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Alkusanat

Tédméa Pro gradu -tutkielma koostuu suomenkielisestd johdanto-osuudesta ja
varsinaisesta julkaistavaksi ldhetetysté artikkelista. Johdannossa kiydaén lapi
menetelmid, joita gradussa kiytettiin.

Tyo6n tavoitteena oli simuloida kaksiulotteisen kultasaarekkeen kasvua gra-
feenin reunalle. Kasvuprosessi on jaettu neljdén vaiheeseen: i) kulta-atomit liik-
kuvat grafeenikerroksen pailla, ii) kulta-atomit saapuvat grafeeni-kulta raja-
pinnalle, iii) kulta-atomit liikkuvat 2D-kultatason p#élld, ja iv) kulta-atomit
saapuvat 2D-kultatason reunalle. Padtarkoituksena oli tutkia kuinka helposti
kulta-atomit liikkkuvat grafeenitason reunalle, ja asettuvatko kulta-atomit kak-
siulotteisesti samaan tasoon grafeenin kanssa. Témén johdannon tarkoituksena
on antaa yleiskuva laskuista ja laskuissa kdytetyistd metodeista.



1 Johdanto

Yleisesti laskut etenivét jokaisessa vaiheessa samalla tavalla: kulta-atomi ase-
tettiin eri adsorptiopaikkoihin joko grafeeni- tai kultatason péélle tai reunalle,
minka jélkeen systeemin annettiin relaksoitua. Néin saatiin laskettua adsorptio-
energiat yhtalosta

Eaas = Eop + Eay atom — Erelax» (1)

missd Fop on systeemin energia ilman liséttyd kulta-atomia, Eay atom On va-
paan kulta-atomin energia, ja FEielax on relaksoidun systeemin energia. Taméan
jalkeen tutkimuksen kohteena oli kulta-atomin diffundoituminen adsorptiopaik-
kojen valilli kiyttden Nudged Elastic Band -metodia [1]. Poikkeuksen muodosti
vaihe 2 (grafeeni-kulta rajapinta), jossa kulta-atomeita lisdttiin useampi kappale
vksi kerrallaan grafeenin reunalle.

Kaikki energiat on laskettu kdyttéen tiheysfunktionaaliteoriaa (density-func-
tional theory, DFT), jonka perusteet esitelliin kappaleessa 1.1. Oleellinen osa
tiheysfunktionaaliteoriaa on ns. vaihto- ja korrelaatiofunktionaali, jonka approk-
simointiin on kehitetty useita metodeja, esimerkiksi LDA-, GGA-, ja van der
Waals -funktionaalit. Téssé tyossd on kdytetty Perdew-Burke-Ernzerhofin PBE-
funktionaalia [5], joka kuuluu GGA-funktionaalien joukkoon. Laskut tehtiin
GPAW-ohjelmistolla [2, 3], joka perustuu projector-augmented wave -metodiin
(PAW [4]). PAW kéytt#d ns. pseudo-aaltofunktioita oikeiden aaltofunktioiden si-
jaan; tdméa yksinkertaistaa laskuja huomattavasti. Laskuissa kdytettiin LCAO-
moodia, missé aaltofunktiot esitetddn atomiorbitaalien lineraarikombinaatioina.

1.1 Tiheysfunktionaaliteoria
1.1.1 Hohenberg-Kohn teoreemat

Tiheysfunktionaaliteoria (DFT) tarjoaa keinon ratkaista monen kappaleen Schro-
dingerin yht&lo R o R
HVY=(T+V+U)=EY, (2)

missi H on systeemin Hamiltonin operaattori, T kuvaa elektronien liike-energiaa,
V elektroni-elektroni vuorovaikutusta, ja U elektroni-ydin vuorovaikutusta. Ole-
tuksena on Born-Oppenheimer-approksimaatio: ytimien kineettinen energia j&-
tetddn huomiotta, ja ytimien oletetaan olevan paikallaan elektroneiden kannalta,
johtuen ytimien huomattavasti suuremmasta massasta.
Tiheysfunktionaaliteorian perustana on kaksi Hohenberg-Kohn teoreemaa
[7]. Ensimmaéisen mukaan ulkoinen potentiaali V. (7) voidaan esittaé elektroni-
tiheyden funktionaalina. Toisen teoreeman mukaan systeemin perustilan ener-
gia F saadaan minimoimalla funktionaali E[n]; tiheys joka minimoi tdmén ener-
gian on tasmalleen systeemin perustilan tiheys. Maarittamélla Hohenberg-Kohn
funktionaali
Frk([n] = T[n] + Eee[n] (3)



energia voidaan kirjoittaa
Euk[n] =T[n] + Eee[n] + Eext[n]

= Fuxln] + / Viwt (F)n(F)dF, (4)

missé ydin-elektroni vuorovaikutuksesta johtuva energia voidaan kirjoittaa muo-
dossa Eeyi[n] = [Veut(F)n(F)d7r. Hohenberg-Kohn teoreemat eiviit tarjoa kon-
kreettista keinoa laskea tiheytta tai energiaa, mutta téasté jatkamaan kehitettiin
Kohn-Sham formalismi. [6]

1.1.2 Kohn-Sham formalismi

Kohn-Sham formalismissa [8] oikea vuorovaikuttava systeemi korvataan uudella
vuorovaikuttamattomalla referenssisysteemilld, jonka perustilan tiheys on sama
kuin oikealla systeemilld, ja elektronien katsotaan liikkuvan ns. Kohn-Sham po-
tentiaalissa Vi g (7). Yhtdlon (3) E.. voidaan jakaa kahteen osaan: tunnettuun
klassiseen Coulombin energiaan Fp[n] (Hartree-energia) ja tuntemattomaan ei-
klassiseen osaan E,.[n]:

Fo. = Eu[n] + Enetln] = % / / Wdﬂdfg b Bal. ()

Vuorovaikuttamattoman systeemin kineettinen energia tunnetaan, ja se voidaan
ilmoittaa yksittiisten elektroneiden aaltofunktioiden (spin-orbitaalien) v; avul-

la:

1N

_ 2
Tsf—izwiw i) - (6)
K3
Néiden spin-orbitaalien neli6t summautuvat oikean systeemin perustilan tihey-
deksi, ts.

N
no(7) =Y > [l 5)|. (7)
Nyt yhtélostd (3) saadaan

Fln] = Ts[n] + (T[n] — Ts[nl) + En[n] + Enaln]
= Ts[n] + Enln] + Eyc[n], (8)

missé termiin F,.[n] on koottu kaikki tuntematon:
Eqe[n] = (T'n] = Ts[n]) + Enaln] (9)

Funktionaalia E,.[n] sanotaan vaihto- ja korrelaatiofunktionaaliksi (xc-funktio-
naali). [6]



1.1.3 Kohn-Sham yhtal6t
Systeemin energia on nyt
E[n] = Ts[n] + Eg[n] + Eyc[n] + Eextn)]. (10)

Kéayttamalla variaatioperiaatetta, ts. minimoimalla yhtalo (10) tiheyden suhteen
voidaan johtaa ns. Kohn-Sham yht&lot:

1
(—2V2 + VKS(F)) i = eithi, (11)
missé Kohn-Sham potentiaali Vigg(7) on
0Fm  0Eg
VKS(F) = Vemt(F) + W + on
= emt(F) + VH(F) + VIC(F)~ (12)

Tiheysfunktionaaliteorian keskipisteessd on vaihto- ja korrelaatiofunktionaalin
E..[n] ja samalla potentiaalin V,.. approksimointi; sen avulla saadaan ratkaistua
orbitaalit Kohn-Sham yht#ldisté ja orbitaalien avulla perustilan tiheys yhtalosta

(7). 16]

1.2 XC-funktionaalin approksimointi

Kaytdnnossa approksimoinnissa xc-funktionaali jaetaan vaihto- ja korrelaatio-
osiin
Exc = Ex + EC; (]‘3)

joita approksimoidaan erikseen. Yleisid xc-funktionaalin approksimaatioita ovat
paikallistiheysapproksimaatio (local-density approximation, LDA), yleistetty gra-
dienttiapproksimaatio (generalized gradient approximation, GGA), hybridifunk-
tionaalit, ja van der Waals -funktionaalit. LDA on néisté yksinkertaisin: tihey-
deksi oletetaan homogeenisen elektronikaasun tiheys. Taémé& malli toimii hyvin
esimerkiksi yksinkertaisilla metalleilla, mutta pettda usein monimutkaisemmilla
systeemeilld, joilla tiheys vaihtelee voimakkaasti. GGA-funktionaaleissa kéyte-
téaén tiheyden lisdksi my6s tiheyden gradienttia Vn(7); talloin myos ympéris-
ton muutokset tiheydessé otetaan huomioon kussakin pisteessi. Yleisida GGA-
funktionaaleja ovat esimerkiksi BLYP [9,10] ja téssikin tyossé kiytetty PBE.

LDA- ja GGA-funktionaalit ovat lokaaleja funktionaaleja, ts. epdlokaalit van
der Waals -vuorovaikutukset jadvét kokonaan huomiotta. Tatd varten on kehi-
tetty ns. van der Waals -funktionaaleja, joiden tavoitteena on ottaa myts vdW-
vuorovaikutus huomioon. Yleisid vdW-funktionaaleja ovat esimerkiksi VdW-
DF [11], VAW-DF2 [12], Grimme DFT-D [13], ja VV10 [14]. Ndm4 funktionaalit
tuottavat tarkempia tuloksia monille materiaaleille, joissa vdW-vuorovaikutus
on vahva verrattuna muihin sidosvoimiin. Usein kuitenkin vdW-voimat ovat
verrattain pienid esimerkiksi kovalenttisesti sitoutuneissa materiaaleissa, joten
vdW-funktionaalien kiytto ei ole aina vilttdmattomyys.



1.3 PBE

Perdew-Burke-Ernzerhofin PBE-funktionaalissa [5] vaihto-osa Ey voidaan esit-
t44 muodossa

EYBE — /d%n(r)eﬁnif(n)Fx(s), (14)
missé n(r) on tiheys, €M = —3ekp /47 on homogeenisen elektronikaasun ener-
giatiheyden vaihto-osa, kp = [372n(r")]*/3 on Fermin aaltovektori. PBE:ss# F(s)
on méaritelty

F(s)=1+k— (15)

&
1+ ps?/k’
missd k = 0.804, u = 0.21951, ja s = |Vn|/2kpn on dimensioton tiheysgradient-
ti.

PBE-funktionaalin korrelaatio-osa on

EPE = / drn(r) e (ry, €) + H(r, 1)), (16)

missd 75 = [(47/3)n]'/? on lokaali Seitzin siide, ¢ = (ny —ny)/n on suhteellinen
spin-polarisaatio, t = |Vn|/2¢ksn on dimensioton tiheysgradientti. Tiheysgra-
dientissa esiintyvi ¢(¢) = [(1+¢)?/3 + (1 —¢)?/3]/2 on spinin skaalauskerroin ja
ky = \/4kp /mag, missi ag = h%/me?. PBE:ssi funktiolle H on johdettu muoto

B 1+ At?
H = (62/a0)’}/¢3 ln (1 + ;t2 |:1—i—‘Atz—|—A~2t4:|> s (17)

missi v = 0.031091, 8 = 0.066725, ja A = (B8/7)[exp{—e™/(y¢3e?/ag)} —1] 1.
PBE:ssé ei ole empirisid parametreja; kaikki parametrit on johdettu asettamalla
ehtoja esimerkiksi tiheysgradienteille niiden ldhestyessa nollaa tai déretonté.

1.4 Nudged Elastic Band -metodi

Nudged Elastic Band -metodin (NEB [1]) tavoitteena on 1oytd4 minimienergia-
polku (MEP) prosessille, jonka alku- ja lopputila on tiedossa. Alku- ja lopputilan
vélille luodaan joukko kopioita (ts. kuvia) systeemistd muodostaen alkuarvaus
polulle. Polun jatkuvuuden varmistamiseksi vierekkiisten kuvien vélille liséta4an
jousivuorovaikutus. Systeemit optimoidaan minimoimalla vaikuttava voima ku-
hunkin kuvaan, ja lopputuloksena saadaan minimienergiapolku (Kuva 1). Op-
timointiprosessissa lisdtysté jousivoimasta lasketaan vain polun kanssa yhden-
suuntainen komponentti Fg|| ja todellisesta voimasta polkua vastaan kohtisuora
komponentti F| , ts. NEB-voima on

Fxgp = Fg + F1L. (18)

Téamaéa varmistaa, etteivit jousivoimat vaikuta MEP-konvergenssiin, eika todel-
linen voima kuvien jaotteluun.



Kuva 1: Nudged Elastic Band -metodia havainnollistava kuva. Katkoviivalla
merkitty polku on alkuarvaus minimienergiapolulle. Minimienergiapolku on pu-
naisella merkitty polku. Téssé tapauksessa on kiytetty kolmea kuvaa (mustat
ympyrit) alku- ja lopputilan (siniset ympyrat) vélilla. Alkupolusta paadytadn
lopulta minimienergiapolkuun minimoimalla vaikuttava voima kuhunkin kuvaan
usean iteraation jélkeen.

Téssé tyossa kiytettiin kolmea kuvaa alku- ja lopputilan vélilld; reaktiopolut
olivat melko yksinkertaisia, joten tdmé& kuvien méara oli riittava. Alku- ja loppu-
tilat olivat vierekkaiset adsorptiopaikat joko grafeeni- ja kultatasojen paallé tai
reunalla. Toistamalla laskut kaikkien adsorptiopaikkojen vililla saatiin lopulta
potentiaalienergiapinta, joka kuvaa kulta-atomin reittid tason paéltd reunalle.
Useissa reunalaskuissa NEB-metodia ei kuitenkaan tarvittu, koska tason péal-
14 l1ahelld reunaa ei 16ytynyt stabiilia adsorptiopaikkaa, vaan kulta-atomi siirtyi
optimoinnissa suoraan reunalle.
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Growth of two-dimensional Au patches in graphene pores: a density-functional study

Saku Antikainen! and Pekka Koskinen!
! NanoScience Center, Department of Physics, University of Jyvaskyla, 40014 Jyvaskyla, Finland

Inspired by recent studies of various two-dimensional (2D) metals such as Au, Fe and Ag, we
study the growth of two-dimensional gold patches in graphene pores by density-functional theory.
We find that at room temperature gold atoms move readily on top of both graphene and two-
dimensional gold with energy barriers less than 0.5 eV. Our calculations show that gold atoms have
energy barriers neither for moving from the top of graphene to its edge nor for moving from the
top of 2D gold to its edge. The energy barriers are absent even at the interface of 2D gold and
graphene, so that the gold atoms move effortlessly across the interface. We hope our demonstration
for the propensity of diffusing gold atoms to grow 2D gold patches in graphene pores will inspire

the fabrication of these patches experimentally.

I. INTRODUCTION

The great success with graphene has sparked much ad-
ditional interest to other possible two-dimensional (2D)
materials. The dimensionality can change the proper-
ties of the material greatly, of which graphene is a prime
example: it has extremely high carrier mobility and
thermal conductivity, and it demonstrates the Quantum
Hall effect.’? Another example is the transition-metal
dichalcogenide MoSs: bulk MoS; is an indirect bandgap
semiconductor, while a monolayer MoS,; becomes a di-
rect gap semiconductor.>* Both graphite and bulk MoS,
consist of covalently bound layers that are held together
by the weak van der Waals (vdW) interactions. Bulk
metals have no such layered structure, and thus the fab-
rication of two-dimensional metallic structures is more
problematic. However, the recent interest in 2D metals
has generated a number of studies to inspect the possi-
bility of their existence.

For example, the simulations of 2D metals have shown
promising results about their stability. For gold Yang
et al. have predicted a stable, two-dimensional lattice
structure with hexagonal symmetry.® In addition, bond
strength was found to increase greatly when going from
bulk 3D Au to 2D Au, analogously to the case of 3D di-
amond and 2D graphene. Similar predictions were made
for 2D silver, which was also found to prefer a hexagonal
lattice structure.! In addition to static properties, Kosk-
inen and Korhonen have predicted the existence of a lig-
uid phase of a free-standing, atomically thin 2D Au layer
suspended in graphene pores.® However, a free-standing
two-dimensional layer of gold is yet to be produced exper-
imentally. Zhao et al. have managed to create a single-
atom-thick iron layer suspended in graphene pores”; this
idea could likewise be applied to other metals. Shao et
al. suggest with their simulations that a square lattice
monolayer Fe is energetically unstable, and that the ex-
perimentally observed Fe monolayers would instead be
made of a mixture of Fe and C.® The possibility of a
combination of carbon and metal is certainly worth in-
vestigating in further studies of 2D metals.

In any case, recent studies indicate that gold in par-
ticular is an interesting candidate for a 2D metal. In
nanoscale, gold has been found to behave very differ-
ently from the inert bulk gold. For example, small gold
clusters of up to 20 atoms have been shown to exhibit cat-
alytic activity with the combustion of CO.? It is known
that small gold cluster anions of up to 12 or even 13
atoms have two-dimensional ground states.'%!! This ex-

ceptional planar stability is attributed to the relativistic
effects on gold. The studies of 2D Au have been promis-
ing, but creating a free-standing 2D monolayer of gold is
experimentally problematic. Yet it has been shown that
a gold atom interacts strongly with a graphene edge.!?
These properties of gold, combined with the success of
producing a Fe monolayer suspended in graphene pores,
give faith that two-dimensional structures could be syn-
thesized with gold and perhaps even with other metals.

Here we have simulated the growth of a 2D gold patch
at the edge of graphene using density-functional theory
(DFT) in order to study how the Au atoms behave at the
graphene edge and how the 2D gold patch grows. We per-
formed DFT calculations to investigate the behavior of
gold atoms at different stages of the growth process. We
analyze the growth process in four stages: i) originating
from some source of atomic gold, gold atoms move on top
of a graphene sheet, ii) a gold patch begins to form at
the edge of the graphene, iii) gold atoms move on top of
the gold patch, and iv) the gold atoms move from the top
of the gold patch to the edge of the gold patch, thereby
growing the patch. We studied the adsorption of gold at
different adsorption sites on top of the graphene and 2D
gold sheets, as well as at the edge of the sheets. In addi-
tion, we determined the potential energy surfaces (PES)
for the movement of gold atoms between various adsorp-
tion sites. These potential energy landscapes indicate
clearly that gold atoms prefer to move quickly from the
top of graphene across the graphene-gold interface and
to the edge of the 2D gold patch.

II. METHODS

Our goal was to model the growth of a gold patch at
the edge of a graphene pore. More precisely, we mod-
eled gold atoms moving on top of graphene towards the
edge so that when they met the edge a gold patch be-
gan to form. Hence the overall process could be broken
into four stages, as sketched in Figure 1. First, we used
a 2D graphene sheet with a single gold atom at vari-
ous adsorption sites. Second, to model the growth of
graphene-2D metal interface we used graphene nanorib-
bon with varying number of gold atoms at the edge. We
used both a zig-zag-edged graphene nanoribbon (ZGNR)
and an armchair-edged graphene nanoribbon (AGNR).
Third, we used a 2D gold sheet with a single gold atom
at various adsorption sites. And fourth, to model the ac-
tual growth of the gold patch we used a one-dimensional
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Fig. 1. Overall picture of the growth process. On the left is an infinite 2D graphene sheet with a growing patch of gold in the
middle. The growth process is divided into four pieces, labeled 1-4: 1) a 2D periodic graphene sheet with top[t], hollow[h] and
bridge[b] adsorption sites, 2) a 1D periodic graphene zigzag-edge and armchair-edge with gold at the edge, 3) a 2D periodic
gold patch with top[t], hollow[h] and bridge[b] adsorption sites, and 4) a 1D periodic gold edge.

gold edge with an additional gold atom at the edge.

The DFT calculations were performed using atomic
simulation environment'™ and GPAW!415  which is
based on the projector-augmented wave method
(PAW)16.  The generalized gradient approximation
exchange-correlation functional of Perdew, Burke, and
Ernzerhof (PBE)!” was used throughout the calculations.
All calculations were made in local basis mode (LCAO)
with double-zeta polarized basis, and some additional
calculations in Finite Difference (FD) mode.

For the 2D structures (2D Au and graphene), the con-
vergence of adsorption energy of a single Au atom on the
2D sheet was tested with respect to unit cell size and
k-point sampling. The adsorption energy was calculated
according to equation

Eads = E2D + EAu atom — (]-)
where Esp is the energy of the 2D sheet without the
adsorbate, Fay atom is the energy of a free Au atom and
Ee1ax is the energy of the relaxed system. To get Frelax,
the atoms of the 2D sheet were fixed, while the adsor-
bate was allowed to move until the forces on all atoms
were <0.05 ¢V /A. The calculations were made with both
LCAO- and FD-mode, but we chose LCAO-mode for the
rest of the simulations because its accuracy turned out
to be sufficient compared to FD-mode. We chose k-point
sampling of 3x3x1 for both of the systems; for 2D Au we
chose cell size of 4x4 atoms and for graphene 8x4 atoms,
as the adsorption energy was found to be sufficiently con-
verged already at these values. We used a lattice constant
of 1.42 A for graphene and 2.76 A for 2D Au; the 2D Au

Erelax7

had a hexagonal lattice structure.® The 2D sheets were
periodic in x-y-plane and non-periodic in z-direction with
a 6.0 A vacuum on both sides of the sheet.

The edges of gold and graphene were modeled using
1D periodic systems. The periodicity was in x-direction
with 6.0 A of vacuum in both y- and z-directions. For
the 1D structures (1D Au, ZGNR, and AGNR), the con-
vergence of adsorption energy of an Au atom at the edge
with respect to the number of rows of Au or C-atoms
in the y-direction was investigated. In these convergence
calculations the atom positions were kept fixed because
we were merely interested in the convergence of the ad-
sorption energy with respect to the electronic structure
rather than the relaxation of the atoms. The edge energy
of the nanoribbon was obtained from the equation for the
total energy of the nanoribbon:

(2)

where N is number of atoms in the unit cell, eop is
cohesion energy of the infinite 2D sheet, Legge is the total
edge length (2 times the cell x-length) and eeqge is the
edge energy. We chose the number of atoms in a row
to be 12 for AGNR and 10 for ZGNR, as this produced
nearly equal unit cell sizes and allowed for enough gold
atoms to be placed at the edge. Finally, to keep the cell
sizes comparable, the unit cell of 1D Au contained four
gold atoms in a row.

To study the actual growth of the gold patch, we added
Au atoms one by one to the edge and allowed the system
to relax between each added atom, using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS)'® algorithm for opti-

Eiotal = —N - €2p + Ledge * Eedge



mization. For all the systems described above, we calcu-
lated the adsorption energy of a gold atom at different
sites. In addition, we studied the potential energy sur-
face (PES) of gold atom on the 2D sheets and along the
edges. To calculate the potential energy surfaces between
various adsorption sites, we used the nudged elastic band
-method (NEB)'® with 3 images between the start and
end points. This number of images was sufficient because
the reaction paths were fairly simple.

III. RESULTS
A. Stage 1: Gold on graphene

We begun to model the growth process by investigating
the movements of a single gold atom on top of graphene.
This is a good starting point because much is already
known of the diffusion of gold on graphene.?%2! The ob-
tained adsorption energies of a single Au atom at hollow,
bridge, and top sites on 2D graphene were calculated
with Equation (1). The adsorption energies are very low,
with top-site having slightly higher energy (102 meV)
than the bridge-site (96 meV) and hollow-site (73 meV).
The study of Amft et al.?? found similar results (top-site
99 meV and bridge-site 81 meV) with the exception of
hollow site, where no binding was predicted. Along with
PBE, they also tested other functionals to account for
the vdW interaction between the Au atom and graphene.
While the introduction of vdW forces increased the ad-
sorption energies, the order of the energies remained the
same, with the top site being energetically most favor-
able. With or without accounting for vdW forces, their
calculations showed that the likely diffusion path is along
the C-C bonds. We note that, although vdW interactions
are often important in 2D materials, the usage of PBE
is justified because here the main point of interest is the
growth process of gold; in any case the diffusion energy
barriers are so low that the choice of functional has on
little effect on the main results.

We studied the diffusion of Au atom on graphene for
three different paths: top-bridge (t-b), bridge-hollow (b-
h) and hollow-top (h-t), the results of which can be seen
in Fig. 2. No energy barriers were found on any of these
separate paths. As the difference of energies of the top
and bridge sites is very low (6 meV), it is reasonable to
expect a gold atom to move readily on top of graphene
from top site to top site along the bridges; the same con-
Clusiogr% was reached in the aforementioned study of Amft
et al.

B. Stage 2: Gold at graphene edge

Next, to investigate the growth of gold patch at
graphene edge we constructed zigzag and armchair
graphene nanoribbons with 2-7 rows of C-atoms. In the
case of AGNR each row contained 12 C-atoms and in
the case of ZGNR each row contained 10 C-atoms. The
energy per atom was calculated and plotted as a func-
tion of rows (Fig. 3a). We fitted the curve of Eq. (2)
for 3-8 rows and thus obtained the edge energies, which
can be seen in Fig. 3b. In their simulations of graphene
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Fig. 2. a) Potential energy surface (PES) of Au atom on top
of graphene and b) the unit cell used in calculations, with
hollow [h], bridge [b], and top [t] sites marked.
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Fig. 3. a) Energy/atom of 1D gold, AGNR and ZGNR as
a function of rows. b) Edge energy of 1D gold, AGNR and
ZGNR as a function of rows.

nanoribbons, Koskinen et al. found the edge energies
e, = 0.98 eV/A and &%, = 1.31 eV/A.?® Our present

edge e
resilts are in fair agreement with the earlier numbers,
taking into account that we did no optimization at this
point and that we fixed the atom positions using constant
bond length 1.42 A of 2D graphene.
Next we added a single gold atom at two different ad-



sorption sites near the edge: at a hollow site on the edge
and at a top site on top of the edge. Three rows of
C-atoms were used with fixed bottom-row atoms. The
systems were allowed to relax and the adsorption energy
was calculated. Interestingly, the top sites were not sta-
ble at all and during optimization the Au atom moved
to a hollow site at the edge. From the edge adsorption
energies (E2S, = 5.62 ¢V and E%, = 4.61 eV) we see
that the binding is much stronger at the edge than on
top of the graphene, which is expected due to available
dangling bonds of edge carbon atoms. This is in very
much agreement with previous literature results.'2

Next we studied the movement of the Au atom along
the AGNR and ZGNR edges. The results of energy cal-
culations on a path between two edge sites can be seen in
Fig. 4. AGNR shows much higher energy barriers (~1.7
eV) than ZGNR (~80 meV). This might be attributed
to the two carbon atoms the Au atom will have to cross
on the AGNR path as opposed to one on the ZGNR
path. In other words, in zigzag graphene nanoribbons
the dangling bonds are equidistant, whereas in armchair
graphene nanoribbons they are separated alternatingly
by longer and shorter distances.

Next we gradually begun forming the 2D gold patch
to the graphene edge by adding gold atoms one by one.
The gold atoms were added to various top sites at the
graphene edge (an example is seen in Fig. 4b). A total
of 7 atoms were added to AGNR edge and 5 atoms to
ZGNR; all optimized systems are shown in Fig. 5. In
AGNR, the first three gold atoms settled for the edge
sites (such as ones shown in Fig. 4d). The fourth atom
also fit in the same row, but the fifth and sixth atoms
begun forming a second row of gold. The seventh atom
replaced another Au atom in the first row while nudging
it further to the second row (Fig. 5h). In other words,
the 2D gold patch did not necessarily grow from the edge,
but it could also grow from the graphene-gold interface
by nudging old gold atoms further back. For comparison,
we also studied different 6- and 7-Au atom systems at
armchair edge (Fig. 5g and 5i, respectively). Here the six
atoms were placed in different starting positions before
optimization. This six-atom system (Fig. 5g) was found
to have lower energy than the one-atom-at-a-time grown
system of Fig. 5f. Again with the addition of the 7th
Au atom, we found no energy barrier when moving to
the edge. Interestingly, while the unit cells were kept
roughly the same size with both AGNR and ZGNR, all
5 atoms fit in the first row with ZGNR. However, this
came at the expense of large distortions in z-direction,
as shown in Fig. 50. For ZGNR, we also studied an
additional tetragonal geometry, where two gold atoms
were bound out of the GNR plane at the edge (Fig. 51).
This system was found to have higher energy than the
other two-atom ZGNR system (Fig. 5k) by 2.65 eV. The
collapse of 2D structure into 3D is a known possibility at
higher temperatures, as demonstrated by Zhao et al. for
2D iron membranes suspended in graphene pores.”

C. Stage 3: Gold atom on 2D gold

After investigating the graphene-2D gold interface, we
moved on to investigate a gold atom moving on top of
2D gold sheet. The adsorpion energies were obtained for
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Fig. 4. a) PES of Au atom moving along ZGNR edge, b) the
unit cell used in ZGNR calculations, with top [t] and edge [e]
sites marked, ¢) PES of Au atom moving along AGNR edge,
and d) the unit cell used in AGNR calculations, with top [t]
and edge [e] sites marked.

an Au atom on top of hollow, bridge and top sites. Here
we found that the hollow site has the highest adsorp-
tion energy (1.37 eV), bridge site is quite close (1.28 eV)
and top site has the lowest adsorption energy (0.91 eV).
Compared to the case of gold on graphene, adsorption
energies are much higher. And while on graphene Au
preferred the top site, here it preferred the hollow site.

To illustrate the movement of the Au atom on 2D Au,
we once again performed potential energy surface cal-
culations, the results of which can be seen in Fig. 6a.
Here the Au atom follows the path hollow-bridge-top-
hollow. As can be seen, an Au atom moving on top of
2D Au would most likely hop between the hollow sites via
bridge sites, with a 90 meV energy barrier. Compared
to graphene, the energy barriers here are much higher,
especially on the paths involving the top site.

D. Stage 4: Gold at the edge of 2D gold

In the final stage of the study, we investigated a gold
atom at the edge of 2D gold patch, modeled by a 1D
gold ribbon. Like with graphene, a 1D Au edge was con-
structed with 3-9 atomic rows, and the energy per atom
was calculated and plotted with respect to the number
of rows (Fig. 3a). The obtained edge energies are shown
in Fig. 3b.

We studied the adsorption of a single Au atom on the
edge, with two adsorption sites of interest: hollow site on
top of the 1D Au, and an edge site on the side. The cal-
culations were performed with 5 rows of Au atoms while
the two bottom rows were fixed during the optimization.
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Fig. 6. a) PES of Au atom moving on top of 2D gold, b)
the unit cell used in 2D gold calculations, with top [t], bridge
[b] and hollow [h] sites marked, ¢) PES of Au atom moving
near the 1D gold edge, and d) the unit cell used in 1D gold
calculations, with hollow [h] and edge [e] sites marked.

As the result, the adsorption energy at the edge site (2.27
eV) was found to be considerably higher than at the hol-
low site (1.62 eV). It is notable that the optimization of
an Au atom at a hollow site close to the edge brought
the Au atom much closer to the edge, almost to a bridge
site.

The movement of the Au atom was studied along two
paths, along a path from the hollow site on top of the 1D
Au to the edge site (h-e) and along a path between two
edge sites (e-e). The results of the calculations are shown
in Fig. 6¢c. The atom was found to hop from the top to
the edge easily, because there was no energy barrier. The
movement along the edge however came with an energy
barrier of ~0.55 eV.

IV. DISCUSSION

The adsorption energies and the distances to the near-
est neighboring atom of a single gold atom on various
adsorption sites are summarized in Table I. On top of
graphene gold shows weak adsorption, while at the edge
of graphene gold shows strong adsorption. There is also
another possible adsorption site between the edge sites
of ZGNR, as seen in Fig. 4, although the energy barrier
separating the sites is low (<10 meV), and our simula-
tions suggest that the lower-energy edge sites are much
more likely to get occupied by the incoming gold atoms.

The overall picture of the growth process is quite clear,
at least when viewed via the potential energy surface.



Table I. Au atom adsorption energies Faqs (€V) and distances d (A) to nearest atoms at different adsorption sites on graphene,

2D Au, AGNR, ZGNR and 1D Au.

hollow bridge top edge
Eads d Eads d Eads d Eads d
1 Graphene 0.073 3.57 0.096 3.19 0.102 3.08 - -
2 AGNR - - - - - - 5.62 2.13
2 ZGNR - - - - - - 4.61 1.97
32D Au 1.37 2.81 1.28 2.75 0.91 2.67 - -
41D Au 1.62 2.71 - - - - 2.27 2.67
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Fig. 7. a) PES of Au atom moving from the top of graphene
to the edge with different number of gold atoms at the edge.
Each graph represents a system as seen in Fig. 5. b) The
overall PES for an Au atom contributing to the growth of the
golden patch. Numbers 1-4 indicate the systems all pictured
in Fig. 1, with number 2 more detailed in a. The blue path
thus illustrates only one possible PES for a gold atom during
the growth process.

Figure 7b illustrates the PES of gold atoms on their path
to the edge. The extremely low energy barrier (~30 meV)
shows that a gold atom is likely to move readily on top of

graphene. Moreover, it continues to move from the top
to the edge without an energy barrier. The same trend
continues even when more gold atoms are added. Inter-
estingly, there is also a possibility for the new gold atoms
to replace old gold atoms in the first row and nudge them
further to the second row. This would imply that patches
grow not only at the edge, but also at the graphene-gold
interface.

Furthermore, as with graphene, the energy barrier of a
gold atom moving on top of 2D gold is very low (90 meV
on hollow-bridge-hollow path), and no energy barrier was
found when moving to the edge of 2D gold. While atoms
move to the edge effortlessly, there still exists energy bar-
riers when moving along the edge. The armchair edge
has particularly large barrier when moving along the edge
(1.7 V). We note that the choice of exchange-correlation
functional affects more on adsorption energies and less on
diffusion energy barriers. Since our main interest here is
on energy barriers, our choice to exlude vdW interactions
should be a reasonable approximation, as demonstrated
in the study of Amft et al.?2 Overall, the low energy bar-
riers and the ease of the growth of the gold patch is not
exactly surprising, but our study does further clarify the
picture of the interaction of gold and graphene edge.

It is probable that higher temperature studies would
trigger a collapse of the 2D gold patch into a 3D nanopar-
ticle. Zhao et al. observed this kind of collapse for a
2D Fe patch when the Fe particles were under prolonged
electron irradiation: they found that the Fe membrane-
armchair graphene interface remained stable the longest,
compared to Fe-zigzag graphene interface.” Nevertheless,
the 2D Fe membranes remained stable for several min-
utes under the irradiation. The low energy barriers of our
study (<0.5 eV) indicate that room temperature (300 K)
should be enough for rapid diffusion and patch growth. It
is expected that the effects of temperature are greatest in
the stage 2 of our study, at the gold-graphene interface,
as the potential energy drops are the highest for these
systems, thus increasing the kinetic energy the most.

In summary, we have studied the growth of 2D gold
patch at the graphene zigzag and armchair edges. We
hope this study clarifies the microscopic processes during
the growth of a 2D metal patch in graphene pores and
encourages experiments to fabricate a stable 2D metal
monolayer. As shown by this study, gold makes an excel-
lent candidate for this because of its low diffusion barriers
and strong binding with the graphene edge; experiments
should be quite feasible in room temperature.
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