by altering u∗g(t).

Similarly, as under single party control, the uninvadable resource allocation
schedule u∗ under mixed control also consists of two distinct phases of colony
growth: the ergonomic phase and the reproductive phase (see fig. 7 and eqs. (B48)
and (B49) in Appendix B). As under the single party control, the uninvadable
allocation schedule in the ergonomic phase under mixed control is given by
eq. (17) (see also fig. 7). However, the switching time under mixed control is not
equal to the switching time under single party control t∗m � t∗♀ = t∗w. Thus, the
length of the ergonomic and reproductive phase under mixed control is not equal
to the length of the ergonomic and reproductive phase under single party control.

Surprisingly, we find that the queen wins the sex allocation conflict as the
sexual sex ratio (new queens versus males produced by the end of the season) is
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always equal under mixed control (see fig. 8). Hence, the uninvadable allocation
schedule under mixed control in the reproductive phase is given by eq. (20) for
R♀. Note that, under single party control, the allocation u∗f(t) in eq. (20) is not
the only function that satisfies the first order condition (16), but it is the only
constant function that satisfies it. The prediction that the queen wins the sex
allocation conflict contradicts the result of Reuter and Keller (2001), where the
conflict resolution over resource allocation in eusocial colonies was modelled as a
static allocation problem and colony growth was not accounted for. In their study,
they found that under mixed control the sexual sex ratio is intermediate between
the queen and worker optima. Our result makes intuitive sense, because workers
can only influence the sexual sex ratio by starting to produce new queens earlier,
but then the queen can respond to that by starting to lay less diploid eggs and
more haploid male eggs so that the sex ratio would be still be in the optimum of
the queen (see fig. 8, there are equal numbers of new queens and males at time T).
Even though the queen wins the sex allocation conflict under our assumptions of
the conflict resolution mechanisms, both parties pay a cost because less than the
optimal (compare figs. 5, 6, and 8) amount of workers are being produced in the
colony.

We find that the length of the ergonomic stage is shorter as the reproductive
stage starts earlier in the season (fig. 7). The earlier switching time t∗m < t∗♀ =
t∗w results in smaller colony sizes compared to a situation when a single party
monopolizes the control over resource allocation (fig. 8).

If we assume that the mortality rate of juvenile queens and males is equal (i.e.
μ♀ = μ♂ = μ), we can explicitly calculate the switching time for the uninvadable
allocation strategy under mixed control (see derivation in Appendix B)

t∗m = T −
ln

(
1 + θμ−μw

r

)
μ − μw

, (22)

where

θ =
2 +M
1 +M

. (23)

For negligible mortality of sexuals (μ ≈ 0), we can see that as worker mor-
tality approaches zero (i.e. μw → 0), the switching time approaches θ times the
generation time, i.e. t∗m → T − θ(1/r). This means that in an environment where
mortality is low compared to the length of the season T, the switch happens up
to half a generation earlier than is optimal. This means that under monogyny
(M = 1), where the sex allocation conflict is the highest, the switch tm happens ex-
actly half a generation earlier than is optimal, and the switching time approaches
the optimal switching time as the queen mating frequency increases.

If 1/r is large compared to the length of the season T, i.e. reproduction is
slow and there are only few generations of offspring produced during the season,
this can amount to a big time difference in the onset of early reproduction. The
premature switch to the reproductive phase under mixed control is also more
pronounced in an environment where worker mortality μw is high and mortality
of sexual offspring μ is low. We can conclude that fast reproduction, low worker
mortality, high mortality of sexual offspring, and high queen mating frequency
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contribute to the premature switch under mixed control t∗m to approach the optimal
switch t∗c c ∈ {♀,w} observed under single party control.

The timing of the switch, however, directly influences how large the colonies
grow. Note that, by colony size, we mean the number of workers xw(t). In our
model, the maximal colony size is reached at the start of reproductive phase t∗c and
we call this a colony size xw(t∗c) at its “maturity”. We can observe from fig. (9) that
under mixed control the colony following the uninvadable resource allocation
strategy u∗, will grow larger for higher queen mating frequency.

DISCUSSION

Our model provides predictions for sex-allocation schedules under three possible
scenarios of control over reproduction in the colonies of annual eusocial insects:
pure worker control, pure queen control, and mixed control. We showed that in
a haplo-diploid insect colony, the “bang-bang” strategy of colony growth, that
maximizes colony productivity of sexual offspring as predicted by a model with
clonal reproduction and full queen control (Macevicz and Oster 1976), is realized
only if either the queen or the workers are able to monopolize the control over
all resource allocation decisions of the colony. If both parties control some of
the reproductive allocation, then the colony growth still follows the “bang-bang”
strategy, but the switch from the ergonomic to the reproductive phase happens
earlier.

Our model thus predicts that conflict over sex allocation disturbs the worker
production schedule under mixed control, but under single party control worker
production schedule maximizes colony productivity. This is in accordance with
the conflict resolution model by Reuter and Keller (2001). We indeed endorsed
their approach on modelling conflict within colony over resource allocation, but
extended it by allowing for time-dependent decision making. Contrary to Reuter
and Keller (2001), however, we find in our dynamic setting that under mixed
control of resource allocation the queen is able to impose her preference over
sex allocation. This is because the queen decides the primary sex ratio once the
workers stop rearing diploid eggs as workers and hence the workers are forced
to rear more males than they would like to. If the sexual sex ratio is observed to
be close to the optimum of the workers then we can expect full control of workers
over the resource allocation under the assumptions of our model. Our prediction
that the queen is in a strong position to impose her preference on sex allocation
was anticipated by Bulmer (1981), but in a more restrictive biological scenario.
Bulmer (1981) studied sex allocation conflict in annual eusocial colonies and his
model did not explicitly include colony ontogeny over a season. The conflict was
studied within two time steps at the end of the season and no overlap between
generations of workers was assumed. Bulmer (1981) argued that in a population,
where the sex ratio is between the optima of the queen and the workers, then
in the penultimate generation the queens can start laying only haploid eggs, in
which case only males are produced in the colony in that generation, and since
no workers are produced, the colony dies one generation before the end of the
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season. Here, we showed that the queen can control the sex ratio even in less
restrictive situations.

Polyandry reduces the potential conflict between the queen and the workers
by lowering the relatedness asymmetry between the offspring of the queen. We
showed that, as the sex allocation optimum of the workers converges to the
queen’s optimum due to polyandry, so does the premature switching time under
mixed control converge closer to the optimal switching time observed under single
party control. This is because the workers gain less benefit from turning worker
destined eggs to queens. Similar effects can be expected to hold for other factors
that reduce the queen-worker conflict over sex allocation, for example polygyny
of related queens or worker production of male eggs (Ratnieks et al. 2006, Reuter
and Keller 2001).

Comparative studies suggest that population-wide sex allocation in euso-
cial Hymenoptera is generally close to the worker optimum (Ratnieks et al. 2006,
Bourke and Franks 1995, Sundström et al. 1996), although it is not universal (Helms
1999, Helms et al. 2000, Passera et al. 2001, Fjerdingstad et al. 2002). According
to our model, this can only happen when workers have full control over sex al-
location decisions. However, if we observe a sex allocation close to the queen
optimum, workers might still possess some of the control and then the switching
time from ergonomic to reproductive phase and the colony size at the start of
reproduction should correlate with the kin structure in the colony under mixed
control. We predict that colonies should grow larger if the relatedness asymmetry
between the offspring of the queen is reduced through polyandry or polygyny
under mixed control. Under single party control, the switching time and colony
size should be unaffected by the kin structure in the colony. Correlation between
colony size and queen mating frequency has been detected in attine ants (Mu-
rakami et al. 2000), however the sex ratio in different colonies in this study was in
accordance with the predictions for full worker control.

Our model predicts that the onset of early reproduction under mixed control
is more pronounced in poor habitats where resource acquisition rate is low and
thus reproduction is slow, but colony per-capita productivity still scales linearly
as the colony grows. Increased mortality of workers and decreased mortality
of sexual offspring also cause the time difference between the optimal switching
time and switching time under mixed control to be larger.

Our model predicts that there would be no time period in the season where
workers and sexual offspring are produced at the same time. This “bang-bang”
strategy of colony growth is exhibited by many annual primitively eusocial species
of vespid wasps, bumble bees and sweat bees (see references in Mitesser et al.
(2007b), Crone and Williams (2016)). However, not all annual eusocial insects
exhibit the “bang-bang” strategy of growth and reproduction. For example,
Greene (1984) has found that many North American vespine wasps depart from a
strict “bang-bang” pattern by exhibiting “graded strategies” that contain a period
during which sexuals and workers are produced simultaneously. Graded control
can evolve in species where colony per-capita productivity is density-dependent
(Poitrineau et al. 2009). This can happen if worker efficiency or mortality increases
with colony size or if queens’ egg laying capacity is limited. According to life-
history theory, graded control can also evolve as an adaptive bet-hedging strategy
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in response to environmental fluctuations that can cause the variation in season
length or food availability (King and Roughgarden 1982). However, current
theoretical predictions imply that the environmental fluctuations alone can not
select for graded control as a bet-hedging strategy in eusocial insect colonies
(Mitesser et al. 2007a). It would be interesting to know how the predictions of our
model change when assuming colony growth with decreasing returns. We can
speculate that as the value of workers diminishes as the colony grows, so does
the cost of turning worker destined eggs into workers and so the workers would
start producing sexuals earlier in the season.

One of the restrictions of our model is that workers are assumed to be
completely sterile. However, parthenogenetic production of males by unmated
workers is found in many eusocial Hymenoptera. Worker reproduction can be
restrained by workers policing each other. Theory predicts that worker policing
should be at its highest at the ergonomic stage, because of the trade-off in worker’s
effort between reproduction and working (Ohtsuki and Tsuji 2009). Hence, worker
reproduction is predicted to increase late in the season. Bulmer (1981) argued that
for certain values of return on investment of producing workers, the queen may be
able to prevent worker-egg laying in the final generation by limiting the number of
diploid eggs and thus forcing workers to rear queen laid males in the penultimate
generation. Under the assumptions of his model (non-overlapping generations
of workers) this would cause a female biased sex ratio up to 2:1. Our model
assumes that individuals in the colony possess some physiological mechanism
that enables them to control the switch in reproduction and its timing. The
underlying mechanism of the control of the switch from the ergonomic to the
reproductive phase is not known. However it has been shown in Bombus terrestris
that the queen is able to control the switching point endogenously (Holland et al.
2013).

In conclusion, we have shown that if both parties have some influence on
colony resource allocation then the conflict over sex allocation between the queen
and the workers gives rise to a suboptimal pattern of colony growth, characterized
by a premature switch from the ergonomic to the reproductive phase and a sex
allocation in the queen’s optimum.
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Symbol Meaning
ak(t) Proportion of resources invested in type k ∈ {w, ♀,♂} individuals

at time t (population average)
as

k,u(t) Proportion of resources invested in type k ∈ {w, ♀,♂} individuals
at time t in a colony ”founded” by a mutant individual of sex s

Hc(xu,u,λ, t) Hamiltonian function for control mode of the trait c ∈ {w, ♀}
M queen mating frequency
n (constant) number of colonies or breeding sites (very large num-

ber)
ps

c the frequency of the mutant in the average phenotype of the
colony founded by a mutant of sex s ∈ {♀,♂} under control mode
c.

qs(u,v) asymptotic probability that a mutant allele is sampled in an indi-
vidual of sex s

r colony productivity per colony member (worker)
Rc critical sex ratio for control mode c ∈ {w, ♀}
r◦s average relatedness between “actors” (queens or workers) and

recipients of sex s
t time of the season defined over a period [0,T]
t∗c switching time from ergonomic phase to reproductive phase un-

der control modec ∈ {♀,w,m}
us

f(t) proportion of resources allocated to producing females (individ-
uals destined to become workers or queens) at time t in a colony
founded by an individual of sex s who carries a mutant allele

us
g(t) proportion of resources allocated to producing queens from re-

sources allocated to females at time t in a colony founded by an
individual of sex s who carries a mutant allele

us
τ
(t) resources allocation trait in a colony founded by an individual of

sex s who carries a mutant allele
u full allocation schedule of a colony, where the individual or indi-

viduals in control carry only mutant alleles
us full allocation schedule of a colony founded by an individual of

sex s who carries a mutant allele
u∗ uninvadable (evolutionarily stable) full allocation schedule
vf(t) proportion of resources allocated to producing females (individ-

uals destined to become workers or queens) at time t (population
average)

vg(t) proportion of resources allocated to producing queens from re-
sources allocated to females at time t (population average)

v full allocation schedule of a resident (population average) colony
ws′s(us

,v) the expected number of juveniles of sex s′ ∈ {♀,♂} that descend
from a juvenile of sex s ∈ {♀,♂} carrying the mutant allele

Wc(u,v) invasion fitness of the mutant with the mode of control of the trait
c ∈ {w, ♀}

xk(t) number of type k ∈ {w, ♀,♂} individuals in the colony (population
average)
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xs
k,u(t) number of type k ∈ {w, ♀,♂} individuals in the colony a colony

”founded” by a mutant individual of sex s
x∗k(t) number of type k ∈ {w, ♀,♂} individuals in the colony following

an uninvadable full allocation schedule u∗
z full resource allocation schedule of a focal colony
α replacement factor in the iterative scheme of best response map
α
◦
s normalized neutral reproductive value of an individual of sex s
γs′s the probability that a gene sampled in an individual of sex s′ ∈

{♀,♂} was contributed by an individual of sex s ∈ {♀,♂}; i.e.
transmission frequency of sex s to sex s′

λ
s
k(t) a costate variable associated with the state variable xs

k,u(t)
ετ weak phenotypic deviation from the resident phenotype vτ(t)
η(t) some change in schedule of the resident phenotype vτ(t)
μk mortality rate of type k ∈ {w, ♀,♂} individuals
v◦s neutral reproductive value of an individual of sex s

Table 1: List of symbols and their meaning.
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x♀(t)

x♂(t)
(1 − vf)
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(1 − vg)
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Figure 1: Schematic of the demographic model of the colony. Workers (measured
by xw(t)) acquire resources from the environment, from which a fraction 0 ≤
vf ≤ 1 is invested into producing females (either new queens or workers). From
resources that are allocated to females, a fraction 0 ≤ vg ≤ 1 is converted into
sexual females (new queens).

tim
e

dispersal and mating

t = 0

t = T

t = 0

t = T

reproduction in
parent generation

reproduction in
offspring generation

accounting for
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Figure 2: The conceptual graph of the life cycle and accounting for fitness in the
model.
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Figure 3: Uninvadable resource allocation strategy u∗ under full queen control
and queen monandry (M = 1). Primary sex ratio u∗f(t) (solid line), proportional
allocation to queens versus workers from the resources allocated to females u∗g(t)
(dashed line). In the ergonomic phase (phase A) only workers are produced
and in the reproductive phase (phase B) equal amount of queens and males are
produced. Parameter values: r = 0.06, μw = 0.02, μ♀ = μ♂ = 0.005, T = 100.
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Figure 4: Uninvadable resource allocation strategy u∗ under full worker control
and queen monandry (M = 1). Primary sex ratio u∗f(t) (solid line), proportional
allocation to queens versus workers from the resources allocated to females u∗g(t)
(dashed line). In the ergonomic phase (phase A) only workers are produced and
in the reproductive phase (phase B) three times as many queens are produced
than males. Parameter values: r = 0.06, μw = 0.02, μ♀ = μ♂ = 0.005, T = 100. The
average primary sex ratio over the reproductive phase is u∗f(t) = 0.75. Note that
the reason u∗f(t) is not constantly equal to 0.75 in the reproductive phase is that the
optimal control problem to solve under worker control has twice as many state
variables and more complicated objective function (see Appendix B). Hence, the
simulation time takes much longer to converge to a straight line. However, this
solution still satisfies the first order condition for optimality.
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Figure 5: Number of individuals in the colony with the uninvadable resource
allocation strategy u∗ under queen control and queen monandry (M = 1). Number
of queens (solid line), number of males (dashed line) and number of workers
(dashed-dotted line). Parameter values: r = 0.06, μw = 0.02, μ♀ = μ♂ = 0.005,
T = 100.
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Figure 6: Number of individuals in the colony with the uninvadable resource
allocation strategy u∗ under worker control and queen monandry (M = 1). Num-
ber of queens (solid line), number of males (dashed line) and number of workers
(dashed-dotted line). Parameter values: r = 0.06, μw = 0.02, μ♀ = μ♂ = 0.005,
T = 100.
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Figure 7: Uninvadable resource allocation strategy u∗ under mixed control and
queen monandry (M = 1). Primary sex ratio u∗f(t) (dashed line), proportional
allocation to queens versus workers from the resources allocated to females u∗g(t)
(solid line). In the ergonomic phase (phase A) only workers are produced and in
the reproductive phase (phase B) equal amount of queens and males are produced.
Parameter values: r = 0.06, μw = 0.02, μ♀ = μ♂ = 0.005, T = 100. The average
primary sex ratio over the reproductive phase is u∗f(t) = 0.5.
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Figure 8: Number of individuals in the colony with the uninvadable resource
allocation strategy u∗ under mixed control and queen monandry (M = 1). Number
of queens (solid line), number of males (dashed line) and number of workers
(dashed-dotted line). Parameter values: r = 0.06, μw = 0.02, μ♀ = μ♂ = 0.005,
T = 100.
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Figure 9: Colony size at maturity xw(t∗m) under mixed control as a function of
queen mating frequency M for the uninvadable resource allocation strategy u∗.
Colony size at maturity xw(t∗m) under mixed control (solid line). Colony size at
maturity in a colony with no conflict (dashed line). Parameter values: r = 0.06,
μw = 0.02, μ♀ = μ♂ = 0.005, T = 100.
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APPENDIX A: INVASION FITNESS

We here provide a proof for eq. (11). The leading eigenvalue Wc(u,v) of the matrix
Ac(u,v) satisfies Wc(u,v)q(u,v) = Ac(u,v)q(u,v), where q(u,v) = (q♀(u,v), q♂(u,v))ᵀ

is the normalized right leading eigenvector of Ac(u,v). Pre-multiplying this equa-
tion by the vector (1, 1) yields eq. (11) and a direct calculation produces

q♀(u,v) =
2γ♂♀w♂♀

(
u♀
,v

)
2γ♂♀w♂♀

(
u♀
,v

)
+

√
A(u,v) + X(u,v)

, (A1)

where
A(u,v) = X(u,v)2

+ 4γ♀♂γ♂♀w♀♂
(
u♂
,v

)
w♂♀

(
u♀
,v

)

with X(u,v) = γ♀♀w♀♀(
u♀
,v

)
− γ♂♂w♂♂

(
u♂
,v

)
.

APPENDIX B: LOCAL UNINVADABILITY

Computing an uninvadable strategy entails establishing an optimal pair

(u∗(t), x∗(t)) = (u∗f(t),u
∗
g(t), x∗w(t), x∗♀(t), x∗♂(t)) ∀t ∈ [0,T], (B1)

which is a solution to eq. (13) for single party control and eq. (16) for mixed control.
These are maximization problems with constraints, where the control variables

uc = (uf(t),ug(t)) (B2)

must satisfy
0 ≤ uτ(t) ≤ 1 ∀t ∈ [0,T], τ ∈ {

f,g
}
, (B3)

while the state variables

xu = (x♀
w,u(t), x♀♀,u(t), x♀♂,u(t), x♂

w,u(t), x♂♀,u(t), x♂♂,u(t)) ∈ [0,∞[6 (B4)

and the dynamic parameters

x = (xw(t), x♀(t), x♂(t)) ∈ [0,∞[3 (B5)

involved in invasion fitness (eq. (11)) must satisfy the dynamic constraints

ẋs
k,u = gs

k,u(xu,u, t),

ẋk = gk(x,v, t),
(B6)

with initial conditions

xs
k,u(0) = xk(0) = xk,0 for k ∈ {♀,♂,w} . (B7)
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Here,
gs

k,u(xu,u, t) = ras
k,u(u, t)xs

w,u(t) − μkxs
k,u(t),

gk(x,v, t) = rak(v, t)xw(t) − μkxk(t),
(B8)

where the mutant and resident allocation schedules are given, respectively, by
eq. 4 and eq. 2 of the main text.

For single and mixed party control, the characterization of the best response
schedule (u∗(t), x∗(t)) can be done by way of applying optimal control theory, since
formally uninvadable strategies are Nash equilibria and necessary conditions
for Nash equilibria can be given in terms of Pontryagin’s maximum principle
(Mazalov 2014: p. 372, Theorem 10.8). We now provide the first-order conditions
for uninvadability (see eq. 15), and do this by first providing a marginal condition
that must be satisfied over the whole time schedule and then characterize the
optimal schedule itself.

First-order condition 1: the critical sex-ratio

We here prove eq. (18). Because the functional derivative dWc(u,v)/dετ deter-
mining the first order condition (eq. (15)) is an ordinary function in ετ, it follows
from standard results of eigenvalue perturbation (Caswell 2000) that

dWc(u,v)
dετ

=

⎛⎜⎜⎜⎜⎜⎜⎝v◦♀γ♀♀dw♀♀(
u♀
,v

)
dετ

+ v◦♂γ♂♀
dw♂♀

(
u♀
,v

)
dετ

⎞⎟⎟⎟⎟⎟⎟⎠ q◦♀

+

⎛⎜⎜⎜⎜⎜⎜⎝v◦♀γ♀♂
dw♂♀

(
u♂
,v

)
dετ

+ v◦♂γ♂♂
dw♂♂

(
u♂
,v

)
dετ

⎞⎟⎟⎟⎟⎟⎟⎠ q◦♂. (B9)

Here, v◦s is the neutral reproductive value of an individual of sex s and q◦s is the
neutral class frequency. Throughout the superscript ◦will denote a quantity that
is evaluated in the absence of natural selection, i.e., a process determined by the
monomorphic resident population; that is, matrix

A(v,v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
γ♀♀ γ♀♂ x♀(v)

x♂(v)

γ♂♀ x♂(v)

x♀(v) γ♂♂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (B10)

whose dominant eigenvalue is one. The reproductive values and class frequencies
are, respectively, given by the left and right unit eigenvectors of A(v,v), and we
normalize these vectors such that the total reproductive value defined by

α
◦
s = v◦s q◦s (B11)

(e.g., Taylor 1990, Taylor and Frank 1996, Rousset 2004) of all individuals of class
i add up to one: α◦♂ + α◦♀ = 1. This normalization subtends the use of the
perturbation formula eq. (B9) (e.g., Caswell 2000). With this, we obtain

α
◦♀ = 1 − γ♂♂

2 − γ♂♂ − γ♂♂ and q◦♀ = x♀(v)

x♀(v) + x♂(v)
. (B12)
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In eq. (B9), the derivative dws′s(us
,v)/dετ is the total variation of fitness with

respect to mutant values, which acts on us (by way of eq. (3)). By the chain rule
of functional derivatives, we can write this

dws′s(us
,v)

dετ
=

dws′s(z,v)
dεz,τ

dus
τ
(t)

η(t) dετ
, (B13)

where εz,τ is the intensity of the direct variation of zτ(t) = vτ(t) + εz,τη(t) and
ps

c = dus
τ
(t)/(η(t) dετ) is the frequency of the mutant allele in the average phenotype

of the individual c in control of the trait a the colony founded by a mutant of sex
s ∈ {♀,♂}. Indeed, by substituting eq. (14) of the main text into eq. (3), we have

us
τ
(t) = vτ(t) + ετη(t)ps

c, (B14)

whereby dus
τ
(t)/(η(t) dετ) = ps

c.
Substituting eq. (B13) into eq. (B9), we have for control mode c ∈ {♀,w} that

dWc(u,v)
dετ

=

⎛⎜⎜⎜⎜⎝v◦♀γ♀♀dw♀♀(z,v)

dεz,τ
+ v◦♂γ♂♀

dw♂♀(z,v)

dεz,τ

⎞⎟⎟⎟⎟⎠ p♀
c q◦♀

+

⎛⎜⎜⎜⎜⎝v◦♀γ♀♂
dw♂♀(z,v)

dεz,τ
+ v◦♂γ♂♂dw♂♂(z,v)

dεz,τ

⎞⎟⎟⎟⎟⎠ p♂
c q◦♂, (B15)

where all derivative are evaluated at εz,τ = 0 and thus all controls are set to the
resident schedule v. Substituting the expressions for individual fitness (eqs. (7)–
()), using eq. (B12), the equalities γ♂♀ = 1 − γ♂♂ and γ♀♂ = 1 − γ♀♀, we arrive
by rearrangement at

dWc(u,v)
dετ

∣∣∣∣∣∣
εf=0,εg=0

= 0 =⇒ x♂(v)
x♀(v)

= −dx♂(z)/dετ
dx♀(z)/dετ

× Rc, (B16)

where

Rc =
(1 − γ♀♀)

(1 − γ♂♂)
×

⎛⎜⎜⎜⎜⎜⎜⎝
γ♂♀p♀

c + γ♂♂p♂
c

γ♀♀p♀
c + γ♀♂p♂

c

⎞⎟⎟⎟⎟⎟⎟⎠ , (B17)

and using the explicit variable values for our model [γ♂♀ = 1, γ♀♂ = 1/2,

p♀♀ = 1/2, p♂♀ = 0, p♀
w = 1/4, and p♂

w = 1/(2M)] we have

R♀ = 1 (queen control) Rw =
M

2 +M
(worker control). (B18)

This shows that Rc is the relatedness asymmetry, which is defined as the ratio of
the relatedness weighted class reproductive values of an actor towards sex-specific
recipients (Boomsma and Grafen 1991: p. 386). To see this we note that owing
to eq. (B12), the first ratio in eq. (B17), (1 − γ♀♀)/(1 − γ♂♂), is equal to the ratio
α
◦♂/α◦♀ of class reproductive values. Further, γ♂♀p♀

c + γ♂♂p♂
c (γ♀♀p♀

c + γ♀♂p♂
c )

is the probability that a gene randomly sampled in a recipient male (female) is
identical-by-descent to a gene randomly sampled in an individual controlling
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trait expression (the actor); that is, the coancestry between a son (daughter) and its
parent. Since a ratio of coancestry is equivalent to a ratio of relatedness, we can
write the second ratio in eq. (B17) as r◦♂/r◦♀, where r◦i is the relatedness between
recipients of sex i and the average actor affecting this class. With this we have

Rc =

α
◦♂r◦♂
α
◦♀r◦♀ , (B19)

where the relatedness depends on who is control of the trait.

First-order condition 2: Hamiltonian and Pontryagin’s maximum

principle

We here characterize the optimal allocation schedule by way of applying optimal
control theory (e.g., Sydsæter et al. 2008, Bryson and Ho 1975 for broad introduc-
tions and Iwasa and Roughgarden 1984, Macevicz and Oster 1976, Perrin 1992,
Day and Taylor 2000 for previous application to evolutionary biology). Because
the final values xu(T) determined by eq. (B4) are free and invasion fitness is en-
tirely determined by them (by way of eq. (10)), it follows from standard results of
optimal control theory results with terminal pay-offs (e.g, Mazalov 2014: p. 372,
Theorem 10.8) that the first-order condition for uninvadability (eq. 15) can be
expressed in term of point-wise marginal change:

dWc(u,v)
dετ

∣∣∣∣∣∣
εf=0,εg=0,u=v=u∗

= 0 =⇒

∂Hc(x∗,u,λ, t)
∂uτ

∣∣∣∣∣∣
u=v=u∗

= 0 and (B20a)

λ̇
s
k = −

∂Hc(xu,u
∗
,λ, t)

∂xs
k,u

∣∣∣∣∣∣
xu=x=x∗

for k ∈ {w, ♀,♂}. (B20b)

Here,
Hc(xu,u,λ, t) =

∑
k∈{w,♀,♂}

λ
♀
k g♀

k,u + 1c

∑
k∈{w,♀,♂}

λ
♂
k g♂

k,u (B21)

is the so-called Hamiltonian function, where

1c =

⎧⎪⎪⎨⎪⎪⎩
0 for c = ♀,
1 for c = w,

(B22)

and λs
k(t) is a costate variable associated with the state variable xs

k(t). A costate
variable gives the marginal value of the corresponding state variable at time t,
i.e., it gives the effect on invasion for a marginal change in the corresponding
state variable at time t. Informally, the state equations represent constraints of
the maximization problem, and the costate variables give the marginal cost of
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violating those constraints. Since xu(T) is free, the transversality condition for the
co-state variable for k ∈ {w, ♀,♂} is

λ
s
k(T) =

∂Wc(u,v)
∂xs

k,u(T)

∣∣∣∣∣∣
xu=x=x∗

(B23)

(e.g., Bryson and Ho 1975, Sydsæter et al. 2008).
When party c ∈ {w, ♀} has full control over the traits, the first-order condi-

tions for uninvadability is that the respective Hamiltonian Hc is maximized with
respect to both of the controls

∂Hc(x∗,u,λ, t)
∂uτ

∣∣∣∣∣∣
u=v=u∗

= 0, τ ∈ {
f,g

}
. (B24)

By contrast, the necessary first order condition for mixed control is given by

∂H♀(x∗,u,λ, t)
∂uf

∣∣∣∣∣∣
u=v=u∗

= 0 and
∂Hw(x∗,u,λ, t)

∂ug

∣∣∣∣∣∣
u=v=u∗

= 0. (B25)

Derivatives of the Hamiltonian

In order to compute the first-order conditions (eqs. B24-B25), we need the deriva-
tives of the Hamiltonian with respect to controls uτ. Substituting eq. (B8) into
eq. (B21) produces

∂Hc(x∗,u,λ, t)
∂uτ

∣∣∣∣∣∣
uu=u=u∗

=

rx∗w

⎡⎢⎢⎢⎢⎢⎢⎢⎣λ♀w
∂a♀w,u
∂uτ

+ λ
♀♀
∂a♀♀,u
∂uτ

+ λ
♀♂
∂a♀♂,u
∂uτ

+ 1c

⎛⎜⎜⎜⎜⎜⎜⎜⎝λ♂w
∂a♂w,u
∂uτ

+ λ
♂♂
∂a♂♀,u
∂uτ

+ λ
♂♂
∂a♂♂,u
∂uτ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

(B26)

For queen control (c = ♀), we have

∂a♀w,u
∂uf

= (1 − u∗g)p♀
c ,
∂a♀♀,u
∂uf

= u∗gp♀
c ,
∂a♀♂,u
∂uf

= −p♀
c ,

∂a♂w,u
∂uf

= (1 − u∗g)p♂
c ,
∂a♂♀,u
∂uf

= u∗gp♂
c ,
∂a♂♂,u
∂uf

= −p♂
c ,

while for worker control (c = w), we have

∂a♀w,u
∂ug

= −u∗fp
♀
c ,
∂a♀♀,u
∂ug

= u∗fp
♀
c ,
∂a♀♂,u
∂ug

= 0 ,
∂a♂w,u
∂uf

= −u∗fp
♂
c ,
∂a♂♀,u
∂ug

= u∗fp
♂
c and

∂a♂♂,u
∂ug

= 0.

(B27)
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The derivatives of the Hamiltonian with respect to controls uf and ug can
then be written as

∂Hc(x∗,u,λ, t)
∂uf

∣∣∣∣∣∣
u=u∗
= rx∗w

(
u∗gσ

c
1 − σc

2

)

∂Hc(x∗,u,λ, t)
∂ug

∣∣∣∣∣∣
u=u∗
= rx∗wu∗fσ

c
1,

(B28)

where σp
1 and σp

2 are the so-called switching functions (e.g., Bryson and Ho 1975)
and given by

σ
c
1 = p♀

c

(
λ
♀♀ − λ♀w

)
+ 1cp♂

c

(
λ
♂♀ − λ♂w

)

σ
c
2 = p♀

c

(
λ
♀♂ − λ♀w

)
+ 1cp♂

c

(
λ
♂♂ − λ♂w

)
.

(B29)

Costate variables

The dynamical equations of the costate variables are

λ̇
s♀ = μ♀λs♀
λ̇

s♂ = μ♂λs♂
λ̇

s
w = −

[
λ

s
w(ra∗w − μw) + λs♀ra∗♀ + λs♂ra∗♂

]
,

(B30)

where a∗w = u∗f(1 − u∗g), a∗♀ = u∗fu
∗
g, and a∗♂ = (1 − u∗f). The initial conditions for

this system of equations depends on the transversality condition (B23). Because
the number of workers does not appear in the expression of invasion fitness, we
have, regardless of the mode of control of traits, that

λ
s
w(T) = 0 for s ∈ {♀,♂} . (B31)

Otherwise, we have from the perturbation formula for eigenvalues (eq. (B9)) that
for k ∈ {♀,♂}

λ
s
k(T) = v◦kγks

∂wks(us
,v)

∂xs
k,u(T)

∣∣∣∣∣∣
xu=x=x∗

q◦s , (B32)

since in eq. (B9) ετ can be replaced by any scalar variable affecting invasion fitness
W(u,v), and xs

k affects only component wks(u,v) of invasion fitness. Owing to
eq. (B11) and the fitness functions (eqs. 7–), we have

λ
s
k(T) =

α
◦
kγks

xk(u∗)
. (B33)

For queen control (c = ♀), we have, the transversality conditions are

λ
♀♀(T) =

1
3x♀(u∗)

,

λ
♀♂(T) =

1
3x♂(u∗)

.

(B34)

while for worker control (c = w), we have
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λ
s♀(T) =

1
3x♀(u∗)

, s ∈ {♀,♂} ,
λ
♀♂(T) =

1
3x♂(u∗)

,

λ
♂♂(T) = 0.

(B35)

Solutions to the state and costate equations

For a constant allocation strategy u∗ on a given time interval, we can derive the
solutions to the state equations (B6). These will be useful to characterize the
first-order conditions and are given by

x∗w(t) = x∗w(t0)et(ra∗w−μw)
,

x∗♀(t) =
e−tμ♀ [

ra∗♀x∗w(t0)
(
et

(
ra∗w+μ♀−μw

)
− 1

)
+ x∗♀(t0)

(
ra∗w + μ♀ − μw

)]

ra∗w + μ♀ − μw
,

x∗♂(t) =
e−tμ♂

[
ra∗♂x∗w(t0)

(
et

(
ra∗w+μ♂−μw

)
− 1

)
+ x∗♂(t0)

(
ra∗w + μ♂ − μw

)]

ra∗w + μ♂ − μw
,

(B36)

where t0 denotes beginning of a time interval. In the next section, we will show
that we have two phases [0, t∗c] and [t∗c,T], during which u∗ is constant. Hence, for
the first phase t0 = 0 and for the second phase t0 = t∗c.

The solutions to costate equations eq. (B30) for a time interval, where allo-
cation strategy u∗ is constant are

λ
s♀(t) = λs♀(t f )e

−μ♀(t f−t)

λ
s♂(t) = λs♂(t f )e

−μ♂(t f−t)

λ
s
w(t) =

∑
k∈{♀,♂}

λ
s
k(t f )

ra∗k
ra∗w + μk − μw

(
e(ra∗w−μw)(t f−t) − e−μk(t f−t)

)
,

(B37)

where t f denotes the end of a time interval. Given the two phases of interest
[0, t∗c] and [t∗c,T], during which u∗ is constant, for the first phase t f = t∗c and for the
second phase t f = T.

Note that eqs. (B35) and (B37) imply that λ♂♂(t) = 0 ∀ t ∈ [0,T]. We can also

see from equations eqs. (B35) and (B37) that λ♀♀(t) = λ♂♀ (t) ∀ t ∈ [0,T].

Analysis of the optimal control problem

Conditions for candidate optimal controls

We now have all the elements to characterize the first-order conditions. When
party c is in control of colony phenotype, we have from eq. (B20) that the candidate
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optimal controls are

u∗g =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if uf > 0 and σc

1 < 0
1 if uf > 0 and σc

1 > 0
ûg if uf = 0 or

(
uf > 0 and σc

1 = 0
)
,

(B38)

u∗f =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if
(
ug = 0 and σc

2 > 0
)

or
(
ug = 1 and σc

1 < σ
c
2

)
or

(
ug = ûg and σc

2 > 0
)

1 if
(
ug = 0 and σc

2 < 0
)

or
(
ug = 1 and σc

1 > σ
c
2

)
or

(
ug = ûg and σc

2 < 0
)

ûf if
(
ug = 0 and σc

2 = 0
)

or
(
ug = 1 and σc

1 = σ
c
2

)
or

(
σ

c
1 = σ

c
2 = 0

)
or

(
ug = σ

c
2/σ

c
1

)
,

(B39)

where ûf and ûg denotes that the controls u∗f and u∗g, respectively, are singular arcs
(Bryson and Ho 1975).

Realized allocation schedule

In this section we will determine from the possible candidate optimal controls
given by eq. (B38) and eq. (B39), which allocation schedule will be realized during
two phases of colony growth t ∈ [0, t∗c] (the ergonomic phase) and t ∈ [t∗c,T]
(the reproductive phase), where t∗c is the switching time from the ergonomic to
the reproductive phase and the subscript c ∈ {♀,w,m} emphasizes the mode of
control. In other words, the switching time t∗c determines the time, where the
controls (u∗f ,u

∗
g) change. We will later see that the root of σc

1 = 0 determines
this switching time. For now, we will use the constraints given in eq. (B38) and
eq. (B39) and the results from our numerical simulations (see figs. 3, 4 and 7) to
determine the properties of the allocation schedule u∗ during the ergonomic and
reproductive phases.

Eq. (B38) implies that the sign of the switching function σc
1 determines u∗g(t).

The transversality conditions (B31), (B34), and (B35) yields that σc
1 > 0 at t = T,

since λs
w(T) < λs♀(T) for all three modes of control. Hence, u∗g(t) = 1 in the

reproductive phase, which is also supported by our numerical results that produce
u∗g(t) = 1 in the reproductive phase t ∈ [t∗c,T] (see figs. 3, 4 and 7). In the next
section, we show how we derive the switching time t∗c from equation σc

1 = 0 during
which u∗g(t) changes from 1 to 0. Hence, in the first phase t ∈ [0, t∗c] u∗g(t) = 0, which
is also supported by our numerical results (see figs. 3, 4 and 7).

Eq. (B39) implies that given that u∗g(t) = 1, then the sign of (σc
1−σc

2) determines
u∗f(t) in the reproductive phase. However, in order to determine the sign of (σc

1−σc
2),

we would need to know the values of (B34) and (B35), which depend on u∗f(t). To
get around this circular dependency, we can use the intuition from our numerical
simulations which imply that u∗f(t) = ûf(t) (u∗f(t) is a singular arc) during the
reproductive phase (0 < u∗f(t) < 1) and u∗f(t) = 1 in the ergonomic phase t ∈ [0, t∗c]
(see figs. 3, 4 and 7). Therefore, (σc

1 − σc
2) = 0 and solving this equation for state

variables, we get a condition that u∗f(t) = ûf(t) has to satisfy in the final phase.
To make the analysis tractable we assume hereinafter that the mortality rate of
juvenile queens and males is equal, i.e. μ♀ = μ♂ = μ.
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For queen control of trait uf, we then need σ♀1 − σ♀2 = 0 and substituting
eq. (B29) along with eq. (B37) gives

σ
♀
1 − σ♀2 = λ♀♀(t) − λ♀♂(t) =

[
λ
♀♀(T) − λ♀♂(T)

]
e−μ(T−t)

= 0. (B40)

Inserting the transversality condition eq. (B34) one then has

1
3x♀(u∗)

− 1
3x♂(u∗)

= 0, (B41)

whereby
x♂(u∗)
x♀(u∗)

= R♀, (B42)

with R♀ = 1 being the relatedness asymmetry (see eq. (B18) or eq. (18) of the main
text). Hence, we recover, as we should, eq. (B16), since for μ♀ = μ♂ = μ, one has
−dx♂(z)/dετ/dx♀(z)/dετ = 1.

Similarly, for worker control of trait uf, we need σw
1 −σw

2 = 0 and substituting
eq. (B29) along with eq. (B37) yields

λ
♀♀ + 2

M
λ
♂♀ − λ♀♂ = (λ♀♀(T) +

2
M
λ
♂♀ (T) − λ♀♂(T))e−μ(T−t)

= 0. (B43)

Inserting the transversality condition eq. (B34) then produces

x♂(u∗)
x♀(u∗)

= Rw, (B44)

where

Rw =
M

2 +M
, (B45)

gives the relatedness asymmetry under worker control and is again consistent
with eq. (B16)–(B18).

Given that (u∗f(t) = 1,u∗g(t) = 0) in the ergonomic phase, then (B6) and (B7)
imply that x♀(t∗c) = x♂(t∗c) = 0, i.e. only workers have been produced in the
ergonomic phase and no new queens or males have been produced by time t∗c.
Hence, equations (B42) and (B44) give the conditions that uf = ûf has to satisfy
in the last phase. In other words, uf = ûf that satisfies the condition (B42) (queen
control of uf) or (B44) (worker control of uf) can be the candidate optimal control in
the reproductive phase t ∈ [t∗c,T]. The candidate optimal control has to satisfy the
state equations (B36) for the reproductive phase t ∈ [t∗c,T], which can be simplified
when we take μ♀ = μ♂ = μ, x∗♀([t∗c) = x∗♂([t∗c) = 0, u∗g(t) = 1, as follows

xs∗♀(T) = û∗f(t)
rxw(t∗c) (e−tμw − e−tμ)

μ − μw
,

xs∗♂(T) = (1 − û∗f(t))
rxw(t∗c) (e−tμw − e−tμ)

μ − μw
.

(B46)



39

It turns out that there are infinitely many such controls that satisfy (B42),
(B44) and (B46), but we are interested in the most simple one, which is a constant
function of time during the reproductive phase

u∗f(t)

∣∣∣∣∣∣
[t∗,T]

= ûf(t)

∣∣∣∣∣∣
[t∗,T]

=
1

Rc + 1
. (B47)

In conclusion, we have determined that in the candidate optimal control in
the ergonomic phase is given by

u∗
∣∣∣∣∣∣
[0,t∗]
=

(
u∗f(t) = 1,u∗g(t) = 0

)
. (B48)

and in the reproductive phase is given by

u∗
∣∣∣∣∣∣
[t∗,T]

=

(
u∗f(t) =

1
Rc + 1

,u∗g(t) = 1
)
. (B49)

Hence, the allocation schedule of investment into different types of individ-
uals in the ergonomic phase

a∗w,u(t)

∣∣∣∣∣∣
[0,t∗]
= 1, as♀,u(t)

∣∣∣∣∣∣
[0,t∗]
= 0, as♂,u(t)

∣∣∣∣∣∣
[0,t∗]
= 0 (B50)

implies that all the resources are invested into producing workers. In the re-
productive phase, the allocation schedule of investment into different types of
individuals is

a∗w,u(t)

∣∣∣∣∣∣
[t∗,T]

= 0, as♀,u(t)

∣∣∣∣∣∣
[t∗,T]

=
1

Rc + 1
, as♂,u(t)

∣∣∣∣∣∣
[t∗,T]

= 1 − 1
Rc + 1

(B51)

and hence, all the resources are invested into producing sexuals. In terms of
worker production versus production of sexuals, this strategy all-or-nothing strat-
egy is called a “bang-bang” strategy (Bryson and Ho 1975, Macevicz and Oster
1976). In the reproductive phase, however, new queens and males are produced
simultaneously. Hence, the u∗f(t) is a singular control during the reproductive
phase (Bryson and Ho 1975).

Switching time for single party control

We have determined the candidate optimal controls for the ergonomic t ∈ [0, t∗c]
and the reproductive t ∈ [t∗c,T], and we are now going to determine the switching
time t∗c c ∈ {♀,w} (for single part control) that marks the time when the growth
schedule switches from one phase to another. In the next section we will determine
the switching time t∗m for mixed control. We know from equation (B38) that when
σ

c
1 changes its sign then u∗g switches its value from 1 to 0. Hence, solving the

equation σc
1 = 0 for t gives the time the switch in u∗g happens, hence the switching

time t∗c.
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For queen control of the trait ug, σ♀1 = 0 with eq. (B29) yields

λ
♀♀(t∗♀) − λ♀w(t∗♀) = 0, (B52)

and with eq. (B37) and taking μ♀ = μ♂ = μ it leads to a following transcendental
equation for finding t∗♀

λ
♀♀(T)e

−μ(T−t∗♀) −
r
(
a∗♀λ♀♀(T) + a∗♂λ♀♂(T)

) ⎛⎜⎜⎜⎜⎝e
−μw

(
T−t∗♀

)
− e
−μ

(
T−t∗♀

)⎞⎟⎟⎟⎟⎠
μ − μw

= 0. (B53)

Similarly, for worker control of the trait ug, σw
1 = 0 with eq. (B29) yields

λ
♀♀(t∗w) − λ♀w(t∗w) +

2
M

[
λ
♂♀ (t∗w) − λ♂w (t∗w)

]
= 0. (B54)

and using eq. (B37) it leads to a following transcendental equation for finding t∗

λ
♀♀(T)e−μ(T−t∗w)

+

2λ♂♀ (T)

M

(
e−μ(T−t∗w)

+ e−μw(T−t∗w) − e−μ(T−t∗w)
)

−
a∗♀λ♀♀(T) + a∗♂λ♀♂(T)

μ − μw

(
e−μw(T−t∗w) − e−μ(T−t∗w)

)
= 0. (B55)

By solving the transcendental equations (B53) for t∗♀ and (B55) for t∗w and taking
u∗g(t) = 1, then we obtain the switching time when party c ∈ {♀,w} is in control

t∗c = T −
ln

(
1 + θc

μ−μw

r

)
μ − μw

, (B56)

where

1
θc
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗f + (1 − u∗f)
λ
♀♂(T)

λ
♀♀(T)

for c = ♀,

u∗f + (1 − u∗f)
λ
♀♂(T)

λ
♀♀(T)+(2/M)λ♂♀ (T)

for c = w.

(B57)

After substituting the control function u∗f from equation (B47) for the respective
case of control and using the transversality conditions (B34) and (B35) with con-
ditions (B42) and (B44) we obtain that θc = 1 for both cases of control. We have
obtained that the switching time for single party control is

t∗c = T −
ln

(
1 + μ−μw

r

)
μ − μw

, c ∈ {♀,w} . (B58)
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Switching time for mixed control

For mixed control, trait ug is under worker control and trait uf is under queen
control. Hence, the switching time can be found by solving σw

1 = 0, which as we
already showed leads to a transcendental equation (B55) with a solution

t∗m = T −
ln

(
1 + θm

μ−μw

r

)
μ − μw

, (B59)

where

1
θm
= u∗f + (1 − u∗f)

λ
♀♂(T)

λ
♀♀(T) + (2/M)λ♂♀ (T)

.

Since the trait uf is under queen control, we substitute u∗f from eq. (B47) with
transversality conditions (B34) for queen control with condition (B42) and obtain

θm =
2 +M
1 +M

. (B60)

We can easily see from equation (B59) that t∗m < t∗c and as M→∞ so t∗m → t∗c, where
c ∈ {♀,w}.

We should also mention that equations (B58) and (B59) hold if μw < r/θc+μ.
It is not biologically restrictive, since the reproduction rate has to be be signifi-
cantly higher than worker mortality otherwise the population will go extinct.

Pontryagin’s maximum principle for the uninvadable resource al-

location strategy

We can numerically check if the uninvadable strategies u∗ found with iterative
scheme of best response map satisfies the necessary first order condition given
by eq. (B20). We have plotted the first order conditions in figs. B1- B3. Note that
if evolutionarily stable value of the trait u∗

τ
is on the boundary, i.e. equal to 0 or

1, then the first order condition does not have to be equal to 0. The first order
condition can be positive if the control variable is on the upper boundary (equal
to 1) and negative if the control variable is on its lower boundary (equal to 0).
However, if evolutionarily stable value of the trait u∗

τ
is not on the boundary (i.e.

it is between 0 or 1), then the first order condition has to be equal to 0.
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Figure B1: First order conditions as a function of time under full queen control
and queen monandry (M = 1). Parameter values: r = 0.06, μw = 0.02, μ♀ = μ♂ =
0.005, T = 100.
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Figure B2: First order conditions as a function of time under full worker control
and queen monandry (M = 1). Parameter values: r = 0.06, μw = 0.02, μ♀ = μ♂ =
0.005, T = 100.
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Figure B3: First order conditions as a function of time under mixed control and
queen monandry (M = 1). Parameter values: r = 0.06, μw = 0.02, μ♀ = μ♂ =
0.005, T = 100.

APPENDIX C: ITERATIVE SCHEME OF THE BEST

RESPONSE MAP

Here, we describe the computational technique for finding the uninvadable strate-
gies for our optimal control problems. This method is known as the iterative
scheme of the best response map (see p. 187 in (Houston and McNamara 1999)).

The strategy u that yields the highest invasion fitness of the mutant in an
environment, where the resident strategy is v is said be the best response b̂(v) to
the resident strategy, i.e.

Wc(b̂(v),v) = max
u

Wc(u,v), (C1)

We start out from some initial resource allocation schedule for the resident
population u0 and using GPOPS we find the mutant strategy that has the highest
fitness u1 = b̂(u0). We then update the resident strategy for the next iteration

ui
= αb̂(ui−1) + (1 − α)ui−1 (C2)

and repeat the process. Here, 0 > α > 1 is called the replacement factor. We
can interpret this method biologically as replacing a proportion α of resident
individuals at generation i − 1 by mutant individuals with highest fitness for the
next generation. From a mathematical point of view we can also interpret this
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new resident strategy as a polymorphism - each individual adopting a strategy
b̂(ui−1) with probability α and strategy ui−1 with probability (1 − α) (Houston and
McNamara 1999). To improve convergence after iterating from some while we
can decrease α with further iterations (Houston and McNamara 1999, Krawczyk
and Uryasev 2000).

This iterative scheme forms a sequence of strategies (u0; u1; u2; ...) where each
strategy is derived from the best response to the previous strategy according to
equation (C2). If the difference between the best response and resident strategy
approaches zero as the number of iterations increases, i.e.

∣∣∣ui − ui−1
∣∣∣→ 0 as i→∞, (C3)

then we have arrived at the uninvadable strategy (Nash equilibrium).
For single party control we use GPOPS to find the best response b̂(v) that

maximizes the objective given by equation (11) of the party in control. For mixed
control, the best response b̂(uf) maximizes the the objective of the queen W♀(u,v)
and b̂(ug) maximizes the objective of the workers Ww(u,v) .

Uninvadability is a necessary condition for evolutionary stability, but not
sufficient. It does not guarantee stability against equally fit mutants or conver-
gence back to u∗ when the population is perturbed away from u∗ (Smith 1982,
Eshel 1983). However, since arriving at the uninvadable strategy is done through
iteration, which is analogous to the evolutionary dynamics of the population,
then we might regard this as giving support that the proper evolutionary dy-
namics would also converge to this uninvadable strategy. Under this heuristic
approach, the iterative scheme of the best response map also implies stability of
any uninvadable strategy found by it (Houston and McNamara 1999).

The software GPOPS uses a direct approach to find the best response b̂(u)
for a given environment u in contrast to the indirect approach of Pontryagin’s
maximum principle (see Appendix B), which gives a necessary condition for
optimality. We also show that all the uninvadable strategies found using this
numerical approach also satisfies Pontryagin’s maximum principle and we were
able to show that our numerical solutions also satisfy the necessary first order
condition of optimality (see Appendix B of the S.I.).
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ABSTRACT

Co-foundress associations have arisen numerous times in Hymenoptera, but the role
of time- and context-dependent decision rules of cooperative breeding in wasps is
still incompletely understood. We developed a dynamic optimization model to study
the evolutionary stable nesting behaviour of a seasonal cooperatively breeding insect
with alloparental care, in which foundresses must decide between founding a nest
alone or joining an existing nest as a subordinate. We find that if foundresses have
to invest a large amount of resources into the nest before producing sexual offspring
then costly helping by subordinates is favoured by selection even without high aver-
age relatedness between co-foundresses. However, cooperation can be sustained in
the reproductive phase only if the average relatedness between the co-foundresses is
high or if subordinates are incapable of usurping the nest from the dominant female.

Keywords: Social wasps; cooperative breeding; inclusive fitness; dynamic optimiza-
tion; game theory.
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INTRODUCTION

The role of kin selection has been fundamental in understanding the evolution of spe-
cialized cooperative societies. Facultatively cooperative species, where individuals
have retained the capacity to reproduce without the help of others, provide a unique
opportunity for understanding how indirect and direct fitness benefits of helping
relatives can shape the evolution of altruistic behaviour. While helping relatives can
entail substantial indirect fitness benefits in some systems (Emlen, 1991), the relat-
ive importance of direct fitness benefits of helping should not be underestimated
since helping is not restricted to family groups (Clutton-Brock, 2002, 2009; Field and
Leadbeater, 2016; Gadagkar, 2016; Leadbeater et al., 2011). The existence of unrelated
helpers is well established in many species of cooperatively breeding vertebrates, but
they are far less commonly known in the social insects. One example of unrelated
helpers in social insects comes from the co-foundress associations that occurs in some
ant (Bernasconi and Strassmann, 1999) and wasp species (Gadagkar, 2016; Field and
Leadbeater, 2016; Liebert et al., 2005).

Direct fitness benefits of helping have been shown to be especially important
in paper wasps Polistes dominulus, where helping non-relatives is relatively common
and the average within group relatedness is around ∼ 0.3 (Zanette and Field, 2008).
Leadbeater et al. (2011) showed that subordinate females are driven to help the
dominant to gain direct fitness through nest inheritance even though it happens
relatively rarely, as ∼ 87% of dominant females retain their position throughout
the entire season. Moreover, an average subordinate is expected to produced more
own offspring per capita than an average solitary foundress. Nevertheless, indirect
fitness benefits usually outweigh direct fitness benefits in this species (Leadbeater
et al., 2011), which makes it puzzling why the wasps do not associate with relatives
more often. One possibility is that some wasps simply make kin recognition errors,
but so far there is little evidence that suggests that wasps of these species are less
able to detect kin from non-kin compared to the species where average co-foundress
relatedness is high (Field and Leadbeater, 2016). The fundamental question of why
the average relatedness between co-foundresses in some Polistes species is so much
lower than in others where co-foundress associations happen mostly between close
relatives has remained unclear (Field et al., 1998; Reeve et al., 2000; Seppä et al., 2002).

While a large amount of empirical knowledge exists on co-foundress associ-
ations of social wasps, current accounts of explaining the variation of social beha-
viour in social wasps call for a re-evaluation from a formal theoretical perspective for
several reasons. Firstly, in the beginning of the season, a large number of foundresses
start initiating nests and switching between nests is common (Zanette and Field, 2008;
Seppä et al., 2012). Females that choose to nest solitarily have a chance that their nest
will be joined by other females, which makes it less clear which of these options at
a given time of the season offers higher direct fitness. Hence, comparing the success
of behavioural outcomes (such as solitary nesting versus becoming a subordinate)
provides no adequate measure of the success of the underlying strategies. Secondly,
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we have to account for the behavioural decisions made as a subordinate in the nest
as separate from the decision to join the nest in the first place. If the main incentive
of the subordinates is to inherit the nest, they should be less willing to forage and
may even try to kill the dominant female to acquire the dominant position. Thirdly,
there is variation in the value of the different nests depending on how much work
effort has already been put into the nest. Females who join nests as subordinates
should try to base their decision on the value of a particular nest and the number of
females already in the nest. Fourthly, the success of a particular strategy depends on
the strategy of other individuals in the population. It has been argued that context
dependent helping may be key to the evolution of helping behaviour (Holman, 2014),
because the cost and benefit ratio of helping may vary considerably depending on
the time of the season or the type of nest that the female is associated with. When
individuals can assess such variables, helping can evolve more easily.

In this paper we present a game theoretical time dependent model that follows
a life cycle similar to seasonal species of social wasps. Our modelling approach al-
lows wasps to make context dependent decisions, i.e. decisions depend on the time
of the season and on what other individuals in the population are doing. Instead
of measuring the success of behavioural outcomes, such as solitary versus cooper-
ative nesting, our model allows to study the success of the underlying strategies of
these behavioural outcomes. At the beginning of the season, females start initiating
colonies using different options: (1) initiating nests alone, (2) cooperating with other
females by building nests together, (3) usurping the nest of other females, (4) waiting
around for other females to initiate their colonies and then take over the nest later
in the season. We assume that there are two phases in the colony life cycle: (1) the
pre-reproductive phase, where investment is made into building the colony structure
and raising the non-reproductive worker caste and (2) the reproductive phase, where
all effort is put into producing sexual offspring.

Assuming that individuals cannot directly assess relatedness to each other, we
study to what extent elevated average relatedness between nest mates (above the
population mean) is necessary to make such a system work. Our model allows us
to study the evolutionarily stable level of helping by the subordinates in different
phases of the life cycle of the nest over the course of the season.

MODEL

Biological scenario

We consider a seasonal population of facultatively cooperative insects. We are in-
terested in the behaviour of the females in the population throughout the season of
total length T. We assume that all females have a set of possible actions that depends
on their state and the time of the season t ∈ [0, 1, ...T − 1]. We assume that a female
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can be in different states: (i) a floater, who is not associated with any nest; (ii) a
dominant female (breeder) in a nest, who lays all the eggs; (iii) a subordinate female
(non-breeder) in a nest, which means that she can not lay any eggs herself. At the
start of the season, all the females in the population are floaters. Floaters can initiate
nests alone, or, alternatively, they can join the nests previously initiated by other
females. When a floater initiates a nest, she will automatically become the dominant
female in that nest. When a floater joins a nest initiated by an another female, she
will initially become a subordinate in that nest. Subordinate females can inherit the
dominant position if the dominant female dies.

We assume that the females in the nest have to invest some fixed amount of
resources P into the nest before the dominant can start producing sexual offspring.
This effort can be interpreted as investing into building the structure of the nest
and into non-sexual (worker) offspring. The subordinates can stay in a nest as active
helpers or passively stay in a nest without helping the dominant female to rear brood.
Subordinates can also decide to leave the nest or behave aggressively towards the
dominant female, to increase their chance of inheriting the nest and becoming a
dominant themselves.

We assume that the decisions of the females depend on the time t of the season
and on the type of nest that the female is associated with, or that she encounters as
a floater. Nest type is characterized by two features: (i) the number of individuals
in the nest s ∈ [0, S] and (ii) the amount of effort that has already been invested into
the nest (henceforth called nest phase) p ∈ [0, P]. We assume that there is a large
constant number N of suitable nest sites in the population. At the start of the season,
all nests are empty (s = 0) and in the initial phase (p = 0). Hereinafter, when we
write that a nest is of type (s, p), it means that it is of size s and of phase p. At the
end of the season, the whole adult generation dies, all nests are destroyed, and all
juvenile females mate and start to hibernate.

While we do not model space explicitly, we make some assumptions that imply
a certain spatial structure. Specifically, we assume that any given female interacts
with only a subset of the total female population, being related to this subset by
average relatedness r. This implies that female family members tend to live close to
each other. This reflects an important behavioural component common in Polistes,
which is that Polistes foundresses are philopatric, i.e. they tend to nest near the
nest site where they were reared (West et al., 2007; Hunt, 2007), however the average
relatedness between the co-foundresses varies between species and in may cases the
co-foundresses are not sisters (Strassmann, 1996) and can even be unrelated (Queller
et al., 2000; Leadbeater et al., 2011; Field and Leadbeater, 2016). Moreover, we assume
that the offspring of female nest mates are not related through their father’s side.
This implies that males disperse so widely that mating is random throughout the
population. Finally, we assume that the reproductive value of sexual offspring (i.e.,
their contribution to future generations) is independent of the total number of sexual
offspring produced in the same nest. This implies that there is sufficient dispersal to
ensure that an individual’s behaviour does not affect the local density faced by its
descendants in the next generation. While we do not model sex allocation explicitly,
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our model is consistent with an even sex ratio of sexual offspring.

Behavioural traits

Nest formation and behaviour in the nest is governed by the behavioural traits uk,τ =
uk,τ(t) of females in state k ∈ { f (s, p), b(s, p), n(s, p)} (floaters, dominants (breeders)
in a nest of type (s, p), and subordinates (non-breeders) in a nest of type (s, p),
respectively) that specify the probability of choosing an action τ that is available to a
female in state k. We assume that these behavioural traits are under genetic control
and therefore subject to selection. A female’s behavioural options depends on her
state k ∈ { f (s, p), b(s, p), n(s, p)}. For example, if a floater encounters a nest of type
(s, p) at time t she will decide to join this nest with probability uf (s,p),1 = uf (s,p),1(t) and

with probability uf (s,p),2(t) = 1 − uf (s,p),1(t) she will decide to remain a floater. The

dominant (breeder) can choose to stay in her nest with probability ub(s,p),1 = ub(s,p),1(t)

and she will abandon the nest with probability ub(s,p),2(n, t) = 1 − ub(s,p),1(s, p, t).
For simplicity, we assume that dominant females who have at least one helper in
the nest will not abandon it (i.e., ub(s,p),1(s, p, t) = 0 for s > 1). This is a minor
simplification because, if any nests exist with s > 1 in which leaving would benefit
the dominant, then, leaving such nests will benefit the subordinates even more
(since subordinates have less to lose from leaving than the dominant, while the
fitness gain from leaving is the same for both). Hence, the dominant will be able to
leave after a short time delay, after being abandoned by its subordinates. The non-
breeding subordinate females can choose between 4 different actions at any given
time: un(s,p),1 = un(s,p),1(t) is the probability that a given subordinate female will help

the dominant female by foraging, un(s,p),2 = un(s,p),2(t) gives the probability that the
subordinate will be aggressive towards the dominant female, which will increase the
chances that the dominant will die, and un(s,p),3 = un(s,p),3(t) gives the probability that
the subordinate will stay in a nest without helping the dominant female. The quantity
un(s,p),4 = un(s,p),4(t) = 1 − un(s,p),1(t) − un(s,p),2(t) − un(s,p),3(t) gives the probability
that the subordinate will leave the focal nest site. Note that out of the eight possible
actions of females in different states, only five traits are independent traits. We define
a vector of strategies u = {uf (s,p),1(t), ub(s,p),1(t), un(s,p),1(t), un(s,p),2(t), un(s,p),3(t)} that
specifies the decision rules for all adult females in the population throughout the
season. This strategy vector u specifies a rule of action for a female that can be in any
state throughout the season.
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Life-history characteristics

The behavioural traits u of the females determine all life-history events, such as
mortality, joining or initiating nests and reproduction. We assume that all decisions
made at time t are independent of each other, and their consequences take effect
regardless of any deaths that might occur at time t. For example, if a subordinate
helps its dominant yet also dies at time t, then this help still affects the dominant’s
reproduction at time t. Also, while decisions at time t are conditional on nest type
(s, p) at time t, they cannot in turn affect these nest characteristics at time t; instead,
decisions and deaths that occur at time t can only affect nest characteristics (s, p) at
time t + 1.

Start of reproduction and fecundity

Let r(s,p)(u, t) be the amount of resources foraged at time t in a nest of type (s, p) that
has at least one individual. We assume that if the solitary foundress decides to stay
at the nest, she is able to forage r0 amount of resources. The amount of resources
foraged in larger nests depends on the number of subordinates and the average
amount of helping they do, i.e.

r(s,p)(u, t) = r0 [1 + hun,1(s − 1)] , (1)

where h is the helping efficiency coefficient.

In nests whose nest phase is below the reproductive threshold (p < P), all
foraging effort is directed into progressing the nest into the reproductive phase P and
the increase of nest phase, at time t in nests of type (s, p), is given by

�p(s,p)(u, t) =

⎧⎪⎪⎨⎪⎪⎩
�p1

(s,p)
(u, t) =

⌈
r(s,p)(u, t)

⌉
, if (s > 0) with probability ω1

(s,p)

�p2
(s,p)

(u, t) =
⌊
r(s,p)(u, t)

⌋
, if (s > 0) with probability ω2

(s,p)

(2)

where �·� and �·� stand for the ceiling and floor functions and ω1
(s,p)

= r(s,p) −
⌊
r(s,p)

⌋
,

ω
2
(s,p)

= 1−ω1
(s,p)

. Thus, nest phase progresses in discrete steps, and any contributions

of foraging effort towards nest phase are rounded accordingly.

In nests whose nest phase has reached the reproductive threshold p = P, all
foraging effort is directed into producing sexual offspring and the number of sexual
offspring produced in a nest of type (s, p) at time t is given by

w(s,P)(u, t) = εr(s,P)(u, t), (3)

where ε is the conversion efficiency of resources into offspring. Note that w(s,p)(u, t) =
0 if p < P.
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Mortality

Let μb(s,p)(u, t), μn(s,p)(u, t), and μ f be the mortality probability of dominants, subor-
dinates and floaters at time t, respectively. The mortality probability of subordinates
depends on their actions, weighted by the probability of choosing those actions:

μn(s,p)(u, t) =
4∑
τ=1

un(s,p),τ(t)μn,τ, (4)

where μn,τ is the subordinate mortality probability associated with the action τ. The
probability that a solitary foundress dies at time t is μs. The probability that the
dominant dies in larger nests depends on the size of the colony and the aggression
level un(s,p),2 of the subordinates in the nest at time t, i.e.

μb(s,p)(u, t) = 1−
[
(1 − μb0)(1 − aun(s,p),2(t))

s−1
]

, (5)

where μb0 is the mortality of a dominant in a co-foundress nest without aggressive
subordinates and a is the efficiency of usurping the nest.

Floaters joining the nest

We assume that the floaters find an empty nest site with constant probabilityα0 if all
nest sites are empty, and with proportionally lower probability if only a proportion
Ne
N of all nest sites are empty. Here, N is the number of all nest sites (sites suitable for
building nests), and Ne is the number of empty nest sites. We assume that nests with
at least one female attract more attention and thus they are found m-times as likely,
i.e. αs = mα0, where s > 0. To ensure that probabilities sum to one, we must choose

α0 small enough to satisfy α0
Ne
N + mα0

No
N ≤ 1, where No is the number of occupied

nest sites. The number of floaters arriving to a nest site of type i ∈ {e, o} follows a
Poisson process with the respective means

αe(t) = x f (t)α0
Ne
N

1
Ne

(empty nest sites),

αo(t) = αo(t) = x f (t)mα0
No
N

1
No

(occupied nest sites),

(6)

where x f (t) is the density of floaters. Thus, the probability of at least one floater
arriving to a given site is 1 − exp(−αi). This follows directly from the definition of
the Poisson probability distribution f (x) = [(αi)

x/α!] exp(−αi), since f (x ≥ 1) =
1 − f (0) = 1 − exp(−αi). For simplicity, we assume that in a given time step t only
one floater can join a particular nest site. This constraint is insignificant as long as
mα0/N is small enough and we can adjust that by choosing the time interval t that
is small enough. If multiple floaters arrive in the same time at a given nest site, only
one of them (say, the first one to arrive) can choose to either join the nest site or leave.
After floaters have arrived at the nest site, floater mortality is accounted for; so it
can happen that the floater who has chosen to join a given nest site dies. Thus, the
probability that a nest site of type (s, p) is joined by a floater at time t is
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η(s,p)(u, t) = [1− exp(−αi)] (1 − μ f )uf (s,p),1(t). (7)

Therefore, at time t,
∑

s

∑
p η(s,p)(u, t)x(s,p)(t) is the number of females that find and

join any nest site, either occupied or not, where x(s,p)(t) is the density of nest sites of

type (s, p).
The probability that a focal floater will be the first one to find a nest of type

(s, p) at time t (hence getting the opportunity to join) is

φ(s,p)(t) = αi

x(s,p)(t)

N

N(1− e−αi)

αix f (t)
. (8)

Thus, the probability that a floater is not the first one to find a nest site and therefore
remains a floater is

φ f (t) = 1−
Ne(1 − e−αe)

x f (t)
−

No(1 − e−αo)

x f (t)
. (9)

Note that a nest’s probability of being joined is linked to a floater’s probability
of joining as

η(s,p)(u, t) = x f (t)φ(s,p)(t)uf (s,p),1(1 − μ f )(t)
1

x(s,p)(t)
. (10)

Population dynamics

Let x f (t) and x(s,p)(t) be the number of floaters and nests of type (s, p) in the popula-
tion, respectively.

The density of floaters in the population changes according to the equation

x f (t + 1) = x f (t)(1 − μ f ) +
S∑

s=0

P∑
p=0

x(s,p)(t)
[
l(s,p)(u, t) − η(s,p)(u, t)

]
, (11)

where l(s,p)(u, t) is the average number of individuals who leave a nest of type (s, p)
at time t and survive, i.e.

l(s,p)(u, t) =

{
ub(1,p),2(1, p, t)(1 − μ0), (s = 1),∑s−1

i=0

∑s−1−i
j=0 jB, (s > 1),

(12)

where

B = bin(s − 1, i,μn(s,p)(u, t))bin(s− 1 − i, j, un(s,p),4(u, t)).
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Here

bin(n, k, p) =

(
n
k

)
pk(1 − p)n−k

stands for the binomial probability. Here, the first summation goes through the
number of subordinates i that may die during this time step, leaving s−1− i survivors.
The second summation goes through the number j of these survivors that may leave
to become floaters. The change in the density of nests is given by

xs′p′(t + 1) =
∑S

s=0

∑P
p=0 γss′pp′(u, t)x(s,p)

+
∑S

s=0

∑P
p=0 η(s,p)(u)x(s,p)

(
γs(s′−1)pp′(u, t) − γss′pp′(u, t)

)
,

(13)

where γss′pp′(u, t) gives the probability that a nest of type (s, p) will be of type (s′, p′)
through the process of mortality and individuals in the nest deciding to leave. Note
that γs(s′−1)pp′ = 0 when s′ = 0. We present the derivation of γss′pp′(u, t) in Appendix
B.

The total number of individuals in the population at time t is given by

X(t) = x f (t) +
S∑

s=0

P∑
p=0

sx(s,p)(t). (14)

Mutant-resident system

We perform an evolutionary invasion analysis to study the evolution of the beha-
vioural traits u. That is, we consider the fate of a rare mutant in a population of
resident individuals, where the phenotype of the mutant

um = {um
f (s,p),1

(t), um
b(s,p),1

(t), um
n(s,p),1

(t), um
n(s,p),2

(t), um
n(s,p),3

(t)} (15)

can deviate from the resident throughout the season.

Invasion fitness

What quantity should be maximised by a female’s optimal strategy (sequence of
context-dependent decisions)? According to Hamilton (1963), the ultimate criterion
that determines whether a gene G for a behaviour will spread is not whether the
behaviour is to the benefit of the behaver, but whether it is to the benefit of the gene
G. Hence, we consider how a rare gene G present in a focal female should shape the
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behaviour of that female, in order to maximise the number of G copies transmitted
to the next generation. The focal female is related to her offspring by 1/2, to her
female nest mates by average relatedness r, and to the offspring of her female nest
mates by average relatedness r/2. These relatedness coefficients can be interpreted
as probabilities that a rare allele G, if present in the focal female, is also present in
her relatives. Thus, measured in the currency of G copies transmitted to the next
generation, nest mates’ offspring are r times as valuable to the focal female as are her
own offspring.

We adopt a dynamic kin selection approach according to which the quantity
to be maximised by the focal female is the number of her own sexual offspring
(i.e., her direct fitness) plus the net number of additional sexual offspring produced
by her relatives due to her actions (i.e., her indirect fitness), where the indirect
fitness component is weighted by r. The indirect fitness component can be either
positive (due to the individual being a helpful subordinate) or negative (due to the
individual being a dominant and holding the reproductive monopoly in the nest,
thereby suppressing the reproduction of relatives). This measure of accounting
fitness, is also known as the Wilson’s definition of inclusive fitness (Grafen, 1982),
since it was originally proposed by Wilson (1975). Wilson’s definition of inclusive
fitness departs from the classical definition of inclusive fitness by Hamilton (1964), in
which the direct fitness component for a particular trait is “stripped of all components
which can be considered as due to the individual’s social environment”. In our
model, however, the fitness components are not additive, because, for example,
under parameter settings where progressing a nest to the reproductive phase requires
more than one individual, a breeder’s direct fitness, stripped of the effect of the social
environment, would be zero. Grafen (1982) argued that Wilson’s definition leads to
double-counting of fitness components. However, this problem only occurs when
considering the spreading of a focal gene which is simultaneously being expressed
in several interacting individuals. Next, we will explain how erroneous application
and misunderstanding of Hamilton’s definition of inclusive fitness may lead to a
wrong conclusion (i.e., Creel’s paradox) and outline the assumptions under which
using Wilson’s definition of inclusive fitness leads to the correct solution without
double-counting of the fitness components.

A misunderstanding of the classical Hamilton’s definition of inclusive fitness
can lead to the ‘Creel’s paradox’ (Creel, 1990; Lucas et al., 1996; Queller, 1996). This
paradox can arise in the context of obligatory cooperative breeding. In obligatory
cooperatively breeding species dominant individuals have zero inclusive fitness ac-
cording to the classical definition: their direct fitness component is zero, because they
can not reproduce without their social environment and their indirect fitness com-
ponent is also zero because they do not help anyone. Hence, when facing a choice
between becoming a dominant or a subordinate (whose indirect fitness is positive,
if r > 0), an individual trying to maximise the classical version of inclusive fitness
should prefer to become a subordinate. This is clearly incorrect, however, since a
rare gene influencing behaviour will leave more copies in the next generation if its
carrier becomes a dominant. This apparent paradox arises from incorrect stripping
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apart of fitness components in systems with non-additive pay-offs.
The obvious way to bypass this difficulty is to consider the underlying genetics

behind these traits (Queller, 1996). However, Queller (1996) argued that there are two
ways that Creel’s paradox disappears under the “phenotypic gambit” approach if one
adopts the Wilson’s definition of inclusive fitness that does not require the stripping
away of the social environment. These two solutions depend upon the expression
of the focal gene. Firstly, low penetrance (i.e., probability of being expressed in
any given individual) of the focal gene ensures that the focal individual in which
the rare mutant allele is expressed does not interact with other individuals with the
same phenotype. Hence, the low penetrance assumption eliminates the effects of
rare phenotypes interacting which each other and, accordingly, Wilson’s definition
of inclusive fitness gives the correct answer. Secondly, for conditional behaviours
reflecting choices only available to the focal individual (but not simultaneously to
its social partners), the quantity to be maximised the Wilson’s definition of inclusive
fitness.

The assumption of the conditional expression is also implicit in our model,
since we do not constrain dominants and subordinates to behave similarly due to
expression of the same genes. More generally, we avoid double-counting by holding
constant the strategies of all other individuals, when calculating how alternative
behaviours affect a focal individual’s inclusive reproductive value. Biologically,
this amounts to the implicit assumption that behaviour evolves gradually by the
successive spreading of mutations with low penetrance (i.e., probability of being
expressed in any given individual). This assumption is less restrictive than it might
seem, since our model is a phenotypic one: our aim is not to model the spreading of
specific alleles with specific effects. Rather, we want to find an individual’s optimal
strategy (phenotype), for a given strategy set used by others.

To conclude, we agree with Queller (1996) that the “phenotypic gambit” can be
salvaged in inclusive fitness models with non-additive pay-offs; in other words: that
we can learn something by studying phenotypes in such models even as we ignore
the (often unknown) genetics underlying particular traits. Moreover, we believe
that our method (based on Wilson’s (1975) definition of inclusive fitness and the
low penetrance assumption) can achieve this even beyond the scope of conditionally
expressed traits as originally suggested by Queller (1996).

Hereinafter, by inclusive fitness, we mean Wilson’s (1975) definition of an in-
clusive fitness of an individual. We define inclusive and direct reproductive values
of females as the total amount of inclusive and direct fitness gained at time t and
afterwards, respectively. Let Vi(u

m, u, t) be the inclusive reproductive value of type
i ∈ { f , b(s, p), n(s, p)} individuals at time t. Calculating the inclusive reproductive
values of individuals goes backwards in time. Inclusive reproductive value of a
mutant floater at final time is

V f (u
m, u, T − 1) = (1 − μ f )

S∑
s=0

P∑
p=0

φ(s,p)(t)
∑
τ

um
f (s,p),τ

V f (s,p),τ(T − 1), (16)
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where V f (s,p),τ(T − 1) is the reproductive value gained at the final time if the floater
chooses the action τ. This equation evaluates to zero (see table 2 in Appendix C),
because in the last time step it is too late for a floater to reproduce or influence anyone
else’s reproduction. Inclusive reproductive value of a mutant floater at time t < T − 1
is

V f (u
m, u, t) = (1 − μ f )

[∑S
s=0

∑P
p=0 φ(s,p)(t)

∑
τ

um
f (s,p),τ

V f (s,p),τ(u
m, u, t)

+ φ f (t)V f (u
m, u, t + 1)

]
,

(17)

where V f (s,p),τ(u, t) is the reproductive value gained at time t if the floater chooses
the action τ.

Inclusive reproductive value of a dominant (subordinate) female at time t is

Vi(u
m, u, t) =

∑
τ

um
i,τVi,τ(u

m, u, t), i ∈ {b(s, p), n(s, p)}, (18)

where Vi,τ(u
m, u, t), i ∈

{
b(s, p), n(s, p)

}
is the inclusive reproductive value gained at

time t of the season by choosing the action τ associated with a nest of type (s, p).
We present the reproductive values gained with each action at the final time step
Vi,τ(u

m, u, T − 1) in table 2 in Appendix C. In previous time steps, the inclusive
reproductive value that dominants (subordinates) gain with action τ is

Vi,τ(u
m, u, t) = V•i,τ(u

m, u, t) + V◦i,τ(u
m, u, t), t < T − 1, (19)

where V◦
i
(um, u, t) is the inclusive reproductive value gained by leaving the focal nest

site either in the current time step or in the future (see Appendix C for its derivation)
and

V•i,τ(u
m, u, t) = vi,τ(u

m, u, t) +
[
υ

m
i,τ(u

m, u, t)− υ(s−1,p)(u, t) − vi,τ(u
m, u, t)

]
r (20)

is the inclusive reproductive value gained within the focal nest site given that the
focal female chooses the action τ. In eq. (20) vi,τ(u

m, u, t) is the direct reproductive
value that the individual of type i gains from the focal nest, given that she chooses
the action τ at time t; υm

i,τ
(um, u, t) is the direct reproductive value of the focal nest

with the mutant female who chooses the action τ; and υ(s−1,p)(u
m, u, t) is the direct

reproductive value of that nest if the focal female would be absent from that nest.
The term in square brackets represents the net effect on the reproduction of relatives
due to the female’s presence in the focal nest and thus it is weighted by r. This net
effect can be positive or negative, as it has two components: the first component,
υ

m
i,τ
(um, u, t) − υ(s−1,p)(u, t), is positive and represents any extra offspring produced

in this nest due to the presence of the focal individual; the second component,
−vi,τ(u

m, u, t), is negative and can be loosely interpreted as offspring lost by relatives
due to the presence of the focal individual (in the sense that every offspring attributed
to the focal female is one offspring less attributed to its nest mates).



13

The invasion fitness of the mutant is defined as the inclusive reproductive value
of a mutant floater at the beginning of the season, i.e.

W(um, u) = V f (u
m, u, 0). (21)

Evolutionarily stable strategies

A mutant strategy b̂(u) that yields the highest invasion fitness in a population of
resident individuals following the strategy u is said to be the best response to strategy
u, i.e.

W(b̂(u), u) = max
um∈U

W(um, u), (22)

where b̂(·) is called the best-response function and U is the domain of all possible
strategies. A resident strategy

u∗ =
{
u∗f ,1(n, t), u∗

b(s,p),1
(n, t), u∗

n(s,p),1
(n, t), u∗

n(s,p),2
(n, t), u∗

n(s,p),3
(n, t)

}
(23)

that can not be invaded by any mutant strategy um ∈ U is said to be the candidate
endpoint of the evolutionary process and is said to be an evolutionarily stable strategy
(ESS). Thus, a necessary condition for a strategy u∗ to be evolutionarily stable is that
it satisfies

u∗ ∈ arg max
um∈U

W(um, u∗). (24)

Finding u∗ is a problem of dynamic optimization (Mangel and Clark, 1988; Houston
and McNamara, 1999) and we use an iterative scheme of the best response map
(Houston and McNamara, 1999, p. 159) to solve this problem.

Iterative scheme of the best response map

It is important to note the best response b̂(u) to a particular environment u is a pure
strategy (the values are either 0 or 1). This may introduce computational errors
(Houston and McNamara, 1999) in finding the ESS through iteration. Therefore,

instead of finding the best response, we will find the best response b̂δ(u) to the
environment u with a degree of error δ > 0, such that costlier errors occur less
frequently than near-optimal actions (Houston and McNamara, 1999, p. 191-192).

For that we define
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λk,τ(u
m, u, t) = Vk,τ(b̂(u), u, t) −Vk,τ(u

m, u, t) (25)

as the cost on the inclusive reproductive value for the mutant following a strategy

um for diverging from the best response strategy b̂(u) at time t in a population of
residents following the strategy u. Let L(x) = exp(−x/δ) be the error function, where
δ > 0 controls the degree of error such that costlier errors occur less frequently than
near-optimal actions (Houston and McNamara, 1999, p. 191-192). The elements of

the best response vector b̂δ(u) are given by

b̂δ(uk,τ(n, t)) =
L(λk,τ(u, v, t))∑
τ

L(λk,τ(u, v, t))
. (26)

Starting out with some initial resident strategy u0, we find the best response b̂δ(u
0)

to that strategy. Then we update the resident strategy for the next iteration with the
replacement factor 0 > β > 1 and repeat the process, using the iterative scheme

ui = βb̂δ(u
i−1) + (1 − β)ui−1. (27)

This iterative scheme produces a sequence of strategies (u0, u1, u2, ...). If the absolute
difference between the consecutive elements of the sequence converges to zero, i.e.

∣∣∣ui − ui−1
∣∣∣→ 0 as i→∞ (28)

then we have arrived at the evolutionary stable strategy (ESS) u∗.

RESULTS

We consider an optimal nesting behaviour of females for a fixed level of average
relatedness between the associating co-foundresses and for different species-specific
life-history characteristics. We present the evolutionarily stable strategy u∗ together
with population dynamics (number of different individuals over the course of season)
that this strategy entails. We started our dynamic optimisation with a completely
solitary population, where floaters only join empty nest sites (u0

f (s,p),1
= 1 if s = 0 ∀p

and u0
f (s,p),1

= 0 if s > 0 ∀p), breeders never leave the nests (ub(s,p),1 = 1∀s > 0,∀p)

and subordinates are either aggressive or leave the nest (u0
n(s,p),1

= 0, u0
n(s,p),2

= 0.5,

u0
n(s,p),3

= 0, u0
n(s,p),4

= 0.5,∀s > 1,∀p). However, note that our optimization approach

does not explicitly model the evolutionary dynamics of the transition from a solitary
population to a cooperatively breeding population. In all of our simulations we
assumed that subordinates face a trade-offbetween helping and survival and between
being aggressive and survival.

We compare three different scenarios of average relatedness between the as-
sociating co-foundresses: (i) co-foundresses are always full sisters (r = 0.75), (ii)
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co-foundresses have an average relatedness similar to Polistes dominulus (r = 0.3),
and (iii) co-foundresses are completely unrelated (r = 0). We compare three different
species-specific life-history settings: (i) the initial pre-reproductive investment into
the nest is negligible (P = 0) and the mortality of a solitary breeder is equal to the
mortality of a dominant female and a helpful subordinate in a co-foundress nest,
(ii) the initial pre-reproductive investment is substantial (P = 5) (compared to the
length of the season (T = 51) and foraging efficiency (r0 = 0.1)) and the mortality
of a solitary breeder is equal to the mortality of a dominant female and a helpful
subordinate in a co-foundress nest (iii) the initial pre-reproductive investment is sub-
stantial (P = 5) and a solitary breeder is three times less likely to survive compared
to a dominant female and a helpful subordinate in a co-foundress nest (individuals
survive better in co-foundress nests).

To simplify our analysis, we consider the results of the model for the smallest
possible maximum nest size (S = 2), with one dominant female and one subordinate
female. In appendix D, we show the results of our model for the same parameter
values when we allow the formation of larger groups (S = 3), where we show that
most of the co-foundress nests that are formed under these parameter settings are of
size s = 2. However, considering small co-foundress associations is sufficient since
the main focus of this work is on the conditions of how cooperative breeding can
emerge as an optimal behaviour.

In interpreting our results, note that our optimization approach allows indi-
viduals to make some small degree of errors, such that costly errors are very rare
and errors that have only a small effect on the inclusive reproductive value are more
common. This property is important, since it eliminates some computational issues
regarding complex problems of dynamic optimization and also takes into account
that organisms make errors in their decision making process in a similar way (Hou-
ston and McNamara, 1999). Note that in the end of the season, some individuals
might have very little opportunity to increase their reproductive value and hence the
frequency of making errors becomes larger.

Result 1: cooperation in the pre-reproductive phase can evolve when average re-
latedness between co-foundresses is low, but high degree of relatedness is needed
for alloparental care to evolve in the reproductive phase

We found that, if the required pre-reproductive investment P is sufficiently high,
then co-founding becomes much more common in a population that follows the
evolutionarily stable strategy u∗(see fig. 1). Even when the average relatedness
between the subordinate and the dominant individual is low and there are no survival
benefits associated with larger groups, co-foundress associations become relatively
common throughout the season.

We also found that for high pre-reproductive investment P, we observe a relat-
ively high degree of costly helping (foraging) even in populations where the average
relatedness between co-foundresses is low (see fig. 3). Moreover, in a population
of high pre-reproductive investment requirement (P = 5) subordinates who are not
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full sisters of the dominant help the dominant only in the pre-reproductive phase
(see fig. 4) and become more aggressive in the reproductive phase (see fig. 5), while
subordinates who are full sisters of the dominant help the dominant throughout the
season (see fig. 4) and show no aggression towards the dominant female.

In a population of high pre-reproductive investment requirement (P = 5), a
high percentage of offspring produced come from co-foundress nests, even when the
co-foundresses are unrelated (see fig. 2) and the subordinates are not helping the
dominants to produce the reproductive offspring.

We conclude that high relatedness combined with high requirement for the pre-
repoductive investment strongly facilitate cooperative breeding with alloparental
care. We observe that cooperation takes place in the pre-reproductive phase when
relatedness is low, but not in the reproductive phase. Hence, our simulations imply
that for alloparental care of sexual offspring to evolve, a high degree of relatedness
is required.

Result 2: increased survival in co-foundress nests facilitates co-foundress associ-
ations only if average relatedness between co-foundresses is high, but does not
increase the tendency to help the dominant female

Empirical evidence suggests that individuals have higher survival in co-foundress
nests (Tibbetts and Reeve, 2003). If the required pre-reproductive investment is
sufficiently high (P = 5) and there is increased survival in co-foundress nests, we
observed a higher percentage of co-foundress nests if the average relatedness between
co-foundress nests is high, but we did not find this effect when the average relatedness
is low (see fig. 1).

We also found that a survival benefit in co-foundress nests had negligible effect
on subordinate behaviour for any average relatedness level between the subordinate
and the dominant (see figs. 3, 4, and 5). This is also in accordance with the fact that
significant increase of survival in co-foundress nests did not significantly increase
the percentage of offspring produced in co-foundress nests (see fig. 2).

Result 3: co-foundress nests and costly helping as a secondary strategy in the
absence of nest inheritance

Here, we consider a population where the dominant females always survive (μs =
μb0 = 0) and subordinates are completely incapable of usurping the nests through
aggression (a = 0). In this population, dominant females always retain their positions
and subordinates never inherit the nests.

We find that in the absence of pre-reproductive investment, almost no co-
foundress nests are formed for any average relatedness level between subordinates
(see fig. 6). In a population of substantial pre-reproductive investment (P = 5), we
observe some degree of co-foundress nests and costly helping even in a population
where the relatedness level between co-foundresses is relatively low (r = 0.3) (see
fig. 6 and 8).
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We find that co-foundress nests are mostly formed later in the season (see fig.
6). In the beginning of the season, there are no co-foundress nests. Females try to
found nests solitarily and the formation of co-foundress nests tends to happen much
later in the season compared to a population where subordinates can inherit the nest
(see figs. 1 and 6). However, the formation of co-foundress nests in this population
happens later in the season, where females who have failed to nest solitarily join
other females as a secondary strategy.

If the average relatedness level is low (r = 0.3), the percentage of offspring
produced in co-foundress nests is higher in a population with no nest inheritance
compared to a population, where subordinates can usurp the nests (see figs. 2 and
7).

We conclude that the formation of co-foundress nests and costly helping can
evolve as a secondary strategy if females have failed to nest solitarily, even if re-
latedness between co-foundresses is low. However, females would choose to be
aggressive and usurp the nest in the reproductive phase if the relatedness between
co-foundresses is low (r = 0.3).

DISCUSSION

Our model shows that high pre-reproductive investment requirement facilitates the
formation of co-foundress associations and costly helping behaviour during the pre-
reproductive phase even if the relatedness between co-foundresses is low. However,
for costly helping to continue during the reproductive phase, co-foundresses have
to have a high degree of relatedness or the subordinates have to be incapable of
overturning the dominant female from her position.

We found that increased survival in co-foundress associations facilitates the
formation of co-foundress associations only if relatedness between co-foundresses is
high. Such a survival benefit does not, however, affect the behaviour of subordinates
in the nest.

Our model predicts that costly investment into nest building (and producing the
worker caste) can facilitate co-foundress associations of primitively eusocial wasps
even when relatedness is low, since reaching the reproductive phase alone is relatively
unlikely. Building the structure of a nest can be an expensive tasks for wasps and
it requires a high amount of foraging. Polistes wasps mainly build their nests from
fibres of dead wood, softened with water at collection, and they can mix this with
oral secretions that may be proteinaceous and nutritionally expensive (Hunt, 2007).
Secretions invested into nest structure can represent up to 20% of foraged protein in
Polistes (Kudô et al., 1998).

Gadagkar (2011) has argued that since relatedness between co-foundresses is
low in P. dominulus then kin selection is unnecessary to explain the formation of
social groups in P. dominulus. However, it is worth noting that the amount of pre-
reproductive investment observed in primitively eusocial insects today may not be
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representative of the ancestral conditions under which co-foundress associations
evolved. In particular, since the solitary ancestors of such species must have been
reasonably capable of reaching the reproductive phase alone, it appears likely that
high requirements of pre-reproductive investment may have evolved after cooper-
ative nesting was already common. Thus, while high pre-reproductive investment
requirement can have a stronger effect than relatedness on favouring the formation of
co-foundress associations (fig. 1), this does not justify the conclusion that relatedness
was unimportant at the origin of co-foundress associations. Moreover, our model
implies that if subordinate females are able to inherit the nest (through nest usurp-
ation) then costly helping during the reproductive phase can only evolve when the
relatedness between co-foundresses is high.

Our model shows that the high cost of nest building and investing into the
worker caste together with nest inheritance can explain how cooperative breeding
and costly helping during the pre-reproductive phase can evolve with low average
level of relatedness between co-foundresses. However, our model does not explicitly
give to the focal individual a choice to join individuals with different relatedness
levels. An extension of this model that would allow individuals to distinguish
between relatives and unrelated individuals would allow us to theoretically test if
P. dominulus foundresses are making kin recognition errors while joining the nests
of unrelated females. This would allow to compare how important is relatedness to
foundresses when they are associating together compared to the other factors, such
as nest size and nest phase and time of the season. In fact, it has been observed
that the average within-group relatedness varies from 0.189 to 0.491 for different
stages of nesting cycles in P. dominulus (Zanette and Field, 2008). Current empirical
evidence suggest that there are no clear differences between the subordinates that
are differently related to the dominant wasp (Field and Leadbeater, 2016).

In our model the investment of pre-reproductive investment level P is a fixed
quantity. Empirical studies suggest, however, that P is not fixed and depends on
other factors such as amount of resources that are available to the colony. In fact,
wasps actually invest more resources to the first non-reproductive brood and build
bigger nests, when extra food is provided to the females in an experimental setting
(Klahn, 1981). In addition, our model assumes that nest phase p cannot decrease in
time, and hence investment cannot be lost. However, we know that predator attacks
on Polistes wasps can sometimes destroy the whole nest structure (Hunt, 2007).

Another factor that we did not take into account is that subordinates can lay
some small proportion of eggs that are destined to become reproductives (Leadbeater
et al., 2011). However, we believe that including this additional option would not
profoundly change the results of our model, since egg-laying by subordinates is
conceptually similar to other forms of selfish subordinate behaviour (namely, resting
and being aggressive) that we did include.

In conclusion, our main findings show that the need to invest a high amount of
resources into the nest before reproduction can be an essential factor in maintaining
co-foundress associations and costly helping in social wasps, even when the average
relatedness between co-foundresses is low. However, for helping to continue in
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the reproductive phase during the end of the season, high relatedness between co-
foundresses is required. This work highlights the importance of considering time-
dependent life-history factors in the evolution of social behaviour.

ACKNOWLEDGEMENTS

This research was undertaken on Finnish Grid Infrastructure (FGI) resources. L.F.
was funded by the Academy of Finland.

References

Bernasconi, G. & Strassmann, J.E. 1999. Cooperation among unrelated individuals:
the ant foundress case. Trends Ecol. Evol. 14: 477–482.

Clutton-Brock, T. 2002. Breeding together: kin selection and mutualism in cooperat-
ive vertebrates. Science 296: 69–72.

Clutton-Brock, T. 2009. Cooperation between non-kin in animal societies. Nature 462:
51–57.

Creel, S. 1990. How to measure inclusive fitness. Proc. R. Soc. B 241: 229–231.

Emlen, S.T. 1991. Evolution of cooperative breeding in birds and mammals. In:
Krebs, J.R. & Davies, N.B. (eds.), Behavioural Ecology: An Evolutionary Approach,
Oxford Blackwell Scientific: Oxford, UK, pp. 301–337.

Field, J. & Leadbeater, E. 2016. Cooperation between non-relatives in a primitively
eusocial paper wasp, Polistes dominula. Phil. Trans. R. Soc. B 371: 20150093.

Field, J., Solı́s, C.R., Queller, D.C. & Strassmann, J.E. 1998. Social and genetic structure
of paper wasp cofoundress associations: tests of reproductive skew models. Am.
Nat. 151: 545–563.

Gadagkar, R. 2011. Altruistic wasps? Science 333: 833–834.

Gadagkar, R. 2016. Evolution of social behaviour in the primitively eusocial wasp
Ropalidia marginata: do we need to look beyond kin selection? Phil. Trans. R.
Soc. B 371: 20150094.

Grafen, A. 1982. How not to measure inclusive fitness. Nature 298: 425.

Hamilton, W. 1964. The genetical evolution of social behaviour. I. J. Theoret. Biol. 7: 1
– 16.

Hamilton, W.D. 1963. The evolution of altruistic behavior. Am. Nat. 97: 354–356.

Holman, L. 2014. Conditional helping and evolutionary transitions to eusociality
and cooperative breeding. Behav. Ecol. 25: 1173–1182.

Houston, A.I. & McNamara, J.M. 1999. Models of adaptive behaviour: an approach based
on state. Cambridge University Press, Cambridge.

Hunt, J.H. 2007. The evolution of social wasps. Oxford University Press, Oxford.



20

Klahn, J.E. 1981. Alternative reproductive tactics of single foundresses of a social wasp,
Polistes fuscatus. Ph.D. dissertation, University of Iowa, Iowa City.
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Figure 1: Percentage of co-foundress nests in three different populations for varying
levels of average relatedness between co-foundresses. The subordinate and the
dominant are full sisters r = 0.75 (solid line), the subordinate and the dominant have
an average relatedness of r = 0.3 (dashed line), the subordinate and the dominant are
not related r = 0 (dash-dotted line). We have modelled three types of populations: (i)
negligible pre-reproductive investment (P = 0) and solitary foundresses are just as
likely to die as dominants and helpful subordinates in co-foundress nests (μs = μb0 =
μn,1 = 0.04) (blue lines); (ii) substantial pre-reproductive investment (P = 5) and
solitary foundresses are just as likely to die as dominants and helpful subordinates
in co-foundress nests (μs = μb0 = μn,1 = 0.04) (red lines); (iii) substantial pre-
reproductive investment (P = 5) and solitary foundresses are three times more likely
to die than dominants and helpful subordinates in co-foundress nests (μs = 0.12,
μb0 = μn,1 = 0.04) (black lines). Other parameter values: r0 = 0.01, S = 2, h = 1,
a = 0.1, μ f = 0.01, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000,
x f (0) = 1000, ε = 1, δ = 0.05.
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Figure 2: Percentage of offspring produced in nests of different size. Percentage of
offspring produced in co-foundress nests (green), percentage of offspring produced
in solitary nests (blue). The subordinate and the dominant are full sisters r = 0.75,
subordinate and the dominant have an average relatedness of r = 0.3, the subordinate
and the dominant are not related r = 0. We have modelled three types of populations:
(i) negligible pre-reproductive investment (P = 0) and solitary foundresses are just as
likely to die as dominants and helpful subordinates in co-foundress nests (μs = μb0 =
μn,1 = 0.04) (columns 1-3); (ii) substantial pre-reproductive investment (P = 5) and
solitary foundresses are just as likely to die as dominants and helpful subordinates
in co-foundress nests (μs = μb0 = μn,1 = 0.04) (columns 3-6); (iii) substantial pre-
reproductive investment (P = 5) and solitary foundresses are three times more likely
to die than dominants and helpful subordinates in co-foundress nests (μs = 0.12,
μb0 = μn,1 = 0.04) (columns 6-9). Other parameter values: r0 = 0.01, S = 2, h = 1,
a = 0.1, μ f = 0.01, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000,
x f (0) = 1000, ε = 1,δ = 0.05.
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Figure 3: Evolutionarily stable probabilities of subordinates actions (u∗
n(s,p),τ

(t)) in

nests of size s = 2 . The probabilities have been averaged over different nest phases.
The subordinate and the dominant are full sisters r = 0.75 (solid line), subordinate
and the dominant have an average relatedness of r = 0.3 (dashed line), the subordin-
ate and the dominant are not related r = 0 (dashed-dotted line).We have modelled
three types of populations: (i) negligible pre-reproductive investment (P = 0) and sol-
itary foundresses are just as likely to die as dominants and helpful subordinates in co-
foundress nests (μs = μb0 = μn,1 = 0.04) (blue lines); (ii) substantial pre-reproductive
investment (P = 5) and solitary foundresses are just as likely to die as dominants and
helpful subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04) (red lines); (iii)
substantial pre-reproductive investment (P = 5) and solitary foundresses are three
times more likely to die than dominants and helpful subordinates in co-foundress
nests (μs = 0.12, μb0 = μn,1 = 0.04) (black lines). Other parameter values: r0 = 0.01,
S = 2, h = 1, a = 0.1, μ f = 0.01, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3,
M = 1.7, N = 1000, x f (0) = 1000, ε = 1, δ = 0.05.
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Figure 4: Evolutionarily stable probability for a subordinate to help (u∗
n(s,p),1

(t))

in a nest of size s = 2 in different phases depending on the time of the season.
The subordinate and the dominant are full sisters r = 0.75, the subordinate and the
dominant are not related r = 0. We have presented the results for a population, where
there is high pre-reproductive investment level P = 5 and (i) solitary foundresses
are just as likely to die as dominants and helpful subordinates in co-foundress nests
(μs = μb0 = μn,1 = 0.04), (ii) solitary foundresses are three times more likely to die
than dominants and helpful subordinates in co-foundress nests (μs = 0.12, μb0 =
μn,1 = 0.04). Other parameter values: r0 = 0.01, S = 2, h = 1, a = 0.1, μ f = 0.01,
μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000, x f (0) = 1000,
ε = 1, δ = 0.05.
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Figure 5: Evolutionarily stable probability for a subordinate to be aggressive
(u∗

n(s,p),2
(t)) in a nest of size s = 2 in different phases depending on the time of

the season. The subordinate and the dominant are full sisters r = 0.75, the subor-
dinate and the dominant are not related r = 0. We have presented the results for
a population, where there is high pre-reproductive investment level (P = 5) and (i)
solitary foundresses are just as likely to die as dominants and helpful subordinates in
co-foundress nests (μs = μb0 = μn,1 = 0.04), (ii) solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04). Other parameter values: r0 = 0.01, S = 2, h = 1,
a = 0.1, μ f = 0.01, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000,
x f (0) = 1000, ε = 1, δ = 0.05.
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Figure 6: Percentage of co-foundress nests in two different populations for varying
levels of average relatedness between co-foundresses, with no possibility of nest in-
heritance. The dominant females always survive (μs = μb0 = 0) and subordinates
are not able to usurp the nests through aggression (a = 0). The subordinate and
the dominant are full sisters r = 0.75 (solid line), the subordinate and the domin-
ant have an average relatedness of r = 0.3 (dashed line), the subordinate and the
dominant are not related r = 0 (dash-dotted line). We have modelled two types
of populations: (i) negligible pre-reproductive investment (P = 0) (blue lines); (ii)
substantial pre-reproductive investment (P = 5) (red lines); (iii) substantial pre-
reproductive investment (P = 5) and solitary foundresses are three times more likely
to die than dominants and helpful subordinates in co-foundress nests (μs = 0.12,
μb0 = μn,1 = 0.04) (black lines). Other parameter values: r0 = 0.01, S = 2, h = 1,
μ f = 0.01, μn,1 = 0.04, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7,
N = 1000, x f (0) = 1000, ε = 1, δ = 0.05.
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Figure 7: Percentage of offspring produced in nests of different size with no possibility
of nest inheritance. Percentage of offspring produced in co-foundress nests (green),
percentage of offspring produced in solitary nests (blue). The dominant females
always survive (μs = μb0 = 0) and subordinates are not able to usurp the nests
through aggression (a = 0). The subordinate and the dominant are full sisters
r = 0.75, the subordinate and the dominant have an average relatedness of r = 0.3,
the subordinate and the dominant are not related r = 0. We have modelled two types
of populations: (i) negligible pre-reproductive investment (P = 0) (columns 1-3); (ii)
substantial pre-reproductive investment (P = 5) (columns 3-6). Other parameter
values: r0 = 0.01, S = 2, h = 1, μ f = 0.01, μn,1 = 0.04, μn,2 = 0.04, μn,3 = 0.01,
μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000, x f (0) = 1000, ε = 1, δ = 0.05.



28

Time

P
ha

se
r = 0.75

0

 

5

r = 0.3 r = 0

r = 0.75

 

0

 

5

r = 0.3

 

r = 0

 

 

 

Probability to help

Probability to be aggressive

0

 

 

 

1

Figure 8: Evolutionarily stable probability for a subordinate to help (u∗
n(s,p),1

(t))

and be aggressive (u∗
n(s,p),2

(t)) in a nest of size s = 2 in different phases depending

on the time of the season. The dominant females always survive (μs = μb0 = 0)
and subordinates are not able to usurp the nests through aggression (a = 0). The
subordinate and the dominant are full sisters r = 0.75, the subordinate and the
dominant have an average relatedness of r = 0.3, the subordinate and the dominant
are not related r = 0. Other parameter values: P = 5, r0 = 0.01, S = 2, h = 1,
μ f = 0.01, μn,1 = 0.04, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7,
N = 1000, x f (0) = 1000, ε = 1, δ = 0.05.
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APPENDIX A: LIST OF SYMBOLS

Symbol Meaning

r0 baseline species specific resource acquisition rate per unit time;
resource acquisition rate of a solitary female

r(s,p)(u, t) resource acquisition rate at nests of type (s, p)

h efficiency of helping
a efficiency of usurping the nest
p the amount the effort that has been invested into the nest (nest

phase) (p ∈ [0, P])
P baseline amount of effort P that has to be invested into the nest

before sexual reproduction can start.
s size of the nest (s ∈ [0, S])
S maximum size of the nest S
t time of the season t ∈ [0, T − 1]
T length of the season

uf ,τ probability that a floater that is the first floater to find a nest of
type (s, p) at time t will: (i) join the nest (τ = 1), (ii) leave the

nest (τ = 2)
ub,τ probability that the dominant in a nest of type (s, p) at time t

will: (i) stay in the nest (τ = 1), (ii) leave the nest (τ = 2)
un,τ probability that a subordinate in a nest of type (s, p) at time t

will: (i) help the dominant (τ = 1), (ii) be aggressive towards
the dominant (τ = 2), (iii) stay at the nest without helping or

being aggressive (τ = 3), (iv) leave the nest (τ = 4)
�p(s,p)(u, t) nest progression rate from one phase to the next at the

non-reproductive stage
w(s,p)(u, t) number of offspring produced at time t in a nest of type (s, p)

zi
(s,p)

probability that in a nest of type (s, p) i subordinates survive and
stay in the nest for the next time step

ε conversion efficiency from resources to sexual offspring
x f (t) number of floaters in the population at time t

x(s,p)(t) number of nests of type (s, p) in the population at time t

X(t) number of adult (sexual) females in the population at time t
η(s,p)(u, t) probability that a nest of type (s, p) will be joined by a floater at

time t
γss′pp′ probability that a nest of type (s, p) will be of type (s′, p′) at the

next time step
φ(s,p)(t) probability that a focal floater will be the first one to find a nest

of type (s, p)
μ f mortality probability of a floater
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μi(s,p)(u, t) average mortality probability of a dominant (i = b) / subordinate
(i = n) female in a nest of type (s, p)

μn,τ mortality probability of a subordinate female given that she
chooses the action τ

ω
i
(s,p)

(u,t) probability that nest phase will progress to a level
p + �pi

(s,p)
(u, t), i ∈ {1, 2} for the nest time step
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APPENDIX B: CALCULATING THE TRANSITION PROBABILITY
γss′pp′(u, t)

We define the probability that in a nest of type (s, p) i subordinates survive and stay
in the nest for the next time step, i.e.

zi
(s,p)

(u, t) =
s−1−i∑
j=0

bin(s − 1, j,μn(s,p)(u, t))bin(s − 1− j, i, (1− un(s,p),4(s, p, t))), (B1)

where s > 0,∀ p . Here, j stands for the number of subordinates that die and

bin(n, k, p) =

(
n
k

)
pk(1 − p)n−k stands for the binomial probability. Moreover, let

πsps′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− ub,1(s, p, t)(1 − μ0), if s = 1 and s′ = 0
ub,1(s, p, t)(1 − μ0), if s = s′ = 1
μbz0

(s,p)
, if s > 1 and s′ = 0

μbzs′

(s,p)
+ (1 − μb)z

s′−1
(s,p)

, if s > 1 and s > s′ > 0

(1 − μb)z
s′−1
(s,p)

, if s > 1 and s = s′

0, otherwise,

(B2)

denote the probability that nests of size s at time t will be of size s′ at time t + 1,
through the process of mortality and individuals deciding to leave the nest.

Next, we give the rules for calculating γss′pp′ that gives the probability that a
nest of type (s, p) will be of type (s′, p′) in the next time step through the effect of
mortality, individuals deciding to leave the nest, and nest progression rate.

The probability that an empty nest of type (s = 0, p) is of type (s′, p′) in the next
time step is given by

γ0s′pp′ =

{
1, if s = s′ = 0 and p = p′

0, otherwise.
(B3)

The probability that a nest of type (s > 0, p = P) is of type (s′, p′) in the next time step
is given by

γss′pp′ =

{
πsps′ , if p = p′ = P

0, otherwise.
(B4)

The probability that a nest of type (s = 1, p < P) is of type (s′, p′ = p) in the next time
step (i.e. nest phase stays the same) is

γss′pp′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω

2
(s,p)

(πsps′ − ub,2) + ub,2, if s′ = 0 and � p2
(s,p)

= 0

ω
2
(s,p)
πsps′ , if s′ = 1 and � p2

(s,p)
= 0

ub,2, if � p2
(s,p)
� 0.

(B5)
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The probability that a nest of type (s > 1, p < P) is of type (s′, p′ = p) in the next time
step (i.e. nest phase stays the same) is

γss′pp′ =

{
ω

2
(s,p)
πsps′ , � p2

(s,p)
= 0

0, otherwise.
(B6)

The probability that a nest of type (s = 1, p < P) is of type (s′, p′ = P) in the next
time step (i.e. nest phase reaches the reproductive treshold P) is

γss′pP =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πsps′ − ub,2, if � p2
(s,p)

+ p ≥ P and s′ = 0

πsps′ , if � p2
(s,p)

+ p ≥ P and s′ = 1

ω
1
(s,p)

(πsps′ − ub,2), if � p1
(s,p)

+ p = P and ω1
(s,p)
� 0and s′ = 0

ω
1
(s,p)
πsps′ , if � p1

(s,p)
+ p = P and ω1

(s,p)
�0 and s′ = 1

0, otherwise.

(B7)

The probability that a nest of type (s > 1, p < P) is of type (s′, p′ = P) in the next time
step (i.e. nest phase reaches the reproductive treshold P) is

γss′pP =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
πsps′ , if � p2

(s,p)
+ p ≥ P

ω
1
(s,p)
πsps′ , if � p1

(s,p)
+ p = P and ω1

(s,p)
�0

0, otherwise.

(B8)

The probability that a nest of type (s = 1, p < P) is of type (s′, p < p′ < P) in the next
time step (i.e. nest progression happens, but not to the reproductive treshold P) is

γss′pp′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω
1
(s,p)

(πsps′ − ub,2) if � p1
(s,p)

+ p = p′ and ω1
(s,p)
� 0 and s′ = 0

ω
1
(s,p)
πsps′ if � p1

(s,p)
+ p = p′ and ω1

(s,p)
� 0 and s′ = 1

ω
2
(s,p)

(πsps′ − ub,2), if � p2
(s,p)

+ p = p′ and s′ = 0

ω
2
(s,p)
πsps′ , if � p2

(s,p)
+ p = p′ and s′ = 1

0, otherwise.

(B9)

The probability that a nest of type (s > 1, p < P) is of type (s′, p < p′ < P) in the next
time step (i.e. nest progression happens, but not to the reproductive treshold P) is

γss′pp′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω

1
(s,p)
πsps′ if � p1

(s,p)
+ p = p′ and ω1

(s,p)
� 0

ω
2
(s,p)
πsps′ , if � p2

(s,p)
+ p = p′

0, otherwise.

(B10)

In addition, the probability that a nest of type (s, p) is of type (s′, p′ < p) is 0, because
we assume the nest phase can not regress.
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APPENDIX C: REPRODUCTIVE VALUES

Average life-history characteristics of nests with a mutant subordin-

ate female

In order to simplify our analysis, we define the average level of subordinate pheno-
type for action τ′ in a nest, given that the mutant has chosen the action τ, as

ũτ
n(s,p),τ′

(t) =
1τ′(τ) + un(s,p),τ′(s, p, t)(s − 2)

s− 1
, (C1)

where 1τ′(τ) is the indicator function, i.e.

1τ′(τ) =

{
1 if τ = τ′,
0 if τ � τ′. (C2)

We define ũτ
n(s,p),τ′

=
{
ũτ

n(s,p),1
, ũτ

n(s,p),2
, ũτ

n(s,p),3
, ũτ

n(s,p),4

}
as a vector of average subor-

dinate phenotype in a focal colony, where the focal mutant subordinate has chosen
the action τ. Hence, in a colony with a mutant subordinate female, the mortality
probability of the dominant is

μ̃
τ

b(s,p)
= μ̃τ

b(s,p)
(u, t) = 1−

[
(1 − μ0)(1 − c2μn,2ũτ

n(s,p),2
(t))s−1

]
(C3)

and the resource foraging rate is

r̃τ
(s,p)

= r̃τ
(s,p)

(u, t) = r0

[
1 + c1ũτ

n(s,p),1
(s − 1)

]
, (C4)

which imply an average nest progression rate �p̃τ
(s,p)

(u, t) with nest progression

probabilities ω̃1τ
(s,p)

and ω̃2τ
(s,p)

, and reproduction rate w̃τ
(s,p)

(u, t).

Terminal conditions

In table 2 we list the terminal conditions for different direct and indirect reproductive
values in our model. For explanation of these expressions, see the treatment of the
non-terminal conditions with t < T − 1 below.
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Reproductive value Value at terminal time T − 1
V f (s,p),τ(u, T − 1) τ ∈{1,2}

0

Vb(s,p),1(u, T − 1)
w(s,p)(u, T − 1) − rw(s−1,p)(u, T −

1)

Vb(s,p),2(u, T − 1)
0

Vn(s,p),τ(u, T − 1) τ ∈{1,2,3}
r[w̃τ

(s,p)
(u, T − 1) −w(s−1,p)(u, T −

1)]

Vn(s,p),4(u, T − 1)
0

v f (s,p),τ(u, T − 1) τ ∈{1,2}
0

vb(s,p),1(u, T − 1)
w(s,p)(u, T − 1)

vb(s,p),2(u, T − 1)
0

vn(s,p),τ(u, T − 1) τ ∈{1,2,3}
0

vn(s,p),4(u, T − 1)
0

Table 2: Table of terminal conditions

Inclusive and direct reproductive value of floaters

The terminal condition for the inclusive and direct reproductive value of a floater is

V f (u
m, u, T − 1) = (1 − μ f )

S∑
s=0

P∑
p=0

φ(s,p)(t)
∑
τ

um
f (s,p),τ

V f (s,p),τ(T − 1), (C5a)
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v f (u
m, u, T − 1) = (1 − μ f )

S∑
s=0

P∑
p=0

φ(s,p)(t)
∑
τ

um
f (s,p),τ

v f (s,p),τ(T − 1), (C5b)

where V f (s,p),τ(u, T− 1) and v f (s,p),τ(u, T− 1) are the inclusive and direct reproductive
values of a floater that chooses the action τ, respectively. Since the season ends with
the time step T − 1, then V f (s,p),τ(T − 1) = v f (s,p),τ(T − 1) = 0 ∀s, p, τ.

The reproductive value of floater at time t is given by

V f (u
m, u, t) = (1 − μ f )

[∑S
s=0

∑P
p=0 φ(s,p)(t)

∑
τ

um
f (s,p),τ

V f (s,p),τ(u
m, u, t)

+ φ f (t)V f (u
m, u, t + 1)

]
,

(C6a)

v f (u
m, u, t) = (1 − μ f )

[∑S
s=0

∑P
p=0 φ(s,p)(t)

∑
τ

um
f (s,p),τ

v f (s,p),τ(u
m, u, t)

+ φ f (t)v f (u
m, u, t + 1)

]
,

(C6b)

where the quantity V f (s,p),τ(u
m, u, t) and v f (s,p),τ(u

m, u, t) are the respective in-
clusive and direct reproductive values of a floater after choosing the action τ at time
t in relation to a nest of type (s, p). In eq. (C6), the first term is the reproductive value
the floater gains from being the first floater to find a nest site of type (s, p); the second
term is the reproductive value she gains by remaining a floater (by not finding any
nest site, or by not being the first floater to find a given nest site at time t).

Reproductive values associated with floater decisions

The reproductive value gained by a floater when joining a nest of size s = 0 is given
by

V f (0,p),1(u
m, u, t) = Vb(1,p)(u

m, u, t+ 1), (C7a)

v f (0,p),1(u
m, u, t) = vb(1,p)(u

m, u, t+ 1). (C7b)

The reproductive value gained by the floater when joining a nest of size s = 1
is given by

V f (1,p),1(u
m, u, t) = ub(s,p),1(t)(1 − μb(1,p)(u, t))V′

n(2,p′)
(um, u, t+ 1)

+ ub(s,p),1(t)μb(1,p)(u, t)V′
b(1,p′)

(um, u, t + 1)

+ ub(s,p),2(t)Vb(1,p)(u
m, u, t+ 1),

(C8a)
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v f (1,p),1(u
m, u, t) = ub(s,p),1(t)(1 − μb(1,p)(u, t))v′

n(2,p′)
(um, u, t + 1)

+ ub(s,p),1(t)μb(1,p)(u, t)v′
b(1,p′)

(um, u, t + 1)

+ ub(s,p),2(t)vb(1,p)(u
m, u, t+ 1),

(C8b)

where

V
′

i(s′,p′)
(um, u, t+ 1) =

[
ω

1
(s,p)

(t)Vk(s′ ,p+�p1
(s,p)

)(u
m, u, t + 1)

+ ω
2
(s,p)

Vk(s′,p+�p2
(s,p)

)(u
m, u, t + 1)

]
,

(C9a)

v
′

i(s′,p′)
(um, u, t+ 1) =

[
ω

1
(s,p)

(t)vk(s′ ,p+�p1
(s,p)

)(u
m, u, t+ 1)

+ ω
2
(s,p)

vk(s′,p+�p2
(s,p)

)(u
m, u, t + 1)

]
,

(C9b)

are the inclusive and direct reproductive values of a focal female by joining
a nest of type (s, p) at time t, given that she will become a type i individual (i ∈
{n(s′, p′), b(s′, p′)}) in a nest of size s′ and phase p + �p1

(s,p)
with probability ω1

(s,p)
(t)

and phase p + �p2
(s,p)

with probability ω2
(s,p)

(t). In equation (C8) the first term is

the reproductive value gained by becoming a subordinate if the dominant stays and
survives, the second term is the reproductive value gained by becoming the dominant
if the dominant stays and dies and the third term is the reproductive value gained
by becoming the dominant if the dominant leaves the nest.

The reproductive value gained by a floater when joining a nest of size s > 1 is
given by

V f (s,p),1(u
m, u, t + 1) =

∑s−1
i=0 zi

(s,p)

[
μb(s,p)(u, t) i

i+1V′
n(i+1,p′)

(s, p, t)

+ μb(s,p)(u, t) 1
i+1V′

b(i+1,p′)
(s, p, t)

+ (1 − μb(s,p)(u, t))V′
n(i+2,p′)

(s, p, t)
]

,

(C10a)

v f (s,p),1(u
m, u, t+ 1) =

∑s−1
i=0 zi

(s,p)

[
μb(s,p)(u, t) i

i+1v′
n(i+1,p′)

(s, p, t)

+ μb(s,p)(u, t) 1
i+1v′

b(i+1,p′)
(s, p, t)

+ (1 − μb(s,p)(u, t))v′
n(i+2,p′)

(s, p, t)
]

,

(C10b)

where the first term is the reproductive value gained by becoming a subordinate if
the dominant dies, the second term is the reproductive value gained by becoming the
dominant if the dominant dies, and the third term is the reproductive value gained
by becoming a subordinate if the dominant survives.

The reproductive value gained by deciding not to join the nest is equal to the
reproductive value of floaters in the next time step, i.e.

V f (s,p),2(u
m, u, t) = V f (u

m, u, t+ 1), (C11a)
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v f (s,p),2(u
m, u, t) = v f (u

m, u, t + 1). (C11b)

Direct reproductive value of nests

Direct reproductive value of nests with only resident individuals

The number of offspring produced at final time T − 1 in a nest of type (s, p) is

υ(s,p)(u, T − 1) = ub(s,p),1(T − 1)w(s,p)(u, T − 1). (C12)

The reproductive value of a nest of type (s, p), where s = 0 at time t is given by

υ(0,p)(u, t) = η(s,p)υ(1,p)(u, t + 1) + (1 − η(s,p))υ(0,p)(u, t + 1). (C13)

The reproductive value of a nest of type (s, p), where s > 0 at time t is given by

υ(s,p)(u, t) =
∑
τ

ub(s,p),τ(t)υ(s,p),τ(u, t) (C14)

where υ(s,p),τ(u, t) is the reproductive value of a focal nest, given that the dominant
female has chosen the action τ. The reproductive value of a nest, given that the
dominant female stays in the focal nest, is

υ(s,p),1(u, t) = w(s,p)(u, t) +
∑s−1

i=0 zi
(s,p)

×

{
η(s,p)(u, t)

[
(1 − μb(s,p)(u, t))υ′

(i+2,p′)
(u, t)

+ μb(s,p)(u, t)υ′
(i+1,p′)

(u, t)
]

+ (1 − η(s,p)(u, t))
[
(1 − μb(s,p)(u, t))υ′

(i+1,p′)
(u, t + 1)

+ μb(s,p)(u, t))υ′
(i,p′)

(u, t)
]}

.

(C15)

where

υ
′
(s′,p′)

(u, t + 1) =
[
ω

1
(s,p)

(t)υ(s′,p+�p1
(s,p)

)(u
m, u, t + 1)

+ ω
2
(s,p)
υ(s′,p+�p2

(s,p)
)(u

m, u, t+ 1))
]

.
(C16)

In eq. (C15), the first term gives the number of offspring produced at time t,
the second term gives the number of offspring produced in the future given that a
floater joins the nest and the dominant survives, the third term gives the number of
offspring produced in the future, given that a floater joins the nest and the dominant
dies, the fourth term gives the number of offspring produced in the future given that
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no floater joins the nest and the dominant survives, the fifth term gives the number of
offspring produced in the future given that no floater joins the nest and the dominant
dies.

Similarly, the reproductive value of a nest, given that the dominant female
leaves the focal nest, is (keeping in mind that the dominant can leave the nest only
when there are no subordinates in the nest)

υ(s,p),2(u, t) = η(s,p)(u, t)υ(1,p)(u, t + 1) + (1 − η(s,p)(u, t))υ(0,p)(u, t + 1), (C17)

where the first term gives the reproductive value in the next time step, given that
a floater joins the nest, and the second term gives the reproductive value of a nest
given that a floater joins.

Direct reproductive value of a nest with a mutant dominant female

Dominants only exist in non-empty colonies (s > 0), soυm
b(s,p)

(um, u, t) = υ(s,p)(u
m, u, t)

if s < 1 for any time t. The number of offspring produced at final time T − 1 in a nest
of type (s, p) is

υ
m
b(s,p)

(um, u, T − 1) = um
b(s,p),1

(T − 1)w(s,p)(u, T − 1). (C18)

The reproductive value of a nest of type (s, p) at time t and afterwards if given by

υ
m
b(s,p)

(um, u, t) =
∑
τ

um
b(s,p),τ

(s, p, t)υm
b(s,p),τ

(um, u, t), (C19)

where υm
b(s,p),τ

(u, t) is the reproductive value of a focal nest, given that the (mutant)

dominant female has chosen the action τ. The reproductive value of a nest, given
that the dominant female stays in the focal nest, is

υ
m
b(s,p),1

(u, t) = w(s,p)(u, t) +
∑s−1

i=0 zi
(s,p)

×

{
η(s,p)(u, t)

[
(1 − μb(s,p)(u, t))υm′

b(i+2,p′)
(um, u, t)

+ μb(s,p)(u, t)υ
′

(i+1,p′)
(um, u, t)

]

+ (1 − η(s,p)(u, t))
[
(1 − μb(s,p)(u, t))υm′

b(i+1,p′)
(um, u, t + 1)

+ μb(s, p, t)υ
′

(i,p′)
(um, u, t)

]}
,

(C20)

where

υ
′
(s′,p′)

(u, t + 1) =

[
ω

1
(s,p)

(t)υm
b(s′,p+�p1

(s,p)
)
(um, u, t + 1)

+ ω
2
(s,p)
υ

m
b(s′,p+�p2

(s,p)
)
(um, u, t + 1)

]
.

(C21)
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In eq. (C20), the first term gives the number of offspring produced at time t, the
second term gives the number of offspring produced in the future given that a floater
joins the nest and the dominant survives, the third term gives the number of offspring
produced in the future given that a floater joins the nest and the dominant dies, the
fourth term gives the number of offspring produced in the future given that no floater
joins the nest and the dominant survives, the fifth term gives the number of offspring
produced in the future given that no floater joins the nest and the dominant dies.

Similarly, the reproductive value of a nest given that the dominant female leaves
the focal colony is

υ
m
b(s,p),2

(u, t) = υ(s,p),2(u, t). (C22)

Thus, if the mutant dominant female leaves the nest, then the reproductive value of
the nest will depend only on the resident strategy.

Direct reproductive value of a nest with a mutant subordinate female

Subordinates only exist in colonies of size s > 1, so υm
n(s,p)

(um, u, t) = υ(s,p)(u
m, u, t)

if s < 2 for any time t. Next, we derive υm
n(s,p)

(um, u, t), when s > 1. Since we have

assumed the the dominant never leaves such nests, we have simplified the equations
below by setting ub(s,p),1 = 1 and ub(s,p),2 = 0. Number of offspring produced at final

time T − 1 in a nest of type (s, p) is

υ
m
n(s,p)

(um, u, T − 1) =
∑
τ

um
n(s,p),τ

(T − 1)w̃τsp(u, T − 1). (C23)

The reproductive value of a nest of type (s, p) at time t < T − 1 is given by

υ
m
n(s,p)

(um, u, t) =
∑
τ

um
n(s,p),τ

(t)υm
n(s,p),τ

(um, u, t), (C24)

where υm
n(s,p),τ

(um, u, t) is the reproductive value of a focal nest given that the (mutant)

subordinate female has chosen the action τ. The reproductive value of a nest, given
that the subordinate has chosen the action τ ∈ {1, 2, 3}, is

υ
m
n(s,p),τ

(um, u, t) = w̃τ
(s,p)

(u, t) + μn,τ(t)υ
m,1
n(s,p),τ

(um, u, t)

+ (1 − μn,τ(t))υ
m,2
n(s,p),τ

(um, u, t),
(C25)

where υm,1
n(s,p),τ

(um, u, t) is the reproductive value of a focal colony given that the

(mutant) subordinate dies at time t and υm,2
n(s,p),τ

(um, u, t) is the reproductive value of a

focal colony given that the (mutant) subordinate survives at time t. The reproductive
value of a focal colony, given that the (mutant) subordinate dies at time t , is
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υ
m,1
n(s,p),τ

(um, u, t) =
∑s−2

i=0 zi
(s−1,p)

×

{
η(s,p)(u, t)

[
(1 − μ̃τ

b(s,p)
(u, t))υ

′

(i+2,p̃τ
′ )
(u, t + 1)

+ μ̃
τ

b(s,p)
(u, t)υ

′

(i+1,p̃τ
′
)
(u, t + 1)

]

+ (1 − η(s,p)(u, t))
[
(1 − μ̃τ

b(s,p)
(u, t))υ

′

(i+1,p̃τ
′ )
(u, t + 1)

+ μ̃
τ

b(s,p)
(u, t)υ

′

(i,p̃τ′ )
(u, t + 1)

]}
.

(C26)

where i is the number of subordinates that stay and survive in the focal nest at time
t, and

υ
′

(s′,p̃τ′ )
(u, t + 1) =

[
ω

1
(s,p)

(t)υ(s′ ,p+�p̃1
(s,p)

)(u
m, u, t + 1)

+ ω
2
(s,p)
υ(s′,p+�p̃2

(s,p)
)(u

m, u, t+ 1)
]

,
(C27)

is the reproductive value of the nest in the next time step, given that the nest will be
of size s′ and phase p + �p1

(s,p)
with probability ω1

(s,p)
(t) and phase p + �p2

(s,p)
with

probability ω2
(s,p)

(t).

In eq. (C26), the first term gives the number of offspring produced in the future
given that a floater joins the nest and the dominant survives, the second term gives
the number of offspring produced in the future given that a floater joins the nest
and the dominant dies, the third term gives the number of offspring produced in the
future given that no floater joins the nest and the dominant survives, the fourth term
gives the number of offspring produced in the future given that no floater joins the
nest and the dominant dies.

The reproductive value of a focal colony given that the (mutant) subordinate
survives at time t is

υ
m,2
n(s,p),τ

(um, u, t) =
∑s−2

i=0 zi
(s−1,p)

{
η(s,p)(u, t)

×

{
(1− μ̃τ

d(s,p)
(u, t))υm′

n(i+3,p̃τ
′
)
(um, u, t)

+ μ̃
τ

b(s,p)
(u, t)

×

[
1

i+2υ
m′

b(i+2,p̃τ
′)
(um, u, t) + i+1

i+2υ
m′

n(i+2,p̃τ
′)
(um, u, t)

]}
+ (1 − η(s,p)(u, t))

×

{
(1− μ̃τ

b(s,p)
(u, t))υm′

n(i+2,p̃τ
′ )
(um, u, t+ 1)

+ μ̃
τ

b(s,p)
(u, t)

×

[
1

i+1υ
m′

b(i+1,p̃τ
′)
(um, u, t) + i

i+1υ
m′

n(i+1,p̃τ
′)
(um, u, t)

]}}
.

(C28)

where
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υ
m′

i(s′,p̃τ
′
)
(u, t + 1) =

[
ω

1
(s,p)

(t)υm
i(s′ ,p+�p̃1

(s,p)
)
(um, u, t+ 1)

+ ω
2
(s,p)
υ

m
i(s′,p+�p̃2

(s,p)
)
(um, u, t+ 1)

]
,

(C29)

is the reproductive value of the nest in the next time step, where the focal mutant
female will be of type i (i ∈ {b, n}) in that nest and the nest will be of size s′ and phase
p + �p1

(s,p)
with probability ω1

(s,p)
(t) and phase p + �p2

(s,p)
with probability ω2

(s,p)
(t).

In eq. (C28) the first term gives the number of offspring produced in the future given
that a floater joins the nest and the dominant survives, the second term gives the
number of offspring produced in the future given that a floater joins the nest and the
dominant dies, the third term gives the number of offspring produced in the future
given that no floater joins the nest and the dominant survives, the fourth term gives
the number of offspring produced in the future given that no floater joins the nest
and the dominant dies.

The reproductive value of a nest, given that the mutant subordinate female
leaves the focal nest, is

υ
m
n(s,p),4

(u, t) = υ(s−1,p)(u, t). (C30)

Note that if the mutant subordinate female leaves the nest, then the reproductive
value of the nest will depend only on the resident strategy.

Direct reproductive value gained by a mutant dominant from the

focal nest site

Note that, since dominants only exist in nests of size s > 0, we have vb(0,p)(u
m, u, t) = 0

for any p ∈ [0, P] and t ∈ [0, T − 1]. The direct reproductive value that the dominant
gains in a nest of type (s, p) at time t is given by

vb(s,p)(u
m, u, t) =

∑
τ

um
b(s,p),τ

vb(s,p),τ(u
m, u, t), (C31)

where the direct reproductive value gained by choosing to stay at the nest is

vb(s,p),1(u
m, u, t) = w(s,p)(u, t)

+ (1 − μb(s,p)(u, t))
∑s−1

i=0 zi
(s,p)

[
η(s,p)(t)v

′
b(i+2,p′)

(um, u, t+ 1)

+ (1 − η(s,p)(t))v
′
b(i+1,p′)

(um, u, t+ 1)
]

,

(C32)
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where the first term gives the direct fitness gained at time t, the second term gives
the direct fitness gained in the future provided that that the dominant survives and
a floater joins the nest, and the third term gives the direct fitness gained in the future
provided that that the dominant survives and no floater joins.

The reproductive value gained by choosing to leave the nest is

vb(s,p),2(u
m, u, t) = 0. (C33)

Inclusive reproductive value of a mutant dominant female gained

by leaving the focal nest site

At final time

V◦
b(s,p)

(um, u, T − 1) = 0. (C34)

Similarly, as before, since dominants only exist in nests of size s > 0, we have
V◦

b(s,p)
(um, u, t) = 0 for any p ∈ [0, P] and t ∈ [0, T − 1]. Direct reproductive value that

the dominant gains in a nest of type (s, p) at time t is given by

V◦
b(s,p)

(um, u, t) =
∑
τ

um
b(s,p),τ

V◦
b(s,p),τ

(um, u, t), (C35)

V◦
b(s,p),1

(um, u, t) = (1 − μb(s,p)(t))
∑s−1

i=0 zi
(s,p)

[
η(s,p)(t)V

◦′

b(i+2,p′)
(um, u, t+ 1)

+ (1 − η(s,p)(t))V
◦′

b(i+1,p′)
(um, u, t + 1)

]
,

(C36)

V◦
b(s,p),2

(um, u, t) = (1− μb(s,p)(u, t))V f (u
m, u, t + 1). (C37)

Direct reproductive value gained by a mutant subordinate from the

focal nest site

The number of offspring produced at final time T − 1 by a subordinate female in a
nest of type (s, p) is

vn(s,p)(T − 1) = 0. (C38)

Note that, since subordinates only exist in nests of size s > 1, we define vn(s,p)(s ≤

1, p, t) = 0 for any p ∈ [0, P] and t ∈ [0, T − 1]. The direct reproductive value of a
subordinate in a nest of type (s > 1, p) at time t is
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vn(s,p)(u
m, u, t) =

∑
τ

un(s,p),τ(t)vn(s,p),τ(u
m, u, t). (C39)

The reproductive value gained by choosing an action τ ∈ {1, 2, 3} is given by

vn(s,p),τ(u
m, u, t) = (1 − μn,τ(u, t))

∑s−2
i=0 zi

(s−1,p)
(u, t)

×

{
μ̃
τ

b(s,p)
(u, t)η(s,p)(t)

×

[
1

i+2v′
b(i+2,p̃τ

′
)
(um, u, t+ 1) + i+1

i+2v′
n(i+2,p̃τ

′
)
(um, u, t + 1)

]
+ μ̃

τ

b(s,p)
(u, t)(1 − η(s,p)(t))

×

[
1

i+1v′
b(i+1,p̃τ

′
)
(um, u, t+ 1) + i

i+1v′
n(i+1,p̃τ

′
)
(um, u, t + 1)

]
+ (1 − μ̃τ

b(s,p)
(u, t)η(s,p)(t)v

′

n(i+1,p̃τ
′ )
(um, u, t+ 1)

+ (1 − μ̃τ
b(s,p)

(u, t))(1 − η(s,p)(t))v
′

n(i,p̃τ
′
)
(um, u, t+ 1)

}
,

(C40)
where the first term (second and third line) gives the number of offspring produced in
the future given that the dominant dies and a floater joins the nest and the subordinate
either becomes the dominant or stays a subordinate,the second term (fourth and fifth
line) gives the number of offspring produced in the future given that the dominant
dies and no floater joins the nest and the subordinate either becomes the dominant or
stays a subordinate, the third term (sixth line) gives the number of offspring produced
in the future given that the dominant survives and a floater joins the nest and the
subordinate stays a subordinate, the fourth term (seventh line) gives the number of
offspring produced in the future given that the dominant survives and no floater
joins the nest and the subordinate stays a subordinate.

The reproductive value gained by choosing to leave the nest is

vn(s,p),4(u
m, u, t) = 0. (C41)

Inclusive reproductive value of a mutant subordinate female gained

by leaving the focal nest site

At final time

V◦
n(s,p)

(um, u, T − 1) = 0. (C42)

Similarly as before, since subordinates only exist in nests of size s > 1, we define
V◦

n(s,p)
(s ≤ 1, p, t) = 0 for any p ∈ [0, P] and t ∈ [0, T − 1]. The direct reproductive

value that the subordinate gains in a nest of type (s, p) at time t is given by
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V◦
n(s,p)

(um, u, t) =
∑
τ

um
n(s,p),τ

V◦
n(s,p),τ

(um, u, t), (C43)

where for τ ∈ {1, 2, 3}

V◦
b(s,p),τ

(um, u, t) = (1 − μn,τ(u, t))
∑s−2

i=0 zi
(s−1,p)

(u, t)

×

{
μ̃
τ

b(s,p)
(u, t)η(s,p)(t)

×

[
1

i+2V◦
′

b(i+2,p̃τ
′
)
(um, u, t + 1) + i+1

i+2V◦
′

n(i+2,p̃τ
′
)
(um, u, t+ 1)

]
+ μ̃

τ

b(s,p)
(u, t)(1 − η(s,p)(t))

×

[
1

i+1V◦
′

b(i+1,p̃τ
′)
(um, u, t + 1) i

i+1V◦
′

n(i+1,p̃τ
′)
(um, u, t + 1)

]
+ (1 − μ̃τ

b(s,p)
(u, t)η(s,p)(t)V

◦′

n(i+3,p̃τ
′
)
(um, u, t + 1)

+ (1 − μ̃τ
b(s,p)

(u, t))(1 − η(s,p)(t))V
◦′

n(i+2,p̃τ
′ )
(um, u, t+ 1)

}
,

(C44)
where the first term (second and third line) gives the inclusive reproductive value of
leaving in the future given that the dominant dies and a floater joins the nest and the
subordinate either becomes the dominant or stays a subordinate, the second term
(fourth and fifth line) gives the inclusive reproductive value of leaving in the future
given that the dominant dies and no floater joins the nest and the subordinate either
becomes the dominant or stays a subordinate, the third term (sixth line) gives the
inclusive reproductive value of leaving in the future given that the dominant survives
and a floater joins the nest and the subordinate stays a subordinate, the fourth term
(seventh line) gives the inclusive reproductive value of leaving in the future given
that the dominant survives and no floater joins the nest and the subordinate stays a
subordinate. If the subordinate chooses the action for τ = 4 then

V◦
n(s,p),4

(um, u, t) = (1 − μn,4)V f (u
m, u, t+ 1). (C45)
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APPENDIX D: RESULTS FOR MAXIMUM NEST SIZE OF S=3

Here, we show the results of our model if we allow the formation of larger nest
sizes. We see from figs. D1 and D2 that co-foundress associations and helping can
evolve also if we relax the condition for a small group size. We also observe that
the behavioural tendencies (see figs. D2-D5) of the subordinates also depend on
the group’s size and the group size effect also depends on other factors, such as
relatedness. The analysis of the group size effects needs to be studied in much more
detail. The modelling approach presented here gives a basic framework to model
state-dependent decision making of cooperatively breeding social systems and in this
paper we have only begun to scratch the surface of what new insights this approach
will give.
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Figure D1: Percentage of co-foundress nests in three different populations for varying
levels of average relatedness between co-foundresses. Nests of size s = 2 (solid lines),
nests of size s = 3 (dashed lines). We have modelled three types of populations: (i)
r = 0.75, P = 0, solitary foundresses are just as likely to die as dominants and helpful
subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04); (ii) r = 0, P = 0,
solitary foundresses are just as likely to die as dominants and helpful subordinates
in co-foundress nests (μs = μb0 = μn,1 = 0.04); (iii) r = 0.75, P = 5, solitary
foundresses are just as likely to die as dominants and helpful subordinates in co-
foundress nests (μs = μb0 = μn,1 = 0.04) ; (iv) r = 0, P = 5, solitary foundresses
are just as likely to die as dominants and helpful subordinates in co-foundress nests
(μs = μb0 = μn,1 = 0.04); (v) r = 0.75, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04); (vi) r = 0, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04). Other parameter values: r0 = 0.01, S = 2, h = 1,
a = 0.1, μ f = 0.01, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000,
x f (0) = 1000, ε = 1, δ = 0.05.
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Figure D2: Evolutionarily stable probability of subordinates to help (u∗
n(s,p),1

(t)). The

probabilities have been averaged over different nest phases. Nests of size s = 2
(solid lines), nests of size s = 3 (dashed lines). We have modelled three types of
populations: (i) r = 0.75, P = 0, solitary foundresses are just as likely to die as
dominants and helpful subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04);
(ii) r = 0, P = 0, solitary foundresses are just as likely to die as dominants and helpful
subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04); (iii) r = 0.75, P = 5,
solitary foundresses are just as likely to die as dominants and helpful subordinates
in co-foundress nests (μs = μb0 = μn,1 = 0.04) ; (iv) r = 0, P = 5, solitary foundresses
are just as likely to die as dominants and helpful subordinates in co-foundress nests
(μs = μb0 = μn,1 = 0.04); (v) r = 0.75, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04); (vi) r = 0, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04). Other parameter values: r0 = 0.01, S = 2, h = 1,
a = 0.1, μ f = 0.01, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000,
x f (0) = 1000, ε = 1, δ = 0.05.
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Figure D3: Evolutionarily stable probability of subordinates to be aggressive
(u∗

n(s,p),2
(t)). The probabilities have been averaged over different nest phases. Nests

of size s = 2 (solid lines), nests of size s = 3 (dashed lines). We have modelled three
types of populations: (i) r = 0.75, P = 0, solitary foundresses are just as likely to die as
dominants and helpful subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04);
(ii) r = 0, P = 0, solitary foundresses are just as likely to die as dominants and helpful
subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04); (iii) r = 0.75, P = 5,
solitary foundresses are just as likely to die as dominants and helpful subordinates
in co-foundress nests (μs = μb0 = μn,1 = 0.04) ; (iv) r = 0, P = 5, solitary foundresses
are just as likely to die as dominants and helpful subordinates in co-foundress nests
(μs = μb0 = μn,1 = 0.04); (v) r = 0.75, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04); (vi) r = 0, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04). Other parameter values: r0 = 0.01, S = 2, h = 1,
a = 0.1, μ f = 0.01, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000,
x f (0) = 1000, ε = 1, δ = 0.05.
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Figure D4: Evolutionarily stable probability of subordinates to sit and wait
(u∗

n(s,p),3
(t)). The probabilities have been averaged over different nest phases. Nests

of size s = 2 (solid lines), nests of size s = 3 (dashed lines). We have modelled three
types of populations: (i) r = 0.75, P = 0, solitary foundresses are just as likely to die as
dominants and helpful subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04);
(ii) r = 0, P = 0, solitary foundresses are just as likely to die as dominants and helpful
subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04); (iii) r = 0.75, P = 5,
solitary foundresses are just as likely to die as dominants and helpful subordinates
in co-foundress nests (μs = μb0 = μn,1 = 0.04) ; (iv) r = 0, P = 5, solitary foundresses
are just as likely to die as dominants and helpful subordinates in co-foundress nests
(μs = μb0 = μn,1 = 0.04); (v) r = 0.75, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04); (vi) r = 0, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04). Other parameter values: r0 = 0.01, S = 2, h = 1,
a = 0.1, μ f = 0.01, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000,
x f (0) = 1000, ε = 1, δ = 0.05.
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Figure D5: Evolutionarily stable probability of subordinates to leave (u∗
n(s,p),4

(t)).

The probabilities have been averaged over different nest phases. Nests of size s = 2
(solid lines), nests of size s = 3 (dashed lines). We have modelled three types of
populations: (i) r = 0.75, P = 0, solitary foundresses are just as likely to die as
dominants and helpful subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04);
(ii) r = 0, P = 0, solitary foundresses are just as likely to die as dominants and helpful
subordinates in co-foundress nests (μs = μb0 = μn,1 = 0.04); (iii) r = 0.75, P = 5,
solitary foundresses are just as likely to die as dominants and helpful subordinates
in co-foundress nests (μs = μb0 = μn,1 = 0.04) ; (iv) r = 0, P = 5, solitary foundresses
are just as likely to die as dominants and helpful subordinates in co-foundress nests
(μs = μb0 = μn,1 = 0.04); (v) r = 0.75, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04); (vi) r = 0, P = 5, solitary foundresses are three times
more likely to die than dominants and helpful subordinates in co-foundress nests
(μs = 0.12, μb0 = μn,1 = 0.04). Other parameter values: r0 = 0.01, S = 2, h = 1,
a = 0.1, μ f = 0.01, μn,2 = 0.04, μn,3 = 0.01, μn,4 = 0.01, α0 = 0.3, M = 1.7, N = 1000,
x f (0) = 1000, ε = 1, δ = 0.05.
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