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ABSTRACT

Nieminen, Paavo
Multilayer Perceptron Training with Multiobjective Memetic Optimization
Jyväskylä: University of Jyväskylä, 2016, 151 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 247)
ISBN 978-951-39-6823-6 (nid.)
ISBN 978-951-39-6824-3 (PDF)
Finnish summary
Diss.

Machine learning tasks usually come with several mutually conflicting objectives.
One example is the simplicity of the learning device contrasted with the accu-
racy of its performance after learning. Another common example is the trade-off
that must often be made between the rate of false positive and false negative
predictions in diagnostic applications. For computer programs that learn from
data, these objectives are formulated as mathematical functions, each of which
describes one facet of the desired learning outcome. Even functions that intend
to optimize the same facet may behave in a subtly different and mutually conflict-
ing way, depending on the task and the dataset being examined. Multiobjective
optimization methods developed for simultaneous optimization of such multiple
objectives found their way to machine learning a few decades ago.

This dissertation discusses the past and current uses of multiobjective op-
timization in supervised learning, especially in training a multilayer perceptron
(MLP) artificial neural network for object classification. A literature overview
of multiobjective MLP training is presented, supported by a semi-automatic sur-
vey using a software tool created partly by the author. Based on the literature,
key goals and algorithmic elements are identified and applied to create a new
framework for training MLPs consistent with an implementation used earlier for
industrial projects using single-objective methods. Simulated datasets are used
to illustrate the functionality of the created training algorithm, and how memetic
Pareto-based multiobjective learning can be used for MLP classifier training. Em-
phasis is put on formulating useful representations and objective functions for
the task.

Keywords: Machine Learning, Neural Networks, Memetic Algorithms, Multi-
objective Optimization, Multilayer Perceptron, Classification Algo-
rithms
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PREFACE

This work was under preparation for many years, while most of my time was
spent in teaching, coordinating the studies of our master’s degree students, and
running around in various other departmental activities that were totally unre-
lated to research. At least for the standards of today, it took far too long for me
to get to the end of my doctoral studies. I am grateful to the Department and the
Faculty for having faith in me and for having a lot of patience during their long
wait. Nevertheless, I am even more grateful and probably indebted for the rest of
my life for having had the possibility of being involved in those wonderful other
tasks. I sincerely feel that my ten years at the department have not been wasted,
but used rather well in becoming educated not only as a researcher but also as
a teacher, project worker, curriculum designer, community outreacher and what
not. Good times, indeed.

The research itself eventually feels like a very logical step in the narrow
and twisty avenue of research and development duties I have been involved in.
From multiobjective optimization back to applying multiobjective optimization
once again, and now in a way that I strongly feel would benefit future research
in machine learning, which has made up most of the twists in my avenue. The
scientific contribution between the covers of this dissertation may be modest, but
I hope I have been able to write a clear exposition on a topic that I genuinely feel
is current and worthwhile to the community.
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1 INTRODUCTION

This dissertation examines how supervised machine learning tasks, especially
that of classifying objects based on measured features using feedforward neural
networks, such as the multilayer perceptron, can be formulated as multiobjective
optimization problems and solved using multiobjective memetic algorithms.

Most of machine learning has always been intrinsically at least bi-objective:
There is usually a trade-off between the accuracy of the resulting model and its
simplicity, related both to the interpretability of the model and its capability to
generalize to data outside the set of examples used in the learning process. Also,
in binary classification tasks, e.g., medical diagnosis or fault detection, there is
a trade-off between the sensitivity (true positive rate) and the specificity (true
negative rate) of the classifier. If these two bi-objective considerations are to be
combined together, or if classification tasks have more than two classes, and we
are interested in controlling classwise classification accuracies in addition to the
overall performance, the resulting problem becomes truly multiobjective in na-
ture, i.e., there are at least three mutually conflicting goals that cannot be opti-
mally satisfied by any single instance of a learning model.

In multiobjective machine learning, the task of the person selecting a model,
called the Decision Maker in the multiobjective optimization or decision mak-
ing parlance, becomes that of finding a suitable compromise solution within a
so-called non-dominated set (or Pareto optimal set) of candidate models. Explo-
ration of the non-dominated set itself can yield insight into the nature of the train-
ing dataset – how complex it is and what can and what cannot be learned from it,
eventually. The exploration becomes even more useful when population-based
optimization methods are used that do not restrict, for example, the number of
free parameters in the model before analysis. When applied to neural networks
in particular, the set-valued optimization solution can contain models with vary-
ing numbers of neurons or connections instead of fixing the network architecture
beforehand.

Simple methods to handle the bias-variance trade-off, such as regulariza-
tion by means of a “weight decay” term, translate into the well-known method
of scalarization (i.e., turning the problem into a scalar function) via aggregation
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by weighted sums of objective functions in a multiobjective setting. For objec-
tive functions known to be convex, the weighting method could in fact be used
to sample solutions belonging to the non-dominated set, but the method has se-
rious limitations when the behavior of the functions is not simple. This work
suggests that more versatile methods for multiobjective optimization should be
used in nontrivial machine learning tasks, and that currently the most appropri-
ate approach would be to use population-based memetic algorithms that aim to
discover a representative sample of the Pareto optimal set of classifier candidates.

For example, the sensitivity vs. specificity issue is traditionally dealt with
by using receiver operating characteristics graphs (ROC), in which a threshold
parameter can be selected to find a suitable operating point when the actual
parameters of the model have already been selected. Actual population-based
learning methods can be used for the same purpose, but without the constraint
of using just one free parameter in the ROC examination phase. Instead, the non-
dominated population of varying kinds of models can be analyzed in the sense
of the ROC curve.

In this thesis, multiobjective formulations of machine learning goals are
spelled out in a way that is independent of the specific selection of methods. For
the actual methodological contribution and computational experiments, two sta-
bilized and well-known artefacts are selected to be combined: multilayer percep-
tron (MLP) as a prediction model and the NSGA-II optimization algorithm as the
starting point of a memetic algorithm for learning. Benefits and applications of
using a multiobjective memetic optimization approach in supervised learning are
explored, and specific challenges arising from the selected combination of tools
are identified. Solutions to conquer the challenges are proposed, implemented,
and verified by experiments.

1.1 Earlier Work by the Author

Doctoral dissertations of the author’s home department are most commonly com-
piled as collections of previously published articles with a short introduction that
binds the earlier works in a common context. In this case, though, it was decided
that a monograph is a more convenient format, since the work presented here is
a complete “capstone study” bringing together some separate aspects of the vari-
ous research activities of the candidate so far. In what follows, the history leading
to the current work is presented with the most relevant citations. It may also be
worthwhile to mention that all of the cited works except that of Heikkola et al.
(2006) were prepared after the MSc degree of the author.

The author was first acquainted with multiobjective optimization while de-
veloping an interface between a physical modeling software (Numerrin) and an
optimization platform (WWW-NIMBUS). A successful application to ultrasonic
transducer design optimization (Heikkola et al. 2006) was published as a result,
in addition to some departmental technical reports not worth citing here.
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Later the author moved to machine learning and industrial data analysis
using a specific multilayer perceptron implementation. Of special interest in that
work were means of improving generalization of the learning model and its ex-
isting implementation (Nieminen and Kärkkäinen 2009) and exploring the use
of ideas from robust statistics to reduce sensitivity to class noise in classification
problems (Nieminen and Kärkkäinen 2010).

As yet another research activity, the author managed a publically funded
research project related to industrial data mining. Results of the project (called
RISC-PROS) are documented in technical reports by Nieminen et al. (2010), Aver-
buch et al. (2010), and Ivannikov et al. (2010). An application related to the de-
sign of experiments in a pilot paper machine was also published in Nieminen et
al. (2011). More recently, the author temporarily visited the field of informetrics,
taking part in developing a method for automatic literature clustering (Niemi-
nen et al. 2013). Preliminary results related to this dissertation have already been
published in a conference article by Nieminen and Kärkkäinen (2016).

1.2 Contributions of this Dissertation

The earlier works might seem unrelated at first, but after some thought, a sound
logic emerges that binds everything together. In the applied works on machine
learning, the learning problem was formulated, and dealt with, as an optimiza-
tion problem where a cost function is minimized. The canonical ways to handle
generalization manifest themselves as penalty terms that are added to the cost
function to “regularize” the model and drive the optimization towards simpler
or smoother models. The method used for class noise management published by
Nieminen and Kärkkäinen (2010) was also based on modifying the cost function.
Developments were surely achieved and applied in practical tasks in published
and unpublished works, but minimizing a weighted sum of cost and penalty
terms seemed inadequate when viewed from the background of multiobjective
optimization. Another inadequacy was that single-shot optimization of the em-
ployed model, the multilayer perceptron, is sensitive to initial random starting
values of the model parameters. Multistart optimization, i.e., local optimization
from multiple randomized starting points, had to be used in applications, natu-
rally always resulting in a whole population of trained models. No further ad-
vantage of the population or its diversity was systematically taken, though.

In the work at hand, the limitations of the earlier attempts are alleviated
by taking a holistic approach that properly separates, rather than forcefully com-
bines, the conflicting objectives naturally emerging in multilayer perceptron train-
ing. The training is also done with a fundamentally population-based algorithm,
reducing the effect of the initial randomization. Incremental tool development is
thus the driving purpose and contribution of the work documented in this dis-
sertation.

The literature clustering tool of Nieminen et al. (2013) was put to one of



16

its first practical tests in preparing the literature overview of this dissertation. It
happens that some new developments of the tool, again partly designed by the
author, are presented here for the first time, adding to the overall contribution a
surprising aspect of informetrics research.

In addition to mere results and algorithmic ideas, the output of computa-
tional sciences contains the implementations that ultimately describe the details
of the actual computation. The datasets, computations, results, and illustrations
of this dissertation can be exactly reproduced from publically available source
code contributed by the author1, in accordance with the Open Science Initiative2

of the Finnish Ministry of Education and Culture.
The rest of this dissertation is organized as follows. Chapter 2 introduces

the concepts, methods, and terminology used throughout. Chapter 3 reviews
existing literature on multiobjective machine learning with an emphasis on mul-
tilayer perceptron training and closely related methods. Chapter 4 describes the
automatic literature clustering tool of Nieminen et al. (2013) along with new de-
velopments, and details the process of charting the literature for this dissertation.
Chapter 5 digests the literature review into a list of goals and features expected
of a current multiobjective MLP training method. It also describes the specific
goals, algorithms and implementation of the incremental method development
performed for this dissertation. Chapter 6 contains illustrative examples of classi-
fication tasks and datasets in which the role and nature of multiobjective learning
and the interplay of different objective functions can be experienced. Chapter 7
presents the summary and conclusions of the research.

1 http://users.jyu.fi/~nieminen/research/dissertation2016/
2 http://openscience.fi/

http://users.jyu.fi/~nieminen/research/dissertation2016/
http://openscience.fi/


2 OVERVIEW OF CONCEPTS AND METHODS
INVOLVED

This chapter outlines the key problems and methods discussed in this disserta-
tion and defines the the terminology and notations used later on. Section 2.1
defines the notations and goals in classification tasks based on numerical data
vectors. Section 2.2 describes the multilayer perceptron used here as the learning
machine. Section 2.3 explains the multiobjective nature of supervised learning
tasks and outlines methods suitable to solve them. Section 2.4 presents the al-
gorithmic framework of population-based multiobjective memetic optimization
suitable for multiobjective learning. The chapter is concluded by a few notes of
the history of the related methodology in Section 2.5 and an example application
in Section 2.6.

2.1 Machine Learning

Computational emulation of natural cognitive and learning processes dates back
to the beginnings of the computer era. The first fundamental concepts such as
those of McCulloch and Pitts (1943) were created even before the first computers.
The current terminology of “learning machines” and “machine learning” started
to appear in the titles of scientific articles, conference sessions, and journals in the
late 1950’s, as exemplified by the early works of Friedberg (1958), Friedberg et al.
(1959), Campaigne (1959), and Samuel (1959). It is of course the computer pro-
gram that learns instead of the machine that executes the program, so “learning
machine” was known to be a “misnomer” from the very beginning (Ware 1955),
but apparently it became the name that stuck.

2.1.1 What is “Learning” Anyway?

In an overview published roughly in the middle of the history of machine learn-
ing so far, Carbonell et al. (1983) described the subject matter of machine learning
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broadly as “the study and computer modelling of learning processes in their mul-
tiple manifestations”. As examples of these “multiple manifestations” of learning
processes, they offered the following:

– “the acquisition of new declarative knowledge”
– “the development of motor and cognitive skills through instruction or prac-

tice”
– “the organization of new knowledge into general, effective representations”
– “the discovery of new facts and theories through observation and experi-

mentation”.

The historical overview of Carbonell et al. (1983) further goes on to categorize
machine learning research up to the 1980’s in various dimensions, namely the
underlying learning strategy (such as construction of prior knowledge as in pro-
gramming, memorization of facts from data, learning from a teacher, by anal-
ogy, from examples or from the external environment, or completely without a
teacher), type of knowledge acquired (such as parameters in an algebraic model,
decision trees, formal grammars, production rules, logical expressions, graphs,
schemas, computer programs, taxonomies, or mixed representations including
multiple types of knowledge), and domain of application (such as image recogni-
tion, robotics, natural language processing, and many others).

All the same general taxonomies of machine learning are of course still valid
today. This dissertation deals specifically with so-called feedforward artificial
neural networks as the machines that learn, so we will adopt a specific and use-
ful taxonomy of learning strategies and learning tasks which is presented, for
example, in the neural network textbook by Haykin (2009). In this taxonomy, the
learning strategy, or learning process, is one of the following:

– Learning with a teacher, which is commonly called also supervised learning.
In this strategy, there is a “teacher” involved in the learning process, ac-
tively changing the internals of the learning machine while the learning
takes place.

– Learning without a teacher, which Haykin (2009) further divides in two sub-
categories:

– Reinforcement learning where there is no teacher, but the learning ma-
chine will be changed according to feedback from a “critic” that anal-
yses the current outcome (positive or negative) of the machine’s inter-
action with the environment.

– Unsupervised learning where there is no teacher nor a critic to alter the
learning machine. Learning happens in a self-organized manner, after
setting up a task-dependent ideal of what the machine is to learn from
its environment.

Artificial neural networks are especially apt in some specific machine learning
tasks, which are categorized by Haykin (2009) as follows:
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– Pattern association where the brainlike activities of heteroassociation (mem-
orizing patterns that relate to another pattern and later recalling the con-
nection by association) and autoassociation (memorizing crisp patterns and
later recalling a crisp pattern when presented with a possibly distorted or
partial version of the same ideal pattern).

– Pattern recognition, i.e., “the process whereby a received pattern/signal is
assigned to one of a prescribed number of classes”.

– Function approximation, i.e., approximation of nonlinear functions.

In addition to the above three, Haykin (2009) mentions also the tasks of Control
and Beamforming, for which neural networks are most useful, but which are fur-
ther away from the focus of this dissertation.

Using the above taxonomies as a frame of reference, most of this disserta-
tion deals specifically with supervised learning for pattern recognition. The word
classification will be used for the domain here, because we want the machine to
be able to tell the class of objects that an input pattern belongs to. Supervision
comes into play when the learning is based on example data with labels indicat-
ing true classes of the input patterns. In this case, a “teacher” can be applied
to guide the learning. In practice, the teacher is able to evaluate error functions
and produce rules both to improve the internals of individual classifier models
and also to guide a simulated evolutionary process of a population of models.
In what follows, such learning with a teacher will be called training. As an anal-
ogy, one might think about the real-world scenario of a teacher or a coach with
superior knowlegde training a novice. In the classification tasks considered here,
the teacher knows the input patterns and the correct class labels that constitute
perfect knowledge of a sample of a measured environment. The training process
then aims to transfer this knowledge to the learning machine for practical use.
The type of knowledge acquired is the structure and parameters of an algebraic
model, namely the multilayer perceptron neural network.

2.1.2 Ways to Emulate Learning with Machines

The learning machines used in this work belong to the category of artificial neural
networks, the history and fundamentals of which are thoroughly described, for
example, in the classical textbooks of Bishop (1995) and Haykin (2009). A brief
note must be made that there are many other software (and even hardware) de-
vices that are able to emulate natural learning processes. A massive number of
textbooks have been written about machine learning, describing different tools,
techniques and both theoretical and practical points of view. A major web store1

lists no less than 1415 book titles including the search word “machine learning”.
31 of them have been published within a three month period preceding the query.
It almost seems like there is a specific textbook written for every particular appli-
cation domain and every programming platform or language imaginable.

1 www.amazon.com - the query on “machine learning” in book title was made on Aug 6,
2015.
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Most of the textbooks, the couple mentioned here being no exception, cover
some fundamental aspects of probability theory and statistics, which form the
theoretical foundations of most machine learning methods. This approach re-
flects the fact that statistical modeling, performed with or without computers,
can be interpreted exactly as the kind of learning that we wish the machines to
perform. In the actual computational world, though, there is always the algo-
rithm and the program involved, and it may be possible to extend or modify
statistically sound methods with further heuristics that work in practice, even if
the roots of their performance cannot (yet) be explained by mathematical proofs.
Some recent examples of this kind of a cycle between practice and theory are the
findings of Mehta and Schwab (2014) and those of Choromanska et al. (2015) that
attempt to explain theoretically what actually is happening when using so-called
deep learning models (see, for example, Hinton et al. 2006) which have proven ef-
fective in practice even without a complete explanatory theory. Another example
of the appearance of theoretical results after the algorithms have been succesfully
used in practice are the universal approximation results of approximators, for ex-
ample those for feedforward networks (e.g., Hornik et al. 1989) and for support
vector machines (Hammer and Gersmann 2003). Also to be noted is that theo-
retical proofs, even if they are very satisfactory by themselves, have assumptions
and limits that may not always be relevant in real-world practical use (Tikk et al.
2003).

Now, after citing some very theoretically oriented papers, a point must be
made that the rest of this thesis is a continuation of practical development work,
and the research involved is made from an explorative and empirical standpoint.
In the case of machine learning, the point of view is supported by the long track
record of algorithms that have found practical use before their complete theoret-
ical underpinnings have been thoroughly investigated.

2.1.3 Learning from Numerical Data Sets

After the more philosophical considerations of what defines “learning” in nature
or its emulation in a machine, we must come down to actual representations use-
ful in computer programming, where everything has to be represented digitally.
Especially in the context of multilayer perceptrons, we represent things in the ob-
servable environment of the learning machine as numerical vectors which can be
observed and recorded. Then the learning tasks, especially that of pattern recog-
nition, can be expressed as the task of approximating an unknown function that
maps observation vectors to vectors that represent classes of objects to be recog-
nized.

In what follows, we shall define that the word data means any “mass” of
digitized information2, be it recorded observations of real-world objects or any
other subjects of study in computational tasks.

A data object, consisting of variable values measured from a real-world or

2 Outside the confines of this dissertation, we are now living the era of “Big data”, where the
nature and structure of a single “datum” does not play a very significant role anymore.
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simulated system during one observation, is written as a vector in n-dimensional
Euclidean space, x ∈ Rn. Similar boldface notation is used for other vector-
valued constructs in the equations hereafter. Such a vector can also be called a
point in the measurement variable space. Yet another name for an individual data
object especially in the classification context is feature vector, as the components
are essentially some descriptive “features”, some of which may be derived from
original values.

A dataset, written {xi}N
i=1 consists of multiple observations. It is common to

write such a dataset as an N × n matrix, X ∈ RN×n,

X =


xT

1
xT

2
...

xT
N

 .

Boldface capital letters are used also for other matrix-valued constructs. The vec-
tor subscript xj means the j:th vector in a set of vectors {xi}N

i=1 whereas a round
bracket followed by a subscript (x)j means the j:th component of a vector x.

When machine learning is used for function approximation tasks (or pat-
tern recognition formulated as a special case), another dataset {ti}N

i=1 is usually
measured or created, containing the target vectors, i.e., the ideal or expected q-
dimensional outputs ti ∈ Rq that are known to correspond to each input vector
xi. The task for the machine is then to learn how to map each vector xi in the
input dataset to the corresponding vector ti in the target dataset. In classification,
the actual target output required from the model is an integer ci ∈ {1, . . . , K}
where K denotes the number of possible classes. Such an integral target ci can be
represented as a binary vector ti ∈ RK where the ci:th component is (ti)ci = 1 and
all other components are zeros, (ti)j = 0 for j 6= ci.

Just memorizing the discrete mappings in the so-called training set of pairs
{(xi, ti)}N

i=1 is not enough, though. We want the machine to be able to generalize
what it has learned by example, and apply the knowledge to new vectors x′ /∈
{xi}N

i=1 for which nobody knows the proper output before the machine makes
its advisory guess, or prediction. Only through proper generalization capability,
function approximation really becomes useful, and pattern recognition becomes
robust against minor deviations or distortions from the “ideal” patterns available
while training the learning machine. Ways of dealing with the generalization
capability are one central focus of the work at hand.

2.2 Multilayer Perceptron as a Learning Machine

Haykin (2009) defines a neural network as a “massively parallel distributed pro-
cessor made up of simple processing units that has a natural propensity for stor-
ing experiential knowledge and making it available for use”. His definition fur-
ther clarifies that (i) “Knowledge is acquired by the network from its environ-



22

ment through a learning process” and that (ii) “Interneuron connection strengths,
known as synaptic weights, are used to store the acquired knowledge”. In this
section, a specific kind of such a device, namely the multilayer perceptron (MLP),
is described through a brief historical overview. The multilayer perceptron has
been explored for more than half a century, so this section contains no news for
those already knowledgeable of neural networks. The reiteration here serves the
purpose of detailing the notations and concepts used later in this dissertation.

2.2.1 Artificial Neural Networks

According to Haykin (2009), the published history of artificial neural networks
dates back to the neuropsychological studies of the first half of the 20th century.
McCulloch and Pitts (1943) pointed out that the function of biological neurons
could be modeled by means of propositional logic, thereby setting up a link be-
tween biological cognitive systems and computational models. Rosenblatt (1958)
proposed an artificial construct called the perceptron, which evidently had the
capability of learning and generalizing from experience and had properties that
could be quantified and analyzed theoretically.

These pioneers already made it clear that their mathematical models of cog-
nition were rough simplifications of the actual natural processes in neuronal nets
in physical organisms. Computational neuroscience has come a long way since
the beginning, with models of increasing level of detail (see, for example, Koch
1998). Nevertheless, even the simple constructs derived from the early percep-
tron concept have found much use in applications (Haykin 2009). Like biologists
use simple “model organisms” to study the general aspects of life, this disserta-
tion explores the premises of multiobjective machine learning using a simple and
well-known structure which shall be presented next.

2.2.2 Supervised Learning using the Multilayer Perceptron

As in Haykin (2009), we begin with a single computational unit, or “artificial neu-
ron”, required in models such as the early perceptron of Rosenblatt (1958). Figure
1 is a rough sketch of a biological neuron, found, for example, in the human ner-
vous system and in the human brain. Biological data on this rough level of detail
had been gathered at the time that the early works on artificial neural networks
began. Already McCulloch and Pitts (1943) recall from yet earlier research how
the nervous system was known to consist of cells, each of which has a nucleus,
an axon, and synapses that connect the cell to others in a vast network of similar
cells. It was known that signals travel between these cells (through the axons and
synapses) at velocities between 1 and 150 meters per second, and that when the
total sum of received input signals within a sub-millisecond timescale would ex-
ceed a certain threshold, an outgoing impulse would we triggered in the neuron
and propagated through the axons of the cell within a half-millisecond timescale.

Skipping some history in between, a simple mathematical model for the



23

FIGURE 1 A rough sketch of a biological neuron. Public domain image (source: http:
//commons.wikimedia.org/wiki/Image:Neuron.jpg).

FIGURE 2 A rough model of a biological neuron.

activity of one biological neuron has become canonically formulated as follows:

o = φ(b +
n0

∑
i=1

wi(a)i). (1)

In the equation, o ∈ R stands for the output of the neuron, (a)i ∈ R are the n0
inputs connected to the neuron, wi ∈ R are positive (“exhibitory”) or negative
(“inhibitory”) weight coefficients roughly corresponding to the weight or “thick-
ness” of synapses connected to the neuron, and φ : R → R is an activation func-
tion, which should be a step function (or more preferrably a smooth sigmoidal
function) that can “fire” the neuron when the input signals cross a threshold se-
lected by the bias parameter b ∈ R. Figure 2 is a schematic of the equation. The
”s”-shaped icon in the central circle stands for a sigmoidal activation function φ.
The signals from arbitrarily many input synapses (four in the case of the figure)
arrive from inputs on the left, and a single output value is transmitted to the right.

From the beginning, it has been clear that in biological neural networks,
such as the brain, the observed functionality emerges from the collaboration of a
massive number of interconnected neurons. A simple way to model something
like this parallelism mathematically is to consider a layer of parallel neurons in-

http://commons.wikimedia.org/wiki/Image:Neuron.jpg
http://commons.wikimedia.org/wiki/Image:Neuron.jpg


24

FIGURE 3 A parallel layer of artificial neurons.

stead of a single one. Figure 3 illustrates the idea with a layer of two parallel
neurons. In general, there could be any number of parallel neurons on the layer.
As in the previous consideration of a single neuron, inputs come from sources
on the left side of the figure, through synapses with different weights. All the
parallel neurons on the receiving layer are fundamentally similar to each other in
their action, but the synaptic weights can be different for each neuron, and tech-
nically there could be variation in the activation functions (such as differences in
steepness or shape). Each neuron will produce an output signal depending on its
own weights of input synapses and its own bias, according to Equation (1). Now
both the input and the output of this layer of neurons are vector valued:

(ol)j = φj(bl
j +

nl−1

∑
i=1

wl
j,i(o

l−1)i). (2)

In Equation (2), ol ∈ Rnl stands for the vector-valued output of the layer
with nl neurons, given an upper index l here for purposes that will be clear in
the few paragraphs that follow. (ol−1)i are now the nl−1 input variables. wl

j,i
is the weight coefficient of the i:th input in the j:th neuron of the layer. Again,
φj is a sigmoidal activation function. bl

j is the bias parameter of the j:th neuron.
The indices l − 1 for the input vector and l for the output vector anticipate the
chaining of multiple layers, to yield the actual multilayered perceptron depicted in
Figure 4.

We can let go of some of the tedious element indices, if the weights of the
j:th neuron of the l:th layer are written as a vector wl

j. Then the function of the
neuron can be written using matrix algebra as follows:

(ol)j = φj(bl
j + (wl

j)
Tol−1).

A further trick can be used to shorten the notation. Let us define an exten-
sion operator, marked with a tilde, that adds a “zeroth component” of value one
to a vector so that õ(l−1) becomes

õl−1 =

(
1

ol−1

)
. (3)
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FIGURE 4 Putting together several layers of artificial neurons leads to the multilayered
perceptron model.

Additionally, assemble a matrix of weights for the l:th layer so that the biases
appear as the “zeroth” column vector:

Wl =


bl

1 (wl
1)

T

bl
2 (wl

2)
T

...
bl

nl
(wl

nl
)T

 . (4)

Using the notations introduced so far, the whole action of a multilayer perceptron
can be written in a simple matrix iteration as, for example, in the works of Hagan
and Menhaj (1994) and Kärkkäinen (2002):

o0 = x, ol = F l(Wl õ(l−1)) for l = 1, . . . , L. (5)

In the equation, x is the input vector. We set it as the “output of the zeroth layer”.
Then, for each of the L layers in the MLP, the bias terms are included using the
trick described in Equations (3) and (4). F l plays the role of applying the activa-
tion functions φl

1, . . . , φl
nl

to the elements of the matrix-vector product. The final
output of the MLP resides in the output vector oL. We use the notationN (x) = oL

to denote the output of the network for vector x, purposely omitting notation for
the obvious fact that the output depends on the weight matrices {Wl}L

l=1 and
specific activation functions {F l}L

l=1. As for terminology, we call layer 0 the in-
put layer, layer L the output layer, and all other layers, i.e., 1, . . . , L− 1, the hidden
layers. The rows of weight matrices that compute values on the output layer are
called output neurons. Those on the hidden layers are called hidden neurons. The
elements of the input vector are called input nodes to differentiate between “neu-
rons” that compute values and the inputs that merely receive values from the
outside environment. The topology or architecture of an MLP is determined by the
number and sizes of the layers, and the synaptic weights that are enabled in the
computation.

Given the set {xi}N
i=1 of training input vectors and the corresponding set

{ti}N
i=1 of training target vectors, an output vector N (xi) can be computed for

each training input xi, and the error vector of the outputs evaluated for the i:th
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training pair (xi, ti) is obtained as

ei = N (xi)− ti.

An example of a traditional way of training the neural network now works by
minimizing the cost function

Jβ({Wl}) = 1
2N

N

∑
i=1
||ei||2 +

β

2#I ∑
(l,j,i)∈I

|wl
j,i|2 , (6)

where β ≥ 0 is the regularization or “weight decay” parameter, common in MLP
training. In our variant, the set I can be adjusted to contain only a subset of the
indices of the weight matrix elements wl

j,i for which the original lowercase nota-
tion of Equation (2) is used. The number of elements in the index set I is denoted
by #I. For example, one could select all weights except those corresponding to the
first column of WL, i.e., the biases of the linear output layer. Kärkkäinen (2002)
provides further detail to the benefits of such a formulation, especially when the
identity function is selected as the activation function of the final layer. For ex-
ample, in such a formulation, the output biases are able to balance the nonlinear
action of the hidden neurons so that that the average of the error vectors at any lo-
cal cost function minimum is guaranteed to be the zero vector, i.e., 1

N ∑N
i=1 ei = 0

at local minima.
Of great importance to the premises of this work is that Equation (6) has two

terms: one that reflects the approximation error of the MLP with respect to the
training data and another one that reflects the “complexity” of the model in the
sense that larger weights result in a less linear and less smooth model. One reason
to include such a complexity penalty term is to avoid overfitting the MLP to too
much detail or noise in the training data, thus improving its desired capability
to generalize what it has learned. Another usual way to avoid overfitting is to
compute the approximation error separately for a validation dataset that consists
of points that are not used for the actual training.

The algorithm of error backpropagation, introduced by Rumelhart et al.
(1986a,b), offers the basis for a large number of learning mechanism for differ-
entiable cost functions such as Equation (6). The most simplistic backpropagation,
or “backprop” method computes partial derivatives (gradient) of the error with
respect to each weight and then updates the weights in the direction opposite to
the gradient, multiplied by a small step size. In such a method, the term weight
decay has a natural interpretation, as each step tends to decrease the magnitude
of each weight. Availability of the cost gradient allows the use of also other, more
efficient, methods such as the conjugate gradient algorithm (Møller 1993).

Other popular learning machines similar to MLPs are radial basis function
networks (RBFNN), support vector machines (SVM) (Haykin 2009), and the re-
cently popularized extreme learning machine (ELM) (recently applied, for exam-
ple, by Mesquita et al. 2016).
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FIGURE 5 Linearly separable binary classification. One neuron (a perceptron) suffices.

2.2.3 Examples of the MLP Action for Binary Classification

Figure 5 illustrates the function of a single artificial neuron, i.e., “a perceptron”,
in perhaps the most simple case of classification. A complete simulated training
dataset is shown. The task is to differentiate between crosses (class 1) and circles
(class 2). Illustrated in two dimensions here, this kind of a task can be solved by
a single neuron that creates a separating hyperplane between the classes. In the
two-dimensional case, hyperplanes are straight lines. The illustration shows this
decision boundary where the perceptron splits the space between its two possible
predictions. The transition from one class to another is smooth because of the
smooth sigmoidal activation, but the illustrations in this dissertation show only
the hard boundary exactly on the hyperplane of transition. Also shown is the
normal vector of the separating hyperplane. Thickness of the arrow reflects the
magnitude of the weights and thus the steepness of the logistic sigmoid activation
function operating in the neuron.

For the nonlinear case depicted in Figure 6, one separating hyperplane can-
not differentiate between crosses and circles. Shown instead is the action of a
two-layer perceptron where two hidden neurons are responsible for creating two
separating boundaries which are then summed in the output to produce a nonlin-
ear decision boundary (see Figure 4 and Equation (5)). The hidden action of both
neurons is illustrated by showing the location and steepness of their activation
similarly to Figure 5. The model shown in Figure 6 has relatively small weights
so the decision boundary is a smooth curve. In this case, the approximation error
could be further and further minimized by letting the weights grow unbounded,
producing a sharper edge as the sigmoidal action would approach the step func-
tion. This is usually not desired, so to get the illustrated smooth action, either
a penalty term like that in Equation (6) must be added or the learning must be
stopped at an early point. Without any penalty (and given infinite precision in
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FIGURE 6 Nonlinear binary classification requiring at least two hidden neurons.

derivative computations), an iterative learning method would progress towards
larger weights indefinitely.

2.3 Multiobjective Optimization for Supervised Learning

Multiobjective, or multicriteria, optimization (MOO) (see, for example, Ehrgott
2005; Miettinen 1999) augments the classical field of optimization by considering
multiple objective functions (also called fitness functions, cost functions, criteria)
simultaneously. The concept is treated already in the nonlinear optimization con-
siderations of Kuhn and Tucker (1951) as “vector maximization”. According to,
for example, Miettinen (2008), the origins of MOO can be traced back even to
the 19th century writings of Edgeworth (1881) and Pareto (1896). Over the years,
MOO has matured and gained impetus via practical applications in many fields
(Branke et al. 2008). This section first outlines the relevant definitions and con-
cepts and then shows how multiobjective formulations appear naturally in MLP
classifier training.

2.3.1 Multiobjective Optimization

Because the maximization of a function can be turned into minimization trivially
by changing the sign of the function, we lose no generality by considering mini-
mization only. For m objectives, we are to solve

min
X∈Ω

f(X) = ( f1(X), f2(X), . . . , fm(X)), (7)

where fi(·) denotes the ith real-valued objective function and Ω the set of ad-
missible values for the unknown X. The general notation X ∈ Ω allows us to
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consider a very free structure of the design space of the optimization problem. In
the case of MLPs, the elements of Ω could be the possible values of the weight
matrices. The set of admissible values can be limited by, for example, box con-
straints, i.e., maximal and minimal allowed values, for each weight. In general, Ω
could in fact contain MLPs of different numbers of layers and different numbers
and kinds of neurons on each layer. It is completely possible to allow also other
learning models, and even combinations (“ensembles”) of several models to exist
in Ω.

The first example of multiobjective optimization in machine learning has
already been lurking in the formulation of Equation (6), which can be considered
as an aggregated or scalarized function consisting of two different objectives:

f1({Wl}) = 1
2N

N

∑
i=1
||ei||2 (8)

f2({Wl}) = 1
2#I ∑

(l,j,i)∈I
|wl

j,i|2 . (9)

When formulated in terms of MOO, there is no longer a need for a priori
setting of hyperparameters such as β in Equation (6). Of essence in MOO is the
conflict and necessity of trade-off or compromise between the two or more functions
being optimized. In the case of Equations (8) and (9) and the example of Figure 6,
error improvements must be traded off with increased magnitudes of the synap-
tic weights and vice versa. As long as the position and direction of the separating
hyperplanes has been found, any further trade-offs between the approximation
error and the weight magnitude would have to be considered equally good, i.e.,
“equally optimal”, unless some further decisions were made on smoothness re-
quired of the model. Experimentation or brute-force sampling using the regular-
ization weight coefficient of Equation (6) suffices in a simple scenario to sample
any number of such optimal points, but in general we are aiming at more flexible
means to perform MOO than this well-known “weighted sum method” (as it is
called, for example, in the textbook of Ehrgott 2005).

For defining what “optimal” means in MOO, we adopt the well-developed
concept of Pareto-optimality based on the dominance relation. A solution image
f(X′) is said to dominate f(X), notated f(X′) � f(X), if fi(X′) ≤ fi(X) for all
i ∈ {1, . . . , m} and fi(X′) < fi(X) for at least one i ∈ {1, . . . , m}. Instead of
a single optimum, of interest is the Pareto set (PS) of non-dominated (also known
as non-inferior, efficient, or Pareto-optimal) solutions for which no dominating
solutions exist, P = {X ∈ Ω | ¬∃Y ∈ Ω : f(Y) � f(X)}. The image of the PS in
the objective space f(P) is called the Pareto Front (PF). Intuitively, a solution not in
the PS is suboptimal because improvements are possible without compromises.
In MOO methods based on sampling the (generally infinite) PS, an approximation
of the PF is presented to the user, customarily called the Decision Maker (DM),
who ultimately has to select a preferred compromise solution. The PF exploration
itself can reveal insights into the MOO problem at hand.
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FIGURE 7 Binary classification task where a nasty overlap between classes makes it
impossible to make a clear separation.

2.3.2 Inherently Conflicting Objectives in Classification

Figure 7 is where things start to get interesting for the research presented here.
Observations from both of the classes in a binary classification task are found in
an overlapping area, and a simple model with two hidden neurons just cannot
differentiate between the two as it did in the separable (non-overlapping) case
depicted in Figure 7. Indeed, this is the case also with many real-world scenar-
ios. One might argue that the decision boundary shown in the image is in fact
quite good for this case. With a seemingly complicated data like this, we perhaps
should not do more than approximate a smooth boundary, and thereby simplify
the phenomenon producing the data. We might actually gain some insight into
its inner workings by analysing the simple model. The question remains whether
it is good to have the decision boundary in the halfway of the class overlap. In a
practical scenario, different costs could apply to false predictions to one class or
the other, and tools such as Receiver Operating Characteristics (ROC) graphs are
commonly used to decide which model is to be preferred (Fawcett 2006).

Another question is, whether the model should be simplified or not. The
model in Figure 8 fits the data better with its 10 hidden neurons and sharper
boundaries, and without the aid of the visualization, it would be hard to decide
that a simple model is better than the complex one. On the other hand, over-
simplification could sometimes make it impossible to meet the complexity of the
data, as in Figure 9 where the classes are nicely separable, but the separation re-
quires multiple neurons due to the more complex shape.

The first of the above questions relates to the well-known consideration of
sensitivity versus specificity, and the latter one to that of bias versus variance. A
priori answers to these difficult questions are required when only a single cost
function is considered as the learning objective. The main argument advocated
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FIGURE 8 Overfitting or not? With inseparable data, further minimization of approxi-
mation error can lead to an otherwise overly complex model.
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FIGURE 9 How much to simplify? Shape of the data distributions affects the complex-
ity required of the model.
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FIGURE 10 Three-class classification, mostly but not completely separable, with sub-
concepts. No noise. (cf. He and Garcia 2009)

here is that instead of a priori, empirical, or trial-and-error selections of model ar-
chitecture or penalty coefficients, a complete multiobjective optimization scheme
should be applied with separated, instead of aggregated, qualities of a solution
represented as objective functions. The necessary decision of a final model selec-
tion sould be done a posteriori when knowledge of the trade-offs becomes avail-
able via the examination of the non-dominated solutions.

A multiobjective perspective also opens up an intuitive way of combining
the considerations and augmenting them to more than two dimensions. Exam-
ples of classification datasets with further difficulties are shown in Figures 10 and
11. No classifier candidates are shown yet, as we will return to the examples later
on. The figures serve to illustrate how the problem of classification gets more dif-
ficult when the separation is to be made between more than two classes, when the
available labeled data might have widely different numbers of examples present
in each class, when different costs may apply to wrong predictions in each class,
when the distributions of classes overlap, and when the given labeling might be
partly incorrect.

It is further argued here that population-based multiobjective optimization,
introduced in the following section, is a key element in looking at the different
objectives and achieving the necessary knowledge for a posteriori decisions re-
garding which model to select for the dataset being examined.

2.4 Memetic Algorithms for Multiobjective Learning

Machine learning tasks may thus be formulated as numerical optimization prob-
lems to be solved with suitable algorithms. In this particular work, the frame-
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FIGURE 11 Three-class classification, mostly but not completely separable, with sub-
concepts and class noise. (cf. He and Garcia 2009)

work of memetic algorithms (MAs) is used. A definition given in a primer by
Neri and Cotta (2012) is that memetic algorithms are “population-based meta-
heuristics composed of an evolutionary framework and a set of local search algorithms
which are activated within the generation cycle of the external framework”. The
concept is a structured merger of various families of optimization methods which
have been used both alone and in hybrid forms long before it became mainstream
to call these hybrids “memetic”. Developments and applications of memetic algo-
rithms are found also in earlier doctoral dissertations of the author’s department,
notably those of Neri (2007), Tirronen (2008), Mininno (2011), Iacca (2011), and
Poikolainen (2014).

In this dissertation, the presentation of memetic algorithms is based on the
textbook edited by Neri et al. (2012) that gives a broad and both current and his-
torical introduction to the memetic framework and possible choices of algorith-
mic components that can be used in selected places. First the evolutionary part is
described along with historical notes and then a general memetic multiobjective
framework suitable also for machine learning is outlined.

2.4.1 Evolutionary Computation

The “evolutionary framework” of memetic algorithms refers to some optimiza-
tion method selected from the palette of Evolutionary Computation (EC), a branch
of optimization methods with roots in the computer simulations of the process of
Darwinian natural evolution (Darwin 1859) performed since as early as the 1950s
(Fogel 1998). In Evolutionary Computation, the best solution to an optimization
task is searched among a population that undergoes iterated generations of sim-
ulated crossover, mutation, and peer competition under simulated environmental
pressure. Bäck et al. (1997) overview the history of the first 40 years of evolu-
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tionary computation and present a very general algorithmic framework which is
recited here as Algorithm 1, using mnemonic variable names for populations and
leaving out the clearly implied time index t for the iterations which are called gen-
erations for obvious reasons. The algorithm is the generic form of an evolutionary
algorithm (EA).

Algorithm 1: A basic evolutionary algorithm, loosely following the out-
line of Bäck et al. (1997).

Function BasicEA()
pop← Initialize() ;
Evaluate(pop) ;
while not Terminate do

newpop← Variation(pop) ;
Evaluate(newpop) ;
pop← Select(Union(newpop, Subset(pop))) ;

return BestIndividual(pop);

The algorithm dictates only the progression from an initial population to
better and better populations via the successive variation of the population indi-
viduals and the selection of individuals for the next iteration (i.e., “generation”).
The basic algorithm gives much freedom of choice in the way by which the first
population is initialized, how the variation and the selection are done, and even
which individuals are considered for selection, based on the new and old vari-
ants. Technically, even the operations or their parameters might change from
one iteration to the other in a dynamic or adaptive instantiation of the algorithm.
Also open to customization in the general evolutionary computation framework
is the way in which the population individuals are represented (or encoded) in what
is called the chromosome, or genome, of the individual, and, of course, how their
performance or fitness is evaluated. This freedom of customization is emphasized
by Bäck et al. (1997) as a much-used strength of evolutionary computation and a
driving force in its popularity. Historically, evolutionary computation started in a
few independent and distinct approaches, or “schools”, namely evolution strate-
gies (ES), evolutionary programming (EP), and genetic algorithms (GA). Each
one was inspired by emulating biological evolution, but using different represen-
tations and algorithmic operations that were based on different emphases of the
philosophical underpinnings of how natural adaptation works (Fogel 1994).

In the terminology used in the latter parts of this dissertation, the simulated
genotype of a solution individual is the representation used for the variation op-
erations whereas the phenotype is a decoded actualization of the encoding that
performs the task for which the fitness is evaluated. The phase of decoding the
genotype into a phenotype before evaluation could be added in Algorithm 1 in
order to make this duality between the genotypic and phenotypic representations
explicit.

Even though a single best solution can be aimed for, the population con-
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cept of evolutionary computation lends itself naturally to multiobjective opti-
mization, where an approximated sample of the Pareto set is sought after. Deb
(2008) overviews the progression from single-objective evolutionary computation
to Evolutionary Multiobjective Optimization (EMO) where the population is used
as a vehicle to approximate a diverse representation of the Pareto set. EMO using
multiobjective evolutionary algorithms (MOEAs) has found much use in the field
of data mining and machine learning, recently surveyed by Mukhopadhyay et al.
(2014a,b).

This dissertation focuses on applying EMO to the previously introduced su-
pervised pattern recognition tasks using MLP neural network models. Freedom
of the algorithmic component selection in MOEAs will be followed as suggested,
for example, by Bäck et al. (1997) and hybridized with data representations and
local optimization approaches traditional in the study of neural networks. The
opinion driving this dissertation is that a current and proper view of such hybrid
MOEAs is the framework of memetic algorithms, which is a structured umbrella
combining the concepts of EC with those of local optimization methods.

2.4.2 Lifetime Learning and Memetic Optimization

While the early theory of Lamarck (1809) was biologically incorrect in propos-
ing that adaptations or traits acquired during the lifetime of a living individual
would be inherited by its offspring through natural reproduction, the algorith-
mic simulation of such Lamarckian evolution, or Lamarckism, has proved to be an
efficient tool in evolutionary computation. In practice, the concept takes the form
of lifetime learning that improves an individual with respect to its simulated envi-
ronment. The learned phenotypic adaptations are then encoded back into the in-
dividual’s genotypic representation before the evolutionary variation operations
of the EAs are applied.

Accordingly, in addition to the evolutionary framework, the other part of
the memetic optimization approach are “local search algorithms”, which are lo-
cal optimization methods selected to suit the specific structure of the solutions
sought in the optimization task (Neri et al. 2012). These play the part of Lamar-
ckian evolution in memetic algorithms.

The general form of the memetic algorithm from Neri et al. (2012) is recited
in Algorithm 2. The evolutionary framework is present here as the population
of individuals being operated on to yield every new generation. Instead of the
terms variation and selection of Algorithm 1, the “genetic” or “evolutionary” part
now appears as general cooperation and competition of individuals. The arity of
the cooperation operations can vary from unary “mutation”-like operations (em-
phasized in evolutionary strategies) to “crossover”-like binary (or n-ary) oper-
ations (emphasized in genetic algorithms). What is made specific in Algorithm
2 is the hybridization with local improvement operation for seeking performance
improvement in the local neighborhood of each population individual. The basic
version of the general memetic algorithm is single-objective, and the very best
individual in the population is returned as the result after the iteration is termi-
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nated.

Algorithm 2: A basic memetic algorithm, as presented in Neri et al.
(2012).

Function BasicMA(P: Problem, par: Parameters): Solution
pop← Initialize(par, P) ;
repeat

newpop1← Cooperate(pop, par, P) ;
newpop2← Improve(newpop1, par, P) ;
pop← Compete(pop, newpop2) ;
if Converged(pop) then

pop← Restart(pop, par);

until TerminationCriterion(par);
return GetNthBest(pop,1);

The memetic framework fully preserves the generality and customizability
of traditional evolutionary computation, and also the improvement operation is
encouraged to be designed in a customized, problem-specific way. The roots of
MAs in discrete optimization problems does not limit the applicability of the gen-
eral algorithm to other application domains. It is to be noted that hybridization of
evolutionary and local optimization methods is not new or specific to MAs, but
as the formulation and name have matured and gained sufficient impetus in the
optimization community, the decision is made here to base the current work on
what can nowadays be safely and unambiguously called the memetic algorithm
framework.

Very natural local improvement operations for MLP classifier training can
be derived from the traditional gradient-based solution methods such as apply-
ing backprop training on Equation (6).

2.4.3 Multiobjective Memetic Algorithms

Even though the basic memetic algorithm is single-objective (with solely the 1st
best individual selected in the end), the algorithm can be augmented into a multi-
objective version, similarly to the basic EA, by using a suitable MOEA scheme. In
this work, the non-dominated sorting (NS) approach of the well-known NSGA-II
algorithm (Deb et al. 2002; Srinivas and Deb 1994), based on ideas attributed to
Goldberg (1989), is selected. Several alternatives exist, such as SPEA2 (Zitzler et
al. 2002) and PESA-II (Corne et al. 2001), but the choice of NSGA-II should be a
safe one, since the method is popular and well-tried as of now. Also, the current
focus is on the introduction of objective formulations and application-specific op-
erations instead of fine-tuning the qualities of the result.

Algorithm 3 outlines the general Pareto-based multiobjective strategy fol-
lowed in this dissertation. It combines the generic memetic operations of “Ini-
tialization”, “Cooperation” and “Improvement” of a population of solution can-
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didates with the non-dominated sorting and crowding-distance comparisons of
NSGA-II. The algorithm still leaves open the specific definition of which objec-
tive functions to consider (problem definition), how to encode the individuals,
and the way in which the operations are performed or parameterized. These are
the interesting research foci of the rest of this dissertation dealing with variations
around these issues.

2.5 Historical Remarks

As both artificial neural networks and evolutionary computation date back to
the relatively early days of computing, so do their combinations. In his “Fos-
sil Record”, Fogel (1998, p. 482) dates early ideas of evolving neural networks
back to Friedman (1956) and Bremermann (1968), and actual implementations
to works as early as those of Mucciardi and Gose (1966) and Klopf and Gose
(1969). Since the beginning, evolutionary steps have been hybridized with other
learning methods as in those early works. Fogel (1998) proceeds to note the joint
increase of interest in both evolutionary algorithms and their application in neu-
ral networks towards the end of the 1980’s and a vast blooming of research later
on, documented, for example, in the early reviews of Schaffer et al. (1992) and
Yao (1993). From both of the two reviews, a surge of innovative ideas in the late
1980’s and early 1990’s can be felt.

Schaffer et al. (1992) review the initial decades of evolutionary neural net-
work learning from a utilitarian engineering point of view. They categorize the
method combinations to supportive ones and collaborative ones. In supportive
combinations either the neural network or more often the evolutionary part has the
role of supporting the other algorithm in performing some stage of its primary
task. Supportive combinations contain early examples of auxiliary or “wrapper”
methods that have since become commonplace, such as using an evolutionary
approach for feature selection, feature generation, or data preprocessing. Other

Algorithm 3: General memetic MOO with non-dominated sorting.
input : Definition of the problem, encodings, parameters
output: Approximated sample of the Pareto set
parents← Initialize() ;
parents← Improve(parents) ;
AssignRankAndCrowdingDistance(parents) ;
repeat

children← Cooperate(parents) ;
children← Improve(children) ;
parents← NondominatedSort(parents ∪ children) ;

until Terminate;
return parents;
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common supportive tasks were found to be the determination of the network
topology and the settings of various learning parameters.

Of much more interest related to the themes of this dissertation are the early
examples which Schaffer et al. (1992) call collaborative combinations because both
sides of the hybrid operate jointly on the common learning task. One class of
such collaborative hybrids consists of attempts to use evolutionary computation
directly by encoding the synaptic weight values in the chromosome. The review
identifies Montana and Davis (1989) as the first authors describing an evolution-
ary implementation that was able to outperform backpropagation learning in a
classification task of considerable complexity (approximately 500 connections).
Another class of hybrids, evidently more popular at the time, and anticipated by
the writers to be a more intuitive one, consisted of algorithms that use evolution-
ary computation to learn the neural network topology and use a local learning
method to fine tune the performance. This kind of intuitive approach, readily
identified in the early days, would fall immediately in the category of memetic
algorithms as defined above. Many of the hybrids were reported to have been
largely modified from the canonical genetic algorithm that represents individu-
als as binary strings and uses the exchange of substrings as the crossover opera-
tion mimicking biological inheritance. The review concludes that the results from
the very first surge of research interest had mixed results related to attempts to
improve weight optimization compared to gradient-based methods.

The review by Yao (1993) assesses many of the same considerations as that of
Schaffer et al. (1992), although it is more narrowly focused on the task of learning
a neural model instead of merely “supporting” parts of the process. It categorises
research endeavours based on the scale of operations they concentrate on: the
architectural (topology) level, the level of learning rules, and the level of network
weights. A conclusion is made that evolutionary computation is likely to be most
suitable on the slower and more coarse scales such as for determining the net-
work topology and the learning rules, rather than on the faster and finer scale
of weight determination, where local search would fare better. Yet, Yao (1993)
suggests that the interactions between evolution on the different levels should be
further explored.

Many different fitness functions were identified and used already in the first
years, and it was mentioned that the learning can proceed using one of vari-
ous criteria, but neither one of the two early reviews mentions actual multiobjec-
tive optimization (or vector optimization), even as the field had been developing
quickly at the same time or even before (Deb 2008). It would seem that while
evolutionary learning was hatching, the field was still on an island separated
from that of multiobjective optimization, or perhaps the researchers were keep-
ing their initial trials purposely simple by considering only single-objective cases
at the time. Jin and Sendhoff (2008) overview multiobjective machine learning
research up to the year 2007 with a focus on supervised learning using feedfor-
ward neural networks. They date the beginnings of multiobjective learning to the
mid-1990’s, and as an early work on the topic, they identify the paper by Liu and
Kadirkamanathan (1995) in which a radial basis function network is optimized
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with respect to three objective functions using a genetic algorithm. The gap be-
tween the proliferation of evolutionary machine learning and the appearance of
multiobjective formulations seems to have lasted for approximately a decade.

More specific findings expressed in the reviews will be given in Chapter
3. This historical sidenote shall end with the conclusion that memetic hybrids
combining evolutionary and local optimization are not new to the community,
but multiobjective formulations have appeared relatively late compared to the
age of the other branches of computation discussed earlier.

2.6 Example: Multiobjective MLP for Imbalanced Classification

Before continuing with an overview of contemporary research and a more for-
mal introduction of the many possibilities in population-based supervised learn-
ing, let us start with a small proof-of-concept demonstration published earlier by
Nieminen and Kärkkäinen (2016). The case study deals with the problem of class
imbalance which was already hinted at in Figure 10 of Section 2.3.2. This “imbal-
anced learning” scenario is relevant in real-world tasks (He and Garcia 2009) and
special techniques are constantly emerging to address and successfully manage
it (see, for example, Zong et al. 2013).

As usual, we assume that a training dataset of N observations and corre-
sponding integral target class labels X = {(xi, ti) | xi ∈ Rn, ti ∈ {1, . . . , K}}N

i=1 is
available, and the task is to use these examples to learn how any x ∈ Rn should
be assigned to one of the K classes. By imbalance we mean that the numbers of
labeled observations in each class Nc = #Xc, where Xc = {(xi, ti) ∈ X | ti = c},
or, equivalently, their frequency of occurrence in the whole dataset, ϕc = Nc/N,
are markedly different from each other. Cost-sensitive learning (Elkan 2001) and
ROC curves (Fawcett 2006) are traditional ways of dealing with the situation. In
binary classification, different costs may apply to false positive and false nega-
tive predictions. A generic example could be that of medical diagnosis: A false
positive prediction in an initial screening test would mean that a healthy person
would unnecessarily be sent to further laboratory tests that have costs in money
and human resources. A false negative prediction would mean that a sick person
would be sent home with the conception of being healthy. In the latter scenario,
money and resources are saved, but with the cost of possible worsening of the
illness because proper treatment has not been started. With more classes, even
more complex trade-offs must be addressed.

Clearly, imbalanced classification is an instance of multiobjective optimiza-
tion whenever a single solution cannot achieve full accuracy for all the classes.
Formally, given any K-class classification dataset X = ∪K

c=1Xc, we wish to mini-
mize the classwise numbers of misclassifications

fc = #{(xi, ti) | prediction(xc) 6= tc} for c = 1, . . . , K. (10)

When K > 2, there is a quadratic increase in the number of costs that could be
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considered (predictions to class i when j would be correct), but even the simple
classwise errors chosen here suffice to exhibit the merits of breaking the imbal-
anced classification task down to a multiobjective formulation and applying a
population-based memetic algorithm to sample the approximated Pareto set.

Then, as the problem definition for Algorithm 3, we consider objective func-
tions defined as the classwise numbers of misclassifications in the three-class clas-
sification task. For simplicity, in this initial example, we restrict ourselves to the
single-hidden-layer feedforward network (SLFN) as the classifier model and fix
the neuronal architecture. In Equation (5), we select the number of layers to be
L = 2, and we fix the layer sizes as n0 = n = 2 (input), n1 = 20 (hidden layer
with logistic sigmoid activation), and n2 = K = 3 (linear output layer; number of
classes to separate).

Thus, our set of admissible solutions for the optimization (see Equation (7))
is now Ω = Rn2×(n1+1)× Rn1×(n0+1). The encoding of such a solution is simply the
storage of the synaptic weights as floating point numbers. For the experiments
shown here, we use a population of 100 individual solution candidates encoded
in this way. Other parameters controlling the method steps will be explained be-
low.

We initialize the first population by assigning uniform random values from
the distribution U([−1, 1]) as the weights. Then, the first round of improving the
population is performed by running at most 200 steps of a conjugate gradient
method (Fletcher and Reeves 1964) on the single-objective (scalarized) cost func-
tion

J ({Wl}) =
K

∑
c=1

λc

Nc

∑
i=1
‖N (xi)− ti‖2 + µ ∑

(l,j,i)∈I
|wl

j,i|2,

where λc ∼ U([0.1, 1]) and µ ∼ U([10−6, 10−4]) are uniform pseudorandom val-
ues. The vector ti ∈ RK is the usual K-dimensional “one-of-K” binary vector
representation where the tith component is 1 and other components are 0. The
index set I represents all the weights in the MLP. An important role of this tra-
ditional local search phase is to restrict the solutions to meaningful MLPs after
disturbance by the evolutionary operations that facilitate global exploration. The
network weight penalty also imposes a necessary soft constraint. Noteworthy is
that the random scalarization frees the user from having to make strong assump-
tions of the problem before exploring the resulting Pareto set.

In the example here, the cooperation step uses only a unary mutation oper-
ator that perturbs each weight by noise drawn from the Gaussian distribution
G(0, 0.4) with a probability of 10%, producing a sort of a “creep” in values. Ex-
tending the cooperation step with crossover operators designed specifically for
MLP classifiers is one main focus in customizing the memetic framework for the
application domain.

Figure 12 illustrates the class imbalance problem with a simulated dataset
in which n = 2, K = 3, N = 400, ϕ1 = 5%, ϕ2 = 10%, and ϕ3 = 85%. The case
is made difficult by letting all of the classes overlap in the middle, but none of
them contain subconcepts or noise (cf. He and Garcia 2009) by design. The de-
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FIGURE 12 Post optimization exploration of Pareto-optimal classifiers.

cision boundaries of different classifier candidates from the approximated PS are
also shown, indicated by colors and numerical identity tags in the legend. The
legend contains also the three objective function values f1, f2, and f3, as defined
by Equation (10), at each solution and in parentheses the traditional performance
metric of misclassification rate, i.e., ratio of false classifications, for comparison.
Not one of the classifiers can be deemed better than the other without assigning
some preferred costs to misclassifications in one class versus the other, so the pure
multiobjective nature of the problem can be clearly seen. Another critically im-
portant observation is how the overall misclassification rate fails to yield useful
information of the quality of the solutions. Figure 13 shows the same classifiers
in a parallel coordinate plot where the trade-offs between objective functions can
be compared visually. Each line in such a plot represents a solution candidate.
The vertical axes correspond to objective functions, and the objective function
value can be read from the intersection of the line and the axis. For each indi-
vidual objective, the best solution crosses the axis at the lowest point. Due to
their Pareto-optimality, the lines must cross each other at some points. If a line
remained lower than all the others in a parallel coordinate plot, it would domi-
nate the others. In that case, by definition, none of the other points could belong
to the set of nondominated solutions.

The solutions were obtained by running the described simplistic memetic
optimization algorithm for 100 iterations. Noteworthy with regard to the prospects
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FIGURE 13 Parallel coordinates view of the solutions in Figure 12.

of our approach is the fourth solution (ID tag 8). It contains sharper edges and
seems to be overfitting the example data in the lower right region. With less ver-
satile learning frameworks one needs to compete against this kind of behavior by
pre-assigning constraints or penalties to the network complexity. In a multiob-
jective setting, it is natural to add network complexity measure(s) as additional
objectives, turning the danger of overfitting into the prospect of gaining valuable
information of the complexity of the data itself. The memetic approach in gen-
eral does not require limitations such as network structure to be set a priori, even
if it was done in this early demonstration. To really set the framework and its
user free, further development of the memetic improvement (lifetime learning)
and cooperation (recombination) operators and solution encoding needs to be
done that considers the specific properties of MLP networks. Hence the on-going
work outlined in this dissertation.



3 OVERVIEW OF RELATED WORK

This chapter examines the existing body of knowledge related to evolutionary
(and memetic) multiobjective optimization used for supervised machine learn-
ing with artificial neural networks. Evolutionary algorithms for neural network
learning before the time of explicit multiobjective formulations are summarized
in Section 3.1, the first decade of multiobjective evolutionary learning is covered
in Section 3.2, and the last decade up to the time of writing this dissertation is
covered in 3.3.

3.1 Evolutionary Learning with Neural Networks

As remarked in Section 2.5, truly multiobjective formulations and solutions of
learning tasks started to appear in the middle of the 1990’s, and thus they have
some two decades of history at the moment. Population-based evolutionary al-
gorithms, many of which could be termed memetic algorithms with a succession
of population-wide operations and improvement operations for population indi-
viduals, had been used for single-objective learning tasks for about one decade
longer. Considerations arising both from the evolutionary and from the multiob-
jective approach are relevant here. In what follows, some key issues related es-
pecially to feedforward neural network learning will be gathered from a chrono-
logical outline of secondary studies.

3.1.1 Early Developments and Genetic Representation Issues

In the early days, non-evolutionary algorithms were mostly used for learning the
connection weights. Evolutionary changes of the network architecture based on
fitness evaluation was done intermittently or before weight learning. The early
reviews of both Schaffer et al. (1992) and of Yao (1993) identified the method of
representation as a key factor in evolving neural networks. In the most direct rep-
resentations, the full connectivity graph of the network is represented as a binary
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string that includes the N × N possible connections of all the N “nodes” of the
network (input nodes, computational neurons on possibly many hidden layers,
and output nodes). Recurrent feed-back connections (going back from a deeper
layer to one closer to the inputs) are possible in such a representation. Evolution-
ary algorithms provide a framework suitable for learning recurrent structures
which have been found useful, for example, in time-series forecasting because
of the dynamic “memory” and filtering capacity provided by time-lagged feed-
backs. Still, more often recurrent connections (and also those that bypass an inter-
mediate layer) were forbidden in order to simplify the structure and to use more
efficient local learning methods to learn the weights.

The obvious drawback in the most direct representations is that they pro-
duce very long strings (order of N2) for large networks, which makes the search
space prohibitively high-dimensional for nontrivial tasks. Additionally, the real
values of the connection weights could be encoded in the binary string, which
would increase the representation size even more, depending on accuracy re-
quirements. The review of Yao (1993), less inclined towards requiring crossover
operations, considered also representations in which the connection weights are
encoded and evolved as real numbers. Binary strings would nevertheless be nec-
essary if the connectivity graph was to be optimized in addition to the weight
values.

A major concern in the bit string representation is the sensitivity to the orga-
nization of the bits. The traditional substring exchange applied in the crossover
operation is likely to preserve useful coadapted building blocks that are close to
each other in the bit string. Useful collaboration produced jointly by further-away
genes is more likely to be destroyed by being split between separate offspring in-
dividuals and thus losing the trait obtained via earlier coadaptation.

To reduce the explosion in search space dimension, indirect representations
were proposed early on. In their simplest forms, restrictions would be applied so
that only some connections, or groups of connections, would be encoded as bits
in the representation. Various approaches were cited in the early reviews, such as
applying evolutionary variation to only feed-forward connections, connections
between one layer and the next, or only on one of the layers. Other examples
included applying the evolutionary framework only for selecting one of a few
alternative network architectures, the number of neurons on a layer, or the pres-
ence or absence of each intermediate layer in a multilayer architecture. Indirect
representations were developed also to determine the locations and connectivity
patterns of groups called receptive fields, i.e., connections responding to selected
parts of the input pattern.

The level of indirection used in the representations varied up to that of using
grammars and syntax trees resembling the branch of evolutionary computation
called genetic programming (GP) where syntactic structures are evolved. The
evolutionary variation operators used in such representations have to be special-
ized so that the grammatic and semantic structure is correctly preserved. Indirect
representations are supported by biological intuition. For example, the number
of synaptic connections in the developed human brain is known to be larger, by
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many orders of magnitude, than the information contained in the whole biologi-
cal human genome. Several indirect representation schemes were thus developed
to evolve only the rules by which an actual network architecture would be gen-
erated upon decoding.

Yao (1993) elaborated on the concept of evolving learning rules (i.e., the
weight update formulae in iterative learning methods) in addition to the net-
work architecture or the connection weights. Representation issues were found
to be even more difficult for learning rules than for the other aspects of learning.
Evolving learning rules, while philosophically intriguing, is not within the range
of issues considered in this dissertation, in which some technical implementation
constraints from earlier and on-going development work are purposely retained,
largely excluding the feasibility of applying different learning rules. Also, the
chosen representation will be based on the layer-wise weight matrices of Equa-
tion (5).

A notable problem in direct structural representations of neural networks
for evolution is referred to as “competing conventions” by Schaffer et al. (1992)
and as the “hidden node problem” by Yao (1993). The problem is that the same
phenotypic action can result from the combination of genes that reside in com-
pletely different parts of the genotypic representation. This is a direct result of the
symmetries in the synaptic connection graph. In the case of the MLP formulation
presented in Equation (5), the problem can be understood as the invariance of the
matrix computations under certain permutations of rows and columns. Naïve
crossover operations using direct representations cannot take into account these
symmetries, and are likely to destroy coadaptations. The problem can be com-
pletely circumvented by emphasizing mutation operators as in evolution strate-
gies (for an overview, see Fogel 1994), or using simple additions and deletions
of one connection/weight at a time instead of attempting to simultaneously ex-
change multiple functional units between individuals.

Published a few years after his first review, Yao (1999) provided an even
more thorough review on evolutionary artificial neural networks. During the
time, he observed “a great interest” in combining learning and evolution, the
“two fundamental forms of adaptation”, with artificial neural networks. The
main argument of Yao (1999) was that these combinations can lead to “signif-
icantly better intelligent systems” than relying on the separate components by
themselves. From the earlier review, he maintained the three-fold categoriza-
tion of evolution used in the different stages of learning: (i) connection weight
optimization, (ii) network architecture/topology optimization, and (iii) finding
(i.e., adapting or discovering) optimal learning rules. He highlighted the possi-
bility of evolving activation functions in addition to the connectivity topology as
part of the network architecture. The benefits of the evolutionary approach ob-
served half a decade earlier remained in the focus. The problem of competing
conventions present in direct representation schemes was discussed (as in Schaf-
fer et al. 1992), and some new forms of indirect representations were recognized.
The supremacy of hybrid methods combining gradient-based local search and
evolutionary global search (which we refer to as memetic here) over either one
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approach alone was recognized, too.
Yao (1999) also elaborated further on the prospect of evolving the ways how

to learn, i.e., actual learning rules best fit for an ANN to learn the task at hand.
While “learning how to learn” is interesting, these considerations are out of the
scope of this dissertation for the reasons mentioned above. Multiobjective learn-
ing or optimization was not yet explicitly covered nor mentioned in the review of
Yao (1999), while multiple objectives, such as the error between target and actual
outputs and the complexity of the network were quite clearly mentioned, regu-
larization term was explicitly involved in typical optimization schemes (and the
merits of EA further elaborated with regard to nondifferentiable regularization
terms), and it was stated that the most common mean square error measure is
not the only one that can be used as the primary error measure. While discussing
ensembles of ANNs, the ideas presented got very close to Pareto-based multiob-
jective optimization, and it was even stated that with evolutionary learning, it is
“beneficial to make use of the whole population”.

3.1.2 Concerns about the Computational Effort

The early works on evolutionary training of neural networks compared the com-
putational performance of these new hybrid algorithms to backpropagation and
other gradient-based methods both in terms of result quality and in computa-
tional times required. They were partly disillusioned because measurable im-
provements in results and computation times turned out to be difficult or impos-
sible to achieve. It must certainly be true that for tasks in which gradient-based
learning suffices, evolutionary augmentations are not necessary nor worthwhile
to be used. But, as also recognized in the early studies, there are likely to be use-
ful scenarios where gradients are unavailable or harder to make use of. Examples
include recurrent networks where feedback connections are used in addition to
feedforward ones, and the use of any non-differentiable or discrete objective func-
tions or activation functions (like the step function). Evolutionary computation
readily allows the use of any form of fitness functions, and resultingly also any
form of activation functions and connectivity patterns within the neural network.
A more mundane benefit of evolutionary computation is its natural capability of
escaping local minima that plague gradient-based learning methods, especially
in network architectures with fewer connections.

The consideration of computational cost in terms of time is, of course, al-
ways important in machine learning, and in all other computing, for that matter.
But when dealing with tasks that are impossible or unreliable to perform with
fast and direct algorithms, the computational cost becomes much less significant.
Also, we have come to trust that the speed of computer systems increases expo-
nentially, so the computational cost of algorithms with a polynomially bounded
time complexity will be amortized by faster equipment in a matter of years for
problems of constant size. It could be argued that with the current trends of mas-
sively parallel computation platforms being available “in the cloud” and as-a-
service, such parameters as the size of a multistart batch or the population size in
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evolutionary frameworks, or other complexities that can be trivially “parallelized
away”, become ever less significant.

The main theme in this dissertation is the multiobjective formulation of su-
pervised learning, for which evolutionary approaches bring further and incom-
mensurable benefits compared to the single-objective considerations of the first
decade of evolutionary learning covered hitherto.

3.2 Multiobjective Learning: The First Ten Years

A broad and detailed account of multiobjective machine learning is found in the
textbook edited by Jin (2006), comprised of chapters written by many authors,
including those cited also in the survey part of a later article by Jin and Sendhoff
(2008). The first ten years of multiobjective machine learning is well covered in
these resources, so it feels rather justified to use them as the basis of the histori-
cal overview presented next. Significant developments starting from the earliest
days of multiobjective supervised learning are presented next in the form of di-
gests of original research papers suggested by Jin and Sendhoff (2008). Overall,
the main resources cited (Jin 2006; Jin and Sendhoff 2008) do consider all the facets
of machine learning outlined here in Section 2.1.1, observing the multiobjective
nature of all these learning tasks. In the digests below, the emphasis is on super-
vised learning especially with MLP-type neural networks (defined in Section 2.2)
using evolutionary multiobjective algorithms that approximate the Pareto front.
All articles highlighted in the survey of Jin and Sendhoff (2008) for these proper-
ties are covered here. Necessity was felt to involve also some of the other works
on related strutures and tasks, for completeness.

3.2.1 The Bigger Picture: Where MOO Matters and Why

Jin and Sendhoff (2008) categorized learning algorithms as single-objective ones,
scalarized multiobjective ones, and Pareto-based multiobjective ones. They pre-
sented single-objective and scalarized multiobjective learning similarly to the ap-
proach taken in Sections 2.2 and 2.3, identifying approaches such as minimiz-
ing the objective function of Equation (6) as scalarized multiobjective optimiza-
tion. Any number of objectives can be aggregated into a scalarized function using
weight coefficients for each objective. The Pareto-based approaches are those that
result in an approximation of the Pareto set for the decision maker (or further al-
gorithms) to examine a posteriori. As a merit of Pareto-based machine learning,
Jin and Sendhoff (2008) mentioned the possibility of extracting knowledge about
the problem in order to make a better final decision among the solutions in the
Pareto set.

The scalarization approach has several limitations. For example, Das and
Dennis (1997) demonstrated how scalarization as a convex combination of ob-
jective functions always fails to match the global minimum of the aggregated
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function with any solution that lies on a non-convex part of the Pareto front,
should such forms arise from the shape of the objective functions or the feasi-
ble set of admissible solutions. Secondly, obtaining an even distribution of points
on the Pareto front necessarily requires prior information about the curvature of
the front, even when it is nicely convex. Jin et al. (2001) gave a further geomet-
rical explanation of the Pareto front convexity issue, and showed how a slowly
progressing optimization algorithm can indeed advance through the points in
concave parts of the Pareto front, and how a dynamic, “slow”, change in scalar-
ization weights (called dynamic weighted aggregation, DWA, by the authors)
can be used to sample both nonconvex and convex areas of the Pareto front. It
is to be noted that DWA effectively results in a Pareto-based method, since an
archive of non-dominated solutions is generated while the algorithm proceeds
with dynamically varying scalarization weights. However, the method produces
essentially one-dimensional trajectory curves through the search space, so its use
is somewhat restricted to bi-objective optimization where the Pareto front is a
curve instead of a multidimensional surface. Another way of finding solutions in
non-convex parts of the Pareto front is the Tchebycheff metric (see, for example
Miettinen 1999, p. 98) which is used in recent population-based MOO methods,
such as the decomposition method proposed by Zhang and Li (2007).

Jin and Sendhoff (2008) note also the problem of local optima in which opti-
mization methods may get stuck. They refer to the works of Abbass (2003b) and
Teixeira et al. (2000) as early examples of using Pareto-based optimization to help
escape local optima. The former of these cited works does directly refer to the
problem of local solutions and the inherent ability of evolutionary optimization
to avoid these. The latter improves MLP generalization over standard backprop
learning via the use of multiple objectives, but the relation to local optima is not
explicitly addressed.

Jin and Sendhoff (2008) argue in favor of Pareto-based approaches as a “nat-
ural idea” in machine learning. For the motivations of Pareto-based optimization,
they identify the following three main categories: generalization improvement, in-
terpretability enhancement (in rule extraction), and diverse ensemble generation. Ad-
ditionally, they do mention Pareto-based ROC analysis, multiobjective systems con-
trol, and multiobjective feature selection.

3.2.2 The First Appearances of Multiobjective Learning

Liu and Kadirkamanathan (1995) acknowledged the connection between learn-
ing and function approximation, and observed that as of that time the common
procedure was to aggregate the computationally simple mean square error and
some model complexity measure to deal with approximation and generalization
jointly. They formulated neural network learning (although not for MLPs but for
Volterra polynomial basis function networks and Gaussian radial basis function
networks) as a truly multiobjective problem in which three separate functions
were considered: (i) the mean squared error, (ii) the maximum error, and (iii) the
number of basis functions or polynomial coefficients in the network. They ob-
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served that “these objectives can sometimes be conflicting and no solution may
exist that optimises all the objectives”. The conflict between an error norm and
complexity is commonplace, and the two error norms are related to the distribu-
tion of the noise in the process and measurements being modeled (use of mean
squared error presumes normal distribution of noise).

The optimization was based on the method of inequalities (Zakian and Al-
Naib 1973) which produces one solution at a time, requiring a priori settings of
preferences by the decision maker. The solution gained in such a way is only
aimed to be sufficient with regard to the preferences (the upper bounds of accept-
able values for each objective), and not necessarily Pareto optimal. Nevertheless,
the paper remains notable as certainly one of the earliest works that explicitly
considered learning as a multiobjective problem. Noteworthy is also the consid-
eration of more than two objectives at once.

An evolutionary approach was used where the population individuals were
represented as a combination of a binary vector indicating the existence of each
model term and an array of real values representing the centers of the radial basis
functions. Output layer weights for the radial basis functions were determined
using the traditional least squares method during each population evaluation.

Kottathra and Attikiouzel (1996) considered the approximation of a real
function using a feed-forward neural network with a single hidden layer of vari-
able size, although the method could be extended for more involved structures.
They formulated the approximation task as a bi-objective optimization problem
where one objective was the mean square error (MSE) and the other one was the
number of active neurons taking part in the computation, i.e., the hidden layer
size. In essence, the objectives were the same as those used by Liu and Kadirka-
manathan (1995) with the exception of not including the maximum error, and
the neural model was based on a sigmoidal activation function (as in the MLP
applied in this dissertation) instead of polynomial or radial basis functions. A
branch-and-bound strategy (for method origins, see Land and Doig 1960) was ap-
plied as the optimization algorithm. Multiple objectives were handled by means
of goal programming (Ignizio 1976) which, similarly to the method of inequali-
ties applied by Liu and Kadirkamanathan (1995), provides a single solution that
satisfies pre-determined preferences (objective-wise goals).

Matsuyama (1996) dealt with unsupervised learning. He modeled neurons
as “competitive agents”, showcasing solutions to the unsupervised learning tasks
of vector quantization and vehicle routing. He recognized multiobjective opti-
mization as the aggregation of the “main cost” (approximation error) and “sub-
costs” (constraints, including regularization), and explored the benefits of apply-
ing multiple costs. He presented a method for adjusting the scalarization of sub-
costs dynamically while the optimization is taking place. The goal was to achieve
a single solution, but with fewer a priori preferences on the subcost weights, and
with benefits to convergence characteristics. Already earlier, Matsuyama et al.
(1994) had observed the relation of penalty terms and multiobjective optimiza-
tion methodology in both supervised and unsupervised learning, although the
Pareto set remained as a theoretical frame of reference, and a single solution op-
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timizing only the primary objective was pursued.
Teixeira et al. (2000) proposed an adaptation of the ε-constraint scalarization

method (Takahashi et al. 1997) to simultaneously minimize the MSE error of an
MLP model and the squared sum of the connection weights. The objectives were
converted into constraints for a single-objective optimization algorithm. The ap-
proximated Pareto set was sampled through varying the constraints gradually.
In simple classification and regression examples, their optimization yielded MLP
networks that showed performance comparable to SVMs and much better gener-
alization than that obtained using single-objective backprop training of an MLP.
The final solution was presumably selected based on minimal validation dataset
error from among the sampled Pareto optimal solutions, which seems to be some-
what more clearly stated in a later publication (Costa et al. 2003, p.468) than in
the original one.

3.2.3 Towards the Pareto-based Approach

Abbass (2001) claimed that, up to that time, “all of the research undertaken in the
EANN literature ignores the fact that there is always a trade-off between the ar-
chitecture and the generalization ability of the network”. This is a strongly made
claim, but it is likely to be mostly valid based on the apparent lack of explic-
itly multiobjective points of view in the early literature on evolutionary artificial
neural networks (see Section 3.1). To amend the situation, he provided an ap-
proach called Memetic Pareto Artificial Neural Networks (MPANN), including the
word “Memetic” coined by Moscato (1989) and the word “Pareto” already com-
mon in the MOO community. As far as the author of this dissertation can tell,
this rather fitting name has been coined in the work by Abbass, although he also
used it as the name of the specific algorithmic implementation instead of the class
of algorithms it belongs to. It must be noted that originally Moscato (1989) just
proposed to use the fitting word “memetic” for the already existing paradigm of
hybridizing global and local search to solve optimization problems.

Abbass (2001, 2002, 2003b) assumed a Pareto-based approach, meaning that
non-domination plays a role in the survival of individuals between generations
in the evolutionary framework. The “memetic” flavor comes from the integra-
tion of a gradient-based local search (backprop) to improve the individuals while
evolution is also taking place on the outer level of the algorithm. As the multiob-
jective evolutionary framework, Abbass used Pareto Differential Evolution (PDE)
(Abbass et al. 2001) based on the single-objective Differential Evolution of Storn
and Price (1997). He used a direct encoding of the connection weight matrix. He
mentioned that feedback connections could be supported, but the documented
tests were restricted to only feedforward variants being used. The participation
of each hidden neuron in the performance evaluation was also represented as a
binary vector of fixed length. The maximum number of hidden neurons was thus
fixed. The weights and the architecture were both included in the chromosome
representation and could be evolved simultaneously.

The two objective functions used by Abbass to highlight advantages of the
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Pareto-based approach were the accuracy of the ANNs (via minimizing squared
error) and the complexity (via minimizing the number of active neurons, i.e., sum
of the non-zero elements of the binary vector representing the on/off state of each
hidden neuron). Abbass (2003b) explained that these two were selected for the
sake of simplicity from among many alternatives, as the main suggestion was to
separate the measures of accuracy and complexity in a MOO sense, regardless of
the choice of the specific measures as the two objectives.

Abbass (2003b) claimed that the Pareto memetic approach using PDE and
backprop improvement is faster than traditional backprop, but this involves con-
sideration of human effort in addition to computation. Fewer trials are needed,
because the network architecture and even local search parameters can be evolved
as part of the hybridized algorithm. Also, an evolutionary algorithm can natu-
rally avoid local optima that may slow down gradient-based optimization or re-
quire re-starts from different randomized starting points. Case studies with three
real-world benchmark datasets showed improvements over other then-current
algorithms. Abbass also postulated, although without further investigation, that
the multiobjective approach helps in maintaining population diversity better than
single-objective evolutionary algorithms (EAs), which enables the population size
to be safely set smaller than in a single-objective EA.

The computational experiments did show remarkable reduction in the num-
ber of MLP evaluations required in comparison to single-objective EA and also
to backprop. In two out of three test cases, the best results were obtained with
a self-adaptive version (called SPANN by the author) that evolved the parame-
ters of the evolutionary operators along with the solutions. In the third test case
self-adaptation yielded worse results, so its benefits remained inconclusive. The
model with the best accuracy was selected in these studies, so multiobjective op-
timization was used only as an intermediate tool to improve speed and accuracy
compared to single-objective approaches. Further exploration of the Pareto front,
with possible applications to ensemble generation, were identified in the conclu-
sions early on, though.

3.2.4 Further Explicit Assessments of Model Complexity

Jin et al. (2004b) addressed the regularization of neural networks as a multiobjec-
tive optimization problem by separating the objectives of minimizing the error
and the model complexity. The error objective was chosen to be the MSE over
the training dataset, although the existence of several other possibilities (such
as Minkowski error and cross-entropy) was acknowledged. The complexity ob-
jective was suggested to be chosen among several possible regularization terms,
common ones being the Gaussian regularizer, i.e., the mean of squared weight
values, and the Laplacian regularizer, i.e., the sum of absolute weight values.
Since evolutionary methods do not require differentiable nor even continuous
objectives, a discrete objective function, namely the number of non-zero synaptic
connection weights, was proposed and examined.

Direct representation of the weights (as real values) and the on/off state of
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synaptic connections (as binary values, one for each connection) was employed.
Multiple objectives were handled using DWA (Jin et al. 2001) and NSGA-II (Deb
et al. 2002), the performances of which were compared experimentally. It turned
out that DWA fared better for small population sizes, whereas NSGA-II was bet-
ter for large population sizes. It was noted that despite its elitism between two
generations, NSGA-II may forget some non-dominated solutions during the run,
and the use of a complete solution archive was recommended to keep track of all
non-dominated solutions.

One out of five mutation operators tuned for neural network training was
randomly selected and applied to each individual in a generation: (i) addition
of a neuron, (ii) deletion of a neuron, (iii) addition of a synaptic connection, (iv)
deletion of a connection, and (v) a Gaussian creep operation. Crossover (known
to be difficult for ANNs for reasons explained above) was not used. A “lifetime
learning”, i.e., a memetic improvement step in the terminology used here, was
applied after evolutionary mutation by running the iRprop+ algorithm (Igel and
Hüsken 2000). The local improvement was single-objective, only minimizing the
error objective.

Only two objectives were selected for each experiment, so a prior decision
was made between the possible error functions and the regularization/complexity
measures. The results obtained using the different bi-objective selections were
then compared. The authors found that when evolution is applied to the binary
connectivity pattern, there is not much difference between using the Laplacian
and the Gaussian regularizer as the second objective, contrary to what had been
found earlier in the case of gradient-based methods. Both regularization terms
were found to grow hand-in-hand with the number of connections. In the single
case study provided, the approximation of the three-dimensional Ackley func-
tion (Ackley 1987), tests on a validation data set showed different behavior of
the different complexity objectives, leading the authors to conclude that “the re-
lationship between model complexity and generalization is not as simple as we
might imagine”. While examining the results, a question might rise, whether the
different measures are mutually conflicting, perhaps depending on the task, and
whether they should be included as additional objectives instead of selecting one.

3.2.5 Ensembles

Abbass (2003a) applied his MPANN method to multiobjective ensemble genera-
tion. Based on earlier work on evolutionary ANN ensemble generation (Liu et
al. 2000), he proposed two ways of formulating multiple objectives for the ANN
learning to yield an ensemble of different ANNs that would perform better than
an individual ANN. The first formulation was to separate the training dataset
into two (stratified) subsets, and to minimize the prediction error on both sub-
sets. The idea would be that an individual network overfitting one data subset
would have a large error on the other subset. It was noted that if a network ar-
chitecture is complex enough, it would be possible to overfit both subsets, thus
nullifying the benefit of using multiple objectives. A modest network architec-
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ture was therefore chosen ad hoc. No investigation was done on the possibility of
combining network complexity as a third objective. The other formulation was
based on minimizing the standard MSE error (over the whole training dataset)
and a “blurred” version where Gaussian noise was added to the MSE.

Using either one of the two-objective formulations and the MPANN algo-
rithm, a Pareto set would result with diverse ANNs usable as an ensemble. As a
method of ensembling the Pareto set, Abbass tried three alternatives: (i) majority
vote (i.e., most of the ANNs in the network agree on the result), (ii) winner-take-
all (i.e., the ANN with the largest activation is allowed to make the decision), and
(iii) simple averaging (i.e., the mean activation of the ANNs is aggregated as the
final prediction). Results on two datasets showed results comparable to earlier
studies based on penalty term aggregation, with the stratified subset errors being
the better pair of objectives but no great differences between the actual ensem-
bling methods. The point was highlighted that the Pareto-based selection scheme
automatically determines the ensemble members whose diversity is presumably
good because of the population-based evolutionary multiobjective approach.

Jin et al. (2004b) suggested that the Pareto set of ANNs obtained by mul-
tiobjective minimization of error and complexity can be used also for generat-
ing ensembles. Ensemble generation was presented as a potentially useful by-
product of Pareto-based multiobjective regularization, because a number of net-
works with diverse structures are naturally provided. They constructed methods
using all the non-dominated solutions and using only a (heuristically selected)
“representative” subset. Further evolutionary optimization based on validation
set error was used to find coefficients for individual networks in the ensemble.
In another paper (Jin et al. 2004a), the same authors elaborated further on the en-
sembling of neural networks using multiobjective evolution, and observed that
“most diversity based methods for generating ensembles can also be seen as a
kind of regularization techniques”. This can be interpreted as a two-way bridge
between methods of regularization and ensembling; one can be obtained by using
methods originally created for the other.

3.2.6 Risk and Return

Fieldsend and Singh (2002) extended on the methodology proposed earlier by
Kupinski and Anastasio (1999) using a presumably better MOEA and applying
the system to real-world financial time-series data, whereas Kupinski and Anas-
tasio (1999) had used a simple synthetic test problem.

In the financial application domain, strengths of Pareto-based methods are
readily available to address the main objectives of minimizing the risk and the
return jointly, in some cases for the purpose of diversifying real-world invest-
ment actions using different parts of the Pareto set. The capital asset pricing
model (CAPM) of Sharpe (1964) (textbook explanation found in Brealey et al.
2011, p.193) was used in the application of Fieldsend and Singh (2002). They con-
sidered three hypothetical decision makers (“risk averse”, “profit maximiser”,
and “middle-way”), i.e., persons in the business of trading with different pref-
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erences regarding the forecasting models that they wish to obtain from learning
the time series recorded up to the current trading day. The risk was modeled as
the root mean square error (RMSE) of predictions and the return was modeled
by actualised monetary return when a pre-determined trading strategy was used
and the simulated transactions performed using the actual data.

The authors were able to conclude that the Pareto-based approach for learn-
ing of financial forecasting ANNs produced models reflecting the needs of all the
various decision makers, without a priori setting of objective weights (implying
prior knowledge of the Pareto front shape). They also mentioned that further
work would be required for the additional problem of generalization, which was
not addressed by them or in the prior study by Kupinski and Anastasio (1999).
They noted that generalization plays a large role especially in the noisy domain
of financial forecasting. As another topic requiring further research, also related
to generalization, they mentioned the optimization of the ANN architecture. For
the record, they used a fixed network architecture with 5 sigmoidal neurons on
a single hidden layer, 10 time-lagged input variables and 5 recurrent input units
that received earlier time-lagged predictions.

The study was later extended by Fieldsend and Singh (2005) to daily time
series of 37 international financial indexes lasting over multiple years. The earlier
method was also developed further, and extensive analysis on its performance
was provided. The two objectives of risk and return were still considered, but
this time the risk was computed from the outcome of a trading strategy instead
of using prediction error as a proxy, and transaction costs were factored into the
objective function evaluation making the case more realistic than many others
published, according to the authors.

Three general method variants called Pareto evolutionary neural networks were
proposed and compared in the 2005 paper. Direct representation of the weights
(as real values) and the existence of each input and hidden neuron (as binary
values) in a strictly feed-forward MLP was used as the chromosome. Ten time-
lagged values of a profit/loss time series computed based on the original time
series and the trading strategy were used as ten inputs to the MLP. The binary
representation facilitated feature selection, since each input node had a bit in the
representation along with a bit for the existence of each hidden neuron. All con-
nections between the 10 inputs (maximum), 10 hidden neurons (maximum) and
one output neuron, including biases, were encoded resulting in (10 + 1)× 10 +
(10 + 1) = 121 real valued weights.

The variants included a “standard” learning approach and two variants that
proposed ways of injecting model validation into the process of evolutionary
learning. The first of the two “non-standard” variants was based on maintaining
a separate archive of solutions that were non-dominated via evaluation against a
validation set which took no part in the main evolution. The other variant used
n bootstrap subsets of the training data generating nm objective values instead
of the original m objectives, since the models are likely to yield different approx-
imations on different partitions of the original training data. The worst of the
n alternatives were selected as the final objective values, supporting generaliza-
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tion by not “trusting” overly optimistic estimates possible on some subsets of the
data.

Selection was based on partitioned quasirandom selection (PQRS) (intro-
duced in Fieldsend et al. 2003). Evolutionary operators included bit mutation
of the connectivity variables, i.e., addition / deletion of an input / hidden neu-
ron, and perturbation of the real values by adding a perturbation drawn from
some distribution (Gaussian, Laplacian, or other user-specified distribution) to
randomly selected weights, and the possibility of deleting a weight by setting the
real value to zero. Re-enabling of a formerly deleted weight was up to the pertur-
bation operation. As such, there was no need for a separate binary string to rep-
resent the existence of connections. Crossover was not used. Local improvement
via gradient-based methods was not used in the financial forecasting case study.
In a preliminary function approximation example, backprop was used as part of
the population initialization to seed the first generation, but for the real-world
forecasting task, random initial population without auxiliary improvement was
created.

The benefits of Pareto-based multiobjective learning reported in the earlier
study (Fieldsend and Singh 2002) were still highlighted in the extended follow-
up: knowledge gained from examining error interactions, and the opportunity of
selecting either a single individual with a preferred trade-off or a group of differ-
ent models. In addition, Fieldsend and Singh (2005) were able to give convincing
empirical evidence that re-formulating an originally single-objective optimiza-
tion problem as a multiobjective one can improve the search process, providing
better results with less computation compared to the single-objective formula-
tion.

Although related more to function approximation than to classification, it
seems that the two objectives of risk versus return provide a very interesting
application area for multiobjective learning where the Pareto-based approach is
quite a natural one and where feed-forward MLP networks seem like suitable
forecasting models.

3.2.7 ROC Curves

Already while focusing on financial time series forecasting, Fieldsend and Singh
(2002) asserted that the paper by Kupinski and Anastasio (1999) was the first one
in which a population of ANNs was trained with evolutionary optimization to
produce an explicit Pareto surface that can serve the purpose of receiver operat-
ing characteristics (ROC) analysis, i.e., to find a compromise between sensitivity
and specificity in a diagnostic case. They also claimed that no other research on
the topic existed at the time, which may well be the case, similarly to the accuracy
versus generalization considerations possibly starting with the works of Abbass
(2001).

Everson and Fieldsend (2006) extended earlier work on the connection be-
tween the Pareto front in the two-objective space of sensitivity vs. specificity and
ROC curves (for example, Kupinski and Anastasio 1999) by considering multiple
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classes. Instead of only the true positive and false positive rates used to create the
traditional ROC curve, they considered scenarios with K classes and the whole
confusion matrix consisting of K2 elements ckj that indicate the number of input
data points classified to class j when the correct class would have been k. The
diagonal of the matrix contains correct classifications, which bear no cost. For the
other K× (K− 1) elements, a different cost λkj could be assigned, depending on
the task. They proposed that evolutionary Pareto-based learning could be used
to optimize all of these errors simultaneously, and that the resulting Pareto front
could be interpreted as a multidimensional ROC surface from which the deci-
sion maker could select a preferred compromise model, and gain insight to the
classification problem and the range of possible solutions obtainable.

The quadratic increase of costs is known to be difficult both for optimization
methods and for the human decision maker, so Everson and Fieldsend (2006) also
proposed reductions such as considering only the overall misclassifications for
each class (as in the example of Section 2.6). With three classes, the Pareto surface
embedded in three-dimensional space can still be plotted for human examina-
tion. They also proposed a visualization that uses the color of the plot markers to
indicate the most common direction of misclassification from one class to another.
The paper included such a visualization usefully reducing information of the 6
objectives resulting from a three-class scenario. For more than 4 classes, things
would already get more difficult, and it was anticipated that additional a priori
restrictions to the costs would be necessary.

As the means of comparing different classifier structures based on the ROC
surfaces (Pareto fronts) obtained, the “area under curve” (AUC) method, tradi-
tional in ROC comparisons, was extended to multiple dimensions. An observa-
tion was made that any model better than random guessing should have its mul-
tiobjective solution vector inside the volume that lies between the origin and and
the simplex resulting from random guessing (with the simplex vertices at unit
distance from the origin, along each coordinate; i.e., points in which maximum
misclassification takes place along one of the K × (K − 1) possible directions of
misclassification). Then, the performance of a Pareto front (ROC surface) A com-
pared to that of front B would be defined by a non-symmetric measure δ(A, B)
by computing the volume of the simplex dominated by solutions in A but not
by those in B. Monte Carlo simulation was used to compute the volume. The
surfaces may cross each other, similarly to how two-dimensional ROC curves can
cross each other, so the measure is not symmetric, but it can be used to quantify
how much a Pareto solution A is better than B in some areas of the objective space
volume.

In computational experiments on simulated three-class data, an MLP neu-
ral network was found to be better (according to the comparison measure) than
k-nearest-neighbor (k-NN), but it was also noted that the selected MLP architec-
ture had 33 parameters whereas the k-NN had only two, so the winner was no
surprise in this case. Technically, an evolution strategy using only mutations was
employed, and the structure and number of parameters of both models was fixed.
The MLP variant was initialized using local search before evolution but local im-
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provements were not used later on. Again, PQRS (Fieldsend et al. 2003) was used
for selecting individuals. It was noted also in this research that a complete archive
of all Pareto-optimal solutions found during the run is beneficial, and, for the
computing equipment available in 2006, cheap enough with respect to computa-
tion and storage. As an example, after running for 10000 iterations, the solution
archive would contain approximately 7500 mutually non-dominating solutions.

Published during the same year, Gräning et al. (2006) addressed the ques-
tion of how to manage the issue of generalization in classification tasks based on
evolutionary multiobjective ROC curves. The method was based on perturbing
the training patterns while only the two objectives of binary ROC, i.e., true pos-
itive rate and false positive rate, were explicitly optimized. Algorithmically, the
direct encoding of MLP and NSGA-II -based multiobjective evolution strategy
based on mutation and lifetime learning without crossover was used, as in ear-
lier works of the authors. Again, multiobjective optimization was shown to be
better than aggregation via objective weighting, and noise injection, i.e., the blur-
ring of training patterns with Gaussian noise, embedded within the algorithm,
was found to be a viable way of maintaining generalization while locating the
Pareto-optimal solutions forming an ROC curve.

3.2.8 Cooperative Coevolution Improved using MOO

García-Pedrajas et al. (2002) introduced a multiobjective extension of coopera-
tive coevolution (Potter and Jong 1994) for ANN learning, exemplified by solv-
ing classification tasks with MLPs. In cooperative coevolution, each individual
of the main population is built by joining together subcomponents in a fixed ar-
rangement. Each subcomponent is interchangeable with any subcomponent of
the same “species”, i.e., an individual of the same subpopulation. In simple opti-
mization of a function of many variables, one subpopulation could play the role
of a single variable to be optimized. García-Pedrajas et al. (2002) used parts of
an ANN (a subset of neurons and connections) as the interchangeable subcom-
ponents.

The synaptic connectivity patterns at subcomponent interfaces were defined
so that a subcomponent could be meaningfully interchanged with any other sub-
component of the same subpopulation. Within the subcomponent, the number
of neurons and connections was allowed to be freely changed, so the optimiza-
tion of both the architecture and weights of an ANN was technically possible
even with only one subcomponent. Benefits of using many subcomponents were
demonstrated by running the same algorithm both with multiple subpopulations
and with just a single one.

In cooperative coevolution, the task-specific objective functions can only be
evaluated for individuals of the main population, so for separately evolving the
subpopulations, credit for the total fitness must be assigned to the subcompo-
nents. Credit assignment is not straightforward, and it is precisely this phase that
was improved by a multiobjective approach. In total, seven objective functions
were proposed: (i) the difference between the performance of networks with and
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without the evaluated subcomponent (the authors did not specify how perfor-
mances were combined, but an obvious choice of computation would be either
the sum or average over all the networks currently using the subcomponent), (ii)
the average performance gain/loss in k currently best networks if the evaluated
subcomponent was used instead of the one currently in use, (iii) the average per-
formance of all the networks in which the evaluated subcomponent is currently
selected, (iv) the number of internal nodes, (v) the number of internal connec-
tions, (vi) the sum of internal weights, and (vii) the number of networks in the
main population in which the evaluated subcomponent is currently participat-
ing. Of these, only the third objective was regarded as “traditionally used” in
cooperative coevolution. The others were introduced by the authors to enforce
competition within and between subpopulations, and to regularize the overall
solution. The signs of objectives (iv–vi) were changed to maintain the maximiza-
tion point of view in the paper. Pareto-based selection adapted from the idea of
NSGA (Srinivas and Deb 1994) took place within subpopulations. In computa-
tional experiments on classification datasets, at least five of the seven objectives
were used for all datasets.

A multiobjective approach was used also at the level of the main popula-
tion, in that the classification performance was taken as one objective and the
fitnesses of each of the subcomponents as additional objectives. This was done
to “encourage the combination of the best individuals” of the subpopulations.
The main population objectives were thus related to the quality of the coevolu-
tion process, while the objectives related to regularization were embedded in the
subpopulation optimization as an intermediate tool.

The main population was represented as a string of integers that labels
the selected participant subcomponent from each subpopulation. A classic ge-
netic algorithm variant was used for optimizing this integer string. The evolu-
tionary variation operations used on the level of subpopulations (ANN compo-
nents) were the addition of a neuron, deletion of a neuron, addition of a connec-
tion, deletion of a connection, and a perturbation of weights by random values.
Crossover was not used, due to the known problems with architectural crossover.

Convincing experimental results showed improved classification accuracy,
especially with generalization to unseen validation data, compared to other pop-
ular classification methods, each with hand-tuned “best” parameters. It was also
shown that using multiple subpopulations yielded better results than using the
same algorithm for only one subpopulation, i.e., without coevolution.

3.2.9 Improvements for Real-time Systems

Wiegand et al. (2004) applied memetic Pareto-based multiobjective learning of
ANNs to implement face recognition as part of a commercial video surveillance
system. For the particular subcomponent responsible for the face recognition, the
task was reduced via extensive preprocessing to a simple one: to tell whether a
20× 20 pixel image contains an upright human face or not. This should be done
as fast as possible, due to understandable real-time constraints. Critical to meet-
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ing such requirements is that the ANN model has the fewest number of neurons
possible while still being able to sufficiently classify between the positive case
(face) and the negative case (non-face image). The number of synaptic connec-
tions was found to be insignificant, since the real-time computational expense
was found to be proportional to the number of hidden neurons instead of the
number of connections.

The application described by Wiegand et al. (2004) is an example of a sit-
uation where an application-specific objective needs to be considered from an
engineering point of view rather than from an information theoretical one. The
reduction of the number of hidden neurons was even mentioned to be the “pri-
mary goal” of the real-time system, which is different from the usual approach
of prioritizing accuracy first and other objectives as secondary ones. Let us note
here that this can be seen as an example of the different needs of different decision
makers regarding multiple criteria in otherwise similarly structured problems.

Due to the real-time requirements and known properties of the application,
special constraints on the network architecture were imposed. Receptive fields
(i.e., small sets of input pixels localized together on the image plane) were favored
instead of fully connecting each input to each hidden neuron. All results were
compared to a reference architecture handcrafted by an expert and trained and
validated with 100 runs of gradient-based learning. By means of receptive fields,
the reference used only 2905 connections out of more than 20000 that would be
used with full connectivity. The hidden layer size contained 52 hidden units feed-
ing in from rectangular subsets of the 400 pixels. The engineering goal was then
to obtain alternative models with fewer hidden units, allowing faster recognition,
but still with acceptable accuracy.

Eight evolutionary operations quite similar to those in other studies were
used: (i) addition of a connection, (ii) deletion of a connection, (iii) addition of a
hidden neuron, (iv) deletion of a hidden neuron, (v) perturbing (“jogging”) the
weight of a connection, (vi) addition of a new receptive field (random rectangular
area of the input image), (vii) partial deletion of a receptive field (randomly delete
horizontal or vertical sets of input connections), and (viii) adding of a hidden
neuron along with a randomly generated rectangular receptive field connected
to the new neuron. The operations were selected at random, with probabilities
that were adapted during the optimization process using a method that takes into
account the improvements gained from each operation during previous phases of
the learning.

While architecture minimization was handled by the evolution, at most 100
iterations of the gradient-based iRprop+ algorithm (Igel and Hüsken 2000) was
used as memetic improvement between generations. Early stopping based on a
validation set was used in the improvement phase. The improvement was done
by minimizing only the MSE error of the training dataset, but the trajectory of the
iteration was tracked and the point with minimal sum of the MSEs of training and
validation sets was picked as the final improvement to be stored in the genome.
An observation was made that this scheme might end up overfitting the union
of the train and validation sets, and a final model should be selected using yet
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another unseen set after the optimization is finished.
The Pareto-based selection mechanism of NSGA-II (Deb et al. 2002) was

found to perform better than tournament selection using a linear aggregation
of objectives as a fitness function. In the NSGA-II version, two discrete-valued
objectives were used: The number of hidden neurons and the misclassification
percentage in the union of the training and validation datasets. The objectives
for the evolutinary framework were thus different from the continuous objective
used for local improvement. In addition to the evolving population (of size 25),
an archive was kept of all non-dominated solutions found during the whole run.

A speed increase of 50% was reported compared to the reference architec-
ture. Accuracy was given relative to that obtained by the reference architecture.
No remarkable degradation with respect to test set accuracy happended while
the hidden layer size was reduced from 52 to 25. A notable observation is that the
solutions could contain fewer neurons but more connections than the reference
model (for example, 3496 connections with hidden 25 neurons), which would not
be possible by simply pruning the reference.

The final model selection was made by examining the multiobjective trade-
offs using the classification error (i.e., the percentage of wrong predictions) on an
unseen test set. The archived solutions had not been evaluated with this set be-
fore, so solutions originally non-dominated with respect to the objective functions
others could well be dominated by each other in this final examination phase us-
ing different metrics. Visualized solution sets were used to compare the methods
and solutions. Quantitative comparison of the solution sets found with different
algorithms was done using a suitable set comparison measure (Zitzler et al. 2003).

3.2.10 MOO for Alternative Learning Models

The digests presented above focused mostly on Pareto-based multiobjective su-
pervised learning of feed-forward neural networks, specifically MLPs for classi-
fication purposes. For completeness, it must be noted that the same approaches
have naturally been widely applied to learning structures other than MLPs. For
example, Kim (2004) evolved decision trees using subtree swaps and different
mutations of the tree structure. The two conflicting objectives were the classifi-
cation error rate and the number of rules in the tree. A Pareto optimal set was
created using non-dominated ranking (Fonseca and Fleming 1993) and the ob-
tained Pareto fronts were examined to choose a final model among compromise
solutions.

Bernadó i Mansilla and Garrell i Guiu (2001) introduced multiobjective opti-
mization techniques to rule based classifier systems (CS) by separately formulat-
ing criteria for accuracy and generality of decision rules (and, for the whole rule
set, a third criterion of covering the training set). Multiobjective optimization
outperformed a single-objective variant, but it was found that special pressure
towards the accuracy goal was better than using general Pareto ranking with no
bias. For the final CS, a decision maker would have to select a set of rules from the
whole Pareto front, and the unbiased Pareto ranking may stress the population-
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based search with too many unacceptably overgeneral rules.
Radial basis function neural networks (RBFNN) have a feed-forward struc-

ture similar to the MLPs studied here, but the hidden neuron activation is based
on locally centered proximity functions (the radial basis functions, RBFs) in the
input space. Evolutionary multiobjective learning is naturally applicable also to
RBFNNs. For example, Hatanaka et al. (2003) applied a Pareto-based approach
to optimize both the accuracy (measured as MSE error) and the complexity (as
the number of basis functions) of an RBFNN. Similar two-objective formulation
for RBFNNs was used by González et al. (2003). In evolutionary operators, the
locality of RBFs can be exploited in various ways as was broadly explored in the
latter of the two works cited. Overall, the evolutionary operations are similar to
those used in evolving MLPs: additions and deletions of neurons, and stochas-
tically jogging parameters locally or globally. In the case of RBFNNs, crossover
operation can be made useful due to the locality of the RBFs, and the weights con-
necting the hidden layer to the output can be optimized by solving a non-square
linear system.

Specifically, González et al. (2003) used a crossover in which the RBFs are
exchanged only with ones that are nearby in the input space. This can be done by
measuring Euclidean distances between the centers of the RBFs. Locally adapted
improvements can thus diffuse into the population via crossover while no unex-
plored gaps are left into the input space, which would likely happen if “blind”
exchange of RBFs was used. The local improvement operators provided (i) ran-
dom “blind” mutations of RBF centers and widths, (ii) mutations concentrating
on currently less important RBFs, found by quantifying the relevance of each RBF
using orthogonal least squares (OLS) and singular value decomposition (SVD),
(iii) pruning mechanisms similarly concentrating on the less important RBFs, and
(iv) addition of new RBFs to areas where the current number was seen insufficient
based on a local error measure. Naturally, also the same multiobjective selection
schemes based on Pareto optimality and non-dominance ranking are applicable
in these algorithms.

Igel (2005) proposed a multiobjective learning approach to support vector
machines (SVMs), which are yet another universal computational structure sim-
ilar to MLPs and RBFNNs. In SVMs, a nonlinear kernel function (typically se-
lected for each task manually) is used for transforming input data into a feature
space, after which a linear transform is applied to yield the final result. In tradi-
tional approaches, the kernel functions and performance measures would have
to be differentiable, and problems with getting stuck to local optima, similar to
those with MLP learning, exist, as observed by Igel (2005). He proposed a Pareto-
based evolutionary multiobjective optimization approach to overcome these is-
sues. The complexity (as the number of support vectors) and the accuracy (as the
number of misclassified training data instances) were taken as two objective func-
tions. A self-adaptive evolutionary strategy scheme was used with the NSGA-II
non-dominated ranking selection. A total archive of all non-dominated solutions
found during the whole run was kept again.

The benefits highlighted by Igel were the possibility of using nondifferen-
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tiable functions (due to the evolutionary approach) and the possibility of gaining
insight from the Pareto fronts. Especially, a “knee point” in the two-objective
Pareto front graphs was noticed where the decision maker would find “inter-
esting” models for practical use. Let us recall here, also from the other studies
of the period, that a single-shot optimization via weighted aggregation will not
give such global information about the trade-offs possible. Real-time constraints
were mentioned as a key motivator to find simple models, similarly to the work
of Wiegand et al. (2004).

Jin et al. (2007) introduced the multiobjective evolutionary optimization ap-
proach to spiking neural networks (SNN), a biologically inspired augmentation
of more simplistic models such as the feed-forward MLP with sigmoidal activa-
tion functions considered here. A major difference in SNNs is that the model
involves simulating the neural response (“spike”) as a function of time. The ac-
curacy and complexity of SNN classifier models was optimized in a Pareto-based
fashion using the NSGA-II selection scheme and task-specific mutation operators.
Gaining insight into the learning properties of SNNs was highlighted as a merit
of using a Pareto-based approach, which allows the examination of the obtained
Pareto front.

As yet another example of a different kind of application within ANN learn-
ing, Jin and Sendhoff (2006) applied a multiobjective formulation to the catas-
trophic forgetting phenomenon, which means that earlier patterns may be for-
gotten while learning new patterns that are dissimilar to the earlier ones. This,
of course, concerns “on-line type” applications where the ANNs are adapting to
newly incoming data, without access to earlier training data. Pareto-based evo-
lutionary multiobjective learning may be helpful via simultaneous optimization
of both the error on new examples and on randomly generated “pseudo pat-
terns” whose target values are generated by the current ANN. Again, direct en-
coding of connections and weights were used along with mutation operations
(no crossover) and iRprop+ (Igel and Hüsken 2000) for local improvement. The
local learning step needs to be done for a single objective, so a random decision
was made whether to improve on new or pseudo patterns. The NSGA-II scheme
was used to pursue non-dominated solutions.

Let us finally observe that ANNs and multiobjective optimization have also
been hybridized with a broader range of machine learning algorithms. For exam-
ple, Markowska-Kaczmar and Wnuk-Lipinski (2004) used a feedforward ANN
model as an embedded part of a rule extraction framework. Two conflicting ob-
jectives of fidelity (accuracy of classification) and comprehesibility (number of rules
and premises used) were formulated and aggregated by multiplication to a single
fitness function. A single-objective genetic algorithm with variable-length chro-
mosomes and special operators for crossover and mutation were used without
local improvement.
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3.2.11 Summary of the First Decade

Let us summarize some of the specific discoveries that can be obtained from the
works digested above. First of all, during the first ten years after machine learn-
ing techniques started to involve explicitly multiobjective optimization formu-
lations (approximately mid-1990’s), it was well proven through both theoretical
considerations and practical experiments that the merger is useful. A multiobjec-
tive methodology not only opens totally new application possibilities but inter-
estingly it can also improve the results and convergence characteristics of single-
objective tasks when used as an intermediate step. A large number of different
tools and purposes of machine learning have been investigated and found to ben-
efit from MOO.

With regard to the main focus here, Pareto-based MLP network design for
classification, we can observe the following:

– Life-time learning, i.e., the memetic local improvement is useful, and gradient-
based methods can be used as the improvement even when the local min-
imization objective(s) may be different from the (possibly non-differentiable)
overall objective functions.

– The local improvement is usually single-objective, requiring either scalarization
or the selection of only one of the objective functions, typically the error
criterion. Randomized choices of the direction of improvement have been
successfully used.

– Local improvement may result in overfitting, which can be fought using vari-
ants of traditional methods like cross-validation, regularization via penal-
ties, early stopping etc.

– Keeping a full archive of non-dominated solutions, possibly external from the
main population used for evolution, is beneficial and commonly used in
practice. For practical problem sizes and current computers, such an archive
is computationally cheap enough.

– The usual way to evolve MLPs is based on small structural mutations such as
jogging weights with a “creep” operation and adding or deleting one or few
neurons or synaptic connections at a time. Decision between the operations
is usually made by random choice, but the operation probabilities are likely
better to be adaptive and evolving throughout the search.

– Crossover is difficult due to the fundamental structure of the MLP (involving
the “competing conventions” problem), and thus in practice the methods
have refrained from using crossover.

– It is generally acknowledged that algorithms need to be tuned according to the
particular task and implementation structures being targeted.

– The early studies mostly concentrated on only a few objectives, and a usual
selection was to optimize the main, or primary, objective of accuracy, and
one additional secondary objective reflecting the complexity or the general-
ization capability of the model. Both objectives were selected from among
many known alternatives.
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3.3 Recent Developments

In the previous section, the initial years (ca. 1995–2005) of multiobjective ma-
chine learning were examined, based on well-founded resources (Jin 2006; Jin and
Sendhoff 2008) published by the end of that “period of proliferation”. Next, an
overview should be made on what has happened since (i.e., during 2005–2015),
up to the time of writing this dissertation. In Section 3.3.1, an outline of some
of the few review articles available is presented. Sections 3.3.2 – 3.3.9 digest arti-
cles that were found to be (subjectively) most relevant to this dissertation among
those identified in a literature search detailed later in Chapter 4. In Section 3.3.10,
a summary of the most recent decade is laid out, and findings relevant especially
to the current topic are highlighted.

3.3.1 Developments of The Bigger Picture

Let us start by looking at the trends of publication activity in the crossroads of
multiobjective optimization and machine learning, especially artificial neural net-
works. Details of the search string used in the database query will be explained
later in Section 4.2.1. The Scopus database and tools1 were used to find the num-
bers presented here. Figure 14 shows a graph of yearly publication counts that
indicates an increasing trend of research activity in the field. The numbers are ab-
solute, though, and not normalized with the increase of overall scientific output.
The query string matched 1333 publications, with 126 published last year (2015,
as of writing). A peak of 169 publications occured in the year 2014. All document
categories searchable with Scopus were included, and they were found with the
following frequencies: journal articles (54.2%), conference papers (32.6%), con-
ference reviews (9.0%), articles still in press as of January 2016 (1.9%), reviews
(1.1%), book chapters, books, and errata, totaling < 2.0% in the last three cate-
gories. The results are likely to include methods and applications of hybrids in
both directions: machine learning used in MOO (for example, surrogate models
used to improve the computational performance of optimization methods), and
MOO used in machine learning, which is the main focus here.

There is a lot of research going on, documenting various method improve-
ments and applications, but it seems to be difficult to find surveys or reviews that
would go into the trouble of summarizing and comparing the recent findings in
a systematic way. If this is not just the failure of the author here to locate such
studies, it would seem quite necessary to provide one. Performing a topically
focused but otherwise comprehensive survey of MOO and MLPs is therefore a
priority action for the near future. For this dissertation, time and space allows
recent developments to be sampled less comprehensively. We shall start with the
few related surveys that the author was able to find.

Mukhopadhyay et al. (2014a,b) provided a two-part survey on multiobjec-
tive evolutionary algorithms used for various tasks in data mining. Their cov-

1 http://www.scopus.com/

http://www.scopus.com/
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FIGURE 14 Publications at the crossroads of multiobjective optimization and machine
learning per year (1990-2015). Data retrieved by searching Scopus with the
query string explained in Section 4.2.1 and including all categories search-
able via Scopus. Total number of publications is 1333. This is an underesti-
mate, due to purposeful restrictions in the search scope, also to be explained
in Section 4.2.1.

erage of data mining conveniently includes the machine learning tasks of super-
vised learning, ensemble generation, and feature selection. Due to the inclusion
of other data mining tasks, and all families of methods available for solving the
tasks, the scope of the survey is broad, and, resultingly, the coverage of sub-areas
remains limited. Nevertheless, the relevant parts of their survey provide some
useful pointers as to where multiobjective machine learning has been developing
recently. Also, the categories of tasks overlap highly. For example, feature selec-
tion and ensembling can be applied in most of the other tasks, both unsupervised
and unsupervised.

First of all, Mukhopadhyay et al. (2014a,b) recognized how the general ap-
plicability of the few fundamental methods of evolutionary multiobjective opti-
mization currently pervades the whole field of data mining with differences only
in details. They organized their survey of each data mining area according to
these differences, which were observed to be (i) the representation (encoding) of the
solution individual, (ii) the objective functions chosen to be optimized, (iii) the evo-
lutionary operators applied, and (iv) the strategies used for final solution selection
from the obtained Pareto front. In the light of this categorization, the fundamen-
tal structure of multiobjective learning problems seems to have remained stable
since the earlier years.

The encodings and evolutionary operators still seem to be selected accord-
ing to the tasks and implementations at hand, which is not surprising, of course.
Expert knowledge and heuristics, such as special evolutionary operators and
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memetic improvement steps, are applied in the algorithmic components to im-
prove upon the basic forms of the underlying methods.

The number of objective functions simultaneously studied seems to have
increased from the mostly bi-objective cases of the first decade into combinations
of three or more objectives. The objective functions still seem to be selected from
among the traditional ones. Specifically in MLP-based classification, it is usual
to optimize various forms of accuracy, including ROC-type rates of various mis-
classifications, and model complexity. Feature selection methods naturally have
the additional goal of minimizing the number of input features, and ensembling
methods may have objectives measuring the ensemble quality. More detailed ex-
amples of ANN-based methods are found in the article digests presented in the
following subsections.

Most of the recent studies have been using standard MOO algorithms such
as NSGA-II, SPEA, SPEA2, PAES, PESA, and PESA-II, which are known to run
into difficulties when the number of objectives is four or more. The situation is be-
ing mended by current research in multiobjective optimization, but Mukhopad-
hyay et al. (2014a,b) did not yet find them introduced to practical data mining
tasks, including machine learning.

Mukhopadhyay et al. (2014a,b) also asserted that systematic comparisons
of the different methods available are mostly lacking, possibly attributed to the
unavailability of source codes or other details of implementation.

Some years earlier, a two-part review of neural networks in chemistry and
chemical process modeling was published by Curteanu and Cartwright (2011)
and Cartwright and Curteanu (2013). The first part (Curteanu and Cartwright
2011) concentrated on methods to select an optimal ANN architecture for a task
at hand, and the second part (Cartwright and Curteanu 2013) was dedicated to
evolutionary methods for ANN learning. The focus of this review series was in
chemistry and process modeling applications, and its main goal was to educate
the chemical research community about the proper use of ANNs as process mod-
els. Some of the definitions, claims, and references seem to be laid out a little
hastily and, in part, somewhat vaguely, but the series does do a rather decent job
in outlining the history and the overall state of the art in neural network learning,
covering both single-objective and multiobjective training.

As to the current trends, differential evolution and swarm intelligence meth-
ods, such as particle swarm optimization (PSO), ant colony optimizer (ACO),
group search optimizers (GSO) and bacterial swarming, were highlighted by
Cartwright and Curteanu (2013). According to the review, at least in the chem-
istry domain, memetic combinations of gradient-based learning and evolutionary
frameworks are common, and the NSGA-II is a widely used way to handle mul-
tiple objectives.

The reviews cited above, with all of their merits, do not give a very complete
coverage of what has been done recently with multiobjective machine learning
using neural networks. In the following subsections, some of the advances spe-
cific to ANNs within the last decade are covered, constituting a major part of the
contribution of this dissertation and laying the foundations for a more compre-
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hensive survey.

3.3.2 Structural Mutation and Optimal Hidden Layer Size

Goh et al. (2008) presented a Pareto-based memetic algorithm to jointly mini-
mize the error and the structural complexity of single-layer feedforward net-
works (SLFN), i.e., MLPs with only one hidden layer. They used the typical
choice of linear activation on the output layer and hyperbolic tangent as the hid-
den layer activation function. Restriction to SLFN was based on the universal
approximation results by which a single hidden layer is sufficient for approxi-
mation (Hornik et al. 1989). Fundamental to their approach was the geometric
interpretation that each hidden neuron creates a hidden feature by representing
a separating hyperplane in the input space. They provided several SLFN-specific
algorithmic elements based on the hyperplane interpretation and the singular
value decomposition (SVD) (Klema and Laub 1980).

An idea fundamental to the proposals was presented earlier by Teoh et al.
(2006). The SVD performed on the N× n1 matrix of hidden neuron outputs for all
training samples was used to quantify the dataset-dependent number of relevant
neurons. A gap, or a notable decay, in the magnitudes of the singular values
given by SVD was observed to exist between the larger and the smaller ones. The
number of the largest singular values would correspond to the number of actually
useful hidden neurons. The rest would correspond to neurons that have adapted
to noise, instead of actual information in the dataset. A user-selected threshold
value would still be needed for exact quantification of what is large enough, but
it was suggested that such a parameter is possible to select if some information
about the source of the noise in the measured system would be known.

Goh et al. (2008) used this SVD-based quantification as part of a crossover
operation suitable for the SLFN. This is noteworthy, because the known represen-
tation problems of MLPs are more often avoided (by not using crossover) than
attacked. In particular, the SVD was used to estimate the number of redundant
neurons in two parents. The angles between the neurons were then computed
(without specifying the manner of computation, but the Euclidean inner product
of the weight vectors, perhaps normalized, would seem like an obvious choice),
to decide whether each neuron should be deleted (“pruned”) or exchanged be-
tween parents. Neurons with the smallest intra-subspace angle (within a parent)
were deemed redundant based on the geometric interpretation. They would be
contributing via hyperplanes very close to each other, and only one of such re-
dundant hyperplane copies should be retained in the child network. Similarly,
neurons with the largest inter-subspace angle (between the two parents) were re-
garded as hyperplanes that have been learned by one parent but not the other,
and such novel information should be mixed to produce children with the differ-
ent learnings of both parents. A random choice with equal probability of 1/3 was
made for each parent to either (i) exchange the maximally different neurons with
the other parent, (ii) only remove redundant neurons, or (iii) only add neurons
from the other parent.
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To facilitate the crossover, a variable length chromosome was used to repre-
sent the individual SLFNs in the population. The “smallest unit” of operation,
i.e., the indivisible building block, was decided to be the neuron. The choice
was based on the geometric interpretation and earlier results cited (Stanley and
Miikkulainen 2002). Each neuron was represented as a fixed length vector con-
taining the incoming synaptic weights, the bias applied in the neuron before the
hyperbolic activation, and the output weights used in the output layer. The first
two correspond to a row in W1 and the last correspond to a column in W2 in
the matrix iteration formula of Equation (5) on page 25. Any number of such
fixed-length neural representations was allowed, thus facilitating any size of the
hidden layer. The actual number was to be determined through evolution using
the SVD-based genetic operator.

Also the commonly used mutation operator based on Gaussian weight per-
turbation was used with an adaptive strength based on measuring the percentage
of newly found non-dominated solutions among all non-dominated ones. The
mutation strength would decrease when the global exploration phase has con-
verged near the non-dominated front.

Two objectives were used to find a Pareto front: (i) the standard squared
approximation error for one-of-K binary vectors representing classes, and (ii) the
sum of squared synaptic weights. For the latter, also the discrete number of hid-
den neurons was considered as an alternative, but abandoned based on prelimi-
nary experiments.

The authors noted that the architectural operations would render the chil-
dren in a noisy state, requiring a local improvement step before fitness evaluation.
A real-valued micro genetic algorithm (µGA), i.e., a genetic algorithm with a very
small population, facilitating fast local search, was used as the local improvement
to learn locally better values for the weights using the structure that might have
been changed by the architectural operations. The µGA was also hybridized with
SVD so that only the input weights of the hidden layer were evolved, and opti-
mal values in the least squares sense were determined for the output weights us-
ing the pseudoinverse matrix computed with SVD. Simulated binary crossover
(SBX) and Gaussian mutation were used for input weight evolution. To balance
the computational cost between global and local search, improvement using this
µGA was used only for a subset of individuals. The size of this subset was adap-
tively increased as the convergence was found to move from global exploration
to local exploitation.

The selected objective functions turned out to be differentiable, but evolu-
tionary µGA was used instead of the traditional choice of backprop. The authors
justified this decision based on the possibility of backprop getting stuck in a local
minimum. A question could be raised, though, whether it should be in any way
problematic to find a local minimum when the whole purpose of the step is to
improve the solution locally.

Otherwise, the algorithm was based on standard components. Parents were
selected using a standard binary tournament using Pareto ranking and niche
sharing. A fixed-size external archive was used in which dominated or most
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crowded non-dominated solutions were removed when new non-dominated so-
lutions had been found. The archive was updated at the start of the evolutionary
step, and parents were selected from a combination of the main evolving popu-
lation and the archive. The algorithm returned the archive, whose size could be
different from the one used in main evolution.

The presented geometrical interpretation (illustrated in Figures 5–9 of Chap-
ter 2) provides an interesting way to handle the competing conventions problem,
allowing a meaningful cross-over operator to be defined. Pruning operations can
similarly be focused on building blocks that are likely to be redundant. How-
ever, the authors apparently measured only the angle between the hyperplanes
and not their distance from the origin, which depends on the value of the bias
and of the magnitudes of the other weights. Apparently, the authors also did not
consider the remaining mirror symmetry, i.e., the fact that two completely oppo-
sitely directed hyperplanes can have an equal effect when their output weights
have opposite signs. Extensions to more than a single hidden layer were not
considered, which is valid from the universal approximation point of view, but
is otherwise a restriction. It is known that deeper structures may cope with a
smaller total number of neurons, which may be desired, for example, from the
computational efficiency point of view in a final application. Some open ques-
tions therefore remain, but, since the recombination operator is known to be a
crucial element in EAs, it is a remarkable asset to have one available for SLFNs.

3.3.3 Memetic MLPs for Classifier Sensitivity Improvement

Fernández-Caballero et al. (2011) applied MLP classifiers to predict the possi-
bility of growth of micro-organisms under environmental conditions. They ob-
served a “renewed interest” in ANNs among researchers in medicine and predic-
tive microbiology, and contributed with a Pareto-based algorithm to improve the
sensitivity of ANN classifiers for the domain. Datasets of the growth of differ-
ent food-borne pathogens were examined, and comparisons were made between
single-objective classifiers and the proposed memetic bi-objective MLP training
method.

Two objective functions were maximised: (i) a continuous and differen-
tiable cross-entropy measure, and (ii) the minimum classwise accuracy (called
the minimum sensitivity by the authors) as a discrete ratio of correct predictions
among all class members. The algorithm was an adaptation of NSGA-II (Deb
et al. 2002), with local improvement of only the continuous entropy measure via
iRprop+ (Igel and Hüsken 2000). The authors called their method fittingly the
Memetic Pareto Evolutionary NSGA2 (MPENSGA2). Specifically, the usual non-
dominated sorting and binary tournament selection of NSGA-II were applied in
population updates. To reduce computational cost, local improvement was per-
formed only at selected generations (after 2/7, 4/7, and 6/7 of the total number
of generations computed).

Crossover operations were omitted on the usual grounds of being possibly
detrimental in evolving MLPs. Structural mutations were the usual additions
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and deletions of connections and neurons. Different ratio of connections were
altered on the single hidden layer (30% of total) and on the output layer (5% of
total). The parametric weight mutation operator was a Gaussian perturbation
used in a fashion similar to simulated annealing, i.e., with a distribution width
that is gradually decreased from early strong values (exploration phase) towards
later softer values (exploitation phase) based on a user-specified geometric cool-
ing strategy in which the user would select the initial temperature, a multiplier
(less than 1), and the number of generations after which the current temperature
would be multiplied.

A noteworthy technical feature of the algorithm of Fernández-Caballero et
al. (2011) is that it uses an object oriented representation, in which the population in-
dividuals are fully specified ANN object instances, and all the evolutionary and
local improvement operations are performed directly in the phenotype space in-
stead of encoding and decoding a genotypic chromosome representation dictated
by an underlying standard algorithm. Of course, the usual variable types still in-
ternally exist: the connections are represented as pairs of a binary variable repre-
senting the existence and a real value representing the weight of each connection.

Even with a complete Pareto front generated, only two final models were
selected: the one with maximum entropy, and the one with best minimal sensi-
tivity, corresponding to the two extremes of the Pareto front. The natural fact was
observed that the Pareto fronts generated using the training data are not Pareto
optimal with respect to the generalization test or validation datasets that were
unseen during training. Also, the metrics used for method comparisons were
different from the objectives used in the optimization process, and fronts plotted
against these metrics are yet more different in shape from the ones plotted against
the original objectives. Nevertheless, the MLP models obtained using the method
compared favorably to 11 state-of-the-art classification methods.

As another related development, Cruz-Ramírez et al. (2012) applied an MLP
model to a highly complex and unbalanced classification problem arising from
matching patients waiting for a liver transplant with potential donors. The aim
was to use supervised learning to predict the bi-class result of death or survival
of the organ recipient after three months of the operation. As inputs, the medi-
cal records of the potential donor and the recipient at the time of transplant were
used. Such medical applications are prime examples of situations where accuracy
and sensitivity are conflicting, and the costs are incommensurable, involving the
patient’s death as a possible outcome. Data from 1001 actualized transplant oper-
ations was used, with more than 40 input factors. The actual time of survival after
operation was recorded (followed up to a year, and thus including the 3 month
threshold period selected for the case study). Approximately 11.3% of the cases
resulted in non-survival, which is here the minority case, and of the greatest in-
terest to the patient. As observed in the research, naïve optimization of accuracy
using state-of-the-art single-objective classifiers yielded trivial classifiers with to-
tal accuracy of 88.7% with 0% accuracy (sensitivity) for the mortal cases.

To create non-trivial classification models that could actually be used in a
medical application, Cruz-Ramírez et al. (2012) used the memetic Pareto differ-
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ential evolution (PDE) neural network framework of Abbass (2001), explained
earlier in Section 3.2.3. The two objectives of entropy and minimum sensitiv-
ity were considered similarly to the earlier study by Fernández-Caballero et al.
(2011), while the algorithm was now based on PDE. This case study was also for
two classes only, but all the formulations were written for handling any number
of classes.

Before the couple of papers cited here, the use of the continuous entropy
objective as part of the memetic PDE construct had been explored earlier by Fer-
nández et al. (2009), and the memetic algorithm adaptation, called the Memetic
Pareto Differential Evolutionary Neural Network (MPDENN) had been detailed
by Cruz-Ramírez et al. (2010).

Again, local improvement using iRprop+ was performed on selected gen-
erations (once in the beginning, once in the middle, and once near the end of the
planned total number of generations). In this algorithmic variant, improvement
was done only on a maximum number of selected individuals (only those within
the first-ranked Pareto front, or, if the size of the front is greater than the specified
maximum number of improvements, on a “representative” subselection based on
k-means clustering). Also, again, the gradient-based local improvement step with
iRprop+ used only the differentiable entropy measure and neglected the discrete
second objective which was used only in the Pareto dominance evaluations and
final model evaluations. The structural and parametric crossover and mutation
operators were adapted from the earlier works in multiobjective differential evo-
lution for neural networks (Abbass 2003b; Abbass et al. 2001).

For model selection, Cruz-Ramírez et al. (2012) tried various methods based
on the Pareto set of MLPs found with the memetic search: selection of objective-
wise extreme points, representative points emphasising each half of the Pareto
front (defined as solutions closest to k-means clustering centroids), ensembling
with majority voting, simple averaging, and the winner-take-all method (the most
certain value is taken). The different selection methods naturally yielded differ-
ent trade-offs with generalization tests using data that was unseen in training (a
four-fold crossvalidation scheme was used). Using the area under curve (AUC)
metric for generalization, the best strategy was found to be the selection of the
solution with the highest entropy measure, which was one of the two objective
functions maximized. With different metrics, such as the classwise mean gener-
alization sensitivities, there are expectedly different trade-offs between the differ-
ent selection methods. Outlier removal from the majority class and neighborhood
oversampling of the minority class were required for the best results, improving
results for both the single-objective benchmarks and the proposed multiobjective
method.

Sánchez-Monedero et al. (2011) proposed a scalarized single-objective MLP
training method to strike one balanced result within the Pareto front of accuracy
versus minimum class sensitivity. Such an approach serves its intended purpose
of cutting down most of the computational effort required in memetic Pareto-
based algorithms, but this happens at the cost of losing all information possibly
conveyed by exploring the Pareto front.
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Fernandez-Caballero et al. (2010) tested the MPENSGA2 algorithm and the
two-objective proxy formulation of multiclassification sensitivity with 18 datasets,
10 of which involved at least 3 classes, again with favorable results. They con-
clude that the approach “reveals a new point of view for dealing with multiclass
classification problems, and provides the opportunity to improve the sensitivity
and accuracy of a multiclassifier for a wide range of data sets”. As future re-
search topics, they outlined the use of other memetic algorithms, other types of
base classifiers, ensembling tools that make further use of the Pareto front that is
obtained, and pre-processing tools to help with very imbalanced datasets.

Gutiérrez et al. (2012) elaborated further on the above methodologies. With
the decision to use the minimum classwise accuracy (sensitivity) as a proxy for
the sensitivity over all classes, any number of classes can be handled by the two
objectives, but the trade-off information from all but the worst class cannot not
be used. The authors made a note of this deficiency, but reminded that the choice
“avoids computational and visualising disadvantages” of approaches (such as
that of Everson and Fieldsend 2006) based on considering the K × (K − 1) mis-
classification costs separately. A two-stage evolutionary algorithm for training
MLPs to achieve a Pareto front in the accuracy vs. minimun sensitivity space
was proposed. Again, the MLPs were represented as phenotypic objects only.
Structural and parametric mutations were used, and crossover was omitted on
the usual grounds.

This time, a total of five fitness functions were considered for the evolution-
ary algorithm: (i) total accuracy in the whole dataset, (ii) the minimum sensitiv-
ity, i.e., classwise accuracy, (iii) a differentiable cross-entropy function for MLP
predictions, (iv) Cohen’s Kappa statistic measuring the agreement between ex-
pected and obtained classifications, and (v) a measure of the two-dimensional
area within the space of the first and second objectives residing between the eval-
uated classifier and the “ideal” (or utopian), generally unobtainable, classifier
with full accuracy for each class.

In the first stage, exploration with strong structural mutations was to be
used to push the population towards the ideal side of the accuracy-sensitivity
space by using only the entropy function as fitness. Then, a small elite of the
result was chosen to perform an exploitation phase with softer mutations, con-
sidering one of the other objective functions as the fitness. Experiments showed
that the area function was the best choice. It is to be noted that the algorithm,
while examining Pareto fronts as a theoretical foundation and for result explo-
ration, actually uses two passes of single-objective optimization to arrive at a
final result population. The paper is somewhat unclear about the final selection
of an individual. It has to be assumed that it is the best individual with respect
to the second stage, i.e., a solution closest to the ideal one, after starting from an
initial population pre-conditioned by the first stage with a different objective.

Again, 18 multiclass datasets were used in the experiments. Combinations
of the five objective functions were compared, and comparisons with other state-
of-the-art classifiers and the fully multiobjective version (Fernandez-Caballero et
al. 2010) were made. In comparisons, only the accuracy and the minimum sensi-
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tivity on a validation dataset were used, while the stages of the algorithm were
run using different combinations. It was found via the comparisons that the en-
tropy criterion was good for the first stage, initially driving solutions towards
the interesting end of the Pareto front, and the newly introduced Pareto-area cri-
terion was best for the second stage to drive the elite of the first stage further
towards the ideal edge of the feasible part of the Pareto solution space (which in
this case is a linear graph, as formally proved in the paper). The earlier multiob-
jective algorithm outperformed the two-stage approach for some datasets, but for
some datasets the final model decisions (from Pareto front extreme ends; see the
digests above) involved an extremal trade-off between the two objectives. The au-
thors concluded that the two-stage approach “provided an effective intermediate
point” between either one selected by the multiobjective approach. This would
naturally happen, since the first stage optimizes one of the final objectives quite
directly, and the second stage further improves the resulting population towards
the Pareto front, with an objective function that has its minimum approximately
at the center of the sharp “tip”, or knee point (Thorndike 1953), appearing in the
Pareto front.

All in all, the two-objective proxy for multi-class sensitivity improvement
suggested in the above papers is definitely an interesting approach to unbalanced
multiclass classification, and it is appealing in its simplicity. While comparisons
to other methods turned out to be favorable for all variants, the author of this
dissertation must still find it appropriate to ask whether the Pareto front concept
has yet been fully used in the approaches, observing that in each variant, a single
solution is selected. It is fully explored in the papers that for nontrivial classifi-
cation tasks the objectives are conflicting, and that the Pareto front is an actual
curve, even if a sharp knee point appears near the ideal corner of the space. Still,
the proposed methods will finally sample either one extreme or a single point
somewhere in the middle. Nevertheless, the idea of a two-objective proxy for
trading off global accuracy and sensitivity in multiclass classification tasks has
been well examined with various approaches by the papers cited above.

In an even more recent work, Cruz-Ramírez et al. (2014) used the MPDENN
of Cruz-Ramírez et al. (2012) to assess the problem of ordinal classification, or
ordinal regression, in which the classes of a multiclass classification task have
an internal ordering. An illustrative example given by the authors is the clas-
sification of people as belonging to the lower, working, middle, upper middle,
or upper class. For example, it is a bigger error to predict “upper” when the
true result is “lower” than it is when the true result is the closer alternative “up-
per middle”. As a fitting continuation to their earlier case studies making use of
a variety of classifier comparison metrics, the authors compare several metrics
suggested for ordinal classification and also propose one of their own, which,
somewhat analoguously to their proposed minimum sensitivity, considers the
maximum per-class mean absolute deviation between the predicted and the ob-
served ordinal classes. The purpose was to compare metrics that could be used
as objective functions in training ordinal classifiers. It was also shown that the
metrics can be mutually conflicting, especially in the later phases of evolution.
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MPDENN was used for testing the suitability of metrics that were first found to
be mutually conflicting in a correlation study using other classification methods.
Also in this study, final models were selected at the extremes of the Pareto front
obtained by the MPDENN, and compared using also other metrics that had not
played a role during training. The pairing of the global mean absolute deviation
and the maximum class-wise mean absolute deviation was found to be a compet-
itive choice.

The research track digested above in this subsection serves as one living
proof that MLP training using memetic multiobjective optimization is very much
alive and actively studied in the machine learning community well into the 21st
century.

3.3.4 Pareto Front Sampling with a Controller Approach

Costa et al. (2012) provided theoretical convergence analysis for a method pro-
posed by Costa et al. (2003) as a continuation of the work initiated by Teixeira
et al. (2000). As recognized also by the authors, their approach interestingly turns
completely around the usual way of applying neural networks as part of an in-
dustrial control system. Instead, they use control theory to train MLPs. Specifi-
cally, the objective space of multiobjective learning is modeled as the state space,
through which controlled trajectories can be driven by adjusting the gain param-
eters in a multiobjective modification of the sliding mode control (SMC) method
(Utkin 1977).

Costa et al. (2003) presented gradient-based learning rules for the usual case
of minimizing MSE error (accuracy) and the sum of squared synaptic weights
(model complexity). Arbitrary trajectories through the objective space, ultimately
leading to the Pareto front when the control target was set beyond the reachable
area, were demonstrated. In the early work, the gains had to be manually ad-
justed experimentally. With the convergence analysis of Costa et al. (2012), the
need of experiments for gain setting has been lifted. Values leading to theoret-
ically guaranteed SMC convergence can be automatically selected, so it is suffi-
cient to select a target objective point or multiple intermediate points. Once a
point on the Pareto front is reached, the whole front curve can be traced by nudg-
ing the target point further in the unreachable part. The authors also mention
the possibility of examining a third objective function along the way, but the con-
trol method itself is currently operating in two dimensions. After the tracing, the
sampled Pareto front can be used as in any Pareto-based method.

The concept of learning trajectories is fundamental to the SMC learning for-
mulation. For two-objective tracing of the full Pareto front, a trajectory method,
especially with arbitrary trajectories, looks like a complete solution. After all,
the front in two dimensions is a curve. In three or more dimensions, trajecto-
ries cannot sample a full Pareto front, but of course two-dimensional level sets
could be traced similarly, regardless of the dimension of the full problem. Also,
a noteworthy observation of Costa et al. (2012) is that all learning methods based
on incremental weight update rules, such as backprop, end up with a learning
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trajectory, be it controlled or not. The stability of the SMC-controlled trajectories
plotted next to uncontrolled ones in the article is very impressive indeed.

As of yet, the SMC learning method for MLPs has been formulated only for
MSE error and the squared norm of weights. The assumption of quadratic er-
ror is fundamental to the theory presented. It would be interesting to see more
extensions of this approach to other kinds of objective functions. Also, it would
be interesting to consider extensions of trajectory-based learning with more than
two objective functions. Controlled or not, the trajectories traced through an ob-
jective space (of any dimension) seem like a good way to visualize the workings
of an iterative multiobjective learning algorithm. Of course, such graphs are just
many-dimensional variants of the usual convergence graphs of single-objective
error vs. the number of training epochs. But still, not many of them have been
seen yet, at least in the multiobjective learning literature that came up for this
study.

The cited works on controlled learning trajectories do not consider the ques-
tion of local minima. While the convergence to a locally Pareto optimal solution
is guaranteed, i.e., the end point of the trajectory will be such that incremental
gradient-based steps cannot take it further towards a point beyond the located
Pareto front, it still seems possible that globally better solutions (dominating
those on the front that has been found) might exist that have not been reached
by traversing the current trajectory. As with any gradient-based methods, evolu-
tionary operations should be able to help with such issues, but, of course, such
perturbations would introduce discontinuities in the otherwise smooth trajectory.

3.3.5 Accuracy and Model Complexity for Limited Hardware

Capel-Cuevas et al. (2012) described an industrial application in which, similarly
to the one of Wiegand et al. (2004), technical requirements necessitate simple
models with few computations when operating in the field. In this case, a proto-
type of a portable (hand-held and battery operated) pH determination sensor unit
was produced. The detection of the pH level, i.e., of the acidity or basicity of a
liquid solution, was to be made with a photometric sensor array that registers the
color change of chemicals attached to a supporting thin film. The array consisted
of 11 sensor elements with different chemical compounds, called “indicators”,
that would change their color when dipped to a solution of a certain pH level. To
reduce manufacturing costs of the arrays, minimization of the number of these
sensor elements would be beneficial. Also, as little computation as possible was
to be required in the final system, because it was to operate on battery power and
with a cheap microchip with very limited computing and memory capacity. The
limited memory capacity sets hard limits to the range of algorithms that can be
implemented, and, with highly limited computational power, the response time
from sensor array insertion to being able to read the result from the LCD display
could also be a factor that affects user experience.

MLP was chosen as a nonlinear function approximation model to translate
the color changes to a pH value. A training set was created by measuring the
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ground truth value of the pH of 121 different solutions using a laboratory poten-
tiometer. Then, the sensor element color changes were measured as they would
be by the integrated camera of the handheld device. Only the H (hue) coordinate
of the HSV color space was used, providing one real value of input for each of
the 11 sensing elements. Multiple replicated measurements were made to avoid
outliers.

Even with the manufacturing and computational requirements of model
simplicity, the full range of pH levels was to be covered with good accuracy, so
multiobjective machine learning was employed. The authors used NSGA-II hy-
bridized with a local gradient-based search to minimize three objective functions:
(i) the number of inputs (sensor elements), (ii) the number of neurons on the sin-
gle hidden layer of the model, and (iii) the maximum error among the training
data patterns.

The final selection was made from the extremal part of the Pareto front that
emphasized prediction quality. All the sensing elements were used, after all, to
meet the best prediction error possible. Also, the final model had the largest num-
ber of hidden neurons of all the Pareto optimal solutions. Still, the multiobjective
approach was useful in that the number of hidden neurons did not have to be
selected a priori. It turned out that less than the maximum number of neurons
allowed in the representation (9 vs. 11) was sufficient to reach the best accu-
racy. The authors noted that by using the Pareto-based multiobjective scheme,
the decision maker can make an assessment of developmental needs “such as
energy saving, computing time response, array development costs and instru-
ment minimisation, among others”. An idea not mentioned by the authors is
that, with some imagination, it could be possible to think of different implemen-
tations brought to the market, each corresponding to a different Pareto-optimal
solution, so that the end user could decide between a cheaper and less accurate
device and a more costly but more accurate one. In fact, since even the most accu-
rate model fits inside the memory of the device, a selling-point could potentially
be made of the possibility to choose between cheaper arrays (with less elements)
and more accurate ones (with more elements). The same device could be used
with either of these, and the Pareto front already contains MLP models that can
trade-off between the number of inputs available and the measurement accuracy.

3.3.6 Multiobjective Swarm Intelligence for Prediction Intervals

We now turn to another application of multiobjective ANN learning presented by
Taormina and Chau (2015a,b). Even though the application considers time series
forecasting instead of classification, it is of interest here for a couple of reasons.
Firstly, it shows some of the most recent developments in population-based algo-
rithms that deal with ANNs. Even though MLP is not mentioned by the authors,
both the figures in their work and the explanations given in the cited ones give
reason to believe that feed-forward multilayer ANN constructs have been used
even if the algorithms are usable for any structures. In fact, the algorithms could
be used for any predictive base learning model. Particle swarm optimization has
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been used, which seems to be an emerging overall trend among current method
selections. Secondly, the application domain is related to hydrology and water
resources management, which appears to have been one of the frontline applica-
tions of ANNs recently. Thirdly, this is an example that has very recently contin-
ued a traditional approach of multiobjective learning, with some new twists that
may stir one’s imagination about future algorithmic prospects.

That said, Taormina and Chau (2015a,b) used ANNs to forecast river flows.
To predict the future streamflow measured in cubic meters per second in flood-
prone rivers, they used the time series prediction methodology of Khosravi et al.
(2011) and Quan et al. (2014) to create ANNs (likely at least very similar to MLPs)
with two outputs that jointly give a prediction interval (PI) instead of a single
prediction point. The outputs are defined as the lower and upper bounds be-
tween which the future point falls with a given probability. Such intervals are
much more useful in actual applications than single point measures, because
(un)certainty of the prediction is explicitly covered by the PI. The model itself
is presented as a single-objective function that is a nonlinear aggregation of two
quality indices: the percentage of target instances having been outside the pre-
dicted interval, and the overall width of the predicted interval (as RMSE of the
difference between predicted lower and upper bounds).

Multiobjective optimization was directly applied in the particle swarm op-
timizer to handle generalization. Similarly to one of the approaches of Abbass
(2003a), Taormina and Chau (2015a) divided the training dataset into two equally
sized sets, and the two objective functions were taken as the main objective func-
tion value computed separately for both splits. An archive of Pareto-optimal so-
lutions was used to inform the swarm of the best flocking directions found so
far. In this way, also in this study, multiobjective optimization was embedded
within the algorithm to improve generalization while still learning by optimizing
a single main objective.

In addition to the multiobjective swarm algorithm, multiple criteria were
used to select models from the Pareto front obtained. We shall say “criteria”
instead of “objective” here, since these were measures that had not been used
directly in the optimization phase, but were used to select a best individual from
the resulting population after optimization. It turns out that the two criteria were
based on the two aggregated terms of the single objective function. The Pareto
set was searched for the “most precautionary” individual that was best in the
percentage of mispredictions and the individual with “narrowest interval”. It
turned out that the final emphasis between these, obviously conflicting, criteria,
depended on the dataset. For one of the two rivers investigated, it was better
to select the most precautionary model. For the other one, the precautionary
model had too broad intervals to be practically useful, while the narrowest inter-
val model was deemed to be close enough to acceptable misprediction percent-
ages. Here, we could imagine how such an optimization method would turn out
if the two aggregated terms would be separated in a multiobjective fashion in the
first place. In the current proposal, the outer tier of the algorithm is already mul-
tiobjective even though the inner tier works with a single aggregated objective.
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For the purposes here, we skip some details given by Taormina and Chau
(2015a) about feature selection, initial search for an optimal ANN architecture,
and comparison with other methods. What matters here is that the authors were
able to conclude that their multiobjective fully informed particle swarm opti-
mizer found “substantially narrower” prediction intervals than a previous single-
objective approach. Prediction quality improvements were shown especially in
a time frame of special interest, when a heavy storm had resulted in peak val-
ues, which, of course, is a critical time to reliably predict the possibility of river
flooding. A further observation was made that the multiobjective version pre-
sented a 40% to 50% improvement in computational time, compared to the single-
objective swarm optimizer.

As seen from the digest here, and with more evidence in the full paper,
several objectives (and “criteria”) need to be assessed in the various stages of cre-
ating, selecting, and validating an actual predictor model. This feeds the imagi-
nation with regard to further possibilities of multiobjective ANN learning: Could
more of the various criteria be introduced as explicit optimization objectives in a
holistic algorithm that performs more of the necessary stages in a single run? For
example, at least superficially, it would seem plausible to include feature selection
and ANN architecture optimization, as was done in the previous application ex-
ample of Capel-Cuevas et al. (2012), into the kind of algorithm used by Taormina
and Chau (2015a) that evolves a population of ANNs also with respect to a main
performance objective. The main objective itself could, in fact, possibly be split
into the two separate objectives that are currently aggregated into one.

3.3.7 About Multiobjective SVM Model Selection

Rosales-Pérez et al. (2015) used a surrogate-assisted evolutionary algorithm to
address the problem of classifier model selection. There are two major reasons to
highlight this recent research here. Firstly, the proposed method exemplifies the
range of possibilities in creating hybrids between already existing approaches. It
is customary to use machine learning models as computationally cheaper surro-
gates that approximate objective functions that are very expensive to compute,
for example in industrial optimization tasks based on physical simulations. In
this case, though, it was the SVM classifier model selection that was identified
as a computationally expensive optimization problem, and a multiobjective evo-
lutionary algorithm was used with a surrogate that approximates the effect that
various design choices (pre-processing method, feature selection, model struc-
ture, model hyperparameters) have on the two objectives of bias and variance.
The expensiveness arises from the use of n× k-fold crossvalidation used to eval-
uate the bias and variance for every choice of model design parameters.

A second reason to mention the research of Rosales-Pérez et al. (2015) here
is that its goals are representative of problems that need to be tackled when us-
ing the SVM method even with its other theoretical and computational proper-
ties that have made it attractive to the community. A shift of interest towards
methods with convex optimization formulations, starting with the appearance of
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SVMs, was observed, for example, by Costa et al. (2012, p.21–22), who also noted
that while “non-convexity is considered as an unavoidable part of the formula-
tion” in their work with MLPs, the convexity of SVMs is not able to change the
fundamental complexities arising from the data under consideration nor the need
to build systems to properly handle those.

As for the method, Rosales-Pérez et al. (2015) represented the choices be-
tween alternative pre-processing methods and algorithm hyperparameters as bi-
nary and real variable vectors, respectively. Rather standard binary and real-
valued evolutionary operators and binary tournament selection, alike that used
in NSGA-II, was used in a surrogate-assisted multiobjective evolutionary algo-
rithm described in an earlier work (Rosales-Perez et al. 2013). After evaluation of
the initial population, the costly objective functions were left up to the surrogate
model, which itself is actually an ensemble of SVMs for regression. During opti-
mization, the surrogates were updated on each generation by evaluating the real
objective functions only for those new solution candidates that appeared to be
Pareto-optimal with regard to the objectives computed using the current surro-
gates. In this way, the surrogate objectives would become increasingly more ac-
curate near the Pareto set, and all the costly crossvalidation computations would
be made only within this area of highest importance.

The final model selection was made also in this research by evaluating gen-
eralization performance among alternatives that had been found Pareto-optimal
(with respect to the bias and variance) with regard to the training set. Before
evaluation against the validation set, the final models were re-trained once more
with the complete training data (without the k-fold split used while optimizing).
As future research steps, the authors anticipated generalization to machine learn-
ing methods other than SVMs, thus encompassing the complete model selection
problem via selecting the base learner type in addition to the methods of pre-
processing, feature selection, algorithmic parameters, and naturally the model
parameters themselves. Other possibilities mentioned also by these authors are
ensemble construction and examination of the Pareto front to analyse the behav-
ior of models, given a certain dataset.

3.3.8 ROC Fronts

Another example of SVM model selection is that of Chatelain et al. (2010), who
applied the standard (real-valued) NSGA-II algorithm to optimize the hyperpa-
rameters of an SVM model for binary classification. Three variables were se-
lected: (i) the width of the RBF kernel, (ii) a constraint penalty value for the
positive class error, and (iii) a similar parameter for the negative class. The two
objective functions used were the true positive rate and the false positive rate.

The approach is in line with the earlier research on multiobjective interpre-
tation of the ROC curve (for example, Everson and Fieldsend 2006; Fieldsend
and Singh 2005; Kupinski and Anastasio 1999, covered earlier in this disserta-
tion). The findings support the idea that a Pareto front optimizing the true and
false positive error rates can be interpreted in the sense of ROC curves, but due to
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the difference from the traditional approach of forming the ROC curve by vary-
ing a threshold parameter in an already trained classifier model, Chatelain et al.
(2010) introduce the rather fitting name of ROC front for the MOO optimization
result in which the individual classifiers are different from each other. They show
by examples that each model on such an ROC front is locally better with respect
to the ROC space than any classifier obtainable by modifying the threshold of
some other model. Therefore, the fittingly named metric of area under the front
(AUF) was proposed for measuring and comparing the ROC fronts obtained by
different Pareto-based multiobjective learning algorithms.

The measured AUF is generally better than the AUC of any single model,
but the authors hastened to clarify that the values of the two metrics should not
be compared without hesitation because of the difference in what they measure
(Pareto front of different models vs. a single individual model with a varying
threshold). They also showed their algorithm in action in a real-world application
that benefits from obtaining a Pareto front. In a system for hand-written num-
ber extraction, the SVM model was used as a fast preliminary check that should
predict whether a separated image possibly contains a digit or something else
(a letter, piece of text, other non-digit glyph). A more complex, slower, system
was used for the actual digit determination, and the investigated component per-
formed a filtering step in order to reduce unnecessary work later on. The function
of the component was thus similar to the MLP for face recognition considered by
Wiegand et al. (2004), covered earlier in Section 3.2.9. Real-time performance was
not similarly critical in this case, but the total throughput would be degraded by
any false positive decisions made by the filter component.

False positives require futile computations down the line that should be
avoided. True positives should naturally be maximised to get most of the actual
digits to be processed, but there is obviously a conflict in the goals. What makes
the ROC front especially appealing in this case is that the engineering choice of
the best operating point cannot be done before integration to the complete sys-
tem. The costs of different kinds of misclassification are not known while opti-
mizing. With the ROC front, it is possible, in the authors’ words, to “postpone
the choice of the final classifier as late as possible” and to “change the classifier
without a computationally expensive new learning stage when target conditions
change”. Both of these merits are handy in the real-world system design pre-
sented.

The authors emphasized that their approach for modeling the objectives is
not restricted to SVM or NSGA-II, but that any classification model and Pareto-
based optimization algorithm could be selected, and more than two classes could
be considered. They also suggested the possibility of including other engineering
objectives, such as computation time needed for the decision when the model is
operating in the field.

Let us briefly mention one more recent research regarding multi-objective
SVMs. Aşkan and Sayın (2013) used the inherent likeness of SVM learning and
multiobjective optimization to incorporate the error on positive and negative pat-
terns in binary classification tasks, much like the formulation of Chatelain et al.
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(2010). They minimized the three objectives of (i) separation margin maximiza-
tion, (ii) the error made on positive patterns, and (iii) the error on negative pat-
terns. Their approach is an exhaustive search scheme embedded in SVM learning
rather than wrapping the traditional learning within an auxiliary evolutionary
algorithm that tweaks hyper-parameters. Two-objective level sets of the Pareto
front with one objective fixed in an iterated “grid search” manner is gained, con-
taining trade-offs between positive and negative class errors and the norm of the
vector describing the separating hyperplane. Hyper-parameters such as kernel
type were not included in the approach.

The couple of examples of SVMs cited above demonstrate how uses of MOO
are constantly developed for various kinds of learning machines. SVMs may have
been more popular than MLPs lately, but it can be seen from the struggles faced
in SVM learning that the fundamental problems of model selection in less trivial
situations do not necessarily go away with the SVM formulation. Model selection
is still inherently a multiobjective task, and the inherent non-convexity and other
difficulties present in actual datasets manifest themselves as questions of how to
select the hyperparameters and how to modify the internal optimization problem
formulation.

3.3.9 Notes on Other Alternative Structures and Methodologies

Almeida and Ludermir (2010) described a memetic hybrid method combining el-
ements of GA, ES, PSO, and gradient-based local optimization to train MLPs for
classification tasks. They considered no less than five objectives: (i) a training set
error, (ii) a validation test error, (iii) the number of hidden layers, (iv) the number
of hidden neurons, and (v) the “complexity” of activation functions selected in
the MLP network layers. Alas, they used empirically selected weight coefficients
to aggregate these five measures into a single objective that was used in the un-
derlying memetic optimization method. Therefore, no real Pareto front could be
produced, and none of the acknowledged benefits of multiobjective optimiza-
tion over single-objective optimization could be used in their proposal. Other
than that, some interesting ideas were laid out. They reviewed both the strengths
and the weaknesses of each individual method family available for ANN learn-
ing, and they suggested that a hybrid that picks the best part of each constituent
method should perform better than any one method on its own. They also picked
up an “object oriented” approach to individual encoding (although they did not
call it by that name), which included, for example, the local improvement method
selection (among a variety gradient-based methods) and values for all the param-
eters that the individual should use in an improvement step. These optimization
parameters were meant to co-evolve with the individual, constituting what is usually
called a self-adaptive algorithm. But, at least in this early proposal, it appears
as if they did not yet go far enough to really exploit their formulation to its full
capacity. The study is cited here because it is an example of how the continuous
developments in optimization methodology should be, also continuously, inte-
grated with machine learning.
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Pasti et al. (2010) trained ensembles of MLPs for multiclass classification us-
ing a multiobjective artificial immune system (AIS) optimization algorithm (Cas-
tro and Timmis 2002), which is yet another nature inspired paradigm of opti-
mization. AIS is based on modeling the immune system of a living organism that
contains a large number of cells that learn to identify antigens (i.e., “germs” that
produce illnesses). Optimization using AIS is a population-based metaheuristic,
just like evolutionary algorithms, only with different mechanisms of population
updates. One reason to digest the study here in the following few paragraphs is
that it presents one more example of the variety of optimization algorithms be-
ing developed and used for machine learning. Another reason is that its overall
topic was ensemble creation, which has been seen as one of the potential uses of
multiobjective learning methods.

Pasti et al. (2010) continued on their previous studies with MLP ensemble
training using AIS, and evaluated the effect of optimizing the diversity of ensem-
ble members explicitly as a second objective alongside accuracy. They experi-
mented with optimizing the two objectives of squared error on a training set and
the negative correlation of individuals with respect to the population. The second
objective was evaluated as the correlation of the errors made by one individual
with regard to the errors made by an ensemble of all individuals in the popula-
tion, computed over all the training data patterns. Minimization of this correla-
tion (yielding highly negative error correlations) was hypothesized to explicitly
increase the diversity of the resulting population of MLP classifiers, because the
individuals would make errors on widely different subsets of the training data.
The Pareto set thus created would contain MLPs with high accuracy, but with
heterogeneous error profiles.

The results of Pasti et al. (2010) were negative in the sense that, at least in
their experimental setting, the minimization of negative correlation yielded en-
sembles than performed worse than those produced with a single-objective ver-
sion of the same algorithm, minimizing only the error objective. A gradient-based
algorithm was also found to be superior in one of the five benchmark datasets
used. This negative result may be useful in considering how to build ensembles.
High accuracy of members with some, but limited, diversity, may be the best
option in some cases.

Tsakonas (2014) used genetic programming (GP) to build a hierarchical en-
semble structure for regression and function approximation tasks. Both MLPs
and SVMs were used in the pool of weak base learners. The weak learners of
the pool were first initialized and trained using their respective, traditional, local
learning strategies, after which GP was used to create a stronger model by com-
bining the weak learners into an executable tree with various operators including
means and medians of the predictions made by sub-trees. As of the reported ver-
sion, multiple objective functions were used in a scalarized fashion to incorporate
pressure towards both accuracy and diversity (modeled essentially via a correla-
tion measure) in the evolutionary selection, mutation, and crossover operation
probabilities for each base learner. While not yet implemented, many possible
extensions were suggested: proper Pareto ranking could be used, the pressure
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probabilities could be re-adjusted during the run, and the base learners could be
continuously re-trained as well. The papers of Tsakonas (2014) and Pasti et al.
(2010) provide examples of the variety of approaches currently being used and
developed to deal with persisting machine learning problems, such as diversity
management in ensembles, where multiobjective considerations naturally enter
the picture.

In addition to the very recent work of Taormina and Chau (2015a) on par-
ticle swarm optimization for MLPs outlined above, let us look at one more ex-
ample of the emerging trend of PSO for machine learning. Qasem et al. (2013)
used a memetic multiobjective PSO method to simultaneously optimize the ac-
curacy and model complexity of RBFNN classifiers. Three objective functions
were considered: (i) the classification accuracy, (ii) the total number of RBFs, and
(iii) a smoothness metric of the RBF functions. A rather standard representation
was used with a fixed-size binary vector representing the existence of each input
and hidden neuron, and another vector of real values representing the weights
of the network. Standard PSO was altered to accommodate a local search step,
global guide selection based on dominance ranking, and an individual replace-
ment strategy based on crowding distance. Comparisons with other state-of-the-
art methods were favorable to the method.

As a final example of recent combinations of different optimization method-
ologies, Du et al. (2014) combined the multiobjective selection mechanism of
NSGA-II with a recent version of differential evolution (Zhang and Sanderson
2009) designed to improve the convergence preformance of DE for single-objective
optimization. In addition to introducing the NSGA-II selection scheme to make
the proposed DE variation multiobjective, Du et al. (2014) modified the fitness
function of NSGA-II to emphasize solutions close to the “knee-point” or “knee-
region” of a bi-objective problem (Deb and Gupta 2011). The two objectives con-
sidered were the MSE error and the standard deviation of predictions in time
series forecasting done by single-layer feedforward networks. It was suggested
that when a single model must be selected from the Pareto optimal ones, the best
one would be found near the knee point, in which the PF presents a notable turn
between prioritizing one of the two objectives. Therefore, after an initial scouting
of the whole Pareto front, it is beneficial to focus the rest of the search near the
knee-point.

3.3.10 Summary of the Last Ten Years

For the purposes of this dissertation, it would have been wonderful to cover the
whole history of multiobjective machine learning up to this day via textbooks or
secondary studies. As it turns out, such resources either do not exist or are very
hard to find using search words that the author was able to come up with. Hence,
recent advances were sampled by looking at some works that appeared to be of
the greatest interest regarding the current topic. More details of the sampling
process itself are given in Chapter 4. The current end result was the digests of
research articles given up to this point. Similarly to the key points distilled in
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the summary of the first ten years of multiobjective machine learning made in
Section 3.2.11, key points arising from the second ten years are highlighted here:

– A meaningful crossover operator can be designed for MLP classifiers through
the geometric interpretation of the hidden neurons forming separating hy-
perplanes in their input space.

– A single neuron is a suitable building block, i.e., an indivisible unit, in the rep-
resention of MLPs for EAs. Variable length chromosomes and object oriented
phenotypic representations have been found useful.

– In some approaches, the multiobjective formulation still plays the part of
an implicit helper in optimizing a single objective, and possibilities of divid-
ing aggregated main objectives into their separate terms may not have been
thoroughly investigated.

– Methods that are internally Pareto-based are often finally reduced into single
objective ones by selecting one solution from among the Pareto-optimal ones,
using a pre-determined strategy. While MOO is shown to help the learning
process in various ways, a question remains if the Pareto front could be
utilized more effectively. Truely enough, only a single model can be selected
to operate in a final application, but perhaps the human decision making
capabilities could be exploited more by engaging the decision maker more
in the final model selection process.

– Combinations and interactions of many objective functions have not yet been
considered much. It is more usual to pick two or at most three objective
functions, usually based on preliminary testing, than to explore Pareto fronts
with more objectives. For example, the multiobjective nature and interplay
of the alternative formulas for accuracy or model complexity has not been
explored prominently.

To conclude, the traditional MLPs appear to be actively used as learning ma-
chines in various fields of applications, with possibly even a recent “renewal of
interest” resulting from the observation that inherent non-linearities and non-
convexities in the actual datasets considered result in problems that cannot be
magically solved by otherwise simpler models such as RBFNNs or SVMs.



4 MAPPING THE LITERATURE ON
MULTIOBJECTIVE LEARNING

In this chapter, we briefly depart from the realm of supervised machine learning,
even if the goal is to gain insight into research on the very topic. What follows is
an application of a method and a software tool detailed in the paper by Nieminen
et al. (2013), which applies unsupervised learning, specifically clustering, to auto-
matically find some structure in a body of scientific literature. The primary goal
here was to get an overview, or a lightweight mapping, of the current body of
knowledge on the general topic of “combinations of multiobjective optimization
and machine learning, preferrably with emphasis on MLPs”. The prioritized list
of specific goals was as follows:

1. Verify the level of coverage of this dissertation and its position with regard to previ-
ous studies. In particular, the purpose was to check that no critically impor-
tant research has been accidentally omitted in the overview of Section 3.2
that was mostly based on a secondary study by others.

2. Identify recent research that is most closely related to the topic of this dissertation.
The particular target was to identify and prioritize the articles eventually
digested in Section 3.3.

3. Assess the usefulness of the automatic literature clustering method, and outline
future ideas for its development.

4. Perform the first steps necessary for a follow-up secondary study.

The first two goals were pursued by manually walking through a systemati-
cally selected database dump of titles and abstracts of articles published in peer-
reviewed journals. The third goal was a by-product, since the manual walk-
through was partly assisted by the automatic clustering method, and a subjec-
tive assessment of its use emerged naturally along with some ideas for further
development. The fourth goal appeared along the way, because it seems, after
a considerable effort of searching, that systematic review articles on the specific
topic of multiobjective MLPs have been sparse, hard to find, somehow off-topic,
or nonexistent, as of the most recent decade. Performing such a review is beyond
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the schedule of getting this dissertation evaluated, but the first steps have been
made as a by-product of the first three goals.

The structure of this chapter is as follows. First, in Section 4.1, the litera-
ture clustering method of Nieminen et al. (2013) itself is briefly outlined, and its
necessary adaptation to the specific task is described. Some new algorithmic de-
velopments after the original publication are described for the first time. Section
4.2 documents the case study of mapping literature on multiobjective machine
learning both automatically and manually with assistance from the tool. In Sec-
tion 4.3, the results of the automatic tool are compared to manual literature cate-
gorization. Section 4.4 is a summary, discussion and reflection upon the findings
of this exercise in informetrics.

4.1 The Literature Mapping Method and its Adaptation

The background story of the method in a nutshell is as follows. As doctoral stu-
dents, we were tasked to do a literature review on data mining research. Knowing
that the proper way to do such a feat is to follow some guideline of conducting
a systematic literature review (SLR) (Jesson et al. 2011; Kitchenham 2007) or, as a
first step, a mapping study (Budgen et al. 2008), we started with research ques-
tions, a review protocol, and the identification of the relevant subset of primary
studies. Not so surprisingly, data mining turned out to be quite a broad mat-
ter to handle. Having already worked with methods suitable for handling large
datasets, we instinctively started to “apply data mining to mine the data mining
literature”. The rabbit hole got deeper, and we ended up contributing a method
that could be positioned in the field of scientometrics, “the quantitative study
of science” or, on a more general level, informetrics. Meanwhile, of course, key
questions regarding hot topics in data mining got answered, using the tool.

4.1.1 Original Version

Figure 15 recalls the outline of the Knowledge Discovery in Databases (KDD)
process as presented by Fayyad et al. (1996a,b), and how automatic literature
clustering can be considered a special case of KDD. In the current version, we ex-
amine metadata (such as titles, abstracts, year and venue of publication, and other
bibliometric information) gathered by service providers that catalogue this infor-
mation from scientific articles. The target data is selected by crafting a database
query and requesting a metadata dump from suitable service providers. Prepro-
cessing contains format translations and normalization from possibly differing
dump formats. Transformation entails listing of unique words in the titles and
abstracts, removal of stopwords, and stemmatization of the non-stopwords to
produce a binary “bag-of-words”-style matrix where each article is represented
as row vectors containing 1s for words that occur and 0s for words that are ab-
sent. The data mining step produces a hierarchical clustering of the articles, vi-
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FIGURE 15 Automated literature mapping as an adaptation of the Knowledge Discov-
ery in Databases (KDD) process, as presented in Nieminen et al. (2013),
based on Fayyad et al. (1996a,b).

sualizations, and automatic summaries of the clusters. The figure shows an it-
eration loop, since findings at any stage may necessitate re-working the earlier
ones. After human examination of the patterns, the goal is to help the user to
gain improved understanding of the selected subset of research.

Similar systems have been actively developed all around the world (e.g.
Agarwal et al. 2005; Aljaber et al. 2010; Bravo-Alcobendas and Sorzano 2009;
Chen 2006; Cohen et al. 2006; Leydesdorff et al. 2013; Matwin et al. 2010; Szczuka
et al. 2012; Tseng and Tsay 2013) and locally (Nurminen et al. 2005). We opted
to work on word co-occurrences, which is a traditional approach in informet-
rics (Callon et al. 1983). The other traditional approach of citation co-occurrences
(Small 1973) would require citation information, which we have not yet consid-
ered.

The clustering was done by first applying dimensionality reduction via dif-
fusion maps (Coifman and Lafon 2006; Nadler et al. 2008). The method provides
a low-dimensional embedding of original data points in which a “diffusion dis-
tance” is converted to Euclidean distance. Dimension reduction is commonly
used in informetrics (e.g. Boyack et al. 2005; Waltman et al. 2010), but, to our
knowledge, we were the first ones to use diffusion maps for a scientometrics ap-
plication, even if the applicability to document clustering has been noted earlier
(Lafon and Lee 2006). The diffusion distance is computed using a Markov process
based on a selected distance metric in the original space. In our case, we used the
Jaccard distance (Jaccard 1901) which makes vectors with co-occurring bits closer
to each other, concentrating on non-zero bits. A kernel function was further used
to make the distance differences more prominent. Rows of the distance matrix
are then normalized to form a Markov matrix that can be interpreted as transition
probabilities (“diffusion”) between nearby points, and time steps of diffusion can
be simulated efficiently. A lower-dimensional embedding of the original points
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can then be formed using only a few first eigenvectors of the resulting matrix.
Diffusion maps are able to locate nonlinear manifolds based on their density, and
convert this information to a lower-dimensional Euclidean representation.

After the key step of diffusion map embedding, the simplified representa-
tion can be clustered using basic methods. We used agglomerative clustering
as discussed by Everitt et al. (2011, ch. 4) and Hastie et al. (2011, p. 523), and
a silhouette method for selecting the number of clusters as recommended by
Rousseeuw (1987). We found that when our clustering method was used for the
whole dataset, some small clusters were standing out in the embedding, but a
large “residual” bulk was left in the center. Re-clustering of this residual bulk
would again separate some new smaller clusters and leave a new residual. We
iteratively re-clustered the largest remaining cluster until no further clusters of
reasonable size appeared. Automated summaries of the separated clusters were
then analysed, and manual inspection of the titles and abstracts in each cluster
were used to verify the contents of the clusters and give human-selected names
for each automatically found cluster.

4.1.2 New Features

The tool, originally pieced together and initially tested by Nieminen et al. (2013),
has later raised some interest among the fellow researchers of its original authors,
and the research has continued at the low pace possible alongside everyone’s pri-
mary topics which do not concentrate around informetrics applications. This dis-
sertation apparently wins the race of becoming the first publication to document
some of the developments. Some of the very newest tricks are still left up our
sleeves, though, for future publications. Technical tool development has been a
balanced team effort for which the author of this dissertation shares credit equally
with others. Since there are no prior publications yet to cite, it is necessary to
mention that ideas to the methodological side and especially to the prospects of
interfacing our tool with qualitative research workflow and human sciences are
originally due to Hannakaisa Isomäki, who is currently with the Methodology
Centre for Human Sciences, Faculty of Social Sciences, University of Jyväskylä,
and with the Faculty of Information Technology, University of Jyväskylä. It turns
out that a first, tentative, approach towards this goal is outlined and preliminarily
tested in this dissertation.

The tool even in its original form worked surprisingly well, being a first
attempt in informetrics by rookies in the field. Many limitations were noticed
while performing the initial case study, and solutions for some of them have been
figured out. Our data selection, retrieval, and preprocessing toolchain has been
revamped completely. Improvements and changes have been made also to both
the algorithm and the user interface of the data mining step. Thoughts have been
given also to human interaction with the tool. In what follows, these changes are
explored with their rationale.

In the earlier trials, we used a web crawler to collect information that was
made totally free for the public on the journal publishers’ websites. The approach
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had its strong appeal in an ideological “free data” sense, but the workload of cre-
ating parsers for the various formats of web pages was diverging too far from the
more interesting part of processing the harvested publication data. The amount
of information made openly available varies between publishers, and can be
partly incomplete in some cases. A natural next step for us was to start using
the handy export tools of the Web of Science portal (WoK)1 from which our home
university is subscribing to journal databases with access to abstracts and some
bibliometric information such as citation indices. Future development directions
would involve examining larger databases with conference articles and full texts
instead of only abstracts. Fusing data from several providers would be an impor-
tant step too. As of yet, we have left those up to the bigger players in sciento-
metrics, and decided to experiment with data that is more readily available in the
database dumps provided in the standard subscriptions available at our home
institution. To extend from using only WoK requires tinkering with data formats,
and perhaps with usage agreements, which we have not yet considered.

Our original tool used only the titles and author-selected keywords as the
article metadata. Now we use titles and abstracts, which gives us much more
data to work on. As for preprocessing, we have adopted some basic tools from
the Natural Language ToolKit (NLTK) (Bird et al. 2009), a natural language pro-
cessing library written for the Python language. Specifically, we currently use
its services for common stopword removal and stemmatization of words. More
extensive use of NLTK might be beneficial and is under evaluation as of writing
this. Stopwords are common words that bear no semantic significance (such as
“a”, “an”, “the”, “of”, “and”, etc. in English). An observation examined earlier,
for example, by Zaman et al. (2011) in the context of text retrieval, is that “a tai-
lored stop word list must be assembled for every unique large dataset”. Human
involvement is required to cleanse away stopwords that may bear important se-
mantic meaning in other contexts but not necessarily in the one being examined.
The necessity of this step will be explored further in the case study performed
here.

The internal representation of the transformed data is still a binary word
occurrence matrix. Also, on each level of clustering, we are still using the same
dimension reduction and clustering algorithm as before. The top level of the al-
gorithm has been changed though. Earlier we selected only the largest cluster
as the “residual” bulk that was iteratively re-clustered. Even if useful, this ap-
proach was not very versatile. In the current version, we recursively re-cluster
every cluster that is found. Recursion stops when no further cluster refinement
is possible because the cluster size is less than the dimension selected for DM di-
mension reduction. This is a technical restriction of the DM algorithm used. Also,
on each level of clustering, we disregard articles that have no keywords common
with any other article in the subset. They remain in the higher level cluster but
they do not enter any smaller child clusters. Let us note here that the result of the
recursive clustering is different from one level of hierarchical clustering, because
the diffusion map embeds the data points differently on each step. Selection of
1 http://apps.webofknowledge.com/

http://apps.webofknowledge.com/
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FIGURE 16 Automatic literature mapper as an aid to (human) learning.

clusters for further examination is done by the user a posteriori. A similar hier-
archical clustering approach was used by Wartiainen and Kärkkäinen (2015) for
prototype-based clustering of time series.

The representation of patterns to the user has been revised as well. The
user interface tools shown here are all new compared to the original paper, as is
the integration to a manual literature overview. In the context of assisting litera-
ture reviews, our tool seems to be approaching, for example, those of Malheiros
et al. (2007) and Felizardo et al. (2010) in which visual text mining was found
to increase efficiency of manual systematic literature reviews. A wide study of
available approaches is found in the PhD Thesis of Felizardo (2012). While we
have started on the road by implementing the algorithmic data mining step us-
ing methods familiar to us from other uses, we are behind the state-of-the-art in
user interfaces and ease of use. The current Matlab command interface and text
dumps are quite sufficient and convenient for a computational scientist, but such
an interface would be next to impossible for someone with no programming ex-
perience. The method is a work-in-progress while this dissertation goes to print.

4.2 Application to Multiobjective Machine Learning Literature

Figure 16 shows the steps in which human interaction with the method is re-
quired. It turns out that some parts of the “improved understanding” ultimately
sought are gained as a result of each necessary interaction step. The steps of
(i) query string selection, (ii) keyword analysis and blacklisting, and (iii) actual
mapping study will be detailed in the following subsections with the literature
on multiobjective machine learning as a sample application.
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4.2.1 Selection of Relevant Literature

Crucial to the coverage of relevant target articles is the query string that is used
to retrieve a subset of the massive catalogue available. We do not want to miss
too many relevant articles, but we want to mitigate noise from totally unrelated
ones. The goal here is to select articles that cover multiobjective machine learn-
ing, with special emphasis on artificial neural networks. The simple query string
multiobjective AND "machine learning" would be much too naïve. Let
us see the approximate number (due to the possibility of duplicates between sev-
eral databases being searched, according to the WoK documentation) of articles
returned by some tentative queries using the WoK interface:

– multiobjective→ 10,648 results
– multi-objective→ 12,406 results
– multi-objective OR multiobjective→ 21,653 results
– multiobjective AND multi-objective→ 1,382 results

An observation can be made that people have generally written their abstracts
very well in that they have selected one of two possible spellings and used it
consistently (except for some 6% of the authors who have mixed two spellings by
purpose or otherwise). To cover all of these articles in the search, we must use
the OR operator, or a wildcard such as "multi*objective". Here, the operator
approach suffices for the purpose, and we end up with a more portable query
string that doesn’t use special syntax for the wildcard. Let us check if we should
add the term “optimization” (or optimisation, for that matter):

– (multiobjective OR multi-objective) NOT optimi?ation →
4,576 results

There are some 20% of articles that mention multiple objectives but do not refer to
optimization. It turns out (by manually going through some abstracts) that these
articles are mostly about optimization, but they contain terms such as “multiob-
jective evolutionary algorithm” in their abstracts. No noise is expected to appear
from leaving out “optimization” from the query, as long as it contains the two
forms of “multiobjective”. But, for multiobjective optimization, this is not the
end of the story. Let us make some more tentative queries:

– multicriteria→ 6,790 results
– multi-criteria→ 6,826 results
– multicriteria OR multi-criteria→ 12,834 results
– multicriteria AND multi-criteria→ 764 results
– multi-objective OR multiobjective OR multicriteria OR
multi-criteria→ 33,756 results

The field of multicriteria decision making (MCDM) technically deals with dif-
ferent tasks and methods than multiobjective optimization. Also in MCDM, the
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goal is to find a Pareto-optimal decision based on conflicting criteria, but the class
of problems could be wider than with multiobjective optimization, for example,
with qualitative criteria. Some noise from MCDM applications and methods that
are not directly usable in machine learning may appear, but it is tempting to cover
some 50% more articles than result from querying only with “multiobjective”. It
is expected that when finally the intersection with “machine learning” will be
taken, it will cut off the MCDM articles that are actually irrelevant. There is one
more search word that may be quite relevant:

– Pareto→ 16,027 results
– multi-objective OR multiobjective OR multicriteria OR
multi-criteria OR Pareto→ 43,517 results

It turns out that words like “Pareto front”, “Pareto set” and “Pareto-optimality”
are sometimes used to imply multiobjective optimization. Use of only “Pareto” as
the word requires the system to automatically split words at hyphens, to be able
to match “Pareto-optimality”. WoK works that way. Let us add just one more
search word that probably at least doesn’t hurt:

– ("vector optimisation" OR "vector optimization") NOT
(multi-objective OR multiobjective OR multicriteria OR
multi-criteria OR Pareto)→ 914 results

The original name of “vector optimization” seems to be steadily occurring in cur-
rent publications that do not refer to the other keywords, so we will finalize the
part of the query string that aims to cover “all things multiobjective”:

– multi-objective OR multiobjective OR multicriteria OR
multi-criteria OR Pareto OR "vector optimisation" OR
"vector optimization"→ 44,460 results

The coverage could be further augmented by listing the names of known methods
(such as NSGA, SPEA, PAES, . . . ), but here we accept any losses incurred by not
going so far. The query string is kept reasonably small, and it is expected that we
already reach a quite representative set of articles by expecting one of the more
general names for multiobjective optimization being present in the metadata.

Now, let us follow a similar logic for literature on machine learning. Some
tentative queries at first:

– learning→ 856,766 results
– "machine learning"→ 27,556 results
– "artificial neural network"→ 26,768
– "artificial neural network" NOT learning→ 22,851 results

Searching with the general term “learning” is expected to locate articles related
to all kinds of learning, and some kind of restriction to machine learning seems
justified. Restriction to “machine learning” is likely to be too narrow, though. For
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example, it is possible to find almost 27,000 articles that should quite certainly be
about ANNs. In more than 22,000 of these, “learning” is not at all mentioned in
the metadata. This is natural, of course, because we can expect everyone to know
implicitly that we talk about “learning”, when we explicitly talk about ANNs.
When it comes to machine learning, it seems justified, unlike in the case of mul-
tiobjective optimization, to include general names of some computational struc-
tures of greatest interest to the current work:

– "artificial neural network" OR ANN OR perceptron OR MLP
OR RBFNN OR SVM→ 83,860 results

In this way, all general works that care to mention either “artificial neural net-
work” or even the commonly used abbreviation “ANN” will be included. “Mul-
tilayer perceptron” and “MLP” will be included similarly. Some studies dealing
with the ANN structures most similar to the MLP, i.e., radial basis function neural
networks and support vector machines, will get included if they happen to ap-
pear in the abbreviated forms of “RBFNN” or “SVM”. The selection is purposely
focused around MLPs. More advanced neural models and other methods of clas-
sification and function approximation are purposely excluded. This restriction
may need reconsideration if a broader scope is required in another study.

An almost final search query supposed to find literature in the intersec-
tion of ANN-biased machine learning techniques and multiobjective optimiza-
tion thus becomes the following:

– (multi-objective OR multiobjective OR multicriteria OR
multi-criteria OR Pareto OR "vector optimisation" OR
"vector optimization") AND ("artificial neural network"
OR ANN OR perceptron OR MLP OR RBFNN OR SVM)→ 537 results

The above query string should be quite universally usable. Because the search
engine of WoK allows it (as does Scopus, which was used earlier), we shall finally
use a wildcard version that allows some more variations (such as “net”, “nets”,
“network”, “networks”; “ANN”, “ANNs” but not “annihilation”, “annealing”,
etc.):

– (multi-objective OR multiobjective OR multicriteria OR
multi-criteria OR Pareto OR "vector optimisation" OR
"vector optimization") AND ("artificial neural net*" OR
ANN OR ANNs OR perceptron* OR MLP* OR RBFNN* OR SVM*) →
693 results

The search might be broadened further, of course. Chances could be taken with
more general words like “learning”, “supervised”, “classification”, which would
risk a lot of noise from other uses of the words. Or loads of other potentially
relevant artefacts and tasks could be listed, like classifier systems, spiking neu-
ral networks, ensembles, feature selection, or others. The latter option might not
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bring so much noise from altogether unrelated fields, but it would make the se-
lected dataset considerably larger and draw the intended bias away from MLPs
and its closest relatives. With the benefits and drawbacks described above, the
final query string is now one definition of what is relevant at the intersection of
“all things multiobjective, all things MLP, and likely some other more or less re-
lated machine learning tools and tasks”. Let us be reminded once more that only
the WoK databases currently subscribed to by the author’s workplace are con-
sidered (excluding, for example, the major arena of conference articles). The fol-
lowing semi-automatic study thus operates under the constraints of the defined
query string, and the 693 articles whose metadata was retrieved in the standard
WoK text format. All publications up to December 2015 were included. Some
obviously duplicated or corrupted entries were manually removed, leaving 687
articles. Further manual cleaning of the dump would have been difficult and, as
it turns out, unnecessary at this stage.

4.2.2 Keyword Analysis and Manual Stopword Addition

The algorithmic preprocessing step begins by splitting the titles and abstracts of
each article into words around whitespace boundaries and converting the words
to lowercase. Then, in the current implementation, common English language
stopwords are removed by using the default English stopwords of the NLTK cor-
pus2. Some pattern matching heuristics are applied to remove copyright state-
ments like “Copyright (C) 2016 Company X Ltd.” that some publishers insert
into the abstracts. The remaining words are reduced into stems so that inflected
forms turn into one. For example, “hobbit”, “hobbits”, and “hobbitses” will all
turn out as “hobbit”. Stemmatization is performed by the Snowball stemmer3

via the NLTK toolkit4. While experimenting with the toolkit, we were deeply
impressed especially of the example with hobbitses. NLTK turned out to work
very reliably overall, so currently we are happy to leave our stemmatization to
it. In our data of 687 articles, the metadata contained 56,420 non-stopword stems,
5,617 of which were unique. One of the first outputs to examine is the overall
frequency of most common words present in the dataset.

As an example, the “top 50” frequent word stems in this case were the fol-
lowing (the total number of articles using each word is given in parentheses):
use (564), optim (489), network (486), neural (474), model (462), result (430), multi
(419), algorithm (417), object (416), base (409), artifici (395), method (338), perform
(337), paper (326), propos (314), approach (314), process (281), problem (274), studi
(262), function (259), genet (255), data (254), design (250), obtain (249), present (247),
paramet (241), develop (241), ann (234), two (224), set (220), predict (213), select (211),
techniqu (210), compar (210), show (209), solut (207), system (205), differ (204), appli
(201), effect (197), time (196), comput (189), improv (186), combin (183), train (173),
pareto (173), applic (168), machin (167), effici (166), analysi (160). Complete word

2 nltk.corpus.stopwords.words(’english’)
3 http://snowballstem.org/
4 nltk.stem.snowball.EnglishStemmer

http://snowballstem.org/
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lists are available at the author’s home page5. Presence or absence of each of the
5,617 unique words in the title or abstract of an article could be used as a binary
feature vector x ∈ {0, 1}5617 representing somehow the contents of each article.
We would then like to perform the unsupervised learning task of clustering to
break the bulk apart into sets of internally similar ones.

From the output, we can observe that further application-specific, subjec-
tive, knowledge must be used to exclude some words in addition to the stan-
dard stopwords. One reason for this necessary manual intervention is that we
know what kind of literature we are dealing with, and we want to filter the doc-
ument representation based on this perspective. We know that to “use” some-
thing is probably common to every research, regardless of whether it is explicitly
mentioned in the abstract or not. We expect no real discriminative power from
words such as “use”, “employ”, “apply”. An automatic clustering method would
happily separate clusters based on the specific choice of words in each abstract,
whereas we would like the separation to be made on contents, not format. Thus,
such words should be identified and removed from the representation.

Quite a few words common in scientific parlance should be excluded based
on similar arguments. The stem “argu” would be on the list of removals (because
arguing should always happen), as would be “result” (because every research
should have some). On the same grounds, removed should be also “algorithm”,
“method”, “approach”, and other variants (because in this field, every research is
likely to either present or use one or more approaches). Also “problem”, “solut”,
“studi”, “develop”, “improv” present similar problems.

Not all of the common words are so easy to decide upon, though. We know
that “control” and “respons” could be common in any algorithms that are con-
trolled or responding, but in this case they might imply the class of control prob-
lems or response surface models and we might want to involve such different ap-
plications in the clustering process. Currently, the user of our method needs to
make a decision about all of the words, and there might be a need to go back to
the blacklisting process, if the found clusters seem to be too clearly separated on
false grounds.

One more argument for manual word removal is that we know our original
search string, but the clustering method does not, so we must involve this infor-
mation in the preprocessing. Firstly, we know that every selected article must
contain one of the OR’ed variants that should indicate multiobjective optimiza-
tion. The specific wordings chosen by authors should play no role in clustering,
so these are better to be removed. The case is not so simple with the AND’ed
part about machine learning and neural networks with bias towards MLPs. We
might want the different types of learning machines to play a role in clustering,
so a decision is made to keep the words related to types of ANNs or other specific
learning machines, but remove the words related to learning, because we know
that ANNs are a subcategory of learning, and basically each article in the dataset
should be about learning, whether it is mentioned in the abstracts or not.

Unfortunately, a subjective bias will be introduced along with possible ex-
5 http://users.jyu.fi/~nieminen/research/dissertation2016/survey/

http://users.jyu.fi/~nieminen/research/dissertation2016/survey/


96

tra noise. For example, removal of stems like “appl”, assumed to be synonymous
with “use”, is likely to remove also potentially interesting information about ap-
plications versus pure method development. The word “vector” must be re-
moved as it is part of the original query string for “vector optimization”, with the
hope that the word “support” would still help in discriminating “support vector
machines” from other kinds of learning models. Following this logic, “machine”
may be removed, too, but we accept noise from other uses of “support”. For ex-
ample, some evidence could be said to “support” a conclusion, which is again
usual in every research regardless of the words used. This part of the process is
admittedly subjective, and it reflects the expectations of the person who decides
to omit some words from the representation and leave others untouched. An al-
ternative could be to consider some sets of words as synonyms, based on human
decision or preferrably some stemmatized thesaurus corpus. More robust results
could result from using combinations of consecutive words and from covering
full texts instead of abstracts. It is up to future work to order larger dumps from
the scientific databases to test our method with such schemes.

The following stems were removed based on knowledge about the query
string: optim (489), multi (419), object (416), function (259), pareto (173), machin (167),
criteria (138), multiobject (134), learn (111), vector (110), minim (103), multipl (99),
optimum (74), maximum (64), domin (54), minimum (51), conflict (43), multicriteria
(33), criterion (31), optimis (27), nondomin (20), compromis (17), mcdm (15).

In addition, 342 words were removed based on the assumption that in the
expected parlance they are most commonly used for purposes that are not related
to the actual topic. Again, a complete list of these words is available at the au-
thor’s website. Here are the most common ones removed: use (564), result (430),
algorithm (417), base (409), method (338), perform (337), paper (326), propos (314), ap-
proach (314), problem (274), studi (262), data (254), design (250), obtain (249), present
(247), paramet (241), develop (241), set (220), select (211), techniqu (210), compar (210),
show (209), solut (207), system (205), differ (204), appli (201), effect (197), time (196),
comput (189), improv (186), combin (183), applic (168), effici (166), analysi (160), evalu
(156), also (154), experiment (149), provid (148), valu (145), consid (145), decis (137),
variabl (134), test (133), methodolog (132), determin (132), well (128), new (128), num-
ber (121).

Actually, there is a rather useful outcome from the necessary step of ex-
amining the words and their frequencies. During the process, one must unavoid-
ably become aware of the words most commonly mentioned in the literature, and
some insight can be gained as to what things have been considered more often
than others. For example, even when the query string did not restrict the search
to genetic or evolutionary algorithms, these are certainly in the top classes of al-
gorithms in use, as can be seen from the stems genet (255) and evolutionari (110).
Support vector machines rank high, svm (81), even when the MLPs were biased,
as do fuzzy systems, fuzzi (86). Of particular optimization methods, NSGA or
NSGA-II are definitely most often mentioned, as we have the stem nsga (52) on
top of any other stems that could imply a certain choice of an optimization al-
gorithm. Swarm intelligence has been popular, too, because we have the stem
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swarm (42). Regarding applications, it seems that “all things water” have been
very much in focus, as the stem water (48) reveals. A closer look at the titles and
abstracts mentioning “water” reveals that they consider such things as ground-
water resources, fresh and waste water management, and saltwater intrusion.
Such important application areas are quickly revealed by the keywords and their
relatively high frequencies, and they may surprise a researcher whose own back-
yard has not yet been affected by these globally urgent problems.

If just a quick overview on what has been done most often is required, a
simple keyword analysis turns out to be quite handy. Instead of going through
687 titles and abstracts, it suffices to start from the top of the word list and look at
the most common ones. All of the stems mentioned above are found within the
300 most common ones in the original data. More insights appear as one proceeds
down the list, and this happens only by looking at one word and its frequency
at a time. It is a lot faster to carefully examine 300 words than to read through
56,420 words of text.

4.2.3 Structural View using Clustering

Now the target body of knowledge is singled out by defining a query string and
by dumping article metadata from a database known to index a wide range of
peer-reviewed scientific publication fora. The frequency of keyword occurrences
has been examined, already revealing new insight on what most of the research
has been about, and the keywords have been pruned by subjective expectations
of what can really make a difference between different kinds of studies and what
is likely just a difference in the choice of wordings. The real magnum opus would
then be to automatically cluster the set of articles to categories that would pro-
vide yet more insight into what kind of subtopics are involved in the field, how
active or recent these subtopics would be, and which would be the most relevant
fora that publish results on them. We expect no “magic wand” that immediately
enlightens us more than just patiently reading through all the research, making
notes, and producing a proper synthesis by traditional means. But we do wish
for another easy tool that could help in cases where time is limited and even a
partial insight is better than no insight at all. Also, substantially larger sets of
original research can be explored automatically than manually, which may help
in the initial phase of a mapping study by delaying any too harsh decisions about
how to restrict the final search.

Figure 17 shows the results of the hierarchical clustering as a tree. The root
node, labeled as “cluster 1”, represents the original bulk of articles examined. On
the first level, it has been split into two clusters, labeled with running indices
as “cluster 2” and “cluster 3”. Proceeding recursively one depth level at a time,
“cluster 2” was further split into clusters 4, 5, 6, 7, and 8. Similarly, “cluster
3” was split into clusters 9, 10, and 11, and so on. The area of each marker is
proportional to the number of articles assigned to the respective cluster. The color
bar further helps to quantify the size of each cluster in this illustration. On each
level, or depth, each article may have been assigned to a new cluster, smaller than
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FIGURE 17 Results of the recursive literature clustering.

the “parent cluster” on the previous level. Thus, the granularity of the clusters
increases with the depth. The leaf nodes depict tiny sub-clusters of one or very
few articles that cannot be split into smaller ones anymore.

Figure 18 shows the main bulk (“cluster 1”) of articles embedded by the
diffusion map into the three dimensions used in this case study. Each marker in
the plot represents one of the 687 articles examined. The marker types and colors
represent the first level clustering result, where each article was assigned to either
“cluster 2” or “cluster 3”. Visually, it could be possible to find even as many as
three clusters, but the silhouette selection method (Rousseeuw 1987) has decided
that two is a good number of clusters on this level.

It is possible that better clustering results could have been obtained by using
more dimensions, but it was decided that reduction to just three dimensions bet-
ter serves the purpose of visualizing the workings of the method. In this case, the
clustering output is in good agreement with visual inspection of the point cloud
in the Euclidean space. On this level, it is of course impossible to say anything
about the workings of the diffusion map embedding or the meaningfulness of the
representation scheme and distance metric chosen.

Similarly, Figure 19 shows the breakdown of “cluster 2” into clusters 4, 5,
6, 7, and 8 by recursive re-clustering. Figure 20 shows the breakdown of “cluster
3” into clusters 9, 10, and 11. Again, the clustering seems to operate meaning-
fully on the articles embedded in the Euclidean space. On this level, some very
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FIGURE 18 Diffusion map embedding of the main bulk of articles (level 1). Two new
clusters were found, and running indices were given as their labels.

small clusters appeared, strongly separated from the others. They turned out to
contain duplicate entries in the original database dump with minor differences
or misspellings in author names, titles, or other metadata fields. Such duplicates
were not invited but had been included in the data. It seems that our method is
able to spot such anomalies by showing them as tiny clusters on the top levels.
In a realistic scenario, such duplicate entries would be removed at the earliest
time of discovery, and the algorithm would be run again, likely giving increas-
ingly better results as the data is cleaned. To maintain the flow of demonstration,
such iteration was not performed in this study. All the plots, labels, and results
would necessarily be different after any cleaning. This study was made in such
a backward way for a reason, though. A manual walkthrough of the 687 titles
and abstracts was performed before looking at the machine generated clusters
in depth, in order to be better able to assess the meaningfulness of the cluster-
ing without prior bias. In the intended final application, the clusters should be
preliminarily analysed as early as possible.

This facet of applicability with data cleaning was actually first noticed dur-
ing this case study. The dataset had already been manually cleaned, which takes
some time and effort. Afterwards, when turning to actual clustering results, it
turned out that the manual cleaning step had been incomplete, and it may not
have been even necessary in the first place – duplicates and outliers could be
much more easily spotted from the first levels of clustering. Further examina-
tion of small clusters that appeared on early levels of the hierarchical clustering
revealed more of these duplicates, which is very helpful in fast cleaning of the
possibly noisy database dump.

The system is also very cruel and effective in spotting situations in which
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FIGURE 19 Diffusion map embedding of cluster 2. Five smaller clusters were found,
the smallest of which revealed duplicate entries in the original data.
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FIGURE 21 Results of the recursive literature clustering, omitting clusters that have less
than 10 articles.

research output has apparently been maximized by means on the verge of self-
plagiarism: some articles published with different titles in different journals de-
scribed almost the same findings in slightly different terms in their abstracts. Our
clustering method easily revealed those in the same way as other duplicates. Let
us politely refrain from citing those works here, though.

For the goal of structuring the body of literature in clusters of useful size,
a pruned view is more useful. Figure 21 shows only clusters with at least 10 ar-
ticles. As of now, we feel that it is best to leave it up the user to select specific
clusters that match the level of granularity wanted for the purpose at hand. For
this case study, a subjective choice of reasonably sized clusters at shallow depths
was made. Specifically, found in a left-to-right order in the figure, the nine clus-
ters with indices 13, 6, 21, 23, 117, 120, 27, 29, and 31 were selected for further
exploration. Any other choice could have been made, and also this step might in-
volve an iteration loop. The selection here is done for purposes of explaining the
method, as the actual literature examination had already been manually done. It
is intended that the required human interaction increases the overall understand-
ing of the literature also at this step, possibly without reading any or much of the
material as of yet.
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4.2.4 Automatic Summaries of Cluster Contents

Tables 1, 2, and 3 show automatic summaries of the contents of each hand-picked
cluster. The title rows also contain tentative names subjectively given to each clus-
ter by examining the summaries. Below each title, the cluster size is given. Then,
in the second part, the ten most common keywords in the cluster are listed along
with the percentange of articles within the cluster that contain each keyword.

The next part, labeled “Ancestor words”, contains a list of word pairs that
can be used to track the cluster tree from the main bulk down to the selected clus-
ter. The two most common keywords are given for each ancestor cluster without
repeating any of the same keywords down the recursion. Thus, the ancestor key-
words give some coarse idea about how the recursion has progressed. The most
common words in the initial bulk of data are, expectedly, “network” and “neu-
ral”. Then, for example, Cluster 13 has decended from a parent cluster whose
most common words (omitting those of its ancestors) have been “classif” and
“classifi”. That parent itself has been a child of a cluster with very common words
“support” and “svm”, and so on. This example, among some others, gives further
evidence of the need of handling synonyms in future versions of the method.

The fourth part, labeled “Local words”, lists the keywords and frequencies
of keywords in the cluster that have not occurred in the ancestor keywords. This
part is intended to give yet further clues about which words may have played a
role in the formation of the cluster under examination.

Finally, three article titles are given that appear closest to the geometric cen-
ter of the cluster within the embedded coordinates of its parent. More, or even
all, titles could be listed in the examination phase. Three are selected here to con-
serve space in the tables. As a compromise solution to aesthetic and technical
issues partly beyond our control (various title formats in the original database
dump), the titles are printed in their normalized lowercase format.

These summaries offer only a very coarse way of examining the clusters,
and further human examination of complete contents of the clusters would be
necessary for more accurate assessment. Another thing quite evident from the
summaries is that in a real application the manual stopword lists should probably
be extended, because at this point common words such as “model”, “one”, or
“two”, which may have little semantic meaning, still appear in the summaries.
The clustering should then be run again, and, as with other steps in the process,
new and possibly improved results would be available for re-examination in a
few seconds.

Even without such re-iteration, at least some of the cluster summaries ap-
pear to give quite reasonable information about the possible contents of the clus-
ter. For example, Cluster 13 quite certainly deals mostly with SVMs, as the key-
words “support” and “svm” are very frequent (over 70%) in the overall keyword
list. The immediate parent cluster is about “classification”. Therefore, the name
“SVM classification” feels justified. For the next one, Cluster 6, no keyword
stands out as prominently. Yet, the words “process” and “complex” may give
some clues as to the cluster contents, somewhat supported by the example ti-
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tles near the cluster center. The name “Process modeling using EAs” has been
selected, because also terms related to GA appear in the list. The other clusters
were tentatively named following a similar reasoning.

In order to reduce the number of clusters for the purposes of this disserta-
tion, the selected clusters remain quite large. The smaller child clusters found
in the lower levels of the recursion could be easier to examine and categorize.
This step of closer cluster examination is completely a human task. Its goal is to
shed more light into the bulk of literature and give coarse ideas about how it may
be structured internally. Again, if a quick overview suffices, the process can be
ended here.

4.2.5 Journal Distribution

Tables 4, 5, and 6 show the number of articles within each selected cluster that
have been published by different journals. The journal titles are formatted in
lowercase due to the same, unfortunate, technical issues as the article titles were.
Only journals that have published at least two papers in each cluster are listed.
This format of showing the distribution of papers in the publication venues is
different from that in our original method. In this case, the original database
dump contained articles from more than 350 journals, so it makes no sense to list
them all. The journal names seem to be somewhat in line with the cluster names
based on examination of the keywords. The idea of these journal distribution
tables is to reveal publication venues that are inclined to publish literature on
certain topics or topic groups, as defined by the clustering.

4.2.6 Manual Overview with Re-ordered Titles and Abstracts

Figure 22 depicts the whole literature bulk sorted according to the clustering.
Each position on the horizontal axis corresponds to an article. The top row shows
the first level as a box. On the second level, the articles have been sorted so that
the first contiguous part contains articles of Cluster 2 and the second one contains
articles of Cluster 3. On each level of the recursion, the articles are sorted again
similarly within their parent cluster. The bottom row shows the final clustering
(leaf nodes). By then, the articles have been sorted in a “dictionary order” so that
each of them are close to others that have been clustered similarly on each level
of the recursion.

As explained earlier, the titles and abstracts of all articles were also exam-
ined and manually clustered by the author in a two-pass recursive fashion prior
to examining the automatic ones. During the first pass, each article was assigned
to one of two categories: (i) one containing articles that are clearly about develop-
ing or comparing methods and (ii) another one that is more about some specific
application of machine learning. The first pass was to be made quickly and thus
mostly based on titles only. Abstracts were to be checked only when the title
was unclear about the purpose of the article. Some of the first-level decisions
had to be reverted while performing the second pass in which the two previously
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TABLE 1 Automatic summaries of literature clusters 13, 6, and 21.

Cluster ID: 13 (SVM classification)
Size: 77
Keywords: support(75%) svm(73%) classif(69%) model(51%) classifi(48%)

two(45%) accuraci(35%) train(32%) featur(31%) process(31%)
Ancestor words: (network neural), (model two), (support svm), (classif classifi)
Local words: accuraci(35%) train(32%) featur(31%) process(31%) class(30%)

sampl(30%) one(29%) predict(29%) genet(27%) singl(25%)
Example titles: (1) assuring the authenticity of northwest spain white wine

varieties using machine learning techniques (2) accurate and
resource-aware classification based on measurement data (3)
classification as clustering: a pareto cooperative-competitive
gp approach

Cluster ID: 6 (Process modeling using EAs)
Size: 109
Keywords: model(59%) process(36%) two(27%) complex(26%) oper(24%)

high(23%) genet(22%) generat(21%) simul(21%) cost(19%)
Ancestor words: (network neural), (model two), (process complex)
Local words: oper(24%) high(23%) genet(22%) generat(21%) simul(21%)

cost(19%) integr(19%) reduc(19%) one(18%) predict(18%)
Example titles: (1) a study on uncertainty-complexity tradeoffs for dynamic

nonlinear sensor compensation (2) de novo design: balancing
novelty and confined chemical space (3) multiobjective linear
programming model on injection oilfield recovery system

Cluster ID: 21 (Prediction, estimation, and regression)
Size: 32
Keywords: model(97%) neural(91%) network(88%) predict(75%) arti-

fici(59%) estim(53%) two(47%) high(44%) train(44%) accu-
raci(34%)

Ancestor words: (network neural), (model two), (predict artifici), (estim high)
Local words: train(44%) accuraci(34%) ann(34%) distribut(34%) addit(31%)

one(31%) compon(28%) input(28%) process(28%) regress(28%)
Example titles: (1) evaluation of an integrated modelling system containing a

multi-layer perceptron model and the numerical weather pre-
diction model hirlam for the forecasting of urban airborne pol-
lutant concentrations (2) improvement in estimation of soil
water retention using fractal parameters and multiobjective
group method of data handling (3) learning based brain emo-
tional intelligence as a new aspect for development of an alarm
system
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TABLE 2 Automatic summaries of literature clusters 23, 117, and 120.

Cluster ID: 23 (RBF and MLP with EAs)
Size: 55
Keywords: network(98%) neural(91%) two(56%) model(47%) genet(45%)

accuraci(44%) basi(44%) classif(44%) evolutionari(40%) per-
ceptron(40%)

Ancestor words: (network neural), (artifici model), (two train), (genet accuraci)
Local words: basi(44%) classif(44%) evolutionari(40%) perceptron(40%) er-

ror(38%) radial(38%) layer(31%) mean(31%) predict(29%) clas-
sifi(27%)

Example titles: (1) modelling commodity value at risk with psi sigma neural
networks using open-high-low-close data (2) cooperative co-
evolution of artificial neural network ensembles for pattern
classification (3) time series forecasting by neural networks:
a knee point-based multiobjective evolutionary algorithm ap-
proach

Cluster ID: 117 (ANN for industrial processes)
Size: 94
Keywords: network(98%) neural(98%) artifici(85%) process(67%)

model(55%) ann(35%) complex(34%) genet(30%) evolu-
tionari(29%) error(21%)

Ancestor words: (network neural), (artifici model), (process genet), (ann com-
plex), (evolutionari error)

Local words: search(19%) train(19%) two(19%) engin(18%) oper(18%) pre-
dict(18%) industri(17%) inform(17%) one(16%) structur(16%)

Example titles: (1) food processing optimization using evolutionary algo-
rithms (2) thermochromic sensor design based on fe(ii) spin
crossover/polymers hybrid materials and artificial neural net-
works as a tool in modelling (3) coupled data-driven evolu-
tionary algorithm for toxic cyanobacteria (blue-green algae)
forecasting in lake kinneret

Cluster ID: 120 (Simulation models for industry and management)
Size: 59
Keywords: network(98%) neural(97%) artifici(92%) model(86%)

simul(59%) manag(51%) ann(42%) generat(32%) control(29%)
oper(29%)

Ancestor words: (network neural), (artifici model), (process genet), (simul
manag), (ann generat)

Local words: control(29%) oper(29%) water(29%) one(25%) two(25%)
adapt(24%) high(24%) increas(24%) intellig(24%) level(24%)

Example titles: (1) high-level design space exploration of locally linear neuro-
fuzzy models for embedded systems (2) artificial neural net-
works and multicriterion analysis for sustainable irrigation
planning (3) robust design of mars entry micro-probe with ev-
idence theory and multi-fidelity strategies
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TABLE 3 Automatic summaries of literature clusters 27, 29, and 31.

Cluster ID: 27 (Process modeling and optimization)
Size: 76
Keywords: network(97%) neural(97%) artifici(84%) model(62%)

genet(61%) process(50%) simul(39%) reduc(37%) ann(34%)
first(34%)

Ancestor words: (network neural), (artifici model), (process genet), (simul re-
duc)

Local words: ann(34%) first(34%) order(33%) generat(32%) approxim(29%)
two(29%) train(28%) evolutionari(25%) dynam(24%) fi-
nal(24%)

Example titles: (1) identification of constitutive parameters using hybrid
ann multi-objective optimization procedure (2) robust multi-
fidelity design of a micro re-entry unmanned space vehicle (3)
modelling and optimisation of laser shock peening using an
integrated simulated annealing-based method

Cluster ID: 29 (Modeling and prediction)
Size: 68
Keywords: network(100%) neural(99%) artifici(94%) ann(90%)

model(88%) genet(69%) predict(62%) condit(47%) oper(47%)
ga(43%)

Ancestor words: (network neural), (artifici model), (ann predict), (genet condit)
Local words: oper(47%) ga(43%) process(35%) temperatur(31%) two(29%)

rang(28%) train(28%) high(26%) order(25%) ratio(25%)
Example titles: (1) airflow and temperature distribution optimization in data

centers using artificial neural networks (2) modeling and
genetic algorithm-based multi-objective optimization of the
med-tvc desalination system (3) separation of toluene/n-
heptane mixtures experimental, modeling and optimization

Cluster ID: 31 (Engineering and machining applications)
Size: 63
Keywords: network(100%) neural(98%) artifici(97%) model(86%) pro-

cess(81%) ann(73%) predict(60%) surfac(52%) input(43%)
train(43%)

Ancestor words: (network neural), (artifici model), (ann predict), (process sur-
fac)

Local words: input(43%) train(43%) genet(38%) cut(37%) materi(35%) out-
put(35%) import(30%) qualiti(30%) product(29%) rate(29%)

Example titles: (1) influence of ultrasonic and microwave irradiation on cation
exchange properties of clay material (2) development of a
closed-loop diagnosis system for reflow soldering using neu-
ral networks and support vector regression (3) development of
multi-objective optimization models for electrochemical ma-
chining process
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TABLE 4 Top publishing venues within clusters 13, 6, and 21.

Cluster ID: 13 (SVM classification)
6 neurocomputing
4 ieee transactions on geoscience and remote sensing
3 european journal of operational research
3 expert systems with applications
3 knowledge-based systems
2 annals of operations research
2 bmc bioinformatics
2 chemometrics and intelligent laboratory systems
2 ieee transactions on nanobioscience
2 ieee transactions on neural networks and learning systems
2 plos one
46 other (only one article in each)

Cluster ID: 6 (Process modeling using EAs)
6 applied energy
5 european journal of operational research
4 expert systems with applications
4 materials and manufacturing processes
3 energy
2 applied mathematics and computation
2 chemical engineering journal
2 fuel
2 journal of the brazilian society of mechanical sciences and engineering
2 water resources management
77 other (only one article in each)

Cluster ID: 21 (Prediction, estimation, and regression)
3 journal of hydrology
2 ecological modelling
2 environmental modelling & software
25 other (only one article in each)
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TABLE 5 Top publishing venues within clusters 23, 117, and 120.

Cluster ID: 23 (RBF and MLP with EAs)
7 neurocomputing
3 applied soft computing
3 ieee transactions on neural networks
2 information sciences
2 neural computing & applications
38 other (only one article in each)

Cluster ID: 117 (ANN for industrial processes)
4 applied soft computing
3 computers & industrial engineering
3 journal of intelligent manufacturing
2 artificial intelligence in medicine
2 european journal of operational research
2 industrial & engineering chemistry research
2 international journal of advanced manufacturing technology
2 international journal of innovative computing information and control
2 international journal of production research
2 kybernetes
2 materials & design
2 materials and manufacturing processes
2 neural networks
2 sensors and actuators b-chemical
62 other (only one article in each)

Cluster ID: 120 (Simulation models for industry and management)
6 water resources management
3 hydrological sciences journal-journal des sciences hydrologiques
2 energy and buildings
2 environmental modelling & software
2 international journal of geographical information science
2 journal of hydrology
2 proceedings of the institution of mechanical engineers part a-journal

of power and energy
2 water science and technology
38 other (only one article in each)
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TABLE 6 Top publishing venues within clusters 27, 29, and 31.

Cluster ID: 27 (Process modeling and optimization)
4 applied thermal engineering
3 composite structures
2 building and environment
2 computational materials science
2 energy
2 engineering applications of artificial intelligence
2 ieee transactions on magnetics
2 international journal of advanced manufacturing technology
2 journal of mechanical science and technology
2 materials & design
53 other (only one article in each)

Cluster ID: 29 (Modeling and prediction)
3 energy conversion and management
2 aiche journal
2 chemical engineering journal
2 desalination
2 desalination and water treatment
2 environmental monitoring and assessment
2 journal of the taiwan institute of chemical engineers
53 other (only one article in each)

Cluster ID: 31 (Engineering and machining applications)
12 materials and manufacturing processes
5 international journal of advanced manufacturing technology
4 computational materials science
2 journal of intelligent manufacturing
2 journal of materials processing technology
2 materials & design
2 optics and lasers in engineering
2 proceedings of the institution of mechanical engineers part b-journal

of engineering manufacture
32 other (only one article in each)
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FIGURE 22 Sorting the literature based on clustering to benefit manual examination of
the bulk.

found categories were sub-categorized into different genres of method develop-
ment and applications, and the abstracts were always checked in addition to the
titles.

Such crisp “clustering”-like categorization does not feel very natural for
literature mapping, because usually the articles deal with, for example, both
method development and at least one real-world application that has motivated
or supported the development. In this study, the crispness was maintained to
match the automatic clustering. Nevertheless, for future versions, we should
consider allowing our literature clustering system to generate fuzzy, overlap-
ping, clusters, which could match the real literature contents better than crisp,
or “hard” clustering.

As for the applicability of the current methodology, the dictionary ordering
made it much easier to read through the titles and abstracts. The observation is
based on subjective, but very convincing, experience of the manual walkthrough.
Despite some inevitable noise, each article in the re-ordered list is always some-
how talking about matters similar to the previous one, which appears to lessen
the cognitive load. There is no need to completely reset one’s head after reading
one title (and abstract, if need be), because there is already a suggested possibil-
ity of arriving in a similar conclusion as with the previous title examined. Care
must still be taken to verify one decision or another, but the similarity of consecu-
tive articles makes the task at least much more comfortable compared to random
ordering.
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After the two passes, the following crisp categories were observed by the
author :

1 Applications (of combinations of learning and MOO)

1.1 Medicine, biology, biomechanics, bioinformatics, and chemistry (incl.
process technology)

1.2 Engineering, manufacturing, logistics
1.3 Environmental management, ecology, and remote sensing
1.4 Business, ERP, and finance
1.5 Miscellaneous applications

2 Method development (of combinations of learning and MOO)

2.1 MLP, SLFN, RBFNN, or ANN learning
2.2 Strictly SVM learning
2.3 Optimization or Decision making methodologies (instead of learning

per se)
2.4 ROC point of view
2.5 Miscellaneous hybrid methods

3 Query noise (i.e., unrelated to combinations of learning and MOO)

Meanwhile, on each pass, a separate shortlist was updated of articles that seemed
to be most important to the focus of this thesis. About articles published prior
to 2006, it was checked that the same topics had been covered by the articles
cited in Section 3.2. Regarding articles published during 2006–2015, those whose
abstracts seemed to promise some comparatively new developments or points of
view were selected for full-text study and digesting in Section 3.3.

Certainly, a third pass would have resulted in more corrections to previous
assignments and a more fine-grained categorization. Such detail was deemed
unnecessary as of now, because the two passes already made the author confi-
dent enough that the goals set for this study (listed on page 85) had been met.
Specifically:

1. No early studies were found that would differ greatly from the findings of
Section 3.2.

2. The author is confident that the selection of references for Section 3.3 form
a representative (although far from complete) set of developments in mul-
tiobjective supervised ANN learning published during the last decade, and
that the summaries in Sections 3.2.11 and 3.3.10 can be used as the basis of
a state-of-the-art implementation in 2016.

3. The automatic literature clustering method turns out to be useful for its orig-
inal and intended purposes. Also, additional uses were discovered in this
case study, and several future development ideas emerged, as discussed
previously in this section.

4. A more complete secondary study focusing on multiobjective supervised
learning research of the last decade seems to be lacking, and the preliminary
steps documented here could be used to focus and plan such a study.
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TABLE 7 Comparison of automatic and manual clustering: the first level of recursion
against the first manual pass.

1 2 3
c 1 (sz=687): 76.6 18.0 5.4
c 2 (sz=240): 62.9 21.7 15.4
c 3 (sz=447): 83.9 16.1 0.0

4.3 Comparison of Automatic and Manual Clustering

A remaining question of interest is how much the automatic clustering resembles
the manual one. Tables 7–12 provide one way to assess this question. The rows
of these tables correspond to the clusters that were found automatically. The au-
tomatic running indices shown in Figures 17 and 21 are used. The index and the
size of each automatic cluster is given as the row title. The columns correspond
to the manual categorization by the author (given on p. 111). Each number given
in the tables shows how many percent of the automatic cluster consists of articles
in each manually generated category.

From Table 7, it can be seen that 76.6% of all the articles in the original
dataset were finally categorized manually under the title “1 Applications”. Sim-
ilarly, 18.0% were categorized as “2 Method development”, and 5.4% turned out
to be unrelated after all, and thus categorized as “3 Query noise”. From the first
level of automatic clustering into Cluster 2 and Cluster 3, it can be seen that Clus-
ter 3 ended up with a higher concentration of strict applications (with roughly
five times more applications than method papers) than Cluster 2 (with roughly
three times more applications than method papers). Interestingly, all the unre-
lated query noise had been concentrated in Cluster 2, constituting 15.4% of its
contents. Cluster 3 contained only articles that were deemed relevant by the man-
ual inspection.

Table 8 gives a similar breakdown of the second level of recursion in the
automatic clustering. Here, Cluster 4 and Cluster 8 are examples of duplicate
entries, which were revealed early on. All the rest of the query noise ended up
concentrated in Clusters 6 and 7. Some larger clusters, especially Clusters 7 and
11 already consisted quite purely of articles that were manually tagged as appli-
cations. Cluster 9, in turn, has more articles that were manually found to be more
related to method development than specific applications. A feeling of this kind
of structure emerged already during the first pass of the manual walkthrough,
as the dictionary ordering of the titles had two distinguishable concentrations of
method papers among the applied works that dominate the whole set. The table
confirms this observation.

Table 9 shows which of the more fine-grained manually found categories
constitute the whole dataset (Cluster 1) and the first level of automatic cluster-
ing (Clusters 2 and 3). The vast majority of the papers dealt with applications
in “1.2 Engineering, manufacturing, logistics”. The second largest category that
emerged was labeled “1.3 Environmental management, ecology, and remote sens-
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TABLE 8 Comparison of automatic and manual clustering: the second level of recursion
against the first manual pass.

1 2 3
c 4 (sz= 2): 50.0 0.0 50.0
c 5 (sz= 87): 60.9 39.1 0.0
c 6 (sz=109): 55.0 14.7 30.3
c 7 (sz= 40): 90.0 5.0 5.0
c 8 (sz= 2): 50.0 0.0 50.0
c 9 (sz= 64): 40.6 59.4 0.0
c 10 (sz=241): 86.7 13.3 0.0
c 11 (sz=142): 98.6 1.4 0.0

TABLE 9 Comparison of automatic and manual clustering: the first level of recursion
against the second manual pass.

1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 2.5
c 1 (sz=687): 11.6 39.6 16.2 3.6 5.5 6.4 3.5 5.2 0.4 2.5
c 2 (sz=240): 9.2 18.8 21.7 5.0 8.3 0.8 8.3 7.9 0.8 3.8
c 3 (sz=447): 13.0 50.8 13.2 2.9 4.0 9.4 0.9 3.8 0.2 1.8

ing”. On this level, some clear differences between the automatic Cluster 2 and
Cluster 3 can be observed: Slightly more than half of the articles in Cluster 3 were
manually categorized as applications in the field of engineering, manufacturing,
or logistics. In Cluster 2, applications in environmental and ecological issues were
more prominent. It can be seen also from this table that, overall, Cluster 2 con-
tains more of the articles considering pure method development (i.e., manual
categories labeled “2.x”). Yet, Cluster 3 has a lot of articles from the manually
labeled category “2.1 MLP, SLFN, RBFNN, or ANN learning”.

Again, Table 10 shows a similar breakdown of the second level of automatic
recursive clustering. Clusters 4 and 8 are the very small clusters indicating du-
plicate entries. One of the duplicates was labeled “3 Query noise”, so only 50%
remain in the finer-grained categories shown here. Cluster 7 is most “purely”
(70%) about applications in environmental management and ecology. Cluster
11 is also quite “purely” (62%) about applications in engineering, manufactur-
ing, and logistics. Applications in medicine and biochemistry are also prominent
in Cluster 11. A similar pattern can be seen in Cluster 10, but with more ap-
pearances of other manually tagged categories within the cluster. Exactly half of
Cluster 9 consists of method development involving mostly RBF and MLP net-
works, whereas method development involving SVMs has been concentrated in
Cluster 5. Further similar observations could be made from the table.

Perhaps of most interest is Table 11 that summarizes the constituent manual
categories of the automatic clusters selected earlier for closer examination, based
only on the visualized cluster hierarchy and cluster sizes. Here, Clusters 27 and
31 have a very great concentration (more than 80%) of articles manually catego-
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TABLE 10 Comparison of automatic and manual clustering: the second level of recur-
sion against the second manual pass.

1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 2.5
c 4 (sz= 2): 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
c 5 (sz= 87): 18.4 8.0 8.0 10.3 16.1 1.1 23.0 4.6 1.1 9.2
c 6 (sz=109): 2.8 33.0 14.7 2.8 1.8 0.9 0.0 12.8 0.9 0.0
c 7 (sz= 40): 7.5 5.0 70.0 0.0 7.5 0.0 0.0 2.5 0.0 2.5
c 8 (sz= 2): 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0
c 9 (sz= 64): 17.2 9.4 6.2 4.7 3.1 50.0 1.6 4.7 0.0 3.1
c 10 (sz=241): 6.2 55.2 15.8 4.1 5.4 3.7 1.2 5.4 0.4 2.5
c 11 (sz=142): 22.5 62.0 12.0 0.0 2.1 0.7 0.0 0.7 0.0 0.0

TABLE 11 Comparison of automatic and manual clustering: hand-picked clusters
against the second manual pass.

1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 2.5
c 13 (sz= 77): 20.8 9.1 9.1 9.1 13.0 1.3 23.4 5.2 1.3 7.8
c 6 (sz=109): 2.8 33.0 14.7 2.8 1.8 0.9 0.0 12.8 0.9 0.0
c 21 (sz= 32): 9.4 6.2 62.5 0.0 9.4 0.0 0.0 3.1 0.0 3.1
c 23 (sz= 55): 20.0 9.1 7.3 5.5 3.6 43.6 1.8 5.5 0.0 3.6
c117 (sz= 94): 9.6 46.8 9.6 4.3 5.3 7.4 3.2 7.4 0.0 6.4
c120 (sz= 59): 1.7 39.0 40.7 1.7 10.2 0.0 0.0 5.1 1.7 0.0
c 27 (sz= 76): 3.9 81.6 2.6 2.6 2.6 2.6 0.0 3.9 0.0 0.0
c 29 (sz= 68): 35.3 42.6 20.6 0.0 1.5 0.0 0.0 0.0 0.0 0.0
c 31 (sz= 63): 4.8 84.1 4.8 0.0 3.2 1.6 0.0 1.6 0.0 0.0

rized in “1.2 Engineering, manufacturing, logistics” applications. Cluster 21 has
a strong concentration (62.5%) of articles on environmental and ecological appli-
cations. Of the other clusters, no such high concentrations of a single manual
category can be observed. Yet, it is apparent that Cluster 29 contains only arti-
cles that have been manually tagged as applications (category label “1.x”), and
also Cluster 120 is quite purely about applications. On the other hand, Cluster 13
seems to consist of very many manually tagged categories.

As an afterthought, the selection of automatic clusters to study could have
been made from smaller clusters, further down the recursion tree. It is possible
that the currently selected clusters could have been broken down to ones that
represent more purely self-similar topics. It is an issue of further research to con-
sider, for example, what the “optimal size” of an automatically generated cluster-
ing to examine would be. Already, the constituent percentages given above seem
promising in that the further recursive clustering may have properly divided the
clusters into semantically meaningful smaller clusters. Subjective evidence to this
direction was experienced while reading the titles in the order given by the com-
plete recursive clustering.

As a last comparison of the automatic clustering and the manual catego-



115

TABLE 12 Comparison of automatic and manual clustering: concentration of query
noise.

1 2 3
c 17 (sz= 26): 53.8 3.8 42.3
c 18 (sz= 56): 60.7 26.8 12.5
c 19 (sz= 18): 16.7 0.0 83.3
c 60 (sz= 3): 0.0 0.0 100.0
c 61 (sz= 5): 20.0 20.0 60.0
c 62 (sz= 3): 66.7 0.0 33.3
c 63 (sz= 2): 0.0 0.0 100.0

rization, let us take a closer look at the articles that were eventually identified as
query noise. Table 12 lists just a few of the automatic clusters that contained a lot
of articles that were considered noise. More clusters similar to these were found
than appear here for brevity. Clusters 17, 18, and 19 are all derived from Cluster 6
that contained practically all of the query noise (see Table 8). Cluster 19 is mostly
only noise (83.3%). Clusters 60, 61, 62, and 63 are recursively clustered from Clus-
ter 19, containing much of the noise. Examination of these clusters shows that the
abstracts had citations to Annals of Statistics, Annals of Regional Science, Annals
of Mathematics, and similar, abbreviated in the text as “Ann. Stat.”, “Ann. Reg.
Sci.”, “Math. Ann.”, and similar. These articles naturally resulted from the in-
clusion of “ANN” in the original query string. Fortunately, these articles were
clustered neatly in consecutively indexed clusters. In the dictionary order based
on cluster indices, they all turned out one following the other, so after initially un-
derstanding the plot, it was very convenient and fast to tag these as query noise
while performing the manual overview.

4.4 Discussion

In this chapter, a coarse mapping study of journal articles published in the cross-
roads of ANNs and multiobjective optimization was performed both using an
automatic literature clustering tool co-developed by the author and manually,
partly aided by the automatic tool. One objective of the study was to ascertain
that the review of related work regarding this thesis, presented in Chapter 3, had
no gaps. The part of the review dealing with the latest decade of related research
was indeed based on articles found among the ones found using the original
query which was designed to be as exhaustive as possible. Secondly, the auto-
matic literature clustering tool was developed further and its usefulness as a tool
to aid a manual literature review or a scoping study process was explored.

As for the outcome, the author first ascertained that the literature review
made in this dissertation contained no significant gaps. Secondly, the tool itself
seems to be a promising aid for manual mapping studies or literature reviews in
the future. The strongest merits of the tool turned out to be the easy and early
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identification of query noise, i.e., articles that were unpurposely obtained using
the original query string, and the increased easiness and comfort of manual cat-
egorization of the rest of the literature simply via re-ordering of the titles and
abstracts according to the automatically created clusters.

The agreement of manual and automatic clustering was explored to an ex-
tent: Some automatically found clusters showed quite high concentrations of ar-
ticles categorized manually in a certain way, which was actually a small surprise
to the author. It must be noticed that the automatic clustering, which is currently
based only on word co-occurrences in the titles and abstacts of articles, is neces-
sarily a very crude approximation of any real semantics of the scientific literature.
Several ideas for future development of the tool arose during the case study per-
formed here. It seems like a promising research avenue by itself to improve the
literature clustering method and use it to improve the throughput and coverage
of future mapping studies and literature reviews.



5 MULTIOBJECTIVE TRAINING OF MLP
CLASSIFIERS

This chapter recapitulates the features necessary in a state-of-the-art implemen-
tation of a Pareto-based multiobjective MLP classifier training method and de-
scribes one step in an on-going incremental method development in the contin-
uum that involves the earlier works of Nieminen and Kärkkäinen (2009, 2010,
2016) and Nieminen et al. (2011). The current step is far from final, but the au-
thor asserts that the groundwork presented in Chapter 3 of this dissertation thor-
oughly clarifies the road ahead for the next steps. More elaborate publications
about the developments are planned for the future, along with more experiments
to prove or disprove the hypothesized merits anticipated in this chapter.

Section 5.1 reviews the general goals of the implementation. Section 5.2
details the specific objective functions chosen to be explored and hypotheses to
be explored with a package of experiments accompanying the implementation.
Section 5.3 details the planned algorithmic framework and the current state of
its implementation at the time of writing this dissertation, and it begins with a
few passages about the repeatability of computational experiments and how this
dissertation attempts to meet the basic requirements of such.

5.1 General Goals

The summaries made earlier about the first decade (in Section 3.2.11) and the lat-
est decade (in Section 3.3.10) of research in multiobjective supervised learning
lead to the following digested list of features required of a current implementa-
tion of a Pareto-based MLP classifier training method:

– A memetic algorithm consisting of a multiobjective evolutionary framework
and memetic operators customized specifically for the MLP are to be used.

– An object oriented phenotypic representation of the MLP should be used.
– A full archive of non-dominated solutions should be kept throughout the itera-
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tion.
– The possibilities of overfitting or pre-mature convergence to local optima dur-

ing local improvement should be managed.
– The selection of operators and the settings of their parameters should be

adapted or evolved throughout the iteration.
– A crossover operator of MLP classifiers based on the geometric interpretation

of the hidden neurons forming separating hyperplanes in their input space
should be available.

– Instead of using MOO implicitly as an intermediate helper in single-objective
optimization, the Pareto-based approach calls for explicit separation of objec-
tives and involvement of the user to make an informed human decision of
the final model.

– Ways to gain insight into the properties of the dataset via Pareto-based MOO
should be promoted.

– Especially, the interactions of similar but subtly different objectives, for exam-
ple, various complexity measures, is to be jointly explored for datasets with
different distributions of classes and other properties, such as noisy obser-
vations.

– Combinations of more than two objective functions should be aimed at, and
useful applications of such combinations charted.

Furthermore, the additional main target of improving upon an existing MLP for-
mulation, and building upon earlier studies using it, leads to the following goals
specific to the work presented here:

– The MLP architecture is restricted to a fully connected feed-forward struc-
ture which can be represented as a set of non-sparse layer-wise weight ma-
trices. Such a structure can be implemented in a concise and extremely effi-
cient way in practically any software or hardware platform in which a final-
ized classifier needs to function. An efficient implementation in ANSI C has
been made earlier, and usefully deployed in industrial field applications.

– Differentiable activation functions are used, and thus gradient-based train-
ing methods are applied where possible.

– A special emphasis is put on the investigation of the specific formulations
that have been used before by the author and others in his research group
in earlier studies.

– Thus, an incremental mode of development, building upon the existing re-
search and code base, is to be used.

5.2 Multiple Objective Functions for MLP Classifiers

Next, the specific family of objective functions of interest here is defined. Most
of the functions appear first as a general, parameterized, form. By varying the
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parameters, a generally infinite number of different objective functions could be
generated. Earlier experiments and the literature review made for this disserta-
tion have lead to certain hypotheses of how each function should behave differ-
ently for datasets with some different properties of special interest. The following
descriptions are organized into subsections based on these hypotheses of appli-
cability.

5.2.1 Notations and General Properties of the Objectives

In the following descriptions, the MLP model of Equation (5) is used. To recapit-
ulate, the symbol L stands for the number of layers, including both hidden layers
and the output layer. The number of neurons on layer l ∈ {0, . . . , L} is written
as nl. The 0:th layer corresponds to the input layer. The symbol N (xi) stands for
the output value after evaluating a network for an input vector xi ∈ Rn0 . The
weight matrices {Wl}L

l=1 used for computation are assumed to be known from
the context in which N is used. Similarly, the symbol ei is shorthand for the
error vector ei = N (xi) − ti where ti is the desired target vector correspond-
ing to the training data input xi in a completely labeled dataset. In all cases
involving classification, ti is taken to be a “1-of-K” binary encoding of the de-
sired integral class label ti, i.e., a vector ti ∈ RK where the ti:th component is
1 and others are either 0 (when the logistic sigmoid is used as the activation
function) or −1 (when the hyperbolic tangent is used as the activation func-
tion). For classification, the predicted integral class label corresponding to the
vector-valued output N (xi) is denoted P(xi) ∈ {1, . . . , K} and is taken to be
the “winner-take-all” interpretation where the index of the maximal element of
N (xi) ∈ RK is selected. Any (unlikely) ties are resolved to the smallest index.
Formally, P(xi) = min{j : (N (xi))j ≥ (N (xi))k for j, k = 1, . . . , K}. The individ-
ual synaptic weights of the MLP model are written as wl

i,j where l ∈ {1, . . . , L}
is the index of the layer, i ∈ {1, . . . , nl} is the index of the neuron within the l:th
layer, and j ∈ {0, . . . , nl−1} is an index into the output vector ol−1 of the previous
layer or to the value 1 for index j = 0 that refers to a bias value. The symbol I
is used for index sets that select a subset of the MLP network structure, and the
symbol S for index sets that refer to a subset of the labeled data. The notation #S
denotes the number of elements in a set S.

Each objective function shall be given a shorthand symbol fmnemonic includ-
ing a subscripted mnemonic of its intended purpose. Each function is formulated
as one to be minimized, which simplifies the algorithms and especially the exam-
ination of Pareto fronts. The functions are also always non-negative. Thus, in all
plots, the (generally unobtainable) utopian solution minimizing all of the func-
tions is always found at the origin. This is why, for example, the classification
error rate (as the ratio of wrong predictions) is measured instead of the classifica-
tion accuracy (as the ratio of correct predictions).
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5.2.2 Continuous Error Measures with Class Noise Mitigation

General formulation: A parameterized family of continuous error measures
(CEM) of an MLP classifier (or function approximator, for that matter) can be
derived from the following general objective function, which is presented here
after the notation used by Kärkkäinen and Heikkola (2004):

fCEM(α, q, S)({Wl}L
l=1) =

1
α#S ∑

i∈S
‖ei‖α

q . (11)

Variations: The index subset S can be used to focus the objective function on a
subset of the training data. The selection of S will be covered in a later subsec-
tion. For now, let us choose S so that it contains the indices of all the data points
available in the training dataset. While an infinite number of different variations
of this objective function can be obtained by varying its parameters, a few com-
binations of α and q provide cases of special practical interest. The parameter q
selects a norm that is used in computing the contribution of the error made by
the MLP approximation for each individual data point. Common choices would
include the usual Euclidean error norm with q = 2, city-block error distance with
q = 1, or maximum error with q = ∞, although any other selection of q could
be made. The divisor/exponent parameter α provides further variations. Here,
common choices could be α = q = 2 for the most traditional mean of squared
elementwise errors (MSE), α = q = 1 for the mean absolute errors (MAE), and
α = 1 with q = 2 for the mean Euclidean error (MEE). It is worth an extra notice
that for vector-valued outputs, like the outputs of MLPs for multiclass classifica-
tion, the MAE and MEE are very different measures. As a divisor, α simplifies the
computation of derivatives, but naturally it also affects the computation of the
mean by a factor of 1

α .

Hypotheses on applicability: The formulation has been explored earlier, by
Kärkkäinen and Heikkola (2004) who provided non-smooth subdifferentials for
the above selections of q and α, and showed a connection between robust statis-
tics and MLP training. When a linear output layer with biases is used, any MLP
that locally optimizes fCEM(2, 2, S) has an average error of zero over the selected
dataset. More importantly, the zero vector is the median of the error vectors of
any MLP that locally optimizes fCEM(1, 1, S), and the spatial median of the er-
rors of any MLP that locally optimizes fCEM(1, 2, S). Kärkkäinen and Heikkola
(2004) showed experimentally that the selections of the robust error functions
fCEM(1, 1, S) and fCEM(1, 2, S) protect against outliers in function approximation
tasks. As for classification tasks, preliminary supportive evidence was gained by
Nieminen and Kärkkäinen (2010) that the selection of fCEM(1, 2, S) would main-
tain a high classification performance in the presence of heavy class noise, i.e.,
a high percentage of the training data being mislabeled by accident. For clean
data, there should not be a notable difference between MLPs minimizing either
fCEM(1, 2, S) or fCEM(2, 2, S), the latter of which is the most commonly used mean
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of squared errors (MSE) objective. It is hypothesized that the presence of class
noise could indeed be discovered by observing a spread-out distribution of so-
lutions to fCEM(1, 2, S) and fCEM(2, 2, S) in a Pareto front, which could inform
the user to choose a model that minimizes fCEM(1, 2, S) rather than a model that
minimizes fCEM(2, 2, S). In a clean situation without major class noise, the two
measures should give similar results. Respectively, an observed accordance of the
two functions in a Pareto front could serve as evidence that the training dataset
is likely devoid of any corrupted labels.

5.2.3 Continuous Model Complexity Measures

General formulation: Using the absolute values of a subset of the synaptic
weights, given as an index set I, a family of continuous model complexity (CMC)
measures can be obtained from the following general form:

fCMC(γ, I)({Wl}L
l=1) =

1
γ#I ∑

(i,j,l)∈I
|wl

i,j|γ. (12)

Variations: While any selection of parameters are possible, a common one is
the mean of squared weights, or Gaussian regularizer, fCMC(2, I∗), where the in-
dex set I∗ covers all of the MLP weights. Similarly, the Laplacian regularizer is
obtained as fCMC(1, I∗). The index set may be reduced in various ways. For ex-
ample, only the weights on one layer of the MLP could be measured by a variant
of I in this objective function. As another example, the output bias weights could
be excluded as suggested by Kärkkäinen (2002).

Hypotheses on applicability: At least one of these regularization function vari-
ants is traditionally chosen to be aggregated into the single objective function
used for training an MLP. For gradient descent methods, they contribute a “weight
decay” effect, i.e., the tendency to reduce the absolute values of the weights dur-
ing the iteration. The Gaussian and the Laplacian regularizer are known to af-
fect the iteration process in different ways. Also, it is known that using different
penalties for the weights of the different layers of MLP could be beneficial. From
the single-objective optimization point of view, each aggregated regularization
term could be viewed as a constraint function with an aggregation weight coeffi-
cient set a priori or via experimentation. In a Pareto-based “multiobjectivization”
sense, such constraints could be considered as additional objective functions. The
main hypothesis is that the values of the different function variants would show
different behaviour on datasets with different properties, and increase the user’s
knowledge of the dataset before making the a posteriori decision of the optimal
MLP classifier.

5.2.4 Discrete Error Measures

General formulation: In classification, the vector-valued output N (xi) ∈ RK is
eventually interpreted as an integral class prediction P(xi) ∈ {1, . . . , K} which
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may or may not be the correct target class label ti. The following function evalu-
ates the (discrete) objective function of errors made over an indexed subset S of
the labeled training data, which we call a discrete error measure (DEM):

fDEM(S)({Wl}L
l=1) =

#{i ∈ S : P(xi) 6= ti}
#S

. (13)

Variations: Also this function can be focused on different subsets of the data by
varying S. For now, let us consider the whole training dataset. Other selections
of S will be considered shortly, while discussing cost sensitive and imbalanced
learning and direct measuring of generalization.

Hypotheses on applicability: In the case of classification, the continuous, aver-
aged, error measures are only a proxy of the actual capacity of an MLP to make
correct predictions of each class. The ultimate requirement from the application
point of view is to minimize the ratio of incorrectly made predictions. The main
hypothesis is that even if the continuous error measures are used in gradient-
based local improvement, the discrete measures are more interesting for the tasks
of Pareto-front exploration and final solution selection.

5.2.5 Discrete Model Complexity Measures

General formulations: The following discrete functions measure the structural
complexity of an MLP in various ways:

fNL({Wl}L
l=1) = L. (14)

fNN(I)({Wl}L
l=1) = ∑

l∈I
nl. (15)

fNAC(I)({Wl}L
l=1) = #{wl

i,j : wl
i,j 6= 0; (i, j, l) ∈ I}. (16)

The first one, fNL stands for the number of layers. The second one, fNN(I)
stands for the number of neurons in a part of the MLP selected using the set
I ⊂ {0, . . . , L− 1}. The third one, fNAC(I), stands for the number of active con-
nections, i.e., weights that have a non-zero value, in a part of the MLP selected
using the index set I.

Variations: The number of layers is simply the structural depth of the MLP,
which, for the current experiments, may not be varied after initial creation of an
MLP. Also, the objective function is parameterless and cannot be varied. Variable-
depth ANNs would be a topic of interest in follow-up studies, so the measure is
included here for completeness. The number of neurons could be computed over
the whole MLP, which may have many hidden layers, or focused on only one of
the hidden layers by varying the index set I. The maximum number of neurons
on the input layer, i.e., n0, and the exact number of neurons on the output layer,
i.e., nL, are fixed by the dataset properties. Also the number of active connections
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can be computed over the whole network, or only one or few layers. Of interest
may also be the restriction to the bias weights of a layer instead of its inputs from
the previous layer.

Hypotheses on applicability: Pareto-based multiobjective optimization allows
several fine-grained complexity measures to be defined and simultaneously op-
timized. Also with regard to these measures, it is hypothesized that observed
properties of the resulting Pareto front may shed light on otherwise reluctant
properties of the dataset, and the a posteriori MLP model selection can be based
on the measure that, after exploring the result set, turns out to be the most prac-
tical one.

5.2.6 Cost Sensitive Learning and Skewed Class Frequencies

General formulations: Consider the formulations of fCEM(α, q, S) and fDEM(S)
given above.

Variations: Consider splitting the indices of the dataset into subsets S1, . . . , SK
so that each subset covers exactly the training data points labeled in one of the K
classes. Then the resulting K objective functions fCEM(α, q, Sc) and fDEM(Sc) for
c = 1, . . . , K measure class-wise errors. The minimum class-wise error is obtained
as min{ fDEM(Sc)}K

c=1.

Hypotheses on applicability: The main hypothesis regarding these class-wise
objective functions is that they give information about the necessary trade-offs in
final MLP classifier selection that is more useful than that obtained by looking at
the whole data at once. Experiencing a Pareto front that is spread out with regard
to some of these class-wise objectives should reveal that the distributions of the
classes overlap each other in the training data. The most important applications
are expected to be those of cost sensitive learning, i.e., when different costs apply
to different misclassifications, and of imbalanced learning, i.e., when the prior
class frequencies differ from each other.

5.2.7 Feature Selection

General formulation: Consider the general formulation of fNN(I) given above.

Variations: Consider selecting I = {0}, i.e., only the input layer.

Hypotheses on applicability: The main hypothesis is that feature extraction
could be incorporated in the main optimization iteration, and that exploration
of the Pareto front and resulting MLP structures would reveal information about
the relative number and the identity of the most relevant input features.
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5.2.8 Direct Measures of Generalization

General formulation: Consider, again, the general formulations fCEM(α, q, S)
and fDEM(S) given above.

Variations: Consider splitting the indices of the dataset via stratified sampling
into either two subsets Str and Sval, where tr stands for training and val for vali-
dation, or even more subsets {Si}F

i=1 which could be called “folds”.

Hypotheses on applicability: The classical splitting of the available labeled data
into training and validation subsets, or a number of cross-validation folds, can be
emulated to an extent as two or more objective functions that are evaluated dur-
ing the main optimization iteration. Examples of the two-way split were cited
in the literature review earlier in this dissertation. Augmentation of the idea to
more than two sets looks like an interesting and novel approach, although there
is no clear hypothesis about its potential outcomes before experimentation.

5.2.9 Combinations of Different Objective Functions

General formulations: All of the above.

Variations: Selected subsets of the above. There are no theoretical limits to the
number of objective functions to combine or the way in which the combinations
are taken. For example, it is completely possible to combine the above ideas
to select class-wise stratified training and validation sets {Str

i }K
i=1 and {Sval

i }K
i=1

and produce robust, non-robust, and discrete error measures for each subset and
further combine those with several continuous and discrete complexity measures.
In practice, though, such many-objective optimization is known to be difficult
both for the currently popular MOO algorithms and for the human user (see, for
example Chand and Wagner 2015; Deb and Jain 2014). Practical use is thus likely
to require some prior decisions about which objective functions could be the most
interesting ones for the task at hand.

Hypotheses on applicability: The main hypothesis is that knowledge of the
classification problem at hand, and its “inherent difficulty”, can be gained via
exploring the Pareto front in which a proper combination of the above functions
has been jointly minimized. One of the most traditional examples is the trade-off
between the complexity and the error of the MLP. Another one is the “ROC front”
where the accuracies (or, symmetrically, errors) of two classes is jointly examined.
It is anticipated also that the examination of more than one complexity measure,
such as only one regularization term selected a priori, could reveal some intrin-
sics of the datasets that would be hard to spot using only one measure. All in all,
Pareto-based MLP training should aim at results that simply cannot be obtained
using single-objective training methods. For simple datasets, there is no need to
use anything else but the standard backpropagation. For less trivial cases, the



125

foremost promise of Pareto-based training lies in extracting interesting informa-
tion about the dataset in addition to obtaining, as the “necessary by-product”, if
such a viewpoint is taken, a set of Pareto-optimal MLPs among which a final one
can eventually be chosen.

5.3 Algorithms and Implementation

This section describes the platform being produced in the development work con-
tinuously progressing as of writing this dissertation.

5.3.1 Reproducing Research from Source Code

Inspired long ago by Buckheit and Donoho (1995), the author of this disserta-
tion advocates the principle that research results in computational science should
always be accompanied by the source codes that can be turned into executables
that reproduce any result obtained. Sometimes data confidentiality or intellectual
property right issues make this hard to perform, as is unfortunately the case also
for the literature mapping case study of Chapter 4 of this dissertation. For all the
other cases and illustrations presented here, the source code to reproduce them is
made available in the public source code repository “momulper” created for this
thesis1. As of writing this dissertation, many of the planned components are still
to be implemented.

5.3.2 Overall Memetic Framework

As of its current form, the compilable and executable scaffold includes an instan-
tiation of the generic Algorithm 2 with the following components:

– An evolutionary optimization framework implemented in C++11 and using
the reference C version of NSGA-II as the selection operation.

– A computational engine for MLP networks based on an earlier implemen-
tation used in the research group of the author, re-implemented in C++11.
The engine supports efficient computation of the continuous error measures
(CEM) defined above, with gradients (and subgradients for nondifferen-
tiable CEMs).

– A Matlab counterpart of the MLP implementation that can be used for post-
run analyses and visualizations of the MLPs and populations used in the
algorithms.

– Basic structures for creating and inserting unary and n-ary memetic opera-
tors for population and individual updates within the algorithm. The algo-
rithmic components are selected for every run using case study definition
files in a specific, human-editable grammar.

1 http://users.jyu.fi/~nieminen/research/dissertation2016/codes/

http://users.jyu.fi/~nieminen/research/dissertation2016/codes/
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– An incrementally growing set of experiments for testing and evaluating new
features and combinations of objective functions, as they are added in the
implementation.

– Generation of simulated datasets in N dimensions, implemented in Matlab
code that is compatible with and runnable using the open source computa-
tional software Octave.

– Storage formats for MLP populations that is easy to parse with Matlab.
– A “trace history” archival mechanism for the optional storing of each new

population individual with not only the objective functions used for opti-
mization but also any additional measures defined in the case study and
the identities of its parents. The purpose of this tracing functionality is to be
able to trace the progression of any individual in the memetic framework to
its (grand)parents in previous populations all the way to the initialization
phase. For faster computation in an actual application case, the trace would
be disabled, but for method development, it stores crucial data for assessing
the performance of the memetic operators.

– Initial visualizations for examining the progression and result of the runs of
the main algorithm, implemented in Matlab.

5.3.3 Genetic Representation

Currently, the chromosome representation is internally an array of floating point
values that contain the packed row vectors of the weight matrices of an MLP. This
allows for the traditional fast computations and inner-loop optimizations for the
forward and backward signal propagations.

The chromosomes are variable-size so that any fully-connected feed-forward
MLP topology can be used as an individual. The MLP individuals are wrapped
inside an object-oriented class interface in C++ so that the internal representa-
tion needs not to be known by the overall algorithm that works through objective
evaluations and the commencing of alteration operations to be performed. The
operators are offered MLP-specific access functionality such as gradient compu-
tation and weight updates based on a labeled dataset, and access that appears as
the layer-wise matrix representation as in Equation (4).

5.3.4 Evolutionary and Improvement Operators

As of writing this dissertation, the platform is ready for inclusion and trials of
different MLP-specific unary and n-ary operators that modify the individuals.
Implementations and tests with these will be included in the source code reposi-
tory in an incremental manner according to the following plan:

– At first, include simple operators well-tried already in the early days of mul-
tiobjective MLP training (see 3.2.11).

– Proceed to include further operators up to the currently known ones (see
3.3.10).
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– Try out new experimental versions of n-ary recombination operators that
first imitate and then, perhaps, improve on the earlier ones based on geo-
metric interpretation of hidden neuron hyperplanes (Goh et al. 2008; Teoh
et al. 2006).

– Attempt to extend the recombination to MLPs with more than a single hid-
den layer.

The work is underway as of writing this dissertation, and can be monitored at the
source code site.



6 PRELIMINARY COMPUTATIONAL EXPERIMENTS

The task undertaken here by the author was to incrementally develop an existing
MLP formulation and implementation to meet, and, with luck, exceed, the expec-
tations put on a current Pareto-based multiobjective classifier training method.
The fundamental groundwork was laid out in Chapter 3 and the development
plan in Chapter 5. As of writing this last chapter of the dissertation body, the
work is still on-going, and the final outcome is yet to be witnessed from results
generated by the source code being developed. This chapter provides the exper-
imental plan and a few first examples that can be reproduced by the public ex-
perimental codes underlying the endeavor. An additional grandiose goal was to
implement also a complete experimental testbed that would automatically gen-
erate an array of convincing computational results with visualizations. While the
actual convincing results are still pending, the experimental testbed is already
functioning. It produces the datasets and MLP illustrations seen so far in this
thesis and is already capable of much more. More results are already available
by running the experiments using the provided source codes than those that are
represented here as examples, and yet more are anticipated to appear for future
publications. Adapting the words of Buckheit and Donoho (1995), this chapter
is merely an “advertisement of the scholarship” that this dissertation is the most
recent part of.

Section 6.1 samples a couple of simple test cases that were used in the initial
bootstrapping phase for verifying that a very early mock-up version of the algo-
rithm and its connection with the result visualization was working. They con-
tinue to function as sanity checks for the MLP computations and any new local
improvement operators to be added. The sampled experiments also automati-
cally produce some of the first illustrations of the dissertation. The section also
introduces the format used in the automatic experiment reports and visualiza-
tions currently produced. Section 6.2 illustrates just a couple of further test cases
for the functioning of the platform and some recently added features. They were
used for producing the first examples of nontrivial classification tasks in this dis-
sertation. The implementation is not yet finalized as of writing this dissertation,
so Section 6.3 must end this chapter and the whole dissertation by anticipations
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of how the development is to continue in later works.

6.1 Sanity Checks and Introduction to Result Notation

The first part of the experiments is performed using simulated two-dimensional
datasets where the data complexity can be fully controlled, and the action of the
resulting MLPs completely visualized. An overview of an experiment and some
of its parameters can be output from the platform as text that can be included in
a LATEX document in the following format that can be cross-referenced no differ-
ently from equations, figures, or sections of text:

Experiment 1:

Brief Linearly separable data; first illustration in the
thesis Introduction.

Description Emulated standard single-objective backpropa-
gation.

Task classification
Dataset 2dlinsep.data
Objectives mse
Population size 1
Evol. framework none
MLP init arch. 2-1-2
Improvement opers backprop

Experiment 1 reduces the platform into the most traditional single-objective MLP
training method by selecting only one objective, one member as the population
size, and only the MSE error to be minimized. The only operation selected is the
backprop step, and evolution is not used (the selected evolutionary framework
is “none”). In fact, in the first bootstrapping phase, this was everything that the
platform was capable of doing, which was quite sufficient for making sure that
the freshly re-implemented MLP computation code gives sensible error and gra-
dient values for the MSE error. The case definition for this very first case study
is likely to remain in the bank of experiments for the rest of the lifetime of the
research code as a test case that will forever make sure that the MSE computation
is not accidentally broken by changes in the MLP codes. Not all parameters are
shown in the purposely simplified outline, but this is no problem because every
detail is preserved in the original problem description file.

With the definitions of Experiment 1, the algorithm runs as an emulated
single-objective backprop training method that produces an output population of
one MLP. The postprocessing part of the platform implemented in Matlab can be
used to read the final population created by the C++11 part and produce output
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FIGURE 23 Linearly separable binary classification, once again, now with a traced com-
plexity measure.

visualizations. The left pane of Figure 23 is an exact replica of Figure 5, which
was in fact produced by running and visualizing Experiment 1. The right pane
illustrates one of the already implemented features of the experiment platform,
which is the tracing of objective functions or measures that did not take part in
the optimization process. In this case, the trajectory of the solutions from the
initial random MLP to the final trained one is plotted using the MSE error and the
mean of squared weights of the MLP as the coordinates. With such illustrations,
the interplay of two functions during single-objective learning can be explored.
As already explained in Chapter 2, the left pane shows the action of the hidden
layer of a single-hidden-layer MLP using the arrow width to represent the weight
magnitudes. The right pane can be used to trace the history of the magnitudes
throughout the learning process.

To prove the point that the testbed makes result exploration convenient, let
us go through another simple experiment:

Experiment 2:

Brief Non-linear but separable data; 2nd thesis illus-
tration.

Description Emulated single-objective multistart backprop-
agation. This shape requires more than two
neurons. Initial guesses are crucial, but redun-
dant neurons can help. Backprop can do this
quite easily with 6 hidden neurons, although less
would be optimal. Can do with 5, too, even with-
out regularization. 4 is difficult.

Task classification
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Dataset 2dw.data
Objectives mse
Population size 12
Evol. framework none
MLP init arch. 2-5-2
Improvement opers backprop

The result of Experiment 2 is illustrated in Figure 24, the left pane of which
matches the earlier Figure 9. In this case, the platform is emulating a multistart
backprop with 12 random initial MLPs. For the illustration, the best individual
(with smallest MSE) is selected. Again, the right pane shows the usual steep in-
crease in weight values when the error is finally decreasing in only very small
steps. From the left pane, it can be readily observed that the hyperplanes created
by the single hidden neuron may be pointing in either of the two possible direc-
tions (see the one on the right compared to the others). This mirror symmetry is
compensated by the action of the next layer. The visualization of the hidden layer
action is designed with the purpose of examining the function of MLP crossover
operators which are on the research roadmap formed in this dissertation but not
implemented as of writing the manuscript.
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FIGURE 24 Nonlinear binary classification with a traced complexity measure.

6.2 Simple Datasets Exhibiting Non-Trivial Features

To prove the point that the platform is already capable also of actual multiobjec-
tive optimization, let us show yet one more simple example case:
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FIGURE 25 Multiobjective binary classification with a trace of the classwise errors and
a parallel coordinate plot of the final population.

Experiment 3:

Brief Non-linear data with overlapping distributions.
Description Real two-objective multiobjective optimization

for two classwise errors. Very simple example
to illustrate the concept.

Task classification
Dataset 2dvOverlap.data
Objectives cwerr
Population size 20
Evol. framework ns
MLP init arch. 2-2-2
Improvement opers backprop

The results of Experiment 3 are shown in Figure 25. This was the first trial created
to test (for the first time of development, and for the forthcoming future) that the
nondominated sorting part of the implementation works in a sensible manner.
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FIGURE 26 Some further examples of result illustrations from the current implementa-
tion.

In this case, a random selection of 10 individuals from the final population are
selected for plotting in the top left pane. Their traces throughout the iteration
using the actual classwise error rates are shown in the top right pane, and the
whole population is shown in the bottom pane as a parallel coordinates.

Further examples of initial experiments using the current codes are shown
in Figure 26. The two top panes show different results for a three-class imbal-
anced case similar to the one explained in Section 2.6. On the bottom left is an
example of the different classification boundaries of a Pareto-optimal population
of MLPs trained by minimizing both classifier error and complexity. On the bot-
tom right is an initial example of minimizing both MSE and MAE errors under
class noise.
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6.3 Future Work

The implementation is currently in a state of development, the results of which
must be output in later publications after this dissertation that provided the mis-
sion statement and the goals. The intention is to proceed with the roadmap given
in Chapter 5 to first reach the state-of-the-art and then proceed to research of pos-
sible extensions of MLP-specific crossover operators. At each stage, the newly
added features are to be explored with experiments that then remain as perma-
nent test cases in the experimental platform which was shown in this chapter to
work. Interesting results can then be selected as illustrations for reports of the
development.

As for experiments and datasets, incrementally more dimensions should be
added after the method components are found to work by examining the two-
dimensional, easily visualizable cases. Naturally, when the method is proven to
work on simulated datasets with known properties, the ultimate goal is to try the
MOO formulations on common benchmark datasets in order to compare it with
others and attempt to assess if the trade-offs found in the Pareto fronts of the
benchmark datasets would exhibit traits that are known for the simulated cases
to exhibit interesting properties such as class overlap or class noise.



7 SUMMARY

This dissertation documented a step in an on-going research track that the author
has been involved in, on and off, for the past many years. Chapter 1 recalled his
earlier research on some aspects of multilayer perceptron (MLP) neural network
training and outlined limitations that could possibly be lifted by a multiobjec-
tive approach in training. The purpose was to find out if and how the concepts
of multiobjective optimization could be used for training MLPs. Chapter 2 ex-
plained the basic concepts involved with brief remarks of the history of each.

Chapter 3 reviewed existing literature on the topic of multiobjective ma-
chine learning with an emphasis on MLPs and closely related learning machines.
It turned out that a comprehensive survey of the most recent ten years of develop-
ments seems to be lacking, and the latter part of the chapter became an attempt to
initiate one, thus forming a major part of the research documented here. Several
successful applications of multiobjective methods were found, and their inner
workings digested as a reference of what has been done in the field.

The literature survey process was supported by an automatic tool partly de-
veloped by the author. Chapter 4 described the process and also introduced some
new methodological advances of the support tool for the first time. In a way, the
chapter contributed a small study of its own, in the field of informetrics. The tool
was found to be useful in increasing the comfort and possibly also throughput of
charting a body of literature.

Chapter 5 synthesized the earlier research into a shortlist of features re-
quired of a current multiobjective MLP training method and proposed a roadmap
for method development. The method is still under development, but it is briefly
demonstrated in Chapter 6 to be already functional. The implementation aims to
follow the ideal of perfectly reproducible research all the way from the scratch.

The dissertation, with its contributions mentioned above, documented a
track that has a history and a future. Follow-up studies would include not only
further development of the initiated MLP training method but also finalizing the
survey of other contemporary alternatives. The literature survey method was
also found to be on the right track, and it will surely be developed and applied in
the future.
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YHTEENVETO (FINNISH SUMMARY)

Monikerroksisten hermoverkkojen muodostaminen memeettisen monitavoi-
teoptimoinnin avulla

Koneoppiminen tarkoittaa luonnollisten oppimisprosessien jäljittelemistä keino-
tekoisten laitteiden tai ohjelmistojen avulla – eli esimerkiksi sellaisten tietoko-
neohjelmien tekemistä, jotka oppivat niin sanotusti luokittelemaan ennaltanäke-
mätöntä aineistoa. Perusesimerkki tällaisesta luokittelutehtävästä voisi olla vaik-
kapa henkilöiden tunnistaminen digitaalisten kasvokuvien perusteella. Toinen
helposti ymmärrettävä sovelluskohde voisi olla jonkin sairauden tunnistaminen
potilaasta mitattujen veriarvojen perusteella. Ohjatussa koneoppimisessa ope-
tusaineisto mitataan parhaimmillaan joukosta, jonka todellinen luokittuminen
tunnetaan. Tavoitteena on saada muodostettua väline, joka pystyy salamanno-
peasti tekemään vastaavan luokituksen, esimerkiksi lääketieteellisen esidiagnoo-
sin, uuden havaintoaineiston perusteella. Monikerroksiset hermoverkot ovat yksi
perinteinen ja paljon käytetty matemaattinen malli, joka on varsin yksinkertainen
toteuttaa tietokoneella. Malli on kuitenkin aina vain sapluuna, joka täytyy muo-
dostaa ja täsmentää keinotekoisen oppimisprosessin kautta.

Koneoppimistehtävät sisältävät yleensä useita keskenään ristiriitaisia tavoit-
teita. Yksi esimerkki tästä on, että yksinkertainen malli ei yleensä pysty seuraile-
maan opetusaineiston piirteitä tarkasti, vaikka sekä yksinkertaisuutta että tark-
kuutta tavoitellaan. Toinen esimerkki on diagnostiikkasovelluksissa usein vas-
taan tuleva kompromissi väärien positiivisten ja väärien negatiivisten diagnoo-
sien välillä. Tietokoneohjelmien opettamiseksi määritellään matemaattisia funk-
tioita, joista kunkin optimointi vastaa yhtä näkökulmaa suhteessa toivottuun lop-
putulemaan. Yhtä ja samaakin näkökulmaa voidaan kuvata erilaisilla funktioilla,
jotka voivat olla keskenään ristiriitaisia – riippuen opetuksessa käytetystä aineis-
tosta. Koneoppimisessa on käytetty tällaisten keskenään ristiriitaisten funktioi-
den samanaikaiseen optimointiin kehitettyjä monitavoiteoptimointimenetelmiä
järjestelmällisesti vasta muutaman vuosikymmenen ajan.

Tämä väitöskirja käsittelee aiempia ja nykyisiä tapoja käyttää monitavoi-
teoptimoinnin menetelmiä ohjatussa koneoppimisessa, erityisesti monikerroksis-
ten hermoverkkojen muodostamisessa luokittelutehtäviä varten. Väitöskirjassa
luodaan aihepiiriin kattava kirjallisuuskatsaus, jonka tekemistä on tuettu osak-
si kirjoittajan kehittämällä työkaluohjelmistolla. Katsauksen perusteella listataan
otsikon mukaisen aihepiirin tärkeimmiksi havaitut tavoitteet ja toteutustavat, joi-
ta myös sovelletaan uuden toteutuksen pohjana. Uusi monitavoitetoteutus on
suunniteltu tuottamaan rakenteeltaan samanlaisia malleja kuin aiempi, teollisissa
projekteissa käytetty, yksitavoitteinen hermoverkkototeutus. Toteutusta ja Pareto-
rintamaan perustuvaa hermoverkon muodostamista esitellään simuloitujen ope-
tusaineistojen avulla. Painopiste on tehtävään soveltuvien tiedonesitystapojen ja
tavoitefunktioiden muotoilemisessa.
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