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ABSTRACT

Tabatabaei, Seyed Mohammad Mehdi
On Approaches for Solving Computationally Expensive Multiobjective Optimiza-
tion Problems
Jyväskylä: University of Jyväskylä, 2016, 68 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 254)
ISBN 978-951-39-6860-1 (nid.)
ISBN 978-951-39-6861-8 (PDF)
Finnish summary
Diss.

In this thesis, we consider solving computationally expensive multiobjective optimiza-
tion problems that take into account the preferences of a decision maker (DM). The aim
is to support the DM in identifying the most preferred solution for problems that have
several conflicting objectives and when the evaluation of the candidate solutions is time
consuming. This is conducted by replacing computationally expensive functions with
computationally inexpensive functions, known as surrogates. First, based on a litera-
ture survey, we introduce two frameworks, i.e., a sequential and an adaptive framework,
based on which surrogate-based methods are classified and compared. We then iden-
tify relevant challenges that warrant more research efforts. In order to deal with the
challenges, we develop two surrogate-based methods: SURROGATE-ASF and ANOVA-
MOP.

As an interactive method, SURROGATE-ASF has two phases: initialization and
decision-making. In the first phase, the decision space is decomposed into a finite number
of hyper-boxes. For each hyper-box, a single-objective surrogate problem is built. By
solving an appropriate surrogate problem in the latter phase, a solution corresponding
to the preferences of the DM is obtained. Numerical results support that SURROGATE-
ASF can solve problems with at most 12 decision variables, 5 objective functions and
nonconvex and/or disconnected sets of Pareto optimal solutions.

To solve problems with high-dimensional decision and objective spaces, we de-
velop the ANOVA-MOP method. Based on information obtained from sensitivity anal-
ysis, a problem is decomposed into a few sub-problems with low-dimensional decision
and objective spaces. These sub-problems are solved, and the solutions obtained are
composed to form approximated solutions for the original problem. ANOVA-MOP can
be applied either as a non-interactive or an interactive method.

Finally, we discuss the potential of a new metamodeling technique, called T-splines,
to be incorporated into ANOVA-MOP to solve problems including non-differentiable
functions. By applying the methods developed in this thesis, we extend the applicability
of interactive methods to solving computationally expensive problems.

Keywords: Multiobjective optimization, decision-making, computational cost, surrogate,
decomposition.



Author Seyed Mohammad Mehdi Tabatabaei
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisors Professor Kaisa Miettinen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Dr. Jussi Hakanen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Dr. Markus Hartikainen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Dr. Karthik Sindhya
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Reviewers Professor Juergen Branke
Warwick Business School
University of Warwick
United Kingdom

Professor Hirotaka Nakayama
Department of Information Science and Systems En-
gineering
Konan University
Japan

Opponent Professor Dr. hab. inż. Ignacy Kaliszewski
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1 INTRODUCTION

The desire of choosing the best alternative among all possible ones while taking
limitations into account has always been part of every day life. Optimization is
the art of thinking systematically to find the best alternative. Scientifically, by
formulating and solving an optimization problem, we wish to find an alternative
that has the most effective impact on the defined goals. Such problems arise in
many application domains, such as engineering, economy and biology. When
encountering optimization problems, we benefit from using precise models to
realize our goals within defined constraints. The models representing our goals
are called objective functions, and those representing our limitations are called
constraint functions.

Everyday-life or real-world optimization problems typically consist of mul-
tiple conflicting objective functions and are known as multiobjective optimiza-
tion problems. For instance, when buying a house, one may consider the price,
the size, and the distance to the city center. Often, big houses near the city center
are more expensive in comparison with those far away from the city center. Thus,
there is a trade-off among price, size and distance. Of course, a house with a de-
cent price and size located relatively near to the city center would be desirable,
but one is not always guaranteed to find such a house.

As can be understood from the above example, instead of having one al-
ternative, one can have several alternatives with different trade-offs in terms of
price, size and location. More precisely, in multiobjective optimization problems,
instead of one optimal solution, there exist several (often infinite) solutions called
Pareto optimal solutions. The set of all Pareto optimal solutions can be called a
Pareto frontier. The Pareto frontier can be convex, nonconvex and/or discon-
nected. Mathematically and in the absence of any preferences, Pareto optimal
solutions are equally preferable. Thus, we require an expert known as a decision
maker (DM) who has a deep insight into the problem. The task of the DM is
to provide his/her preferences, compare solutions obtained and finally choose a
desirable solution.

In the literature, methods developed to solve multiobjective optimization
problems are divided into four categories according to the role of the DM [1].



12

The first one includes no-preference methods. In such methods, the preferences
of the DM are not available. The second one includes a priori methods in which
the DM expresses his/her preferences before the solution process. The third cat-
egory involves a posteriori methods where the DM provides his/her preferences
after the solution process in which solution candidates have been generated. The
last category includes interactive methods. In these methods, the DM actively
provides his/her preferences during the solution process. A merit of interactive
methods is that the DM is allowed to explore different solutions and to guide the
solution process. Thus, the DM becomes more and more aware regarding the
nature of the problem during the solution process.

In reality, multiobjective optimization problems may involve functions that
do not have any explicit function formulation. Such functions are called black-
box functions. In black-box functions, one can only have an output for a given
input. In such problems, function evaluation is conducted through computation-
ally expensive and time-consuming experiments. In the literature, such problems
are termed computationally expensive multiobjective optimization problems.

A common method for reducing the computational cost is approximation.
In such methods, for example, statistical and probabilistic mathematical tech-
niques are employed to approximate black-box functions. Then, these black-box
functions are replaced with the approximated functions, termed surrogate func-
tions. This leads to formulating computationally inexpensive problems, known
as surrogate multiobjective optimization problems.

In the literature, methods that solve computationally expensive problems
by using surrogate problems are called surrogate-based methods. Generally there
are two kinds of surrogate-based methods, nature- and non-nature-inspired sur-
rogate-based methods [PI]. In the former one, the mechanism of nature-inspired
optimization algorithms such as evolutionary and particle swarm optimization
algorithms plays a role in building surrogate functions [2, 3]. In the latter one,
which is the focus of this thesis, surrogate functions are constructed indepen-
dently from the optimization algorithm utilized. In this thesis, for the sake of
simplicity, the term "surrogate-based methods" is used in reference to non-nature-
inspired surrogate-based methods.

This thesis as a collection of articles that concentrate on developing sur-
rogate-based methods that take into account the preferences of the DM. To do
so, scientific papers written in English and published in scientific journals before
2013 are surveyed in [PI]. In this paper, we compare surrogate-based methods
and identify some shortcomings and future research directions, such as 1) solv-
ing computationally expensive multiobjective optimization problems in which
the Pareto frontier is nonconvex and/or disconnected, 2) developing interactive
surrogate-based methods to solve problems while taking into account the prefer-
ences of the DM, 3) developing surrogate-based methods to solve problems that
have high-dimensional decision and objective spaces and 4) solving problems in-
cluding non-differentiable black-box functions.

In [PII], we have developed an interactive surrogate-based method called
SURROGATE-ASF to study the first and second shortcomings. In SURROGATE-
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ASF, the decision space is decomposed into a limited number of hyper-boxes. For
each hyper-box, a corresponding surrogate function is built and a single-objective
surrogate problem is formulated. These surrogate problems are employed in a
systematic manner to interact with the DM to find the most preferred solution for
him/her. This method performs significantly well on problems with at most 12
decision variables and 5 objective functions. However, if a given computationally
expensive problem has a large number of objective functions (e.g., more than 5
objective functions), then the DM should compare solutions with a large number
of components. This may impose a cognitive load on him/her. Thus, to study the
third shortcoming, we have developed a method in [PIII] called ANOVA-MOP.

In ANOVA-MOP, based on information obtained from sensitivity analysis,
a problem with high-dimensional decision and objective spaces is decomposed
into a limited number of sub-problems with low dimensional decision and ob-
jective spaces. Then, each sub-problem is solved separately. The solutions of the
sub-problems are composed to form solutions for the original high-dimensional
problem. We show that ANOVA-MOP can be employed as a non-interactive or
an interactive method. The method employed to elicit sensitivity analysis in-
formation and to build surrogate functions in ANOVA-MOP can approximate
differentiable black-box functions.

Finally, in [PV], we discuss the potential of a new technique called T-splines
to be incorporated into ANOVA-MOP for sensitivity analysis on non-differen-
tiable computationally expensive functions. We expect that computationally ex-
pensive multiobjective optimization problems including these kinds of functions
would be solved efficiently by ANOVA-MOP.

The rest of this thesis is organized as follows. In Chapter 2, we introduce
multiobjective optimizations and the basic concepts used in this thesis. In Chap-
ter 3, we discuss surrogate-based methods and the main findings of [PI]. The
SURROGATE-ASF and ANOVA-MOP methods ([PII] and [PIII], respectively) are
described in Chapters 4 and 5, respectively. In Chapter 6, we discuss the impor-
tance of T-splines (presented in [IV]) to be incorporated into ANOVA-MOP for
solving computationally expensive problems. In Chapter 7, the author’s contri-
bution is described. We finally conclude and discuss some ideas as future re-
search directions in Chapter 8.



2 MULTIOBJECTIVE OPTIMIZATION

In this chapter, we first present a general formulation of multiobjective optimiza-
tion problems as well as the basic concepts to be used in the following chapters.
Subsequently, we discuss several approaches to solving multiobjective objective
optimization problems.

2.1 Multiobjective Optimization Problems

Mathematically, we consider multiobjective optimization problems of the form

minimize
x∈S

{ f1(x), . . . , fk(x)}, (1)

where the set S is called the feasible decision set (often also called the feasible design
set), which is a subset of the decision space Rn. A solution x = (x1, . . . , xn)T ∈ S is
called a feasible decision (variable) vector, where xi, i = 1, . . . , n, are decision variables.
We have k (≥ 2) objective functions fi : S → R. We denote the vector of objective
functions, i.e., the objective vector, by f(x) = ( f1(x), . . . , fk(x))

T. For example,
one may consider the feasible decision set as S = {x ∈ Rn : gi(x) ≤ 0, i =
1, . . . , m, hj(x) = 0, j = 1, . . . , p, xlo ≤ x ≤ xup} , where gi : Rn → R, i = 1, . . . , m,
and hj : Rn → R, j = 1, . . . , p, are called inequality and equality constraint functions,
respectively, and xlo and xup stand for the lower and upper bounds of the decision
variables, respectively. In this thesis, we only consider the feasible decision set of
the form S = {x ∈ Rn : xlo ≤ x ≤ xup}. The image of the feasible decision set in
the objective space Rk is called the feasible objective set (often also called performance
set) denoted by Z(= f(S)). One should note that if some objective fi is to be
maximized, then we can minimize − fi and therefore only minimized functions
are considered in (1).

A feasible solution x∗ ∈ S and the corresponding f(x∗) ∈ Z are termed
weakly Pareto optimal for problem (1) if there does not exist another feasible so-
lution x ∈ S such that fi(x) < fi(x

∗) for all i = 1, . . . , k. Correspondingly, they
are Pareto optimal for problem (1) if there does not exist another feasible solution
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x ∈ S such that fi(x) ≤ fi(x
∗) for all i = 1, . . . , k, and f j(x) < f j(x

∗) for at least
one index j ∈ {1, . . . , k}. The set of all Pareto optimal solutions in the objective
space is called a Pareto frontier. All Pareto optimal solutions are weakly Pareto
optimal solutions but not vice versa.

Let the set Xβ = {x1, . . . , xβ} be an arbitrary subset of feasible solutions in S,
and Fβ = {f(x1), . . . , f(xβ)}, the corresponding objective vectors in Z. A solution
xl (or f(xl)), l = 1, . . . , β, that satisfies the definition of Pareto optimality with
respect to all solutions in Xβ (or Fβ), is called a non-dominated solution in Xβ (or
Fβ). A Pareto optimal solution is a non-dominated solution, but a non-dominated
one is not necessarily Pareto optimal.

Consider a feasible solution xi
e ∈ argminx∈S{ fi(x)} for i = 1, . . . , k. An

ith extreme point (solution) for i = 1, . . . , k, is defined as zi
e = f(xi

e). A vector
zideal = (zideal

1 , . . . , zideal
k )T is called the ideal (objective) vector in which zideal

i =
fi(x

i
e) for i = 1, . . . , k. The ideal vector contains the lower bounds of the objective

function values in the Pareto frontier in the objective space. We also define the
nadir (objective) vector denoted by znadir = (znadir

1 , . . . , znadir
k )T to be a vector of

upper bounds of the objective function values in the Pareto frontier. We also
define a vector zutp with zutp

i = zideal
i − ε for all i = 1, . . . , k, and for some small

positive ε � 1 as the utopian (objective) vector.
Mathematically, without any preferences, all Pareto optimal solutions are

equally acceptable for problem (1) [1]. However, it is generally desirable to ob-
tain the best possible solution to be implemented. Selecting one solution among
all Pareto optimal solution requires information which is not included in the ob-
jective functions. Therefore, a new element is considered in multiobjective opti-
mization [1], called a decision maker (DM). The DM is a person who can provide
preference information by relying on his/her deep insight into the problem. Typ-
ically, the final solution is chosen by the DM.

Mathematically, without any preferences, all Pareto optimal solutions are
equally acceptable for problem (1) [1]. However, it is generally desirable to ob-
tain the best possible solution to be implemented. Selecting one solution among
all Pareto optimal solution requires information which is not included in the ob-
jective functions. Therefore, a new element is considered in multiobjective opti-
mization [1], called a decision maker (DM). The DM is a person who can provide
preference information by relying on his/her deep insight into the problem. Typ-
ically, the final solution is chosen by the DM.

During the solution process, preference information is sought from the DM.
Such preferences can be provided, for instance, as desirable or acceptable values
for the objective functions. We define zi, for i = 1, . . . , k, as aspiration levels
containing desirable or acceptable values for objective functions. The vector z ∈
Rk, consisting of aspiration levels, is called a reference point given by the DM.

In e.g. [1, 4, 5, 6, 7], methods developed for multiobjective optimization
problems have been surveyed. As discussed in [1], these methods are classified
according to the role of the DM in the solution process. The classes are:

– no-preference methods in which preference information of the DM is not avail-
able,
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– a priori methods in which the DM provides his/her preference information
before the solution process,

– a posteriori methods in which the DM provides his/her preference informa-
tion after the solution process, and

– interactive methods in which the DM provides his/her preference informa-
tion during the solution process.

Cases may arise that the DM is not available or does not have any preferences.
In such a case, one can apply no-preference methods. In such methods, after
solving problem (1), the solutions obtained are presented to the DM. In all the
other classes, the DM is assumed to take part in the solution process.

In a priori methods, the DM first specifies his/her preferences and then the
solution process tries to find a Pareto optimal solution satisfying them as well as
possible. This is a straightforward approach, but the difficulty is that the DM may
not be aware of the possibilities and limitations of the problem beforehand and
may have too optimistic or pessimistic expectations.

Alternatively, one may apply a posteriori methods and find a representation
of the set of Pareto optimal solutions. Then, the DM is supposed to choose the
most preferred solution among them. A posteriori methods provide the DM an
overview of different solutions available. Nevertheless, in problems with more
than three objective functions, it may be challenging for the DM to analyze a
large number of solutions, since visualizing the solutions is not as easy as in a
biobjective or three-objective problem.

In interactive methods, the goal is to find the most preferred solution for
the DM. In such methods, steps are repeated and the DM specifies preference in-
formation progressively during the solution process. After every iteration, some
information is provided to the DM and (s)he is supposed to analyze this infor-
mation and to express his/her preferences. In this way, the solution process is
guided by the DM toward his/her most preferred solution. In addition, the DM
can specify and correct his/her preferences during the solution process.

Another concept used in this thesis is scalarization. By scalarizing problem
(1), we mean transforming it into a single-objective optimization problem using
a scalarizing function. The optimal solution of this single-objective optimiza-
tion problem is a (weakly) Pareto optimal solution for problem (1). Often, the
DM’s preferences can be taken into account when using an appropriate scalariz-
ing function. Through scalarization, one can take advantage of the state-of-the-art
methods of single-objective optimization.

2.1.1 Achievement Scalarizing Function

Achievement scalarizing functions are types of functions used in reference-point-
based methods. They have been investigated, for example, in [1, 8, 9]. In this
thesis, we employ the following widely used achievement scalarizing function (ASF)
[9]:
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ASF: S × Rk → R

(x, z) �→ max
i=1,...,k

(wi( fi(x)− zi)),
(2)

where wi =
1

znadir
i −zutp

i
, i = 1, . . . , k, are non-negative fixed weights. Using (2), we

formulate a single-objective optimization problem as

minimize
x∈S

ASF(x, z). (3)

In [9], it is proved that by solving problem (3), a (weakly) Pareto optimal
solution corresponding to the reference point is generated. One can add an aug-
mentation term to (2) to only obtain Pareto optimal solutions as discussed and
proved in [1]. By changing reference points, one can obtain different (weakly)
Pareto optimal solutions. These solutions are obtained regardless of the position
of the reference point in the objective space [PII].

2.2 Interactive Methods

In this thesis, by solving multiobjective optimization problems, we mean intensi-
fying the most preferred solution as the final one for a DM. The most preferred
solution refers to a Pareto optimal solution that satisfies the preferences of the
DM. Typically, to find the most preferred solution, the DM (with his/her deep
insight into the problem) participates in the solution process and can provide
preference information relating to the objective functions that are considered in
the process of generating different solutions.

In interactive methods, the phases of interaction with the DM (decision
phase) and solution generation (optimization phase) alternate until the DM finds
the most preferred solution. After each iteration, some solutions are provided
to the DM and (s)he expresses his/her opinion about them or gives some other
type of information to form her/his preferences. This information is employed
to generate new solutions (which are supposed to better satisfy the DM’s pref-
erences). In this way, the DM guides the solution process and only a subset of
Pareto optimal solutions is generated and evaluated. In addition, during the so-
lution process, the DM can change his/her preferences and selections.

To put it in a nutshell, general steps in an interactive method are:

1. initialization (e.g., calculate ideal and nadir values and show them to the
DM),

2. ask the DM to provide some preference information (e.g., a reference point
or number of new solutions to be generated),

3. generate one or more Pareto optimal solution(s) corresponding to the given
preferences and show it/them to the DM. If more than one solution has been
generated, ask the DM to select the most preferred solution so far, and
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4. stop, if the DM is satisfied with the solution selected. Otherwise, go to step
2.

The DM can provide his/her preferences, e.g., by classifying objective functions
or in the form of a new reference point [1]. As discussed, e.g., in [51], interactive
methods employ different approaches to interact with the DM regarding the so-
lutions generated, such as, visualizations or trade-off information. In fact, by ap-
plying an interactive method, (s)he can acquire knowledge about the possibilities
and limitations of the problem considered. Moreover, a subset of Pareto optimal
solutions is generated that is attractive for the DM. This results in savings in com-
putational cost and avoiding the need to compare many Pareto optimal solutions
simultaneously. This may be critical for computationally expensive multiobjec-
tive optimization problems when the focus is on reducing computational burden.
This highlights the strength of interactive methods over a priori and a posteriori
methods.

In this thesis, the main interactive method considered is the reference point
method discussed in 2.1.1. In this method, the DM provides his/her aspiration
levels as a reference point. Then, problem (3) is solved. The solution obtained
is shown to the DM. If (s)he is not satisfied with the solution, another reference
point is given by him/her and problem (3) is solved. As soon as a solution ob-
tained satisfies the DM’s preferences, the interaction with the DM is terminated
and that solution is considered the most preferred solution. This is the realization
of the general steps of interactive methods mentioned above for the reference
point method.

2.3 Computationally Expensive MOPs

In this thesis, we say that problem (1) is computationally expensive if the objec-
tive function evaluation takes a significant amount of time to solve the problem.
Classical or evolutionary methods developed to solve multiobjective optimiza-
tion problems require many objective function evaluations. When applying such
methods to solve computationally expensive MOPs, the solution process becomes
complicated due to the large number of function evaluations. This means that
generating a solution may take several years. Examples of real-world computa-
tionally expensive optimization problems are given in, e.g., [10, 11].

One type of computationally expensive functions is black-box functions. In
such functions, a closed form mathematical formula is not available, and the
function values are typically obtained through computationally expensive sim-
ulations. Other types of computationally expensive functions can be functions
with a closed form formulation, but they involve complicated elements, which
make their evaluation time-consuming.

Surrogate-based methods are typically employed to solve a computation-
ally expensive problem. In such methods, a computationally inexpensive prob-
lem termed a surrogate problem is built. By applying an optimization procedure,
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FIGURE 1 A surrogate function.

function evaluation alternates between the surrogate and the computationally
expensive problems. In this manner, the number of computationally expensive
evaluations can often be decreased considerably, while a high accuracy is still
achieved.

Surrogate-based methods can be classified into nature- and non-nature-in-
spired methods [PI]. In the former, components of nature-inspired methods such
as evolutionary and particle swarm algorithms play roles to build surrogate prob-
lems (see, e.g., [2, 12, 13]). In the latter, surrogate problems are built regardless of
the type of the optimization algorithms employed in them.

The idea of a surrogate building method is approximation. The most widely
used approximation approach is to approximate each computationally expen-
sive function by using metamodeling techniques such as polynomial functions
[14], Kriging models [15], radial basis functions (RBFs) [16], multivariate adap-
tive regression splines (MARS) [17], neural networks [18] and support vector
regression (SVR) [19]. Approximation of a computationally expensive function
requires sample points. To do so, sampling techniques such as Latin hypercube
sampling (LHS) [20], central composite design (CCD) [21], orthogonal array sam-
pling (OAS) [21] and full factorial sampling (FFS) [21] are employed to select
sample points (which are solutions in the decision space). In [21, 22, 23, 24] and
[21, 22, 23, 24, 25, 26, 27, 28, 29] sampling and metamodeling techniques and their
characteristics are reviewed, respectively.

After sampling points, the corresponding objective vectors are calculated
with the computationally expensive functions. Then, by employing a metamod-
eling technique, a computationally inexpensive function termed a surrogate func-
tion is fitted to the sample points as shown in Figure 1. When surrogate functions
of all computationally expensive functions are built, a computationally inexpen-
sive MOP known as a surrogate problem is formulated.

In surrogate-based multiobjective optimization, it is desirable to build an
accurate surrogate problem in the region of the Pareto optimal solutions. How-
ever, the surrogate functions may not be accurate in this region. Therefore, the
sets of Pareto optimal solutions of the surrogate and the original, computation-
ally expensive MOP may not be the same. In the literature, statistical measure-
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ments such as root mean square error (RMSE) [30], predicted error sum of squares
(PRESS) [31] and R2 [25] are employed to evaluate the accuracy of the surrogate
functions. In [23, 25, 29, 32] such criteria have been reviewed. Surrogate problems
can also be built by approximating the Pareto frontier directly. In the next chap-
ter, surrogate-based methods developed for computationally expensive MOPs
are discussed.

In this thesis, for the sake of simplicity, problem (1) is called an original prob-
lem. The objective functions in the original and the surrogate problems are termed
computationally expensive functions and surrogate functions, respectively. All objec-
tive functions in the original problem are assumed to be computationally expen-
sive. In addition, the approximated Pareto frontier of the original problem refers
to a set of non-dominated (or Pareto optimal) solutions of the surrogate prob-
lem which may be evaluated with the computationally expensive functions. The
terms benchmark and application problems are also used in this thesis. The first one
indicates the test problems in the literature, such as ZDT problems [33], which
are employed to compare the performance of different methods. The second one
points to the real-world problems arising from, e.g., industries.



3 NON-NATURE-INSPIRED SURROGATE-BASED

METHODS

In surrogate-based methods, an initial surrogate problem is built. Then, based
on some new evaluated points sampled, the accuracy of the surrogate problem
is improved. Methods developed in the literature have devised different crite-
ria for selecting sample points. By reviewing papers published in the literature,
we have identified two frameworks to develop surrogate-based methods. How-
ever, there does not exist a unified description of major steps in such methods
(see, e.g., [22, 23, 27, 34, 35]). For instance, an approach called one-stage sampling
in [36] is termed two-stage sampling in [37] and a sequential approach in [23].
While survey papers have been published on surrogate-based single-objective
optimization methods, e.g., [27, 32], to the best of our knowledge, no survey pa-
per on surrogate-based multiobjective optimization methods had been published
prior to 2013.

To fill the above-mentioned gap in the literature, in [PI], we have surveyed
surrogate-based multiobjective optimization methods published in scientific jour-
nals before 2013. In this paper, to unify the main steps in surrogate-based meth-
ods, we have considered two general frameworks, namely sequential and adap-
tive frameworks, motivated by the classification in [23, 34], and depending on
when to update the surrogate problem. In the former framework, discussed in
Subsection 3.1, an accurate surrogate problem is built and then solved. The ap-
proximated Pareto frontier obtained is supposedly close to the Pareto frontier of
the original problem. In the latter framework, considered in Subsection 3.2, an
initial surrogate problem is constructed. Typically, the accuracy of this initial sur-
rogate problem is not satisfactory over the region of the Pareto optimal solutions
of the original problem. Therefore, the approximated Pareto frontier of the initial
surrogate problem cannot be considered as a representation of the Pareto frontier
of the original problem. To resolve this, the accuracy of the surrogate problem is
iteratively improved with the aim of generating an approximated Pareto frontier
and that coincides with the Pareto frontier of the original problem.

Updating the accuracy of the surrogate problem requires sampling new
points (known also as infill points in [24]). Based on our observations, we di-
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vide the adaptive framework into types 1 and 2. It is also possible to hybridize
both frameworks and develop a new method, as can been seen in [38]. In both
frameworks, surrogate problems have to be solved. In the literature, two sorts
of methods are employed to solve surrogate problems, i.e., sampling-based and
optimization-based ones. In the former methods, by applying a sampling process
and without using any optimization algorithm, a surrogate problem is solved (see
e.g. [39]). However, in the latter one, an optimization algorithm is used to solve a
surrogate problem.

These frameworks have different attributes. In the sequential framework,
surrogate functions are supposedly accurate enough over the entire feasible de-
cision (objective) set. When the surrogates are accurate enough, the DM can
find solutions that correspond to his/her preferences quickly during the deci-
sion-making phase thanks to the surrogate functions. This is an important matter
discussed in e.g. [40].

In the adaptive framework, one may not aim at building surrogate func-
tions accurately over the entire feasible decision (objective) set. In fact, when
solving problem (1) taking into account the preferences of the DM, surrogates
are assumed to be accurate in the region corresponding to the given preferences.
In this way, when the DM revises his/her preferences, surrogates should be up-
dated toward the region corresponding to the new preferences given. Due to the
computational cost, the DM has to wait to see new solutions corresponding to the
new preferences.

3.1 Sequential Framework

In the sequential framework, the emphasis is on building an accurate surrogate
problem before applying an optimization algorithm. The flowchart in Figure 2
shows the main steps to be taken to develop a method in this framework. As
shown in the flowchart, in Steps 1 and 2, initial sample points are selected and
then evaluated with the original functions. In Step 3, a surrogate problem is built
using the selected sample points. Selecting new sample points is done to improve
the accuracy of the surrogate problem, a crucial step. In Step 4, the accuracy of
the surrogate problem is evaluated (highlighted in Figure 2). Typically, statistical
measurements such as root mean square error (RMSE) or R2 are applied to check
the accuracy. If the accuracy is to be improved, new points are sampled in Step 5,
and Steps 2-4 are then repeated.

Once an accurate enough surrogate problem is constructed, it is solved in
Step 6. The solution process may be done with a DM, if available. In Step 7, typ-
ically, the solution(s) obtained by solving the surrogate problem are evaluated
with the original functions. In Step 8, the outcome of Step 7 is treated as a set of
approximated Pareto optimal solutions of the original problem and/or the most
preferred approximated solution for a DM. One can apply an appropriate visu-
alization technique to visualize the solutions obtained. This framework includes
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FIGURE 2 Sequential framework.

a special case termed one-stage sampling. In such a case, points are sampled only
once to build a surrogate problem, i.e., Step 5 is not conducted. Then the surro-
gate problem is built and solved as described.

In this framework, the closeness of the set of approximated Pareto optimal
solutions to the set of Pareto optimal solutions of the original problem depends
on the accuracy of the surrogate problem. Moreover, the surrogate functions of
the original functions are typically accurate over the entire decision (or objective)
space.

3.2 Adaptive Framework: Types 1 and 2

Another framework introduced in [PI] is the adaptive framework as shown in
Figures 3 and 4. In this framework, an initial surrogate problem is built. The
approximated Pareto frontier obtained may not be able to represent the Pareto
frontier of the original problem. This necessitates updating the surrogate problem
by sampling new points and solving the updated surrogate problem iteratively.
In this way, the approximated Pareto frontier is intended to coincide with the
Pareto frontier of the original problem.

Depending on when new points are sampled to improve the accuracy of
the surrogate problem, we consider two different types in this framework. In
type 1, the sample points generated before assessing a stopping criterion (Step 4
highlighted in Figure 3) are utilized to update the surrogate problem. In type 2,
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FIGURE 3 Adaptive framework: type 1.
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not only are the sample points generated before assessing the stopping criterion
(Step 4 highlighted in Figure 4) considered, but also new sample points are gen-
erated and selected after the stopping criterion is assessed (Step 6 highlighted in
Figure 4) to update the surrogate problem.

As can be seen in the flowcharts in Figures 3 and 4, Steps 1-5 are similar in
both types. In Step 1, initial sample points are selected. Then, they are evaluated
with the original functions in Step 2. Using the evaluated points, the initial sur-
rogate problem is built. New sample points are selected in Step 4 to improve the
accuracy of the surrogate problem in regions corresponding to the preferences of
the DM, if available, or the Pareto frontier. These points can be generated by solv-
ing the surrogate problem or sampling unexplored areas in the decision and/or
objective space based on a sampling strategy. A subset of sample points from
the generated samples is chosen by relying on a method-dependent criterion. In
Step 5, a stopping criterion is assessed. We observe that different stopping cri-
teria have been developed. For instance, in some methods, the selected sample
points are evaluated with the original functions, and then a stopping criterion is
checked. In some other methods, the selected sample points are evaluated with
the original functions and the surrogate problem is updated. Then, a stopping
criterion is assessed.

In type 1, if a stopping criterion is satisfied, in Step 6, the approximated
Pareto frontier of the original problem or the most preferred solution for a DM
is the set of non-dominated (or Pareto optimal) solutions or the most preferred
solution of the last updated surrogate problem (these solutions may have been
evaluated with the original functions). Depending on the user’s needs, the ob-
tained solutions can also be visualized by applying an appropriate visualization
approach. Otherwise, i.e., when the stopping criterion is not yet met, Steps 4-
5 are repeated. One should note that if the surrogate problem has not already
been updated in Step 6, we first update the surrogate problem with the evaluated
sample points and then Steps 4-5 are repeated.

In type 2, if the stopping criterion is not yet met in Step 5, a set of new
sample points from unexplored regions of the decision and/or objective space is
selected in Step 6. These new points as well as the (evaluated) points selected
in Step 5 are considered, and Steps 2-5 are then repeated. Otherwise, similar to
type 1, the solutions obtained by solving the last updated surrogate problem are
considered for the original problem.

3.3 Review of Non-nature-inspired Methods

In [PI], we surveyed the methods developed in both sequential and adaptive
frameworks. Then, we compared the methods surveyed from four points of view:

1. Are the methods capable of solving problems including black-box functions
when there is a lack of information about mathematical properties, such as
convexity or continuity?
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2. Are the methods capable of capturing different types of Pareto frontiers,
such as nonconvex and/or disconnected ones?

3. What kinds of problems can be solved by the methods in terms of number
of objective and constraint functions as well as decision variables?

4. How is the interaction with a DM conducted during the solution process?

This comparison led us to identify future research directions for solving compu-
tationally expensive MOPs. In what follows, we summarize the comparison by
taking into account the above questions. Throughout this comparison, we also
discuss future research directions.

Regarding the first question, we observe that all methods surveyed except
[41] can solve problems including black-box functions. In [41], the problem to be
solved is supposed to have convex objective functions. This assumption typically
does not hold when dealing with black-box functions. Noisy black-box functions
are only discussed in [42]. However, the performance of the method developed
in [42] is evaluated on noise-free benchmark problems. We also observe that ap-
proximating non-differentiable functions has not been discussed deeply. As can
be understood, there is a need to conduct more research on applying metamod-
eling techniques to model noisy and/or non-differentiable black-box functions.

As far as the second question is concerned, after reviewing the papers sur-
veyed, we have realized that to capture nonconvex and disconnected Pareto fron-
tiers, selecting sample points in potentially relevant regions plays an essential
and substantial role. Methods surveyed devise various strategies to consider this
role. We observe that in [35, 42, 43, 44, 45], metamodeling techniques are applied
not only to build the surrogate problem but also to construct some functions for
selecting sample points. For instance, in [43, 45] these functions are built to do
sampling toward extreme solutions as well as the Pareto frontier. In [35], a sam-
pling function is built to generate evenly distributed sample points. The authors
in [35] discuss that selecting evenly distributed sample points to improve the ac-
curacy of the surrogate problem may assist to capture disconnected parts of the
Pareto frontier.

The variances of the objective function values of the sample points predicted
by the Kriging model are considered as a criterion of selecting samples in [46]. In
[44], to select new samples, the authors address the Lagrangian multiplier values
calculated by the metamodeling technique employed. A trust region strategy is
discussed in [34, 47] to search the explored and unexplored regions in the deci-
sion and/or objective space. Convex hulls are considered in [48] as a method
for capturing a nonconvex Pareto frontier. The PAINT method developed in [49]
is capable of capturing a nonconvex Pareto frontier. In [38, 50], the idea of the
normal constraint method [51, 52] is employed to generate sample points near
the Pareto frontier of the original problem. In [38], a hybrid surrogate method is
developed in which the sequential framework and type 1 of the adaptive frame-
work are considered. In this method, first a surrogate problem is built by type
1 of the adaptive framework to generate initial sample points. Then, these sam-
ple points are employed to construct a surrogate problem of a computationally
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expensive MOP by the sequential framework.
We observe that the metamodeling technique applied in [35, 38, 42, 43, 45] is

RBFs. The Pareto frontier of the benchmark or application problems considered
in [38] is nonconvex, whereas in [35, 42, 43, 45] it is nonconvex and disconnected.
One may ask whether the type of a metamodeling technique has any role in solv-
ing problems with nonconvex and disconnected Pareto frontiers.

Overall, the methods surveyed have not discussed deeply solving compu-
tationally expensive MOPs, including nonconvex and disconnected Pareto fron-
tiers. Such observations motivate us to consider developing surrogate-based
methods to tackle the issues of nonconvexity and discontinuity in the Pareto fron-
tier as a research direction.

Regarding the third question relating to solving computationally expensive
MOPs in terms of dimensionality, we observe that k = 5 is the largest number
of objective functions in [41, 46, 50, 53]. In other papers surveyed, benchmark
and/or application problems with at most three objective functions are consid-
ered. Only in [54] was a problem solved that had 13 constraint functions and 31
decision variables. As mentioned in [43, 45], the methods developed can be ap-
plied for problems with two or three objective functions and less than seven deci-
sion variables. In addition, the authors in [42] note that the method is suitable for
problems with less than three objective functions and six decision variables. In
[32], techniques for high-dimensional problems are reviewed. This reference may
inspire some idea to develop new methods to solve such problems. Moreover, no
paper mainly focuses on developing a strategy to handle constraint functions.
This indeed can be considered as a future research direction.

As far as the fourth question relating to interaction with a DM is concerned,
the methods developed in [35, 41, 44, 49, 53, 55] are capable of providing the most
preferred solution for a DM. Among these methods, the methods developed in
[35, 44] are a priori types and others are interactive ones. In fact, in [35, 44], a
DM can provide his/her preferences in the form of weights and a reference point,
respectively. Then these methods find a solution corresponding to the preferences
of the DM. However, if the DM changes his/her preferences, all of the methods
should be run again to provide a solution for the DM. In [53], the role of the DM is
to compare the solutions obtained. In the method developed in [41], a DM assigns
a goal value for one of the objective functions and upper bounds for the other
ones. In [55], a DM expresses his/her preferences by classifying the objective
functions or as a reference point. We observe that in terms of considering the role
of a DM during the solution process, the PAINT method is a distinguished one. In
this method, first a mixed integer linear multiobjective surrogate problem of the
original problem is constructed without involving preferences. As a result, the
surrogate problem can be solved with any appropriate interactive method. The
focus of the surrogate-based methods developed in [35, 41, 49, 53, 55] is to find
the most preferred solution for a DM rather than to approximate the entire Pareto
frontier. As can be seen, a few methods have considered the role of the DM during
the solution process. Developing interactive methods to solve computationally
expensive MOPs can be considered as a future research direction.
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Since the year 2013, surrogate-based methods have been developed in [56,
57, 58, 59, 60, 61]. The method developed in [56] applies Kriging to approximate
each objective function. A utility function is introduced based on which new
points are selected for updating surrogates. In [57, 58], by using the Gaussian
process, new criteria based on the Vorob’ev expectation and uncertainty reduc-
tion principles, respectively, have been developed to select new sample points
and update surrogates. In [59, 60], solving MOPs with computationally expensive
constraint functions is considered by devising new criteria to assess the feasibility
of new sample points for updating surrogates. In [61], the idea of efficient global
optimization (EGO) for computationally expensive single objective optimization
problems is extended for computationally expensive MOPs.

To summarize, based on our observations, we conclude that the following
challenges require research efforts:

1. solving problems that include nonconvex and disconnected Pareto frontiers,
2. developing interactive surrogate-based methods to provide the most pre-

ferred solution for a DM,
3. solving high-dimensional problems in terms of number of objective func-

tions and decision variables,
4. solving problems that include non-differentiable black-box functions, and
5. solving problems that include black-box constraint functions.

In this thesis, in order to fill the gap in the above enumerated shortcomings (ex-
cept the last one), we first focused on the first and second challenges. In this
regard, we developed the SURROGATE-ASF method [PII] in which the DM pro-
vides his/her preferences in the form of a reference point. SURROGATE-ASF
is the first interactive surrogate-based method which can provide the most pre-
ferred solution for a DM in both the decision and objective spaces during the so-
lution process. Numerical results showed that SURROGATE-ASF performs well
on problems including nonconvex and/or disconnected Pareto frontier, at most 5
objective functions and 12 decision variables.

When interacting with the DM to solve problems with a large number of ob-
jective functions, (s)he should provide a reference point including a large number
of aspiration levels. As we discuss in [PIII], this could impose a cognitive load on
the DM. This led us to develop ANOVA-MOP to solve problems with high-di-
mensional decision and objective spaces that include the preferences of the DM.
This is also the first method in the literature that can solve MOPs with any num-
ber of objective functions. The metamodeling technique employed in ANOVA-
MOP is capable of approximating differentiable black-box functions and conduct-
ing sensitivity analysis on such functions. This has motivated us to investigate
how to approximate non-differentiable black-box functions and elicit sensitivity
analysis information. To do so, in [PIV], we review the potential of applying
the T-splines technique to be incorporated in the ANOVA-MOP method to solve
computationally expensive MOPs. The mathematical properties of T-splines are
limited to functions with two and three decision variables. In this thesis, we
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do not discuss any actual method on function approximation through T-splines.
To summarize, by developing the above-mentioned methods, we deal with the
above-mentioned challenges.



4 THE SURROGATE-ASF METHOD

Some of the challenges identified in [PI] are to develop interactive surrogate-
based methods as well as capturing a nonconvex and disconnected Pareto fron-
tier. In addition to these challenges, when solving computationally expensive
problems by taking into account the preferences of the DM, (s)he may wish to
explore the entire Pareto frontier, different regions or a particular region. This
means that an interactive surrogate-based method should not tie the hands of the
DM during the solution process. In addition, the DM may wish to have solu-
tions corresponding to his/her preferences in both the decision and the objective
spaces simultaneously. Moreover, during the solution process, the DM should
not wait for a long time to see solutions corresponding to his/her preferences.
The SURROGATE-ASF method [PII] is the first method developed in the liter-
ature to handle such challenges. SURROGATE-ASF incorporates the preferred
ranges of the objective functions provided by the DM. These preferred ranges for
each objective function are given as sub-intervals. The lower and upper bounds
of a sub-interval show the best and worst values of each objective function that
the DM is interested in. Using two vectors consisting of the worst and the best
values in the sub-intervals, we form vectors to be used instead of the utopian and
nadir vectors corresponding to the region of interest for the DM in the objective
space. If the DM does not provide any preferred range, one may incorporate an
estimation of the utopian and nadir vectors.

4.1 Basis Elements

SURROGATE-ASF is a two-phase method involving initialization and decision-
making phases. In the initialization phase, a set of non-dominated solutions in
the decision and objective spaces are obtained within the preferred ranges given
by the DM. These solutions are then utilized to form a finite number of hyper-
boxes in the decision space. Within each individual hyper-box, the ASF (2) is
approximated and a surrogate function is built. When approximating the ASF,
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FIGURE 5 A convex hull with 5 predetermined reference points for a bi-objective prob-
lem. (Color online)

the decision variables of problem (1) and the aspiration levels appearing in the
ASF are treated as variables of the surrogate function. In the decision-making
phase, the single-objective surrogate functions built in the initialization phase
are employed to form computationally inexpensive single-objective optimization
problems to interact with the DM.

After preferred ranges are given by the DM, the extreme points correspond-
ing to this region in the objective space are calculated. We then find the solutions
in the decision space corresponding to these extreme points by solving prob-
lem (3) in which the extreme points are considered as reference points. To approx-
imate the ASF, we require sample points for the aspiration levels and the decision
variables. Before expressing steps involved in SURROGATE-ASF, however, we
first discuss an interesting property regarding problem (3). This property leads
us to find regions in the decision and objective spaces to select sample points.

Suppose H denotes the convex hull of all individual extreme points. Fig-
ures 5 and 6 depict a convex hull in R2 and R3, respectively. The convex hull is
formed by a convex combination of all extreme points in the objective space. Let
z∗ be a reference point given by a DM, and x∗ be the corresponding optimal so-
lution of problem (3). Then we have, x∗ ∈ argmin

x∈S
[ max
i=1,...,k

(wi( fi(x)− z∗i ))]. On

the other hand, x∗ ∈ argmin
x∈S

[ max
i=1,...,k

(wi( fi(x)− z∗i )) + t], for all t ∈ R. Thus
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FIGURE 6 A convex hull with 15 predetermined reference points for a three-objective
problem. (Color online)

x∗ ∈ argmin
x∈S

[
max

i=1,...,k
(wi( fi(x)− z∗i )) + t

]
= argmin

x∈S

[
max

i=1,...,k
(wi( fi(x)− z∗i ) + t)

]
= argmin

x∈S

[
max

i=1,...,k
(wi( fi(x)− z∗i +

t
wi

))

]
= argmin

x∈S

[
max

i=1,...,k
(wi( fi(x)− (z∗i −

t
wi

)))

]
= argmin

x∈S

[
max

i=1,...,k
(wi( fi(x)− z∗∗i ))

]
,

where z∗∗ is considered as an arbitrary reference point on the ray passing through
z∗ in parallel with w = (w1, . . . , wk)

T. This means that the optimal solution of
problem (3) for a reference point z∗ given by a DM is also the optimal solution of
problem (3) for any reference point on the ray passing though z∗ in parallel with
w (see Figure 7). The projected reference point z∗∗ on H is obtained as follows:

z∗∗ ∈ argmin
h∈H

∥∥∥∥(h1 − z∗1
w1

, . . . ,
hk − z∗k

wk

)∥∥∥∥ , (4)

where ‖.‖ is the Euclidean norm and h = (h1, . . . , hk).
The above discussion shows that any reference point given by the DM within

the preferred ranges of objective functions can be projected onto the convex hull
H. By projection we mean finding the closest point on H along the direction w.
Thus, we select sample points for the aspiration levels as reference sample points
on the convex hull H. To select reference sample points, we first generate a set of
evenly distributed predetermined reference points including the extreme points
on the convex hull H. We denote this set by ZP.
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FIGURE 7 Projection of a given reference point onto the convex hull.

For each individual predetermined reference point in ZP, we find the cor-
responding reference solution (non-dominated solution) in the decision space by
solving problem (3). Problem (3) is a computationally expensive single-objective
optimization problem. This problem is solved by applying a surrogate-based
single-objective optimization method. The choice of this method affects the per-
formance of SURROGATE-ASF. In fact, this choice allows one to apply an ap-
propriate state-of-the-art single-objective surrogate-based optimization method
which (s)he believes to be the best. The reference solutions obtained are then
evaluated with the original functions.

We denote the sets of reference solutions in the decision and the objective
spaces by XP and FP, respectively. The points in ZP and XP decompose the
convex hull H and the decision space into a finite number of sub-regions and
hyper-boxes, respectively. Figures 5 and 6 depict two convex hulls for bi- and
three-objective problems, sub-regions on the convex hulls and predetermined ref-
erence points. Figure 8 shows hyper-boxes corresponding to the convex hull in
Figure 5. In what follows, we denote each hyper-box by Sa, for a = 1, . . . , r, where
r is the number of hyper-boxes (sub-regions). Once hyper-boxes and sub-regions
are formed, sample points for the decision variables and the aspiration levels are
selected within the hyper-boxes and the sub-region. By using these selected sam-
ples, the ASF in (2) is approximated. We denote the resulting single-objective
surrogate function corresponding to each hyper-box by ÃSF

a
, for a = 1, . . . , r.

In the decision-making phase, surrogate functions built in the initialization
phase are employed to interact with the DM. To do so, first, we show the DM the
ideal and the nadir vectors, if (s)he did not provide any ranges. We also assume
that reference points given by the DM are within the ranges. In any case, the DM
specifies a reference point z̄∗. In SURROGATE-ASF, the interaction with the DM
corresponds to that of the reference point method developed in [8]. The projection
of the reference point z̄∗ onto the convex hull H denoted by z∗∗ is obtained by
solving problem (4). One should note that in practice, problem (4) is not solved.
Instead, we can generate a large number of evenly distributed points on H. We
then choose the point that minimizes the objective function of problem (4). Let us
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The hyper-box 𝑆ଵ corresponding
to  the 1st sub-region

The hyper-box 𝑆ଶ corresponding to
the 2nd sub-region

The hyper-box 𝑆ଷ corresponding to
the 3rd sub-region𝐱ଵ

𝐱ଶ

FIGURE 8 Hyper-boxes in the decision space corresponding to the sub-regions on the
convex hull in Figure 5. For instance, solutions x1 and x2 form S1.

denote the number of the sub-region and the hyper-box corresponding to z∗∗ by
ã. The following surrogate problem is then formulated and solved by employing
any appropriate single-objective optimization method:

minimize
x∈Sã

ÃSF
ã
(x, z̄∗∗), (5)

where Sã is the ãth hyper-box. The optimal solution of problem (5) is an approx-
imation of the preferred solution in the decision space corresponding to the ref-
erence point z̄∗ given by the DM. This solution is evaluated with the original
functions and shown to the decision maker. The process of asking for a reference
point from the DM, projecting it onto the convex hull and solving the correspond-
ing surrogate problem is repeated until the most preferred solution satisfying the
DM is obtained.

4.2 Discussion on the Performance of SURROGATE-ASF

In [PII], the performance of SURROGATE-ASF is evaluated by solving a bi-ob-
jective shape optimization problem of designing an airfoil [62] as well as ZDT
[63] and DTLZ [64] academic benchmark problems. Since the objective functions
in the shape optimization problem have practical meaning, we discussed the de-
cision-making process thoroughly for this problem. The academic benchmark
problems considered consist of different attributes, such as nonconvex Pareto
frontiers and connected or disconnected sets of Pareto optimal solutions. For
instance, ZDT4, ZDT6, DTLZ2, DTLZ3, DTLZ4 and DTLZ6 include many locally
non-dominated solutions.

In the shape optimization problem and all benchmark problems, we consid-
ered the number of decision variables as n = 12 and n = 7, respectively. In ZDT
and DTLZ problems, we considered the number of objective functions as k = 2
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and k = 3, respectively. Moreover, we considered DTLZ2 with 4 and 5 objective
functions.

According to the findings in [PI], we selected the method developed in [44]
(henceforth called the Yun method) and the PAINT method [49] to compare the
performance of SURROGATE-ASF. Since the Yun method and PAINT employ the
same type of preference information in the form of a reference point, these three
methods are comparable.

The Yun method is an a priori method. This means that, before solving a
computationally expensive MOP, the DM has to provide a reference point. Then,
the method builds a surrogate problem and finds the corresponding solution. In
this way, surrogates built in the Yun method are accurate in the neighborhood
of the solution obtained. If the DM provides a new reference point, the surro-
gates may not be accurate in the neighborhood of the solution corresponding to
the new reference point. To be able to interact with the DM and to compare this
method with SURROGATE-ASF, we have to run the entire method for each refer-
ence point given by the DM. To do so, the DM provided the first reference point.
We then ran the Yun method and found the solution corresponding to this refer-
ence point. The DM then provided a new reference point. Using the surrogates
built for the first reference point, we ran the Yun method such that by selecting
new samples and updating the surrogates, they became accurate in the neighbor-
hood of the solution corresponding to this new reference point. We repeated the
Yun method as described above for all reference points given by the DM.

In the Yun method, μ − ν−SVR [44] is applied as the metamodeling tech-
nique. The idea of this method is to approximate each individual objective func-
tion and to formulate a surrogate multiobjective optimization problem. This
surrogate problem is turned into a single-objective computationally inexpensive
problem using the achievement scalarizing function (2) to be solved. To improve
the accuracy of the surrogate problem, some sample points based on the La-
grangian coefficients in μ − ν−SVR as well as the solution of the single-objective
optimization problem are selected. To train μ − ν−SVR, we applied the interior
point algorithm implemented in MATLAB.

In the Yun method, as can be understood, a surrogate multiobjective opti-
mization problem is formed. In fact, in this method, first each objective function
is approximated and then the achievement scalarizing function is formulated,
whereas in the SURROGATE-ASF method the order is opposite and only the
achievement scalarizing function is approximated. The comparison between the
performance of the Yun method and SURROGATE-ASF demonstrates the merits
of the idea of approximating the ASF (2) as a computationally expensive objec-
tive function and then turning it into a computationally inexpensive one over the
idea of first approximating each expensive objective function individually and
then formulating the ASF.

The PAINT method similar to SURROGATE-ASF requires a set of non-dom-
inated solutions to be available to construct a surrogate problem. The idea in
PAINT is to build a linear mixed integer multiobjective optimization problem as
a surrogate problem. During the decision-making process, the DM provides a
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reference point. Then, this surrogate problem is converted into a linear mixed
integer single-objective optimization using the ASF that includes the reference
point given. This single-objective optimization problem is solved, and an approx-
imated solution in the objective space is obtained. During the decision-making
process, PAINT loses the connection with the decision space, i.e., the decision
variable values of the approximated solution are not provided. The approxi-
mated solution is shown to the DM. If this solution does not satisfy the DM, (s)he
specifies another new reference point. In PAINT, we interact with the DM until
the DM accepts an approximated solution obtained.

We then follow an approach to find the corresponding solution in the de-
cision space. To do so, the acceptable approximated solution is treated as a ref-
erence point for problem (3). This problem is solved including the original func-
tions by using an appropriate (surrogate-based) single-objective optimization me-
thod. The optimal solution is the most preferred (approximated) solution and is
provided to the DM. One should note that, although PAINT cannot provide so-
lutions in the decision space during the intermediate interactions, one can find
these solutions by repeating the described approach within each iteration. How-
ever, this can be time-consuming. In [PII], we applied the steps given in [49]
and did not calculate approximated solutions in the decision space until the last
iteration.

At the end of the solution process by an interactive method, the most pre-
ferred solution (which is usually a single solution) is obtained. To the best of
our knowledge, there is no established quality measure in the literature that is
suitable for a reference-point-based interactive method. Thus, by using the nor-
malized Euclidean distance discussed in [PII], we compare the closeness of solu-
tions in the objective space obtained by SURROGATE-ASF, the Yun method and
PAINT with their corresponding exact solutions obtained by solving problem (3),
in which the original functions (of the benchmark problems) are used.

As far as the shape optimization problem is concerned, in terms of compu-
tational burden, the DM was able to find the most preferred solution by SUR-
ROGATE-ASF, the Yun method and PAINT after 8 seconds, 32760 seconds and
346000 seconds, respectively. Moreover, SURROGATE-ASF outperformed other
methods clearly in terms of solutions obtained. Regarding the benchmark prob-
lems with different characteristics discussed earlier, SURROGATE-ASF also sur-
passed the other methods.

As discussed in [PII], developing SURROGATE-ASF for high-dimensional
problems in the objective space is a future research direction. Besides that, in such
problems, the DM has to provide a reference point that includes a large number
of aspiration levels. This could impose a cognitive load on the DM. In the next
chapter we propose a method called ANOVA-MOP to solve such problems.



5 THE ANOVA-MOP METHOD

5.1 Motivation

In [PI], we concluded that developing a surrogate-based method to solve compu-
tationally expensive MOPs with high-dimensional objective and decision spaces
taking into account the DM’s preferences is a future research direction. By in-
creasing the number of decision variables, high-dimensional problems become
computationally more demanding. This is imposed by an issue known as the
curse of dimensionality [32]. Although the computational cost can be reduced
by using surrogates to replace computationally expensive functions, the issue
of curse of dimensionality still remains. Due to this issue, when one is looking
for a solution in a high-dimensional decision space, an exhaustive search is dis-
couraged even in single-objective optimization problems [65, 66]. Thus an exact
solution can hardly be obtained. This motivated us to develop the ANOVA-MOP
method in [PIII] to solve high-dimensional MOPs. In this method, a high-di-
mensional MOP (under some conditions to be discussed later) is decomposed
into a finite number of sub-problems with a lower dimension in the decision and
objective spaces. The sub-problems are solved, and the solutions obtained are
composed to form solutions for the original problem.

In high-dimensional problems, to find the most preferred solution for the
DM, the cognitive task of decision-making includes analyzing and comparing
solutions with a large number of components. In the decision-making phase,
the DM should remember the preferences (s)he already explored. The authors
in [67] discuss that cognitive tasks demand adequate ability to remember prefer-
ences as long as they are processed. This leads to the question of whether, from
a cognitive point of view, the DM would be comfortable providing his/her pref-
erences and analyzing solutions to such problems. To the best of our knowledge,
decision-making through non-nature-inspired surrogate-based methods to solve
computationally expensive MOPs with high-dimensional objective space has not
been addressed in the literature.

The curse of dimensionality is tied with the sparsity-of-effects principle [68].
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This means that typically a subset of decision variables, called effective variables,
contributes most significantly to objective function values, while other decision
variables, called ineffective variables, have a minor effect. According to [69], the ef-
fective variables in one region of the decision space may not be the same as those
in another, and thus, global sensitivity analysis [70] has been developed. Sim-
ilarly, decision variables may cooperate to provide interaction effects, in which
the effectiveness of a subset of decision variables may not lead to the sum of in-
dividual decision variable effectivenesses. Sobol’ and total sensitivity indices to
be described in what follows have been developed to quantify decision variable
effectiveness, clarifying these issues.

Global sensitivity analysis can be done through e.g., the functional analysis
of variance decomposition (functional ANOVA decomposition) [71]. Suppose an
arbitrary function g : S → R is square integrable, i.e.,

∫
S g(x)2dx < ∞. The

functional ANOVA decomposition of g is

g(x) = g0 + ∑
i

g(i)(xi) + ∑
i<j

g(i,j)(xi, xj) + . . . + g(1,...,n)(x), (6)

where g0 =
∫

S g(x)dx, if∫
Siu

g(i1,...,ie)(xi1 , . . . , xie)dxiu = 0, (7)

for all u = 1, . . . , e, (e ≥ 1), and 1 ≤ i1 < . . . < ie ≤ n. We call g(i) a main effect
and g(i1,...,ie), an interaction of order e. This results in decomposing the variance of
g, i.e., var(g) = D0 =

∫
S g2(x)dx − g2

0, into 2n − 1 variance components

D0 = ∑
i

D(i) + ∑
i<j

D(i,j) + . . . + D(1,...,n), (8)

where D(i1,...,ie) = var[g(i1,...,ie)(xi1 , . . . , xie)] =
∫

∏e
u=1 Siu

g2
(i1,...,ie)

(xi1 , . . . , xie)dxi1 . . . dxie . The
Sobol’ indices [72] are calculated as

l(i1,...,ie) = D(i1,...,ie)/D0, (9)

for all (i1, . . . , ie) ∈ Δ = {(r1, . . . , ru) : 1 ≤ r1 < . . . < ru ≤ d, u ≥ 1}, e =
1, . . . , n. The total sensitivity indices, which are measures of the contribution of
each decision variable xj, for j = 1, . . . , n, in the value of g, are given by

lT
j = ∑

(i1,...,ie)∈Δ:j∈{i1,...,ie}
D(i1,...,ie)/D0, j = 1, . . . , n. (10)

Sobol’ indices and total sensitivity indices are typically approximated in practice.
In this thesis, they are called estimated Sobol’ indices and estimated total sensi-
tivity indices, respectively.

As can be seen in Equation (6), by the functional ANOVA decomposition, an
objective function is decomposed hierarchically into a sum of terms depending
on subsets of decision variables, based on their contribution to the total variance
of the objective function. As pointed out in [68], higher interaction terms have a
minor effect on function values such that typically 80% of the effects are due to
20% of the decision variables.
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5.2 Basic Elements

In the ANOVA-MOP method, we reduce the dimension of the search domain in
the decision space through the approach of applying the functional ANOVA de-
composition and calculating the total sensitivity indices. By this approach we
rank decision variables according to their effect on objective function values.
Based on the sparsity-of-effects principle, one can typically observe that only a
limited number of decision variables has a reasonable effect on objective func-
tion values. Thus, the remaining variables can be ignored without too significant
losses in the solution quality. In this way, we deal with simpler and tractable
problems. Before ANOVA-MOP, such an approach had only been employed in
single-objective optimization problems. In fact, in MOPs, effective variables for
one objective function may be ineffective for some other objectives.

Suppose O = {1, . . . , k} and D = {1, . . . , n} are the sets of indices of the
objective functions and decision variables in problem (1), respectively. A general
sketch of steps of ANOVA-MOP is as follows: first, for each individual objective
function in problem (1), we build a surrogate function that is sufficiently accurate
everywhere over the entire decision/objective space, as discussed in [73]. We
then replace all functions in problem (1) with these surrogate functions. In this
way, we formulate the following surrogate MOP:

minimize
x∈S

{ f̃1(x), . . . , f̃k(x)}, (11)

where f̃i : S → R, for i ∈ O, is a surrogate function corresponding to fi in
problem (1). The dimension of the decision and objective spaces in problem (11)
is the same as those in problem (1). In what follows, by an objective function, we
mean a surrogate function in problem (11).

Corresponding to each objective function, we estimate the total sensitivity
indices of each decision variable. Suppose lT

i,j denotes the estimated total sensitiv-

ity index of the jth decision variable in the ith objective function. We then consider
an effective total sensitivity indices matrix (SM) where

SM = [lT
i,j], i ∈ O, j ∈ D. (12)

Figure 9 shows an example of SM for a problem with k = 8 and n = 10.
Decision variables with zero-value total sensitivity indices are treated as ineffective
variables and others are treated as effective variables. We then form an incident
matrix M = [mi,j], i = 1, . . . , k, j = 1, . . . , n, as:

mi,j =

{
1, if decision variable xj is effective for objective function f̃i,

0, if decision variable xj is ineffective for objective function f̃i.
(13)

Figure 10 (a) depicts an incident matrix M corresponding to the effective total sen-
sitivity indices matrix (SM) in Figure 9. In Figure 10 (a), for example, the decision
variables x2 and x5 are effective variables for objective functions f̃3 and f̃6 and
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FIGURE 9 An example of an effective total sensitivity indices matrix (SM). The bar

shows the range of the estimated total sensitivity indices.

ineffective for other objective functions. After effective and ineffective variables
are identified, objective functions with the same effective variables are grouped
together. This leads to forming a block-diagonal matrix with independent blocks
(i.e., each decision variable and objective function belongs to only one block).
Figure 10 (b) shows a block-diagonal matrix with three independent blocks cor-
responding to the incident matrix M in Figure 10 (a).

Sub-problems are formed based on objective functions and decision vari-
ables whose indices are grouped in the same block. In fact, we say that prob-
lem (11) is decomposable if and only if

1. There exist subsets Oa and Da for a = 1, . . . , d, such that O =
d⋃

a=1
Oa,

d⋂
a=1

Oa =

∅, D =
d⋃

a=1
Da and

d⋂
a=1

Da = ∅,

2. mi,j = 1 implies that there exist an index a such that i ∈ Oa and j ∈ Da.

In [PIII], we show that if problem (11) is decomposable, in the simplest case, ma-
trix M has at least k + n − 2 zero-value components. As the result of decom-
position, in each sub-problem, objective functions have the same effective vari-
ables. In this way, problem (11) is decomposed into a limited number of sub-
problems which have a lower dimension in the decision and objective spaces.
Sub-problems are then solved independently from each other by any appropri-
ate multiobjective optimization method. The solutions obtained are composed
to form solutions for problem (11). In [PIII], we discuss the relation between the
solutions composed and the solutions of problem (11).

The ANOVA-MOP method can be applied as an interactive or a non-inter-
active method. As a non-interactive method, each sub-problem can be solved by
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FIGURE 10 (a) An incidence matrix M, (b) a decomposition corresponding to the matrix
M in (a).

using multiobjective optimization methods, and a set of Pareto optimal solutions
is obtained. Without loss of generality, suppose problem (11) is decomposed into
d sub-problems. Let Xa

(Fa
), a = 1, . . . , d, denote the set of Pareto optimal solu-

tions in the decision space (objective space) of the ath sub-problem. In [PIII], we
show that X = X1 × X2 × . . . × Xd (F = F1 × X2 × . . . × Fd) is the set of Pareto
optimal solutions of problem (11) in the decision (objective) space in which ×
stands for the Cartesian set product.

When using ANOVA-MOP as an interactive method, any appropriate in-
teractive method can be applied to solve sub-problems and find solutions corre-
sponding to the DM’s preferences. As mentioned in [74], providing preferences
by the DM in a form of a reference point is a valid way of expressing preferences
and is meaningful for the DM. Thus, in [PIII] we study the interactive aspect
of ANOVA-MOP as a reference-point-based method in which the DM provides
his/her preference information in the form of a reference point. Considering the
ath sub-problem, for a = 1, . . . , d, the indices of the objective functions in this
sub-problem are shown to the DM. Then, (s)he specifies a reference point includ-
ing aspiration levels corresponding to these objective functions. Suppose za∗ is a
reference point corresponding to the ath sub-problem given by the DM. We then
formulate the following computationally inexpensive single-objective optimiza-
tion problem:

minimize
xa∈Sa

ASF(xa, za∗), (14)

where xa is the vector of effective decision variables of the ath sub-problem and
Sa is the feasible decision set of the ath sub-problem formed based on the effective
variables in this sub-problem. The ASF is the achievement scalarizing function (2)
formed based on the objective functions considered in the ath sub-problem.

After specifying a reference point and formulating problem (14), this prob-
lem is solved by a single-objective optimization method which is appropriate for
the characteristics of the problem in question. One should note that this single-
objective optimization problem has a lower dimension in the decision space in
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comparison with problem (11). The solution obtained by solving problem (14)
is shown to the DM. We ask the DM to provide his/her preferences correspond-
ing to the objective functions in the ath sub-problem and solve problem (14) until
the most preferred solution for the DM is obtained as in reference-point-based
methods [1].

Let us denote the optimal solution of problem (14) corresponding to the ath

sub-problem by xa∗, for a = 1, . . . , d. In [PIII] we show that

x∗ = (x1∗, . . . , xd∗) ∈ argmin
x∈S

ASF(x, z∗), (15)

where z∗ = (z1∗, . . . , zd∗). This means that x∗ is the most preferred solution for
the DM corresponding to z∗, which is the reference point containing aspiration
levels for all objective functions simultaneously.

When surrogate functions in problem (11) emulate computationally expen-
sive objective functions in problem (1) precisely, X and x∗ are also the set of Pareto
optimal solutions and the most preferred solution for the DM in problem (1), re-
spectively. Otherwise, they are an approximation of the set of Pareto optimal
solutions and the most preferred solution, respectively.

The decomposability of problem (11) is connected with the sparsity of M,
and matrix M is formed based on SM. In some problems, M may not be sparse
enough to be decomposed. For example, mi,j 
= 0 for all i ∈ O and j ∈ D. In this
case, all variables are effective for all objective functions. However, based on the
sparsity-of-effects principle, we expect that for some i ∈ O and j ∈ D, lT

i,j � 1

in SM. In [PIII], we say that the objective function f̃i is ε-insensitive (for some
ε > 0) with respect to the decision variable xj. We provide an approach by which
decision variables with lT

i,j � 1 are treated as ineffective variables. As a result,
a sparse enough reduced incident matrix (RM) is obtained which can be decom-
posed. Based on RM, we decompose problem (11) into a finite number of sub-
problems. Sub-problems are then solved in the same manner as if problem (11)
were decomposable. In this case, we say that problem (11) is ε-decomposable. As
mentioned in [PIII], solutions obtained by ANOVA-MOP for an ε-decomposable
problem are approximated solutions for problems (1) and (11).

Before further discussion, we need to define some concepts. Following [75],
for ε > 0, we say that a solution x1 = (x1

1, . . . , x1
n) ∈ S ε-dominates a solution

x2 = (x2
1, . . . , x2

n) ∈ S if and only if for all i ∈ O, f̃i(x
1) ≤ f̃i(x

2) + ε, and there
exists an index j ∈ O such that f̃ j(x

1) < f̃ j(x
2) + ε. Suppose Xpo ⊂ S is the set of

Pareto optimal solutions in the decision space of problem (11). In [PIII], for ε > 0,
we say that Xs ⊂ S is a synthetic Pareto optimal set if and only if for all xpo ∈ Xpo,
there exist xs ∈ Xs such that xs ε-dominates xpo. The image of Xs in the objective
space of problem (11), i.e.,

Fs := Im
f̃
(Xs) =

{
f̃(xs) ∈ Rk

∣∣∣ xs ∈ Xs

}
. (16)

is called a synthetic Pareto frontier.
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Suppose problem (11) is ε-decomposable and is decomposed into d sub-
problems G1, G2, . . . , Gd, in which the dimension of the decision space is n1, . . . , nd,
respectively, and the dimension of the objective space is k1, . . . , kd, respectively.
Let us denote the set of Pareto optimal solutions in the decision space of G1, . . . , Gd
by X1, . . . , Xd, respectively, and the Cartesian product of X1, . . . , Xd by

X :=
{
(x1, . . . , xd) ∈ Rn1 × . . . × Rnd = Rn

∣∣∣ x1 ∈ X1, . . . , xd ∈ Xd

}
. (17)

In [PIII] we show that X and Im
f̃
(X) are the synthetic Pareto optimal set and the

synthetic Pareto frontier (i.e., solutions in X ε dominate solutions in Xpo where
ε = 2ε) for problem (11). While for MOPs with k ≥ 3, the synthetic Pareto frontier
includes one or more than one solutions, for k = 2, the synthetic Pareto frontier
has only one solution. In fact, if the sets X1 and X2 have more than one solution,
we choose one solution arbitrarily from each set and form X (5.2). As mentioned
earlier, the synthetic Pareto frontier is an approximation of the Pareto frontier of
problems (1) and (11).

5.3 Discussion and an Example

As mentioned in [PIII], generally, the conditions of ε-insensitivity and ε-decom-
posability can be checked only when the functions given have explicit mathe-
matical formulations and these formulations are amenable to analysis. This may
not be possible when dealing with black-box functions. However, the functional
ANOVA decomposition assists to identify effective variables for black-box objec-
tive functions and quantify their effectiveness.

In the literature, a Pareto optimal solution is said to be a properly Pareto op-
timal solution if impairing some objective function value is bounded by the result
of improvement in some other objective function value [1]. Since solutions in the
synthetic Pareto frontier are not necessarily Pareto optimal solutions for prob-
lem (11), they cannot be considered as properly Pareto optimal solutions.

In the evolutionary computation literature, there is a concept known as a
knee point [76]. In a knee point in the Pareto frontier of problem (11), a reduction
in one of the objective function value will result in a severe increment in value of
at least another objective function.

In what follows, we provide a bi-objective optimization problem. This prob-
lem is not a high-dimensional one. However, to be able to visualize how ANOVA-
MOP works, we consider it. Through the following example, we first show how
the synthetic Pareto frontier is obtained. We then give a counter example to show
that the concepts of the synthetic Pareto frontier and the knee point defined in [76]
are not generally equal.
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Let us consider the bi-objective problem:

minimize
x∈[0.1,4π]2

{ f1(x), f2(x)}

where

f1(x) = sin(3x1) + γ cos(2x1)(
x2

x1
− π

2
),

f2(x) = γ sin(2x2)(
x1

x2
− 3π

5
) + cos(3x2),

γ = 10−3.

(18)

By building surrogate functions f̃1 and f̃2 by e.g., the method developed in [73]
(henceforth called BPC method), we form the bi-objective surrogate problem

minimize
x∈[0.1,4π]2

{ f̃1(x), f̃2(x)}. (19)

We then calculate total sensitivity indices by the BPC method. As a result, we
have

SM =

[
9.999 × 10−1 1.000 × 10−3

1.000 × 10−3 9.999 × 10−1

]
, M =

[
1 1
1 1

]
. (20)

Matrix M is not decomposable. However, as can be seen in Matrix SM,
lT
1,2 � 1 and lT

2,1 � 1. By applying the approach mentioned in [PIII], we con-
sider x2 and x1 as ineffective variables for f1 and f2, respectively. As a result, the
following reduced incident matrix RM is obtained:

RM =

[
1 0
0 1

]
. (21)

This RM is decomposable. Thus, we formulate the following two single-objective
optimization sub-problems:

minimize
x∈[0.1,4π]2

f̃1(x) (22)

where x2 = 2π,

minimize
x∈[0.1,4π]2

f̃2(x) (23)

where x1 = 2π.

As mentioned earlier, the ineffective variables have no effect on the objective
function values, therefore, in each sub-problem, we assign them a fixed arbitrary
value within the variable range (in this example, we choose x2 = 2π and x1 = 2π

for sub-problems (22) and (23), respectively). By solving these two sub-problems,
we have:

X1 = {π

2
,

7π

6
}, X2 = {π

3
, π}. (24)

In this example, X1 and X2 have more than one solution. Let us consider the
Cartesian product of these sets in the decision space of problem (19) and its image
in the objective space by:
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FIGURE 11 The curve, circle and square represent the Pareto frontier, synthetic Pareto

frontier and the knee point in problem (19), respectively.

X =

{
(

π

2
,

π

3
), (

π

2
, π), (

7π

6
,

π

3
), (

7π

6
, π)

}
, (25)

F = {(−0.9991,−1.0003), (−1.0004,−1.0000), (26)
(−1.0006,−0.9986), (−1.0004,−1.0000)}.

As can be seen in (25), solutions in X are different whereas the image of
two solutions is the same in F (26). Following [PIII], we have four candidate
from which to choose a synthetic Pareto frontier. Suppose we choose x1 = π

2
and x2 = π

3 from X1 and X2, respectively. Then X = {(π
2 , π

3 )} and the synthetic
Pareto frontier is {(−0.9991,−1.0003)}. Figure 11 depicts the synthetic Pareto
frontier and the Pareto frontier of problem (19). In this example, the BPC method
managed to approximate objective functions in problem (18) accurately. Thus,
the synthetic Pareto frontier and the Pareto frontier of problem (19) can also be
counted for problem (18). A more general discussion on the relation between the
synthetic Pareto frontier and the Pareto frontier of problems (1) and (11) is given
in [PIII].

According to the definition of a knee point given in [76], we see that prob-
lem (18) has only one knee point (−1.0031,−1.0013) in the Pareto frontier of prob-
lem (19) (see Figure 11). However, by applying ANOVA-MOP, we have four can-
didates (i.e., solutions in F (26)) from which to choose a synthetic Pareto frontier.
In general, the synthetic Pareto frontier and a knee point are not necessarily equal.

Due to the decomposition, in each phase of decision-making, a limited num-
ber of objective functions is considered. Thanks to this, the DM can focus on a
subset of objective functions at a time. Therefore, it is more convenient to observe
the changes in the solutions obtained after specifying a reference point. More-
over, the solution process is not cognitively as demanding as when dealing with
a large number of objective functions simultaneously.

To put it briefly, we can summarize the strengths of ANOVA-MOP as:

– it can be applied on MOPs with a large number of objective functions,
– it can be employed as a non-interactive or an interactive method,
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– sub-problems to be solved have a lower dimension in the decision and ob-
jective spaces in comparison to those in the original problem,

– when finding solutions corresponding to the preferences of the DM, (s)he
can concentrate on a low number of objective functions at a time and can
provide preferences for them rather than a large number of objective func-
tions,

– since all surrogates are built before interaction with the DM, problem (14)
is computationally inexpensive. Thus the DM can obtain solutions corre-
sponding to his/her preferences quickly,

– not only can it be applied as a surrogate-based method, but it can also be
employed to solve computationally inexpensive MOPs.

If problem (1) is not computationally expensive, there is no need to build surro-
gate functions, but one can apply the functional ANOVA decomposition directly
on the original objective functions to identify effective and ineffective variables.
Then the Pareto frontier or the synthetic Pareto frontier for problem (1) can be
obtained as discussed. To the best of our knowledge, ANOVA-MOP is the first
method in the literature with the above enumerated strengths.

Solving high-dimensional computationally inexpensive MOPs is an ongo-
ing research topic in the literature (see e.g., [75, 77, 78]). These methods do not
typically perform well on high-dimensional computationally expensive MOPs
with a limited number of function evaluations. In ANOVA-MOP, when prob-
lem (11) is formed, one can apply such a method (i.e., methods developed for
solving high-dimensional computationally inexpensive MOPs) to solve it. In
this situation, typically, the set of Pareto optimal solutions (or the set of non-
dominated solutions) in the objective space contains many solutions that have a
large number of components (i.e., k components). Even when this set is obtained
with a satisfactory accuracy, its exploration and analysis by the DM when k > 3 is
challenging. Solving sub-problems (with a lower dimension in the decision and
objective space) separately can facilitate analyzing and visualizing solutions in an
objective space with a lower dimension. Because the focus in this thesis is on solv-
ing computationally expensive problems, we do not evaluate the performance of
ANOVA-MOP on computationally inexpensive MOPs.

When problem (11) is (ε-)decomposable, the matrix (R)M can be reordered
such that it becomes block-diagonal with at least two independent blocks, i.e.,
the index of each objective function and each effective variable belongs to only
one block. In this way, there is no effective variable belonging to two or more
sub-problems. However, there are problems where the matrix (R)M cannot be
reordered to form independent blocks, i.e., the index of at least one effective
decision variable belongs to at least two blocks. As a result, at least two sub-
problems have at least one common effective variable. This can be expected to
be the case in most real-world problems. Although ANOVA-MOP in its current
format may not be applicable for such problems, it can be directly applied for a
real-world problem inheriting the decomposability condition. ANOVA-MOP has
been a fundamental effort toward developing the next version of ANOVA-MOP
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to solve real-world problems as well as to solve problems with computationally
expensive constraint functions. These are future research directions.

To build surrogates and conduct sensitivity analysis in ANOVA-MOP, one
can apply any other suitable method by taking into account the characteristics
of the given problem rather than the BPC method employed in this chapter and
[PIII]. In the next chapter, we discuss a new technique termed T-splines [79] as a
potential metamodeling technique to employ in ANOVA-MOP.



6 POTENTIAL FUTURE DEVELOPMENT FOR

ANOVA-MOP

6.1 Motivation

In Chapter 5, we have discussed the ANOVA-MOP method [PIII] for solving
high-dimensional computationally expensive or inexpensive MOPs. In ANOVA-
MOP, sensitivity analysis is a key element. In this chapter, we discuss how ANOVA-
MOP can benefit from sensitivity analysis methods developed in the literature.
We then discuss the potential of a new metamodeling technique called T-splines,
presented in [PIV], to be incorporated into ANOVA-MOP for surrogate building
and sensitivity analysis.

The mathematical properties of T-splines have been studied for functions
with two and three decision variables [80]. Computationally expensive MOPs
typically contain more than three decision variables. Thus, before applying T-
splines for such problems, we may first develop T-splines for functions with more
than three decision variables. This is an initial step for studying T-splines for sur-
rogate building and sensitivity analysis in computationally expensive problems.
We do not yet provide any actual method on function approximation through
T-splines.

In [73], methods developed to conduct sensitivity analysis are divided into
two categories, i.e., methods that do not employ surrogates and methods that ap-
ply surrogates. Methods developed in [70, 72, 81, 82] are examples of the former
category, and methods developed in [73, 69, 83, 84, 85, 86, 87, 88] are examples of
the latter one. A review of sensitivity analysis methods is given in, e.g., [89].

As mentioned in [73], methods in the first category typically require more
function evaluation in comparison with those in the second category. Moreover,
as discussed in [73], methods in the first category generally rely on minimal as-
sumptions about a given function, whereas methods in the latter one depend on
some assumptions (e.g., differentiability). As a result, methods in the fist category
can be applied for computationally inexpensive functions which can be e.g., dis-
continuous or non-differentiable, and methods in the second category are more
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suitable for computationally expensive smooth functions.
When ANOVA-MOP is employed to solve a computationally inexpensive

MOP, one can apply a method belonging to the first category to do sensitivity
analysis. In this way, even if the problem includes non-differentiable functions,
information obtained from the sensitivity analysis can be used to decompose the
problem and form sub-problems as discussed in Chapter 5 and [PIII]. To apply
ANOVA-MOP on problems with computationally expensive differentiable func-
tions, methods in the second category are more suitable to be employed for sen-
sitivity analysis.

MOPs may contain computationally expensive non-differentiable functions.
In [PI], approximating such functions was identified as a future research direc-
tion. In this situation, methods in the first category that rely on, e.g., differen-
tiability may not provide accurate enough information from the sensitivity anal-
ysis for computationally expensive non-differentiable functions. As a result, in
ANOVA-MOP, sub-problems may not be formed accurately and solutions ob-
tained may not be reliable. In this chapter, we discuss T-splines which are built
based on spline functions as a potential technique to incorporate into ANOVA-
MOP. In this way, we expect that sensitivity analysis on computationally expen-
sive non-differentiable functions can provide accurate enough information and
that computationally expensive MOPs including these kinds of functions can be
solved efficiently.

In the literature, spline functions have been applied as one way to approx-
imate computationally inexpensive non-differentiable functions [90]. To build
a spline function, a set of linearly independent piecewise-polynomial functions
of an arbitrary degree is considered. These piecewise-polynomial functions form
basis functions and are called B-splines. Each linear combination of these B-splines
constructs a spline function. B-splines are built based on a set of knots. Thanks
to the knot set, the spline function becomes flexible enough to approximate non-
differentiable functions. High-degree polynomial functions can also be approxi-
mated by low-degree B-splines [91].

Bivariate functions are approximated through bivariate B-splines [90]. In
bivariate B-splines, a set of basis functions is constructed corresponding to each
decision variable. By using these sets of basis functions, tensor spline bases are
formed and bivariate B-splines are obtained. In bivariate B-splines, a refinement
of the set of basis functions for one of the decision variables means adding some
new basis functions into this set. This assists to improve the accuracy of the ap-
proximation. Nevertheless, refining a set of basis functions corresponding to one
of the decision variables leads to an exponential increase in the number of ten-
sor spline bases in bivariate B-splines. This is a drawback in bivariate B-splines,
which do not provide local refinement [79, 91, 92].

To overcome the drawback of bivariate B-splines, T-splines have been devel-
oped in computer aided design (CAD) [79]. T-splines follow the same flexibility
as bivariate B-splines, but the refinement in T-splines is local. To the best of our
knowledge, so far in the literature, T-splines have not been used to approximate
computationally expensive non-differentiable functions when solving multiob-
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jective optimization problems. In [PIV], we provide a review on T-splines as a
potential technique to approximate these kinds of functions and to estimate total
sensitivity indices.

6.2 Function Approximation Through Spline Functions

Suppose U = {u1, u2, u3, . . . , ue+p+1} is a set e + p + 1 non-decreasing number;
then U is called a global knot vector, ui for i = 1, e + p + 1 are called knots, p
is the degree of B-splines functions and e is the number of B-splines needed to
build a spline function. A knot ui can be repeated in U at most p + 1 times. If
u1 = u2 = . . . = up+1 and ue+1 = ue+2, . . . = ue+p+1, then U is called an open
global knot vector.

The B-splines Ni,p(x) (here x means only one decision variable) of degree p
for a given global knot vector U are defined by the Cox-de Boor recursion for-
mula [90] as follows:

Ni,p(x) =

{
1 x ∈ [ui, ui+1) ,
0 otherwise,

(27)

Ni,p(x) =
x − ui

ui+2 − ui
Ni,p−1(x) +

ui+p+1 − x
ui+p+1 − ui+1

Ni+1,p−1(x). (28)

In the above equations, a term with a zero-denominator is considered to be zero.
If p = 3, we call Ni,3 a cubic-basis function. Let us suppose that the multiplicity
of a knot uj in U is κj. According to [90], Ni,p is p − κj times continuously differ-
entiable at uj. This means that if κj = p, then the spline function is continuous
but not differentiable at uj. This is an important property of B-splines by which
e.g. non-differentiable functions can be approximated.

Now, suppose that f : [a, b] −→ R is a uni-variate black-box function and
f̂ : [a, b] −→ R is a surrogate function to be built by an spline function. For a
given degree p and a global knot vector U including e + p + 1 knots,

f̂ (x) =
e

∑
i=1

αiNi,p(x), (29)

where the coefficients αi, i = 1, . . . , e, must be estimated for a given set of sam-
ple points (xi, yi), i = 1, . . . , n, (n ≥ e) and yi = f (xi). The coefficients αi are
estimated by solving the following least square problem

minimize
(α1,...,αe)T∈Re

n

∑
i=1

( f̂ (xi)− yi)2. (30)

When a set of sample points and a degree p are given, the task in applying spline
functions to approximate a black-box function is specifying an appropriate global
knot vector. See, e.g., [93, 94] for more detail.
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To approximate a bivariate function corresponding to each decision vari-
able, a set of knots is defined. Then, the set of B-splines corresponding to this
knot set is built. We then construct tensor spline bases relying on these sets of
B-splines, and bivariate spline functions are formed.

Let us suppose that f : [a, b]2 −→ R is a bivariate black-box function and
f̂ : [a, b]2 −→ R is the corresponding surrogate function to be constructed. Then

f̂ (x1, x2) =
e1

∑
i=1

e2

∑
j=1

αi,jN
p,q
i,j (x1, x2), (31)

in which Np,q
i,j (x1, x2), i = 1, . . . , e1, j = 1, . . . , e2, are called tensor spline bases and

formed as Np,q
i,j (x1, x2) = Ni,p(x1)Nj,q(x2) where Ni,p, i = 1, . . . , e1, are B-splines

of degree p corresponding to a global knot vector U = {u1, u2, . . . , ue1+p+1},
Nj,q, j = 1, . . . , e2, are B-splines of degree q corresponding to a global knot vec-
tor V = {v1, v2, . . . , ve2+q+1} and αi,j, i = 1, . . . , e1, j = 1, . . . , e2, are coefficients to
be calculated. When U and V and a set of sample points (xi

1, xi
2, yi), yi = f (xi

1, xi
2),

i = 1, . . . , Δ, Δ ≥ e1.e2, are given, the coefficients αi,j are estimated by adopting
problem (30) for a bivariate function. As can be seen, a bivariate B-spline function
has a tensor product structure.

To improve the accuracy of a surrogate function built by spline functions, a
refinement is necessary. A refinement means adding new B-splines into the set of
B-splines. However, adding a new B-spline into the set of B-splines correspond-
ing to one of the decision variables increases the number of tensor spline bases
exponentially in bivariate B-spline functions.

6.3 T-splines Review

In order to reduce the number of bases in bivariate B-spline functions, researchers
in CAD [79] have developed T-splines. While T-splines inherit the same flexibility
as bivariate B-spline functions, they can be refined locally. Before introducing T-
splines, we need to define some basic concepts.

Let U = {u1, u2, . . . , ue1+p+1} and V = {v1, v2, . . . , ve2+q+1} be global knot
vectors corresponding to x1 and x2 coordinates, respectively, and I1 = {1, . . . , e1 +
p + 1} and I2 = {1, . . . , e2 + q + 1} be a set of knot indices. We call the Cartesian
product of I1 and I2, i.e., I = I1 × I2 the knot-index-coordinate system. Figure 12
shows a part of a knot-index-coordinate system. The net grid in Figure 12 is
called a T-mesh in the knot-index-coordinate system. The elements in the knot-
index-coordinate system are called nodes. Nodes are indicated by red circles in
Figure 12.

T-splines were first introduced in [79]. Following [79, 92, 95], we assume
that p = q = 3. T-splines are defined based on global knot vectors U = {u1, . . . ,
ue1+p+1} and V = {v1, . . . , ve2+q+1} and a T-mesh. We define a T-mesh as men-
tioned in [95]. In a T-mesh, nodes occupy some, but not all (i, j) ∈ I1 × I2 as
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FIGURE 12 A knot-index-cordinate system. Nodes are shown in red circles. (Color

online)

(a) (b) (c)

FIGURE 13 (a) An initial mesh, (b) bivariate B-spline refinement, (c) T-spline
refinement. (Color online)

shown in Figure 12. Each pair of neighboring nodes on the same horizontal or
vertical line must be connected by an edge. Two different edges can intersect only
at a node. In a T-mesh, nodes shared by two vertical edges and one horizontal
edge or one vertical edge and two horizontal edges are called T-junctions. For ex-
ample, the node corresponding to (4, 5) in Figure 12 is a T-junction. One should
note that a T-junction cannot be located on the boundary of the T-mesh.

A T-spline representation is given by

T(x1, x2) =
eT

∑
i=1

αiBi(x1, x2), (32)

in which αi ∈ R are coefficients to be calculated, eT is the number of nodes in the
T-mesh and eT ≤ e1.e2. For i = 1, . . . , eT, Bi(x1, x2) is called a blending function and
defined as

Bi(x1, x2) = Ni[ui](x1)Ni[vi](x2), (33)

where ui = [uδi
1
, uδi

2
, uδi

3
, uδi

4
, uδi

5
] and vi = [vβi

1
, vβi

2
, vβi

3
, vβi

4
, vβi

5
] are sub-sequences

of U and V, respectively, Ni[ui] and Ni[vi] are cubic-basis functions defined on ui
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and vi, respectively. We call ui and vi local knot vectors of Ni in x1 and x2 coor-
dinates, respectively. As discussed in [95], blending functions (33) in T-splines
are not necessarily linearly independent. Therefore, they may not form base
functions. We discuss this matter in more detail in [PIV]. One should note that
the coefficients αi, i = 1, . . . , eT, for a given set of sample points (xi

1, xi
2, yi), yi =

f (xi
1, xi

2), i = 1, . . . , Δ, Δ ≥ eT, and a given set of blending functions with their cor-
responding local knot vectors are calculated through minimizing a least square
error by adopting problem (30) for a bivariate case. If the T-mesh in Figure 12
consists of all (i, j) ∈ I1 × I2, then T-spline representation (32) is equal to bivariate
B-spline functions (31).

In T-splines, there is a one-to-one correspondence between nodes in a T-
mesh and the blending function in (32). As mentioned earlier, bivariate B-spline
functions have a tensor product structure, whereas T-splines do not follow a ten-
sor product structure. Therefore, a T-mesh can form an incomplete net grid, as
shown in Figure 12. An initial mesh is shown in Figure 13 (a). If this mesh is
refined by bivariate B-spline functions, the mesh shown in Figure 13 (b) is the re-
sult. However, a refinement by T-splines results in the T-mesh shown in Figure 13
(c). As can be seen in this figure, the refinement has a local effect.

Suppose ui and vi, i = 1, . . . , eT, are given and x̃1,j = x1 − uδi
j

and ũj,k =

uδi
j
− uδi

k
. From (27) and (28) with p = 3, we have

Ni[ui](x1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x1 = uδi
1
= uδi

2
= uδi

3
= uδi

4
,

(x̃1,1)
3

ũ4,1ũ3,1ũ2,1
uδi

1
≤ x1 < uδi

2
,

−(x̃1,1)
2 x̃1,3

ũ4,1ũ3,1ũ3,2
+

−x̃1,4 x̃1,2 x̃1,1
ũ3,2ũ4,2ũ4,1

+
−x̃1,5(x̃1,2)

2

ũ5,2ũ4,2ũ3,2
uδi

2
≤ x1 < uδi

3
,

x̃1,1(x̃1,4)
2

ũ4,1ũ4,2ũ4,3
+

x̃1,2 x̃1,4 x̃1,5
ũ4,3ũ4,2ũ5,2

+
(x̃1,5)

2 x̃1,3
ũ5,2ũ5,3ũ4,3

uδi
3
≤ x1 < uδi

4
,

−(x̃1,5)
3

ũ5,2ũ5,3ũ5,4
uδi

4
≤ x1 < uδi

5
,

1 x1 = uδi
2
= uδi

3
= uδi

4
= uδi

5
,

0 otherwise.
(34)

Similarly, Ni[vi](x2) is defined.
As mentioned earlier, for each node in a T-mesh, there is a blending function

and vice versa. Each node has a coordinate in the knot-index-coordinate system.
Without loss of generality, suppose the node (δi

3, βi
3) belongs to I. For this node

there exists a blending function Bi. We identify ui =
{

uδi
1
, uδi

2
, uδi

3
, uδi

4
, uδi

5

}
and

vi =
{

vβi
1
, vβi

2
, vβi

3
, vβi

4
, vβi

5

}
for this blending function. Let u-point be any (l, m) ∈

N2 such that ul ∈ U and vm ∈ V, or a vertical edge passes through (l, m) in the
knot-index-coordinate system, or l /∈ {3, . . . , e1}. Then, δi

2 is the largest integer
that is smaller than δi

3 such that for some m ∈ I2, (δi
2, m) is a u-point and, δi

1 is
the largest integer that is smaller than δi

2 such that for some m ∈ I2, (δi
1, m) is a

u-point. In addition, δi
4 is the smallest integer greater than δi

3 such that for some
m ∈ I2, (δi

4, m) is a u-point and δi
5 is the smallest integer greater than δi

4 such that
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FIGURE 14 The indices in the local knot vectors corresponding to the node (4, 3) are

shown in green. (Color online)

for some m ∈ I2, (δi
5, m) is a u-point. Let a v-point be any (l, m) ∈ N2 such that

ul ∈ U and vm ∈ V or a horizontal edge passes through (l, m) in the knot-index-
coordinate system or m /∈ {3, . . . , e2}. Then, βi

2 is the largest integer that is smaller
than βi

3 such that for some l ∈ I1, (l, βi
2) is a v-node and so on. For instance, in

the blending function corresponding to the node (4, 3) in the T-mesh shown in
Figure 14, we have u = {u2, u3, u4, u5, u6} and v = {v1, v2, v3, v5, v6}.

So far we have introduced T-splines. As mentioned in [PIII] and Chapter 5,
in the ANOVA-MOP method, a surrogate function is built for each individual
computationally expensive function. We expect that for computationally expen-
sive MOPs including non-differentiable functions, T-splines can be considered a
potential metamodeling technique to incorporate into ANOVA-MOP for sensi-
tivity analysis of such functions. Consequently, sub-problems are formed accu-
rately by ANOVA-MOP and solutions obtained can be reliable. The advantage
of T-splines is that it has a local refinement property. Thus, computationally ex-
pensive functions can be approximated with fewer base functions in comparison
with bivariate B-splines.

As mentioned earlier, blending functions in T-splines may not be linearly
independent. Mathematical properties of T-splines such as linearly independent
blending functions have been studied for functions with two and three decision
variables [80]. We discuss them in [PIV]. To the best of our knowledge, T-splines
have not been applied to conduct sensitivity analysis in computationally expen-
sive MOPs. Typically, computationally expensive MOPs include functions with
more than three decision variables. Thus, we should put more research effort to-
ward applying T-splines for functions with more than three decision variables.
The idea of applying T-splines for computationally expensive MOPs is new and
demands extensive and profound investigation.
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Kaisa Miettinen suggested that he first investigates this idea for problems with a
low number of objective functions. Prof. Miettinen, Dr. Markus Hartikainen, Dr.
Karthik Sindhya and Dr. Jussi Hakanen as the his supervisors and as co-authors
emphasized that the DM should not have to wait for a long time to see solutions
corresponding to his/her preferences. As the result, the author developed the
steps involved in the SURROGATE-ASF method.

The author then considered developing SURROGATE-ASF for problems
with a large number of objective functions. In SURROGATE-ASF the DM pro-
vides his/her preferences in the form of a reference point. This means that for
problems with a large number of objective functions, the DM must specify an
aspiration for each objective function.

In the 23rd International Conference on Multiple Criteria Decision-Making,
in August 2015, the author presented the SURROGATE-ASF method. In this con-
ference, the author had the privilege of meeting and discussing with Dr. Alberto
Lovison. This fruitful discussion formed the basic idea of ANOVA-MOP pre-
sented in [PIII]. The author started to investigate how to apply sensitivity analysis
for computationally expensive functions. This led the author to the method de-
veloped by Dr. Matthias Tan in [73]. Through an email exchange, Dr. Tan kindly
provided the MATLAB code of his method. The author then had the honor to
collaborate with Dr. Tan to develop ANOVA-MOP. Discussions, comments and
feedback given by Dr. Lovison, Dr. Tan and Dr. Hartikainen and Prof. Mietti-
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nen as co-authors guided the author of this thesis to develop the ANOVA-MOP
method including theoretical analysis.

The author conducted a research visit under the supervision of Dr. Tan. In
this research visit, Dr. Tan suggested applying T-splines to conduct sensitivity
analysis on computationally expensive non-differentiable functions. The author
started doing a literature review to identify how T-splines could be incorporated
into the ANOVA-MOP method as presented in [PIV].

In all papers included in this thesis, the author was the primary source of
new ideas. Feedback and comments received from co-authors assisted the author
to consider different aspects in solving computationally expensive MOPs when
developing the methods proposed in this thesis.



8 CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

In this thesis, we have discussed challenges of solving computationally expen-
sive multiobjective optimization problems and the importance of supporting a
DM when solving such problems. We have introduced two frameworks, i.e., a
sequential and an adaptive framework, to develop surrogate-based methods. We
then have identified shortcomings of methods proposed in the literature, such as

1. capturing nonconvexity and/or discontinuity in the Pareto frontier when
solving MOPs,

2. taking into account the preferences of the DM to develop interactive surro-
gate-based methods,

3. solving high-dimensional problems, and
4. solving problems involving non-differentiable functions.

Based on these shortcomings we have developed the SURROGATE-ASF and the
ANOVA-MOP methods. In addition, we have discussed the potential of T-splines
to be incorporated into ANOVA-MOP for for sensitivity analysis.

The SURROGATE-ASF method [PII] consists of two phases, i.e., the ini-
tialization and decision-making phases. In the initialization phase, the decision
space is decomposed into a limited number of hyper-boxes. Corresponding to
each individual hyper-box, a surrogate is built. In the decision-making phase,
the DM provides his/her preferences in the form of a reference point. Then a
single-objective surrogate problem is formed and solved. The solution obtained
is shown to the DM. The interaction with the DM is repeated until the solution ob-
tained satisfies him/her. We have evaluated the SURROGATE-ASF performance
on benchmark and application problems with at most 12 decision variables and 5
objective functions. When applying SURROGATE-ASF, the DM does not need to
wait for a long time to find solutions corresponding to his/her preferences. Nu-
merical results have shown that SURROGATE-ASF is capable of providing the
most preferred solution for the DM even when the Pareto frontier is nonconvex
and/or disconnected.
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In the ANOVA-MOP method [PIII], using information obtained from sensi-
tivity analysis, computationally expensive multiobjective optimization problems
with a large number of decision variables and objective functions are decom-
posed into a finite number of sub-problems with a lower number of decision
variables and objective functions. These sub-problems are solved, and the so-
lutions obtained are composed to form solutions for the original problem.

ANOVA-MOP can be applied as a non-interactive or an interactive method.
When applying it as an interactive method, the DM can only focus on a low num-
ber of objective functions at a time and can provide preferences for them rather
than a large number of them. In this way, the DM can track easily how objective
function values are changed according to his/her preferences. Moreover, the DM
does not need to wait for a long time to see solutions corresponding to his/her
preferences. Beside computationally expensive MOPs, ANOVA-MOP can be ap-
plied for solving computationally inexpensive MOPs.

We have discussed issues of sensitivity analysis on computationally expen-
sive non-differentiable functions in [PIV]. We have reviewed T-splines and dis-
cussed their importance as a potential technique for sensitivity analysis on these
kinds of functions.

Developing SURROGATE-ASF for problems with more than 12 decision
variables and more than 5 objective functions is a future research direction. Com-
bining the ideas in SURROGATE-ASF and ANOVA-MOP can be seen as another
future research direction. To do so, one might study sensitivity analysis on de-
cision variables and aspiration levels to identify their effect on the ASF values.
This might lead to decomposing high-dimensional problems into a finite number
of low-dimensional single-objective optimization problems.

In ANOVA-MOP, problems may arise in which the sub-problems obtained
have some common variables. Developing ANOVA-MOP to solve such problems
is a future research direction. Incorporating T-splines into ANOVA-MOP for solv-
ing problems involving non-differentiable functions is a research topic. Last but
not least, developing surrogate-based methods to solve problems including com-
putationally expensive constraints deserves research efforts.

The research effort devoted to this thesis has resulted in developing surro-
gate-based methods to rectify some issues in solving computationally expensive
multiobjective optimization problems. By these methods, problems with differ-
ent attributes, such as nonconvexity and/or discontinuity of the Pareto frontier
or high-dimensional decision and objective spaces, can be solved effectively. In
terms of decision-making, the DM can see solutions corresponding to his/her
preferences quickly. Further methods are required to tackle issues that have not
been considered in this thesis.
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YHTEENVETO (FINNISH SUMMARY)

Lähestymistapoja laskennallisesti kalliiden monitavoiteoptimointitehtävien rat-

kaisemiseen

Tässä väitöskirjassa tarkastellaan laskennallisesti kalliiden monitavoiteoptimoin-
titehtävien ratkaisemista niin, että päätöksentekijän preferenssitieto otetaan huo-
mioon. Tavoite on tukea päätöksentekijää löytämään häntä parhaiten tyydyttävä
ratkaisu tehtäville, joissa on useita ristiriitaisia tavoitteita ja joissa ratkaisukandi-
daatteja vastaavien tavoitteiden arvojen laskeminen vie aikaa. Aikaavievien ta-
voitteiden sijaan käytetään yleensä sijaisia. Tehdyn kirjallisuuskatsauksen poh-
jalta esitellään kaksi kehikkoa: peräkkäinen ja mukautuva, joihin olemassa olevat
sijaispohjaiset menetelmät luokitellaan ja niitä vertaillaan. Kirjallisuuskatsauk-
sen nojalla on tunnistettu lisätutkimusta vaativia haasteita, joihin väitöskirjassa
paneudutaan.

Tässä tutkimuksessa on kehitetty kaksi sijaispohjaista menetelmää: SUR-
ROGATE-ASF ja ANOVA-MOP. SURROGATE-ASF on vuorovaikutteinen mene-
telmä ja siten sisältää kaksi vaihetta: aloitus- ja päätöksentekovaihe. Aloitusvai-
heessa muuttuja-avaruus hajotetaan äärelliseen määrään hyperlaatikoita. Kulle-
kin hyperlaatikolle muodostetaan yksitavoitteinen sijaistehtävä. Lopulta päätök-
sentekovaiheessa päätöksentekijän preferenssejä vastaava ratkaisu löydetään rat-
kaisemalla sopiva sijaistehtävä. Numeeriset testit tukevat menetelmän soveltu-
vuutta tehtäville joissa on korkeintaan 12 muuttujaa, 5 tavoitetta sekä epäkon-
veksi ja/tai epäyhtenäinen Pareto-optimaalisten ratkaisujen joukko.

Jotta useampia muuttujia ja tavoitteita voitaisiin käsitellä, työssä on kehitet-
ty ANOVA-MOP -menetelmä. Siinä tehtävä hajotetaan herkkyysanalyysin avulla
aputehtäviin joissa on kussakin vähemmän muuttujia ja tavoitteita. Nämä apu-
tehtävät ratkaistaan ja ratkaisuista koostetaan approksimaatioratkaisuja alkupe-
räiselle tehtävälle. ANOVA-MOP -menetelmää voidaan käyttää joko ilman pää-
töksentekijän vuorovaikutusta tai vuorovaikutteisena.

Työn lopussa tarkastellaan uuden T-spline -nimisen sijaismallinnuksen me-
netelmän mahdollisuuksia yhdessä ANOVA-MOP:n kanssa. Yhdistelmällä voi-
daan käsitellä tehtäviä, joissa on epäsileitä tavoitteita. Väitöskirjassa kehitettyjen
menetelmien avulla laajennetaan vuorovaikutteisten menetelmien soveltuvuutta
laskennallisesti kalliille tehtäville.

Avainsanat: monitavoiteoptimointi, päätöksenteko, laskennallinen vaativuus,
sijaismalli, hajotelma
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Abstract Computationally expensive multiobjective opti-
mization problems arise, e.g. in many engineering applica-
tions, where several conflicting objectives are to be opti-
mized simultaneously while satisfying constraints. In many
cases, the lack of explicit mathematical formulas of the
objectives and constraints may necessitate conducting com-
putationally expensive and time-consuming experiments
and/or simulations. As another challenge, these problems
may have either convex or nonconvex or even discon-
nected Pareto frontier consisting of Pareto optimal solu-
tions. Because of the existence of many such solutions,
typically, a decision maker is required to select the most
preferred one. In order to deal with the high computational
cost, surrogate-based methods are commonly used in the
literature. This paper surveys surrogate-based methods pro-
posed in the literature, where the methods are independent
of the underlying optimization algorithm and mitigate the
computational burden to capture different types of Pareto
frontiers. The methods considered are classified, discussed
and then compared. These methods are divided into two
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frameworks: the sequential and the adaptive frameworks.
Based on the comparison, we recommend the adaptive
framework to tackle the aforementioned challenges.
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1 Introduction

Many practical engineering problems often involve optimiz-
ing (either minimizing or maximizing) multiple, possibly
incommensurable objective functions subject to a feasible
set determined by constraint functions. In such problems
known as multiobjective optimization problems (MOPs), the
best solution for an objective function may be the worst
solution for some other objective functions. As a matter of
fact, in a solution of an MOP, improvement in the value of
one objective is only possible by allowing impairment in
the values of at least one of the other objectives which is
known as the concept of Pareto optimality (Miettinen 1999).
A solution of an MOP satisfying this concept is called a
Pareto optimal solution, and the set of all such solutions
is referred to as a Pareto frontier (often also known as a
Pareto optimal set). Mathematically, without any additional
information, all Pareto optimal solutions are equally accept-
able solutions of an MOP. It is, however, generally desirable
to obtain one solution to be implemented. Therefore, when
solving an MOP, we need a decision maker (DM) to com-
pare several different solutions or to provide preference
information in some other way and to select the most pre-
ferred one. In this survey, we define solving an MOP in two
ways, i.e., finding a representation of the entire Pareto fron-
tier to a DM or obtaining the most preferred solution based
on the preferences of a DM.
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In real-world MOPs, the mathematical formulas of objec-
tive and constraint functions could be either computation-
ally expensive to evaluate and/or of a black-box type. For
black-box functions, all that is known about them is the
output for a given input. When dealing with these func-
tions, mathematical properties such as convexity or conti-
nuity are not available. In some problems, objective and
constraint functions are evaluated using real and/or com-
putational experiments such as thermodynamic analysis,
structural analysis, computational fluid dynamics (CFD) or
reservoir simulation which involve differential equations to
be solved. Numerical techniques such as finite element (FE)
and finite difference methods may be applied to solve these
equations. These experiments are time consuming and such
problems are known as computationally expensive (inten-
sive, costly) MOPs. For example, each objective function
evaluation in reservoir simulation problems may take sev-
eral days even after applying various techniques to improve
the computational speed (Rezaveisi et al. 2014). The Pareto
frontiers of such problems may be convex, nonconvex or
disconnected. How to most efficiently solve these computa-
tionally expensive problems is an open research question in
the literature.

In this paper, we present a survey of methods to handle
computationally expensive MOPs. The focus of this sur-
vey is on general methods which are independent of the
type of the optimization algorithms used in them. The basic
idea in such methods is to introduce a computationally less
expensive replacement problem known as a surrogate prob-
lem. Besides methods considered here, methods have been
developed in the literature where mechanisms of nature-
inspired methods such as evolutionary and particle swarm
algorithms are essential elements of building the surrogates
of the methods. See Tenne and Goh (2010), Jin (2011),
Zhou et al. (2011) for reviews of such methods. As said,
these methods are not considered here. Surveys on methods
to solve computationally expensive single objective opti-
mization problems utilizing surrogate problems are given in
Simpson et al. (2001, 2004, 2008), Shan and Wang (2010),
Koziel et al. 2011. In such methods, only one objective
function is concerned, while in multiobjective optimization
methods, at least two objectives are considered. In single
objective optimization, comparing two solutions based on
the concept of optimality is possible: the smaller (or larger)
the objective function value, the better the solution. In
multiobjective optimization problems, however, the concept
of Pareto optimality is needed. In the literature, there are
scalarization-based methods (Steuer 1986; Miettinen et al.
2008) that transform an MOP into a single objective opti-
mization problem with respect to the preferences of a DM.
Then, the optimal solution of the single objective optimiza-
tion problem is considered as a preferred solution for the
decision maker. In this survey, wherever such methods are

employed to deal with computationally expensive MOPs,
we discuss them.

As far as we know, this is the first survey which fully
concentrates on handling computationally expensive MOPs
by general methods as defined above. This survey covers
20 selected papers written in English and published in sci-
entific journals before 2013. Besides as an overview of the
methods available, one can use this survey to find a method
applicable to one’s own problems.

A method where a computationally expensive MOP
is handled using a surrogate problem is here termed
a surrogate-based multiobjective optimization method. In
what follows, for the sake of simplicity, such methods are
called surrogate-based methods. Handling a computation-
ally expensive MOP relying on a surrogate problem involves
selecting sample points, building, updating and solving the
surrogate problem. Based on when the surrogate problem
is updated, surrogate-based methods are here classified into
two frameworks: the adaptive and the sequential framework.
In accordance with when the sample points are selected to
update the surrogate problem, the adaptive framework is
divided into types 1 and 2.

The motivation of this survey is to focus on the charac-
teristics of the surrogate-based methods to solve a computa-
tionally expensive MOP and compare these methods in four
aspects: (1) Can the methods deal with general black-box
functions where information regarding mathematical prop-
erties of the functions such as convexity or continuity is
not available? (2) Can the methods capture different types
of Pareto frontiers? (3) How many objective and constraint
functions as well as decision variables can be handled by the
methods? (4) What is the role of a DM during the solution
process? For this comparison, we rely on the results given
by the authors of the papers considered on the employed
benchmark and real-world problems.

In surrogate-based methods, the quality of the Pareto
frontier of the surrogate problem depends on the accu-
racy of the surrogate problem and the performance of the
optimization algorithm employed to solve this surrogate
problem. In the literature (Wu and Azarm 2000; Okabe
et al. 2003; Zitzler et al. 2003; Zitzler et al. 2008), sev-
eral performance indices for measuring the quality of the
Pareto frontier have been proposed. According to Okabe
et al. (2003), this quality can be assessed based on the
number of solutions in the Pareto frontier of the surrogate
measured by e.g., overall non-dominated vector genera-
tion, the distribution and spread of these solutions mea-
sured by e.g., � index and closeness of the surrogate’s
Pareto frontier to the Pareto frontier of the computationally
expensive MOP measured by e.g., generational distance,
inverted generational distance and hyper-volume. If such
information is given in the papers considered, we also
mention it.
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The rest of this paper is organized as follows. In
Section 2, the basic concepts used in this survey, and a brief
discussion on how a surrogate problem can be built, are
addressed. In Section 3, the classification of surrogate-based
methods into the sequential and the adaptive frameworks
is discussed. Details of the sequential framework and the
related methods are discussed in Section 4. Types 1 and 2
of the adaptive framework, and methods belonging to them
are discussed in Sections 5 and 6, respectively. There is a
method in which the sequential framework and type 1 of the
adaptive framework are hybridized to handle computation-
ally expensive MOPs. Therefore, it is discussed in Section 7.
In Section 8, the surrogate-based methods considered in this
survey are compared. Future research directions are also
discussed. Finally, conclusions are drawn in Section 9.

2 Concepts

2.1 Definitions and notations

In the following, basic definitions and notations used in this
survey are given (mostly from Miettinen (1999)). Some of
these are illustrated in Fig. 1. In this paper, we deal with
multiobjective optimization problems of the form

minimize
x∈S

{f1(x), . . . , fk(x)}, (1)

where the set S is called the feasible decision region (set)
(often also called the feasible design space) which is a sub-
set of the decision space Rn. We have k(≥ 2) objective
functions fi : S → R. We denote the vector of objective
functions by f (x) = (f1(x), . . . , fk(x))T . An example of
the feasible decision region is S = {x ∈ Rn : gi(x) ≤ 0, i =
1, . . . , m, hj (x) = 0, j = 1, . . . , p}, where gi : Rn → R,

i = 1, . . . , m, and hj : Rn → R, j = 1, . . . , p, are called
constraint functions. A solution x = (x1, . . . , xn)

T ∈ Rn is
called a decision (variable) vector, where xi, i = 1, . . . , n,

are decision variables. A decision vector x ∈ S satisfy-
ing all the constraint functions is called a feasible decision
vector. The image of the feasible decision region in the
objective space Rk is called the feasible objective region
(set) (often also called performance space) denoted by Z(=
f (S)). The elements of Z are called feasible objective vec-
tors denoted by f (x) or z = (z1, . . . , zk)

T , where zi =
fi(x), i = 1, . . . , k, are objective (function) values. For the
sake of simplicity, we use the term a feasible solution which
refers to either a feasible decision vector or a feasible objec-
tive vector. If needed, we clarify whether a feasible solution
belongs to either S or Z.

A feasible solution x∗ ∈ S and the corresponding
f (x∗) ∈ Z are said to be weakly Pareto optimal for the
problem (1), if there does not exist another feasible solution

x ∈ S such that fi(x) < fi(x
∗) for all i = 1, . . . , k. Corre-

spondingly, they are Pareto optimal for the problem (1), if
there does not exist another feasible solution x ∈ S such that
fi(x) ≤ fi(x

∗) for all i = 1, . . . , k, and fj (x) < fj (x
∗) for

at least one index j ∈ {1, . . . , k}. Obviously, a Pareto opti-
mal solution is a weakly Pareto optimal solution. The set of
all Pareto optimal solutions in the objective space is called
a Pareto frontier (often referred to as a Pareto optimal set)
. We also define a feasible solution xi

e = argminx∈S{fi(x)}
for i = 1, . . . , k. The i-th extreme solution (also called the
anchor point (Messac and Mullur 2008)) for i = 1, . . . , k,

is defined as zi
e = f (xi

e) (see Fig. 1). A hyperplane passing
through all extreme solutions is called a utopia hyperplane
(Messac and Mullur 2008).

As mentioned earlier, in the process of solving an MOP, a
DM may be involved, whose role is to give preference infor-
mation, e.g., by comparing the obtained solutions. Based
on the literature (Miettinen 1999; Luque et al. 2011; Ruiz
et al. 2012), (s)he can provide his/her preferences, e.g., in
the form of a reference point z̄ = (z̄1, . . . , z̄k)

T where z̄i is
an aspiration level consisting of a desirable value for the i-
th objective function. Another approach to elicit information
about a DM’s preference during the solution process is clas-
sification, i.e., the DM classifies the objectives into classes
in which the objective function values should be improved,
can impair or are satisfactory. See Miettinen (1999) for fur-
ther information of the roles of a DM during the solution
process.

In the literature, scalarizing an MOP means formulating
a single objective optimization problem such that an opti-
mal solution for the single objective optimization problem
is a (weakly) Pareto optimal solution for the MOP. The fol-
lowing is an example of scalarization. It involves a so-called
achievement scalarizing function (Wierzbicki 1986):

minimize
x∈S

max
i=1,...,k

[wi(fi(x) − z̄i )] (2)

where wi ≥ 0 for all i = 1, . . . , k, are nonnegative weights,
and z̄i for all i = 1, . . . , k, the aspiration level for the i-
th objective function provided by a DM. Different (weakly)
Pareto optimal solutions can be obtained by changing the
reference point. Pareto optimal solutions can be obtained
by adding a so-called augmentation term to the objective
function of the problem (2) (see, e.g. Miettinen (1999)).

Let us assume that the set X = {x1, . . . , xq} is an
arbitrary subset of feasible solutions in S, and F =
{f (x1), . . . , f (xq)} the corresponding objective vectors in
Z. A solution xi (or f (xi)) for i = 1, . . . , q, that satis-
fies the definition of Pareto optimality with respect to all
solutions in X (or F ), is called a non-dominated solution
in X (or F ) (see Fig. 1). A Pareto optimal solution is a
non-dominated solution, but a non-dominated solution is not
necessarily a Pareto optimal solution. If X = S (or F = Z),
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Fig. 1 Some definitions in
MOPs
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then every non-dominated solution is a Pareto optimal solu-
tion and vice versa. Non-dominated solutions for the given
set X can be identified by e.g., the Pareto fitness function
(Schaumann et al. 1998) defined as

Gi = 1 − max
j∈{1,...,q}\{i}

[
min

{
f̄1(x

i) − f̄1(x
j ), . . . , f̄k(x

i)

−f̄k(x
j )

}]
,

i = 1, . . . , q, (3)

where Gi denotes the Pareto fitness of the i-th feasible solu-
tion xi , and f̄l(x

i) for l = 1, . . . , k, is the l-th normalized
objective function value of the i-th feasible solution, given
by:

f̄l(x
i) = fl(x

i) − fl,min(x)

fl,max(x) − fl,min(x)
, (4)

where fl,max(x) and fl,min(x) represent the maximum and
minimum values of the l-th objective function among all
feasible solutions in X, respectively. When the Pareto fitness
Gi is greater than 1, the corresponding feasible solution is a
non-dominated solution (Shan and Wang 2004).

2.2 How to build a surrogate problem

As mentioned earlier, the basic idea in a surrogate-based
method is to replace a computationally expensive MOP
with a computationally less expensive surrogate prob-
lem. One approach to building a surrogate problem is
to approximate each computationally expensive function
using metamodeling techniques such as polynomial func-
tions (Madsen et al. 2000), Kriging models (Kleijnen 2009),
radial basis functions (RBFs) (Buhmann 2003), multivariate

adaptive regression splines (MARS) (Friedman 1991), neu-
ral networks (Hagan et al. 1996) and support vector regres-
sion (SVR) (Smola and Schökopf 2004). To approximate
a computationally expensive function, sample points are
required. These sample points which are solutions in the
decision space can be selected by sampling techniques
such as Latin hypercube sampling (LHS) (Helton et al.
2006), central composite design (CCD) (Simpson et al.
2001), orthogonal array sampling (OAS) (Simpson et al.
2001) and full factorial sampling (FFS) (Simpson et al.
2001). See Simpson (2001), Queipo et al. (2005), Wang and
Shan (2006), Forrester et al. (2008) and Simpson (2001),
Queipo et al. (2005), Wang and Shan (2006), Forrester et
al. (2008), Jin et al. (2001), Clarke et al. (2004), Forrester
and Keane (2009), Nakayama et al. (2009), Li et al. (2010)
for surveys of the sampling and metamodeling techniques
and their characteristics, respectively.

Once a set of points is sampled, these points are evalu-
ated with the computationally expensive function for which
the metamodel is to be fitted. Sample points can also be
generated by other methods such as a posteriori methods
for multiobjective optimization where a subset of (weakly)
Pareto optimal solutions representing the Pareto frontier is
obtained. These methods are surveyed in Miettinen (1999)
and Marler and Arora (2004). The obtained (weakly) Pareto
optimal solutions can be considered as a set of sample
points. When a set of points evaluated with the compu-
tationally expensive function is available, a metamodeling
technique is employed to fit a computationally inexpensive
function to the sample points known as a surrogate function
(see Fig. 2). Once the surrogate functions of all compu-
tationally expensive functions are constructed, a computa-
tionally inexpensive MOP known as a surrogate problem is
formulated.
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Fig. 2 A surrogate function

According to Forrester and Keane (2009), in the context
of surrogate-based single objective optimization, we want
to build a surrogate problem to be most accurate in the
region of the optimum. In surrogate-based multiobjective
optimization, the accuracy of the surrogate problem in the
region of the Pareto optimal solutions is desirable. Since
each individual surrogate function may not be accurate in
such a region, the Pareto frontier of the surrogate problem
may not coincide with the Pareto frontier of the origi-
nal, computationally expensive MOP. The accuracy of the
surrogate functions can be evaluated with statistical mea-
surements such as root mean square error (RMSE) (Giunta
et al. 1998), predicted error sum of squares (PRESS) (Kut-
ner et al. 2005), cross-validation method (Wang and Shan
2006) and R2 (Jin et al. 2001). See Shan and Wang (2010),
Wang and Shan (2006), Jin et al. (2001) and Li et al. (2010)
for surveys of commonly used criteria to evaluate the accu-
racy. In this survey, we study how the Pareto frontier of the
surrogate problem represents the Pareto frontier of the com-
putationally expensive MOP by the methods proposed in the
papers considered.

Beside approximating each computationally expensive
function, other approaches can be used to build a surrogate
of a computationally expensive MOP, e.g., by approximat-
ing directly the Pareto frontier. These other approaches
apply particular techniques which are discussed in the sub-
sequent sections.

In this survey, when summarizing the methods consid-
ered we sometimes call a computationally expensive MOP
as an original problem. The objective and/or constraint
functions in the original and the surrogate problems are
referred to as computationally expensive and surrogate func-
tions, respectively. These functions involve models based
on which functions are formed. For the sake of simplicity,
we assume that all functions involved in the original prob-
lem are computationally expensive. A set of non-dominated
(or Pareto optimal) solutions of the surrogate problem
which may be evaluated with the computationally expensive

functions is considered as the approximated Pareto frontier
of the original problem. We also use the terms benchmark
and application problems. The first one refers to the avail-
able test problems in the literature, e.g. ZDT problems (Deb
et al. 2002), used to compare the performance of differ-
ent methods. Application problems refer to the problems
arising from industries which are dealt with in the papers
considered in this survey. If the information regarding the
characteristics of the Pareto frontiers of the benchmark and
application problems like convexity, nonconvexity or dis-
continuity as well as performance indices to assess the
quality of the surrogate’s Pareto frontier is provided by the
authors of the surveyed papers, we also mention it. There
are methods that have been developed to solve some partic-
ular application problems. While discussing such methods,
first these problems are mentioned and then the summary of
the methods is discussed. One should notice that the bench-
mark problems are not computationally expensive and, thus,
their validity for properly testing the methods surveyed is
questionable.

3 Classification of surrogate-based methods

After reviewing the journal papers considered in this sur-
vey, we have found out that two frameworks are employed
to handle computationally expensive MOPs utilizing surro-
gates. Nevertheless, there is no unified description of the
main steps involved in surrogate-based methods (see, e.g.
Queipo et al. (2005), Wang and Shan (2006), Forrester
and Keane (2009), Liu et al. (2008) and Kitayama et
al. (2013)). Therefore, we consider two general frame-
works, i.e., sequential and adaptive frameworks to classify
surrogate-based methods, inspired by the classification in
Wang and Shan (2006) and Liu et al. (2008), and based
on when to update the surrogate problem. The key point in
the sequential framework is to build an accurate surrogate
problem and then to solve it. In this framework, the approxi-
mated Pareto frontier (i.e., a set of non-dominated (or Pareto
optimal) solutions of the surrogate problem) is supposed to
be as close as possible to the Pareto frontier of the original
problem. Details of the sequential framework and methods
belonging to this framework are discussed in Section 4. In
the adaptive framework, however, the key point is first to
construct an initial surrogate problem. As mentioned ear-
lier, since the initial surrogate problem may not be accurate
over the region of the Pareto optimal solutions of the orig-
inal problem, the approximated Pareto frontier (obtained
by solving the initial surrogate problem) may not represent
the exact Pareto frontier of the original problem. Hence, by
updating and solving the surrogate problem iteratively, the
approximated Pareto frontier is supposed to coincide with
the Pareto frontier of the original problem.
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In order to update the surrogate problem, new sample
points (which are also termed infill points in Forrester et
al. (2008)) are required. These sample points can be selected
from either a set of non-dominated (or Pareto optimal) solu-
tions of the surrogate problem or unexplored regions in the
decision and/or objective space. Based on when the sample
points are selected to update the surrogate problem, inspired
by Liu et al. (2008), we divide the adaptive framework into
types 1 and 2. Details of the adaptive framework and meth-
ods in this framework are discussed in Sections 5 and 6,
respectively. In addition, there is a method in which the
sequential framework and type 1 of the adaptive framework
are hybridized to handle computationally expensive MOPs.
This method is discussed in Section 7 after describing both
frameworks. All the methods considered in this survey are
then compared in Section 8.

To solve a surrogate problem in both frameworks, two
types of methods can be employed, i.e., sampling-based
and optimization-based ones. In a sampling-based method, a
surrogate problem is solved with an emphasis on a sampling
process and without using any optimization algorithms. In
contrast, in an optimization-based method, a surrogate prob-
lem is solved utilizing an optimization algorithm. If the aim
of solving an MOP is to find the most preferred solution for
a DM, depending on the way of giving the preference infor-
mation, one can employ an interactive method. An overview
of such methods has been presented in Miettinen (1999) and
Miettinen et al. (2008). Several different solutions generated
during the solution process can also be visualized for the
DM to compare them. See Miettinen (2014) for a review of
visualization techniques.

4 Sequential framework

4.1 General flowchart

Constructing an accurate surrogate problem is the key
point in the sequential framework. The flowchart in Fig. 3
presents the main steps of methods belonging to this frame-
work. As can be seen in this figure, in Step 1 of a method
in this framework, initial points are sampled, and then eval-
uated with the computationally expensive functions in Step
2. After this, function values at the sample points are avail-
able. A surrogate problem is then constructed in Step 3.
Evaluating the accuracy of the surrogate problem in Step
4 (highlighted in Fig. 3) is critical in this framework. As
mentioned earlier, the accuracy can be evaluated by sta-
tistical measurements such as the cross-validation method,
root mean square error (RMSE), predicted error sum of
squares (PRESS) and R2. If the surrogate problem is not
sufficiently accurate, it is updated by selecting new sam-
ple points in Step 5, and Steps 2-4 are then repeated. If

the sample points are selected only once to build a surro-
gate problem, this is considered as a special case termed as
one-stage sampling. In this case, Step 5 is not conducted.
After constructing the accurate enough surrogate problem,
it is solved in Step 6 with a DM, if available. As men-
tioned earlier, the aim of solving the surrogate problem can
be to represent non-dominated (or Pareto optimal) solutions
to a DM or to provide the most preferred solution based on
the preferences of a DM. The solution(s) obtained by solv-
ing the surrogate problem are typically evaluated with the
computationally expensive functions in Step 7. As a result,
the outcome of Step 7 is considered as the approximated
Pareto frontier of the original problem and/or the most pre-
ferred solution for a DM in Step 8. This outcome can also
be visualized using an appropriate visualization technique.
In this framework, depending on the accuracy of the surro-
gate problem, the approximated Pareto frontier is as close
as possible to the Pareto frontier of the original problem.
In Section 4.2, we summarize the methods belonging to the
sequential framework. These methods are then compared in
Section 8.

4.2 Summary of methods in the sequential framework

In Goel et al. (2007), an optimization-based method using
polynomial functions is introduced. In Step 1 of this
method, initial points are sampled with OAS and then evalu-
ated with the computationally expensive functions in Step 2.
Each computationally expensive function is approximated
by a quadratic or a cubic polynomial function in Step 3,
and the surrogate problem is built. The accuracy of the sur-
rogate problem is evaluated with a cross-validation method
in Step 4. If needed, new points are sampled in Step 5 to
improve the accuracy, and Steps 2–4 are repeated. After
constructing the accurate enough surrogate problem, highly
correlated objectives among the surrogate functions may
be dropped or a representative objective can be used for
all the correlated objectives (applying principal component
analysis) (Goel et al. 2004). In Step 6, the surrogate prob-
lem is then solved using a population-based evolutionary
multiobjective optimization method called NSGA-II (Deb
et al. 2002). The non-dominated solutions obtained are then
locally improved by the ε-constraint method (Zanakis et al.
1998). In this paper, the authors do not discuss evaluating
the non-dominated solutions obtained in Step 6 with the
computationally expensive functions in Step 7. In Step 8, for
an MOP with less than three objective functions, the approx-
imated Pareto frontier is visualized by fitting a polynomial
function to the non-dominated solutions in the objective
space. This function is accurate in a limited region of the
objective space which is identified by convex hulls.

In Goel et al. (2007), besides solving a computationally
expensive MOP, the authors discuss the problem of Pareto
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Fig. 3 Flowchart of the sequential framework

drift (losing some non-dominated solutions in each gener-
ation of the dominance based Multiobjective Evolutionary
Algorithms (MOEAs)). They propose an implementation of
an archiving strategy to preserve all good solutions. Regard-
ing the issue of capturing a nonconvex Pareto frontier, the
authors mention that the number of convex hulls is impor-
tant. In this method, a metamodeling technique is applied
for two reasons, i.e., to build the accurate enough surrogate
problem, and to visualize the approximated Pareto frontier.
Finding the correlated functions along with a representation
of an objective as a function of the remaining objectives to
visualize the approximated Pareto frontier can be a barrier of
using this method for MOPs with more than three objective
functions. The efficiency of this method was evaluated on
an MOP of liquid-rocket single element injector with four
black-box objective functions and four decision variables
requiring CFD simulations. In this problem, the number
of objective functions was reduced to three by applying
principal component analysis. The quality of the approxi-
mated Pareto frontier was assessed based on the average and
maximum distances between the non-dominated solutions
in two successive iterations of the optimization algorithm
employed. This application problem was also studied in
Queipo et al. (2005), where a discussion on the global sen-
sitivity analysis of the objective functions and the decision
variables was considered.

In the sequential framework, there are two sampling-
based methods which we discuss in the following para-
graphs. In Wilson et al. (2001), a sampling-based method
called efficient Pareto frontier exploration is introduced in

which metamodeling techniques are employed to approxi-
mate individual computationally expensive objective and/or
constraint functions. In efficient Pareto frontier exploration,
first the DM provides desirable ranges for the decision vari-
ables. Then, making use of two sampling techniques (i.e.,
CCD and LHS), two sets of initial points are sampled within
these ranges in the decision space in Step 1 and evalu-
ated with the computationally expensive functions in Step
2. For each set, the computationally expensive functions
are approximated with a second-order polynomial function
and a Kriging model in Step 3 to compare the results, and
the surrogate problems are constructed. In Step 4, using
a cross-validation method, the accuracies of the surrogates
are evaluated. If needed, new sample points are selected
in Step 5, and Steps 2-4 are repeated. In order to solve
the surrogate problems and to represent the corresponding
non-dominated solutions in Step 6, a considerable num-
ber of points is sampled and evaluated with the surrogate
functions. Then non-dominated solutions of the surrogate
problems among the evaluated points are identified using
the Pareto fitness function (3). These non-dominated solu-
tions are then evaluated in Step 7 with the computationally
expensive functions. The sets of evaluated non-dominated
solutions are considered as the approximated Pareto frontier
of the original problem in Step 8.

The efficient Pareto frontier exploration method was
applied in designing a piezoelectric bimorph actuator with
two black-box objective functions and five decision vari-
ables. The function evaluations involved applying the FE
method using Abaqus (2013). The performance of the



8 M. Tabatabaei et al.

efficient Pareto frontier exploration method was also eval-
uated on two benchmark problems with convex, nonconvex
and disconnected Pareto frontiers. The authors show that
the surrogate problem constructed based on initial sample
points of LHS and the Kriging model is more accurate than
the other surrogates for these problems. The results demon-
strated that, while this method can capture a nonconvex and
disconnected Pareto frontier, it performs better for an MOP
with a convex Pareto frontier. Since in this method, a large
number of sample points is required to solve the surrogate
problem, it cannot be applied to handle high-dimensional
MOPs in the decision and objective spaces. The role of a
DM is also to provide desirable ranges for the decision vari-
ables which does not match with the definition of a DM’s
role in the literature as defined in Section 2.1.

In most of the methods discussed so far, surrogates of
the computationally expensive functions are built using
metamodeling techniques to approximate computationally
expensive functions. In contrast, (Lotov et al. 2001) pro-
poses a sampling-based method called Feasible Goals
Method (FGM) to approximate the set Z (the feasible
objective region) by means of a collection of boxes in
the objective space and without using any metamodeling
technique. In order to approximate the set Z with a finite
number of boxes, it is assumed to be bounded. In Step 1
of this method, evenly distributed initial points are sam-
pled randomly, and then evaluated with the computationally
expensive functions in Step 2. In Step 3, a box in the neigh-
borhood of each point in the objective space is formed. The
collection of the boxes is considered as the surrogate of the
feasible objective region. Utilizing the Chebyshev metric,
the authors introduce a probability function to evaluate the
accuracy of the surrogate in Step 4. To do this, a set of new
evenly distributed points is sampled randomly in Step 5, and
evaluated with the computationally expensive functions in
Step 2. If the probability function value is less than a pre-
determined threshold, the farthest point is selected. Then, a
new box in the neighborhood of the selected point is formed
to update the surrogate in Step 3, and Steps 2-4 are repeated.
Otherwise, that is, the surrogate is sufficiently accurate, the
surrogate problem is considered in Step 6 to select the most
preferred solution in the objective space by the DM. In this
step, the collection of boxes is visually shown to a DM.
Then, the DM identifies a preferred solution. The center
of the related box is computed along with the associated
decision vector value in Step 7, and displayed to the DM
in Step 8. FGM was applied to a set of application prob-
lems such as pollution monitoring station problem with five
nonlinear objective functions and two decision variables.
The feasible objective region of this problem was noncon-
vex. This method can handle black-box functions, since in
practice, the boundedness of Z can be assumed by consid-
ering boundaries for the decision variables. Developments

of FGM to approximate both convex and nonconvex Pareto
frontiers are discussed in Lotov et al. (2004).

So far, we have discussed methods involving all steps
in the sequential framework. In the following paragraphs,
we discuss methods involving one-stage sampling. As men-
tioned earlier, in one-stage sampling, sample points are
selected only once. In Liao et al. (2008), an optimization-
based method is developed which is applied to solve
an MOP of crash safety design of vehicles with three
black-box objective functions and five decision variables.
LS-DYNA (Livermore Software Technology Corporation
(LSTC) 2013) is employed as a simulation software. In this
method, initial points are sampled with an extension of LHS
called optimal Latin hypercube sampling (OLHS) in Step
1 and then evaluated with the computationally expensive
functions involving the FE method in Step 2. After that,
stepwise regression and a quadratic polynomial function
are applied to approximate each computationally expensive
function and, then the surrogate problem is built in Step
3. The accuracy of this problem is evaluated based on R2

in Step 4. Non-dominated solutions of the surrogate prob-
lem are obtained using NSGA-II in Step 6. This set of
non-dominated solutions is considered as the approximated
Pareto frontier of the original problem in Step 8. This set is
not evaluated with the computationally expensive functions
in Step 7.

In Su et al. (2011), an optimization-based method is
developed, and is applied to solve a biobjective optimization
problem of designing a bus body with 13 constraints and 31
decision variables. The objective and constraint functions
are evaluated with the FE method using simulation soft-
ware called MSC Nastran (MSC Nastran-Multidisciplinary
structural analysis 2013) and LS-DYNA. In Step 1 of this
method, initial points are sampled with OLHS and evalu-
ated with the computationally expensive functions in Step
2. Then, stepwise regression is applied to approximate each
objective and constraint function making use of a hybrid
of a linear polynomial function and a Gaussian RBF, and
the surrogate problem is constructed in Step 3. The accu-
racy of the surrogate problem is evaluated based on PRESS
in Step 4. The surrogate problem is then solved in Step 6.
The non-dominated solutions obtained are evaluated with
the computationally expensive functions in Step 7. The
set of evaluated solutions is considered as the approxi-
mated Pareto frontier of the original problem in Step 8. In
this paper, two evolutionary algorithms, i.e., NSGA-II and
AMISS-MOP (Su et al. 2011) were employed to solve the
surrogate problem. The authors concluded that the spread of
non-dominated solutions obtained by NSGA-II was wider
than AMIS-MOP, but the convergence of AMISS-MOP was
better than NSGA-II.

In Bornatico et al. (2013) steps similar to those of Liao
et al. (2008) and Su et al. (2011) are followed to solve a
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design optimization problem of a solar thermal building sys-
tem with two black-box objective functions and two deci-
sion variables involving the Polysun simulation software
(Polysun 2013). In this method, the sample points are
selected only once with the Poisson disk node distribu-
tion (Gamito and Maddock 2009). Each computationally
expensive function is approximated with a cubic RBF.
The biobjective surrogate problem is solved with NSGA-
II. In this paper, the accuracies of the surrogate problems
constructed with four sampling techniques, i.e., Cartesian
distribution (Bornatico et al. 2011), Hexagonal distribution
(Steinhaus 2011), uniform distributions (Hickernell et al.
2005) and Poisson disk node distribution were also com-
pared. To assess the quality of the approximated Pareto
front, the original problem was also solved. Then, the aver-
age Euclidean distance between the Pareto frontiers of the
original problem and the surrogates was considered. The
authors concluded that the surrogate problem constructed
with the Poisson disk node distribution sample points and a
cubic RBF outperformed the others in terms of the accuracy.

In the optimization-based methods discussed so far,
a surrogate problem is constructed using metamodeling
techniques to approximate each computationally expen-
sive function. In Hartikainen et al. (2012), however, an
optimization-based method called PAINT is proposed to
approximate the Pareto frontier of a computationally expen-
sive MOP directly without utilizing any metamodeling tech-
niques. In this method, a linear mixed integer multiobjective
optimization problem is introduced as a surrogate of the
original problem. In PAINT, initial sample points are gen-
erated by an a posteriori method in Steps 1 and 2. These
sample points are Pareto optimal solutions of the original
problem. Then, a PAINT interpolation between the sample
points is created in Step 3 and the surrogate problem is intro-
duced. The accuracy of the surrogate problem is high, if a
large number of well-distributed Pareto optimal solutions
is used as sample points. This problem can be solved with
any interactive multiobjective optimization method, and a
preferred approximated solution for a DM is obtained in
Step 6. After finding this solution, it is then projected to the
Pareto frontier of the original problem with the achievement
scalarizing function (2) in Steps 7 and 8.

In PAINT, only the objective space is considered.
Although the authors claim that PAINT can represent a
nonconvex Pareto frontier, it cannot capture a disconnected
Pareto frontier. In addition, the approximation of the Pareto
frontier loses the connection to the decision space when
solving the surrogate problem. However, after projecting
the preferred approximated solution to the Pareto frontier,
the closest Pareto optimal solution both in the decision
and objective spaces is obtained. The efficiency of this
method was evaluated on a benchmark problem with a
convex Pareto frontier. This method was also applied in

approximating the Pareto frontier of an MOP of wastewater
treatment planning with three black-box objective functions
described in Hakanen et al. (2011). The number of con-
straint functions and decision variables was not mentioned.

All the described methods are compared in Section 8.
Table 1 summarizes the characteristics of the methods in
the sequential framework with respect to sampling tech-
niques, metamodeling techniques, number of objective and
constraint functions as well as decision variables in the con-
sidered benchmark and application problems, whether the
methods involve one-stage sampling and whether they are
optimization- or sampling-based. In this table, for every
method, the most challenging MOP that was considered
as a benchmark or an application problem is mentioned.
Since the number of equality constraints in all problems are
zero (p = 0), it is not mentioned in the table. As can be
seen, most of the problems considered are limited to two or
three objective functions except (Lotov et al. 2001) with five
objective functions. As mentioned earlier, since the method
in Messac and Mullur (2008) hybridizes both the sequential
and the adaptive frameworks, we discuss it in Section 7.

5 Adaptive framework: type 1

5.1 General flowchart

As mentioned in Section 3, another class of surrogate-based
methods is the adaptive framework. In this framework, as
can be seen in the flowcharts in Figs. 4 and 6, in compari-
son with the sequential framework (Fig. 3), after sampling,
first an initial surrogate problem is constructed. As men-
tioned earlier, the approximated Pareto frontier (obtained
by solving the initial surrogate problem) may not represent
the exact Pareto frontier of the original problem. There-
fore, the surrogate problem is iteratively solved and updated
by selecting new sample points such that, the approxi-
mated Pareto frontier is supposed to coincide with the
Pareto frontier of the original problem. As described in
Section 3, the new sample points can be selected from
either a set of non-dominated (or Pareto optimal) solu-
tions of the surrogate problem or unexplored regions in
the decision and/or objective space. Based on when new
sample points are employed to update the surrogate prob-
lem, we divide this framework into types 1 and 2. In type
1, the sample points generated before assessing a stop-
ping criterion (Step 4 highlighted in Fig. 4) are utilized
to update the surrogate problem. In type 2, not only the
sample points generated before assessing the stopping crite-
rion (Step 4 highlighted in Fig. 6) are considered, but also
new sample points are generated and selected after assess-
ing the stopping criterion (Step 6 highlighted in Fig. 6) to
update the surrogate problem. In this section, we discuss
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Table 1 Characteristics of methods in the sequential framework (k, m, n are the number of objective functions, inequality constraint functions and decision variables, respectively)

Characteristics Sampling technique Metamodeling technique Features of the benchmark Features of the application Type of the method

Ref. problem problem

(Goel et al. 2007) OAS Quadratic and cubic No benchmark problem k = 4, m = 0 n = 4 Optimization-based

polynomial function nonconvex Pareto frontier

(Wilson et al. 2001) LHS, CCD Quadratic polynomial k = 2, m = 2, n = 2, k = 2, m = 0, n = 5 Sampling-based

function, Kriging model nonconvex and disconnected

Pareto frontier

(Lotov et al. 2001) Random sampling No metamodeling technique No benchmark problem k = 5, m = 0, n = 2 Sampling-based

(Messac and Mullur 2008) LHS, FFS Multiquadric RBF, E-RBF k = 2, m = 0, n = 5, k = 2, m = 2, n = 3 Optimization-based

nonconvex Pareto frontier

(Liao et al. 2008) OLHS Quadratic polynomial No benchmark problem k = 3, m = 0, n = 5 Optimization-based

function (one-stage sampling)

(Su et al. 2011) OLHS Hybrid of a linear No benchmark problem k = 2, m = 13, n = 31, Optimization-based

polynomial function (one-stage sampling)

and Guassian RBF

(Bornatico et al. 2013) Poisson disk Cubic RBF No benchmark problem k = 2, m = 0, n = 2, Optimization-based

node distribution (one-stage sampling)

(Hartikainen et al. 2012) A posteriori No metamodeling technique k = 4, m = 0, n =not k = 3, m = 0, n =not mentioned Optimization-based

method mentioned, nonconvex (one-stage sampling)

Pareto frontier
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Fig. 4 Flowchart of the adaptive framework: type 1

type 1 of the adaptive framework. Type 2 is considered in
Section 6.

The flowchart in Fig. 4 shows the main steps of meth-
ods belonging to type 1 of the adaptive framework. As can
be seen, in the first step of type 1, initial points are sam-
pled, and then evaluated with the computationally expensive
functions in Step 2. After this, function values of the
sample points are available. In Step 3, the initial surro-
gate problem is constructed. In order to capture the Pareto
frontier or to provide the most preferred solution based on
the preferences of a DM, if available, new sample points
are generated in Step 4. These points can be obtained by
solving the surrogate problem and/or sampling unexplored
regions in the decision and/or objective space depending on
a sampling process. In accordance with a method-dependent
criterion, a subset of points among the generated points
is selected. In Step 5, assessing a stopping criterion may
require to evaluate the selected sample points with the
computationally expensive functions and/or to update the
surrogate problem. There are different stopping criteria
which are discussed in more detail in the following subsec-
tion. If a stopping criterion is met, the set of non-dominated
(or Pareto optimal) solutions or the most preferred solu-
tion of the last surrogate problem which may have been
evaluated with the computationally expensive functions are
considered as the approximated Pareto frontier of the

original problem or the most preferred solution for a DM
in Step 6. These solutions can also be visualized using
an appropriate visualization technique. Otherwise, that is,
when a stopping criterion is not met, if the surrogate prob-
lem has already been updated, Steps 4–5 are repeated. If
not, first the surrogate problem is updated with the evaluated
sample points and then Steps 4–5 are repeated.

In Section 5.2, we describe how the above steps are con-
ducted by methods in type 1 of the adaptive framework. We
compare these methods in Section 8.

5.2 Summary of methods in the adaptive framework: type 1

In Yang et al. (2002), first an optimization-based method
called adaptive approximation in single objective opti-
mization (AASO) is developed, and then it is extended
to adaptive approximation in multiobjective optimization
(AAMO). AAMO is the oldest method in the literature
developed based on the adaptive framework. In Step 1
of AAMO, initial points are sampled with any sampling
technique (e.g., LHS) and evaluated with the computation-
ally expensive functions in Step 2. Then in Step 3, each
computationally expensive function is approximated with a
Kriging model, and an initial surrogate problem is built. In
Step 4, a set of non-dominated solutions of the surrogate
problem is obtained by Multiobjective Genetic Algorithm
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(MOGA) (Goldberg 1989) and denoted by P0. Among
these points, using the maximin distance design criterion
(Johnson et al. 1990), a number of isolated points is
selected. In Step 5, these points are evaluated with the com-
putationally expensive functions, and utilized to update the
surrogate problem. The solutions in the set P0 obtained
in Step 4 are again evaluated with the updated surrogate
problem. A set of non-dominated solutions among these
evaluated points is identified and denoted by Pnew. If the
difference between the number of the non-dominated solu-
tions in P0 and in Pnew is less than a predetermined thresh-
old, the set Pnew is considered as the approximated Pareto
frontier in Step 6. Otherwise, the set Pnew is inserted into an
initial population of MOGA and the method continues with
Step 4.

Similar to Goel et al. (2007), the authors in Yang et
al. (2002) also discuss the difficulties of GA-based algo-
rithms in identifying extreme solutions in the Pareto frontier.
To overcome these difficulties, they propose a method called
combined AASO-AAMO in which the AASO and AAMO
methods are combined. In combined AASO-AAMO, after
obtaining a set of non-dominated solutions of the surrogate
problem in Step 4, all objective functions in the surrogate
problem are individually minimized. The obtained optimal
solutions along with the set Pnew are inserted into an ini-
tial population of MOGA. The combined AASO-AAMO
method was tested on solving an I-beam design problem
with two nonlinear objective functions, one nonlinear con-
straint function and four decision variables. The quality of
the approximated Pareto frontier was assessed based on
closeness of it to the Pareto frontier of the application prob-
lem. While this method can handle black-box functions,
the application of combined AASO-AAMO to a practi-
cal optimization problem involving actual computationally
expensive or noisy simulations is mentioned as a future
research direction.

In Zhou and Turng (2007), an optimization-based method
is developed which is applied to solve an MOP of injection-
molding process with five black-box objective functions
and three decision variables. To do this, initial points are
sampled with LHS in Step 1 and evaluated with the com-
putationally expensive functions in Step 2 involving the
Moldex3D simulation software (Moldex3d: Plastic injection
molding simulation software 2013). Each computationally
expensive function is approximated in Step 3 with a Krig-
ing model, and the initial surrogate problem is built. In Step
4, new sample points are selected randomly. The objective
function values of these points are evaluated with the sur-
rogate functions. The variances of the objective function
values of these points are also calculated with the Krig-
ing model. For each point, a vector consisting of these
variances is considered. These vectors are sorted using the
non-dominated sorting method (Deb et al. 2002) (variances

are maximized). Then, a subset of points with the largest
variances (at the first front) is selected randomly. In Step
5, the selected points are evaluated with the computation-
ally expensive functions and added to the sample points set.
Then, the surrogate problem is updated. In other methods
in type 1 of the adaptive framework, the surrogate problem
is solved in Step 4. In this method, however, the surrogate
problem is solved using NSGA-II in Step 5 to assess the
stopping criterion.

The authors in Zhou and Turng (2007) employ the con-
cept of user-defined indifference threshold (Wu and Azarm
2000) as the stopping criterion in Step 5. This threshold
refers to the change in each objective function value within
which the non-dominated solutions are indifferent to each
other. Applying the user-defined indifference thresholds, the
objective space is discretized into a collection of hyper-
boxes. Using the method of Wu and Azarm (2000), if the
distances between the boundaries of the hyperboxes are
less than the predetermined threshold, the method stops.
The set of non-dominated solutions of the last surrogate
problem is considered as the approximated Pareto frontier
of the original problem in Step 6. Otherwise, the method
repeats Steps 4-5. According to the authors, the quality of
the approximated Pareto frontier was assessed based on the
average error percentage between the non-dominated solu-
tions obtained by solving the surrogate and the original
problems.

In Yun et al. (2009), an optimization-based method is
developed to represent an approximation of the Pareto fron-
tier as well as to identify the most preferred solution for a
DM with respect to a reference point consisting of desirable
aspiration levels for all objectives. In this method, initial
points are sampled randomly in Step 1, and evaluated with
the computationally expensive functions in Step 2. Then,
each computationally expensive function is approximated
with an extension of SVR called μ − ν−SVR, and the sur-
rogate problem is built in Step 3. This surrogate problem is
then solved with an evolutionary multiobjective optimiza-
tion method called SPEA2 (Zitzler et al. 2001) in Step 4.
In order to approximate well a neighborhood of the clos-
est Pareto optimal solution to the reference point provided
by the DM, among the generated non-dominated solutions,
thepoint with the minimum value of an order-approximating
achievement function (Miettinen 1999) is selected. More-
over, to update the surrogate problem, another point is
selected based on a specific parameter associated with the
μ − ν−SVR. In Step 5, if the number of computationally
expensive function evaluations is less than a predetermined
threshold, the selected points are evaluated with the com-
putationally expensive functions. The surrogate problem is
then updated, and the method returns to Step 4. Otherwise,
the set of non-dominated solutions of the last surrogate
problem is considered as the approximated Pareto frontier of
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the original problem. The point with the minimum value of
the order-approximating achievement function is also con-
sidered as the most preferred solution for the DM. The
efficiency of this method was evaluated on a benchmark
problem with a nonconvex and disconnected Pareto frontier,
and on a welded beam design problem with two nonlinear
objective functions, four nonlinear constraint functions and
four decision variables.

In Jakobsson et al. (2010), an optimization-based method
is developed to handle noisy black-box single objective opti-
mization problems. This method is then extended to handle
computationally expensive MOPs. The authors call both
methods qualSolve. They claim that it is the first method to
handle a computationally expensive noisy MOP. However,
the performance of the qualSolve method for MOPs is only
evaluated with deterministic benchmark problems. Here, we
focus on qualSolve for MOPs. In Step 1 of qualSolve, ini-
tial points are sampled with LHS and evaluated with the
computationally expensive functions in Step 2. Each com-
putationally expensive function is approximated with a thin
plate spline RBF in Step 3, and a surrogate problem is built.
In Step 4, the surrogate problem is solved by a multiob-
jective optimization method to represent its Pareto frontier.
Using this Pareto frontier, the extended Pareto frontier, i.e.,
the set of weakly Pareto optimal solutions in Zs + Rk is
represented where Zs is the feasible objective region of the
surrogate problem. Figure 5 which is a modification of a
figure in Jakobsson et al. (2010) shows the extended Pareto
frontier in which s1 and s2 are the approximated objective
functions.

To update the surrogate problem, in every iteration of the
method, a sample point is selected from either the Pareto
frontier of the surrogate problem or in an area near the
extended Pareto frontier of the surrogate problem. This
point can be a Pareto optimal solution, or a feasible solu-
tion in the objective space, near the extended Pareto frontier

s2

s1

Feasible objective region of the 

current surrogate problem ( ) Distance between a feasible solution

in the objective space and the extened

Pareto front of the current surrogate 

problem

Pareto front of the current
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Fig. 5 Extended approximated Pareto front

of the current surrogate problem. To select the new sam-
ple point, the authors introduce a quality function based
on two functions, i.e., a distance and a weight function.
The distance function is defined as the smallest Euclidean
distance between a feasible solution in the objective space
and a solution on the extended Pareto frontier of the cur-
rent surrogate problem. The weight function controls the
procedure of selecting new sample points from either the
Pareto frontier or an area near the extended Pareto fron-
tier in the feasible objective region of the current surrogate
problem. The quality function is formulated with respect to
the weight and distance functions. The point that maximizes
the quality function is used to update the surrogate prob-
lem. In Step 5, if the number of computationally expensive
function evaluations is less than a predetermined thresh-
old, the selected point is evaluated with the computationally
expensive functions. The surrogate problem is then updated,
and the method returns to Step 4. Otherwise, the Pareto
frontier of the last surrogate problem is considered as the
approximated Pareto frontier of the original problem in
Step 6.

The performance of this method was evaluated on a set
of benchmark problems such as Kursawe (1991) and OKA1
(2006). The authors concluded that qualSolve performed
well on the Kursawe problem with a nonconvex and discon-
nected Pareto frontier. It, however, failed to represent the
convex Pareto frontier of OKA1, since OKA1 has a very
strong nonlinear behavior close to the minimum solution
to one of the objective functions. They note that qualSolve
was developed in a project on simulation-based multiobjec-
tive optimization of the Volvo D5 diesel engine with three
black-box objective functions and five decision variables
(Jakobsson et al. 2010) involving CFD simulation using
Star-CD (Star-CD 2013). The authors consider the execu-
tion time, as a main downside of the qualSolve method for
MOPs. Because the quality function includes an integral
equation, the evaluation time of this function rises expo-
nentially with the dimension of the decision space. They
mention that qualSolve is suitable for problems with less
than six decision variables. They also discuss that represent-
ing the extended Pareto frontier can be hard for three or
more objective functions.

In Gobbi et al. (2013), an optimization-based method
called approximate normal constraint (ANC) is introduced
in which the idea of employing the normal constraint
method (Messac et al. 2003; Messac and Mattson 2004)
is followed. In the ANC method, a neural network with a
single hidden layer is used to handle computationally expen-
sive MOPs. To do this, first one of the computationally
expensive objective functions is optimized to calculate the
corresponding extreme solution. The authors, however, do
not provide any guideline to choose this function. In a neigh-
borhood of the extreme solution obtained in the decision
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space, initial points are sampled randomly in Step 1 and
evaluated with the computationally expensive functions in
Step 2. These points are used to train a neural network to
approximate each computationally expensive function, and
to build a surrogate problem in Step 3. In Step 4, the other
extreme solutions are calculated by minimizing the corre-
sponding objective functions in the surrogate problem, and
a utopia hyperplane is constructed. A set of evenly dis-
tributed points is then generated on the utopia hyperplane.
For each point on the hyperplane, the surrogate problem is
scalarized using the scalarizing technique introduced in the
normal constraint method (Messac et al. 2003; Messac and
Mattson 2004), and a single objective optimization problem
is formulated.

The authors claim that by solving the single objective
optimization problem, a non-dominated solution in an area
near the Pareto frontier of the original problem can be
obtained. Therefore, a set of non-dominated solutions can
be generated near the Pareto frontier of the original problem
by forming and solving the single objective optimization
problem for each point on the hyperplane. In Step 5, these
non-dominated solutions are evaluated with the computa-
tionally expensive functions. To keep the number of the
training sample points constant, the points that are the far-
thest from the current utopia hyperplane are removed. The
evaluated points are added to the training set, and the surro-
gate problem is updated. If the number of computationally
expensive function evaluations is less than a threshold,
the method returns to Step 4. Otherwise, the set of non-
dominated solutions obtained near the Pareto frontier of the
original problem is considered as the approximated Pareto
frontier.

The efficiency of the ANC method was evaluated on
benchmark problems with nonconvex Pareto frontiers. The
efficiency was also assessed on an MOP of ground vehicle
suspension design with five black-box objective functions
and eleven decision variables. The authors compared the
efficiency of the ANC method with MOGA and a method
called Parameter Space Investigation (PSI) described in
Miettinen (1999) and references therein. They provided
remarks to show that the ANC outperformed the others. The
authors claim that ANC can be used to refine the solutions
obtained with other methods which approximate the Pareto
frontier at once (i.e., genetic algorithms (Goldberg 1989)
and quasi Monte Carlo method (Niederreiter 1992)).

In Kitayama et al. (2013), an optimization-based method
is developed to handle computationally expensive black-box
MOPs. In this method, the aim is to find the most preferred
solution for a DM rather than to represent an approximation
of the entire Pareto frontier. The authors introduce two sam-
pling functions. They describe how to capture disconnected
parts of the Pareto frontier by generating a set of sam-
ple points as evenly distributed as possible using the first

sampling function. The second sampling function provides
the most preferred solution for a DM. In addition, to approx-
imate computationally expensive functions with RBF, they
utilize a new estimation proposed in Kitayama et al. (2011a)
for the width parameter of a Gaussian kernel in RBF based
on the number of and distances between sample points. In
Kitayama et al. (2013), a set of initial points is sampled
with LHS in Step 1 and evaluated with the computationally
expensive functions in Step 2. The width parameter is also
calculated based on the number of sample points. In Step
3, each computationally expensive function is approximated
with the Gaussian RBF, and a surrogate problem is built.
The multiobjective surrogate problem is scalarized with the
weighted Lp-norm function known e.g., in Miettinen (1999)
as the method of weighted metrics in which a DM pro-
vides his/her preferences by the weights. In Step 4, this
scalarized problem is optimized with the differential
evolution algorithm (Kitayama et al. 2011b). This optimal
solution is added to the sample points set and the width
parameter is recalculated.

Introducing the first sampling function based on the
current sample points, a set of sample points as evenly dis-
tributed as possible is obtained. These points are added
to the current sample points. Then, the second sampling
function is introduced and optimized based on the updated
sample points and a modification of the Pareto fitness func-
tion (3). Both functions are approximated using a Gaussian
RBF. In Step 5, if a stopping criterion based on the selected
points is not met, the optimal solution obtained with the
second sampling function is added to the current sample
point. The updated sample points are evaluated with the
computationally expensive functions. The width parameter
is recalculated, and the surrogate problem is updated. The
method then returns to Step 4. Otherwise, the last optimal
solution of the second sampling function is considered as
the most preferred solution for the DM.

Regarding the new estimated width parameter, the
authors mention that this estimation has been obtained with
a heuristic approach. Therefore, the validity of the new
parameter is not proved mathematically. They also propose
that this parameter can be used for SVR. The performance
of this method was evaluated on a set of benchmark prob-
lems with nonconvex and disconnected Pareto frontiers. The
efficiency of the method was also evaluated on an MOP of
variable blank holder force trajectory in deep drawing with
two nonlinear objective functions and six decision variables.
The numerical simulation was done by LS-DYNA.

In the optimization-based methods discussed so far in
this subsection, a surrogate problem is constructed with
metamodeling techniques to approximate each computa-
tionally expensive function. In Monz et al. (2008), how-
ever, an interactive optimization-based method called Pareto
Navigation method is introduced for convex problems to
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find the most preferred solution with respect to a DM’s
preference without using any metamodeling techniques, and
is applied in intensity-modulated radiation therapy plan-
ning. Based on a figure in this paper, we conclude that the
application problem has six objective functions. Moreover,
there is no information regarding the number of constraint
functions and the decision variables. In this method, a set
of initial sample points is generated with an a posteriori
method (Steps 1 and 2). Then, in Step 3, convex hulls of
these points are constructed in both the decision and objec-
tive spaces. The set of sample points is shown to the DM
who must select one of them. The DM provides his/her
preference information by specifying an aspiration level
called a goal for one of the objective functions and upper
bounds for the other objective functions. With respect to the
given preference information, a convex scalarization prob-
lem introduced in Pascoletti and Serafini (1984) (based on
a reference point) is formulated as the surrogate problem
in Step 3, which is optimized in Step 4. The optimal solu-
tion of this problem is a convex combination of the Pareto
optimal solutions in the sample points set in the decision
and objective spaces corresponding to the given preferences.
In Step 5, if the DM desires, this point can be evaluated
with the computationally expensive functions. If the DM is
not satisfied with this point, it can be added to the sam-
ple points set, and the surrogate problem is updated. Then,
the method returns to Step 4. Otherwise, the obtained point
is considered as the most preferred solution for the DM in
Step 7.

In Eskelinen et al. (2010), an interactive method called
Pareto navigator is introduced. In this method, conducting
Steps 1 and 2, i.e., constructing a convex hull, and show-
ing the set of sample points to the DM are similar to the
Pareto navigation method (Monz et al. 2008). In Step 3 of
the Pareto navigator method, however, the DM provides the
preference information in a form of a classification or a ref-
erence point consisting of desirable values for all objectives.
The main difference between this method and the method in
Monz et al. (2008) is that in the latter, only one solution with
respect to the given preference is generated whereas, in this
method, multiple solutions corresponding to the given pref-
erence are available when moving from the current solution
towards the reference point specified.

To be more specific, a search direction with respect to
the preference information is formed. Then, based on the
convex hull, the single objective optimization problem (2),
where the reference point is parametrically moved along the
search direction, is formulated as the surrogate problem. If
the DM desires, (s)he can control the speed of movement.
Pareto optimal solutions to the surrogate problem are gen-
erated by solving the single objective optimization problem
for different reference points until the DM wants to stop.
If the DM wishes, the corresponding Pareto optimal solu-

tion of any point generated is obtained by projecting this
point to the Pareto frontier of the original problem using the
achievement scalarization function (2) in Step 5. If the DM
is satisfied with the projected Pareto optimal solution, it is
considered as the most preferred solution for the DM in Step
7. Otherwise, the DM can change the preference informa-
tion, that is, the direction of movement and/or the starting
solution. If desired, it is possible to add the projected Pareto
optimal solution to the sample points set in order to improve
the accuracy of the surrogate problem. Then, Steps 4-5 are
repeated. The performance of this method was evaluated on
a simple problem with three nonlinear objective functions,
three linear constraint functions, two decision variables and
a simple nonconvex Pareto frontier. In the Pareto naviga-
tion method (Monz et al. 2008), the objective functions
and the Pareto frontier are assumed to be convex, whereas
in Pareto navigator (Eskelinen et al. 2010), a simple non-
convex Pareto frontier can be captured by the convex hull.
Capturing a complex nonconvex Pareto frontier is men-
tioned as a future research direction in Eskelinen et
al. (2010). While the Pareto navigation method keeps the
connection to the decision space, Pareto navigator loses the
connection with the decision space when navigating in the
objective space. In the Pareto navigation method (Monz
et al. 2008), convexity of the objective functions is assumed,
which is an obstacle to deal with black-box functions. How-
ever, the method in Eskelinen et al. (2010) can handle
black-box functions.

In Shan and Wang (2004), a sampling-based method
called Pareto Set Pursuing (PSP) is introduced, which is an
extension of the Mode Pursuing Sampling (MPS) method
proposed in Wang et al. (2004). In Step 1 of PSP, initial
points are sampled randomly. These points are evaluated
with the computationally expensive functions in Step 2, and
are saved in an archive based on their Pareto fitness values.
In Step 3 of the method, two metamodeling techniques (a
quadratic polynomial function and a linear RBF) are used
to approximate the computationally expensive functions.
Using the two surrogate problems, the authors introduce
two functions to guide the sampling process, and devise
two criteria for selecting between them during the sam-
pling in Step 4. The first function selects sample points
towards the extremes of the Pareto frontier, and the sec-
ond one towards the entire Pareto frontier of the original
problem. These sample points are then combined with the
sample points in the archive and a subset of these is selected
with the help of the second function. The selected points
are evaluated in Step 5 with the computationally expensive
functions and added to the archive. The authors have two
criteria to stop the sampling process. If the stopping cri-
teria are not met, the surrogate problem is updated. Then,
the method returns to Step 4. Otherwise, the non-dominated
solutions in the archive are considered as the approximated
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Pareto frontier. The authors claim that PSP can capture
a nonconvex and disconnected Pareto frontier. Similar to
Goel et al. (2007) and Yang et al. (2002), the authors also
discuss the difficulties of GA-based algorithms in identi-
fying extreme solutions in the Pareto frontier. They claim
that the first function can overcome this difficulty. As far
as the accuracy of the surrogate problem is concerned, the
authors claim that the accuracy of their method is not critical
when solving an MOP. The efficiency of PSP was eval-
uated on solving an MOP of fuel cell component design
with one nonlinear objective function, one black-box objec-
tive function, one black-box constraint function and three
decision variables.

In Khokhar et al. (2010), the PSP method (Shan and
Wang 2004) is modified for mixed integer MOPs as the
MV-PSP method. In the MV-PSP method, the basic idea
of employing a surrogate problem is similar to the PSP
method. To deal with discrete variables, however, random
sampling in PSP would most likely generate infeasible
discrete sample points (Khokhar et al. 2010). In order to rec-
tify this issue, the authors use a method to sample feasible
discrete points during the sampling process. The perfor-
mance of the MV-PSP method was evaluated on solving
an MOP of welded beam design with two nonlinear objec-
tive functions, four nonlinear constraint functions and four
decision variables. In this paper, the performance of the
MV-PSP method was also compared with the performance
of six evolutionary multiobjective optimization algorithms,
i.e., AbYSS (Nebro et al. 2008), CellDE (Durillo et al.
2008), FastPGA (Eskandari and Geiger 2008), NSGA-II
(Deb et al. 2002), OMOPSO (Reyes and Coello 2005) and
SPEA2 (Zitzler et al. 2002). These evolutionary algorithms,
however, have not been developed to deal with compu-
tationally expensive MOPs. To compare these methods, a
set of benchmark problems with convex, nonconvex and
disconnected Pareto frontiers was considered. Since the
basic idea of MV-PSP and PSP is the same, for MOPs
with real-valuated and discrete decision variables, PSP and
MV-PSP were applied, respectively. In this comparison,
spread, generational distance, inverted generational dis-
tance, hyper-volume, generalized spread and percentage of
the Pareto optimal solutions were considered as the perfor-
mance indices to assess the quality of the solutions obtained
by these methods. Based on this comparison, the authors
claim to be relatively safe to mention that with a limited
number of computationally expensive function evaluations,
the PSP and MV-PSP methods outperform the compared
methods for MOPs with two to three objective functions
and less than eight decision variables. They observe that
when the dimensionality increases to ten decision variables,
PSP does not offer any superiority over the others. Handling
this weakness is mentioned as a future research direction in
Khokhar et al. (2010).

To summarize, in this subsection, we have surveyed
methods in type 1 of the adaptive framework. In the fol-
lowing section, methods in type 2 of this framework are
considered. After surveying all methods in the adaptive
framework, we summarize characteristics of them in Table 2
of Section 6.2.

6 Adaptive framework: type 2

6.1 General flowchart

The flowchart in Fig. 6 outlines the main steps of methods
belonging to type 2 of the adaptive framework. As men-
tioned earlier, the initial approximated Pareto frontier may
not represent the exact Pareto frontier of the original prob-
lem. Thus, by solving and updating the surrogate problem
iteratively, the approximated Pareto frontier is supposed to
coincide with the Pareto frontier of the original problem. To
do this, sampling new points is required iteratively. In type
1, sample points selected before assessing a stopping cri-
terion are utilized to update the surrogate problem (Step 4
highlighted in Fig. 4). In type 2, not only the sample points
generated before assessing the stopping criterion are con-
sidered (Step 4 highlighted in Fig. 6), but also new points
are sampled after assessing the stopping criterion in other
regions of the decision and/or objective space to update the
surrogate problem (Step 6 highlighted in Fig. 6).

As can be seen in the flowchart in Fig. 6, a set of ini-
tial points is sampled in Step 1, and then evaluated with the
computationally expensive functions in Step 2. After this,
the function values of the sample points are available. In
Step 3, an initial surrogate problem is built. In Step 4, a set
of new sample points is generated relying on the surrogate
problem. Similar to type 1, these points can be generated
and selected e.g., by solving the surrogate problem with a
DM if available. In Step 5, a stopping criterion is checked,
which may require to evaluate the selected sample points
with the computationally expensive functions. If the cri-
terion is not met, based on a method-dependent criterion,
a subset of non-dominated solutions generated in Step 4,
which may have been evaluated with the computationally
expensive functions, is selected. Then, in Step 6, a set of
new points in other regions of the decision and/or objective
space is sampled. These points along with the sample points
selected in Step 5 are considered, and Steps 2-5 are then
repeated. Otherwise, the set of non-dominated (or Pareto
optimal) solutions or the most preferred solution of the last
surrogate problem, which may have been evaluated with
the computationally expensive functions, is considered as
either the approximated Pareto frontier of the original prob-
lem or the most preferred solution for a DM, respectively.
These solutions can also be visualized by an appropriate
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Fig. 6 Flowchart of the adaptive framework: type 2

visualization technique. In Section 6.2, we summarize the
methods in type 2 of the adaptive framework. These meth-
ods are then compared with other methods in type 1 of the
adaptive framework in Section 8.

6.2 Summary of methods in the adaptive framework: type 2

In Liu et al. (2008), an optimization-based method is intro-
duced using a quadratic polynomial function. The authors
claim that this method is highly efficient and is less depen-
dent on the accuracy of the surrogate problem. From this
point of view, they claim that the framework of their
method is a new framework which covers surrogate-based
methods, and consider it as a novel multiobjective opti-
mization method based on an approximation model man-
agement technique. Type 2 of the adaptive framework has
been inspired by this paper. In Chen et al. (2012) also an
optimization-based method similar to the idea in Liu et
al. (2008) is introduced. Without loss of generality, we sum-
marize these methods together. In both methods, the sample
points are selected within a trust region in the decision
space. To do this, an initial trust region is considered in the
decision space by initializing its parameters, i.e., trust region
center, radius and bounds, threshold and control constants
to update the trust region. The authors also define a set of
equations to update the trust region in each iteration of the
methods.

After initializing the trust region, in Liu et al. (2008)
and Chen et al. (2012) initial points are sampled using
OLHS and LHS, respectively, within the trust region in
Step 1, and evaluated with the computationally expensive
functions in Step 2. Each computationally expensive func-

tion is approximated in Step 3 with a quadratic polynomial
function and a Gaussian RBF in Liu et al. (2008) and Chen
et al. (2012), respectively, and the initial surrogate problem
is constructed. In Step 4, non-dominated solutions of these
surrogate problems are obtained by solving them using μ-
MOGA (Liu and Han 2006). Then, in both methods, the
set Pa consisting of a subset of evenly distributed non-
dominated solutions in the decision space from the obtained
non-dominated solutions is considered. In Step 5, the points
in Pa are evaluated with the computationally expensive
functions. The non-dominated solutions of the evaluated
points are stored in an archive Pe. In order to check a stop-
ping criterion, the set Pt = Pa ∩ Pe is considered. Then,
a ratio between the number of points in Pt and Pa is cal-
culated. Based on this ratio, the predefined equations and
the constants, the trust region is updated by adjusting its
parameters.

In Liu et al. (2008), if the radius of the updated trust
region is less than a given threshold, or the number of itera-
tions of solving and updating the surrogate problem is more
than a given threshold, the method stops. In (Chen et al.
2012), other criteria based on the calculated ratio or the
accuracy of the surrogate problem are also checked. If either
of the stopping criteria is met, in both methods, the set Pe is
considered as the approximated Pareto frontier of the orig-
inal problem in Step 7. Otherwise, in both methods, a set
of new points is sampled with LHS in Step 6. These points
and those points from Pe that fall into the updated trust
region are considered. In Liu et al. (2008), Steps 2–5 are
then repeated. In Chen et al. (2012), a subset of those points
from Pe that are in the updated trust region is first removed
with respect to a distance coefficient. This action avoids
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singularity in the matrix of updating the RBF. The remain-
ing points along with the new sample points are selected,
and Steps 2–5 are repeated.

These methods can capture nonconvex and disconnected
Pareto frontiers. The authors in Liu et al. (2008) discuss
that capturing such Pareto frontiers depends on the initial
trust region radius. The efficiency of the method in Liu et
al. (2008) was evaluated on a black-box biobjective opti-
mization problem of variable binder force in a car sheet
metal forming with three decision variables. LS-DYNA was
employed as a simulator. As far as the method in Chen
et al. (2012) is concerned, the distribution of the non-
dominated solutions relies on the quality of μ-MOGA. The
distance coefficient affects the performance of this method.
Based on the obtained results using the benchmark prob-
lems, the authors suggest the best value for the distance
coefficient. The performance of this method was evalu-
ated on a structure optimization problem of a vehicle door
with two black-box objective functions, two black-box con-
straint functions and five decision variables involving the FE
method. In Liu et al. (2008), closeness of the Pareto frontiers
of the surrogate and benchmark problems was considered
to assess the quality. In Chen et al. (2012), the quality was
assessed based on the spread of non-dominated solutions
obtained by the surrogate problem and closeness of them to
the Pareto frontier of the benchmark problems.

All the methods described in Sections 5 and 6 are
compared in Section 8. Table 2 summarizes the charac-
teristics of the methods belonging to both types 1 and 2
in the adaptive framework with respect to sampling tech-
niques, metamodeling techniques, number of objective and
constraint functions as well as decision variables in the con-
sidered benchmark and application problems, and whether
the methods are optimization- or sampling-based. In this
table, for every method, the most challenging MOP that
was considered as a benchmark or an application problem
is mentioned. Since the number of equality constraints in
all problems are zero (p = 0), it is not mentioned in the
table. As can be seen, most of the problems consist of two
or three objective functions except (Zhou and Turng 2007;
Gobbi et al. 2013) with five objective functions.

7 A hybrid method

In Messac and Mullur (2008), a two-stage optimization-
based method called Pseudo Response Surface (PRS) which
hybridizes both the sequential framework and type 1 of
the adaptive framework is introduced. Since discussion
on the frameworks utilized in Sections 4 and 5 are nec-
essary to describe this method, we discuss it in this
section. This method is compared with other methods in
Section 8. PRS consists of two stages where handling

computationally expensive constraint functions is not
addressed. In the first stage, a surrogate problem is built and
updated iteratively in the same way in type 1 of the adap-
tive framework to generate a set of as evenly distributed
feasible solutions as possible near the Pareto frontier of the
original problem. This set is utilized to build another surro-
gate problem in stage two with the sequential framework.
The second surrogate problem is accurate near the Pareto
frontier of the original problem and intentionally inaccurate
in other regions of the objective space. By formulating and
solving the second surrogate problem, an approximation of
the Pareto frontier is represented.

In stage one of PRS, extreme solutions are calculated.
The extreme solutions, the utopia hyperplane and normal
constraint method (Messac et al. 2003; Messac and Matt-
son 2004) are employed to generate feasible solutions near
the Pareto frontier of the original problem. In Step 1 of type
1 of the adaptive framework utilized in this stage, a set of
evenly distributed points including the extreme solutions is
generated on the utopia hyperplane. Near every point on the
hyperplane, a set of new points is sampled with FFS or LHS.
These points are evaluated with the computationally expen-
sive functions in Step 2. The individual computationally
expensive functions are then approximated with a multi-
quadric RBF in Step 3, and an initial surrogate problem is
built. In Step 4, the surrogate problem is scalarized using the
normal constraint method introduced in Messac et al. (2003)
and Messac and Mattson (2004). A feasible solution near
the Pareto frontier is generated by solving this scalarized
problem. In Step 5, this point is evaluated with the compu-
tationally expensive functions, and replaced with the oldest
sample point in the sample points set. The surrogate prob-
lem is then updated. Steps 4 and 5 are repeated until all
points on the hyperplane are used. As a result, in the first
stage, a set of evenly distributed feasible solutions near the
Pareto frontier is obtained in Step 6. These points are con-
sidered as the evaluated initial sample points for Steps 1 and
2 of the sequential framework used in stage two.

As mentioned earlier, the second stage of PRS con-
centrates on building an accurate surrogate problem near
the Pareto frontier and is intentionally inaccurate in other
regions of the objective space. To do this, based on the
dimensionality of the decision space, a number of new sam-
ple points is selected far from the sample points set obtained
from stage one. Instead of evaluating the selected points
with the computationally expensive functions, every objec-
tive function value of these points is set such that each
point has a higher objective value in comparison with the
objective function value of the nearest point among the
sample points evaluated with the computationally expensive
functions. Then, each computationally expensive function
is approximated with an extension of RBF called E-RBF
(Mullur and Messac 2005) in Step 3 of the sequential
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Table 2 Characteristics of methods in the adaptive framework (k, m, n are the number of objective functions, inequality constraint functions and decision variables, respectively)

Characteristics Sampling technique Metamodeling technique Features of the benchmark Features of the application Type of the method

Ref. problem problem

(Yang et al. 2002) LHS Kriging model No benchmark problem k = 2, m = 1, n = 4 Optimization-based

(type 1)

(Zhou and Turng 2007) LHS Kriging model No benchmark problem k = 5, m = 0, n = 3 Optimization-based

(type 1)

(Yun et al. 2009) Random sampling μ − v − SV R k = 2, m = 0, n = 2, k = 2, m = 4, n = 4 Optimization-based

nonconvex and disconnected (type 1)

Pareto frontier

(Jakobsson et al. 2010) LHS Thin plate spline RBF k = 2, m = 0, n = 3, k = 3, m = 0, n = 5 Optimization-based

nonconvex and disconnected (type 1)

Pareto frontier

(Gobbi et al. 2013) Random sampling Neural network k = 2, m = 0, n = 5, k = 5, m = 0, n = 11 Optimization-based

nonconvex Pareto frontier (type 1)

(Kitayama et al. 2013) LHS Gaussian RBF k = 2, m = 0, n = 2, k = 2, m = 0, n = 6 Optimization-based

nonconvex and disconnected (type 1)

Pareto frontier

(Monz et al. 2008) A posterior method No metamodeling technique No benchmark problem k = 6, m and n not mentoned Optimization-based

(type 1)

(Eskelinen et al. 2010) A posterior method No metamodeling technique k = 3, m = 3, n = 2, No application problem Optimization-based

nonconvex Pareto frontier (type 1)

(Shan and Wang 2004) Random sampling Polynomial function, Linear RBF k = 3, m = 1, n = 5, k = 2, m = 0, n = 3 Sampling-based

nonconvex and disconnected (type 1)

Pareto frontier

(Khokhar et al. 2010) Random sampling Polynomial function, Linear RBF k = 3, m = 0, n = 7, k = 2, m = 4, n = 4 Sampling-based

nonconvex and disconnected (type 1)

Pareto front

(Liu et al. 2008) LHS Polynomial function k = 2, m = 2, n = 2, k = 2, m = 0, n = 3 Optimization-based

nonconvex and disconnected (type 2)

Pareto front

(Chen et al. 2012) LHS Gaussian RBF k = 2, m = 0, n = 3, k = 2, m = 2, n = 5 Optimization-based

nonconvex and disconnected (type 2)

Pareto frontier
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framework, and an initial surrogate problem is built. In Step
4, the accuracy of the surrogate problem is evaluated near
the Pareto frontier of the original problem by RMSE. In Step
5, if the accuracy is not sufficient, new points near the Pareto
frontier are obtained using the first stage, and the surrogate
problem is updated in Step 3.

Having the accurate enough surrogate problem, the set of
non-dominated solutions is obtained in Step 6 by solving the
surrogate problem of the stage two. This set is considered as
the approximated Pareto frontier of the original problem in
Step 8. These solutions are not evaluated with the compu-
tationally expensive functions in Step 7. The performance
of PRS was evaluated on benchmark problems with non-
convex Pareto frontiers. The PRS method was also applied
to a complex structural optimization problem requiring the
FE method and analysis of rigidified inflatable structures. It
had two black-box objective functions, three black-box con-
straints and three decision variables. The authors claim that
the computational cost in simulation-based MOPs can be
reduced considerably since the surrogate problem obtained
with PRS is accurate near the Pareto frontier. While, the
authors state that the approximated Pareto frontier is the
Pareto frontier of the original problem, mathematical proof
of this statement was mentioned as a future research direc-
tion. This method assumes that the ranges of the objective
function values are available to compute the extreme solu-
tions. This assumption can be a challenge. Although the
authors expect that PRS can capture a disconnected Pareto
frontier, they mention handling multimodalities and discon-
nected Pareto frontiers as a future research direction.

8 Comparison of surrogate-based multiobjective
optimization methods

After giving an overview of surrogate-based methods pro-
posed in the literature, we compare them in this section. As
mentioned in Section 1, in this comparison, we concentrate
on the attributes of the methods in four aspects: 1) Can the
methods handle general black-box functions where infor-
mation regarding mathematical properties of the functions
such as convexity and continuity is not available? 2) Can the
methods capture different types of Pareto frontiers? 3) How
many objective and constraint functions as well as decision
variables can be handled by the methods? 4) What is the role
of a DM during the solution process? For this comparison,
we consider the results given by the authors of individual
papers on the benchmark and application problems that they
have used to evaluate the performance of their methods.
Throughout this comparison, we also discuss future research
directions.

As far as black-box functions are concerned, all the
described methods except (Monz et al. 2008) can handle

such functions. In Monz et al. (2008), the convexity of the
objective functions is assumed which cannot be guaran-
teed when considering black-box functions. We observe that
only in Jakobsson et al. (2010) dealing with noisy black-box
functions is discussed. However, the authors evaluated the
efficiency of their method on benchmark problems without
noise. Based on these observations, more research to figure
out how metamodeling techniques can be applied to handle
noisy black-box functions is required.

As far as handling nonconvex and disconnected Pareto
frontiers is concerned, we observe that capturing a poten-
tial region to select sample points for updating the surro-
gate problem has a vital and a critical role. In Shan and
Wang (2004), Kitayama et al. (2013), Yun et al. (2009),
Jakobsson et al. (2010) and Khokhar et al. (2010), meta-
modeling techniques not only are employed to build the
surrogate problem, but also to introduce functions for sam-
pling. In Shan and Wang (2004) and Khokhar et al. (2010)
these functions choose sample points towards the extreme
solutions and the Pareto frontier. In Jakobsson et al. (2010),
the sampling function selects sample points from or close
to the extended Pareto frontier of the surrogate problem. In
Kitayama et al. (2013), the aim of employing the sampling
function is to generate evenly distributed sample points.
The authors argue that sampling evenly distributed points to
build and update the surrogate problem may help to capture
disconnected parts of the Pareto frontier.

In Zhou and Turng (2007), the sample points are selected
based on the variances of the objective function values of the
sample points predicted by the Kriging model. In addition,
expected improvement is another criterion related to Krig-
ing model used in nature-inspired methods (Wagner et al.
2010) to select a new point for updating a surrogate prob-
lem. Such a criterion can also be considered in non-nature
inspired methods. In Yun et al. (2009), Lagrangian multi-
plier values given by the metamodeling technique play a role
to select new sample points. In Liu et al. (2008) and Chen
et al. (2012), the trust region strategy is employed to select
sample points from the explored and unexplored regions in
the decision and/or objective space. In both methods, the
sample points are selected to update the surrogate problem
before and after assessing a stopping criterion. In Wilson
et al. (2001), a considerable number of sample points is
selected to capture nonconvexity and discontinuity, which
highly relies on the accuracy of the surrogate problem. In
Goel et al. (2007), convex hulls are discussed to capture
a nonconvex Pareto frontier. In this paper, a metamodel-
ing technique is utilized to approximate a function which
visualizes the approximated Pareto frontier. This function
represents an objective as a function of other objectives.

The authors in Eskelinen et al. (2010) claim that a simple
nonconvex Pareto frontier can be captured by their method,
because a convex hull is applied. In the PAINT method
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(Hartikainen et al. 2012), which can capture a nonconvex
Pareto frontier, an interpolation between sample points is
built. In Messac and Mullur (2008) and Gobbi et al. (2013),
the idea of the normal constraint method (Messac et al.
2003; Messac and Mattson 2004) is employed to gener-
ate sample points near the Pareto frontier of the original
problem. In Messac and Mullur (2008), the surrogate prob-
lem is constructed by type 1 of the adaptive framework
to generate initial sample points. These points are used to
form a surrogate problem of a computationally expensive
MOP by the sequential framework. However, handling a
disconnected Pareto frontier in Messac and Mullur (2008),
Goel et al. (2007), Hartikainen et al. (2012) and Zhou and
Turng (2007) is not considered. Based on the above obser-
vations, developing a method to handle the issues of non-
convexity and discontinuity in the Pareto frontier deserves
research efforts.

One can see that in Messac and Mullur (2008), Shan
and Wang (2004), Kitayama et al. (2013), Jakobsson et
al. (2010) and Khokhar et al. (2010), RBFs have been
employed to handle computationally expensive MOPs. The
benchmark or application problems in Messac and Mul-
lur (2008) have nonconvex Pareto frontiers, while in Shan
and Wang (2004), Kitayama et al. (2013), Jakobsson et
al. (2010) and Khokhar et al. (2010), they have nonconvex
and disconnected Pareto frontiers. Now, a question arises
whether the type of a metamodel technique has any impact
on capturing a nonconvex and disconnected Pareto frontier.
In addition, we observe that many methods developed in
the adaptive framework can capture a nonconvex and dis-
connected Pareto frontier. Based on this observation, we
recommend employing the adaptive framework to handle
the issue of nonconvexity and discontinuity in the Pareto
frontier.

The methods of Hartikainen et al. (2012), Monz et
al. (2008) and Eskelinen et al. (2010) introduce surro-
gate problems to approximate directly the Pareto frontier.
Both methods in Hartikainen et al. (2012) and Eskelinen et
al. (2010) lose the connection to the decision space when
solving the surrogate problems. Nevertheless, the corre-
sponding decision vector value is available after projecting
the approximated preferred solution obtained by the surro-
gate problems to the Pareto frontier of the original problem
(although, this can be time consuming). In contrast, the
Pareto navigation method (Monz et al. 2008) keeps the
connection to the decision space during the navigation in
the objective space. Apart from an approximation of the
Pareto frontier in the objective space, there is a possibil-
ity to approximate the set of Pareto optimal solutions in the
decision space. In Bhardwaj et al. (2013), a method is pro-
posed to approximate this set in the decision space rather
than in the objective space. In this method, however, han-
dling a computationally expensive MOP is not concerned.

Moreover, this method requires differentiability of the
objective and constraint functions, and, thus, we do not
discuss it further. However, one can consider the idea
of approximating the set of Pareto optimal solutions in
the decision space as an approach to handle computation-
ally expensive MOPs. In addition, developing a method to
approximate the Pareto frontier directly rather than each
computationally expensive function in which the connection
to the decision space is kept, can be considered for further
research.

As far as the number of objective and constraint func-
tions as well as decision variables is concerned, except in
Lotov et al. (2001), Su et al. (2011), Zhou and Turng (2007),
Gobbi et al. (2013), the authors in other considered papers
employed benchmark and/or application problems limited
to at most three objective functions, four constraint func-
tions and seven decision variables. The highest number of
objective functions (k = 5) was considered in Lotov et
al. (2001), Zhou and Turng (2007), Gobbi et al. (2013)
and Monz et al. (2008). In Lotov et al. (2001), a surro-
gate problem is formed based on a sampling strategy, in
Gobbi et al. (2013), based on a neural network, in Zhou and
Turng (2007), based on a Kriging model and in Monz et
al. (2008), based on the convex hulls. The sampling strat-
egy, however, can be unstable to handle an MOP with a high
number of decision variables. In addition, training a neural
network is time consuming. In Lotov et al. (2001), Su et
al. (2011), Zhou and Turng (2007) and Gobbi et al. (2013),
it remains unclear how to capture a disconnected Pareto
frontier. In (Monz et al. 2008), the convexity of the objec-
tive functions is required. An MOP with the highest number
of constraint functions (m = 13) and decision variables
(n = 31) was considered in Su et al. (2011) based on the
sequential framework. In (Shan and Wang 2004; Khokhar
et al. 2010), the authors note that their methods can be
employed to solve a computationally expensive MOP with
two or three objective functions and less than seven deci-
sion variables. Moreover, applying the method in Jakobsson
et al. (2010) to handle an MOP with more than three objec-
tive functions and six decision variables is unsuitable. In
other methods, the authors do not discuss upper bounds on
the number of objective and constraint functions as well as
decision variables. See Shan and Wang (2010) for a review
on handling a high-dimensional design problem. The ideas
may be extended to deal with an MOP with a high number
of objective and constraint functions and decision variables.

Considering the role of a DM as defined in Section 2.1
in solving an MOP has been discussed in Kitayama et
al. (2013), Lotov et al. (2001), Hartikainen et al. (2012), Yun
et al. (2009), Monz et al. (2008) and Eskelinen et al. (2010).
A DM provides his/her preferences in the form of weights
in Kitayama et al. (2013) and Yun et al. (2009), while in
Lotov et al. (2001), (s)he compares the generated solutions.
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In Monz et al. (2008), a DM provides his/her preferences as
a goal for one of the objective functions and upper bounds
for the other ones. In Eskelinen et al. (2010), (s)he can
express the preferences by means of a classification or a ref-
erence point consisting of aspiration levels for all objectives.
In this aspect, PAINT has a distinguished feature, because a
mixed integer linear multiobjective surrogate problem of the
original problem is created without involving preferences.
Therefore, it can be employed with any interactive method.
The aim in methods of Kitayama et al. (2013), Lotov et
al. (2001), Hartikainen et al. (2012), Monz et al. (2008) and
Eskelinen et al. (2010) is to provide the most preferred solu-
tion for a DM rather than to approximate the entire Pareto
frontier. Involving a DM when solving an MOP has not been
considered in many papers and, thus, can be considered as
another future research direction.

As mentioned earlier, the quality of the approxi-
mated Pareto frontier can be assessed based on Wu and
Azarm (2000), Okabe et al. (2003) and Zitzler et al. (2003,
2008), the number of solutions in the approximated Pareto
frontier, the distribution and spread of these solutions and
closeness of the approximated Pareto frontier to the Pareto
frontier of the original problem. Evaluating the performance
of the surveyed methods based on these aspects with respect
to a limited number of computationally expensive func-
tion evaluations requires implementing and testing them
on a common set of benchmark problems. Nevertheless,
the benchmark problems considered in the surveyed papers
were not computationally expensive. Thus, to assess the
performance of surrogate-based methods to handle compu-
tationally expensive problems, developing computationally
expensive benchmark problems is a future research topic.

9 Conclusions

Many real-world (engineering) problems involve multiple
conflicting objectives (and possibly constraints) that are
computationally expensive to evaluate. In order to deal
with the high computational cost, various surrogate-based
methods which are independent of the type of the optimiza-
tion algorithms used in them, have been proposed in the
literature. So far, however, no survey has been available
summarizing their characteristics, similarities and differ-
ences. This survey provided an overview of the methods
available and with it, one can find out whether there exist a
method applicable for one’s own problems.

Based on when the surrogate problem is built and
updated, we classified these methods into the sequential and
the adaptive frameworks. A special case of the sequential
framework termed as one-stage sampling was also consid-
ered. In this case, points were sampled only once to build the
surrogate problem. In accordance with when sample points

are selected to update the surrogate problem, we divided
the adaptive framework into types 1 and 2. The considered
papers were then summarized and compared. Based on this
comparison, we can identify the following challenges as
future research directions:

• handling noisy black-box functions,
• capturing a nonconvex and disconnected Pareto frontier,
• handling a high number of objective and constraint

functions as well as decision variables,
• providing the most preferred solution for a DM when

solving computationally expensive MOPs,
• developing computationally expensive benchmark

problems.

In order to capture a nonconvex and disconnected Pareto
frontier, we recommend developing a method in the adap-
tive framework. We hope that this survey opens new hori-
zons for the researchers interested in this topic.
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k Number of (computationally expensive) objective functions

n Number of decision variables
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fi ith computationally expensive objective function

S Feasible decision set

x Decision (variable) vector

xc cth decision variable

xlc, x
u
c Lower and upper bounds of xc

Rk Objective space

f(x) Objective vector

Z = f(S) Feasible objective set

zie ith extreme point

zideal Ideal (objective) vector

zutp Utopian (objective) vector

znadir Nadir (objective) vector

z∗ Reference point given by the decision maker

H Convex hull of all individual extreme points

z∗∗ Projected reference point on H corresponding to z∗

Z
P

Set of predetermined reference points generated on H

XP Set of reference solutions in the decision space

FP Set of reference solutions in the objective space

q Number of divisions along each objective coordinate axis

r Number of sub-regions (or hyper-boxes)

Sa ath hyper-box

zP,a,i ith predetermined reference point forming the ath sub-region on H

Z
a

Set of reference sample points corresponding to the ath sub-region

XP,a Set of non-dominated solutions in the decision space corresponding to the

predetermined reference points in Z
P

FP,a Set of non-dominated solutions in the objective space corresponding to the

predetermined reference points in Z
P

xP,a,i ith of the non-dominated solutions defining Sa

X
a

Set of sample points in the decision space corresponding to Sa

ÃSF
a

Surrogate function corresponding to Sa

T a Cartesian product of sets X
a
and Z

a

XP
a

Set of archived points in the decision space generated during the updating process

FP
a

Set of archived points in the objective space generated during the updating process

xcand Minimizer of MPF

xcand
close Closest point in X

a
to xcand

xclose
close Closest point in X

a\{xcand
close} to xcand

close

dcandclose Euclidean distance between xcand and xcand
close
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dcloseclose Euclidean distance between xcand
close and xclose

close

f
cand
close Objective vector corresponding to xcand

close

f
cand
artif Artificial objective vector

1 Introduction

Many multiobjective optimization problems (MOPs), arising e.g. in engineering applications, of-
ten involve multiple incommensurable, highly nonlinear, black-box and/or multimodal objective
functions. Function evaluations in such problems may be conducted through time-consuming
experiments and/or simulators. In the literature, these problems are called computationally
expensive multiobjective optimization problems. MOPs typically have several (in many cases in-
finitely many) optimal solutions known as Pareto optimal solutions. The set of all Pareto optimal
solutions in the objective space (called Pareto frontier) can be nonconvex and/or disconnected.
From a mathematical point of view and without any preference consideration, Pareto optimal
solutions are equally acceptable for an MOP. Therefore, when solving an MOP, a decision maker
(DM) is required to provide preference information and to choose his/her preferred solutions.

Multiobjective optimization methods are often categorized according to a decision maker’s
role in the solution process, i.e., non-interactive and interactive methods [1]. According to [2],
in non-interactive methods, the DM either is not involved or provides preference information
before or after the actual solution process. In interactive methods, the DM plays an essential
role and the intention is to support him/her in the search for the most preferred solution. In such
methods, steps of an iterative solution algorithm are repeated and the DM progressively specifies
preference information so that the most preferred solution can be found. Examples of types of
specifying preference information are reference points and classification of objective functions.
What is noticeable is that the DM can determine and alter his/her preferences between each
iteration and in the meantime learn about the interdependencies in the problem as well as about
one’s own preferences. This is a significant advantage of interactive methods in light of the fact
that becoming more acquainted with the problem, its possibilities and limitations is often very
valuable for the DM. See [2, 3] for details of non-interactive and interactive methods.

Surrogate-based methods are commonly used in the literature to alleviate computational cost
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 16]. The basic idea in such methods is to introduce
a computationally less expensive problem called a surrogate problem and to replace the origi-
nal problem with the surrogate one. In the literature, methods have been developed in which
surrogate problems are built independently of the type of the optimization algorithms employed
in them. In [17], a non-interactive surrogate-based method is developed. This surrogate-based
method does not consider the role of a DM and cannot handle multimodal functions or discon-
nected Pareto frontiers. The surrogate-based methods proposed in [18, 19] consider the role of
a DM in the solution process. However, they are not interactive methods. This means that if
a DM wishes to provide new preferences, the entire methods should be run again. Therefore,
the DM should wait for a long time to get new solutions corresponding to his/her preferences.
In [20, 21, 22] methods have been developed by which the DM can find preferred solutions
quickly. These methods require a set of approximated solutions a priori generated by some other
surrogate-based methods.

In [23], we surveyed surrogate-based methods, and observed some shortcomings including
inability to 1) involve a DM in the solution process, 2) deal with multimodal functions and 3)
capture a nonconvex and disconnected Pareto frontier. To overcome these shortcomings, in this
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paper, we develop an interactive surrogate-based method. In our method, a DM provides his/her
preferences in the form of a reference point containing aspiration levels representing desirable
values for objective functions. According to [24], the type of preference information in the form
of a reference point has been regarded to be understandable for a DM.

The method proposed is called SURROGATE-ASF and involves two phases, i.e. initialization
and decision making phases. In the initialization phase, a set of non-dominated solutions in the
decision and objective spaces are generated. Using these solutions, hyper-boxes are formed in
the decision space. Corresponding to each hyper-box, a single objective surrogate function is
built by approximating an achievement scalarizing function (ASF) [25]. In the literature, this
function is used to compute the (weakly) Pareto optimal solution for a given reference point.
In the decision making phase, the single objective surrogate functions built in the initialization
phase are employed in generating solutions reflecting the preferences of the DM. One should note
that the DM is only involved in the latter phase. Based on the comparison in [26], a cubic radial
basis function (RBF) with a linear tail is employed as the metamodeling technique in this paper,
but SURROGATE-ASF is not limited to RBF.

SURROGATE-ASF has been developed for computationally expensive MOPs with box con-
straints. The novelty of SURROGATE-ASF can be summarized as follows: 1) the DM does not
need to wait for a long time to obtain his/her solutions corresponding to his/her preferences,
2) SURROGATE-ASF utilizes reference points given by a DM as input, 3) the DM can ex-
plore different regions, a particular interesting region or the entire Pareto frontier, 4) It provides
approximated solutions in both the decision and objective spaces simultaneously.

The rest of this paper is organized as follows. In Section 2, the basic concepts used in this
paper are addressed. The SURROGATE-ASF method is presented in Section 3. Numerical
results of evaluating the performance of SURROGATE-ASF on a practical shape optimization
problem of designing an airfoil as well as some benchmark problems are presented in Section 4.
Finally, in Section 5, we draw our conclusions and discuss paths for future research.

2 Basic Concepts

In this section, we introduce the concepts and notations used in this paper. We consider multi-
objective optimization problems of the form:

minimize
x∈S

{f1(x), . . . , fk(x)}, (1)

where fi : S → R are k (≥ 2) conflicting, computationally expensive objective functions, S =
{x ∈ Rn : xlc ≤ xc ≤ xuc , c = 1, . . . , n} is a nonempty feasible decision set which is a subset of
the decision space Rn. A solution x = (x1, . . . , xn)

T ∈ S is called a feasible decision (variable)
vector, where xc, c = 1, . . . , n, are decision variables and, xlc and xuc are the lower and upper
bounds of xc, respectively. The image of x in the objective space Rk is called a feasible objective
vector denoted by f(x). The image of S in the objective space is called the feasible objective set
denoted by Z(= f(S)).

A feasible solution x∗ ∈ S and the corresponding f(x∗) ∈ Z are termed weakly Pareto optimal
for problem (1), if there does not exist another feasible solution x ∈ S such that fi(x) < fi(x

∗) for
all i = 1, . . . , k. Correspondingly, they are Pareto optimal for problem (1), if there does not exist
another feasible solution x ∈ S such that fi(x) ≤ fi(x

∗) for all i = 1, . . . , k, and fj(x) < fj(x
∗)

for at least one index j ∈ {1, . . . , k}. The set of all Pareto optimal solutions in the objective
space is called a Pareto frontier. Let the set Xd = {x1, . . . ,xd} be an arbitrary subset of feasible

4



solutions in S, and F d = {f(x1), . . . , f(xd)}, the corresponding objective vectors in Z. A solution
xi (or f(xi)), i = 1, . . . , d, that satisfies the definition of Pareto optimality with respect to all
solutions in Xd (or F d), is called a non-dominated solution in Xd (or F d). A solution x

′
(or

f(x
′
)) is called a locally non-dominated solution if there exist a non-empty set S

′ ⊆ S such
that, x

′
(or f(x

′
)) satisfies the definition of Pareto optimality with respect to all points in S′ (or

f(S′)). A Pareto optimal solution is a non-dominated solution, but a non-dominated one is not
necessarily Pareto optimal.

We also define a feasible solution xi
e ∈ argminx∈S{fi(x)} for i = 1, . . . , k. The ith extreme

point (solution) for i = 1, . . . , k, is defined as zie = f(xi
e). These extreme points in the objective

space are also extremes of the Pareto frontier. Based on the extreme points, a vector of the lower
bound of the objective function values in the Pareto frontier in the objective space is defined
as the ideal (objective) vector and denoted by zideal = (zideal1 , . . . , zidealk )T where zideali = fi(x

i
e)

for i = 1, . . . , k. The utopian (objective) vector zutp is a vector in which its components are
calculated by subtracting some small positive scalar (e.g., 10−6) from the components of zideal.
A vector of upper bounds of the objective function values in the Pareto frontier is defined as
the nadir (objective) vector and denoted by znadir = (znadir1 , . . . , znadirk )T . The components of
the nadir vector can be approximated by e.g., a pay-off table using the extreme points. More
information of the ideal, utopian and nadir vectors is given e.g. in [1]. We define the difference
operator a− b = (a1 − b1, . . . , ak − bk), where a = (a1, . . . , ak),b = (b1, . . . , bk) ∈ Rk.

In SURROGATE-ASF, the DM provides his/her preferences in the form of a reference point
z∗ = (z̄∗1 , . . . , z̄∗k)

T , where z̄∗i is an aspiration level representing a desirable value for the objective
function fi. One can find a preferred solution for a reference point given by a DM by applying
an appropriate scalarization. Scalarizing problem (1) means formulating a single objective opti-
mization problem such that its (globally) optimal solution is a Pareto optimal solution for (1).
In this paper, we consider the following widely used achievement scalarizing function (ASF) [25]
as an important element of SURROGATE-ASF:

ASF: S × R
k → R

(x, z∗) �→ max
i=1,...,k

(wi(fi(x)− z̄∗i )),
(2)

where wi ≥ 0, for i = 1, . . . , k, are non-negative fixed weights which actually set a direction
where z∗ is projected onto the Pareto frontier. In this paper we set wi =

1
znadir
i −zutpi

, for i =

1, . . . , k, which are widely used [25]. A new (but still computationally expensive) single objective
optimization problem is formulated as

minimize
x∈S

ASF(x, z∗). (3)

The reference point in problem (3) can be feasible or infeasible, i.e., inside or outside of the
feasible objective set. As proved in [25], theoretically by solving problem (3), a (weakly) Pareto
optimal solution corresponding to the reference point is obtained, regardless of the feasibility
or infeasibility of the reference point. This does not hold for all other scalarizing approaches
[1]. Different (weakly) Pareto optimal solutions can be obtained by changing the reference point
in problem (3). One can add an augmentation term to (2) to avoid weakly Pareto optimal
solutions as discussed and proved in [1, 25]. Numerically, in cases with a limited number of
function evaluations, the optimal solution of problem (3) is a locally non-dominated solution. In
what follows, an optimal solution of problem (3) corresponding to a reference point given by a
DM and a predetermined reference point is called a preferred solution and a reference solution,
respectively. Moreover, problem (1) is referred to as the original problem and its computationally
expensive functions as original functions.
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3 The SURROGATE-ASF Method

In the SURROGATE-ASF method, a DM can provide preferred ranges of the objective func-
tions. Then, they are considered as the utopian and the nadir vectors corresponding to the
region which is interesting for the DM in the objective space. Alternatively, estimates of the
utopian and nadir vectors can be incorporated into the method. SURROGATE-ASF involves
two phases, i.e. initialization and decision making phases. In the initialization phase, a set of
non-dominated solutions within the preferred ranges given by the DM is generated. Then, by
calling Algorithm 1 to be discussed in the following subsection, a finite number of hyper-boxes is
formed using the non-dominated solutions in the decision space. For each individual hyper-box,
a single objective surrogate function is built by approximating the ASF (2) where the decision
variables of problem (1) and the aspiration levels appearing in the ASF are treated as variables
of the surrogate function. In the decision making phase to be discussed in Subsection 3.3, these
computationally inexpensive surrogate functions are utilized to interact with the DM.

3.1 Surrogate Building Module

Once the DM provides the preferred ranges, the extreme points of the corresponding region in the
objective space are calculated. Then, the corresponding solutions in the decision space are found
by solving problem (3) by considering the extreme points as reference points. The approximation
of the ASF requires sample points for the aspiration levels and the decision variables. However,
before discussing the procedure of selecting sample points, we first look at an interesting property
regarding problem (3). This property assists to identify regions in the decision and objective
spaces where to select sample points.

Suppose that H is the convex hull of all individual extreme points. This is constructed by a
convex combination of all extreme points in the objective space. Moreover, let z∗ be a reference
point given by a DM, and x∗ be the corresponding optimal solution of problem (3). Thus, x∗ ∈
argmin

x∈S
[ max
i=1,...,k

(wi(fi(x)− z∗i ))]. On the other hand, x∗ ∈ argmin
x∈S

[ max
i=1,...,k

(wi(fi(x)− z∗i ))+ t],

for all t ∈ R. Therefore, we have:

x∗ ∈ argmin
x∈S

[
max

i=1,...,k
(wi(fi(x)− z∗i )) + t

]
= argmin

x∈S

[
max

i=1,...,k
(wi(fi(x)− z∗i ) + t)

]
= argmin

x∈S

[
max

i=1,...,k
(wi(fi(x)− z∗i +

t

wi
))

]
= argmin

x∈S

[
max

i=1,...,k
(wi(fi(x)− (z∗i −

t

wi
)))

]
= argmin

x∈S

[
max

i=1,...,k
(wi(fi(x)− z∗∗i ))

]
,

where z∗∗ is treated as an arbitrary reference point on the ray passing through z∗ in parallel
with w = (w1, . . . , wk)

T . It means that the optimal solution of problem (3) for a reference point
z∗ given by a DM is also the optimal solution of problem (3) for any reference point on the ray
passing though z∗ in parallel with w (see Figure 1). The following problem gives the projected
reference point z∗∗ in H:

z∗∗ ∈ argmin
h∈H

∥∥∥∥h− z∗

w

∥∥∥∥ (4)

where ‖.‖ is the Euclidean norm. Problem (4) applies if and only if there exists a real number
t ∈ R such that z∗ = h+ tw for some h ∈ H.

Since any reference point within the preferred ranges of objective functions given by the DM
can be projected onto the convex hull H (i.e., finding the closest point on H along the direction
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solution

f1

f2
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w𝒛ത∗∗

𝒛௨௧௣
Figure 1: Projection of a given reference point onto the convex hull

w), sample points for the aspiration levels as reference sample points are selected on this con-
vex hull. To do this, first, a set of evenly distributed predetermined reference points including

the extreme points is generated on the convex hull H and denoted by Z
P
. The reference solu-

tions (non-dominated solutions) in the decision space corresponding to these reference points are
obtained by solving problem (3) for each individual predetermined reference point. This is con-
ducted by employing a surrogate-based single objective optimization method. The choice of this
method has an impact on the performance of SURROGATE-ASF. One can use an appropriate
state-of-the-art method to solve problem (3) efficiently. These reference solutions are evaluated
with the original functions.

In order to generate the predetermined reference points (without involving any DM), we use
the method presented in [27] that places points on a convex hull of all individual extreme points
(a (k − 1)- dimensional simplex). If hz predetermined reference points (including the extreme
points in the objective space) are considered, the q divisions along each objective coordinate axis
in the objective space of a k-objective problem can be calculated using:

hz =

(
k + q − 1

q

)
. (5)

Figures 2 (a) and 2 (b) depict two convex hulls for bi- and three-objective problems with

q = 4 and hz =

(
2 + 4− 1

4

)
= 5 and hz =

(
3 + 4− 1

4

)
= 15 predetermined reference points

(black circles), respectively.
The sets of reference solutions in the decision and the objective spaces are denoted by XP

and FP , respectively. By making use of the set of predetermined reference points Z
P

and
reference solutions XP , the convex hull H and the decision space are decomposed into a finite
number of sub-regions and hyper-boxes, respectively. In what follows, a = 1, . . . , r, represents
the index corresponding to the ath hyper-box or sub-region where r is the number of hyper-boxes
(sub-regions).1

Algorithm 1 starts by constructing sub-regions on H using the predetermined reference points

in Z
P
. Each sub-region is formed by selecting the k nearest neighbor points on H starting from

one of the extreme points. Figures 2 (a) and 2 (b) represent one possible way of forming the
sub-regions and numbering them where k = 2 and k = 3, respectively. Then, reference sample
points (the stars in Figures 2 (a) and 2 (b)) are selected within these sub-regions. To select
reference sample points, the predetermined reference points corresponding to the ath sub-region

1For k = 2 and 3, r = q and q2, respectively

7



2nd sub-region
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within the 2nd sub-region

Predetermined
reference point

f1
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1
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3

4

H
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f2 f3
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1

2 3 4

5 6 7 8 9
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Reference sample
point within the 4th

sub-region

2nd sub-region

H

(a) (b)

Figure 2: (a): A convex hull with 5 points for a bi-objective problem with q = 4 divisions. (b):
A convex hull with 15 points for a three-objective problem with q = 4 divisions.

(i.e., Z
P,a

= {zP,a,1, . . . , zP,a,k}) are considered as the extreme points of this sub-region. Then,
by using the method presented in [27], a set of evenly distributed reference sample points within
this sub-region on the convex hull is generated. The larger the number of generated reference

sample points, the higher is the accuracy of ÃSF
a
. These reference sample points along with the

reference points in Z
P,a

are considered as sample points corresponding to this sub-region and
denoted by Z

a
.

To decompose the decision space, hyper-boxes are built corresponding to sub-regions on
the convex hull H. Considering the ath sub-region on H and the set of predetermined reference

points forming this sub-region, i.e., Z
P,a

= {zP,a,1, . . . , zP,a,k}, the set of non-dominated solutions
corresponding to these predetermined reference points in the decision and the objective spaces
are denoted by XP,a = {xP,a,1, . . . ,xP,a,k} and FP,a = {f(xP,a,1), . . . , f(xP,a,k)}, respectively.
Then, the lower and the upper bounds of the decision variable xc, for c = 1, . . . , n, within the
ath hyper-box denoted by Sa corresponding to this sub-region are calculated as follows:

min{xP,a,1c , . . . , xP,a,kc } ≤ xc ≤ max{xP,a,1c , . . . , xP,a,kc }, ∀c = 1, . . . , n. (6)

Figure 3 shows a simple example of hyper-boxes for a problem with two decision variables.
Once Sa is formed, a small number of initial sample points within this hyper-box is selected
using some sampling technique such as Latin hypercube sampling (LHS) [28] and evaluated with
the original functions. These evaluated points along with the non-dominated solutions in XP,a

are considered as the initial sample points in the decision space corresponding to Sa and denoted
by X

a
.

To build the surrogate function corresponding to the hyper-box Sa denoted by ÃSF
a
, a cubic

RBF with a linear tail is employed to approximate ASF (its description is given e.g. in [29]). To
do this, the following Cartesian product of sets X

a
and Z

a
is formed as input data denoted by

T a for RBF:

T a = X
a × Z

a
= {(x, z) | x ∈ X

a
and z ∈ Z

a}. (7)
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Algorithm 1: Surrogate Building Module

Input: XP , F P and Z
P

Output: The hyper-boxes, the sub-regions and corresponding surrogate functions

1: Define sub-regions on the convex hull H.
2: For the ath sub-region (a = 1, . . . , r), on the convex hull H
3: Select a set of reference sample points within the ath sub-region on

the convex hull H by the method given in [27]. Denote this set by Z
a
.

4: Build the ath hyper-box Sa in the decision space according to (6).
5: Select the initial set of sample points within Sa and evaluate them

with the original functions.
6: Define X

a
and F

a
as the sets of sample points in the decision and

the objective spaces, respectively.
7: Form the set T a according to (7).
8: Calculate the ASF values of all elements in the set T a.
9: Using the elements in the set T a and LOOCV (or a k-fold cross-validation method),

build an initial ÃSF
a
by RBF.

10: Check the prediction accuracy of ÃSF
a
.

11: if the accuracy is acceptable

12: Consider ÃSF
a
as the surrogate function corresponding to Sa.

13: else
14: Call Algorithm 2 with inputs X

a
,F

a
,Z

P
,ÃSF

a
and T a.

15: end if
16: end for
17: Return the hyper-boxes, the sub-regions and corresponding surrogate functions.

The hyper-box corresponding
to  the 1st sub-region

The hyper-box corresponding to  
the 2nd sub-region

The hyper-box corresponding to  
the 3rd sub-region

  

 

 

Figure 3: Hyper-boxes in the decision space corresponding to the sub-regions on the convex hull in Figure 2
(a). For example, reference solutions xP,1,1 and xP,1,2 form S1.
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The ASF values of all elements in T a are calculated. One should note that the objective
function values of all sample points in X

a
are available. Then, T a is divided into validation and

training sets using the leave-one-out cross-validation (LOOCV) or the k-fold cross-validation
method discussed in [26] (note that it differs from the index k for the kth objective function.).
Let |T a| be the cardinality of T a. According to [26], if |T a| ≤ 50, we use LOOCV. If |T a| > 50,
then we use the k-fold cross-validation method where k = 10, for 50 < |T a| ≤ 100, k = 20,
for 100 < |T a| ≤ 150 and k = 30, for 150 < |T a| ≤ 200. Having the elements in the training

set and their corresponding ASF values as input data, RBF is employed to build ÃSF
a
. When

using either LOOVC or the k-fold cross-validation method, the prediction accuracy of ÃSF
a
is

evaluated using standard error measures like Root Mean Squared Error (RMSE) [30] and/or R2

[31].
The steps of the decomposition procedure of the decision space into a finite number of hyper-

boxes and building corresponding surrogate functions are shown in Algorithm 1. Note that the

prediction accuracy of ÃSF
a
may not be satisfactory after steps 1-10 of Algorithm 1 and, in

that case, it needs to be improved. In the following subsection, we discuss an update strategy
called Algorithm 2 by which new sample points within the hyper-box Sa can be selected. The

process of updating ÃSF
a
is repeated until a desired accuracy is achieved.

The non-dominated solutions used to form hyper-boxes correspond to the predetermined
reference points on the convex hull. It may happen that at least two predetermined reference
points have the same corresponding non-dominated solution. In such cases, to form sub-regions
and hyper-boxes, out of all predetermined reference points with the same non-dominated solution
(i.e., the same objective values but different decision variable values), only one reference point
(selected arbitrary) and its corresponding non-dominated solution are considered along with
other different predetermined reference points and non-dominated solutions. Then, sub-regions
and hyper-boxes are formed. It may also occur that hyper-boxes overlap each other. In these
cases, some sample points selected fall into more than one hyper-box. However, sub-regions and
hyper-boxes are still formed as mentioned in Algorithm 1.

In practice, obtaining a desired accuracy may not be possible. In such a case, depending
on the computational budget, one can consider a maximum number of function evaluations for
each individual hyper-box. Then, either achieving a desired accuracy or reaching the maximum
number of function evaluations can be considered as a stopping criterion.

3.2 Accuracy Improvement Module

To improve the accuracy prediction of ÃSF
a
corresponding to Sa, we discuss Algorithm 2. When

updating ÃSF
a
, two matters are considered, i.e, sampling non-dominated solutions within Sa and

having a good diversity among the sample points in X
a
.

In order to sample non-dominated solutions, we employ the sampling function discussed in
[19] to generate new sample points within Sa. The authors of [19] modify the Pareto fitness
function [32] and introduce a sampling function by using RBF such that by minimizing this
function, the optimal solution can be a non-dominated solution. See [19] for details of building
this sampling function. For the sake of simplicity, we refer to this sampling function as the
modified Pareto fitness function (MPF).

By minimizing the MPF iteratively, non-dominated solutions within Sa can be generated.
Nevertheless, the diversity of the points in X

a
to cover the hyper-box should be considered.

Thus, in some iteration of updating ÃSF
a
, some solution obtained by minimizing the MPF is

not evaluated with the original functions. This requires a criterion to assess whether the optimal
solution of the MPF should be evaluated with the original functions and added into X

a
or not.

We discuss this criterion here.
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Algorithm 2: Accuracy Improvement Module

Input: X
a
, F

a
, Z

P
, ÃSF

a
, T a

Output: An accurate enough ÃSF
a

1: Define XP
a
= X

a
and FP

a
= F

a

2: While ÃSF
a
is not accurate

3: Calculate the MPF values of all points in XP
a
as discussed in [19].

4: Build the MPF by RBF.
5: Minimize the MPF to obtain the optimal solution xcand.

6: Find xcand
close ∈ X

a
and f

cand

close ∈ F
a
.

7: Denote the Euclidean distance between xcand
close and xcand by dcandclose.

8: Find xclose
close ∈ X

a\{xcand
close}.

9: Denote the Euclidean distance between xclose
close and xcand

close by dcloseclose.

10: if
dcloseclose

2
< dcandclose

11: Evaluate xcand with the original functions and calculate f
cand

.

12: Form the test set by using xcand and all points in Z
P
.

13: Evaluate the prediction accuracy of all elements in the test set with ÃSF
a
and ASF.

14: If the prediction accuracy is acceptable

15: Set X
a
= X

a ⋃{xcand} and F
a
= F

a ⋃{f cand}.
16: Update T a.

17: Update ÃSF
a
.

18: Stop the updating process.
19: else
20: Set XP

a
= XP

a ⋃{xcand}, Xa
= X

a ⋃{xcand}, FP
a
= FP

a ⋃{f cand}
and F

a
= F

a ⋃{f cand}.
21: end if
22: else
23: Consider the artificial objective vector f

cand

artif by adding a random

vector with positive components to f
cand

close.

24: XP
a
= XP

a ⋃{xcand} and FP
a
= FP

a ⋃{f candartif}.
25: end if
26: end while
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Figure 4: Selecting sample points within Sa to update ÃSF
a

Since some points are not evaluated with the original functions, we introduce XP
a
and FP

a

as sets of archived points generated during the updating process in the decision and the objective
spaces, respectively. These sets include all points in X

a
and F

a
(the points evaluated with the

original functions) and sample points which are not evaluated with the original functions. In what
follows, a procedure is discussed to assign objective function values to the points not evaluated
with the original functions.

Building the MPF is based on the points in XP
a
and FP

a
. To do this, all points in XP

a

and their corresponding MPF values are considered as input data to train a cubic RBF with a
linear tail. Once the MPF is built, it is minimized and the optimal solution xcand within Sa

is obtained. Then, as depicted in Figure 4, the closest point in X
a
in terms of the Euclidean

distance to xcand is found. This point is denoted by xcand
close, the corresponding objective vector

by f
cand
close and the Euclidean distance between xcand and xcand

close by dcandclose. The closest point in
X

a\{xcand
close} to xcand

close is also found. We denote this point by xclose
close and the Euclidean distance

between xclose
close and xcand

close by dcloseclose.

To have diversity among sample points within X
a
, the criterion dcandclose >

dcloseclose
2 is checked.

This means that if xcand is outside the circle centered on xcand
close with radius

dcloseclose
2 (see Figure 4),

then xcand is evaluated with the original functions and the objective vector f
cand

is calculated.

Before adding xcand and f
cand

into X
a
and F

a
, respectively, the prediction accuracy of ÃSF

a

is assessed. To accomplish this, a test set as defined in T a (7) is formed where xcand and all
reference sample points in Z

a
are utilized to form the Cartesian product set. All elements in the

test set are evaluated with ÃSF
a
and ASF, and the prediction accuracy of ÃSF

a
is checked. If

the accuracy is not acceptable, xcand is added into X
a
and XP

a
and f

cand
into F

a
and FP

a
,

respectively. Then, the points inX
a
are utilized to update ÃSF

a
and the points inXP

a
to update

the MPF. The process of minimizing the MPF and checking the diversity criterion is repeated.

If the prediction accuracy is acceptable, then the process of updating ÃSF
a
is terminated.

If dcandclose ≤ dcloseclose
2 , xcand is inside the circle centered on xcand

close with radius
dcloseclose

2 , then xcand is
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not evaluated with the original functions and is not added into X
a
. However, to generate new

sample points by the MPF, the objective vector corresponding to xcand is required. In this case,
to avoid generating xcand again, the objective vector corresponding to this point is artificially

treated as a dominated point in the objective space by the objective vector f
cand
close. To do this,

an artificial objective vector denoted by f
cand
artif is considered for this point by adding a random

vector with positive components to the objective vector f
cand
close. This random vector is a fraction

of znadir − f
cand
close, e.g.,

znadir−f
cand
close

10 . By this choice, f
cand
close is non-dominated with respect to f

cand
artif ,

and is inside the feasible objective space. Then, xcand and f
cand
artif are added into XP

a
and FP

a
.

Note that these points are not added into X
a
and F

a
. Then, the MPF values of all points in XP

a

are calculated and the MPF is updated. The updating process is repeated until the stopping

criterion regarding the accuracy of ÃSF
a
is met.

3.3 SURROGATE-ASF and Decision Making

In this subsection, we present both the decision making phase as well as the algorithm of
SURROGATE-ASF. As discussed in Subsection 3.1, in the initialization phase, surrogate func-
tions are built by calling Algorithm 1. These surrogate functions are employed to interact with
the DM.

Algorithm 3: Decision making using the surrogate problem (8)

Input: The preferred ranges of the objectives or the utopian and nadir objective
vectors.
Output: The most preferred solution in the decision and the objective spaces.

1: Initialization phase

2: Form the set of predetermined reference points Z
P
.

3: Employ a surrogate-based single objective optimization method to

solve problem (3) with respect to all points in Z
P
and obtain the set

of reference solutions XP and F P in the decision and the objec-
tive spaces, respectively.

4: Form hyper-boxes and build corresponding surrogate functions by call-

ing Algorithm 1 with inputs XP , F P and Z
P
.

5: Decision making phase
6: While the decision maker is not satisfied
7: Ask the decision maker to provide a reference point z̄∗.
8: Determine z̄∗∗ on the convex hull H according to (4).
9: Identify ã as the sub-region number of z̄∗∗.

10: Identify the ãth hyper-box and denote it by S ã.
11: Utilize z̄∗∗ as a reference point, formulate and solve the surrogate

problem (8).
12: Evaluate the optimal solution of the surrogate problem with the

original functions.
13: Show the evaluated solution to the decision maker.
14: end while
15: Return the most preferred solution for the decision maker.
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In the decision making phase, if the DM did not provide any preferred ranges, the utopian
and the nadir vectors are shown to him/her. The DM is supposed to specify reference points
within the ranges. In any case, the DM provides a reference point z̄∗. The interaction with
the DM in SURROGATE-ASF corresponds to that of the reference point method given in [33].
The reference point z̄∗ is projected onto the convex hull H by solving problem (4) as discussed
in Subsection 3.1. In practice, to find the projected reference point denoted by z∗∗, we do not
solve problem (4). A simple approach is to generate a large number of uniformly distributed
points on H. Then, the point that minimize the objective function of problem (4) is selected.
Then, the sub-region and the hyper-box number corresponding to this projected reference point
are identified and denoted by ã and the following surrogate problem is solved by using any
appropriate single objective optimization method:

minimize
x∈Sã

ÃSF
ã
(x, z̄∗∗), (8)

where Sã is the ãth hyper-box. The optimal solution obtained is an approximation of the preferred
solution in the decision space corresponding to the reference point z̄∗ given by the DM. This
solution is evaluated with the original functions and shown to the decision maker. The process
of asking for a reference point from the DM, projecting it onto the convex hull and solving the
corresponding surrogate problem is repeated until the most preferred solution satisfying the DM
is obtained. An overview of the algorithm of SURROGATE-ASF including the initialization and
the decision making phases is given in Algorithm 3.

4 Numerical results

In this section, we demonstrate the performance of SURROGATE-ASF through solving a shape
optimization problem of designing an airfoil. Since this problem contains objective functions
with a practical meaning, it is easier to describe the decision making process. Therefore, we
discuss the decision making phase comprehensively for this problem. In addition to this practical
problem, we consider academic benchmark problems attributing different characteristics such as
non-convex Pareto frontiers, connected or disconnected sets of Pareto optimal solutions and
multimodal functions. Results involving the benchmark problems are given in Subsection 4.2.
The decision making phase for these academic benchmark problems is similar to the one in the
shape optimization problem.

We compare the performance of SURROGATE-ASF with the method [18] (henceforth called
here the Yun method) and the PAINT method [20]. According to the findings presented in [23],
the Yun method and PAINT are the most similar methods to SURROGATE-ASF because in
all of them the DM provides preference information in the form of a reference point and, thus,
these three methods are comparable.

The Yun method is non-interactive in which μ− ν−SVR [18] is applied as the metamodeling
technique. Because it is not interactive by nature, for each individual reference point given by
the DM, the entire method must be run for enabling interaction with the DM. In this method,
first each objective function is approximated and a surrogate multiobjective optimization prob-
lem is formulated. With the objective functions in the surrogate problem, problem (3) as a
single objective computationally inexpensive problem is formulated to be solved. The solution
of this problem as well as some sample points, selected based on the Lagrangian coefficients
in μ − ν−SVR, are utilized to improve the accuracy of the surrogate problem. By comparing
the performance of the Yun method and SURROGATE-ASF, we show the advantages of the ap-
proach of approximating the achievement scalarizing function (2) as a computationally expensive
objective function and then converting it to a computationally inexpensive one over the approach
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of first approximating each expensive function individually and then forming the achievement
scalarizing function.

Similar to SURROGATE-ASF, the PAINT method requires a set of non-dominated solutions
being available to build a surrogate problem. In PAINT, a linear mixed integer multiobjective
optimization problem is introduced as a surrogate of the original problem. Then, this problem
is scalarized using the achievement scalarizing function including a reference point given by the
DM. This scalarized problem is solved, and an approximated solution in the objective space is
obtained. PAINT can only provide solutions in the objective space, i.e., decision variable values
of the approximated solutions cannot be obtained. The approximated solution is shown to the
DM. If the DM is not satisfied, (s)he provides another reference point. The interaction with
the DM is conducted until the approximated solution obtained is acceptable for the DM. Then,
this solution is considered as a reference point. Using this reference point and the original,
computationally expensive functions, problem (3) is formulated as a computationally expensive
single objective optimization problem. This problem is solved by a (surrogate-based) single
objective optimization method. The optimal solution is the most preferred (approximated)
solution and provided to the DM. One should note that, for any approximated solution generated
in the intermediate iterations, it is possible to obtain the corresponding decision variable values
by solving an expensive single objective optimization problem. In this paper, we follow the steps
given in [20] and do not calculate approximated solutions in the decision space until at the last
iteration.

At the end of the solution process by an interactive method, the most preferred solution
(which is usually a single solution) is obtained. In this aspect, to the best of our knowledge,
there is no established quality measure in the literature which is suitable for a reference point
based interactive method. Therefore, we compare the closeness of approximated solutions in
the objective space obtained by SURROGATE-ASF, the Yun method and PAINT with their
corresponding solutions obtained by solving problem (3) in which the original functions are used.
To do so, problem (3) (for the academic benchmark problems) is solved including reference points
given by the DM. In what follows, we refer to these solutions as original solutions. The closeness
of the approximated solution f̃ j∗ and the original solution f j∗ for j = 1, . . . , l, (where l is the
number of reference points given by the DM) in the objective space is assessed based on the

Euclidean distance. To do this, first normalized approximated solutions f̃ j∗norm =
˜f j∗−zideal

znadir−zideal

and normalized original solutions f j∗norm = f j∗−zideal

znadir−zideal
are calculated for j = 1, . . . , l. Then, the

Euclidean distance between the normalized approximated and original solutions in the objective
space is calculated as follows:

Ej = ‖f̃∗jnorm − f∗jnorm‖ (9)

where ‖.‖ is the Euclidean norm.

4.1 Solving a shape optimization problem

In this subsection, we demonstrate the performance of SURROGATE-ASF by solving a bi-
objective airfoil shape optimization problem

minimize
x∈S

{
Cd(x)

Cl(x)
, C2

m(x)

}
, (10)
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where Cd, Cl and Cm are the drag, lift and pitching moment coefficients, respectively, and S =
{x ∈ R12 : 0.0085 ≤ x1 ≤ 0.0126, 0.0020 ≤ x2 ≤ 0.0040, 7.0000 ≤ x3 ≤ 10.0000, 10.0000 ≤ x4 ≤
14.0000,−0.0060 ≤ x5 ≤ −0.0030, 0.0025 ≤ x6 ≤ 0.0050, 0.4100 ≤ x7 ≤ 0.4600, 0.1100 ≤ x8 ≤
0.1300,−0.9000 ≤ x9 ≤ −0.7000, 0.2000 ≤ x10 ≤ 0.2600,−0.0230 ≤ x11 ≤ −0.0150, 0.0500 ≤
x12 ≤ 0.2000} is the feasible decision set. The angle of attack, Reynolds and Mach numbers were
4.0◦, 2.0× 106 and 0.1, respectively. The CFD solver adopted in this problem was XFOIL [34].
Problem (10) termed as ASO −MOP2 has been investigated with a non-interactive method in
[35] with a budget of 2000 function evaluations. In our paper, we also used the same budget
to solve the problem. In [35], the description of the decision variables and the geometry of the
corresponding airfoil (see Figure 3 in [35]) is provided. In this problem, the DM was interested
in exploring the objective space for ranges 0.0043 ≤ f1 ≤ 0.0064 and 0.0076 ≤ f2 ≤ 0.034.

As said, the surrogate-based single objective optimization method to solve problem (3) as
a computationally expensive one has an impact on the performance of SURROGATE-ASF in
terms of reducing the computational cost. In [26], a toolbox implemented in MATLAB called
MATSuMoTo (can be downloaded from https://courses.cit.cornell.edu/jmueller/) has
been developed to solve computationally expensive global optimization problems. We applied
MATSuMoTo to solve problem (3).

In the initialization phase of SURROGATE-ASF, according to equation (5), hz = 4 (q = 3)
predetermined reference points for the bi-objective problem were considered. For each predeter-
mined reference point, 350 function evaluations were used to find the corresponding reference

solutions by solving problem (3). In Algorithm 1, the criteria to check the accuracy of ÃSF
a
corre-

sponding to the ath hyper-box (sub-region) for a = 1, . . . , r, were R2 = 0.95 and RMSE = 0.005
as they are commonly used in the literature. Since the accuracy of the initial surrogate func-
tions was not satisfactory with these choices, we applied Algorithm 2 to update the surrogate
functions with respect to a maximum number of 100 function evaluations within each hyper-box.
Tables A.1 and A.2 in Appendix A summarize the parameter settings of SURROGATE-ASF and
MATSuMoTo, respectively. In Table A.1, the number of reference sample points (i.e., hz) within
each sub-region was chosen heuristically according to (5). In the initialization phase, we set 1400
function evaluations for MATSuMoTo to obtain the reference solutions XP and FP correspond-

ing to the points in Z
P
. The number of function evaluations needed by SURROGATE-ASF to

build all surrogate functions was 284. Therefore, the total number of function evaluations in the
initialization phase of SURROGATE-ASF using MATSuMoTo to build all surrogate functions
was 1684.

In the decision making phase, reference points given by the DM were projected onto the con-
vex hull H according to (4). Then, the corresponding surrogate problem (8) was solved including
the projected reference points. In this problem, while the computationally inexpensive surrogate
problem (8) can be solved by any appropriate method, we employed a single objective genetic
algorithm with the parameter settings given in [36]. As shown in Table 1, in the first iteration,
the DM provided the first reference point z̄∗1 within his preferred ranges. The corresponding
surrogate problem was solved and the preferred solution was obtained. This solution was evalu-
ated with the original functions and the corresponding objective vector f1 was shown to the DM.
For f1, the DM was interested in improving the ratio of drag to lift coefficient while keeping the
pitching moment coefficient the same. Then, the next reference point z̄∗2 was given by the DM
and the preferred solution f2 was presented to him. Comparing the ratio of drag to lift coefficient
in z̄∗2 , f1 and f2, the DM realized that with this pitching moment coefficient, the improvement
in the ratio of drag to lift coefficient is very small. Thus, the DM sacrificed the pitching moment
coefficient to improve the ratio of drag to lift coefficient, and provided the reference point z̄∗3 .
The preferred solution f3 was shown to the DM. The change in the pitching moment coefficient
from f2 to f3 was acceptable for the DM. Based on the pitching moment coefficient in f3, the
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DM provided z̄∗4 to improve the ratio of drag to lift coefficient. The corresponding preferred
solution f4 was presented to the DM.

When comparing z̄∗4 and f4, the DM figured out that the ratio of drag to lift coefficient
is very close to his preferred value given in z̄∗4 . Since the pitching moment coefficient in f4

was acceptable for the DM, f4 satisfied him and the solution process was terminated. Table 1
summarizes the reference points given and the corresponding preferred solutions in the objective
space obtained by SURROGATE-ASF (SUR) with MATSuMoTo. Figure 5 depicts the geometric
shape of the airfoils corresponding to the preferred solutions obtained in each iteration. In the
decision making phase, only four computationally expensive function evaluations were conducted,
that is, one for each reference point. Because of this, the DM was able to find the most preferred
solution fast.

For the reference points given by the DM, we also obtained the corresponding preferred
solutions by the Yun method and PAINT. Since the Yun method is a non-interactive method, we
ran the method for each individual reference point. The number of function evaluations used for
each reference point was set as

⌊
1688
4

⌋
= 422. Regarding PAINT, to build a surrogate problem,

we employed the same reference solutions in FP used in SURROGATE-ASF. During the decision
making phase, we only obtained the approximated preferred solutions in the objective space. At
the end of the decision making by PAINT, we solved problem (3) for the last reference point
given by the DM. The maximum number of function evaluations in this step was 288 function
evaluations, since 1400 evaluations were already used in obtaining the reference solutions FP .

Since the Pareto optimal set of this problem is not known, we cannot use the Euclidean
distance (9) and, instead, compare the solutions obtained in terms of dominance. As can be
seen in Table 1, all solutions obtained by SURROGATE-ASF with MATSuMoTo dominate the
corresponding solutions obtained by the Yun method and PAINT.

In terms of computational burden, SURROGATE-ASF with MATSuMoTo required 66 min-
utes to build surrogate functions in the initialization phase. In the decision making phase, the
DM waited 2 seconds for each reference point to see the preferred solutions. In PAINT, the
surrogate problem was built in 57 minutes. Then, for all reference point except the last once, the
DM was able to see the preferred solutions after 2 seconds. However, to see the preferred solu-
tion corresponding to the last iteration, the DM had to wait for 9 minutes. In the Yun method,
for each reference point, the DM had to wait for 1 day to see the corresponding solution. To
summarize, the last preferred solution was obtained with SURROGATE-ASF, PAINT and the
Yun method after 8 seconds, 546 seconds and 4 days, respectively. This comparison highlights
the advantage of SURROGATE-ASF in which the DM was able to find the preferred solutions
quickly. All this was done on a Dell Desktop with Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
processor and 8.00 GB RAM.

4.2 Solving benchmark problems

In this subsection, we evaluate the performance of SURROGATE-ASF through solving ZDT
[37] and DTLZ [38] benchmark problems. The Pareto frontiers of ZDT1, ZDT4 and DTLZ1 are
convex, of ZDT2, ZDT6, DTLZ2, DTLZ3, DTLZ4, DTLZ5 and DTLZ6 are nonconvex and of
ZDT3 and DTLZ7 are nonconvex and disconnected. Moreover, ZDT4, ZDT6, DTLZ2, DTLZ3,
DTLZ4 and DTLZ6 have many locally nondominated solutions. These benchmark problems
also contain multimodal objective functions. For all benchmark problems, we considered n = 7
decision variables. The number of objective functions in ZDT and DTLZ problems was K = 2
and K = 3, respectively. Additionally, to evaluate the performance of SURROGATE-ASF on
problems with more than 3 objective functions, we considered DTLZ2 (with multimodal objec-
tive functions) with 4 and 5 objective functions. Although objective functions involved in the
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Figure 5: Geometric representation of the airfoils corresponding to each iteration

Table 1: Reference points given by the DM and corresponding preferred solutions in the objective space

   Reference points  Preferred solutions
(SUR.)

Solutions
(PAINT.)

Solutions
(Yun.)

1 𝒛ത∗భ =  (6.500 × 10ିଷ, 8.000 × 10ିଷ) 𝐟ଵ =  (6.339 × 10ିଷ, 7.586 × 10ିଷ) 𝐟ଵ =  (6.339 × 10ିଷ, 7.838 × 10ିଷ) 𝐟ଵ =  (8.513 × 10ିଷ, 8.382 × 10ିଷ)
2 𝒛ത∗మ =  (5.500 × 10ିଷ, 7.586 × 10ିଷ) 𝐟ଶ =  (6.215 × 10ିଷ, 8.372 × 10ିଷ) 𝐟ଶ =  (7.337 × 10ିଷ, 1.533 × 10ିଶ) 𝐟ଶ =  (9.218 × 10ିଷ, 3.628 × 10ିଶ)
3 𝒛ത∗య =  (5.000 × 10ିଷ, 1.500 × 10ିଶ) 𝐟ଷ =  (5.023 × 10ିଷ, 1.662 × 10ିଶ) 𝐟ଷ =  (5.337 × 10ିଷ, 1.718 × 10ିଶ) 𝐟ଷ =  (7.492 × 10ିଷ, 2.636 × 10ିଶ)
4 𝒛ത∗ర =  (5.000 × 10ିଷ, 1.662 × 10ିଶ) 𝐟ସ =  (5.006 × 10ିଷ, 1.667 × 10ିଶ) 𝐟ସ =  (9.164 × 10ିଷ, 2.483 × 10ିଶ) 𝐟ସ =  (7.317 × 10ିଷ, 2.583 × 10ିଶ)

benchmark problems are known, we treat them as black-box functions. In order to demonstrate
the performance of SURROGATE-ASF in computationally expensive problems where solution
times may be limited, we set the maximum number of function evaluations for each benchmark
problem as 300.

For the problems considered here, along with MATSuMoTo discussed in Subsection 4.1, we
applied the derivative-free DIRECT method [39] (can be downloaded from http://www4.ncsu.

edu/~ctk/Finkel_Direct/) as the second method to solve problem (3) in the initialization
phase. Although DIRECT has not been developed for computationally expensive problems, we
show how these different types of methods affect the performance of SURROGATE-ASF. Table
A.3 in Appendix A summarizes the parameter settings of DIRECT.

For each benchmark problem, we first applied MATSuMoTo and then DIRECT to solve prob-
lem (3) taking into account the preferences of the DM. In the initialization phase of SURROGATE-
ASF, according to equation (5), hz = 4 (q = 3) predetermined reference points were considered
for biobjective problems. For three-, four- and five-objective problems we set hz = 6 (q = 2),
hz = 10 (q = 2) and hz = 15 (q = 2), respectively.

By increasing the number of objective functions, the number of predetermined reference
points is also increased. On the other hand, the computational budget was fixed. Therefore, in
this phase, for two-, three-, four- and five-objective problems, we considered 230, 230, 200 and
150 function evaluations, respectively, to find the reference solutions (non-dominated solutions)
corresponding to the predetermined reference points by solving problem (3). In two-, three-,
four- and five-objective problems, we considered l = 3, 4, 5 and 5 reference points given by the
DM. This means that in the decision making phase, only l function evaluations were required.
The remaining number of function evaluations was used in the initialization phase to build a
surrogate function for each sub-region. In the decision making phase, while the computationally
inexpensive surrogate problem (8) can be solved by any appropriate global optimization method,
we employed DIRECT.

Similar to Subsection 4.1, we compare the performance of SURROGATE-ASF (with both
MATSuMoTo and DIRECT) taking into account the preferences of a DM to that of the Yun
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method and PAINT. In this comparison, we find solutions corresponding to reference points
given by the DM within the preferred ranges of the objective functions provided by the DM.
These preferred ranges for all benchmark problems were set as [−50, 50]k. This demonstrates
that the method is not too sensitive on the choice of the ranges. As before, the Yun method was
run for each individual reference point given by the DM. The number of function evaluations
used for each reference point in all benchmark problems was set as

⌊
300
l

⌋
where l is the number

of reference points given by the DM in the decision making phase. Regarding PAINT to build a
surrogate problem, we employed the same non-dominated solutions used in SURROGATE-ASF.
During the decision making phase, we only obtained the approximated preferred solutions in the
objective space. At the end of the decision making by PAINT, we solved problem (3) for the last
reference point given by the DM. The maximum number of function evaluations in this step was
the remaining budget out of 300 function evaluations.

Tables 2.a and 2.b summarize the Euclidean distances Ej , j = 1, . . . , l, between the approx-
imated solutions obtained with SURROGATE-ASF (with MATSuMoTo), PAINT (with MAT-
SuMoTo) and the Yun method and the original solutions for biobjective problems. Corresponding
results for three-, four- and five-objective problems with MATSuMoTo and DIRECT are sum-
marized in Tables 3.a, 3.b, 4.a and 4.b, respectively. Bold figures show the smallest distance
between the approximated solutions obtained and the original solutions for each reference point.
In all tables, SUR, MAT and DIR stand for SURROGATE-ASF, MATSuMoTo and DIRECT,
respectively.

As far as applying MATSuMoTo is concerned to solve problem (3) to obtain reference solutions
corresponding to the predetermined reference points, SURROGATE-ASF outperformed PAINT
and the Yun method on ZDT1, ZDT2, ZDT3, ZDT6 (highlighted distances in Table 2.a), on
DTLZ1, DTLZ4, DTLZ5, DTLZ7 (highlighted distances in Table 3.a) and on DTLZ2 with 4
and 5 objective functions (highlighted distances in Table 4.a). This is due to the fact that
the reference solutions obtained by MATSuMoTo were closer to the Pareto frontiers of these
benchmark problems in comparison to those by DIRECT.

Regarding problems with disconnected Pareto frontiers, SURROGATE-ASF with MAT-
SuMoTo outperformed PAINT and Yun on ZDT3 and DTLZ7. As can be seen in Tables 2.a, 2.b,
3.a and 3.b, the Euclidean distances corresponding to solutions obtained by PAINT are larger
than those by SURROGATE-ASF. This confirms the fact that PAINT does not perform well on
problems with disconnected Pareto frontiers as mentioned in [20].

As can be seen in Table 3.a, on DTLZ2 with 3 objective functions, SURROGATE-ASF per-
formed better than the other methods expect on the last reference point. Due to the limited
function evaluation budget for each hyper-box (sub-problem), Algorithm 2 stopped updating the
surrogate function corresponding to this reference point before reaching the desirable accuracy
R2 = 0.95 and RMSE = 0.005. As a result, for this reference point, the approximated solution
obtained by PAINT was slightly closer to the original one. On DTLZ6, the Yun method per-
formed slightly better than SURROGATE-ASF with MATSuMoTo. For other reference points,
though, approximated solutions obtained by SURROGATE-ASF were closer to the original ones.

On ZDT4 (in Table 2.a) and DTLZ3 (in Table 3.a), the reference solutions obtained by
DIRECT were closer to the Pareto frontier. As a result, SURROGATE-ASF with DIRECT
performed better than PAINT and the Yun method (as show in Tables 2.b and 3.b). In particular,
SURROGATE-ASF with DIRECT surpassed the Yun method significantly (in Table 3.b). On
the other hand, the Yun method outperformed SURROGATE-ASF with MATSuMoTo on these
problem.

Regarding DTLZ4 (in Table 3.b), DIRECT found the same reference solutions for all pre-
determined reference points. Therefore, SURROGATE-ASF and PAINT could not proceed to
build surrogate problems (shown by a dash in the table). As can be seen in Tables 3.a and
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Table 2.a: The Euclidean distance between approximated and original solutions in the objective space
(biobjective problems, SUR. and PAINT with MAT.)𝐸ଵ 𝐸ଶ 𝐸ଷ

SUR.
(MAT.)

PAINT
(MAT.)

Yun SUR.
(MAT.)

PAINT
(MAT.)

Yun SUR.
(MAT.)

PAINT
(MAT.)

Yun

ZDT1 0.0006 0.0473 0.0037 0.0009 0.0154 0.2682 0.0007 0.0010 0.7480
ZDT2 0.0034 0.0471 0.0056 0.0064 0.0153 0.1690 0.0094 0.0097 0.7491
ZDT3 0.0008 0.1298 0.0968 0.0250 0.2445 0.2737 0.0010 0.4811 0.6548
ZDT4 2.2863 2.931 1.0034 2.3712 2.8613 0.8359 2.2841 2.737 1.0210
ZDT6 1.0806 1.1191 1.3533 1.3481 1.4189 1.5894 1.4123 1.6133 2.0300

Table 2.b: The Euclidean distance between approximated and original solutions in the objective space
(biobjective problems, SUR. and PAINT with DIR.)𝐸ଵ 𝐸ଶ 𝐸ଷ

SUR.
(DIR.)

PAINT
(DIR.)

Yun SUR.
(DIR.)

PAINT
(DIR.)

Yun SUR.
(DIR.)

PAINT
(DIR.)

Yun

ZDT1 1.4974 1.9321 0.0037 1.7398 1.8968 0.2682 2.0128 1.9826 0.7480
ZDT2 2.4853 2.7492 0.0056 2.6397 2.8363 0.1690 2.5849 2.8959 0.7491
ZDT3 1.5763 2.3218 0.0968 1.4856 2.1968 0.2737 1.6003 2.8539 0.6548
ZDT4 0.7493 0.9910 1.0034 0.5268 1.0044 0.8359 0.8862 1.1073 1.0210
ZDT6 6.8529 6.9215 1.3533 7.2893 6.9851 1.5894 7.1002 7.2638 2.0300

Table 3.a: The Euclidean distance between approximated and original solutions in the objective space
(3-objective problems, SUR. and PAINT with MAT.)𝐸1 𝐸2 𝐸3 𝐸4

SUR.
(MAT.)

PAINT
(MAT.)

Yun SUR.
(MAT.)

PAINT
(MAT.)

Yun SUR.
(MAT.)

PAINT
(MAT.)

Yun SUR.
(MAT.)

PAINT
(MAT.)

Yun

DTLZ1 0.1157 0.9976 0.2237 0.2417 0.2731 0.3567 0.2149 0.2693 0.6598 0.2719 0.2958 0.3345
DTLZ2 0.0554 0.1019 37.2177 0.0844 0.1129 38.6381 0.0288 0.0821 7.6622 0.0854 0.0803 37.4879
DTLZ3 103.6793 104.2896 86.0869 106.8422 105.3853 86.3371 109.1386 110.3392 86.1709 104.3749 105.5237 86.0868
DTLZ4 0.4887 0.6264 0.7113 0.5538 0.5846 0.5657 1.0033 1.2785 1.9086 0.7783 1.1804 0.9340
DTLZ5 0.1586 1.0246 0.8646 0.0118 0.0545 0.2236 0.0213 0.0538 0.5872 0.0081 0.0470 0.9028
DTLZ6 4.2795 6.0290 5.1001 4.9227 5.0669 4.8404 5.1369 6.0671 6.3696 5.7331 6.0458 7.4418
DTLZ7 0.0568 0.9655 43.7997 0.3099 0.8358 41.4128 0.1975 0.9003 42.6465 0.3172 0.9182 42.2017

Table 3.b: The Euclidean distance between approximated and original solutions in the objective space
(3-objective problems, SUR. and PAINT with DIR.)𝐸1 𝐸2 𝐸3 𝐸4

SUR.
(DIR.)

PAINT
(DIR.)

Yun SUR.
(DIR.)

PAINT
(DIR.)

Yun SUR.
(DIR.)

PAINT
(DIR.)

Yun SUR.
(DIR.)

PAINT
(DIR.)

Yun

DTLZ1 0.0233 0.9076 0.2237 0.0121 0.1102 0.3567 0.0072 0.0107 0.6598 0.0061 0.0109 0.3345
DTLZ2 0.1257 0.1738 37.2177 0.1439 0.1857 38.6381 0.1355 0.1769 7.6622 0.1578 0.1698 37.4879
DTLZ3 0.0554 0.1239 86.0869 0.0145 0.1086 86.3371 0.0944 0.1028 86.1709 0.0384 0.0870 86.0868
DTLZ4 ---- ---- 0.7113 ---- ---- 0.5657 ---- ---- 1.9086 ---- ---- 0.9340
DTLZ5 0.1871 1.5392 0.8646 0.1549 0.1973 0.2236 0.1052 0.1215 0.5872 0.1639 0.1861 0.9028
DTLZ6 5.2739 5.4839 5.1001 5.7392 5.8254 4.8404 6.4821 6.6292 6.3696 7.6935 7.5284 7.4418
DTLZ7 49.2815 52.1276 43.7997 43.5382 51.2959 41.4128 44.2883 51.3695 42.6465 43.5293 54.1857 42.2017

Table 4.a: The Euclidean distance between approximated and original solutions in the objective space
(DTLZ2  problem, SUR. and PAINT with MAT.)𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

SUR.
(MAT.)

PAINT
(MAT.)

Yun SUR.
(MAT.)

PAINT
(MAT.)

Yun SUR.
(MAT.)

PAINT
(MAT.)

Yun SUR.
(MAT.)

PAINT
(MAT.)

Yun SUR.
(MAT.)

PAINT
(MAT.)

Yun

k=4 0.1200 0.1597 0.2102 0.1010 0.3723 0.1903 0.1037 0.3651 0.1683 0.0792 0.3409 0.2196 0.1412 0.5129 0.3159
k=5 0.3427 0.7312 0.4676 0.3963 0.9581 0.8426 0.3234 0.9502 0.7885 0.3732 0.8194 0.5601 0.1854 0.1937 0.6058

Table 4.b: The Euclidean distance between approximated and original solutions in the objective space
(DTLZ2  problem, SUR. and PAINT with DIR.)𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

SUR.
(DIR.)

PAINT
(DIR.)

Yun SUR.
(DIR.)

PAINT
(DIR.)

Yun SUR.
(DIR.)

PAINT
(DIR.)

Yun SUR.
(DIR.)

PAINT
(DIR.)

Yun SUR.
(DIR.)

PAINT
(DIR.)

Yun

k=4 0.1538 0.1729 0.2102 0.1323 0.4281 0.1903 0.1273 0.4134 0.1683 0.1639 0.4317 0.2196 0.1381 0.5126 0.2017
k=5 0.4179 0.8183 0.4676 0.4261 1.0111 0.8426 0.5192 1.0016 0.7885 0.4673 0.9713 0.5601 0.3416 0.5492 0.6058
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3.b, MATSuMoTo and DIRECT solved problem (3) for DTLZ1 and DTLZ2. On DTLZ1, not
only SURROGATE-ASF with DIRECT (Table 3.b) outperformed PAINT and the Yun method,
but also SURROGATE-ASF with MATSuMoTo. For DTLZ2, SURROGATE-ASF with MAT-
SuMoTo (Table 3.a) performed better than SURROGATE-ASF with DIRECT, PAINT and the
Yun method.

Tables 4.a and 4.b summarize the results for the problems with four and five objective func-
tions. By increasing the number of objective functions, the number of sub-problems is also
increased. With a limited number of function evaluations for each hyper-box (sub-problem), Al-
gorithm 2 terminated the updating process based on the computational budget allocated rather
than reaching the desirable accuracy R2 = 0.95 and RMSE = 0.005. However, SURROGATE-
ASF with MATSuMoTo and DIRECT surpassed both PAINT and the Yun method. More-
over, SURROGATE-ASF with MATSuMoTo performed better than SURROGATE-ASF with
DIRECT. Overall, SURROGATE-ASF performed very well in the numerical tests when com-
pared to the two other methods.

5 Conclusions and future research directions

In this paper, we developed an interactive surrogate-based method called SURROGATE-ASF
to solve computationally expensive MOPs. This method consists of two phases: initialization
and decision making phases. In the initialization phase, the decision space is decomposed into a
finite number of hyper-boxes. For each hyper-box, a single objective surrogate of the achievement
scalarizing function is built by using e.g. a cubic RBF with a linear tail. In the decision making
phase, iterations with a decision maker are conducted in an interactive fashion. In this phase,
at each iteration a reference point is specified by the decision maker. Then, a surrogate single
objective optimization problem is formulated and solved by any appropriate single objective
optimization method. The optimal solution is an approximation of the preferred solution in the
decision space. This solution is evaluated with the original functions and shown to the decision
maker. The interaction with the decision maker is repeated until the most preferred solution for
him/her is found.

In SURROGATE-ASF, the approach of building a computationally inexpensive surrogate
of the achievement scalarizing function is applied instead of a typical approach of building a
surrogate of each individual computationally expensive objective function and then forming the
achievement scalarizing function as discussed in [18]. Therefore, when interacting with the DM,
only a single objective optimization problem is solved. The surrogate assists the DM to find
his/her preferred solutions in both the decision and the objective spaces quickly. Numerical
results confirmed that SURROGATE-ASF performed very well, in particular, on problems with
multimodal objective functions, non-convex and/or disconnected Pareto frontier and it fills a gap
in the selection of methods available for computationally expensive problems. Solving a real-
world computationally expensive airfoil optimization problem demonstrated that SURROGATE-
ASF reduced the computational burden significantly in comparison with the typical approach
by which the DM had to wait a couple of days to find the most preferred solution. The speed
can be further improved by applying parallel computing when building single objective surrogate
functions.

By increasing the number of objective functions, the number of sub-problems is also increased.
Therefore, with a fixed budget of function evaluations, the number of function evaluations for
each sub-problem is decreased. This may lead to a sacrificed accuracy of the sub-problems. A
possible idea is to merge hyper-boxes and sub-regions to reduce the number of sub-problems.
This is a future research direction when SURROGATE-ASF is to be applied for problems with a
large number of objective functions. SURROGATE-ASF with the current setting along with an
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appropriate single objective surrogate-based method can be employed for problem with a high-
dimensional decision space. However, the accuracy of the surrogate functions for each hyper-box
may not be satisfactory. A possible approach is to apply a dimensionality reduction method
within each hyper-box to obtain a low-dimensional hyper-box. Then, SURROGATE-ASF with
the current format can be applied for each new hyper-box. This is another future research
direction.
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Appendix A

Maximum number of function evaluations

To solve problem (3)              To solve problem (8)

differs for each reference                  500
point and benchmark problem

Maximum number of iterations 500                                        500

Maximum number of rectangle divisions 1000                                     1000

Metamodeling technique cubic RBF

Sampling technique Latin hypercube sampling

New candidate points to be evaluated with the
computationally expensive functions

adding random perturbations to the
best point found so far

Initial number of sample points 2(n+1)

Table A.2: Parameter settings for MATSuMoTo

Table A.3: Parameter settings for DIRECT

Initial number of sample points
within each hyperbox

n+1

Number of reference sample
points within each sub-region

k=2 30 (q = 29)

k=3 66 (q = 10)

k=4 84 (q = 6)

k=5 125 (q = 5)

Table A.1: Parameter settings for SURROGATE-ASF
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Abstract

Real-world optimization problems may involve several high-dimensional compu-
tationally expensive functions. Because of the curse-of-dimensionality, gaining insight
into problems’ structure and solving them are challenging. Surrogate-based methods
are typically employed to mitigate the computational costs of expensive functions,
but this does not reduce the curse-of-dimensionality. This challenge, however, can be
tackled by the approach of computation of Sobol’ indices and the functional ANOVA
decomposition to reduce the dimension of the search domain. This approach allows
ranking decision variables according to their impact on objective values. Due to the
Sparsity of Effects principle, a small number of decision variables sensibly affects an
objective value. Therefore the remaining variables can be neglected, leading to form
simpler and tractable problems. Although this is an effective strategy, so far it has only
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been applied to single-objective optimization problems. In this paper, we develop a
novel surrogate-based method called ANOVA-MOP in which ANOVA decomposition
is applied to decompose a complex multiobjective optimization problem into a num-
ber of independent sub-problems with few decision variables and objective functions.
The solutions of the sub-problems are then combined to build approximated solutions
for the original complex problem. The quality of the approximated solutions and is-
sues related to decision making are discussed.
Keywords Multiobjective Optimization, Sensitivity analysis, Metamodeling, Deci-
sion making

1 Introduction
Multiobjective optimization problems (MOPs) arise in many application domains such
as engineering, finance, and even biology. Their peculiarity is the coexistence of a
number of conflicting objective functions. Real-world MOPs typically contain black-
box functions requiring computationally expensive and/or time-consuming experi-
ments and/or simulations [1]. Because of the multiplicity of the objective functions,
MOPs do not contain a unique optimal solution but rather several (usually infinite)
equivalently optimal solutions, named Pareto optimal solutions, in honor of the math-
ematician and economist Vilfredo Pareto [2]. Mathematically, there is no a priori pref-
erence between Pareto optimal solutions, each one defined by a different trade-off
among objectives, and at this stage, a decision maker (DM) is required to identify the
most preferred solution to be implemented.

As explained in [3, 4, 5], multiobjective optimization methods are classified ac-
cording to the role of the DM into non-interactive and interactive methods. In the
former ones, the preference information of the DM either is not available or it is given
only before or after the solution process. On the other hand, in interactive methods the
DM is asked his/her preference at each iteration, (s)he analyzes the solutions and (s)he
also can revise his/her preference information on the basis of the updated situation.
The interaction with the DM is continued until (s)he finds the most preferred solu-
tion. As mentioned in [5], the DM can provide his/her preferences as e.g., reference
points involving aspiration levels representing desirable values for objective functions
or classification of objective functions. As discussed in [6], providing preference in-
formation in the form of a reference point has been regarded as a doable procedure to
be adopted by a DM with no special preparation in mathematical programming. In
the literature, surrogate-based methods are employed to relieve computational costs
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The principle of such methods is to devise a suitable
computationally inexpensive numerical model of the problem, typically by means of
splines, Gaussian processes, radial basis functions, Fourier expansions, etc. The nu-
merical model is called the surrogate problem. Some of the computations can then
be performed on the surrogate problem, for instance for computing derivatives, or
the surrogate problem can even substituted for the original problem, comparing the
solutions found on the surrogate problem with the original problem only at the final
stage.

In literature, surrogate-based optimization methods have been developed in which
the process of building a surrogate problem is independent of the type of optimization
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algorithm employed in them. We surveyed such surrogate-based methods in [1] and
identified some shortcomings such as the involvement of the DM in the solution pro-
cess and solving MOPs with the possible high dimension of the decision and objective
spaces. As discussed in [17], in general, the DM should not wait for a long time to
see solutions corresponding to his/her preferences. Indeed, as discussed in [18], cog-
nitive tasks require sufficient ability to hold the relevant information as long as it is
processed. In literature, decision making in computationally expensive MOPs with a
large dimension seems not been reported at all. This raises a question that how would
the DM be comfortable in terms of cognitive load to provide preference information
and compare solutions in such complex situations.

Although the use of surrogate models would also sensibly reduce the cost of com-
puting objective functions, the intrinsic complexity of large dimensionality is not af-
fected at all, i.e., the dimensionality is still challenging when computationally expen-
sive functions are replaced with inexpensive numerical models. Indeed, searching
for optima in an d-dimensional space, where d � 1, is usually very demanding and
the use of global strategies exhaustively searching the decision space is discouraged
for d > 5, also for single objective optimization (see, e.g., [19, 20]). On the other hand,
when attempting to detect and describe the set of the optima of a MOP withm� 1 ob-
jective functions means in the typical case to have to represent an (m−1)-dimensional
geometrical object [21]. Even when such a set is detected with satisfactory accuracy, it
is virtually impossible to represent it and to allow for its exploration and analysis for
a DM when m > 4.

The curse-of-dimensionality is accompanied by the sparsity of effects principle,
i.e., usually there is a restricted selection of decision variables that really are impor-
tant for the computation of objective function values, while the remaining have little
effect. Detecting such important variables is called global sensitivity analysis, and one
of the most powerful methods is called functional analysis of variance decomposition
(functional ANOVA decomposition) [22]. Functional ANOVA consists in decompos-
ing hierarchically an objective function in a summation of terms depending only on
subsets of variables, according to their contribution to the total variance of the func-
tion. Terms depending on individual variables are called main effects, while the con-
tributions due to pairs of variables are called interactions. Typically terms of higher
interaction have less and less importance and as reported firstly by Pareto, we typi-
cally notice that the 80% of the effects are due to the 20% of the variables [23].

In single objective optimization problems, this would allow ignoring a large num-
ber of decision variables, greatly simplifying the complexity of the problems at hand.
This, however, seems not to have been applied yet to multiple objectives, apparently
because that if some variables are not important for an objective, this does not mean
that they are not important for some other objective. So when multiple objectives
are involved, the generalization of applicability of functional ANOVA decomposition
is not straightforward. The seemingly most natural idea is to try to couple objective
functions based on the decision variables which are most effective for them, and then
grouping objectives and decision variables in non-overlapping blocks acting as inde-
pendent sub-problems.

In this paper, we have formalized and implemented this idea, which we call the
ANOVA-MOP method. The method can be employed as a non-interactive or an in-
teractive method. In the later one, the method takes into account DM’s preferences
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in the form of a reference point. In some more details, we proceed by building a
surrogate function for each computationally expensive function and forming a surro-
gate MOP. Then, by applying sensitivity analysis we identify effective and ineffective
variables for each objective. The surrogate MOP is then decomposed into a set of sub-
problems by partitioning decision variables and objective functions into independent
blocks. Each sub-problem will have a reduced dimension both in the decision and
objective spaces and will become tractable with standard methods. Solutions of the
sub-problems then will be suitably combined to form approximated solutions for the
original high-dimensional problem.

To put it in a nutshell, the novelty and attributes of ANOVA-MOP are considered
as follows: 1) computationally expensive MOPs with any number of objective func-
tions can be solved, 2) it can be applied as a non-interactive or an interactive method,
3) during the solution process, the focus is only on a low-dimensional sub-problem
in the decision and objective spaces, which enables users to employ optimization al-
gorithm for low dimensional problems, 4) as an interactive method, in each step of
interaction with a DM, (s)he only provides his/her preferences for a few number of
objective functions rather than a large number of them, 5) the DM does not require
to wait for a long time to find solutions corresponding to his/her preferences and 5)
besides a surrogate-based method, ANOVA-MOP can also be employed to solve com-
putationally inexpensive MOPs. To the best of our knowledge, ANOVA-MOP is the
first method in literature with such attributes.

The rest of this paper is organized as follows. In Section 2, basic concepts used in
this paper are addressed. Decomposition in the context of MOPs is discussed in Sec-
tion 3. In Section 4, we discuss functional ANOVA decomposition. The ANOVA-MOP
method is presented in Section 5. Numerical results are given in Section 6. Finally, we
conclude and provide some future research directions in Section 7.

2 Concepts
In this section, we introduce the concepts and notations used in this paper. We con-
sider multiobjective optimization problems of the form

minimize
x∈S {f1(x), . . . , fk(x)}, (1)

where fi : S → R are k (≥ 2) conflicting objective functions, the set S is a nonempty
feasible decision set which is a subset of the decision space Rd . A solution x = (x1, . . . ,
xd)

T ∈ S is called a feasible decision (variable) vector, where xj for j = 1, . . . ,d, are decision

variables and xj ∈ Sj := [xlj ,x
u
j ], where xlj and xuj are the lower and upper bounds of

xj , respectively and S =
∏d

j=1Sj . We denote the vector of objective functions by f(x) =
(f1(x), . . . , fk(x))T which is the image of x in the objective space Rk . The image of S in the
objective space is called the feasible objective set denoted by Z(= f(S)). In this paper,
without loss of generality, we assume that Sj = [l,u], for j = 1, . . . ,d, because this could
be obtained by affinely rescaling the decision variables. We denote the sets of indices
of the objective functions and decision variables by O = {1, . . . , k} and D = {1, . . . ,d},
respectively.
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We say a feasible solution x1 ∈ S (and corresponding f(x1) ∈ Z) dominates a feasible
solution x2 ∈ S (and corresponding f(x2) ∈ Z) if for all i ∈ O, fi(x1) ≤ fi(x2) and some
j ∈ O, fj(x1) < fj(x2). A feasible solution x∗ ∈ S and the corresponding f(x∗) ∈ Z are
called weakly Pareto optimal for problem (1), if there does not exist another feasible
solution x ∈ S such that fi(x) < fi(x∗) for all i ∈ O. Correspondingly, they are Pareto
optimal for problem (1), if there does not exist another feasible solution x ∈ S such
that dominates x∗ ∈ S . The set of Pareto optimal solutions in the decision space is
called Pareto optimal set and denoted by X. The set of Pareto optimal solutions in the
objective space is called a Pareto frontier and denoted by F.

We also define a feasible solution for the individual scalar functions xi,min ∈ argmin
x∈S{fi(x)} for i ∈ O. The vector of minima of the objective functions is defined as the

ideal (objective) vector and denoted by zideal = (zideal1 , . . . , zidealk )T where zideali = fi(xi,min)

for i ∈ O. The utopian (objective) vector zutp is a vector in which its components are
calculated by subtracting some predefined small positive scalar number ξ � 1 from
the components of zideal . We also define the nadir (objective) vector denoted by znadir =
(znadir1 , . . . , znadirk )T to be the vector of maxima of the objective function values in the
Pareto frontier. Existence of ideal and nadir points is guaranteed by a compactness
argument (see [3]).

In ANOVA-MOP, the DM provides his/her preferences in the form of a reference
point z = (z1, . . . , zk)

T , where zi is an aspiration level representing a desirable value
for the objective function fi . One can find a solution corresponding to a reference
point given by a DM by applying an appropriate scalarization. Scalarizing problem (1)
means formulating a single objective optimization problem such that its (globally) op-
timal solution is a weakly Pareto optimal or Pareto optimal solution for problem (1).
In this paper, we consider the following widely used achievement scalarizing function
(ASF) [24]:

ASF: S ×Rk → R

(x,z) 	→max
i∈O (wi(fi(x)− zi)), (2)

where wi ≥ 0, for i ∈ O, are non-negative fixed weights which actually set a direction
where z is projected onto the Pareto frontier. In this paper we set wi =

1

znadiri −zutpi

, for

i ∈O. A new single objective optimization problem is formulated as

minimize
x∈S ASF(x,z). (3)

By solving problem (3), a (weakly) Pareto optimal solution corresponding to a
given reference point is obtained, regardless of the feasibility or infeasibility of the
reference point. All other scalarizing approaches do not follow such a property [3].
By changing the reference point in problem (3), different (weakly) Pareto optimal so-
lutions can be achieved. To avoid weakly Pareto optimal solutions, one can add a
suitable augmentation term to (2) as discussed in [3].

We use the ANOVA decomposition to measure the importance of the variables in
the objective function values. Suppose an arbitrary function g : S → R is square inte-

grable, i.e.,
∫
S
g(x)2dx <∞. The functional ANOVA decomposition of g is

g(x) = g0 +
∑
i

g(i)(xi) +
∑
i<j

g(i,j)(xi ,xj ) + . . .+ g(1,...,d)(x), (4)
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where g0 =
∫
S
g(x)dx, if ∫

Siu

g(i1,...,ie)(xi1 , . . . ,xie )dxiu = 0, (5)

for all u = 1, . . . , e, (e ≥ 1), and 1 ≤ i1 < . . . < ie ≤ d. Following [25], in this paper, we call
g(i) a main effect and gi1,...,ie , an interaction of order e. This results in decomposing the

variance of g , i.e., var(g) =D0 =
∫
S
g2(x)dx, into 2d − 1 variance components

D0 =
∑
i

D(i) +
∑
i<j

D(i,j) + . . .+D(1,...,d), (6)

where D(i1,...,ie) = var[g(i1,...,ie)(xi1 , . . . ,xie )] =
∫∏e

u=1 Siu
g2
(i1,...,ie)

(xi1 , . . . ,xie )dxi1 . . .dxie . The

Sobol indices [26] are calculated as

l(i1,...,ie) =D(i1,...,ie)/D0, (7)

for all (i1, . . . , ie) ∈ Δ = {(r1, . . . , ru) : 1 ≤ r1 < . . . < ru ≤ d,u ≥ 1}, e = 1, . . . ,d. The total
sensitivity indices, which are measures of the contribution of each decision variable xj ,
for j = 1, . . . ,d, in the value of g , are given by

lTj =
∑

(i1,...,ie)∈Δ:j∈{i1,...,ie}
D(i1,...,ie)/D0, j = 1, . . . ,d. (8)

Practically, Sobol’ indices and total sensitivity indices are approximated. In this paper,
we refer to them as estimated Sobol’ indices and estimated total sensitivity indices,
respectively.

3 Decomposition in Multiobjective Optimiza-
tion

3.1 Decomposability
In this subsection, we discuss the purpose of decomposition in the context of multi-
objective optimization. Let us consider problem (1) with d decision variables and k
objective functions. Assume that not all the objective functions depend on all decision
variables. Let the incidence matrix M = [mi,j ], with i ∈O and j ∈D, be defined as:{

mi,j = 1, if function fi does depend on variable xj ,

mi,j = 0, if function fi does NOT depend on variable xj .
(9)

Figure 1(a) depicts the matrix M for a hypothetical MOP with k = 8 and d = 8.
As can be seen, in this matrix, the rows correspond to the objective functions and the
columns correspond to the decision variables. The black andwhite squares correspond
to matrix entries with values 1 and 0, respectively.

We apply decomposition to problem (1) to decrease the complexity of the problem
in order to enhance the solution process towards a set of solutions. Such a decomposi-
tion procedure aims at decomposing problem (1) into a number of sub-problems with
lower numbers of objective functions.
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𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻ 𝑥଼𝑓ଵ𝑓ଶ𝑓ଷ𝑓ସ𝑓ହ𝑓଺𝑓଻𝑓

𝑥ଷ 𝑥଺ 𝑥଼ 𝑥ଵ 𝑥ସ 𝑥଻ 𝑥ଶ 𝑥ହ𝑓ଵ𝑓ସ𝑓଻𝑓ଶ𝑓ହ𝑓𝑓ଷ𝑓଺
(a) (b)

Figure 1: (a) the incidence matrixM , (b) A decomposition corresponding to the matrix
M in (a).

Definition 3.1. We say that problem (1) (or equivalently matrix M) is decomposable if
the objective functions and the decision variables can be reordered such that the incidence
matrix M becomes block-diagonal (with at least two non-degenerate blocks).

As shown in Figure 1 (b), for example, the first sub-problem includes the objective
functions f1, f4 and f7 and the decision variables x3,x6 and x8. The following remark
defines when problem (1) is decomposable.

Remark 3.2. problem (1) is decomposable if and only if

1. There exist subsets Oa and Da for a = 1, . . . ,n, such that O =
n⋃

a=1
Oa,

n⋂
a=1

Oa = ∅,

D =
n⋃

a=1
Da and

n⋂
a=1

Da = ∅,
2. mi,j = 1 implies that there exist an index a such that i ∈Oa and j ∈Da.

Remark 3.3. If problem (1) is decomposable, in the simplest case there are at least k +d −2
entries with 0 value in M .

In this paper, by complexity, we mean the complexity of solving problem (1) to
obtain a set of solutions, as defined in [27] and called CI . The complexity of the
decomposed problem is defined as the sum of the complexities of the sub-problems.

Figure 2 depicts a simple bi-objective decomposable problem. As can be seen,
the Pareto frontier consists of a single point (the red point), rather than being a one-
dimensional geometrical object, as it is in the typical case. This degeneracy and sim-
plification of the solution set is due to the decomposability of the problem: the first
objective function f1 depends only on a subset of the decision variables that are not
involved in the definition of the second objective function f2 and vice versa. After
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f1

f2

Figure 2: A bi-objective decomposable problem: the red point is the only Pareto opti-
mal solution. (Color online)

performing a decomposition a question arises: how to build the solution set of the
complete problem by solving the sub-problems?

3.2 Composing solutions of sub-problems
In this subsection, we discuss how to guide the solution process of problem (1) to-
wards a set of solutions by solving sub-problems obtained through decomposition of
problem (1). For the sake of simplicity, referring to an objective function, we mean
either the original function (if it is inherently a computationally inexpensive one) or
a surrogate function (if the original function is a computationally expensive one). We
also assume that there are n sub-problems. We call the decision variables of the ath

sub-problem for a = 1, . . . ,n, as effective variables and denote by xa ∈ Sa, in which
Sa =

∏
j∈Da

Sj is the feasible decision set of the ath sub-problem.

In each sub-problem, decision variables neglected are termed ineffective variables
denoted by xa ∈ Sa. For a solution x ∈ S , (xa,xa) is a representation of x is terms

of effective and ineffective variables of the ath sub-problem. As mentioned earlier,
the ineffective variables have no influence on the objective function values, therefore,
during the solution process of each sub-problem, we assign them a conventional fixed
value, e.g., the midpoint of the variable range (in our case 0). By decomposability, the
solutions of the sub-problems are independent of each other, so sub-problems can be
solved in any order. We first discuss the matter of decision making and then finding
the Pareto frontier for problem (1).
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3.2.1 Decision making

In ANOVA-MOP, a DM provides his/her preferences as a reference point containing
aspiration levels representing desirable values for objective functions. A straightfor-
ward approach to finding the corresponding preferred solution is to optimize problem
(3) including all objective functions and the reference point. As discussed in [18], to
accomplish cognitive tasks, one requires sufficient ability to hold information as it is
processed. For problems with a large number of objective functions (e.g., k = 15),
the DM should provide a reference point with a large number of aspiration level (i.e.,
15). This can impose a cognitive load to the DM. In what follows, we discuss how
sub-problems obtained by ANOVA-MOP are utilized to interact with the DM.

Considering the ath sub-problem, for a = 1, . . . ,n, the ASF is formulated includ-
ing objective functions in the sub-problem. To do this, the indices of the objective
functions in the ath sub-problem are shown to the DM. Then, (s)he provides za∗ as
the reference point including aspiration levels for the objective functions considered.
Then, the following ath sub-problem is formulated:

minimize
xa∈Sa

ASF(xa,za∗). (10)

problem (10) is then solved. The solution obtained in the objective space is shown
to the DM. The interaction with the DM is conducted until the most preferred solu-
tion corresponding to the objective functions in the ath sub-problem is obtained as in
the reference point methods [3]. By solving problem (3) for decision variables and
objective functions grouped in each sub-problem, the corresponding preferred values
for the decision variables and objective functions are obtained. The following theo-
rem shows that the solutions obtained by solving the sub-problems form a preferred
solution for the DM corresponding to problem (1).

Theorem 3.4. Suppose the incidence matrixM can be decomposed into n sub-problems and
za∗, for a = 1, . . . ,n, is a reference point given by the DM for the ath sub-problem. We denote

the optimal solution of the ath sub-problem (10) by xa∗, for a = 1, . . . ,n. Then

x∗ = (x1∗, . . . ,xn∗) ∈ argmin
x∈S

ASF(x,z∗), (11)

where z∗ = (z1∗, . . . ,zn∗).

Proof. We show that

∀x ∈ S,ASF(x∗,z∗) ≤ ASF(x,z∗). (12)

Suppose ASF(x∗,z∗) = (wh(fh(x∗) − z∗h)). Then, there exists an index e such that h ∈ Oe.

The optimal solution of the eth sub-problem is xe∗. This means

(wh(fh(x
∗)− z∗h)) = max

j∈Oe

(wj(fj(x
e∗,xe)− ze∗j )). (13)

For all xe ∈ Se, we have

max
j∈Oe

(wj(fj(x
e∗,xe)− ze∗j )) ≤max

j∈Oe

(wj(fj(x
e,xe)− ze∗j )). (14)
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On the other hand

∀xe ∈ Se,max
j∈Oe

(wj(fj(x
e,xe)− ze∗j )) ≤ max

a=1,...,n
(max
b∈Oa

(wb(fb(x
a,xa)− zab))). (15)

Since, max
a=1,...,n

(max
b∈Oa

(wb(fb(xa,xa)− zab))) = ASF(x,z∗), inequality (12) is resulted.

The advantage of this approach is that, for each sub-problem, a low dimensional
single objective optimization problem is solved. Moreover, the DM is only required
to provide preferences for few objective functions in each interaction. As mentioned
earlier, when applying ANOVA-MOP to solve computationally expensive problems,
we use surrogate functions. Therefore, the DM does not need to wait for a long time
to see the solutions corresponding to his/her preferences.

3.2.2 Representation of the Pareto frontier

In what follows, we discuss how to find the set of Pareto optimal solutions of prob-
lem (1) by solving sub-problems. In ANOVA-MOP, Pareto optimal solutions obtained
by solving the sub-problems are composed to form the set of Pareto optimal solutions
of problem (1). To do this, each individual sub-problem is solved including the ef-
fective variables and objective functions in the sub-problem. The following theorem
shows how the set of Pareto optimal solutions of problem (1) is formed.

Theorem 3.5. Let denote the set of Pareto optimal solutions in the decision and objective

spaces of the ath sub-problem, for a = 1, . . . ,n, by X
a
and F

a
, respectively. Then,

X = {x ∈ Rd : x ∈ X1 × . . .×Xn}, (16a)

F = {f ∈ Rk : f ∈ F1 × . . .×Fn}, (16b)

are the sets of Pareto optimal solutions of problem (1) in the decision and objective spaces,
respectively, where × stands for the Cartesian product.

Proof. Suppose x∗ ∈ X (f(x∗) ∈ F) is not a Pareto optimal solution of problem (1). Then,
there exists a solution x ∈ S such that for all i ∈ O, fi(x) ≤ fi(x

∗), and for some j ∈ O,
fj(x) < fj(x

∗). Let consider an arbitrary index i ∈O. Since problem (1) is decomposable,

there is an index a ∈ 1, . . . ,n, such that i ∈ Oa. Let x = (xa,xa) and x∗ = (x∗a,x∗a) be
representation of x and x∗ in terms of effective and ineffective variables of the ath sub-
problem. We have, f i(x

a) := fi(xa,xa) and f i(x
∗a) := fi(x

∗a,x∗a). Thus, f i(x) ≤ f i(x
∗).

This is a contradiction with Pareto optimality of x∗a for the ath sub-problem.

One should note that card(F) =
∏n

a=1 card(F
a
) (card(X) =

∏n
a=1 card(X

a
)) where

card(.) is the cardinality. Cases may arise that one may wish to have more solutions
in some particular regions in the objective space. Solving sub-problems separately
brings an advantage to generate more solutions in those regions. If surrogates emulate

the original computationally expensive functions precisely, the set X (F) can be con-
sidered as the Pareto optimal set (the Pareto frontier) for the original, computationally
expensive MOP. Otherwise, they represent an approximation of the Pareto optimal set
(the Pareto frontier) for the original problem.
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4 Approximately Decomposable Problems
In Section 3, we considered cases in which problem (1) or equivalently the incidence
matrix M is decomposable. However, in a typical case, there is no reason for which a
particular entry of the matrixM should be zero. Indeed, usually the matrixM is fully
non-zero, or in some fortunate case, the matrix could have a small number of zero
entries. In other words, problem (1) cannot be decomposed as it is, i.e., the functional
dependence between any objective function and decision variable may not completely
absent. Nevertheless, as mentioned earlier, 80% of the effects on an objective func-
tion value are due to 20% of the decision variables. We propose that by identifying
ineffective variables and ignoring them, it should be possible in many cases to obtain
a sparse enough approximated matrix M . Consequently, we are led to defining an
auxiliary decomposable MOP, with corresponding simplified solutions, acting as ap-
proximations for the solutions of problem (1). We will call the set of these solutions in
the decision and objective space as the synthetic Pareto optimal set and synthetic Pareto
frontier, respectively. More precisely,

Definition 4.1. Following [28], for a tolerance ε > 0, we say that a solution x1 = (x11, . . . ,x
1
d)

∈ S ε–dominates a solution x2 = (x21, . . . ,x
2
d) ∈ S if and only if for all i ∈ O, fi(x1) ≤

fi(x2) + ε, and there exists an index j ∈O such that fj(x1) < fj(x2) + ε.

Definition 4.2. SupposeX ⊂ S is the Pareto optimal set in the decision space of problem (1).
For ε > 0, we say that Xs ⊂ S is a synthetic Pareto optimal set if and only if for all x ∈ X,
there exist xs ∈ Xs such that xs ε–dominates x. The image of Xs in the objective space of
problem (1), i.e.,

Fs := Imf(Xs) =

{
f(xs) ∈ Rk

∣∣∣∣ xs ∈ Xs

}
. (17)

is called a synthetic Pareto frontier.

For instance, in bi-objective problems, the synthetic Pareto frontier is a single so-
lution, while the Pareto frontier of the original problem is a full curve and not a single
point.

This is well illustrated in Figure 3 (a). The Pareto frontier, in this case, is the orange

line and not a single point. We have highlighted in red a special point P of the Pareto
frontier which is a candidate to become a synthetic Pareto frontier. We notice that

all other different points in the Pareto frontier could outperform the value of P for
at least one of the objectives, but if a point P has a better value for the i-th objective

in comparison with P, the corresponding value of P is not far from the value of P for
more than a prescribed tolerance 2ε. Indeed, the Pareto frontier is wholly contained in
the green region, which is a pair of half-strips of width 2ε and with mid-line passing

through P. These half strips also have a corner in P −εεε.
When the functional dependence is not enough weak, the Pareto frontier can tres-

pass the bounds of the pair of half strips as opposed to the preceding example. There-

fore, P is not a valid approximation for the whole Pareto frontier. Figure 3 (b) il-
lustrates this situation. The approximation could become valid if ε is enlarged. In
the next subsection, we define in some more details these questions of approximate
decomposability for larger numbers of objective functions.
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(a) (b)

Figure 3: (a) the Pareto frontier (the orange line) and a synthetic Pareto frontier (the red
point) for a hypothetical bi-objective optimization problem. The green strips represent
the tolerance zone of width 2ε where the Pareto frontier should be located for eliciting
the synthetic Pareto frontier to be an acceptable approximation. (b) A hypothetical bi-
objective optimization problem where the functional dependence is not enough weak
to be neglected and the Pareto front (orange line) violates the tolerance zone (green
strips). Pareto sets are traced by singular continuation [19, 21]. (Color online)
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4.1 Approximation quality
Suppose problem (1) is not decomposable. In this problem we have S = [l,u]d and

f : S→ R
k. (18)

Let 1 ≤ d1,d2 < d and 1 ≤ k1, k2 < k, with d1 + d2 = d and k1 + k2 = k, and fix x1� ∈ S1 :=
[l,u]d1 and x2� ∈ S2 := [l,u]d2 arbitrarily. Let us call π1 : R

k → Rk1 and π2 : R
k → Rk2

the two canonical projections, i.e., ∀y ∈ Rk , y = (π1(y),π2(y)).
We define two auxiliary sub-problems G1 and G2 including the following vector of

objective functions, respectively:

gx
2�

1 : S1→ R
k1 ,

x1 	→ π1(f(x1,x
2�)), (19a)

gx
1�

2 : S2→ R
k2 ,

x2 	→ π2(f(x
1�,x2)). (19b)

By composing sub-problems G1 and G2 as a new problem G, we have:

g : S = S1 × S2→ R
k,

(x1,x2) 	→ (gx
2�

1 (x1),g
x1�

2 (x2)). (20)

Trivially one sees that g(x1�,x2�) = f(x1�,x2�), however it is interesting to investigate
the situation in which g(x1,x2) � f(x1,x2), i.e., when g is a good approximation of
problem (1). To be more precise we say that:

Definition 4.3. problem (1) defined by f : S → Rk is called ε–decomposable if there exist
two auxiliary sub-problems G1 and G2 defined as above such that

‖f(x1,x2)− g(x1,x2)‖ < ε, ∀x1 ∈ S1,x2 ∈ S2. (21)

Remark 4.4. The ε–decomposability can be rewritten only in terms of f and of the parti-
tioned domain and co-domain:∥∥∥π1(f(x1,x2))−π1(f(x1,x2))

∥∥∥ < ε, ∀x1 ∈ S1,x2,x2 ∈ S2, (22a)∥∥∥π2(f(x1,x2))−π2(f(x1,x2))
∥∥∥ < ε, ∀x1,x1 ∈ S1,x2 ∈ S2, (22b)

i.e., we can say that π1 ◦ f and π2 ◦ f are ε-insensitive on x2 and x1, respectively, or that
the functional dependence is ε–weak.

In what follows, without loss of generality, we assume that π1(f(x)) = (f1(x), f2(x), . . . ,
fk1(x)) and π2(f(x)) = (fk1+1(x), fk1+2(x), . . . , fk(x)). Thus, the sets of indices of objective

functions in G1 and G2 are O1 = {1, . . . , k1} and O2 = {k1 + 1, . . . , k}. The ith objective

function in G1 and G2 is denoted by g
x2�

i,1 and g
x1�

i,2 , respectively.
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Theorem 4.5. Let problem (1), G1 and G2 as above admitting a Pareto frontier. Let de-

noting the Pareto optimal sets of G1 and G2 by X1 and X2, respectively and the Cartesian

product of X1 and X2 by

X :=

{
(x1,x2) ∈ Rd1 ×Rd2 = R

d
∣∣∣∣ x1 ∈ X1,x2 ∈ X2

}
, (23)

and the image of X by

F := Imf(X) =

{
f(x1,x2) ∈ Rk

∣∣∣∣ x1 ∈ X1,x2 ∈ X2

}
. (24)

Then, a solution in X (F) ε–dominates a solution in X (F) where ε = 2ε, i.e., the sets X
and F are the synthetic Pareto optimal set and the synthetic Pareto frontier of problem (1)
with tolerance ε, respectively. Equivalently, the Pareto frontier of problem (1) is completely

contained in the union of two “tubular strips” defined as follows: let ε1 = (2ε, . . . ,2ε) ∈ Rk1

and ε2 = (2ε, . . . ,2ε) ∈ Rk2 , then

T1 :=
{
(y1,y2) ∈ Rk

∣∣∣∣ ∃(̃x1, x̃2) ∈ X, π1(f(̃x
1, x̃2))− ε1 < y1,

∥∥∥y2 −π2(f(̃x
1, x̃2))

∥∥∥ < 2ε
}
,

(25a)

T2 :=
{
(y1,y2) ∈ Rk

∣∣∣∣ ∃(̃x1, x̃2) ∈ X ∥∥∥y1 −π1(f(̃x
1, x̃2))

∥∥∥ < 2ε, π2(f(̃x
1, x̃2))− ε2 < y2

}
.

(25b)

In other words, if a vector value in the Pareto frontier of problem (1) outperforms all the
values in the synthetic Pareto frontier, the performance is not better than 2ε.

Proof. Suppose x∗ ∈ X is an arbitrary Pareto optimal solution in the decision space
of problem (1), f(x∗) ∈ F is the corresponding Pareto optimal solution in the objective
space and x∗ = (x∗1,x∗2) is representation of x∗ in terms of effective variables in sub-
problems G1 and G2. We show that f(x∗) ∈ T1 or f(x∗) ∈ T2 through the following steps.

1. According to equations (19a) and (19b), we have π1(f(x∗1,x2�)) = gx
2�

1 (x∗1) and
π2(f(x1�,x∗2)) = gx

1�

2 (x∗2). Since gx
2�

1 (x∗1) ∈ Rk1, there exists a Pareto optimal so-

lution x̃1 ∈ X1
such that gx

2�

1 (̃x1) dominates gx
2�

1 (x∗1). Analogously, there exists a
Pareto optimal solution x̃2 ∈ X2

such that gx
1�

2 (̃x2) dominates gx
1�

2 (x∗2).
2. Without loss of generality, suppose there exist I≤ ⊂O1 and I> ⊂O1 such that

∀i ∈ I≤ fi(x
∗1,x∗2) ≤ fi (̃x1, x̃2), (26a)

∀i ∈ I> fi(x
∗1,x∗2) > fi (̃x1, x̃2). (26b)

We then have

∀i ∈ I≤, fi (̃x1, x̃2)− fi(x∗1,x∗2) = fi (̃x1, x̃2)− fi (̃x1,x2�)
+fi (̃x1,x

2�)− fi(x∗1,x2�)
+fi(x

∗1,x2�)− fi(x∗1,x∗2).
(27)
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Since f is ε–decomposable and fi (̃x1,x2�) ≤ fi(x∗1,x2�), from (27), we have

∀i ∈ I≤, fi (̃x1, x̃2)− fi(x∗1,x∗2) < 2ε. (28)

From equations (26b) and (28), we have

∀i ∈O1, fi (̃x1, x̃2)− 2ε < fi(x
∗1,x∗2), (29a)

π1(f(̃x1, x̃2))− ε1 < π1(f(x
∗1,x∗2)). (29b)

3. We then show that
∥∥∥π2(f(x∗1,x∗2))−π2(f(̃x1, x̃2))

∥∥∥ < 2ε. Since f is ε-decomposable

and π2(f(x1�, x̃2)) ≤ π2(f(x1�,x∗2)), we have∥∥∥π2(f(x
∗1,x∗2))−π2(f(̃x1, x̃2))

∥∥∥ =
‖π2(f(x

∗1,x∗2))−π2(f(x
1�,x∗2)) +π2(f(x

1�,x∗2))−π2(f(x
1�, x̃2))

+π2(f(x
1�, x̃2))−π2(f(̃x1, x̃2))‖ <∥∥∥π2(f(x
∗1,x∗2))−π2(f(x

1�,x∗2))
∥∥∥+ ∥∥∥π2(f(x

1�, x̃2))−π2(f(̃x1, x̃2))
∥∥∥ < 2ε.

(30)

From equations (29b) and (30), we result that f(x∗) ∈ T1. Analogously, if one assumes
that there exist I≤ ⊂O2 and I> ⊂O2 such that

∀i ∈ I≤ fi(x
∗1,x∗2) ≤ fi (̃x1, x̃2), (31a)

∀i ∈ I> fi(x
∗1,x∗2) > fi (̃x1, x̃2). (31b)

Then, one can show that f(x∗) ∈ T2.
Theorem 4.6. Let zG,ideal = (zG,ideal

1 , . . . , zG,ideal
k ) and zG,nadir = (zG,nadir

1 , . . . , zG,nadir
k ) be the

ideal and nadir vectors of problem G, respectively. Then,

zideali ≤ zG,ideal
i , ∀i ∈O, (32a)

zG,nadir
i ≤ znadiri , ∀i ∈O. (32b)

Proof. For an arbitrary function fi , for i ∈ O, suppose x̃i,min ∈ argminx∈S {fi(x)}. There
is a sub-problem Ga such that i ∈ Oa. Without loss of generality suppose a = 1. Let

x̃i,min = (̃x1,i,min, x̃1,i,min). We have

fi (̃x
1,i,min, x̃1,i,min) ≤ fi(x

1,x1), ∀x1 ∈ S1,∀x1 ∈ S1. (33)

Suppose x1,i,min ∈ argmin
x1∈S1

{gx2�1,i (x
1)}. Then,

g
x2�

1,i (x
1,i,min) ≤ g

x2�

1,i (x
1) ∀x1 ∈ S1. (34)

Since g
x2�

1,i (x
1,i,min) = fi(x1,i,min,x2�), from inequality (33) we have

fi (̃x
i,min) ≤ fi(x

1,i,min,x2�), (35)

and inequality (32a) is resulted. Analogously, inequality (32b) can be proved.
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Corollary 4.7. Let k = 2 and problem (1) be ε–decomposable, with S = S1×S2. Then, by fix-
ing x2� ∈ S2 and x1� ∈ S1 and setting x1 ∈ argmin

x1∈S1

{f(x1,x2�)} and x2 ∈ argmin
x2∈S2

{f(x1�,x2)},
we have that x := (x1,x2) is a synthetic Pareto set for problem (1) with tolerance 2ε.

Remark 4.8. The solutions x1 and x2 may not be uniquely defined. When there are multiple
solutions realizing the same absolute optimum, it is not restrictive to choose any of these
solutions.

One should note that the synthetic Pareto frontier is an approximation of the Pareto
frontier of the original, computationally expensive MOP. Clearly, the condition of ε–
decomposability can be known only in cases when the functions at hand have an ex-
plicit formulation and this formulation is amenable to analysis. This is not possi-
ble clearly when the functions at hand are black boxes. However, a method called
functional ANOVA decomposition, where ANOVA stands for analysis of variance, is de-
signed specifically for estimating the extent of functional dependence among function
values and variables. In this paper, we apply the functional ANOVA decomposition
to detect effective and ineffective variables. Then, by ignoring ineffective variables,
sub-problems G1 and G2 are formulated by which problem (1) is decomposed approx-
imately.

4.2 Functional ANOVA decomposition in MOPs
In this subsection, we discuss how to introduce problemG based on problem (1). To do
so, we introduce a reduced incidence matrix RM based on M . The reduced incidence
matrix RM is decomposable and based on RM , we formulate problem G which is de-
composable. We then decompose problem G into a limited number of sub-problems
in lieu of problem (1). Once problem G is decomposed, the solution process in terms
of decision making or representing the Pareto frontier is similar to those discussed
in Subsection 3.2. One should note that in this case, the solutions of problem G are
approximated solutions for problem (1). In this way, we say that problem (1) is ap-
proximated by problem G.

For each objective function in problem (1), it is important to realize which of the
decision variables have more effect on the objective function value and then to quan-
tify that effectiveness. According to [29], the effective variables in one region of the
decision space may not be the same as those in another, and thus, global sensitivity
analysis has been developed. Similarly, decision variables may cooperate to provide
interaction effects, in which the effectiveness of a subset of decision variables may not
lead to the sum of individual decision variable effectiveness. Sobol and total sensitiv-
ity indices, described in Section 2 have been developed to quantify decision variable
effectiveness, clarifying these issues.

The functional ANOVA and variance decompositions [22] is the most popular ap-
proach to conducting global sensitivity analysis and calculating Sobol and total sen-
sitivity indices [25]. According to [25], generally, two classes of methods have been
developed to conduct sensitivity analysis, i.e., methods that do not utilize surrogates
andmethods that rely on surrogates. Examples of the first class are Monte Carlo meth-
ods [26, 30, 31], and Extended FAST [32]. The second class includes methods based
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Figure 4: An example of an effective total sensitivity indices matrix (SM). The bar
shows the range of the total sensitivity indices.

on Gaussian process [29, 33, 34], smoothing spline [35], polynomial chaos expansion
[25, 36], and local polynomial regression [37].

As mentioned in [25], methods in the first class typically require more function
evaluations than those in the other class. However, methods developed in the first class
generally depend on minimal assumptions about a given function, while methods in
the second class rely more on limiting assumptions (e.g., continuity and differentia-
bility). Therefore, the first class methods are more desirable for computationally inex-
pensive, discontinuous, and non-smooth functions, whereas the second class methods
can be applied for computationally expensive and/or smooth functions. Obviously,
global sensitivity analysis can also be conducted by a hybrid method, in which a sur-
rogate is first built and then a non-surrogate-based method is employed to estimate
Sobol and total sensitivity indices based on evaluations of the surrogate.

The incidence matrix M captures the dependencies between objective functions
and decision variables in problem (1). However, by applying sensitivity analysis and
identifying effective and ineffective variables, we can form a reduced incidence matrix
RM which is decomposable and we discuss it in what follows.

As far as computationally expensive functions are considered, in ANOVA-MOP,
first, for each individual objective function, a surrogate function by an appropriate
method is built where the surrogate function is globally accurate over the entire de-
cision space. Then, by applying a suitable method, the total sensitivity indices are
estimated relying on the surrogate function values. For computationally inexpensive
functions, an appropriate method can be applied directly to the functions to estimate
the total sensitivity indices. We denote the estimated total sensitivity index for the jth

decision variable in the ith objective function by lTij . Then, we define the effective total
sensitivity indices matrix (SM) as

SM = [lTij ], i ∈O,j ∈D. (36)

Figure 4 shows SM corresponding to the incidence matrixM in Figure 1. Next, we
discuss how the estimated total sensitivity indices in SM can assist to form a reduced
incidence matrix RM and to build problem G based on RM .
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Figure 5: A reduced incidence matrix RM corresponding to a threshold considered.

4.3 Sparsity of a reduced incidence matrix RM
In this subsection, we discuss the application of estimated total sensitivity indices in
approximating problem (1) and introducing problem G. The idea in ANOVA-MOP
is to form a reduced incidence matrix RM which is sparse enough and decompos-
able. The sparsity of a reduced incidence matrix is directly governed by considering
a threshold for the estimated total sensitivity indices. To do so, using a subset of en-
tries in SM , an array of thresholds denoted by T is considered which has at most k ×d
unique components. We define

ut =min
i∈O max

j∈D (lTij ), (37)

as the upper bound for the thresholds in T . Then, all unique lTij ≤ ut, lTij � 0, for i ∈ O,
and j ∈D, sorted from the smallest to the largest values are considered as components
of T .

Considering the smallest threshold in T , we apply the following procedure to form
a reduced incidence matrix RM which is decomposable. The decision variables for
which their total sensitivity indices are greater than or equal to the threshold are
treated as effective variables and the remaining decision variables as ineffective ones.
Then, a reduced incidence matrix RM is formed in which in each row corresponding
to each objective function, effective variables are denoted by 1′s and ineffective ones
by 0′s. Once the reduced incidence matrix RM is formed, using the method in [38],
the reduced incidence matrix RM is decomposed into a number of blocks.

One should note that any threshold greater than ut makes all decision variables
in at least one of the objective functions ineffective, and as a result, all entries in the
corresponding row in the reduced incidence matrix RM become zero. Such a situa-
tion is out of the scope of this paper. Figure 5 illustrates a reduced incidence matrix
RM . In this case, for example for f3, l3j , for j = 3,4,6,8, is less than a threshold con-
sidered. Therefore, in the reduced incidence matrix RM , the decision variables xj , for
j = 3,4,6,8, are treated as ineffective.

In the method developed in [38], for a given reduced incidence matrix RM and a
fixed number of sub-problems, several decomposed problems are obtained. We con-
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sider only those with the smallest complexity CI . Among them, we pick a decomposed
problem in which the total number of decision variables which are common between
the sub-problems is the smallest. This number of common decision variables may
not be zero. In such a case, the next threshold in T is selected and the described
above procedure is repeated until a reduced incidence matrix RM is obtained which
is decomposable and there is no common variable between any block as shown in Fig-
ure 1(b).

The reduced incidence matrix RM shows effective and ineffective decision vari-
ables for each individual objective function. For each objective function, we neglect in-
effective variables and formulate the decomposable multiobjective optimization prob-
lem G. It is notable that the larger the threshold, the more ineffective variables there
are. However, cases may occur that a reduced incidence matrix RM cannot be de-
composed for all threshold in T according to the criteria considered for sub-problems.
Such cases are a future research direction.

As mentioned in [27], the total number of common variables is increased by the
increment in the number of sub-problems and vice versa. Nevertheless, the less sub-
problems is formed, themore objective functions in each sub-problem exist. In ANOVA-
MOP, we fix the number of sub-problems. Then, by varying the threshold, we build
problem G.

4.4 ε–decomposability and sensitivity analysis
It is clear that if a function is decomposable, then some of the entries of the M ma-
trix will be zero. Things are less immediate when the function is ε–decomposable.
Actually, in the typical case the functions at hand can be black box and therefore it
will be impossible to give an estimate of the possible ε ruling the decomposability of
the function. The estimate of the Sobol’ can be realized with a small campaign of ex-
periments, and the computation of the indices could be a valid method for detecting
ineffective variables. One has, however, to recall that the Sobol’ indices are averages,
therefore it is not possible to obtain an estimate of ε, which is a global quantity. Nev-
ertheless, the Sobol’ indices are a good indicator of probable weak dependencies and
a result of decomposability, so this justifies the fact that the procedure proposed is
likely to produce good approximations with a limited computational cost of the black
box functions involved in the problem at hand.

5 The ANOVA-MOPMethod
In this section, we present the steps of the ANOVA-MOP method shown in Algorithm
1. In this method, first, by calling Algorithm 2 to be discussed in Subsection 5.1,
decomposability of problem (1) is evaluated and sub-problems are obtained as the
output of Algorithm 2. Then, the solution process as discussed in Subsection 3.2 is
applied.
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5.1 Decomposition Algorithm
By calling Algorithm 2, decomposability of problem (1) is assessed and sub-problems
with minimum complexity are obtained. As can be seen in Algorithm 2, in the case of
black-box functions, first, their surrogate functions are built. Total sensitivity indices

are then calculated. In ANOVA-MOP, we fix the number of sub-problems as n =
⌈
k
3

⌉
.

This means that we are interested in sub-problems with at most 3 objective functions.

Algorithm 1
Output: A set of solutions or the most preferred solution for the
DM
1: Assess decomposability of problem (1) and build sub-problems by

calling Algorithm 2
2: If the DM is involved
3: For a = 1, . . . ,n
4: While the DM is not satisfied
5: Ask the decision maker to provide a reference point za∗
6: Solve problem (3) with the objective functions in the ath sub-

problem
7: Endwhile
8: Endfor
9: Else

10: For a = 1, . . . ,n
11: Solve the ath sub-problem
12: Endfor
13: Compose the solutions of the sub-problems as discussed in Sub-

section 3.2
14: Endif
15: If the DM is involved, return the most preferred solution
16: Otherwise return a set of solutions
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Algorithm 2: Decomposition
Input: problem (1)
Output: sub-problems
1: If the objective functions are black-box ones, build their correspond-

ing surrogate functions.
2: Calculate the total sensitivity indices for decision variables

3: Define the number of sub-problems as n =
⌈
k
3

⌉
4: Calculate ut from equation (37)
5: Define the threshold array T
6: flag = True
7: While flag
8: For t ∈ T
9: Define decision variables with lTij ≥ t as effective ones and set

others as ineffective ones.
10: Form a reduced incidence matrix RM based on the effective and

ineffective variables
11: Decompose RM
12: If there exist sub-problems with ĨNT = 0
13: Return the sub-problems
14: flag = False
15: Endif
16: Endfor
17: Endwhile
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The method developed in [38] may provide several decompositions with the same
minimum complexity CI for a given reduced incidence matrix RM . In this method,
we set the maximum number of common variables as d. As a result, the method can
generate sub-problems with different numbers of common variables. Then, among
all decompositions obtained, we search for sub-problems with the minimum num-
ber of common variables. To obtain the best decomposition, i.e., sub-problems with
minimum complexity and without any common variables between them, the lowest
threshold in T is considered, and the effective and ineffective variables are identified.
The reduced incidence matrix RM is formed based on these variables. Then, the re-
duced incidence matrix RM is decomposed. Several decompositions may be formed.

We denote the number of common variables in sub-problems by ĨNT . Among these

decompositions, if there exist sub-problems with ĨNT = 0, these sub-problems are
considered as the best decomposition. Otherwise, the next threshold in T is consid-
ered and the above procedure is repeated.

One should note that, if problem (1) is decomposable as discussed in Section 3, then
0 ∈ T . This means that for the first threshold t = 0,M=RM and the best decomposition
is obtained immediately without increasing the threshold.

6 Numerical results
We demonstrate the performance of ANOVA-MOP both as an interactive and a non-
interactive method. To do so, we first consider inherently decomposable problems and
thereafter ε–decomposable problems. We treat all objective functions as black-boxes
to demonstrate the applicability of the method to solve computationally expensive
problems. In Subsection 6.4 we consider the interactive aspects of ANOVA-MOP.

6.1 Experimental Setup
We consider objective functions as black-box functions and we employ the method
developed in [25], henceforth called as Bayesian polynomial chaos (BPC) method to
build surrogate inexpensive functions. The BPC method is based on the functional
ANOVA decomposition (4) in which the interaction order e can be assigned up to d.
The components in the functional ANOVA decomposition are approximated by using
polynomial functions of an arbitrary degree p. Once the surrogate function is built,
the method estimates the total sensitivity index for each individual decision variable
along with a 95% confidence interval containing the estimated total sensitivity index.
We assign e = d to capture all interactions between variables and p = 4 to have an
accurate enough approximation. In what follows, we assume that all necessary surro-
gate functions have been computed and have been substituted the original black box
functions.

For decomposition we apply the method developed in [38] henceforth called the
Chen method. For this method, the user can set the number of sub-problems (i.e., n),
the maximum number of common variables between sub-problems and the minimum
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number of effective variables within each sub-problem. We set these parameters to⌈
k
3

⌉
, d and 0, respectively.

We use NSGA-II [39] and DIRECT [40] for solving multiobjective and single ob-
jective problems respectively. Nevertheless, we recall that ANOVA-MOP can be cou-
pled to any other optimization method, decomposition method or any other method
to build surrogate functions.

6.2 Decomposable benchmark problems
We start by considering the following problem because it is possible to represent the
synthetic Pareto optimal set and the synthetic Pareto frontier and to compare the solu-
tions of the complete problem with the solution of the sub-problems. In what follows
by k × d = (k1 × d1)⊗ . . .⊗ (kn × dn), we mean decomposing a problem with k objective
functions and d decision variables to n sub-problems with ki objective functions and
di decision variables.

6.2.1 Decomposable problem 2× 2 = (1× 1)⊗ (1× 1)
Let � = 2,

minimize
x∈[−�,�]2

{f1(x), f2(x)} where

{
f1(x1,x2) =

1
2(x1 − 1)2,

f2(x1,x2) :=
1
2(x2 − 1)2.

(38)

Being f1 independent from x2 and f2 independent from x1, the effective total sensitiv-
ity indices matrix is

SM =

[
1 0
0 1

]
, (39)

and the set of Pareto optimal solutions is X = {(1,1)} while the Pareto front is only

F = {(0,0)}. The problem (38) can be decomposed into the following single objective
optimization sub-problems

minimize
x1

g1(x1) := f1(x1,0), (40) minimize
x2

g2(x2) := f2(0,x2). (41)

Trivially, the set of optimal solutions for problem (40) is X
1
:= {1} and for problem 41

is X
2
:= {−1}, so the Cartesian product of the solutions of the sub-problems is exactly

X = X
1×X2

= {(−1,−1)}, and at the same time F = F
1×F2

= {(0,0)}, so the Theorem 3.5
is verified.

6.2.2 decomposable problem 10× 2 = (5× 1)⊗ (5× 1)
The following problem has 10 decision variables and 2 objectives, but is only appar-
ently more complicated than the previous. Indeed the two 5 × 1 sub-problems have
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only one minimum.

minimize
x∈[−�,�]10

{f1(x), f2(x)} where

{
f1(x) = 1

2

∑5
i=1(xi − 1)2,

f2(x) = 1
2

∑10
i=6(xi − 1)2.

(42)

In problem (42), the sets of Pareto optimal solutions in the decision and objective

spaces are X = {(1,1,1,1,1,1,1,1,1,1)} and F = {(0,0)}, respectively. The effective total
sensitivity indices matrix is

SM =

[
0.2 0.2 0.2 0.2 0.2 0 0 0 0 0
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2

]
, (43)

which confirms that the decision variables xi for i = 1, . . . ,5, are effective variables for
f1 and xi for i = 6, . . . ,10 are effective variables for f2. Decomposition reads as:

minimize
x1,...,x5∈[−�,�]5

g1(x1, . . . ,x5) (44) minimize
x6,...,x10∈[−�,�]5

g2(x6, . . . ,x10), (45)

where g1(x1, . . . ,x5) := f1(x1, . . . ,x5,0, . . . ,0) and g2(x6, . . . ,x10) := f1(0, . . . ,0,x6, . . . ,x10).
The Pareto optimal solutions of the sub-problems combine as expected by Theorem 3.5

and the same holds for the Pareto fronts, i.e., we have X = X
1 ×X2

and F = F
1 ×F2

.

6.2.3 decomposable problem 5× 5 = (3× 3)⊗ (2× 2)
Let � = 2 and consider the following five decision variables and five objectives prob-
lem:

minimize
x∈[−�,�]5

{f1(x), . . . , f5(x)} (46)

where

f1(x) = ((x1,x2,x3)
T −PT

1 )2, P1 = (1,1,1)T ,

f2(x) = ((x1,x2,x3)
T −PT

2 )2, P2 = (1,−1,−1)T ,
f3(x) = ((x1,x2,x3)

T −PT
3 )2, P3 = (1,1,−1)T ,

f4(x) = ((x4,x5)
T −PT

4 )2, P4 = (1,−1)T ,
f5(x) = ((x4,x5)

T −PT
5 )2, P5 = (−1,1)T .

The effective total sensitivity indices matrix is estimated as

SM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (47)

On the basis of this matrix, by applying ANOVA-MOP, we can decompose problem (46)
into the following three- and bi-objective sub-problems
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(a) (b)

Figure 6: (a) Pareto frontier of sub-problem (48), (b) Pareto frontier of sub-
problem (49). (Color online)

minimize
xa∈[−�,�]3

{g1(xa), g2(xa), g3(xa)} (48)
minimize
xb∈[−�,�]2

{g4(xb), g5(xb)} (49)

where xa = (x1,x2,x3) and xb = (x3,x4), and g1(x1,x2,x3) := f1(x1,x2,x3,0,0,0). The re-
maining definitions, i.e., g2, . . . , g5, are obvious. Figures 6 (a) and 6 (b) depict the Pareto
frontiers of these sub-problems, respectively. According to Theorem 3.5, the set of
Pareto optimal solutions of problem (46) is the Cartesian product of the sets of Pareto
optimal solutions of sub-problems (48) and (49).

In other words, any of the Pareto optimal solution of problem (46) is obtained
by joining a solution (x1,x2,x3) of sub-problem (48) and a solution (x4,x5) of sub-
problem (49).

6.3 Approximately decomposable benchmark problems
As discussed earlier, typical problems are not decomposable, but often are ε-decom-
posable, with ε small enough. The decomposition is determined via sensitivity anal-
ysis, and auxiliary sub-problems are defined, which will produce approximated solu-
tions.
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Figure 7: The orange curve in (a) and (b) shows the Pareto optimal set and the Pareto
frontier of problem (50), respectively. (Color online)

6.3.1 ε–decomposable problem 2× 2 � (1× 1)⊗ (1× 1)
Let � = 2. The following parametric problem is a generalization of (38), where a weak
dependence on x1 and x2 is added to f2 and f1 respectively.

minimize
x∈[−�,�]2

{f1(x), f2(x)} where

{
f1(x) = 1

2((x1 + 1)2 +γ(x2 − 1)2),
f2(x) = 1

2(γ(x1 − 1)2 + (x2 + 1)2),
(50)

with γ = 7.000× 10−3
As can be seen in Figure 7(a), by changing the γ value slightly, the set of solutions
of problem (38) is turned from a single point into a full curve of solutions. The red
circle in Figure 7(b) is the synthetic Pareto frontier obtained by ANOVA-MOP. In this
figure, the blue circle and orange curve are solutions of problems (38) and (50), re-
spectively. Next, we discuss how ANOVA-MOP generates the synthetic Pareto frontier
for problem (50).

By means of sensitivity analysis we compute the effective total sensitivity indices
matrix SM and the incidence matrix M for problem (50):

SM =

[
9.999× 10−1 1.000× 10−3
1.000× 10−3 9.999× 10−1

]
, M =

[
1 1
1 1

]
. (51)

Matrix M in (51) cannot be decomposed, nevertheless, as can be seen in matrix (51),
the estimations of the total sensitivity indices of variables x2 and x1 are very small
for objective functions f1 and f2, respectively. We then form an array of thresholds
denoted by T . According to equation (37), ut = 1.000×10−3 is the upper bound for the

thresholds in T . Therefore, T =
{
1.000× 10−3

}
. Considering variables with estimated
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total sensitivity index values less than the element in T as ineffective variables, we can
form the following reduced incidence matrix:

RM =

[
1 0
0 1

]
. (52)

According to Remark 3.2, matrix (52) is decomposable, and we form the following
single objective optimization sub-problems:

minimize
x∈[−�,�]2

{f1(x)} (53)

where

x2 = 0,

minimize
x∈[−�,�]2

{f2(x)} (54)

where

x1 = 0.
One should note that, we only solve these sub-problems for their effective vari-

ables. In sub-problem (53), the set of optimal solutions in the decision space is,

X
1
:= {x1 = −1}, and for sub-problem (54), X

2
:= {x2 = −1}. According to Theorem 3.5,

the synthetic Pareto optimal set problem (50) in the decision space is obtained by the

Cartesian product of the solutions of sub-problems (53) and (54), i.e., X = X
1 ×X2

. To
obtain the synthetic Pareto frontier in the objective space, we evaluate the solutions in

X with objective functions of problem (50), i.e., F =
{
(
γ
2 ,

γ
2 )
}
.

6.3.2 ε–decomposable problem 10× 2 � (5× 1)⊗ (5× 1)
Now, let us consider the following parametrized bi-objective optimization problem
with � = 2

minimize
x∈[−�,�]10

{f1(x), f2(x)} (55)

where

f1(x) =
1

8
(

5∑
i=1

(xi + (−1)i−1)2 +γ
10∑
i=6

(xi + (−1)i−1)2),

f2(x) =
1

8
(γ

5∑
i=1

(xi + (−1)i)2 +
10∑
i=6

(xi + (−1)i)2),

γ = 7.000× 10−3.
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This is problem (42) with the changed γ value. By applying ANOVA-MOP and con-
ducting sensitivity analysis for problem (55), we have

SM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.999× 10−1 1.000× 10−3
1.999× 10−1 1.000× 10−3
1.999× 10−1 1.000× 10−3
1.999× 10−1 1.000× 10−3
1.999× 10−1 1.000× 10−3
1.000× 10−3 1.999× 10−1
1.000× 10−3 1.999× 10−1
1.000× 10−3 1.999× 10−1
1.000× 10−3 1.999× 10−1
1.000× 10−3 1.999× 10−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (56)

M =

[
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

]
. (57)

According to Remark 3.2, matrix (57) is not decomposable. Matrix (56) shows that the
estimation of the total sensitivity indices of variables xi for i = 6, . . . ,10, for f1 and xi
for i = 1, . . . ,5, for f2 are very small. For this problem, ut = 1.000 × 10−3 is the upper

bound for thresholds in T , and T =
{
1.000× 10−3

}
. We then form the following reduced

incidence matrix

RM =

[
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

]
. (58)

Since matrix (58) is decomposable (according to Remark 3.2), we form the following
single objective optimization sub-problems

minimize
x∈[−�,�]10

{f1(x)} (59)

where

x6 = 0,

x7 = 0,

x8 = 0,

x9 = 0,

x10 = 0,

minimize
x∈[−�,�]3

{f2(x)} (60)

where

x1 = 0,

x2 = 0,

x3 = 0,

x4 = 0,

x5 = 0.

In sub-problem (59), the set of optimal solutions in the decision space is X
1
=

{(−1,1,−1,1,−1)}, and for sub-problem (60) X
2
= {(−1,1,−1,1,−1)}. The set of syn-

thetic Pareto optimal solutions of problem (55) in the decision space is obtained by

the Cartesian product of the solutions of sub-problems (59) and (60), i.e., X = X
1×X2

.

By evaluating the solutions in X with objective functions of problem (55) we have

F =
{
(52γ,

5
2γ)

}
.
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6.3.3 ε–decomposable problem 5× 5 � (3× 3)⊗ (2× 2)
Next, we consider the following five-objective parametrized optimization problem
with � = 1.3.

minimize
x∈[−�,�]5

{f1(x), . . . , f5(x)} (61)

where

f1(x) = g1(x) +γg4(x), g1(x) = ((x1,x2,x3)
T −PT

1 )2, P1 = (1,1,1)T ,

f2(x) = g2(x) +γg5(x), g2(x) = ((x1,x2,x3)
T −PT

2 )2, P2 = (1,−1,−1)T ,
f3(x) = g3(x) +γ(g4(x) + g5(x)), g3(x) = ((x1,x2,x3)

T −PT
3 )2, P3 = (1,1,−1)T ,

f4(x) = g4(x) +γg1(x), g4(x) = ((x4,x5)
T −PT

4 )2, P4 = (1,−1)T ,
f5(x) = g5(x) +γ(g1(x) + g2(x)), g5(x) = ((x4,x5)

T −PT
5 )2, P5 = (−1,1)T ,

and γ = 7.000× 10−3.
For this problem, the estimated total sensitivity indices matrix SM and the inci-

dence matrix M are respectively:

SM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.330× 10−1 3.330× 10−1 3.330× 10−1 1.000× 10−3 1.000× 10−3
3.330× 10−1 3.330× 10−1 3.330× 10−1 1.000× 10−3 1.000× 10−3
3.330× 10−1 3.330× 10−1 3.330× 10−1 1.000× 10−3 1.000× 10−3
1.000× 10−3 1.000× 10−3 1.000× 10−3 3.330× 10−1 3.330× 10−1
1.000× 10−3 1.000× 10−3 1.000× 10−3 3.330× 10−1 3.330× 10−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (62)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (63)

Then, we have ut = 1.000× 10−3 and T =
{
1.000× 10−3

}
and

RM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (64)

According to matrix (64), problem (61) is decomposed into the following sub-prob-
lems

minimize
x∈[−�,�]5

{f1(x), f2(x), f3(x)} (65)

where

x4 = 0,

x5 = 0,

minimize
x∈[−�,�]5

{f4(x), f5(x)} (66)

where

x1 = 0,

x2 = 0,

x3 = 0.
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These sub-problems are solved for their effective variables. Suppose X
1
and X

2

are the set of Pareto optimal solutions of sub-problems (65) and (66), respectively.

Then X = X
1 ×X2

is considered as the synthetic Pareto optimal set for problem (61).

We denote the synthetic Pareto frontier of problem (61) by F. To show the quality

of the approximated solutions in F, we employ the hyper-volume indicator [41]. To

do so, we calculate hyper-volume for the solutions in F. Then, we solve problem (61)

and obtain the set of Pareto optimal solutions in the objective space denoted by F
∗
.

The hyper-volume is also calculated for the solutions in F
∗
. This indicator for the

solutions in F and F
∗
is 0.1220 and 0.4620, respectively. As said earlier, for a given

problem which is not initially decomposable, the solution obtained by ANOVA-MOP
is an approximation of the Pareto frontier of the given problem.

As can be understood, if a given problem is not decomposable at the first glance,
by removing variables with negligible influence on objective function values, an ap-
proximated problem can be obtained which is decomposable. In the next subsection,
we discuss the interactive aspect of ANOVA-MOP.

6.4 Decision making by ANOVA-MOP
When using ANOVA-MOP as an interactive method, the final solution obtained is the
most preferred solution for the DM, as discussed in Subsection 3.2.1. In what follows,
we discuss how the most preferred solution for the DM is obtained. As an example,
we consider problem (46).

When interacting with the DM to solve the three objective functions in the first

sub-problem, he provided the first reference point z1∗1 = (4,3,7)T . The ASF was for-

mulated and problem (3) solved. The solution f
1∗
1 = (2.5175,1.5456,1.9759)T obtained

was shown to him. Since he was not satisfied with this solution, he gave a new ref-

erence point z1∗2 = (1,3,7). The corresponding solution f
1∗
2 = (1.1296,3.1283, 2.3100)T

was obtained and shown to the DM. When comparing f
1∗
1 and f

1∗
2 , the DM was willing

to let the value of the second objective function get worse. So, he provided a reference

point z1∗3 = (1,5,7)T . The corresponding solution f
1∗
3 = (0.4996,4.5109,2.6439)T was

obtained and shown to him. The DM was happy with the values of the first and the
second objective functions, but he wished to improve the value of the third objective

function. Therefore, he gave the reference point z1∗4 = (0.4996,4.5109,1)T . The corre-

sponding solution f
1∗
4 = (0.7528,4.8276,1.3168)T was obtained and shown to him. This

solution satisfied the DM and the interaction with him regarding the first sub-problem
was terminated.

Regarding the two objective functions in the second sub-problem, the DM gave

a reference point z2∗1 = (6,2)T . The ASF including the objective functions in this
sub-problem was formulated and problem (3) solved. The corresponding solution

f
2∗
1 = (4.4852,0.5079)T was obtained and shown to him. Then, he provided a new ref-

erence point z2∗2 = (5,3)T , and the corresponding solution f
2∗
2 = (3.1327,1.1221)T was

obtained. The DM was happy with the value of the first objective function, but he

wished to improve the second objective function. He then provided z2∗3 = (3.2488,4)T .

30



The corresponding solution f
2∗
3 = (1.5893,2.4579)T was shown to him. This solution

satisfied the DM and the interaction was stopped. Thanks to the decomposition, the
DM could concentrate on a subset of objective functions at a time. Because he had
to pay attention to three and two objective functions at a time, it was easier to follow
the changes in the solutions obtained after having specified a reference point and the
solution process was not cognitively as demanding as when dealing with five objective
functions simultaneously.

7 Conclusion and future research directions
In this paper, we developed a novel surrogate-based method called ANOVA-MOP to
solve computationally expensive multiobjective problems with high-dimensional de-
cision and objective spaces. In this method, first a surrogate function for each indi-
vidual objective function is built. Total sensitivity indices are then estimated. Using
these indices, effective decision variables which have influence on the objective func-
tion values are identified and other variables are treated as ineffective ones. The ob-
jective functions with the same effective variables are grouped into a low dimensional
sub-problem in the decision and objective spaces. This leads to decompose a complex
problem into a limited number of simpler sub-problems with low dimension objec-
tive and decision spaces. The solutions of the sub-problems are composed to build a
synthetic Pareto frontier for the main problem.

ANOVA-MOP can be applied as an interactive and a non-interactive method to
solve computationally expensive MOPs with any number of objective functions. As an
interactive method, due to the decomposition, in each step of interaction with a DM,
(s)he focuses on a workable number of objective functions at a time rather than the
whole objective functions. As a non-interactive method, sub-problems can be solved
by parallel computing. This boosts the solution process considerably. In both versions
of interactive and non-interactive ones, since ineffective variables are neglected in sub-
problems, the dimension of the search domain of sub-problems in the decision space
is reduced. This allows users to apply any appropriate optimization method for low-
dimensional problems. Besides a surrogate-based method, ANOVA-MOP can also be
applied to solve computationally inexpensive MOPs.

When decomposing problem (1), cases may arise that it is not possible to obtain
sub-problems without any common variables. This means that, for any threshold con-
sidered, some effective variables are common between sub-problems. Such cases is
a future research direction. Developing ANOVA-MOP for problems with constraint
functions is also another future research direction.
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Abstract

Our starting point is the surrogate-basedmethod called ANOVA-MOPwhich has been
developed to solve computationally expensive multiobjective optimization problems re-
lying on sensitivity analysis. We discuss how ANOVA-MOP can take advantage from
sensitivity analysis methods developed in the literature. We then discuss the potential
of a new metamodeling technique termed T-splines for sensitivity analysis and how they
could be employed in ANOVA-MOP.
Keywords Black-box function, computational cost, metamodeling technique, T-splines,
non-differentiability

1 Introduction
In many application domains, computationally expensive functions in multiobjective op-
timization problems (MOPs) require conducting time-consuming experiments and/or
simulations. These functions can have a black-box nature, i.e., for a given input we only
know the output. Computationally expensive functions can be continuous, discontinu-
ous, differentiable or non-differentiable. In the literature, surrogate-based methods are
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employed to solve such problems [1]. Typically, in surrogate-based methods, metamod-
eling techniques are applied to approximate computationally expensive functions. As
a result, computationally inexpensive functions known as surrogate functions are built.
Using surrogate functions, computationally inexpensive MOPs termed as surrogate prob-
lems are constructed. In [1], we surveyed how surrogate-based methods build surrogate
problems and and how they are solved to find solutions for the original, computationally
expensive MOPs. We then concluded that solving computationally expensive MOPs with
high-dimensional decision and objective spaces deserves further research efforts.

The curse-of-dimensionality is connected with the sparsity of effects principle. This
means that typically a subset of decision variables called effective variables has an impor-
tant effect on objective function values, while the remaining variables called ineffective
variables have a little effect. In the literature, identifying effective variables is termed
global sensitivity analysis, and functional analysis of variance decomposition (functional
ANOVA decomposition) [2] is one way to do sensitivity analysis. By applying functional
ANOVA decomposition, an objective function is hierarchically decomposed into a sum
of terms depending only on subsets of decision variables, based on their contribution to
the total variance of the function. Terms depending on individual variables are called
main effects, while the contributions due to pairs of variables are called interactions. As
mentioned in [3], typically 80% of the effects on objective function values are due to 20%
of the variables.

Relying on sensitivity analysis, in [4], we have developed a surrogate-based method
called ANOVA-MOP to solve high-dimensional, computationally expensive MOPs. In the
ANOVA-MOP method, first, for each computationally expensive function, a surrogate
function is built and a surrogate MOP is then formed. We then apply sensitivity analysis
on each individual surrogate function and identify effective and ineffective variables for
them. Based on sensitivity analysis information obtained, the surrogate MOP is decom-
posed into a finite number of sub-problems which have a lower dimension in the decision
and objective spaces in comparison with those of the surrogate MOP. Sub-problems are
solved and solutions obtained are composed to form solutions for the surrogate MOP.
These solution can be considered as approximated solutions for the original, computa-
tionally expensive MOP. As discussed in [4], besides computationally expensive MOPs,
ANOVA-MOP can be used for solving computationally inexpensive MOPs as well.

In ANOVA-MOP, sensitivity analysis is an important element. As mentioned in [5],
sensitivity analysis methods can be divided in two classes, i.e., methods that do not utilize
surrogates and methods that utilize surrogates. Examples of methods in the first class are
[6, 7, 8, 9] and those of the second class are [5, 10, 11, 12, 13, 14, 15, 16]. One can see
e.g., [17] for a review on sensitivity analysis methods.

As indicated in [5], typically methods in the first class not involving surrogates de-
mand more function evaluations in comparison to those belonging to the second class.
Moreover, as discussed in [5], methods in the first class generally depend on minimal as-
sumptions about functions, while the latter class relies on restrictive assumptions (e.g.,
differentiability). Thus, methods in the first class can be employed for computationally
inexpensive functions which can be e.g., discontinuous and/or non-differentiable, and
methods in the second category are more suitable for computationally expensive and
smooth functions.

It is always desirable to elicit sensitivity analysis information accurately. ANOVA-
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MOP can benefit from methods in the first class to solve computationally inexpensive
MOPs. As a result, even if a problem contains non-differentiable functions, the informa-
tion obtained from sensitivity analysis can be utilized to form sub-problems accurately
as discussed in [4]. For solving computationally expensive MOPs including differentiable
functions by ANOVA-MOP, methods in the second class are suitable.

A computationally expensive MOPs may have non-differentiable functions. In such
problems, the second class of methods (which rely on e.g. differentiability) may not give
sensitivity analysis information accurately. Therefore, sub-problems cannot be built ac-
curately in ANOVA-MOP. In this report, we introduce T-splines which are built based
on spline functions as a possible technique for incorporating into ANOVA-MOP. We ex-
pect that by applying T-splines, sensitivity analysis information for computationally ex-
pensive non-differentiable functions may be obtained accurately and computationally
expensive MOPs including these kinds of functions can be solved efficiently.

In the literature, the mathematical properties of T-splines have been investigated for
functions with two and three decision variables [18]. Typically, computationally expen-
sive MOPs include more than three decision variables. Therefore, before applying T-
splines for such problems, we must first develop T-splines for functions with more than
three decision variables. This report is an initial step to study T-splines for sensitiv-
ity analysis in computationally expensive problems. We do not yet provide any actual
method on function approximation through T-splines.

Spline functions have been used in curve fitting to model complicated curves, for in-
stance, circles or ellipses [19]. They also have been applied to approximate uni-variate
functions [20]. Spline functions are linear combinations of piecewise-polynomial func-
tions of an arbitrary degree. These piecewise-polynomial functions are basis functions
and are called B-splines. They are formed relying on a set of knots. This knots set pro-
vides a flexibility for spline functions to approximate non-differentiable functions [20].
Spline functions with low-degree B-splines can be employed to approximate higher de-
gree polynomial functions.

To approximate functions with more than one decision variable through spline func-
tions, bi-variate B-splines have been developed [19]. In bi-variate B-splines, correspond-
ing to each decision variable, a set of basis functions is constructed. By using these sets
of basis functions, tensor spline bases are formed and bi-variate B-splines are obtained.
In bi-variate B-splines, a refinement of the set of basis functions for one of the decision
variables means adding some new basis functions into this set. This assists to improve
the accuracy of the approximation. Nevertheless, refining a set of basis functions corre-
sponding to one of the decision variables leads to increasing the number of tensor spline
bases in bi-variate B-splines, exponentially. This is a drawback in bi-variate B-splines
which does not provide a local refinement [20, 21, 22].

To overcome the drawback of bi-variate B-splines, T-splines have been developed in
computer-aided design (CAD) [21]. T-splines follow the same flexibility as bi-variate B-
splines, but the refinement in T-splines is local. To the best of our knowledge, so far in
the literature, T-splines have not been used to approximate computationally expensive
functions in multiobjective optimization problems (MOPs). In this report, we discuss
the potential of T-splines to approximate computationally expensive functions and to
do sensitivity analysis when dealing with multiobjective optimization problems. This is
the first step on investigating the idea of employing of T-splines in sensitivity analysis
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for computationally expensive non-differentiable functions. Here, we do not yet provide
any idea on function approximation through T-splines.

The rest of this report is organized as follows. In Section 2, we briefly discuss basic
concepts in multiobjective optimization, functional ANOVA decomposition and give an
overview of ANOVA-MOP. In Section 3, we discuss uni-variate function approximation
by spline functions. Then, in Section 4, bi-variate function approximation is discussed.
In Section 5, we discuss T-splines and the prospect of employing T-splines for ANOVA-
MOP. Finally, conclusions are drawn in Section 6.

2 Background in Multiobjective Optimization
In this section, we briefly discuss some concepts used in this report. We then provide a
brief description of the ANOVA-MOP method. We consider multiobjective optimization
problems of the form:

minimize
x∈S {f1(x), . . . , fk(x)}, (1)

where fi : S → R are k (≥ 2) conflicting, computationally expensive objective functions,
S = {x ∈ Rn : xlc ≤ xc ≤ xuc , c = 1, . . . ,n} is a nonempty feasible decision set which is a subset of
the decision space Rn. A solution x = (x1, . . . ,xn)

T ∈ S is called a feasible decision (variable)
vector, where xc, c = 1, . . . ,n, are decision variables and, xlc and xuc are the lower and upper
bounds of xc, respectively.

In the ANOVA-MOP method, we utilize the functional ANOVA decomposition and
sensitivity analysis [2] to measure the importance of the variables in the objective func-

tion values. Suppose an arbitrary function g : S→ R is square integrable, i.e.,
∫
S
g(x)2dx <

∞. The functional ANOVA decomposition of g is

g(x) = g0 +
∑
i

g(i)(xi) +
∑
i<j

g(i,j)(xi ,xj ) + . . .+ g(1,...,n)(x), (2)

where g0 =
∫
S
g(x)dx, if ∫

Siu

g(i1,...,ie)(xi1 , . . . ,xie )dxiu = 0, (3)

for all u = 1, . . . , e, (e ≥ 1), and 1 ≤ i1 < . . . < ie ≤ n. We call g(i) a main effect and g(i1,...,ie), an
interaction of order e. This results in decomposing the variance of g , i.e., var(g) = D0 =∫
S
g2(x)dx− g20 , into 2n − 1 variance components

D0 =
∑
i

D(i) +
∑
i<j

D(i,j) + . . .+D(1,...,n), (4)
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whereD(i1,...,ie) = var[g(i1,...,ie)(xi1 , . . . ,xie )] =
∫∏e

u=1 Siu
g2
(i1,...,ie)

(xi1 , . . . ,xie )dxi1 . . .dxie . The Sobol’

indices [7] are calculated as

l(i1,...,ie) =D(i1,...,ie)/D0, (5)

for all (i1, . . . , ie) ∈ Δ = {(r1, . . . , ru) : 1 ≤ r1 < . . . < ru ≤ d,u ≥ 1}, e = 1, . . . ,n. The total
sensitivity indices, which are measures of the contribution of each decision variable xj , for
j = 1, . . . ,n, in the value of g , are given by

lTj =
∑

(i1,...,ie)∈Δ:j∈{i1,...,ie}
D(i1,...,ie)/D0, j = 1, . . . ,n. (6)

Sobol’ indices and total sensitivity indices are typically approximated in practice. In
this report, we call them estimated Sobol’ indices and estimated total sensitivity indices,
respectively.

In [4], we have developed the ANOVA-MOP method to solve high-dimensional, com-
putationally expensive MOPs. A general sketch of steps of ANOVA-MOP is as follows:
we first build a surrogate function for each individual objective function which is accu-
rate everywhere in the entire decision/objective space and formulate a surrogate MOP.
Corresponding each surrogate objective function, total sensitivity indices are estimated
to identify effective and ineffective variables. Then, objective functions which have the
same effective decision variables are considered as a sub-problem. In this way, the surro-
gate MOP is decomposed into a number of sub-problems with a lower dimension in the
decision and objective spaces compared to those in the surrogate MOP. Sub-problems are
then solved independently by any appropriate optimization method. Solutions obtained
are composed to form solutions for the surrogate MOP. These solutions are treated as
approximated solutions for the original, computationally expensive MOP.

Generally, it is important to estimate total sensitivity indices accurately. In Section 1,
we discussed how ANOVA-MOP can benefit from sensitivity analysis methods devel-
oped in the literature. In Section 5, we introduce T-splines as a possible metamodeling
technique to approximate terms in the functional ANOVA decomposition. In this way,
non-differentiable functions can be approximated accurately and correspondingly total
sensitivity indices are estimated accurately. To introduce T-splines, we need a discussion
on function approximation by splines functions given in the next section.

3 Uni-variate B-splines
Basis-splines or in a short term, B-splines are the essence of both bi-variate B-splines and
T-splines. In this section, we elaborate B-splines. Thereafter, in the following sections,
bi-variate B-splines and T-splines are discussed.

Definition 3.1. Suppose U includes a set of e+p+1 non-decreasing numbers, u1 ≤ u2 ≤ u3 ≤
. . . ≤ ue+p+1. We call the uis knots, the setU the global knot vector, and the half-open interval

[ui,ui +1) the ith knot span, p is the basis degree and e is the number of basis functions
employed to create the B-spline curve.
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Knots can be repeated. The multiplicity of ui denoted by #ui is the maximum number
repetition of ui in U . The multiplicity of a knot affects the continuity of the correspond-
ing basis function at this knots. In fact, if ui is repeated κ times, then the corresponding
basis function is Cp−κ continuous. Thus, a knot can be repeated at most p+1 times. Since
some knots may be repeated in U , some knot spans may not exist. For the sake of sim-
plicity, if a knot ui repeats κ > 1 times, i.e., ui = ui+1 = ... = ui+κ−1, we write it as ui(κ).
Otherwise, ui with only one repetition is a simple knot. In a uniform global knot vector,
knots are equally spaced, i.e., ui+1 − ui = c in which c is a constant for 0 ≤ i ≤ e + p + 1.
Otherwise, the global knot vector is non-uniform.

Definition 3.2. If the knots at the beginning and the end have multiplicity p + 1, i.e., u1 =
u2 = . . . = up+1 and ue+1 = ue+2, . . . = ue+p+1, then the global knot vector is said to be open.

A basis function built based on an open global knot vector is discontinuous at the begin-
ning and the end.

Definition 3.3. For a global knot vector U , the B-splines Ni,p(x) of degree p are defined by
the Cox-de Boor recursion formula [19]:

Ni,0(x) =

{
1 x ∈ [ui,ui+1)
0 otherwise

(7)

Ni,p(x) =
x −ui

ui+p −ui Ni,p−1(x) +
ui+p+1 − x

ui+p+1 −ui+1Ni+1,p−1(x) (8)

In the above equations, if a denominator becomes zero, then the corresponding term is
assigned zero. If p = 3, we callNi,3 a cubic-basis function. We proceed with the following
properties about the set of basis functions [19]:

1. for all i,p and x, Ni,p(x) ≥ 0,

2. if x � [ui,ui+1), then Ni,p(x) = 0,

3. on any given knot span [ui,ui+1), at most p + 1 of the basis functions are non-zero,
i.e., Ni−p,p(x),Ni−p+1,p(x),Ni−p+2,p(x), . . . ,Ni,p(x),

4. for any given knot span [ui,ui+1), we have that the summation of all non-zero basis

functions is one, i.e.,
i∑

j=i−p
Nj,p(x) = 1, for all x ∈ [ui,ui+1),

5. the number of knots in U is e+p+1 in which p is the degree of basis functions and
e is the number of basis functions,

6. at the interior of a given knot span [ui,ui+1), all derivatives of basis function Ni,p(x)
exist. In fact, Ni,p is p − κ times continuously differentiable at a knot with multi-
plicity κ.

In what follows, without loss of generality, we assume that f : [a,b] −→ R is a compu-

tationally expensive black-box function and f̂ : [a,b] −→ R is a surrogate function to be

built. We discuss a general sketch of building f̂ by B-spline basis functions.
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Definition 3.4. For a given degree p and a global knot vector U including e + p +1 knots:

f̂ (x) =
e∑

i=1

αiNi,p(x), (9)

where the coefficients αi , i = 1, . . . , e,must be estimated for a given set of sample points (xi ,yi), i =
1, . . . ,n, (n ≥ e) and yi = f (xi).

To estimate the coefficients, we solve the following least square problem:

minimize
(α1,...,αe)

T ∈Re

n∑
i=1

(f̂ (xi)− yi)2. (10)

Example 3.5. Suppose x ∈ [0,π] and f (x) = |sin(3x) | in which |.| is the absolute value sign.
We consider p = 3 and U = {0,0,0,0, π3 , π3 , π3 , 2π3 , 2π3 , 2π3 ,π,π,π,π}. Since U has 14 knots, the
number of basis functions i.e., e = 14−3−1 = 10. We consider two kinds of sampling, i.e., fine
grid and randomly. Regarding the fine grid sampling, we evaluate f at sample points xi = iπ

9
for i = 0, . . . ,9. Random points are selected in MATLAB random points generator. Figures 1

(a) and (b), and Figure 2 (a) depict the original function, the surrogate function f̂ by fine grid
sampling and random sampling, respectively. As can be seen, this function is non-differentiable
at x ∈ {π3 , 2π3 }. Since the knot values π

3 and 2π
3 are repeated 3 times inU , the surrogate function

f̂ is C0 according to property 6. We also approximate the function f using the selected sample
points by RBF, SVR and Kriging. Figures 1 (c-e) and Figures 2 (b-d) illustrate the results,
respectively. For instance, as can be seen in Figure 1 (b), RBF does not represent f accurately
at x ∈ {π3 , 2π3 } where f is not differentiable.

Next, we discuss bi-variate function approximation by B-splines.

4 Bi-variate function approximation

4.1 Bi-variate B-splines
The expansion of uni-variate B-splines regression to bi-variate B-splines one is straight-
forward.

Definition 4.1. Suppose f : [a,b]2 −→ R is a computationally expensive black-box bi-variate

function and f̂ : [a,b]2 −→ R is a surrogate function to be built. Then

f̂ (x1,x2) =
e1∑
i=1

e2∑
j=1

αi,jN
p,q
i,j (x1,x2), (11)
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Figure 1: A uni-variate non-differentiable function (a) approximated by B-splines (b),
RBF (c), SVR (d) and Kriging (e). Only B-splines represent non-differentiability of this
function, properly. (Color online)
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Figure 2: The uni-variate non-differentiable function represented in Figure 1 (a) is ap-
proximated by selecting samples randomly through B-splines (a), RBF (b), SVR (c) and
Kriging (d). Only B-splines represent non-differentiability of this function, properly.
(Color online)

9



in which N
p,q
i,j (x1,x2), i = 1, . . . , e1, j = 1, . . . , e2, are called tensor spline bases and formed as

N
p,q
i,j (x1,x2) = Ni,p(x1)Nj,q(x2) where Ni,p, i = 1, . . . , e1, are basis functions of degree p corre-

sponding to a global knot vector U = {u1,u2, . . . ,ue1+p+1}, Nj,q, j = 1, . . . , e2, are basis func-
tions of degree q corresponding to a global knot vector V = {v1, v2, . . . , ve2+q+1} and αi,j , i =
1, . . . , e1, j = 1, . . . , e2, are coefficients to be calculated.

These coefficients for given U and V and a set of sample points (xi1,x
i
2, y

i), yi = f (xi1,x
i
2),

i = 1, . . . ,Δ,Δ ≥ e1.e2, are calculated through minimizing least square error by adopting
problem (10) for a bi-variate case. One can see that bi-variate B-splines has a tensor
product structure.

Example 4.2. Suppose (x1,x2) ∈ [0,π]2 and f (x1,x2) = |sin(3x1)|. By considering p = q = 3
and U = {0,0,0,0, π3 , π3 , π3 , 2π3 , 2π3 , 2π3 ,π,π,π,π} and V = {0,0,0,0,π,π,π,π}, we have e1 = 10,
e2 = 4 and 40 basis functions. Thus we select 40 samples points. The set of sample points in

the decision space is {(xi1,xj2)
∣∣∣∣ xi1 = iπ

9 , i = 0, . . . ,9,x
j
2 =

jπ
3 , j = 0,1,2,3} . Figures 3 (a) and (b)

depict the original function f and the surrogate function f̂ . As can be seen, this function is
non-differentiable on the lines x1 =

π
3 and x1 =

2π
3 . We also approximate the function f using

the selected sample points by RBF, SVR and Kriging. Figures 3 (c-e) illustrate the results.
As can be seen in these figures, none of them is able to represent f in regions where f is not
differentiable.

Remark 4.3. The task in approximating a uni-variate (or a bi-variate) function by B-splines
for a given degree p (or p and q) is to identify the global knot vector U (or U and V ). Sev-
eral methods have been developed in the literature to approximate uni-variate functions by
B-splines, see e.g.,[23, 24].

A drawback of bi-variate B-splines in function approximation is that, refining a set
of basis functions for one the variables increases the number of tensor spline bases, ex-
ponentially. This may add some unnecessary basis functions after refinement. Next we
discuss T-splines to rectify such an issue.

5 Review of T-splines

5.1 Preliminary
Before we discuss T-splines, we need to explain some basic concepts. In this subsection,
we provide them.

Definition 5.1. For given global knot vectors U = {u1,u2, . . . ,ue1+p+1} and V = {v1, v2, . . . ,
ve2+q+1}, we call the Cartesian product of U and V , i.e., UV = U × V , as the knot-value-
coordinate system. The set of knot indices are I1 = [1, e1 + p +1]∩N and I2 = [1, e2 + q +1]∩
N. The knot-index-coordinate system is defined as the Cartesian product of I1 and I2, i.e.,
I = I1 × I2 which is a subset of the indices space N2 [25].

The following example shows the motivation of defining these systems.
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Figure 3: A bi-variate non-differentiable function (a) approximated by B-splines (b), RBF
(c), SVR (d) and Kriging (e). Only B-splines represent non-differentiability of this func-
tion, adequately. (Color online)
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Figure 4: (a) Knot-Index-Coordinate System. (b) Knot-Value-Coordinate System corre-
sponding to (a). (Color online)

Example 5.2. Suppose U , V , p and q are the same as given in Example 4.2. Then, UV =
(0,0), (π3 ,0), (

2π
3 ,0), (π,0), (0,π), (π3 ,π), (

2π
3 ,π), (π,π) } , I1 = [1,14] ∩N, I2 = [1,8] ∩N and

I = I1 × I2. Two elements among all elements in the knot-index-coordinate system I are (1,1)
and (3,3). These two elements correspond to (u1, v1) and (u3, v3), respectively. In the knot-
value-coordinate system, these two elements represent the same coordinate (0,0). As can be
understood, the knot-index-coordinate system assists us to know which pair of knots we con-
sider. One should note that by all elements in the knot-value-coordinate system UV , we form
squares in the decision space as shown in Figure 4 (b). However, all elements in the knot-
index-coordinate system I form a full grid in the indices space. Figures 4 (a) and 4 (b) depict
the knot-value-coordinate system and the knot-index-coordinate system corresponding to Ex-
ample 4.2, respectively.

The net grid in Figure 4 (a) is called mesh in the knot-index-coordinate system. In this
figure, the red circles are called anchors in the knot-index-coordinate system.

5.2 T-splines
T-splines are first introduced in [21]. Following [21, 22, 26], we assume that p = q = 3.
Suppose I1 = [1, e1 + 4]∩N and I2 = [1, e2 + 4]∩N. T-splines is defined based on global
knot vectors U = {u1, . . . ,ue1+4} and V = {v1, . . . , ve2+4} and a T-mesh. We define a T-mesh
as mentioned in [27].

Definition 5.3. A T-meshT is a rectangular partition of the knot-index-coordinate system I =
I1×I2, such that all elements corners, i.e., vertices of T, have integer coordinates. The elements
in T are open sets. The set of all vertices in T is denoted by V. A horizontal (respectively,
vertical) edge between two vertices v1 = {(i1, j1)} and v2 = {(i2, j2)} with i1 < i2 and j1 =
j2 (respectively, i1 = i2 and j1 < j2) is an open segment and is defined as he = ]i1, i2[×{j1}
(respectively, ve = {i1}×]j1, j2[). The set of all horizontal (respectively, vertical) edges is denoted
by hE (respectively, vE). The set of all edges E = hE∪vE. We denote the boundary of an element
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Q ∈ T by ∂Q and denote the union of the two vertices v1,v2 ∈ V which are endpoints of an
edge e ∈ E by ∂e. The valence of a vertex v ∈ V is the number of edges e ∈ E such that v ⊂ ∂e.
A vertex with valence three is called a T-junction. The union of all horizontal (respectively,
vertical) edges and vertices is called the horizontal (respectively, vertical) skeleton of the T-
mesh and is denoted by hS (respectively, vS). The skeleton of the T-mesh is defined as S =
hS∪ vS.
Definition 5.4. Following [27], the knot-index-coordinate system I is split into an active
region AR and a frame region FR (see Figure 5 (a)), such that AR = [3, e1 + 2] × [3, e2 + 2]
and FR = ([1,3]∪ [e1 + 2, e1 + 4])× [1, e2 + 4]∪ [1, e1 + 4]× ([1,3]∪ [e2 + 2, e2 + 4]).

One should note that AR and FR are closed regions.

Definition 5.5. Similar to [27], the T-mesh T is said to be admissible (see Figure 5 (a)), if
S∩FR includes the vertical segments {i} × [1, e2 + 4], for i = 1,2,3 and i = e1 +2, e1 +3, e1 +4,
and the horizontal segments [1, e1 + 4]× {j}, for j = 1,2,3, and j = e2 + 2, e2 + 3, e2 + 4, and all
vertices v ⊂ ]1, e1 + 4[× ]1, e2 + 4[∩FR have valence four.

If the T-mesh T is admissible, we then say that T belongs to AD. As mentioned in [27],
by Definition 5.5, the T-mesh does not have T-junctions in the frame region. See Figure 5
(a).

Definition 5.6. Following [27], the T-mesh T ∈ AD is said to belong to AD+ if, considering
each couple of vertices v1 = {(i1, j1)} and v2 = {(i2, j2)} in V, such that v1,v2 ⊂ ∂Q for some
Q ∈ T, and with i1 = i2 (respectively, j1 = j2), the open segment {i1} × ]j1, j2[ (respectively,
]i1, i2[× {j1} is included in S.

As pointed out in [27], by Definition 5.6, the T-mesh does not include two facing T-
junctions as those shown in Figure 5 (b).

Definition 5.7. As mentioned in [27], for a given T-mesh T ∈ AD, the set of anchors A(T) =
{A ∈ V : A ⊂ AR} (see Figure 5 (a)). An anchor A ∈A(T) is represented as a× b where {a} ⊂ I1
and {b} ⊂ I2.

Definition 5.8. Suppose {a} ⊂N. Following [27], we define hJ(a) := {i ∈ I1 : {i}×a ⊂ vS} and
vJ(a) := {j ∈ I2 : a× {j} ⊂ hS}, and assume that these sets are ordered.

Definition 5.9. For a given anchor A = a×b ∈A(T), following [27], we define the correspond-
ing horizontal (vertical) index vector hv(A) (vv(A), respectively) as a subset of hJ(b) (vJ(a),
respectively) such that hv(A) = (i1, . . . , i5) ∈ N5 which is made of the unique 5 consecutive
indices in hJ(b) with {i3} = a. Analogously, vv(A) = (j1, . . . , j5) ∈N5 is constructed.

In Figure 5 (a), the green lines show the horizontal and vertical index vectors correspond-
ing to the anchor A centered on (9,7).

Definition 5.10. Following [27], for a given T-mesh T ∈ AD+, a T-spline representation is
given by

T (x1,x2) =
eT∑
i=1

αiBi(x1,x2), (12)
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Figure 5: (a) An admissible T-mesh belonging to AD+ in the knot-index-coordinate sys-
tem. The frame and active regions are shown in purple and white, respectively. Red
circles are anchors. T-junctions are in blue. Green lines show the horizontal and vertical
index vectors of the anchor (T-junction) A. (b) An admissible T-mesh with face-to-face
T-junctions A1 and A2. This T-mesh does not belong to AD+. It can be turned into an AD+

T-mesh by adding an edge connecting T-junctions A1 and A2. See Remark 5.15. (Color
online)

in which αi ∈ R are coefficients to be calculated, eT is the number of anchors in the T-mesh and
eT ≤ e1.e2. For i = 1, . . . , eT , Bi(x1,x2) is called a blending function corresponding to the ith

anchor point Ai and defined as

Bi(x1,x2) =Ni[ui](x1)Ni[vi](x2), (13)

where ui = [uδi1
,uδi2

,uδi3
,uδi4

,uδi5
] and vi = [vβi1

, vβi2
, vβi3

, vβi4
, vβi5

] are sub-sequences of U and

V , respectively, where hv(Ai) =
(
δi1,δ

i
2,δ

i
3,δ

i
4,δ

i
5

)
and vv(Ai) =

(
βi
1,β

i
2,β

i
3,β

i
4,β

i
5

)
, Ni[ui] and

Ni[vi] are cubic-basis functions defined on ui and vi , respectively. We call ui and vi local
knot vectors of Ni in x1 and x2 coordinates, respectively. As mentioned in [26], blending
functions (13) in T-splines are not necessarily linearly independent. We shall discuss it in more
details in Subsection 5.4. One should anchor that the coefficients αi, i = 1, . . . , eT , for a given
set of sample points (xi1,x

i
2, y

i), yi = f (xi1,x
i
2), i = 1, . . . ,Δ,Δ ≥ eT , and a given set of blending

functions with their corresponding local knot vectors are calculated through minimizing least
square error by adopting problem (10) for a bi-variate case.

If the T-mesh in Figure 5 (a) consists of all (i, j) ∈ I1 × I2, then T-splines representation
in 5.10 is equal with Definition 4.1.

One should note that there is a one-to-one correspondence between anchors in a T-
mesh and blending function in (12). The advantage of T-splines (i.e., Definition 5.10) over
bi-variate B-splines (i.e., Definition 4.1) lies in the fact that refinement has a local effect
on T-splines, because T-splines does not follow a tensor product structure. Therefore a
T-mesh can form an incomplete net grid as shown in Figure 5 (a). Figure6 (a) depicts an
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Figure 6: (a) Initial mesh. (b) bi-variate B-splines refinement. (c) T-spline refinement.
(Color online)

initial mesh. Refining this mesh by bi-variate B-splines and T-splines leads to generating
a new mesh and a T-mesh as shown in Figures 6 (b) and 6 (c), respectively. As can be
seen, the refinement in Figure 6 (b) has a global effect whereas it is local in Figure 6 (c).

Suppose ui and vi , i = 1, . . . , eT , are given and x̃1,j = x1 − uδij and ũj,k = uδij
− uδik . From

Equations (7) and (8) with p = 3, we have

Ni[ui](x1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x1 = uδi1
= uδi2

= uδi3
= uδi4

,
(x̃1,1)

3

ũ4,1ũ3,1ũ2,1
uδi1
≤ x1 < uδi2

,
−(x̃1,1)2x̃1,3
ũ4,1ũ3,1ũ3,2

+
−x̃1,4x̃1,2x̃1,1
ũ3,2ũ4,2ũ4,1

+
−x̃1,5(x̃1,2)2
ũ5,2ũ4,2ũ3,2

uδi2
≤ x1 < uδi3

,
x̃1,1(x̃1,4)

2

ũ4,1ũ4,2ũ4,3
+

x̃1,2x̃1,4x̃1,5
ũ4,3ũ4,2ũ5,2

+
(x̃1,5)

2x̃1,3
ũ5,2ũ5,3ũ4,3

uδi3
≤ x1 < uδi4

,
−(x̃1,5)3

ũ5,2ũ5,3ũ5,4
uδi4
≤ x1 < uδi5

,

1 x1 = uδi2
= uδi3

= uδi4
= uδi5

,

0 otherwise.

(14)

Similarly, Ni[vi](x2) is defined. In T-splines, local refinement means inserting a new
anchor in the T-mesh and correspondingly adding a new blending function into the T-
splines equation. In the next subsection we discuss it.

5.3 Local refinement of T-splines
A local refinement of T-splines consists of blending functions refinement and T-mesh re-
finement [22]. When inserting a new anchor in a T-mesh we refine those blending func-
tions which their local knot vectors are changed by presence of the new anchor. Refining
these blending functions may possibly result in generating some new blending functions.
Since there is a one-to-one correspondence between anchors and blending functions, we
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must add some new anchors corresponding to those new generated blending functions.
We first discuss blending function and then refining T-mesh.

5.3.1 Blending function refinement

Suppose u = [u1,u2,u3,u4,u5] is a hypothetical local knot vector in coordinate x1 cor-
responding to N [u](x1); ũ is a knot vector including l knots and u is a sub-sequence
of ũ. Then, as mentioned in [22], cubic-basis function N [u](x1) is written as a linear
combination of l − 4 cubic-basis functions with local knot vector of length 5 which are
sub-sequences of ũ. We explain cubic-basis function refinement for l = 6. Cases with
l > 6 can be obtained repeatedly using the following equations.
If ũ = [u1, ũ,u2,u3,u4,u5], then

N [u](x1) =
ũ −u1
u4 −u1N [u1, ũ,u2,u3,u4](x1) +N [ũ,u2,u3,u4,u5](x1), (15)

if ũ = [u1,u2, ũ,u3,u4,u5], then

N [u](x1) =
ũ −u1
u4 −u1N [u1,u2, ũ,u3,u4](x1) +

u5 − ũ
u5 −u2N [u2, ũ,u3,u4,u5](x1), (16)

if ũ = [u1,u2,u3, ũ,u4,u5], then

N [u](x1) =
ũ −u1
u4 −u1N [u1,u2,u3, ũ,u4](x1) +

u5 − ũ
u5 −u2N [u2,u3, ũ,u4,u5](x1), (17)

if ũ = [u1,u2,u3,u4, ũ,u5], then

N [u](x1) =N [u1,u2,u3,u4, ũ](x1) +
u5 − ũ
u5 −u2N [u2,u3,u4, ũ,u5](x1), (18)

and if ũ ≤ u1 or ũ ≥ u5, then N [u](x1) does not changed.
A blending function B(x1,x2) can be refined in either x1 or x2 coordinate. There-

fore, the corresponding cubic-basis function as shown above is split into two cubic-basis
functions. This means that two new blending functions are resulted which sum to the
blending function B(x1,x2). By adding new knots, a set of blending functions are ob-
tained that sum to the original one. In Figure 7 (a), we refine the blending function B1

by first inserting a new knot in the corresponding local knot vector in x1 coordinate and
then in the corresponding local knot vector in x2 coordinate. This leads to generating
four blending functions as shown in Figure 7 (b). By applying equations (15)- (18), in
this figure we have

B1(x1,x2) = p1B̃1(x1,x2) + p2B̃2(x1,x2) + p3B̃3(x1,x2) + p4B̃4(x1,x2). (19)

in which the coefficients pi , i = 1, . . . ,4, are obtained from the above equations.
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Figure 7: (a) Blending function B1. (b) Refinement of B1 in x1 and x2 coordinates leads to
generating new blending function B̃i , i = 1, . . . ,4. (Color online)

5.3.2 T-mesh refinement

In what follows, we present a T-mesh refinement discussed in [22]. As mentioned earlier,
there is a one-to-one correspondence between blending functions and anchors in a T-
mesh. According to Definition 5.10, in a T-mesh, all anchors corresponding to all blending
functions satisfy Definition 5.9. When adding a new anchor in the current T-mesh, three cases
may occur:

• Case 1: The local knot vector of an existing blending function corresponding to
an anchor does not include a knot dictated by Definition 5.9. For example, in
Figure 8 (b), the local knot vector of the blending function B1 in x2 coordinate is
[v6, v7, v9, v10, v11]. This local knot vector is missing knot v8 to follow Definition 5.9.

• Case 2: The local knot vector of an existing blending function (corresponding to
an existing anchor) contains a knot which violates Definition 5.9 in the current T-
mesh. For instance, in Figure 8 (d), the local knot vector of the blending function

B̃ in x1 coordinate is [u6,u7,u8,u9,u10]. Thus, the local knot vector violates Defini-
tion 5.9.

• Case 3: A new blending function is obtained which does not have any correspond-
ing anchor in the T-mesh. For example, in Figure 8 (d), a new blending function
with local knot vectors [u7,u8,u9,u10,u11] and [v6, v7, v8, v9, v10] is resulted. How-
ever, as can be seen, there is not any anchor in the T-mesh corresponding to this
new blending function.

If by the result of blending function modification, none of the above cases occurs, then
the T-mesh is valid. Otherwise, as discussed in [22], we conduct the following steps until
the above cases are resolved:
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Figure 8: T-mesh refinement. (Color online)
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• Step 1: Insert all desirable anchors into the T-mesh and modify the corresponding
blending functions.

• Step 2: If Case 1 occurs, we insert necessary knots into that blending function.

• Step 3: If Case 2 occurs, we insert a new anchor in an appropriate place into the
T-mesh.

• Step 4: Repeat Steps 2 and 3 until all cases are resolved.

Repeating Steps 2 and 3 automatically resolves Case 3. We explain the algorithm with an
example.

Example 5.11. Figure 8 (a) depicts some part of AR of a hypothetical T-mesh to be refined.
As can be seen, none of the above cases occurs. We wish to add a new anchor correspond-
ing to a pair of knots (v8,u8). This is equal with adding a new knot v8 in V . We denote

the blending function corresponding to this new anchor by B̃. When we add the new an-
chor, (Figure 8 (b)) without refining any blending function, some of the above cases occurs.

Since the coordinate of the new anchor corresponding to B̃ is (8,8), Case 1 happens in four
blending functions, i.e., those corresponding to the anchors at (8,6), (8,7), (8,9) and (8,10).
The blending functions corresponding to these anchors miss the new knot v8. This case is re-
solved by adding the new knot v8 in these blending function through the blending function
refinement discussed in Subsection 5.3.1. In Figure 8 (b), the blending function corresponding
to the anchor (8,9) is B1 = N [u6,u7,u8,u9,u10](x1)N [v6, v7, v9, v10, v11](x2). By adding the
new knot v8 in the local knot vector of this blending function in x2 coordinate, it is decom-
posed into two new blending functions, i.e., aN [u6,u7,u8,u9,u10](x1)N [v6, v7, v8, v9, v10](x2)
and bN [u6,u7,u8,u9,u10](x1)N [v7, v8, v9, v10, v11](x2) in which the coefficients a and b are ob-
tained through equation (16).

The blending function bN [u6,u7,u8,u9,u10](x1)N [v7, v8, v9, v10, v11](x2) (i.e., B̃1 in Fig-
ure 8 (c)) satisfies Definition 5.9. Analogously, the refinement of the blending functions
corresponding to the anchors (8,6), (8,7) and (8,10) follows Definition 5.9. Nevertheless,
as shown in Figure 8 (d), Case 2 occurs for the blending function aN [u6,u7,u8,u9,u10](x1)
N [v6, v7, v8, v9, v10](x2) (i.e., B̃), since the local knot vector of this blending function in x1 co-
ordinate does not satisfy Definition 5.9. We must resolve this situation by adding a new anchor
in the current T-mesh.

By adding a new anchor with coordinate (9,8) (and denoting the corresponding blending

function by B̂) in the T-mesh in Figure 8 (d), the T-mesh shown in Figure 8 (e) is obtained. This
leads to resolve Case 2, but create Case 1 in the blending function corresponding to the anchor
(9,9) as shown in Figure 8 (f). In this figure, the local knot vector of the blending function B2

in x2 coordinate misses the knot v8, thus Definition 5.9 is not called for this local knot vector.
This is rectified by inserting the knot v8 into this local knot vector as shown in Figure 8 (g). As
can be seen in this figure, none of the above cases occurs. Thus the resulted T-mesh is a valid
T-mesh.

As discussed in [22], it is guaranteed that the above described algorithm always ter-
minates. In the worst situation, the algorithm converts a T-mesh into a full grid mesh.
In a full grid mesh, all basis functions are linearly independent. However, in T-splines,
cases may arise that the blending functions are not linearly independent (see e.g., [26]).
Actually, the above algorithm does not guarantee that the blending functions obtained
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Figure 9: (a) A T-mesh. T-junctions are in blue color. (b) T-junction extensions (shown in
green) in the T-mesh of (a). (Color online)

are linearly independent as discussed in [26]. In this reference, a sub-class of T-splines
called analysis-suitable T-splines is introduced in which blending functions are linearly
independent and form basis functions for T-splines. We discuss it in the next subsection.

5.4 Analysis-Suitable T-splines
The matter of linearly independent blending function has been investigated in [26]. As
a result, a sub-class of T-splines termed analysis-suitable T-splines (AST-splines) is intro-
duced. In AST-splines, blending functions are linearly independent and form basis func-
tions [26]. Before defining AST-splines, we need to define T-junction extension for a T-
junction. Let TJ be the set of all T-junctions (i.e., vertices with valence three) in AR.
Following [27], we adopt the notation ⊥,�,�,� to show the four possible orientations of
the T-junctions.

Definition 5.12. For the sake of simplicity and following [27], suppose τ = {(i, j)} ∈ TJ and

is type of �. It is obvious that i is one of the components of hJ(j). The 4 consecutive indices

i1, i2, i3, i4 are extracted from hJ(j) such that i = i2. Let ext
e(τ) = [i1, i]×{j},extf (τ) =]i, i4]×{j}

and ext(τ) = exte(τ) ∪ extf (τ), in which exte(τ) is called edge-extension, extf (τ) is called
face-extension and ext(τ) is called T-junction extension of τ.

Analogously, other types of T-junction extensions are defined. T-junctions of types �,�
(respectively, ⊥,�) are called horizontal (respectively, vertical). Figures 9 (a) and (b) show
a T-mesh and corresponding T-junction extensions, respectively.
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Figure 10: An AST-mesh. (Color online)

Definition 5.13. Following [28], an analysis-suitable T-mesh (AST-mesh) T ∈ AD+ is a T-
mesh in which no horizontal T-junction extension touches a vertical T-junction extension. The
T-spline corresponding to an analysis-suitable T-mesh is called an analysis-suitable T-splines.

The authors in [26] prove that blending functions in AST-splines are linearly indepen-
dent and form basis functions. Figures 10 shows an AST-mesh.

As discussed in Subsection 5.3, a new anchor can be added into a T-mesh and a new
refined T-mesh can be obtained. However, this refinement may result a T-mesh whose
corresponding blending functions are not linearly independent. This can be resolved by
adding some new anchors in appropriate places in the T-mesh to become an AST-mesh.
For instance, the T-mesh shown in Figure 9 (b) is not an AST-mesh. By adding a new
anchor centered at (7,6), it is converted into an AST-mesh as shown in Figure 10. In [29],
a heuristic method is developed by which a T-mesh is converted into an AST-mesh by
adding new anchors in appropriate places.

Remark 5.14. The definition of AST-mesh shows that a new anchor should be added on an
existing edge. Thus, it is not possible to add an isolated anchor, i.e., a anchor that is not
located on any edge; Because, according to Definition 5.13, for in an isolated anchor as shown
in Figure 11, the vertical T-junction extension (which has two face extensions) touches the
horizontal T-junction extension (which has two face extensions as well).

Remark 5.15. The restriction to AD+ (Definition 5.6) can be seen from Figures 12 (a) and (b).
The AD T-mesh shown in Figure 12 (a) does not belong to AD+, since it includes some facing
T-junctions (shown in blue). It is not also an AST-mesh since, for instance, the horizontal
T-junction extension corresponding to the T-junction centered on (7,7) touches the vertical T-
junction extension corresponding to the T-junction centered on (6,6). However, by adding the
missing edges (shown in green in Figure 12 (b)), it is turned into an AD+ T-mesh which is also
an AST-mesh (see Figure 12 (b)).
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So far, we have introduced T-splines, AST-splines and matters related to linearly in-
dependent blending functions. In the next section, we discuss how AST-splines can be
employed to developed surrogate-based methods for computationally expensive MOPs.

5.5 Application of T-splines in ANOVA-MOP
As discussed in [4], in the ANOVA-MOP method, a surrogate function is built for each
computationally expensive function. We expect that for computationally expensiveMOPs
including non-differentiable functions, AST-splines can be considered as a potential meth-
od to conduct sensitivity analysis on such functions. In this way, sub-problems are
formed accurately by ANOVA-MOP and solutions obtained can be reliable. The beauty
of AST-splines lies in the fact that computationally expensive functions can be approxi-
mated with fewer bases functions in comparison to bi-variate B-splines. To be able to in-
corporate AST-splines in the ANOVA-MOP method, the following important challenges
must be first tackled:

• Challenge 1: Asmentioned earlier, theminimumnumber of required sample points
is equal to the number of blending functions. By adding a new anchor into a T-
mesh, some new anchors may also be added into the T-mesh as discussed in Sub-
section 5.3. Moreover, when converting the T-mesh into an AST-mesh, some new
anchors are added as discussed in Subsection 5.4. Nevertheless, to the best of our
knowledge, there is no discussion on where to add new anchors to improve the
accuracy of a surrogate function such that the number of new added anchors is
minimal.

• Challenge 2: In the literature, analytical properties of AST-splines such as linearly
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Figure 12: (a) An AD T-mesh which is neither AD+ nor an AST-mesh. T-junctions are
in blue. (b) An AD+ T-mesh which is an AST-mesh obtained by adding missing edge (in
green) in the T-mesh of (a). (Color online)

independent blending functions are limited for functions with two and three de-
cision variables [18]. Computationally expensive MOPs typically have more than
three decision variables. Thus, we should extend such analytical properties of AST-
splines for functions with more than three decision variables.

6 Conclusions
Sensitivity analysis plays an important part in the ANOVA-MOPmethod developed in [4].
We have discussed how sensitivity analysis methods developed in the literature can be
applied in ANOVA-MOP and paid attention to a method called T-splines. In particular,
we discussed a sub-class of T-splines termed analysis-suitable T-splines (AST-splines) in
which bases functions are linearly independent. Since a refinement in AST-splines is
local, computationally expensive functions can be approximated with fewer bases func-
tions in comparison to bi-variate B-splines. We expect that AST-splines can be considered
as a potential metamodeling method to approximation terms in the functional ANOVA
decomposition and to conduct sensitivity analysis on computationally expensive non-
differentiable functions. Analytical properties of AST-splines (T-splines) have been in-
vestigated for functions with at most three variables. However, computationally expen-
sive MOPs typically have more than three decision variables. Thus, to become applicable
in ANOVA-MOP, analytical properties of T-splines for functions withmore than three de-
cision variables must be developed. Then, by incorporating T-splines in ANOVA-MOP,
we expect that high-dimensional computationally expensive MOPs can be solved effec-
tively.
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