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A Review of the Analytical and Numerical
Modeling of Composites ∗

Anna-Leena Erkkilä† Tero Tuovinen‡ Matti Kurki§

Abstract

This review article is dedicated to the materials that are made from two or
more constituent materials with different physical and/or chemical properties.
The focus is on the materials, where the individual components remain sepa-
rate and distinct within the final structure. The new combined material usually
have some additional characteristic properties compared to the individual com-
ponents, or, in other case, some critical properties of combined material may
follow almost equally one of the components. Typically, preferred properties
of the new material can be such as strength, porosity, conductivity or cheap-
ness. The ultimate goal of this study is to find methods and tools for achieve
adequate strength even when the low quality component is added to primary
material or when two or more ’waste’ matters are combined with each other in
novel industrial processes. Contribution of this article is to review modeling
possibilities of different composite materials and bring out new ideas to model
composites including low quality or waste materials.

1 Introduction

The science and technology of composite materials receives much attention aris-
ing from composite’s ability to provide novel and specific properties that exactly
meets the requirements of various industrial applications ranging from aerospace
to bio-medical areas. Nature is full of examples of composite materials and the
idea of man-made composite materials is not a novel. Typical engineered compos-
ite materials can include cements, concrete, asphalt concrete, fiber-reinforced poly-
mers, fiber-reinforced thermoplastics, metal composites, ceramic-metal composites,
glass-reinforced plastic, carbon-fiber-reinforced polymer, hemicellulose based com-
posites, etc. In this review we restrict our study to manufactured composites, which
are formed by combining two or more physically and/or chemically distinct, suit-
ably distributed and arranged phases with an interface separating them. There is
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large variety of subjects, such as macro, micro and nano structure of composite; the
mechanics – interface, fatigue, environmental interactions – and process modeling,
which are under discussion in scientific and engineering community. In this article
we are looking the field from mathematical modeling point of view, and therefore
we have divided the composites into five categories based on their structural be-
havior or production technology. The categorization is not meant to constrict the
generation of ideas, but to provide fluent basis for different point of views on the
topic. The categories and products belonging to them are overlapping and some
materials may have properties of two or even more groups.

The materials have been categorized as follows:

1. Reinforced materials.

2. Matrix with weakening components or pores.

3. Two material matrices combined together.

4. Heterogeneous materials.

5. Laminates and sandwich-structured composites.

Detailed description with examples of each category is defined in Table 1. Most
composites are usually considered to belong to categories 1 or 5. In categories 1 and
2, the matrix is considered the primary phase, and discontinuous dispersed phase
secondary. The primary phase (matrix) is generally responsible for providing the
bulk form of the material as a whole.

There are several aspects when considering the mathematical modeling of com-
posite materials. The behavior of composite materials is determined by the relevant
material properties of the constituents and by their geometrical arrangement. The
constituents may also have different shrinkage and thermal expansions or the mois-
ture and humidity may affect them differently. This may cause internal stresses and
their energy may dissipate during the failure process through micro-cracks. The pri-
mary and secondary material are usually bonded together through interface, which
behavior can be crucial for understanding and for fully determining the mechanical
behavior of composite.

An usual aim of mechanical studies of heterogeneous materials attends to esti-
mate their overall, effective or apparent, behavior (e.g., stiffness, fracture or strength
properties). The homogenization techniques are commonly used in continuum micro-
mechanics of the materials. The Representative Volume Element (RVE) with effec-
tive parameters (e.g., effective moduli, effective stress or effective strain) and asymp-
totic methods are typical concepts. In these models, the effective properties of a unit
cell of the material at the lower scales are determined and used in the higher scales
(see, e.g., Zaoui (2002)). The other commonly used method family is called Micro
Finite Element Analysis techniques (μFEA). In these methods the number of ele-
ments is increased and the size of elements is decreased. The drawback is that these
models require substantial computational resources and time. Recently, the multi-
scale element models have been in the focus of the latest achievements. They may
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Table 1: Five categories of different kind of composites based on mathematical mod-
eling point of view.

Category Description

C
at

eg
or

y
1

Composites having a primary material forming a basic
matrix, where some other material(s) is (are) used to
reinforcement or otherwise to improve the properties. The
primary phase encloses or surrounds the secondary phase,
and shares or transfers imposed mechanical load to and
from the reinforcing phase. The reinforcing phase material
may be in the form of discontinuous flakes, particles, fibers,
whiskers, or nanoparticles. Common matrices include mud
(wattle-and-daub), cement (concrete), polymers (fiber
reinforced plastics), metals, ceramics, bitumen (asphalt
concrete) and even some unusual matrices, such as ice
(pykrete).

C
at

eg
or

y
2

The materials in category 2 are very much alike as in
category 1, but the material matrix includes dispersed
secondary particles (fillers), which instead of working as
reinforcement decrease the mechanical properties of
primary material. Usually these filler materials are added,
because they are cheaper than the main material, or they are
impurities that can not be extracted from raw material. The
typical printing paper is an example of a composite of this
category having cellulose fiber matrix and filler particles,
such as CaCO3. The filler decreases price, improve opacity
and control gloss, but when used at high amounts, it
decrease the tensile and thickness directional strength of
paper. Broadly speaking, the porosity of matrix can be seen
as one of the examples of this category.

C
at

eg
or

y
3

Materials in category 3 are again very much alike as in
category 1, but there is two matrix combined and mixed
together, i.e. the reinforcing or secondary phase material
has a continuous nature. For example, there might be wood
fiber network containing long fibers or woven mats of fiber
and then some other material, such as ceramic matrix. Wire
mesh glass is a representative example.
Continued on next page
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Table 1: (continued)
Category Description

C
at

eg
or

y
4

Composite as a heterogeneous structure, where different
materials are chemically bonded with each other. These
structures may be processed by adhesive pressing and
particle bonding. Particles may be self-binding, or heat
(hot-pressing), binding adjacent, adhesives or additives
may be used. Examples: particleboard and some wood
plastic composites formed by extruding.

C
at

eg
or

y
5

Laminates consist of multiple layers. Composite laminates
consist of fibers in a polymeric metallic or ceramic matrix
material. Layers of different materials may be used,
resulting in a hybrid laminate. The individual layers
generally are orthotropic or transversely isotropic.
Sandwich-structured composites are composite material
that is fabricated by attaching two thin surface layers to a
lightweight thick core. They are widely used in aerospace
structure, infrastructure, etc. The light-weight core
materials are, for example, foam, truss and honeycomb
core. The corrugated fiberboard boxes are examples of
laminated structures and sandwich structured composites.
Many paper grades are coated and can also be considered
as laminates.
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include ability to select adaptively the intermediate level that is most suitable for
a given problem (see, e.g., Liu et al. (2006)). Analytical approaches and regression
models based on empirical data are also common. Some special treatments for crack
propagation and interface region are also introduced.

2 State of art of the categories

In this section, description of common composite modeling schemes and several ex-
amples of modeling of the categorized composite structures are presented. Empir-
ical, semi-empirical, analytical and numerical models are all considered. Reviewed
applications include industrial products such as rubber-carbon black, concrete, steel
and steel fiber reinforced concrete and polymer matrix and different flake boards.
Also analytical micromechanial models for fiber composite and porous structures,
and laminate models are briefly reviewed.

2.1 Category 1: Reinforced materials

The materials in category 1 contain the primary material forming a basic matrix
while some secondary material(s) is(are) used to reinforcement or otherwise to im-
prove properties of composite. Firstly, a theory of filler reinforcement for the stiff-
ening of elastomers is presented, and secondly, analytical micromechanical models
for fiber composites are briefly reviewed in this section. Softening modeling of con-
crete have been under extensive development for decades and was chosen as an
application to represent a quasi-brittle material. Brief glance on few examples of
fiber reinforced concretes and fiber reinforced polymer matrix as a high ductility
and stiffness materials are also provided in this section.

2.1.1 Theory of filler reinforcement

Rigid fillers can usually be used to increase the stiffness of an elastomeric material.
Guth (1939) modified the Einstein’s viscosity law (Einstein (1906, 1911)) to predict
the small strain modulus of rubber-carbon black system considering carbon black
spheres as suspended in a continuous rubber matrix. In the model an additional
term to account for the interaction of fillers at larger filler volume fractions was
included. In the article Guth (1945), the model was generalized for ellipsoidal filler
particles and was extended to the various properties of the matrix and the fillers.
Young’s modulus and stress-strain curve were derived as a functions of the volume
concentration c and compared to experimental studies.

2.1.2 Stiffness predictions for fiber composites, analytical micromechanical mod-
els

The simplest treatment of the elastic behavior of aligned long-fiber composites is
simply based on a weighted mean between the moduli of the two components,
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depending only on the volume fraction of fibers. This Rule of Mixtures (ROM)
provides two theoretical models: Voigt model (Voigt (1889)) for upper-bound axial
loading and Reuss model (Reuss (1929)) for lower-bound transverse loading. Also
Poisson’s ratio and shear modulus can be derived by following the rules of mixture,
and Kim et al. (2001) used the ROM to predict the plastic flow curves for various
volume fractions of the soft and hard particles. Accurate experimental validation
of the longitudinal model has been demonstrate for a number of composites with
continuous fibers, while the transverse model is generally known as being inade-
quate for predicting the transverse modulus. Hashin & Shtrikman (1963) construct
the tighter bounds, in which single variational principle gives both the upper and
lower bounds by making appropriate choices of the reference material. Widely used
semi-empirical Halpin-Tsai equations (Halpin & Kardos (1976)) were developed to
correct the transverse Young’s modulus and shear modulus, and also to obtain gen-
eralized model for predicting properties of short-fiber composites. Halpin’s and
Tsai’s derivation for the analytical form of equations was based on Hermans solu-
tion (Hermans (1967)) of the self consistent micromechanical model developed by
Hill (1964), while fiber geometry have accounted through the use of empirical fac-
tors.

For short-fiber composites, the fundamental result used in several different mod-
els is Eshelby’s solution for ellipsoidal fibers in dilute concentrations fractions (Es-
helby (1957)). The key result was to show that within an ellipsoidal inclusion the
strain is uniform, and is related to transformation strain by so called Eshelby’s ten-
sion, which depends only the inclusion aspect ratio and the matrix elastic constants.
A detailed derivation and applications are presented in Murakami (1988).

For non-dilute concentrations, for example, Mori-Tanaka (Mori & Tanaka (1973),
Benveniste (1987)) and self-consistent methods (Hill (1965), Budiansky (1965)) are
presented. In the Mori-Tanaka method the Eshelby approach was combined with
the effective field concept by defining strain concentration tensor, which relates the
strain in inclusion to a far-field strain equal to the appropriate average strain in the
matrix. Tandon & Weng (1984) developed equations for the complete set of elastic
constants of the a short-fiber composite based on Mori-Tanaka approach. For the
computation of the transformation strain in the self-consistent methods the single
particle is embedded in the effective medium of composite, which properties are
not known a priori. The original work focused on spherical particles and continuous
aligned fibers, but approaches for short fiber composite is developed, see, e.g., Chou
et al. (1980).

Shear lag model developed for paper and fibrous materials (Cox (1952)) analyzes
the transfer of tensile stress between the fiber and the matrix by means of interfacial
shear stress. In shear lag models the mechanical properties of composite can be
expressed as a function of the volume fraction and aspect ratio of fibers (Fukuda &
Chou (1982)).
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2.1.3 Numerical models for crack propagation in concrete

As an application in this category the vastly used, studied and modeled concrete
is presented. The concrete is a quasi-brittle composite material made of aggregates
(coarse gravel, crushed rocks and sand) and cement paste. The mechanical behavior
of concrete is complex and nonlinear in both tension and compression. The domi-
nant mechanism of concrete material response to loading is the initiation and prop-
agation of cracks. The stiffness degradation is mainly due the material damage:
initially invisible micro-cracks caused by shrinkage, thermal expansion and other
phenomena will progress to visible cracks under external loads. Failure accumu-
lates through micro-cracks, which are formed due to the cohesion loss between the
mortar and the aggregate, at interface between the aggregate and the mortar due
the frictional slip, or crushing of the mortar (Nguyen (2005)).

In uniaxial loading, the experimentally observed deformation process is differ-
ent in tension and compression. In a compressive test the cracks are parallel to the
direction of the compressive stress, while in a tensile test the direction of crack prop-
agation is transverse to the stress direction. Under severe loading (beyond the peak
stress), concrete exhibits a strain-softening response, in both tension and compres-
sion (see Figures 1 and 2) (Gopalaratnam & Shah (1985)). The experimental obser-
vations obtained from the uniaxial tensile and compressive behavior of the concrete
can also be applied to multi-axial stress states (Chen & Han (2007)). Two separate
kinds of envelopes are used to characterize the concrete behavior in stress stages:
the elastic region is defined by the elastic-limit surface, and the maximum-strength
envelope of the concrete is characterized by the failure surface, see Figure 3. The
softening is a combined material/structural property and the stiffness degradation
in concrete is mainly caused by the material damage especially in the post-peak
situation (Chen & Han (2007)).

The structure and properties of concrete such as the shape, size and surface struc-
ture of aggregates, the water-cement ratio, the used type of cement, and other factors
have influence on behavior of the product. Nevertheless, a concrete is often simu-
lated using macroscopic models, where a concrete is treated as a continuum, and be-
havior caused by the heterogeneous material structure are included in the constitu-
tive law (see, e.g., Nguyen (2005), Lemaitre (1992)). As the behavior of quasi-brittle
material is considered, the major focus has been on the fracture studies i.e. situa-
tions where material is subjected to moderate to severe loading and crack develops
and propagates. Main approaches of the continuum modeling for crack propaga-
tion can be categorized as the discrete crack approach, the smeared crack approach,
non-local fracturing theory, damage mechanics and lattice models.

In the discrete crack approach the aim is in simulation the initiation and propaga-
tion of dominant cracks and thus is preferred approach when the structure contains
one or a finite number of cracks (Ngo & Scordelis (1967)). It was recognized in early
studies that the stress and strain fields that are developed at the tip of the crack are
singular and stress criteria were not reliable. The cohesive crack model, developed
by Hillerborg et al. (1976) for crack propagation of concrete introduces fracture pro-
cess zone (FPZ) locating ahead of the macro-cracks. Significant amount of energy is
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Figure 1: Stress-strain behavior of concrete subjected to monotonic and cyclic com-
pression. (Schematic figure after Bahn & Hsu (1998))
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Figure 2: Stress-deformation curve of concrete under uniaxial cyclic tensile loading.
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stored in that large FPZ region, containing micro-cracks in which case a crack can
have stable growth before peak load. Cohesive stress as a function of crack open-
ing reaches tensile strength at the tip of the crack and reduces to zero when there
is the critical opening of the crack. The area under the softening stress-separation
curve is equal to the energy release rate of the structure. The propagation of discrete
cracks through elements requires the refinement and re-meshing of the finite ele-
ment mesh. Meshless methods, such as element-free Galerkin methods, have also
been applied to avoid difficulties for constant redefinition of the mesh topology (see,
e.g., Belytschko et al. (1994), Dong et al. (2010)). Recently, so-called extended finite
element method (X-FEM) (Sukumar et al. (2000)) and strong discontinuity approach
(Oliver & Huespe (2004)) have been introduced to overcome disadvantages of the
discrete crack approach and avoiding need of remeshing. One of the challenges as-
sociated with discrete crack models are that they require material properties that are
difficult to measure.

In the smeared crack approach the cracked material is assumed to remain a con-
tinuum as an infinite number of cracks are theoretically distributed (smeared) over
the element (Rashid (1968)). The propagation of cracks is modeled as the reduction
of the strength and stiffness. The result is non-linear constitutive models with elas-
tic degradation and/or softening plasticity (see, e.g., Bažant & Planas (1998), Carol
& Bažant (1997), Weihe et al. (1998), Ohmenhauser et al. (1999), de Borst (2002)).
The smeared crack approach was first introduced by Rashid (1968). Bažant & Oh
(1983a) proposed crack band model based on work of Hillerborg et al. (1976) to
solve unphysical mesh size sensitivity which is consequence when the strain soft-
ening is considered as a characteristic of the material. In the crack band model the
dissipated energy in strain softening is related to the fracture energy of the material.

The non-local models are based on the continuum mechanics, where the evolu-
tion of stress and changes at the micro-structural level due the loading are based
on such a theories as plasticity and damage mechanics. Dougill introduced the pro-
gressive fracturing theory which involved the stiffness lose of the material due to
progressive fracturing during the deformation process (Dougill (1976)). In this ap-
proach the material return to a state of zero strain at zero stress by linear elastic
unloading. This is based on theoretical assumption that the microcracks are in prin-
ciple able to close and no residual strain will remain in the material after unloading
to zero stress. However, in real material some residual strains after unloading are
prevailing, since during crack formation some particles loosen from the crack edge
prevent the complete closure of the microcracks. Based on the work of Dougill the
elasto-plastic-fracturing theory for concrete was carried out by Bažant & Kim (1979).

Continuum damage mechanics (CDM) was first proposed for creep rupture of
metals by Kachanov (1958, 1999) and it have become one of the classical tools of the
structural mechanics and concrete modeling, see, e.g., Lemaitre & Chaboche (1990),
Faria et al. (1998), Peerlings (1999), Jirásek & Patzák (2001), Jirásek et al. (2004), Luc-
cioni et al. (1996), Comi & Perego (2001), Comi (2001), Salari et al. (2004), Nguyen
(2005), Genet et al. (2014). Damage theories provide an effective way to charac-
terize the microscopic deterioration of material by the macroscopic level variables.
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The coupling between damage evolution and strain is usually formulated to obey
the irreversible thermodynamic laws, though in principle damage theory can be de-
veloped by setting a stress-strain law related to damage and a yield/damage limit
function (see, e.g., Lee & Fenves (1998), Addessi et al. (2002)). From the thermo-
mechanical point of view, the input energy is dissipated during the failure evolu-
tion through micro-cracks (Nguyen (2005)). In CDM the definition of damage indi-
cator, such as presented by Lemaitre (1992), are used to characterize the form of the
stiffness reduction covering the thermodynamic, micro-mechanical and geometrical
aspects of the macroscopic representation of the material deterioration. The simple
scalar damage variable is obtained by measuring the area of the intersection of all
defects in selected plane and by dividing that area SD with total area of that plane S,
i.e. damage variableDn = SD/S, see, e.g., Lemaitre (1984). A scalar damage variable
was first used to describe isotropic damaging, but because the damage of concrete
caused by microcracks is usually oriented leading to anisotropic damage, the dam-
age tensors of higher order are introduced, see, e.g., Kachanov (1980), Krajcinovic
(1985), Murakami (1988), Simo & Ju (1987). The internal state variables can be devel-
oped within two alternative frameworks: strain-based or stress-based formulation
(Simo & Ju (1987)). In Nguyen (2005), the author presented a formulation of elasto-
plastic damage constitutive model based on the use of thermodynamic potentials
proposed by Houlsby & Puzrin (2000). The strain softening and stiffness degrada-
tion was modeled by damage mechanics, while the residual strains and some other
macroscopic features are related to and captured by plasticity theory.

The components of the damage tensors of second, fourth or even eight order
(see, e.g., Lemaitre & Chaboche (1990)) are very difficult to identify. The alterna-
tive approach to the tensorial damage formulation, the so-called microplane model
have been proposed by Bazant and Oh (Bažant & Oh (1983b), Bažant & Gambarova
(1984)) based on work of Taylor (1938) on plasticity of crystalline metals. In a mi-
croplane model the material behavior is modeled in planes of all possible orienta-
tion through uniaxial stress-strain laws and in terms of stress and strain vectors (see
Figure 4). The microplane strain and stress vectors are related to the continuum ten-
sors by a kinematic constraint and variational principle. The microplane model for
concrete has passed many stages of developments labeled M0,M1,...,M7, see, e.g.,
Bažant & Prat (1988), Bažant et al. (2000), Bažant & Caner (2005), Caner & Bažant
(2012). The improvement between stages have been concentrated in tensile cracking
and postpeak tensile softening, simultaneous modeling of tensile and compressive
failures, formulation of boundary surfaces and frictional yield limits, creep and ar-
bitrary large finite strain. In model M2 a volumetric-deviatoric split of the normal
strains and stresses on the microplanes was introduced to help to control triaxial
phenomenon of compression failure. In stage M7 the volumetric-deviatoric split for
the elastic part and for the tensile boundary were abandoned while it was retained
for the deviatoric stress-strain and compressive normal boundaries, which sum is
then compared with the total normal stress.

In lattice models, the continuum is discretized as a lattices or mesh of truss or
beam elements that transfer forces and which may have different properties, de-
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ume. Bottom: Microplane strain components. (Reproduced from Caner et al. (2013))
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pending on weather the element represents a cement paste matrix, aggregate or in-
terfacial zone (Schlangen & Van Mier (1992b), Lilliu & van Mier (2003)). Fracture is
simulated by a linear elastic analysis of the lattice under loading and eliminating (or
partially eliminating) an element that exceeds a criteria threshold of quantities such
as strength or energy from the mesh. The weak interface found between the aggre-
gates and the cement paste matrix can be treated in simulation by adjusting the ten-
sile strength and the modulus of beams or truss that located in this region, as well as
permitting for differences between aggregates and cement paste matrix (Schlangen
& Van Mier (1992a), Cusatis et al. (2003)). The softening can be introduced at ele-
ment level or based on elastic purely brittle fracture criterion. The results obtained
can depend strongly on the chosen element or mesh type and the fracture criterion
used. The randomness of lattice is also important to avoid bias in crack propagation
direction. Lattice models assume usually a linear-elastic material constitutive rela-
tion and are two-dimensional although some three-dimensional versions have been
introduced for concrete modeling (Lilliu & van Mier (2003)). Cusatis et al. (2011) in-
troduced lattice discrete particle model (LDPM), which is synthesis of confinement
shear lattice model and discrete particle models presented in Cusatis et al. (2003)
and Pelessone (2005), respectively. LDPM simulates concrete by system of inter-
acting aggregate particles connected by a lattice system that is obtained through a
three dimensional Delaunay tetrahedralization of the aggregate centers. The consti-
tutive behavior is softening for tension and shear-tension and plastic hardening for
compression and shear-compression.

2.1.4 Steel fiber reinforced concrete

The fibers can be used to strengthen the cementitious matrix of concrete, since they
restrict and delay the progression of microcracks into wide continuous cracks. Es-
pecially, steel fibers enhances ductility and energy absorption capability. In the steel
fiber reinforced cementitious composite, the mechanical behavior depends on the
interfacial bonding, fiber pull-out, fiber and matrix properties, the fiber orientation
and their dispersion in the matrix, flaw size and distribution, etc. (Pereira (2006)).

Ramadoss & Nagamani (2012) present the empirical linear regression models to
evaluate the strength and toughness of High Performance Steel Fiber Reinforced
Concrete (HPSFRC). The estimated parameters were compressive strength, modu-
lus of rupture, splitting tensile strength and toughness ratio. The eight variables
defining the mixture proportions of 144 composite specimens (water–cementitious
materials ratio, steel fiber volume fraction, superplasticizer dosage, and weight of
cement, fine aggregate, coarse aggregate, water and silica fume) were used in re-
gression analysis.

Leite et al. (2004, 2007) applied a mesoscale lattice model for fracture process
studies of concrete and fiber reinforced concrete. The effort was made to create a
structural distribution of aggregates and cement paste matrix in a realistic way. The
stochastic-heuristic algorithm was introduced for this purpose. The generated three-
dimensional structure specimens were discretized into lattices of linear elements for
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both two-dimensional and three-dimensional analysis. After the aggregate-matrix
structure were generated, the fibers were allocated directly into the mesh for fiber
reinforcement modeling. Additional elements connecting distant mesh nodes in the
cement matrix was introduced. The different softening laws in tension and com-
pression was implemented into the constitutive laws of the elements corresponding
either aggregate, matrix or interface. The softening of elements representing fibers
was described by the bond-slip relation.

In model presented in the article Cunha et al. (2011) for Steel Fibre Reinforced
Self-Compacting Concrete (SFRSCC), a two phase material is assumed. Heteroge-
neous concrete medium is treated as one homogeneous phase and another phase is
composed of steel fibers. The fracture process of the concrete phase is modeled by
a three-dimensional smeared crack model and discretized by solid finite elements.
The random distribution of short cables imitating steel fibers is simulated using
Monte Carlo method and the geometry, position and orientation of the fibers are
subsequently inserted in a finite element mesh. The fibers are embedded in the
concrete matrix as a three-dimensional truss elements to model the stress transfer
between crack planes due to the fibers bridging a progressive crack. The bond–slip
behavior of the steel fibers was derived from the experimental pullout stress–slip
relationship (Figure 5).

The microplane models M5 and M7 for concrete, presented in previous chap-
ter, have been generalized for simulation of fiber reinforced concrete in references
Beghini et al. (2007) and Caner et al. (2013). For fiber reinforced concrete model M5f
the softening law of stress–strain boundaries of concrete model M5 is modified to
enhance ductility. The coupling of kinematically and constrained microplane sys-
tems allows simulating the evolution of microcracks of many orientations into wide
cracks of one distinct orientation. More realistic determination of the fiber pullout
and breakage was brought to microplane model M7f to model fiber reinforced con-
crete including gradual activation of fibers bridging an opened crack as is presented
in Figure 6 (Caner et al. (2013)).

14



Crack
0

0.20 0.4 0.6 0.8 1

5

10

15

25

σ
f
N (MPa)

Idealised fiber law

CMOD

Figure 6: The fiber law used in the modeling of fiber behavior obtained by gradual
activation of fibers bridging an opened crack. Stages: Hardening, crack openings
and softening. (Reproduced after Caner et al. (2013))

15



2.1.5 Polymer matrix and steel fibers

In the article Sabuncuoglu et al. (2015) the micro-scale finite element modeling is
used to estimate the stress concentration under transverse loading in a composite
composed from polymer matrix and steel fibers. Three different packing types of
fibers were considered: single fiber in a matrix, hexagonally packed and randomly
packed fibers. The fibers had either circular or hexagonal cross-sectional shape. For
the model of a single fiber, the dimensions of the model were 15 times the diame-
ter of the fiber in the transverse directions to prevent the edge effect on the stress
distribution, while the hexagonal and random fiber packing types includes 30–35
fibers per representative volume to adequately represent the behavior of the ran-
dom composite. There were large contrast between fiber and matrix stiffness: the
matrix material, epoxy, had Young’s modulus of 3 GPa, while it is for steel fibers
193 GPa. In the finite element meshing two layers of fiber–matrix interface regions
were generated and dense mesh with equally sized elements was constructed in
these regions since some of the fibers could locate close to each other. The width
of these elements was 0.005 times the fiber diameter and matrix material properties
were assigned to these elements. They were assumed to be perfectly bonded to the
fibers and the rest of the matrix.

2.2 Category 2

The materials in category 2 contain the matrix of primary material and dispersed
secondary particles (fillers) that decrease the mechanical properties of primary ma-
terial. Secondary material may be containing added fillers or impurities that are not
extracted from raw material. The porosity and flaws in the matrix is also considered
as an example of this category. Printing paper containing clay filler and porous bone
structure are examples presented in this section.

2.2.1 Paper and fillers

The filler pigments are incorporated into paper to reduce the raw material cost and
improve the paper’s optical properties. However, addition of the high filler amount
in the paper causes loss of strength, bulk and stiffness. For unfilled paper, the semi-
empirical Page equation (Page (1969)) for tensile strength of paper is widely and
successfully used. Page derived his model starting from the experimental observa-
tion that tensile strength is proportional to the fraction of broken fibers across the
rupture zone depending on both the strength of individual fibers and the strength of
the bonds between them. The equation is function of zero-span tensile strength, area
of average fiber cross section, relative bonded area, density of fibers, fiber width,
perimeter of the fiber cross section and shear bond strength per unit bonded area
(breaking stress of bonds). In principally, the fiber-fiber bonding is responsible for
the internal cohesion of a paper sheet and technologically the inter-fiber bonding
is easier alter than fiber properties (see, e.g., Retulainen & Ebeling (1993); Alava &
Niskanen (2006)). The effects of filler on tensile strength were considered through a
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modified Page Equation by Beazley et al. (1975) and Li et al. (2002). The inter-fiber
bonding strength is traditionally assumed to depend on two independent factors:
bonded area and specific bond strength (see Nordman (1958)). In derivation of the
modified equation for filler addition, it was assumed that reduction on strength is
proportional to the total surface area of filler in the sheets. The sum of specific
bond strength between available surface areas of filler and fibers and between avail-
able surface areas of free fibers and fibers are combined to replace the shear bond
strength per unit bonded area. In the model, it was assumed that the filler/fiber
specific shear bond is zero for inorganic fillers. Thus in the modified equation, the
effect of filler on the paper tensile strength depends solely on the filler particle size
and the amount of fillers in a paper sheet. In the study of Yoon (2007) the modified
Page theory was found suitable to model tensile strength improvement of paper
filled with clay-starch composite filler, see Figure 7.

Attempts to simulate paper properties by 3D structural model including treat-
ments for fibers, fines and fillers have been presented by Nilsen et al. (1998), Niska-
nen et al. (1997), and Lavrykov et al. (2012). In KCL-PAKKA model the three-
dimensional paper sheet structure is formed by deposing single fibers of rectan-
gular cross-section randomly on a flat surface. Each fiber with defined bending
stiffness is let to settle freely as low as possible without deforming the underlying
sheet. The modeled artificial 3D sheet has been used for simulations of porosity and
gas diffusion through sheet (Hellen et al. (2002)) and light scattering (Nilsen et al.
(1998)). Hjelt et al. (2008) utilized KCL-PAKKA simulation to estimate the effect of
filler clusters on bulk of a sheet. Lavrykov et al. (2012) unified several models to
generate 3D fiber networks for simulations of mechanical properties. Separate ap-
proaches for formation of representative structure of hand sheet and machine sheet
were presented. A set of objects was defined for the hand sheet simulations: fibers
having non-collapsed or collapsed structure and fines and fillers having only one
finite element in thickness direction. In machine sheet formation simulations the
three-dimensional Navier-Stokes equations were used to describe the fluid motion
of fiber suspension. Different boundary conditions were applied to simulate differ-
ent processes in paper machine forming section. The final low consistency pulp map
was used as initial input data for the network compression model implemented by
LS-DYNA program (Hallquist (2006)). The elastic modulus was determined from
fiber network by simulating the physical tensile test (Lavrykov et al. (2012)).

2.2.2 Porosity and multi-scale modeling

Podshivalov et al. (2011) proposed a multi-scale finite element approach for porous
bone structure, which provides continuous bi-directional transition between micro-
and macro-scales using intermediate scales. Firstly, the approach comprise hierar-
chical geometric model from a low topological complexity of macro-scale to high
topological complexity of micro-scale porous structure, based on a hierarchical rep-
resentation, such as octree. Secondly, the multiscale material properties model pre-
serves effective material properties at all scales. The multiscale finite element method
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Figure 7: The relative bond area (RBA) between two fibers in the absence and pres-
ence of filler or composite filler particles. (Reproduced from Yoon (2007))
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is created by integrating these two models. The geometric representation is sub-
divided into sub-domains using a non-overlapping domain-based method. A 3D
surface mesh of sub-domains of measured micro-CT image was converted into a
volumetric model by voxelization approach (Morris & Salisbury (2008)) and then
into a multiresolution hierarchical volumetric model. For 3D hierarchical data struc-
tures the linear octree implementation by extending the method presented in Gar-
gantini (1982) was used. The local material properties change to compensate the
geometry modifications in intermediate scales so that effective material properties
are preserved. The approach follows partially the representative volume element
(RVE) homogenization method (Aboudi (2013)) and consists of four stages: RVE ho-
mogenization, effective material properties model, inverse local material properties
model and computational model verification using strain-energy comparison.

Some of the analytical micromechanical models presented in Section 2.1.2 for
fiber inclusion have also applied for porous structures. Eshelby’s tensor and Mori-
Tanaka’s mean field theory have been frequently applied to estimate effective elas-
tic properties for porous structures (see, e.g., Nemat-Nasser & Taya (1981), Nemat-
Nasser et al. (1982), Zhao et al. (1989, 2005), Ichitsubo et al. (2002)). The generalized
self-consistent method was used to predict the effective elastic constants of the nano-
porous/cellular materials with aligned cylindrical nanopores in Duan et al. (2006).

2.3 Category 3

In the category 3 the both the matrix and reinforcing or secondary phase material
has a continuous nature. The modeling of steel reinfoced concrete beam and panel
have presented as an examples of this category.

2.3.1 Steel reinforced concrete

One of the recent studies for steel reinforced concrete is presented in the article Ooi &
Yang (2011). In their study, the hybrid finite element–scaled boundary finite element
method (FEM-SBFEM) (Song & Wolf (1999), Ooi & Yang (2010)) is utilized to model
multiple cohesive crack propagation in reinforced concrete.

A discretisation is depicted in Figure 8. For the concrete bulk and reinforcement
the discretisation follows standard procedure in the FEM. Fracture process zone in
concrete is represented by the fictitious crack model presented in Hillerborg et al.
(1976), and softening function follows bilinear curve presented in Petersson (1981).
The concrete-reinforcement interaction affects both the load-carrying capacities of
reinforced concrete and the prediction of crack patterns. Two stress transfer mecha-
nisms are considered: local bond-slip and tensile splitting cracks modeled based on
cohesive interface elements (CIE) (Xie (1995)). The CEB-FIP Model Code for shear
stress-relative slip relation (MC90 (1993)) and empirical relationship for residual ten-
sile strength between faces of the splitting crack (Giuriani et al. (1991)) are used.
The concrete bulk mesh includes SBFEM rosettes modeling crack-tip areas. In the
crack propagation criterion the crack propagation condition is satisfied if the exter-

19



Concrete
4-noded quadrilaterals
modeling reinforcements

Reinforcement

4-noded cohesive
Interface elements
(CIE’s) modeling
steel-concrete interface.

SBFEM rosette

4-noded quadrilaterals
modeling concrete

4-noded cohesive interface
elements (CIE’s) modeling
cohesive cracks.

Figure 8: Discretization of cracked reinforced concrete using the hybrid
FEM–SBFEM. (After Ooi & Yang (2011))

nal driving forces exceed the cohesive tractions. To avoid the evaluation of stresses
at the mathematical tip of the crack, the growth of the cohesive zone is governed by
requiring the stress intensity factors at the tip of the cohesive zone to vanish (Moës
& Belytschko (2002)). Remeshing involves an addition of a new node to split the old
crack-tip node and locating the new crack tip in the direction of crack propagation.
After remeshing the crack-tip elements are replaced by SBFEM rosettes.

Tanapornraweekit et al. (2007) presented a numerical analysis of the reinforced
concrete panel subjected to blast loads. N16 reinforcing bars@120 mm spacing were
distributed in two directions inside both faces of the 1.19m× 2.19m× 0.14m panel.
The concrete model Crawford & Malvar (2006) considered three failure surfaces:
initial yield failure surface, maximum failure surface and residual failure surface. A
total of eight parameters in surface equations define the three failure surfaces. The
stress difference at each failure surface depends on pressure in a particular element.
An elastic-perfectly plastic material model was chosen to represent the steel rein-
forcement. The full bond interface condition between reinforcement and concrete
was assumed. The boundary conditions of supports were arranged by restraining
the translation in the x- and y-directions at nodes located at the positions of the cen-
ter line of the tested RC panel. Bending behavior of the 140 mm panel were captured
under dynamic blast loading by using commercial software LS-DYNA (Hallquist
(2006)).
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2.4 Category 4

The examples presented in Category 4 concern the models for flakeboards (particle
board, strand/flake based composites, oriented strand board (OSB)) and wood plas-
tic composites. Flakeboard products are widely used for applications of sheathing
and construction of buildings and furniture. Particle board is made by mechanically
pressing into sheet form consisting of wood fragments such as wood chips, sawmill
shavings or saw dust and a synthetic resin or a suitable binder. Particle board is
cheaper, denser, more uniform and lighter but also weaker than conventional wood
and plywood.

Oriented strand board is engineered wood panel formed with the help of water-
proof adhesives by rectangular wood strands arranged in cross-oriented layers. Its
strength and structural performance is similar to plywood, but it is more uniform
and less expensive. Irreversible edge swelling has been the biggest disadvantage of
OSB.

Wood plastic composites (WPC) and composite lumbers are produced by mixing
wood particles, heated thermoplastic resin and additives. Although WPC absorb
water into to wood fibers embedded within the thermoplastic matrix material, they
are dimensionally stable under moisture conditions. Other advantages are, for ex-
ample, increased rot, decay and splinter resistance as well as low maintenance and
the ability of the material to be molded to meet almost any desired shape. Disadvan-
tages includes lower stiffness than wood, creed, thermal expansion and sensitivity
to staining. It is still a material lacking a long-term track record of use; for example,
it is possible that the strength and stiffness may be reduced by moisture absorption
and freeze-thaw cycling.

2.4.1 Mechanical strength properties of particleboard

The processing parameters (surface and core moisture, pressing time, and press tem-
perature) and structural parameters (particle size and density, mixture ratio of raw
materials, and resin content) can strongly affect on mechanical strength properties
of particleboard. Thus, the effect of structural and processing parameters on mod-
ulus of elasticity (MOE), bending strength (modulus of rupture, MOR) and internal
bond strength (IB) of particleboard have been studied both empirical and theoreti-
cal models in number of papers. Theoretical models for predicting oriented strand
board MOE data have been presented by Xu & Suchsland (1998) and Xu (1999).
Empirical relationships have been developed to predict mechanical strength prop-
erties based on physical properties (see, e.g., Halligan & Schniewind (1974), Cai et al.
(2004)) or based on some structural and processing parameters of particleboard (see,
e.g., Barnes (2001, 2002), Lehman (1974), Hoover et al. (1992), Nirdosha & Setunge
(2006)). Wong et al. (2003) used the fundamental properties of homo-profile parti-
cleboards as the basic input for the two-dimensional finite element method analysis.
The modulus of elasticity of samples with different conventional density profiles
was calculated using FEM. Multiple regression analysis was then conducted to es-
timate MOE from various density profile defining factors. In the study of Arabi
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et al. (2010), the MOR and MOE in particleboard were predicted from structural pa-
rameters (particle size, density, and percentage of adhesive) by a regression model
based on semi-empirical Buckingham’s pi-theorem. Neural networks have been
applied to predict mechanical strength properties of particle board using data of
measured physical properties (Fernández et al. (2008)) or process variables (Esteban
et al. (2009), Cook & Chiu (1997)) as input variables.

2.4.2 Strand-based composites

Analytical micromechanical models developed for conventional composites, such
as the Rule of Mixtures and the Halpin-Tsai equation (see Section 2.1.2) are applied
for predicting the flexural modulus of oriented strand board (OSB) in Fan & Enjily
(2009), Mundy & Bonfield (1998), Halpin & Kardos (1976), and Shaler & Blanken-
horn (1990). In OSB systems, the adhesive is considered matrix and flakes are as
fibers i.e. OSB is treated as a composites consisting of very high volume fractions
of wood strands. Suitability of Rule of Mixtures and the Halpin-Tsai equation for
OSB systems have been discussed, e.g., by Malekmohammadi et al. (2014) and Fan
& Enjily (2009). Micromechanical models have combined with lamination theory by
Lee & Wu (2003), Chen et al. (2008), Benabou & Duchanois (2007), Stürzenbecher
et al. (2010) in order to consider an orientation distribution of the strands or a non-
uniform vertical density distribution.

In Yapici et al. (2009) designed fuzzy logic classifier model to predict the effect of
flake mixture ratios on the MOE and MOR. In the article Nairn & Le (2009), numeri-
cal material point method (MPM) modeling to calculate the mechanical properties of
OSB as a function of strand surface geometry variations and of the blue line proper-
ties was presented. Wu et al. (2004) combined laminated model with finite element
analysis to predict the effect of voids on engineering constants of OSB. Strand matrix
was containing regularly spaced through-thickness cylindrical voids. In the article
Wu et al. (2006), the shapes and distribution of voids is determined based on x-ray
tomography analysis. Then the anisotropic mechanical properties of OSB composite
are calculated using finite element analysis.

To predicted the tensile stiffness and strength of the composite boards, finite el-
ement approach was used to model the strands and resin of the composite with
a substructuring routine to take advantage of the composite’s repeating nature by
Triche & Hunt (1993). Based on the statistics of test results, Zhu et al. (2005) used an
elasto-plastic constitutive model in the finite element simulations of a load test on a
compression and a nonlinear buckling analysis of OSB I-beam.

In the article Sebera et al. (2014) is applied two different geometry generation
techniques for building the parametric finite element model to study an influence
of material properties and strands orientations of OSB on MOE. In the first model
the strand mat was generated through the volume entities. The strands were inter-
sected and subtracted from each other using Boolean algebra and the resulting mat
was meshed using free meshing. Coupled bonds were needed to connect strongly
heterogeneous meshes in adjacent layers. In the second FE model the strand were
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created using ANSYS selection logic and the model was build via mapped finite
element mesh. In the models the strands were perfectly bonded together within a
layer and adhesive material was not considered. Orientation of strands rages be-
tween−20 and 20 degrees following Gauss probability distribution. The first model
exhibited very high error and was rejected in the end, while the second model was
found to be more suitable for strand composites modeling.

2.4.3 Composite lumber

In the article Gereke et al. (2012), the authors introduced a multiscale modeling ap-
proach, composed of two steps, for composite lumber made of wood strands. The
first step estimates the effective elastic properties of a unit cell, which incorporates
both the wood and resin phases using concepts of numerical homogenization with
periodic boundary conditions. The second step consists of a macroscopic finite ele-
ment structural analysis of a beam having random distribution of strand orientation.
To improve the first step of approach, Gereke et al. (2012) and Malekmohammadi
et al. (2014) presented two scenarios for partial coverage modeling: Dai’s model (Dai
et al. (2007)) for resin area coverage and constant resin thickness, and analytical ap-
proach based on the material morphology representation. The constant resin thick-
ness i.e. the full resin coverage scheme is based on a combination of Voigt and Reuss
models (Tucker III & Liang (1999)) and isostress and isostrain conditions between
the blocks. The full coverage equations are used for partially covered strands resin
using equivalent properties based on the concept of interface displacement jumps
and strand and resin parameters described by Hashin (1990) and Nairn (2007), re-
spectively. The derived analytical expressions for orthotropic elastic discontinuous
rectangular shaped strand composites were also used to estimate the viscoelastic
properties of a material unit cell.

2.5 Category 5

Laminated composite are generally used when there is a requirement for a high
strength (stiffness) to weight ratio, because their properties can be tailored to spe-
cific structural requirements. The anisotropy of composites offers a significant en-
hancement in their performance over conventional materials. Laminated composite
plates, which offer good in-plane properties, are prone to delamination due to their
poor mechanical properties in the thickness direction. Models either predict the me-
chanical properties of structural laminated composite for design purposes or predict
failure such as delamination, maximum transverse deflection, buckling load, failure
load, natural frequency. Onset of failure in composite laminated plates requires the
accurate prediction of local stress state at inter-lamina interface and in the individual
lamina, which may be crucial for a safe design of the component. Review of basic
derivations for determining the effective three-dimensional mechanical properties
of laminated composites can be found from Bogetti et al. (1995). There is also few
commercial modeling tools specially designed for analysis and design of composite
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laminate structures, such as NX laminate composites and LAP.

2.5.1 Plate models

The theories based on approximating the displacement distribution in thickness di-
rection continuously differentiable varying functions are named C1

z function theo-
ries. The standard models of this type are the Classical Lamination Theory (CLT)
and the First Order Shear Deformation Theory (FSDT). In both of these models the
in-plane displacement vary linearly in thickness direction, while the transverse dis-
placements remain constant. Although CLT and FSDT provides sufficient descrip-
tion of local laminate response for thin and moderately thick plates, they are not
capable for direct calculation of transverse stresses with acceptable accuracy. To
overcome this deficiency, a large number of so-called Higher Order Theories have
been developed using consecutively higher order polynomials or other functions
with continuous derivatives (see, e.g., Reddy (1984), Pandya & Kant (1988)).

If slenderness ratios are small, it have been observed that in-plane displacements
show a pronounced layer-wise zigzagging implying that in-plane displacements
cannot be captured by C1

z function theories (Pagano (1970a), Pagano & Hatfield
(1972)). To overtake these difficulties the layerwise theories, which consider each
layer separately, have been developed. Several models have been proposed for
stress distributions and displacement over each layer thickness separately leading
to functions of the in-plane coordinates. C0

z function theories are formulated for
displacement continuity at layer interfaces (see, e.g., Reddy (1987), Ahmed & Basu
(1994)).

A general consideration of hierarchical plate theory for homogenous plates can
be find in Szabó & Sahrmann (1988) and an extension of hierarchical method for
computing laminated composite plates was given by Babuška et al. (1992) and Ac-
tis et al. (1999). In hierarchic plate theory models the displacements are formulated
into power series in thickness direction so that the interface conditions can be sat-
isfied only approximately. The transverse functions are derived to degree in which
the three-dimensional elasticity equilibrium equations are satisfied. The number of
functional degrees-of-freedom increases with the degree of accuracy.

In the articles Mohite & Upadhyay (2004) and Mohite & Upadhyay (2006), au-
thors compared a family of plate models available for the analysis of laminated
structures: higher-order-shear-deformable (HSDT) model, hierarchic model and layer-
wise model based on representative models adopted from Reddy (1984), Actis et al.
(1999), and Ahmed & Basu (1994), respectively. Point-wise data such as transverse
deflection, local state of stress and failure load produced by each model were com-
pared to results of previous studies by Pagano & Hatfield (1972), Pagano (1970a,b),
and Reddy & Reddy (1992). The layer-wise theory found to capture accurately the
local state of stress for different plate thicknesses.

24



3 General considerations of composite modeling

Although there is plenty of empirical models based on regression analysis or some
other dependencies and theoretical and analytical functions, this conclusion focus
on numerical methods, especially on finite element analysis, because its applicabil-
ity on vast amount of materials with different behavior (see, e.g., Shanks (2010)).
In brittle and semi-brittle materials the cracking phenomena is important determin-
ing also the softening of material, but also very challenging task needing special
treatment of crack tip area and the remeshing while crack propagates. In microscale
matrix material, reinfocement material and bonds can be treated uniquely, but usu-
ally only small fractions can be treated that way without turning simulations very
time consuming. Usual technique to treat macroscale is homogenization i.e. defin-
ing effective material properties of representative volume element, characterizing
the material behavior as continuum. Laminate techniques often treat material as 2D
structures decreasing that way the model complexity.

Considering real three dimensional modeling, the interesting approach was steel
reinforcement concrete, where steel reinforcement, concrete and interface between
them were meshed differently and having different material parameters, although
in this case also the concrete was treated with homogenization and smeared crack
approaches. Another interesting approach was hierarchic porous bone study, in
which the material parameter in intermediate scales was determined by finite ele-
ment simulation using different boundary conditions. The structure of material and
distribution of different materials on studied section of material can be modeled,
and different artificial ways to build, for example, oriented fiber distribution have
been presented. 3D tomography techniques are improving and starting to provide
real structures for base of mechanical modeling and hopefully improved computing
will provide possibilities to take all particles, resins and bondings into account.

One approach onto this direction is presented by Erkkilä et al. (2015) and called
here as LE-model. In this continuum model every element may include individual
material properties, including plastic and viscous properties, and temperature and
moisture content dependencies. In Erkkilä et al. (2015), the material properties dif-
ferences were origin from local differences in moisture and anisotropy, but, in prin-
ciple, the materials parameters differences could be origin from any other source, if
the mechanical behavior of each individual constituent or interfacial zone is known
separately. Unpublished study of Leppänen and Erkkilä appended fracture and
cracking behavior under tensile stress to LE-model, which will bring the significant
improvement concerning simulations of brittle materials.

References

Aboudi, J. (2013). Mechanics of composite materials: A unified micromechanical approach.
Elsevier.

Actis, R. L., Szabo, B. A., & Schwab, C. (1999). Hierarchic models for laminated

25



plates and shells. Computer Methods in Applied Mechanics and Engineering, 172(1),
79–107.

Addessi, D., Marfia, S., & Sacco, E. (2002). A plastic nonlocal damage model. Com-
puter Methods in Applied Mechanics and Engineering, 191(13), 1291–1310.

Ahmed, N. U. & Basu, P. K. (1994). Higher-order finite element modelling of lami-
nated composite plates. International Journal for Numerical Methods in Engineering,
37(1), 123–139.

Alava, M. & Niskanen, K. (2006). The physics of paper. Reports on Progress in Physics,
69(3), 669–723.

Arabi, M., Faezipour, M., Layeghi, M., Enayati, A., & Zahed, R. (2010). Prediction
of bending strength and stiffness strength of particleboard based on structural pa-
rameters by Buckinghams p-theorem. Journal of the Indian Academy of Wood Science,
7(1-2), 65–70.

Babuška, I., Szabo, B. A., & Actis, R. L. (1992). Hierarchic models for laminated
composites. International Journal for Numerical Methods in Engineering, 33(3), 503–
535.

Bahn, B. Y. & Hsu, C.-T. T. (1998). Stress-strain behavior of concrete under cyclic
loading. ACI Materials Journal, 95(2), 178–193.

Barnes, D. (2001). A model of the effect of strand length and strand thickness on the
strength properties of oriented wood composites. Forest Products Journal, 51(2),
36–46.

Barnes, D. (2002). A model of the effect of fines content on the strength properties
of oriented strand wood composites. Forest Products Journal, 52(5), 55–60.

Bažant, Z. P., Caner, F. C., Carol, I., Adley, M. D., & Akers, S. A. (2000). Microplane
model M4 for concrete. I: Formulation with work-conjugate deviatoric stress. Jour-
nal of Engineering Mechanics, 126(9), 944–953.

Bažant, Z. P. & Gambarova, P. G. (1984). Crack shear in concrete: Crack band mi-
croflane model. Journal of Structural Engineering, 110(9), 2015–2035.

Bažant, Z. P. & Kim, S.-S. (1979). Plastic-fracturing theory for concrete. Journal of the
Engineering Mechanics Division, 105(3), 407–428.

Bažant, Z. P. & Oh, B. H. (1983a). Crack band theory for fracture of concrete. Matéri-
aux et Construction, 16(3), 155–177.

Bažant, Z. P. & Oh, B. H. (1983b). Microplane model for fracture analysis of concrete
structures. In C. Ross (Ed.), Proceedings of the symposium on the interaction of non-
nuclear munitions with structures, U.S. Air Force Academy, Colorado Springs (pp. 49–
55).: McGregor & Werner.

26



Bažant, Z. P. & Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle
materials, volume 16 of New Directions in Civil Engineering. CRC Press.

Bažant, Z. P. & Prat, P. C. (1988). Microplane model for brittle-plastic material: I.
Theory. Journal of Engineering Mechanics, 114(10), 1672–1688.

Bažant, Z. P. & Caner, F. C. (2005). Microplane model M5 with kinematic and static
constraints for concrete fracture and anelasticity. I: Theory. Journal of Engineering
Mechanics, 131(1), 31–40.

Beazley, K. M., Dennison, S. R., & Taylor, J. H. (1975). The influence of mineral fillers
on paper strength: Its mechanism and practical means of modification. In Preprints
11th ESPRA European Mtg. (Maastricht) (pp. 217–241).

Beghini, A., Bažant, Z. P., Zhou, Y., Gouirand, O., & Caner, F. C. (2007). Microplane
model M5f for multiaxial behavior and fracture of fiber-reinforced concrete. Jour-
nal of Engineering Mechanics, 133(1), 66–75.

Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element-free Galerkin methods. Interna-
tional Journal for Numerical Methods in Engineering, 37(2), 229–256.

Benabou, L. & Duchanois, G. (2007). Modelling of the hygroelastic behaviour of a
wood-based composite for construction. Composites Science and Technology, 67(1),
45–53.

Benveniste, Y. (1987). A new approach to the application of Mori-Tanaka’s theory in
composite materials. Mechanics of Materials, 6(2), 147–157.

Bogetti, T. A., Hoppel, C. P., & Drysdale, W. H. (1995). Three-dimensional effective
property and strength prediction of thick laminated composite media. Technical Report
ARL-TR-911, U. S. Army Research Laboratory.

Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. Journal
of the Mechanics and Physics of Solids, 13(4), 223–227.

Cai, Z., Wu, Q., Lee, J. N., & Hiziroglu, S. (2004). Influence of board density, mat
construction, and chip type on performance of particleboard made from eastern
redcedar. Forest Products Journal, 54(12), 226–232.

Caner, F. C., Bažant, Z. P., & Wendner, R. (2013). Microplane model M7f for fiber
reinforced concrete. Engineering Fracture Mechanics, 105, 41–57.

Caner, F. C. & Bažant, Z. P. (2012). Microplane model M7 for plain concrete. I: For-
mulation. Journal of Engineering Mechanics, 139(12), 1714–1723.

Carol, I. & Bažant, Z. P. (1997). Damage and plasticity in microplane theory. Interna-
tional Journal of Solids and Structures, 34(29), 3807–3835.

27



Chen, S., Fang, L., Liu, X., & Wellwood, R. (2008). Effect of mat structure on modulus
of elasticity of oriented strandboard. Wood Science and Technology, 42(3), 197–210.

Chen, W.-F. & Han, D.-J. (2007). Plasticity for structural engineers. J. Ross Publishing.

Chou, T.-W., Nomura, S., & Taya, M. (1980). A self-consistent approach to the elastic
stiffness of short-fiber composites. Journal of Composite Materials, 14(3), 178–188.

Comi, C. (2001). A non-local model with tension and compression damage mecha-
nisms. European Journal of Mechanics – A/Solids, 20(1), 1–22.

Comi, C. & Perego, U. (2001). Fracture energy based bi-dissipative damage model
for concrete. International Journal of Solids and Structures, 38(36), 6427–6454.

Cook, D. F. & Chiu, C.-C. (1997). Predicting the internal bond strength of particle-
board, utilizing a radial basis function neural network. Engineering Applications of
Artificial Intelligence, 10(2), 171–177.

Cox, H. L. (1952). The elasticity and strength of paper and other fibrous materials.
British Journal of Applied Physics, 3(3), 72–79.

Crawford, J. E. & Malvar, L. J. (2006). Users and theoretical manual for K&C concrete
model. Technical Report TR-06-19.1, Karagozian & Case, Burbank, CA.

Cunha, V. M. C. F., Barros, J. A. O., & Sena-Cruz, J. M. (2011). An integrated approach
for modelling the tensile behaviour of steel fibre reinforced self-compacting con-
crete. Cement and Concrete Research, 41(1), 64–76.

Cusatis, G., Bažant, Z. P., & Cedolin, L. (2003). Confinement-shear lattice model
for concrete damage in tension and compression: I. Theory. Journal of Engineering
Mechanics, 129(12), 1439–1448.

Cusatis, G., Pelessone, D., & Mencarelli, A. (2011). Lattice Discrete Particle Model
(LDPM) for failure behavior of concrete. I: Theory. Cement and Concrete Composites,
33(9), 881–890.

Dai, C., Yu, C., Groves, K., & Lohrasebi, H. (2007). Theoretical modeling of bonding
characteristics and performance of wood composites. Part II. Resin distribution.
Wood and Fiber Science, 39(1), 56–70.

de Borst, R. (2002). Fracture in quasi-brittle materials: A review of continuum
damage-based approaches. Engineering Fracture Mechanics, 69(2), 95–112.

Dong, Y., Wu, S., Xu, S. S., Zhang, Y., & Fang, S. (2010). Analysis of concrete fracture
using a novel cohesive crack method. Applied Mathematical Modelling, 34(12), 4219–
4231.

Dougill, J. W. (1976). On stable progressively fracturing solids. Zeitschrift für ange-
wandte Mathematik und Physik ZAMP, 27(4), 423–437.

28



Duan, H. L., Wang, J., Karihaloo, B. L., & Huang, Z. P. (2006). Nanoporous materials
can be made stiffer than non-porous counterparts by surface modification. Acta
Materialia, 54(11), 2983–2990.

Einstein, A. (1906). Zur Theorie der Brownschen Bewegung. Annalen der Physik,
324(2), 371–381.

Einstein, A. (1911). Berichtigung zu meiner Arbeit: Eine neue Bestimmung der
Moleküldimensionen. Annalen der Physik, 339(3), 591–592.

Erkkilä, A.-L., Leppänen, T., Hämäläinen, J., & Tuovinen, T. (2015). Hygro-elasto-
plastic model for planar orthotropic material. International Journal of Solids and
Structures, 62, 66–80.

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion,
and related problems. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 241(1226), 376–396.

Esteban, L. G., Fernández, F. G., de Palacios, P., & Conde, M. (2009). Artificial neural
networks in variable process control: Application in particleboard manufacture.
Forest Systems, 18(1), 92–100.

Fan, M. & Enjily, V. (2009). Structural properties of oriented wood strand compos-
ite: Effect of strand orientation and modeling prediction. Journal of Engineering
Mechanics, 135(11), 1323–1330.

Faria, R., Oliver, J., & Cervera, M. (1998). A strain-based plastic viscous-damage
model for massive concrete structures. International Journal of Solids and Structures,
35(14), 1533–1558.

Fernández, F. G., Esteban, L. G., De Palacios, P., Navarro, M., & Conde, M. (2008).
Prediction of standard particleboard mechanical properties utilizing an artificial
neural network and subsequent comparison with a multivariate regression model.
Forest Systems, 17(2), 178–187.

Fukuda, H. & Chou, T.-W. (1982). A probabilistic theory of the strength of short-fibre
composites with variable fibre length and orientation. Journal of Materials Science,
17(4), 1003–1011.

Gargantini, I. (1982). An effective way to represent quadtrees. Communications of the
ACM, 25(12), 905–910.

Genet, M., Marcin, L., & Ladevèze, P. (2014). On structural computations until frac-
ture based on an anisotropic and unilateral damage theory. International Journal of
Damage Mechanics, 23(4), 483–506.

Gereke, T., Malekmohammadi, S., Nadot-Martin, C., Dai, C., Ellyin, F., & Vaziri, R.
(2012). Multiscale stochastic modeling of the elastic properties of strand-based
wood composites. Journal of Engineering Mechanics, 138(7), 791–799.

29



Giuriani, E., Plizzari, G., & Schumm, C. (1991). Role of stirrups and residual tensile
strength of cracked concrete on bond. Journal of Structural Engineering, 117(1), 1–18.

Gopalaratnam, V. S. & Shah, S. P. (1985). Softening response of plain concrete in
direct tension. ACI Journal Proceedings, 82(3), 310–323.

Guth, E. (1939). On the hydrodynamical theory of the viscosity of suspensions. In
Proceedings of the Fifth International Congress for Applied Mechanics (pp. 448–455).:
John Wiley & Sons, Chapman & Hall.

Guth, E. (1945). Theory of filler reinforcement. Journal of Applied Physics, 16(1), 20–25.

Halligan, A. F. & Schniewind, A. P. (1974). Prediction of particleboard mechanical
properties at various moisture contents. Wood Science and Technology, 8(1), 68–78.

Hallquist, J. O. (2006). LS-DYNA theory manual. Livermore Software Technology
Corporation.

Halpin, J. C. & Kardos, J. (1976). The Halpin-Tsai equations: A review. Polymer
Engineering and Science, 16(5), 344–352.

Hashin, Z. (1990). Thermoelastic properties of fiber composites with imperfect in-
terface. Mechanics of Materials, 8(4), 333–348.

Hashin, Z. & Shtrikman, S. (1963). A variational approach to the theory of the elastic
behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids,
11(2), 127–140.

Hellen, E. K. O., Ketoja, J. A., Niskanen, K. J., & Alava, M. J. (2002). Diffusion
through fibre networks. Journal of Pulp and Paper Science, 28(2), 55–62.

Hermans, J. J. (1967). Elastic properties of fiber reinforced materials when fibers
are aligned. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen.
Series B, Physical Sciences, 70(1), 1–9.

Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I.
Elastic behaviour. Journal of the Mechanics and Physics of Solids, 12(4), 199–212.

Hill, R. (1965). A self-consistent mechanics of composite materials. Journal of the
Mechanics and Physics of Solids, 13(4), 213–222.

Hillerborg, A., Modeer, M., & Petersson, P.-E. (1976). Analysis of crack formation
and crack growth in concrete by means of fracture mechanics and finite elements.
Cement and Concrete Research, 6(6), 773–781.

Hjelt, T., Sirvio, J., & Saarela, M. (2008). Effect of filler clustering on paper properties.
Appita Journal, 61(3), 209–211.

30



Hoover, W. L., Hunt, M. O., Lattanzi, R. C., Bateman, J. H., & Youngquist, J. A.
(1992). Modeling mechanical properties of single-layer, aligned, mixed-hardwood
strand panels. Forest Products Journal, 42(5), 12–18.

Houlsby, G. T. & Puzrin, A. M. (2000). A thermomechanical framework for consti-
tutive models for rate-independent dissipative materials. International Journal of
Plasticity, 16(9), 1017–1047.

Ichitsubo, T., Tane, M., Ogi, H., Hirao, M., Ikeda, T., & Nakajima, H. (2002).
Anisotropic elastic constants of lotus-type porous copper: Measurements and mi-
cromechanics modeling. Acta Materialia, 50(16), 4105–4115.

Jirásek, M. & Patzák, B. (2001). Models for quasibrittle failure: Theoretical and
computational aspects. In Second European Conference on Computational Mechanics
(ECCM-2001, Cracow).

Jirásek, M., Rolshoven, S., & Grassl, P. (2004). Size effect on fracture energy induced
by non-locality. International Journal for Numerical and Analytical Methods in Geome-
chanics, 28(7-8), 653–670.

Kachanov, L. M. (1958). Time of the rupture process under creep conditions. Isv.
Akad. Nauk. SSR. Otd Tekh. Nauk, 8, 26–31.

Kachanov, L. M. (1999). Rupture time under creep conditions. International Journal
of Fracture, 97(1-4), 11–18.

Kachanov, M. (1980). Continuum model of medium with cracks. Journal of the Engi-
neering Mechanics Division, 106(5), 1039–1051.

Kim, H. S., Hong, S. I., & Kim, S. J. (2001). On the rule of mixtures for predicting
the mechanical properties of composites with homogeneously distributed soft and
hard particles. Journal of Materials Processing Technology, 112(1), 109–113.

Krajcinovic, D. (1985). Continuous damage mechanics revisited: Basic concepts and
definitions. Journal of Applied Mechanics, 52(4), 829–834.

Lavrykov, S., Lindström, S. B., Singh, K. M., & Ramarao, B. V. (2012). 3D network
simulations of paper structure. Nordic Pulp and Paper Research Journal, 27(2), 256–
263.

Lee, J. & Fenves, G. L. (1998). A plastic-damage concrete model for earthquake
analysis of dams. Earthquake Engineering & Structural Dynamics, 27(9), 937–956.

Lee, J. N. & Wu, Q. (2003). Continuum modeling of engineering constants of ori-
ented strandboard. Wood and Fiber Science, 35(1), 24–40.

Lehman, W. F. (1974). Properties of structural particleboards. Forest Products Journal,
24(1), 19–26.

31



Leite, J. P. B., Slowik, V., & Apel, J. (2007). Computational model of mesoscopic
structure of concrete for simulation of fracture processes. Computers & Structures,
85(17), 1293–1303.

Leite, J. P. B., Slowik, V., & Mihashi, H. (2004). Computer simulation of fracture
processes of concrete using mesolevel models of lattice structures. Cement and
Concrete Research, 34(6), 1025–1033.

Lemaitre, J. (1984). How to use damage mechanics. Nuclear Engineering and Design,
80(2), 233–245.

Lemaitre, J. (1992). A course on damage mechanics. Springer, Berlin.

Lemaitre, J. & Chaboche, J.-L. (1990). Mechanics of solid materials. Cambridge Uni-
versity Press.

Li, L., Collis, A., & Pelton, R. (2002). A new analysis of filler effects on paper
strength. Journal of Pulp and Paper Science, 28(8), 267–273.

Lilliu, G. & van Mier, J. G. M. (2003). 3D lattice type fracture model for concrete.
Engineering Fracture Mechanics, 70(7), 927–941.

Liu, W. K., Park, H. S., Qian, D., Karpov, E. G., Kadowaki, H., & Wagner, G. J. (2006).
Bridging scale methods for nanomechanics and materials. Computer Methods in
Applied Mechanics and Engineering, 195(13), 1407–1421.

Luccioni, B., Oller, S., & Danesi, R. (1996). Coupled plastic-damaged model. Com-
puter Methods in Applied Mechanics and Engineering, 129(1), 81–89.

Malekmohammadi, S., Tressou, B., Nadot-Martin, C., Ellyin, F., & Vaziri, R. (2014).
Analytical micromechanics equations for elastic and viscoelastic properties of
strand-based composites. Journal of Composite Materials, 48(15), 1857–1874.

MC90 (1993). CEB-FIP Model Code 1990. Thomas Telford.

Moës, N. & Belytschko, T. (2002). Extended finite element method for cohesive crack
growth. Engineering Fracture Mechanics, 69(7), 813–833.

Mohite, P. M. & Upadhyay, C. S. (2004). Comparison of plate models for analysis of
laminated composites. In International Conference on Theoretical, Applied, Computa-
tional and Experimental Mechanics (IIT Kharagpur India).

Mohite, P. M. & Upadhyay, C. S. (2006). Accurate computation of critical local quan-
tities in composite laminated plates under transverse loading. Computers & Struc-
tures, 84(10), 657–675.

Mori, T. & Tanaka, K. (1973). Average stress in matrix and average elastic energy of
materials with misfitting inclusions. Acta Metallurgica, 21(5), 571–574.

32



Morris, D. & Salisbury, K. (2008). Automatic preparation, calibration, and simulation
of deformable objects. Computer Methods in Biomechanics and Biomedical Engineer-
ing, 11(3), 263–279.

Mundy, J. S. & Bonfield, P. W. (1998). Predicting the short-term properties of chip-
board using composite theory. Wood Science and Technology, 32(3), 237–245.

Murakami, S. (1988). Mechanical modeling of material damage. Journal of Applied
Mechanics, 55(2), 280–286.

Nairn, J. A. (2007). Numerical implementation of imperfect interfaces. Computational
Materials Science, 40(4), 525–536.

Nairn, J. A. & Le, E. (2009). Numerical modeling and experiments on the role of
strand-to-strand interface quality on the properties of oriented strand board. In
Proceedings of 2009 International Conference on Wood Adhesives (Lake Tahoe, NV). CD-
ROM.

Nemat-Nasser, S., Iwakuma, T., & Hejazi, M. (1982). On composites with periodic
structure. Mechanics of Materials, 1(3), 239–267.

Nemat-Nasser, S. & Taya, M. (1981). On effective moduli of an elastic body contain-
ing periodically distributed voids. Quarterly of Applied Mathematics, 39, 43–59.

Ngo, D. & Scordelis, A. C. (1967). Finite element analysis of reinforced concrete
beams. ACI Journal Proceedings, 64(3), 152–163.

Nguyen, G. D. (2005). A thermodynamic approach to constitutive modelling of concrete
using damage mechanics and plasticity theory. PhD thesis, University of Oxford, Ox-
ford.

Nilsen, N., Zabihian, M., & Niskanen, K. (1998). KCL-PAKKA: A tool for simulating
paper properties. Tappi Journal, 81(5), 163–166.

Nirdosha, G. & Setunge, S. (2006). Formulation and process modeling of particle-
board production using hardwood saw mill wastes using experimental design.
Composite Structures, 75(1), 520–523.

Niskanen, K., Nilsen, N., Hellen, E., & Alava, M. (1997). KCL-PAKKA: Simulation
of the 3D structure of paper. In The Fundamentals of Papermaking Materials: Transac-
tions of the 11th Fundamental Research Symposium (Cambridge, 1997) (pp. 1177–1213).:
Pira International.

Nordman, L. (1958). Bonding in paper sheets. In Fundamentals of Papermaking Fi-
bres: Transactions of the symposium, held at Cambridge, September 1957 (pp. 333–347).:
British Paper and Board Makers’ Association.

Ohmenhauser, F., Weihe, S., & Kroplin, B. (1999). Algorithmic implementation of a
generalized cohesive crack model. Computational Materials Science, 16(1), 294–306.

33



Oliver, J. & Huespe, A. E. (2004). Continuum approach to material failure in strong
discontinuity settings. Computer Methods in Applied Mechanics and Engineering,
193(30), 3195–3220.

Ooi, E. T. & Yang, Z. J. (2010). A hybrid finite element-scaled boundary finite element
method for crack propagation modelling. Computer Methods in Applied Mechanics
and Engineering, 199(17), 1178–1192.

Ooi, E. T. & Yang, Z. J. (2011). Modelling crack propagation in reinforced concrete
using a hybrid finite element-scaled boundary finite element method. Engineering
Fracture Mechanics, 78(2), 252–273.

Pagano, N. J. (1970a). Exact solutions for rectangular bidirectional composites and
sandwich plates. Journal of Composite Materials, 4(1), 20–34.

Pagano, N. J. (1970b). Influence of shear coupling in cylindrical. Bending of
anisotropic laminates. Journal of Composite Materials, 4(3), 330–343.

Pagano, N. J. & Hatfield, H. J. (1972). Elastic behavior of multilayered bidirectional
composites. AIAA Journal, 10(7), 931–933.

Page, D. H. (1969). A theory for tensile strength of paper. Tappi, 52(4), 674.

Pandya, B. N. & Kant, T. (1988). Flexural analysis of laminated composites using
refined higher-order C0 plate bending elements. Computer Methods in Applied Me-
chanics and Engineering, 66(2), 173–198.

Peerlings, R. H. J. (1999). Enhanced damage modelling for fracture and fatigue. PhD
thesis, Technische Universiteit Eindhoven.

Pelessone, D. (2005). Discrete particle method. Technical report, Engineering and
Software System Solutions, Inc.

Pereira, E. N. B. (2006). Steel fibre reinforced self-compacting concrete: From mate-
rial to mechanical behaviour. ResearchGate.

Petersson, P.-E. (1981). Crack growth and development of fracture zones in plain concrete
and similar materials. PhD thesis, Lund University.

Podshivalov, L., Fischer, A., & Bar-Yoseph, P. Z. (2011). 3D hierarchical geometric
modeling and multiscale FE analysis as a base for individualized medical diagno-
sis of bone structure. Bone, 48(4), 693–703.

Ramadoss, P. & Nagamani, K. (2012). Modeling for the evaluation of strength and
toughness of high-performance fiber reinforced concrete. Journal of Engineering
Science and Technology, 7(3), 280–291.

Rashid, Y. R. (1968). Ultimate strength analysis of prestressed concrete pressure
vessels. Nuclear Engineering and Design, 7(4), 334–344.

34



Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates.
Journal of Applied Mechanics, 51(4), 745–752.

Reddy, J. N. (1987). A generalization of two-dimensional theories of laminated com-
posite plates. Communications in Applied Numerical Methods, 3(3), 173–180.

Reddy, Y. S. N. & Reddy, J. N. (1992). Linear and non-linear failure analysis of com-
posite laminates with transverse shear. Composites Science and Technology, 44(3),
227–255.

Reinhardt, H. W., Cornelissen, H. A. W., & Hordijk, D. A. (1986). Tensile tests and
failure analysis of concrete. Journal of Structural Engineering, 112(11), 2462–2477.

Retulainen, E. & Ebeling, K. (1993). Fibre-fibre bonding and ways of characterizing
bond strength. Appita, 46(4), 282–288.

Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der
Plastizitätsbedingung für Einkristalle. ZAMM – Journal of Applied Mathematics and
Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49–58.

Sabuncuoglu, B., Orlova, S., Gorbatikh, L., Lomov, S. V., & Verpoest, I. (2015). Micro-
scale finite element analysis of stress concentrations in steel fiber composites un-
der transverse loading. Journal of Composite Materials, 49(9), 1057–1069.

Salari, M. R., Saeb, S., Willam, K. J., Patchet, S. J., & Carrasco, R. C. (2004). A cou-
pled elastoplastic damage model for geomaterials. Computer Methods in Applied
Mechanics and Engineering, 193(27), 2625–2643.

Schlangen, E. & Van Mier, J. G. M. (1992a). Experimental and numerical analysis
of micromechanisms of fracture of cement-based composites. Cement and Concrete
Composites, 14(2), 105–118.

Schlangen, E. & Van Mier, J. G. M. (1992b). Simple lattice model for numerical sim-
ulation of fracture of concrete materials and structures. Materials and Structures,
25(9), 534–542.
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