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Abstract
This thesis provides an introduction to strong coupling between surface plasmon polaritons
(SPP) and molecules. In the strong coupling limit the energy levels of the system change
to form new hybridstates. These new states can be used for example to control chemical
reactions and in quantum-information technology. One property of the SPPs is that they
can only be p-polarized. However, in recent experiments the strong coupling system has
been found to also emit s-polarized light. One goal of this thesis is to find a process that
would explain the microscopic origin of the s-polarized light. We construct a Markovian
quantum master equation of the Lindblad kind for the strong coupling system. Lindblad
equation is describes the time evolution of the density matrix of the system, when the
system is coupled to an external bath through dissipative processes. The Lindblad equation
that we construct includes decay of the SPP and molecules into an external photon field,
dephasing process and inelastic scattering of the molecules with phonons. The dephasing
process causes loos of interference in the system but does not change energy. Using both a
numerical and an analytical treatment of the Lindblad equation we find that dephasing is
not enough to produce s-polarized light. We are able to find a Lindblad term that allows
the emission of s-polarised light. We argue that this term is a correction due to the finite
correlation length of the external photon field.



Tiivistelmä
Pintaplasmonipolaritonit (SPP) ovat metallin ja dielektrisen aineen, esim. ilma, rajapintaan
syntyviä sähkömagneettisia aaltoja. Tämä työ käsittelee SPP:en ja molekyylien välistä
vuorovaikutusta vahvan kytkennän rajalla. Vahvan kytkennän rajalla systeemin energiatilat
muodostavat uusia hybriditiloja. Näitä uusia tiloja voidaan hyödyntää mm. kemiallisten
reaktioiden muokkaamisessa ja kvantti-informatioteknologiassa.

Eräs SPP:en ominaisuus on, että ne voivat lähettää vain p-polarisoitunutta valoa.
Viimeaikaisissa tutkimuksissa on kuitenkin havaittu SPP–molekyyli-systeemin lähettävän
myös s-polarisoitunutta valoa. Yksi tämän työn tavoitteista oli löytää prosessi, joka selittäisi
s-polarisoituneen valon mikroskooppisen alkuperän. Tätä varten muodostin systeemille
markovilaisen kvanttimekaanisen master-yhtälön Lindbladin muodossa.

Lindbladin yhtälö kuvaa systeemin tiheysmatriisin aikakehitystä, kun systeemi on kytket-
ty ulkoiseen kylpyyn erilaisten dissipaatioprosessien myötä. Tarkastelemassani systeemissä
tällaisia dissipaatioprosesseja ovat SPP:n ja molekyylien viritystilojen purkautuminen ulkoi-
seen fotonikenttään. Vastaavasti ulkoinen fotonikenttä voi virittää systeemin hybriditilalle.
Lisäsin Lindbladin yhtälöön myös prosessin, joka sekoittaa tilan kvanttimekaanisen vaiheen.
Se vähentää systeemin kvanttitilojen interferenssiä, mutta ei muuta systeemin energiaa.
Tämä prosessi syntyy elastista törmäyksistä molekyylien ja metallin kidevärähtelyiden,
fononien, välillä. Toisaalta molekyylit ja fononit voivat myös törmätä epäelastisesti.

Ratkaisin Lindbladin yhtälön numeerisesti kahden molekyylin tapauksessa. Numeerisen
ratkaisun päätuloksena sain, että kun dissipaatioprosessit tapahtuvat riittävän hitaasti
verrattuna systeemin sisäiseen kytkentään, tiheysmatriisin ei-diagonaaliset alkiot ovat niin
pieniä, että ne voi jättää huomioimatta. Olettaen, että ei-diagonaali alkiot ovat pieniä,
löysin Lindbladin yhtälön stationäärisen ratkaisun, kun molekyylien lukumäärä on suuri.
Tämän tuloksen avulla huomasin, että muodostamani termi kvanttimekaanisen vaiheen
sekoittumiselle ei luo s-polarisoitunutta valoa.

Löysin Lindbladin yhtälöön lisättävän termin, jonka seurauksena systeemi lähettää
s-polarisoitunutta valoa. Esitän, että tällainen termi voi olla korjaustermi, joka johtuu
fotonikentän äärellisestä korrelaatiopituudesta. Tämä korjaus näyttäisi siltä kuin molekyylit
olisivat kytkeytyneet erillisiin fotonikenttiin. Ratkaisin analyyttisesti Lindbladin yhtälön,
joka sisälsi korjaustermin, mutta ei vaiheen sekoittumista. Ratkaisun avulla sain suhteen
eri polarisaatiosuuntiin lähetetylle valolle, tämä suhde riippuu mm. SPP:n polarisaatiosta
ja dissipaatioprosessien nopeuksista.

Työssa saatujen tulosten avulla voidaan jatkaa SPP–molekyyli-systeemin teoreettisen
mallin kehitystä. Tärkeää on ymmärtää tarkemmin lisätyn korjaustermi mikroskooppinen
perusta, jotta mallia voi testata kokeellisesti, sekä pohtia muita mahdollisia Lindblad
yhtälön termejä.
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1 Introduction
Free electrons in a metal form a plasma that can sustain plasmons, collective oscillations
of the electrons. These plasmons can interact with electromagnetic radiation in the surface
of the metal to form surface plasmon polaritons (SPP).

Surface plasmon polaritons have many properties that allow applications that cannot
be achieved with free electromagnetic radiation. They can be confined near the surface
into space that is smaller than the wave length of free electromagnetic radiation with the
same frequency. The electric field associated with the surface plasmon polaritons decays
rapidly when going further from the surface and the electric field is enhanced adjacent to
the surface.[1] The sub-wavelength property allows the use of SPPs in nano-optics. SPPs
can also be used in other applications, e.g. spectroscopy and biosensing.[2] A classical
introduction to the properties of surface plasmon polaritons is presented in section 2 of
this thesis.

Due to the field enhancement and other properties of the surface plasmon polaritons
it is possible to achieve strong coupling between them and quantum emitters. These
quantum emitters can be for example dye molecules or quantum dots. Strong coupling
between surface plasmon polaritons and quantum emitters has been measured even at
room temperature.[1, 2]

In the strong coupling limit the energy levels of the system are changed so that new
hybrid states are formed. The change in the energy levels is proportional to the strength
of the coupling. The new levels correspond to hybrid superpositions of the original states.
Strong coupling between cavity photons and quantum emitters has been used to modify
chemical reactions[3]. Strong coupling also has applications in quantum-information
technology. In section 3 we use the Jaynes-Cummings model for the surface plasmon
polariton–molecule system to describe the strong coupling regime.

The strongly coupled system of surface plasmon polaritons and molecules emits light into
their environment. Recently the polarization of this light has been studied experimentally.[4]
The SPPs can only be p-polarized so it is not surprising that some of the emitted light
is p-polarized. However it was also observed that some of the emitted light may be
s-polarized.

To our knowledge currently no theoretical model exists that would explain the observation
of s-polarized light. One goal of this thesis is to find a theoretical description that would
allow for the emission of s-polarized light. Because emission of light into the environment
plays an important role we need to employ the concepts of open quantum systems. We use
the Markovian quantum master equation in the Lindblad form. It is a quantum mechanical
equivalent to the classical master equation. Open quantum systems and the Lindblad
equation are discussed in section 4.

The Lindblad equation approach enables us to consider different dissipation mechanisms.
Firstly the quantum emitters may decay into the ground state by emitting photons,
similarly the surface plasmon polaritons may decay by emitting photons. The system may
also be pumped by excitation into the hybrid state.

1
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The molecular quantum emitters have vibrational states that can have elastic or inelastic
collisions with phonons. Elastic collisions do not change the average energy but instead
lead to a loss of interference in the system. This is called dephasing. Inelastic collisions
may cause decay of the quantum emitters.

Microscopic models for the strong coupling system involving dissipation have been
recently discussed by e.g. Gonzáles-Tudela et. al. [5] and Pino et. al. [6]. Gonzáles-Tudela
et. al. construct a Lindblad equation involving decay of both the quantum emitters and
the surface plasmons and dephasing. Pino et. al. consider a strong coupling system of
molecules and an electromagnetic cavity mode. They develop a detailed description of
dephasing in the strong coupling system.

In section 5 we construct a Lindblad equation including the above mentioned dissipation
mechanisms by using similar arguments to [5, 6]. We put special emphasis on obtaining
the polarization dependence. In section 6 we solve the Lindblad equation numerically in
the case of only 2 emitters. The numerical solution gives us tools that aid simplifying the
analytical solution in section 7.

We are able to obtain the stationary solution to the Lindblad equation in the N →∞
limit. We find that pure dephasing is not enough to allow for the emission of s-polarized
light. We thus add a correction term that leads to the emission of s-polarized light. The
correction term is related to the fact that the correlation length of the external photon field
is actually not infinite. However further discussion is needed to explain the microscopical
origin of the term.

This thesis includes many figures. For most of the figures the only option was to use
different colours to distinguish different parts. It is advisable to consult the online version
for full colour versions of the figures.



2 Surface plasmon polaritons
Surface plasmon polaritons (SPP) are electromagnetic excitations that are confined into
the interface between a metal and a dielectric material. They form when light interacts
with the free electrons in the surface of the metal to form hybrid modes. In addition to
SPPs there are other surface modes that form from the light-matter interaction, some
such modes are surface phonon polaritons and surface exciton polaritons.

This work focuses on propagating SPPs that are free to propagate along the surface.
There are also so called localized SPPs that are confined in space such as the surface of a
nano-sphere.[2]

Surface plasmon polaritons have a near-field character, meaning that they are confined to
sub-wavelength dimensions. The near-field character allows their use to probe nano-objects
smaller than free-space wavelength of light. It also allows for strong coupling between
SPPs and molecules. This coupling depends on the distance between the molecule and the
SPP.[2]

This section provides a short introduction to the classical theory of SPPs. We begin
with the source-free Maxwell equations and use the Drude model for the free surface
electrons. We derive the dispersion relation, discuss the spatial confinement and briefly
look at different excitation methods.

2.1 Classical derivation
Surface plasmon polaritons can be found as a solution to the source-free Maxwell equations
in the metal–dielectric interface (see figure 2.1). The metal and the dielectric are chosen to
be non-magnetic, thus the magnetic permeability for both media is µ = 1. The Maxwell
equations are now

∇× ~H = ε

c

∂ ~E

∂t
∇× ~E = −1

c

∂ ~H

∂t
(2.1)

∇ · ~H = 0 ∇ · (ε ~E) = 0, (2.2)

x

z

dielectric, e.g. air

metal, e.g. silver

Figure 2.1: Metal dielectric interface.
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where ε is the permittivity (or dielectric constant) of the medium. The interface sets
boundary conditions for the electric and magnetic fields: [7]
• The component of the electric field parallel to the interface must be continuous, i.e.

n̂md × ( ~Em − ~Ed) = 0, (2.3)

where m denotes the metal, d denotes the dielectric and n̂md is the normal vector to
the interface.
• The component of the magnetic field normal to the interface must be continuous, i.e.

n̂md · ( ~Hm − ~Hd) = 0. (2.4)

• The component of the field ε ~E normal to the interface must be continuous, i.e.

n̂md · (εm ~Em − εd ~Ed) = 0. (2.5)

• The component of the field µ ~H (or just ~H, since µ = 1), parallel to the interface
must be continuous, i.e.

n̂md × ( ~Hm − ~Hd) = 0. (2.6)
An electromagnetic field propagating near a surface can be divided into s- and p-polarized

components. For s-polarized electromagnetic fields the electric field is perpendicular to
the plane of incidence while for p-polarization the electric field is parallel to the plane of
incidence. If the surface is in the z = 0 plane and the wave propagates into x direction,
the plane of incidence is the xz-plane and the s-polarized electromagnetic field can be
written as

~Ed = (0, Ed,y, 0) exp[i(kd,xx− kd,zz − ωt)]
~Hd = (Hd,x, 0, Hd,z) exp[i(kd,xx− kd,zz − ωt)]

(2.7)

in the dielectric (z > 0) and

~Em = (0, Em,y, 0) exp[i(km,xx+ km,zz − ωt)]
~Hm = (Hm,x, 0, Hm,z) exp[i(km,xx+ km,zz − ωt)]

(2.8)

in the metal (z < 0).
From the boundary conditions we get

Em,y = Ed,y = Ey and Hm,x = Hd,x = Hx. (2.9)

From the second equation in (2.1) and the boundary conditions we get

Ey(km,z + kd,z) = 0. (2.10)

Because we are looking for solutions that are confined near the surface the fields must
decay in the z-direction. That means that km,z and kd,z must both have negative imaginary
parts. Equation (2.10) is now satisfied only if Ey = 0 and thus SPPs that are confined
near the surface cannot be s-polarized.[1]
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For p-polarized electromagnetic waves the electric and magnetic fields are
~Ed = (Ed,x, 0, Ed,z) exp[i(kd,xx− kd,zz − ωt)]
~Hd = (0, Hd,y, 0) exp[i(kd,xx− kd,zz − ωt)]

(2.11)

in the dielectric and
~Em = (Em,x, 0, Em,z) exp[i(km,xx+ km,zz − ωt)]
~Hm = (0, Hm,y, 0) exp[i(km,xx+ km,zz − ωt)]

(2.12)

in the metal.

2.2 Dispersion relation

ω/ωp

ck/ωp

ω = ck

ω = ωp/
√

2

Figure 2.2: Dispersion relation for SPPs using the Drude model without losses. Plotted for εd = 1, which
corresponds to air. With small k the dispersion relation follows the light-line ω = ck. For larger values of
k the frequency approaches ω = ωp/

√
2.

Using the relevant boundary conditions,

Em,x = Ed,x, Bm,y = Bd,y and εmEm,z = εdEd,z, (2.13)

we can derive the dispersion relation for the in-plane wave vector

kx = km,x = kd,x = ω

c

√
εmεd
εm + εd

. (2.14)

We also find that the perpendicular component of the wave vector is given by

k2
m/d,z = εm/d

ω2

c2 − k
2
x. (2.15)

As a simple model for the electrical properties of the metal we use the Drude model. In
the Drude model the permittivity of the metal is

εm(ω) = 1−
ω2
p

ω2 + iγω
, (2.16)
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where ωp is the plasma frequency and γ is the damping rate due to losses. For metals the
real part of the dielectric constant is negative so the Drude model in this form is valid
for metals only in the low-frequency limit ω < ωp. The Drude model is very simple and
does not account for e.g. nonlocal effects, where the permittivity can also depend on the
wave vector. It is however sufficient at demonstrating some of the important properties of
SPPs.[1]

Using the Drude model without losses for the metal and εd = 1, corresponding to air,
for the dielectric, the dispersion relation becomes

ω2 = c2k2
x +

ω2
p

2 ±
√
c4k4

x +
ω4
p

4 . (2.17)

For the upper branch (plus sign), if ckx >> ωp, the dispersion relation would be ω+ = 2ckx,
which corresponds to light moving at twice the speed of light. Because of that the upper
branch solution is disregarded as unphysical.

The lower branch of the dispersion relation is plotted in figure 2.2. With small kx the
SPP mode behaves like free light for which ω = ck. For large values of kx the frequency
asymptotically approaches the value ωp/

√
1 + εd. The dispersion relation is always below

the light-line meaning that free light cannot couple to SPPs directly.[2]

2.3 Confinement
Because of the losses, caused by the imaginary part of kx, the electric and magnetic fields
decay in the propagation direction. The propagation length, or the distance that the SPP
propagates before decaying by a factor of 1/e, is

1/Lx = Im(kx) = ω

c
Im
√

εmεd
εm + εd

. (2.18)

The decay is due to ohmic losses into the medium and the energy carried by the SPP is
converted into heat.

Air

Metal

1/k x

20 40
k x(1/μm)0

0.01

0.02

0.03

Lz(μm)

Figure 2.3: Skin depth as a function of the wave vector kx. The plasma energy of the metal is ωp = 15 eV.
The permittivity of the dielectric is set to εd = 1, corresponding to air.
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In addition to decay in the propagation direction the fields decay quickly in the metal
and the dielectric. The decay length in the media, or the skin depth, is given by

1/Lm/d = Im(km/d,z) = ω

c
Im

√√√√ ε2m/d
εm + εd

. (2.19)

Equation (2.15) shows that Im(km/d,z) 6= 0 even without the losses γ, if k2
x >

ω2

c2
εm/d.

Figure 2.3 shows the skin depth as a function of the wave vector kx. In the metal the SPP
is confined to near the surface for all wave vectors. In the dielectric only SPPs with large
wave vectors are confined. For large wave vectors the skin depth in both the metal and
the dielectric approaches 1/kx. Due to the exponential decay the electric field is strongest
adjacent to the surface.

2.4 Excitation
The dispersion relation for the SPP in figure 2.2 is always below the light-line which means
that the frequency and wave vector of the SPP can never directly match those of free light.
Because of that SPPs cannot directly couple to free light. Instead the electromagnetic
field of the light has to be manipulated somehow so that it matches the wave vector and
momentum of the SPP. This can be achieved for example with prisms or by grating.

When light is incident to a wall of a prism from the inside, if the angle of incidence is
greater than the angle of reflection, the light is fully reflected. This reflection however
does not happen entirely inside the prism. The field penetrates the surface and decays
exponentially outside the prism. With a suitable refractive index the wave vector of the
light can be adjusted to match the SPP. In the Otto geometry [8] the prism is placed
within a wavelength of the metal surface where the light may now couple to the surface
plasmons. Another configuration used is the Kretschmann geometry [8], where the prism
is placed on top of a thin metal film and SPPs form on the bottom surface of the metal.

Surface roughness can cause the light to diffract in a way that changes the wave vector
to match the surface plasmon mode. For example periodic grating of the surface can be
used to excite SPPs.[8]



3 Strong coupling
The interaction between two systems can be roughly divided into two regimes, the weak-
and the strong-coupling regime. Weak coupling is the limit of perturbation theory. In the
weak-coupling regime damping is much stronger than the coupling and the effects of the
coupling on the dispersion are negligible. In the case of strong coupling the coupling is
stronger than damping and the energy level structure changes in a way that the systems
can no longer be distinguished and they form hybrid modes. Above the SPP dispersion
relation shows hints of strong coupling since the SPP mode had very different energy
(frequency) compared to the light mode and the plasmon mode.

The change in the energy structure due to strong coupling can be used for example
to modify chemical reactions and reaction rates. Other applications involve devices in
quantum information technology.[2]

This section focuses on the strong coupling of a surface plasmon polariton and molecules
(modeled by a two-state system). We use the Jaynes-Cummings Hamiltonian in the low
energy limit. Important concepts of avoided crossing and vacuum Rabi splitting are
discussed in this example. For later use we define the eigenstates of the strong coupling
system.

3.1 Strong coupling of a SPP and molecules
Consider a system where a single surface plasmon polariton with frequency ωp couples
strongly to an ensemble of N molecules. The molecules are considered to be two-state
systems with transition energy ωm and transition dipole moments in arbitrary directions
n̂j.

The operator algebra of a two-state system is represented by the Pauli-matrices. If
the system has a ground state |g〉 = ( 0

1 ) and an exited state |e〉 = ( 1
0 ), the matrices

σ± = 1/2(σx ± iσy) induce transitions between the states, i.e. σ+|g〉 = |e〉, σ−|e〉 = |g〉.
Moreover the operator σ+σ− is the number operator for the excited states, i.e. σ+σ−|g〉 = 0,
σ+σ−|e〉 = |e〉.

The Hamiltonian of the coupled system is
H = Hp +Hm +HI , (3.1)

where Hp = ωpa
†a and Hm = ωm

∑
j σ+,jσ−,j. Here a(†) is the SPP annihilation (creation)

operator, that follows the bosonic commutation relations, [a, a†] = 1, [a(†), a(†)] = 0. The
interaction term for a quantum electric field and a two-state system can be written in the
dipole approximation [9]

HI =
∑
j

gj(a+ a†)(σ+,j + σ−,j), (3.2)

where gj are the coupling constants for the interaction. We assume that the coupling
constants depend only on the angle between the transition dipole moment of the molecule
n̂j and the polarization of the SPP ûp, so that gj = g(n̂j · ûp).

8
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In the interaction picture the interaction term is

HI(t) =
∑
j

gj(ae−iωpt + a†eiωpt)(σ+,je
−iωmt + σ−,je

−iωmt). (3.3)

If the system is close to resonance, i.e. ωp ∼ ωm, the frequency ωp + ωm is much higher
than the other frequency ωp − ωm. We can thus make the rotating wave approximation
that neglects all the terms with e±i(ωp+ωm)t. For the rotating wave approximation to be
valid the coupling g must be much smaller than ωm. If the coupling is of the order of ωm
the system is said to be in the ultrastrong coupling regime. [2]

After the rotating wave approximation the total Hamiltonian of the system is in the
Shrödinger picture

H = ωpa
†a+ ωm

∑
j

σ+,jσ−,j +
∑
j

gj(σ+,ja+ σ−,ja
†). (3.4)

This is the Jaynes-Cummings Hamiltonian with many molecules. Its spectrum can be
solved exactly [10], but we simplify the treatment by taking the low energy limit.

3.2 Eigenenergies and eigenstates

Ea

Eb

Ep = ωp

Em = ωm

δ

ωp

E

(a) Avoided crossing

Em = δ / 2

Ep = -δ / 2

Ea

Eb

δ

E

(b) Avoided crossing in a frame that rotates
with frequency ωm+ωp

2

Figure 3.1: Energy levels of the strongly coupled system. The dashed lines are the energies of the plasmon
and molecules in the uncoupled system. When the coupling is turned on the system forms new eigenstates.
Far from resonance, |δ| large, the system behaves as the uncoupled system. Near resonance, |δ| small, the
energy levels change into an avoided crossing due to the strong coupling.

In the low energy limit we assume that only one molecule or SPP can be excited at a
time. The N particle system has then N + 2 possible states: the vacuum, where there is
no SPP and all N molecules are in the ground state |0〉 = |0g1 . . . gN〉, the N states where
a single molecule has been excited |j〉 = |0g1 . . . ej . . . gN〉 and the state with a single SPP
|p〉 = |1g1 . . . gN〉.

In terms of these states the Hamiltonian is

H = 0|0〉〈0|+ ωp|p〉〈p|+ ωm
N∑
j=1
|j〉〈j|+ g

N∑
j=1

(n̂j · ûp)(|j〉〈p|+ |p〉〈j|). (3.5)
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Since this Hamiltonian is (N + 2)× (N + 2) dimensional it has N + 2 eigenstates.
The first eigenstate is the vacuum state |0〉 with energy E0 = 0. There are also N − 1

eigenstates with only molecule excitations all with energy Em = ωm. These states are
superpositions of the molecule states |j〉

|m〉 =
N∑
j=1

ηmj|j〉, (3.6)

where ηmj need to be determined later. The final two states are coupled states between
the SPP and the molecules with energies

Eb/a = ωp + ωm
2 ∓ ωg

2 , (3.7)

where ωg =
√

4g2∑
j(n̂j · ûp)2 + δ2 and δ = ωm − ωp. The bonding and antibonding states

are

|b/a〉 = −δ ∓ ωg√
2ωg(ωg ± δ)

|p〉+
√

2√
ωg(ωg ± δ)

∑
j

gj|j〉 = αb/a|p〉+ βb/a
∑
j

gj|j〉. (3.8)

The coupling produces an avoided crossing in the energy levels as in figure 3.1. Far from
resonance, when |δ| is large, the coupled system behaves like the free system. However
near resonance, when |δ| is small, the coupling changes the energy levels so that they no
longer cross. The difference between the energies of the bonding and antibonding states
depends on the strength of the coupling. At resonance the splitting of the bonding and
antibonding energies is Ω = Ea(δ = 0) − Eb(δ = 0) = 2g

√∑
j(n̂j · ûp)2. One definition

for the strong coupling regime is that the system is strongly coupled when this splitting,
called vacuum Rabi splitting, can be observed experimentally.[2]

Changing into a frame that is rotating with frequency ωm+ωp
2 does not change the

eigenstates, but the new shifted eigenenergies are:

E0 = −ωm + ωp
2 , Eb/a = ∓ωg2 and Em = δ

2 . (3.9)

Figure 3.1b shows the energy levels in this frame. Since ωg =
√

4g2∑
j(n̂j · ûp) + δ2 > δ

the states are ordered so that the molecule superposition states |m〉 are always between
the hybrid bonding and antibonding states |b/a〉 in energy. Below the bonding state in
energy is the vacuum state.

3.3 Molecule superposition states
We still need to fully define the molecule superposition states |m〉. Since the eigenbasis
has to be orthonormal we have restrictions for the ηmj coefficients in equation (3.6). The
molecule states need to be orthogonal to the bonding and antibonding states

0 = 〈a|m〉 = βa
∑
j

gjηmj (3.10)
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and orthonormal to each other

δmn = 〈m|n〉 =
∑
j

η∗mjηnj. (3.11)

If the number of molecules is N there are N − 1 molecule states |m〉 and (N − 1)×N
unknown coefficients ηmj . The orthonormality conditions (3.10) and (3.11) provide 2(N−1)
independent equations for the coefficients. As the number of molecules increases so does
the number of degrees of freedom for the coefficients also. Thus we do not provide an
analytical form for the coefficients for N molecules, instead as an example we look at the
N = 2 case and for later purposes the N →∞ case.

We assumed that the molecules are arranged so that their transition dipole moments n̂j
are evenly distributed to all directions. For a finite number of molecules we assume that
the angle between the transition dipole moment of the jth molecule and the polarization
of the SPP is

n̂j · ûp = cos(θj), (3.12)

where θj = π(j−1)
N−1 .

For the N = 2 case there is only one molecule superposition eigenstate

|m1〉 = η11|j1〉+ η12|j2〉 (3.13)

and only two undefined coefficients. We also have two equations from the orthonormality
condition

g1η11 + g2η12 = g(cos(0)η11 + cos(π)η12) = 0
η∗11η11 + η∗12η12 = 1

(3.14)

and the system should be fully defined. The system of equations is satisfied by η11 = η12 =
1√
2 and the molecule superposition eigenstate is

|m1〉 = 1√
2

(|j1〉+ |j2〉). (3.15)

In the N →∞ case we can go from the discrete j sum into a continuous integral in the
spherical coordinates ∑

j

→ N

4π

∫ 2π

0
dφj

∫ π

0
dθj sin(θj). (3.16)

Now instead of discrete coefficients we are looking for functions. One choice for functions
that satisfy the orthonormality conditions are the spherical harmonics

ηmj = 1√
N
Y 0
m(θj, φj) = 1√

N

√
2m+ 1Pm(cos θj), (3.17)

where Pm(x) are the Legendre polynomials (see Appendix A for definition and properties).
Since these functions need to be orthogonal to gj = g cos θj, we cannot use the first
Legendre polynomial P1(cos θ) = cos θ. Thus we define that m takes values from the set
{0, 2, 3, . . . , N − 1}.



12

3.4 Transformation into the eigenbasis
In this section we define the transformation from the natural {|0〉, |p〉, |j〉} basis into the
eigenbasis {|0〉, |a〉, |b〉, |m〉}. Firstly in the eigenbasis the Hamiltonian can be written as

H = E0|0〉〈0|+ Em
N−1∑
n=1
|mn〉〈mn|+ Ea|a〉〈a|+ Eb|b〉〈b|. (3.18)

The original states |p〉 and |j〉 can be written in terms of the eigenstates as

|p〉 = γa|a〉+ γb|b〉 = 1
√2ωg

(
√
ωg − δ|a〉 −

√
ωg + δ|b〉)

|j〉 =
∑
h

εjh|h〉 = εj|a〉+ ξj|b〉+
∑
m

νjm|m〉,
(3.19)

where the coefficients εj,ξj and νjm are obey equations

εjαa + ξjαb = 0
(εjβa + ξjβb)gk +

∑
m

νjmηmk = δjk.
(3.20)

Multiplying the second equation in (3.20) with η∗nk, summing over k and using the
orthonormality relations we notice νjn = η∗nj . Similarly multiplying with ν∗jn and summing
over j, we find ∑j ξjν

∗
jn = 0. Multiplying with ξj and summing over j and using the results

obtained above, we get

εj =

√
ωg + δ
√2ωg

gj√∑
l g

2
l

ξj =

√
ωg − δ
√2ωg

gj√∑
l g

2
l

.

(3.21)

Plugging the coefficients into the second equation in (3.20) we obtain a useful formula for
the sum of the molecule coefficients ηmj∑

m

η∗mjηmk = δjk −
gjgk∑
l g

2
l

. (3.22)

Now the only unknowns in the eigenbasis representation are the coefficients ηmj, which
can be chosen as in section 3.3. We use this transformation in sections 6 and 7 to transform
the Lindblad equation into the energy eigenbasis.



4 Open quantum systems
Unlike often is assumed, no physical system is truly isolated or closed. Instead, there is
always some environment that the system interacts with. Often the interaction is small
enough that the environment can be neglected, but especially with quantum systems the
interaction may cause relevant phenomena in the system.

Usually in open quantum systems the environment is assumed to be some kind of
an infinite bath or reservoir. The environment can then cause stochastic effects in
the system like dissipation and dephasing. Open quantum systems are generally very
complicated because of limited knowledge of the environment. To simplify the treatment
two assumptions are usually made, the Born approximation and the Markov apprximation.

In this section we define the density operator, a very useful tool for open quantum
systems. We discuss pure and mixed states and the reduced density operator. The second
part of this section is dedicated to finding the time evolution of the reduced density
operator, or the quantum master equation of the Lindblad form.

4.1 Density matrix
Quantum systems are often described by a state vector from which one can calculate
probabilities of finding the system in a given state after a measurement. This description
is enough if we know with certainty that the system was in a given state at a given time.
However if the system is stochastic, i.e. there are a number of possible states the system
could randomly choose from at a given time, the state vector is no longer sufficient in
describing the system.

A more suitable tool is the density operator. If the system is in state |ψi〉 (i = 1, 2, 3 . . .)
with probability pi (pi ∈ [0, 1],∑i pi = 1) we define the density operator as [11]

ρ =
∑
i

pi|ψi〉〈ψi|. (4.1)

Note that the states |ψi〉 do not have to be orthonormal. If we choose an orthonormal basis
|φn〉, the states |ψi〉 can be written as the superposition of the basis states |ψi〉 = ∑

n a
i
n|φn〉,

where ain are complex constants. In this basis the density operator can be represented by
a matrix with matrix elements

〈φn|ρ|φm〉 =
∑
i

pia
i
na

i∗
m. (4.2)

It is not hard to prove that the density operator,
1. is Hermitian, i.e. ρ† = ρ,
2. has unit trace, i.e. Tr(ρ) = 1,
3. and is positive semi-definite, i.e. 〈φ|ρ|φ〉 ≥ 0 for all states |φ〉.

Because of these properties the density matrix is diagonizable and has real, non-negative
eigenvalues. Due to the trace condition the eigenvalues sum to one. Thus the eigenvalues

13
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are probabilities. The density operator offers a practical way of calculating expectation
values of operators

〈A〉 =
∑
i

pi〈ψi|A|ψi〉 =
∑
nm

∑
i

pia
i
na

i∗
m〈φm|A|φn〉

=
∑
n

〈φn|ρ
∑
m

|φm〉〈φm|A|φn〉 =
∑
n

〈φn|ρA|φn〉

= Tr(ρA),

(4.3)

where we have made the transformation into the orthonormal basis and used equation (4.2).

4.1.1 Pure and mixed states

A density operator that is described by only one state vector is called pure and the system
is in a pure state. A system with a pure density operator [11]

ρ = |ψ〉〈ψ| (4.4)
is with certainty in the state |ψ〉. In any representation a system is in a pure state if and
only if ρ2 = ρ. From this it follows that for a pure density operator Tr(ρ2) = 1.

The traditional state vector representation is sufficient for systems that stay in a pure
state. A statistical ensemble of pure states is a mixed state. Mixed states cannot be
represented by only one state vector and they arise from the lack of knowledge of the
exact state of the system. For example for a thermal bath in equilibrium, the probability
of finding the system in state |ψi〉 with energy Ei is pi = e−βEi/Z, and the density matrix
is [12]

ρ =
∑
i

e−βEi

Z
|ψi〉〈ψi| =

e−βH

Z
, (4.5)

where H is the Hamiltonian operator (H|ψi〉 = Ei|ψi〉) and Z = Tr(e−βH). The density
matrix is pure only at β →∞, because we do not consider the exact state of all of the
particles in the bath. Instead we chose to look at the bath as a statistical ensemble and
disregarded information about the exact microstates. The density matrix (4.5) is more
correctly a reduced density matrix that we discuss in section 4.1.3.

4.1.2 Time-evolution in the interaction picture

If the Hamiltonian operator of the system in Schrödinger picture is H = H0 + V , then the
time evolution of the states in the interaction picture is given by (h̄ = 1)

i
d
dt |ψi(t)〉 = V (t)|ψi(t)〉, (4.6)

where V (t) = eiH0tV e−iH0t. Using equation (4.6) the time-evolution of the density matrix
becomes

i
dρ(t)

dt =
∑
i

pi

(
ih̄

d
dt |ψi(t)〉〈ψi(t)|+ |ψi(t)〉ih̄

d
dt〈ψi(t)|

)
=
∑
i

pi (V (t)|ψi(t)〉〈ψi(t)| − |ψi(t)〉〈ψi(t)|V (t))

= V (t)ρ(t)− ρ(t)V (t) = [V (t), ρ(t)].

(4.7)
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Equation (4.7) is known as the Liouville-von Neumann equation in the interaction pic-
ture. [11] The solution is ρ(t) = UI(t, t0)ρ(t0)U †I (t, t0), where the time-evolution operator
is

UI(t, t0) = T exp
[
i
∫ t

t0
dt′V (t′)

]
. (4.8)

Here T is the time ordering operator. The time-evolution operator is unitary so the
Liouville-von Neumann equation describes the unitary time evolution of the density
matrix.

4.1.3 Reduced density operator

Open quantum systems compose of two parts, the interesting subsystem and the envi-
ronment. Because no system is truly isolated, the environment needs to be taken into
consideration. Since it is not practical to consider the whole universe, the exact state of
the environment is left unkown. That produces stochastic elements into the subsystem
and makes the density matrix approach useful.

Consider two coupled systems A and B. Generally the total system is in a coupled
mixed state ρAB. If the two systems are independent the density matrix factorizes into
ρAB = ρA ⊗ ρB. If system B is the environment that we cannot measure directly we have
to average out the exact microstate information of the system B. This can be done by
taking a partial trace over the system B

ρA = TrB(ρAB) =
∑
i

〈ψBi |ρAB|ψBi 〉, (4.9)

where ρA is the reduced density operator operating in the subsystem A and the states |ψBi 〉
are states in the subsystem B. Unless the systems are independent and pure the reduced
density operator represents a mixed state.[11]

The reduced density operator follows the three rules for density operators listed above.
However it generally does not follow the Liouville-von Neumann equation. In other words
the time evolution of a reduced density matrix is not unitary. The elimination of the
environment causes the subsystem to behave irreversibly due to the statistical way we
treat the environment. Next we will find a model for the time evolution of the reduced
density matrix.

4.2 Lindblad equation
In this section we derive the general form of the Lindblad equation. We mostly follow
the simple outline presented by Brasil et al. [13] with some generalizations. A little more
rigorous and thorough derivation using projection operators can be found in [14].

Consider a system S connected to a reservoir R. The Hamiltonian of the total system is

HT = HS ⊗ 1R + 1S ⊗HR + V, (4.10)

where HS operates in the subspace containing the system, HR operates only in the reservoir
and V is an interaction between the reservoir and the system.
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In the interaction picture the interaction term is (h̄ = 1)

V (t) = ei(HS+HR)tV e−i(HS+HR)t (4.11)

and the density matrix of the total system is

ρT (t) = ei(HS+HR)tρSR(t)e−i(HS+HR)t, (4.12)

where ρSR(t) is the density matrix of the complete system in the Schrödinger picture. The
time evolution of the total density matrix is given by the Liouville-von Neumann equation
in the interaction picture

dρT (t)
dt = −i[V (t), ρT (t)]. (4.13)

By integrating equation (4.13) we get

ρT (t) = ρT (0)− i
∫ t

0
dt′[V (t′), ρT (t′)]. (4.14)

Equation (4.14) can be substituted into the right hand side of equation (4.13)

dρT
dt = −i[V (t), ρT (0)]− [V (t),

∫ t

0
dt′[V (t′), ρT (t′)]]. (4.15)

Since we are not interested in the reservoir we would like to find an equation for the
reduced density matrix of the subsystem, which is found by taking the partial trace over
the reservoir ρS(t) = TrR{ρT (t)}. Taking the trace we get

dρS
dt = −iTrR[V (t), ρT (0)]− TrR[V (t),

∫ t

0
dt′[V (t′), ρT (t′)]. (4.16)

So far we have not made any approximations. In the next section we make the Born and
Markov approximations to obtain a Markovian quantum master equation in the weak
interaction limit.

4.2.1 Approximations

Let us assume that at time t = 0 the system and the reservoir were independent and
uncorrelated, so that ρT (0) = ρS(0)⊗ ρR(0). This means that we choose to turn on the
interaction later than t = 0. Now the first term on the right hand side of equation (4.16)
disappears since the initial time t = 0 can always be chosen so that TrR[V (t)ρR(0)] =
〈V (t)〉R = 0.

Next we make the Born approximation. We assume that the interaction between
the system and the reservoir is weak enough that the correlation between them can be
disregarded in the second order. Thus at time t later than 0 the total density matrix is
ρT (t) ≈ ρS(t)⊗ ρR(t). We also assume that the relaxation time τR of the reservoir is small
enough for it to effectively stay in a stationary state during the observation timescale t,
i.e. ρR(t) ≈ ρR, when t� τR.[11, 13]
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In equilibrium the reservoir density operator is of the form of equation (4.5). Since the
density operator of the reservoir is (approximately) stationary it must (approximately)
commute with the reservoir Hamiltonian, [HR, ρR] = 0.

In equation (4.16) ρS(t) depends on all the earlier times ρS(t′). We can, however, assume
that the state of the system at time t depends only on the state just before t, which makes
the system Markovian. The Markovian approximation is satisfied when the time scale at
which the system evolves, τS, is much larger than the observation time scale t.

With these approximations we can in equation (4.16) replace ρS(t′) with ρS(t) and
change the integration variable from t′ to τ = t− t′. We can also assume that a long time
has passed after the initial time t = 0 and take the upper limit to infinity

dρS
dt = −

∫ ∞
0

dτTrR[VSR(t), [VSR(t− τ), ρS(t)⊗ ρR]]. (4.17)

Equation (4.17) is called the Born-Markov equation after the two approximations made.
Next we make some more simplifying assumptions about the system and the reservoir.

4.2.2 System-reservoir interaction

Let us now consider the case where the interaction is of the form

VSR =
∑
k

(S†k ⊗Rk + Sk ⊗R†k), (4.18)

where Sk operates only in the subspace of the system and Rk operates in the reservoir
subsystem. This kind of interactions are relevant for example when an excitation decays
into the reservoir or the reservoir can excite the system. In that case Sk contains the
annihilation operators for the system and Rk contains the annihilation operators for the
reservoir.

To simplify the calculation we assume that HS = ∑
k εkS

†
kSk, so that [HS, Sk] = −εkSk.

Now Sk in the interaction picture is

Sk(t) = eiHStSke
−iHSt = Ske

−iεkt. (4.19)

We also take the reservoir to be a bath of bosons for which HR = ∑
kµ ωRkµa

†
kµakµ, where

akµ and a†kµ are the annihilation and creation operators in the reservoir. For the boson
bath Rk = ∑

µ gkµakµ, where gkµ are the coupling constants for the system-bath interaction.
In the interaction picture

Rk(t) = eiHRtRke
−iHRt =

∑
µ

gkµakµe
−iωRkµt. (4.20)
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Inserting the interaction into equation (4.17) gives

dρS
dt = −

∑
kl

[
(SkS†l ρS(t)− S†l ρS(t)Sk)ei(εk−εl)t

∫ ∞
0

dτeiεlτTrR(R†k(t)Rl(t− τ)ρR)

+ (ρS(t)S†l Sk − SkρS(t)S†l )ei(εk−εl)t
∫ ∞

0
dτeiεlτTrR(Rl(t− τ)R†k(t)ρR)

+ (S†kSlρS(t)− SlρS(t)S†k)e−i(εk−εl)t
∫ ∞

0
dτe−iεlτTrR(Rk(t)R†l (t− τ)ρR)

+ (ρS(t)SlS†k − S
†
kρS(t)Sl)e−i(εk−εl)t

∫ ∞
0

dτe−iεlτTrR(R†l (t− τ)Rk(t)ρR)
]
.

(4.21)

The terms containing TrR(Rk(t)Rl(t′)ρR) and TrR(R†k(t)R
†
l (t′)ρR) have been omitted in

equation (4.21) because they have an oscillatory time dependence e±i(εk+εl)t. In the long
time limit these terms vanish. There are two ways of getting nonzero contributions from
the other terms. If the system states are not degenerate, i.e., εk 6= εl, only the terms where
k = l remain. If there are degenerate states in the system, some of the k 6= l terms remain.
In general we can limit the l sum to only the states where l = k or εl = εk, denoted by∑
k=l,εl=εk .
Since the reservoir is in a stationary state the reservoir correlators do not depend on

time t, i.e., TrR(Rk(t)R†l (t− t1)ρR) = TrR(Rk(t1)R†l (0)ρR). We define reservoir correlators
in the frequency space as the Fourier transform of the time correlators

Fkl(ω) =
∫

dt1eiωt1TrR(Rk(0)R†l (t1)ρR)

F ∗kl(ω) =
∫

dt1e−iωt1TrR(Rl(t1)R†k(0)ρR)

Gkl(ω) =
∫

dt1eiωt1TrR(R†l (t1)Rk(0)ρR)

G∗kl(ω) =
∫

dt1e−iωt1TrR(R†k(0)Rl(t1)ρR).

(4.22)

In the stationary state the correlators have the symmetry Fkl(ω) = F ∗lk(ω) and Gkl(ω) =
G∗lk(ω).

In terms of these correlators equation (4.21) becomes

dρS
dt =−

∑
k=l,εl=εk

∫ dω
2π

∫ ∞
0

dτe−iωτ

[
Fkl(ω)e−iεlτ (S†kSlρS(t)− SlρS(t)S†k) + F ∗kl(−ω)eiεlτ (ρS(t)S†l Sk − SkρS(t)S†l )

+Gkl(ω)eiεlτ (SkS†l ρS(t)− S†l ρS(t)Sk) +G∗kl(−ω)e−iεlτ (ρS(t)SlS†k − S
†
kρS(t)Sl)

]
(4.23)

We now have integrals of type∫ dω
2π Fkl(ω)

∫ ∞
0

dτe−i(ω+εl)τ = 1
2Fkl(−εl)− iP

∫ dω
2π

Fkl(ω)
ω + εl

= γFkl − iξFkl
2 , (4.24)
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where P denotes the Cauchy principal value and is needed because the integral generally
does not converge.[9] Now equation (4.23) becomes

dρS
dt =

∑
k=l,εl=εk

[
γFkl(SlρS(t)S†k −

1
2{S

†
kSl, ρS(t)}) + i

ξFkl
2 [S†kSl, ρS(t)]

+γGkl(S†l ρS(t)Sk −
1
2{SkS

†
l , ρS(t)}) + i

ξGkl
2 [SkS†l , ρS(t)]

]
,

(4.25)

where γGkl = Gkl(εl) and ξGkl = 2P
∫ dω

2π
Gkl(ω)
ω−εl

.
Going back to the Schrödinger picture we get

dρS(t)
dt =− i[HS +HLS, ρS]

+
∑

k=l,εl=εk

[
γFkl(SlρSS†k −

1
2{S

†
kSl, ρS}) + γGkl(S†l ρSSk −

1
2{SkS

†
l , ρS})

]
,

(4.26)

where
HLS = −

∑
k=l,εl=εk

(
ξFkl

2 S†kSl + ξGkl
2 SkS

†
l

)
(4.27)

is the so-called Lamb shift Hamiltonian, describing a renormalization of the system
Hamiltonian due to its interaction with the bath.

Equation (4.26) is the Lindblad equation. It is a quantum mechanical analogy to the
classical master equation. To use this equation one needs to find the suitable system-
reservoir interaction, or the Lindblad operators Sk, and the rates γ associated with the
interaction.

4.2.3 Example: bosons coupled to an external boson field

A Hamiltonian for N degenerate bosons interacting with an external boson field is similar
to the Jaynes-Cummings Hamiltonian

H = Ω
∑
j

a†jaj +
∑
n

ωnb
†
nbn +

∑
n

∑
j

gnj(a†jbn + ajb
†
n), (4.28)

where aj is the annihilation operator for a boson in the observable system and bn is an
annihilation operator in the external field. The interaction term consists of annihilating a
boson either in the system or in the external field, and simultaneously creating a boson in
the other. We consider this Hamiltonian because in the case of a single boson N = 1 it
describes the SPP state coupling to an external field, and if we replace aj with σ−,j, the
Hamiltonian describes the coupling of the degenerate molecule excitation states with an
external field.

In the notation of section 4.2.2

Sj = aj, Sj(t) = aje
−iΩt (4.29)
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and
Rj =

∑
n

gnjbn, Rj(t) =
∑
n

gnjbne
−iωnt. (4.30)

This leads to simple correlators in the external field

〈b†nbm〉 = TrR(b†nbmρR) = δnmN(ωn)
〈bnb†m〉 = TrR(bnb†mρR) = δnm(N(ωn) + 1),

(4.31)

where on the second line we used the bosonic commutation relation [bn, b†m] = δnm. The
function N(ωn) = TrR(b†nbnρR) is the average of the number operator, i.e., the distribution
function. If the bath is in equilibrium N(ωn) = 1

eβωn−1 is the Bose-Einstein distribution.
Following section 4.2.2 we get

Fjk(ω) = F ∗kj(ω) =
∫

dt1eiωt1TrR(Rj(0)R†k(t1)ρR)

=
∑
n

gnjgnk(N(ωn) + 1)
∫

dt1ei(ω+ωn)t1

=
∑
n

gnjgnk(N(ωn) + 1)2πδ(ω + ωn)

(4.32)

and similarly

Gjk(ω) = G∗kj(ω) =
∫

dt1eiωt1TrR(R†j(t1)Rk(0)ρR)

=
∑
n

gnjgnkN(ωn)2πδ(ω + ωn).
(4.33)

Plugging these into equation (4.24) we get∫ dω
2π Fjk(ω)

∫ ∞
0

dτe−i(ω+Ω)τ =
∑
n

gnjgnk(N(ωn) + 1)
∫ ∞

0
dτe−i(−ωn+Ω)τ

=
∫

dωJjk(ω)(N(ω) + 1)(πδ(ω − Ω)− P i

Ω− ω )

= πgj(Ω)gk(Ω)(N(Ω) + 1)︸ ︷︷ ︸
ΓFjk/2

−i P
∫

dωgj(ω)gk(ω)
(Ω− ω) (N(ω) + 1)︸ ︷︷ ︸

ξFjk/2

,

(4.34)

where we have assumed that the states n in the external field are so dense that we can
replace the sum with an integral using the so-called spectral density Jjk(ω)∑

n

gnjgnk →
∫

dωJjk(ω). (4.35)

A similar procedure for the other three terms in equation (4.23) leads to the Lindblad
equation (in the Shrödinger picture)

dρS
dt = −i[HS, ρS] +

∑
jk

[
ΓFjk(akρSa†j −

1
2{a

†
jak, ρS}) + ΓGjk(a†kρSaj −

1
2{aja

†
k, ρS})

]
,

(4.36)
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where the Lamb-shift Hamiltonian containing the Cauchy principal value integral has
been neglected since it only causes a small renormalization of the system Hamiltonian (see
Appendix B). The decay and excitation rates are

ΓFjk = 2πJjk(Ω)(N(Ω) + 1) and ΓGjk = 2πJjk(Ω)N(Ω), (4.37)

respectively.
Equation (4.36) gives us general forms for the Lindblad terms for decay and excitation.

The second term represents decay of the system excitation into the external field, while
the last term represents the external field exciting the system.



5 Lindblad equation for the strong coupling system
In this section we construct a Lindblad equation for the SPP–molecule system. We consider
different processes that may cause dissipation in the system. First we consider decay of
the SPP excitation and molecule excitations into separate external electromagnetic fields.
To get access to a stationary solution, we consider a process where an external field causes
also excitations in the system.

In addition to the external electromagnetic field we add an external bath of phonons
that scatter off the molecules. We assume that this interaction happens individually for
each molecule i.e. the molecules are all coupled to separate baths. Elastic scattering causes
dephasing, that partially destroys interference in the system. We also consider inelastic
scattering, that causes dissipation of energy in the molecule states.

Our model for the Lindblad equation assumes that, even though there is a strong
coupling between the SPP and molecules, the interaction with the environment happens
separately, i.e., in the derivation of the Lindblad equation we neglect the strong coupling.
This is not a very good approximation, but we hope that the essential physics stays
undisturbed in this toy model.

5.1 Decay and excitation
First we consider decay and excitation in the form given by equation (4.36). We are
interested in the polarization of the light emitted by the system into the external field.
Because of that we explicitly write the polarization dependence of the coupling while
all other effects are left implicit in the coupling constant. For example the coupling
constant for the coupling of the SPP mode into the external field that has polarization
into x-direction, can be written as gpx(ω) = gp(ω)(ûp · ûx).

SPP decay

We assume that the external fields with different polarizations do not correlate, i.e. they
produce separate decay terms in the Lindblad equation. We also assume that there is
rotational symmetry between the external fields, i.e., the external field correlators between
two operators with the same polarization are the same for all the polarizations. Since the
SPP mode can only be p-polarized, it can only relax by emitting p-polarized light. These
assumptions give us the SPP decay term

LLp [ρ] = Γp
[
(ûp · ûz)2(LpρL†p −

1
2{L

†
pLp, ρ}) + (ûp · ûx)2(LpρL†p −

1
2{L

†
pLp, ρ})

]
, (5.1)

where Γp = πJp(Ep)(N(Ep)+1) is the SPP decay rate and L†p = |p〉〈0| creates a SPP in the
system. For energies in the optical range, ∼ 1 eV, the Bose function at room temperature
(or below) approaches zero, thus the SPP relaxation rate Γp → πJp(Ep) and the direct
excitation of SPPs can be neglected.
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Molecule decay

A decay term for the molecules in the form of equation (4.36) is

LLj [ρ] = Γm
N∑

jk=1

∑
σ=x,y,z

(n̂j · ûσ)(n̂k · ûσ)(LjρL†k −
1
2{L

†
kLj, ρ}), (5.2)

where Γm = πJm(Em) is the molecule decay rate and L†j = |j〉〈0| excites the jth molecule.
The Bose function has been neglected similarly to the SPP decay. It is useful to note that,
because of the degeneracy of the molecule states, the decay term contains cross terms
between different molecules. If the molecule states were non-degenerate, or if they coupled
to separate external baths, there would be a Kronecker delta, δjk, that would not allow for
the cross terms.

Excitation

We add pumping to the bonding hybrid state |b〉. The pumping can be included by adding
an excitation term

LL†
b
[ρ] = Γexc(L†bρLb −

1
2{LbL

†
b, ρ}), (5.3)

where L†b = |b〉〈0|. Adding the excitation term allows the system to reach a stationary
state other than the vacuum state.

5.2 Dephasing
Dephasing is a process where the external reservoir produces fluctuations in the system
without changing populations of the states or changing the average energy. These fluctua-
tions lead to a loss of interference between different states of the system. This is seen as
decay of the off-diagonal terms of the density matrix.[15]

We consider a model where phonons in an external bath scatter elastically off the
molecules. Elastic scattering does not change the average energy of the system.

The Hamiltonian describing dephasing caused by the external field affecting a single
molecule is

Hφ,j = ωmPj +
∑
n

ωnb
†
nbn +

∑
n

gnjPj(bn + b†n), (5.4)

where Pj = |j〉〈j| = L†jLj is a projection operator to the state |j〉 and thus satisfies
P 2
j = Pj = P †j . Here we have chosen to treat dephasing locally so that it affects each

molecule individually. The interaction term commutes with the system Hamiltonian ωmPj ,
so it does not cause relaxation or excitation in the system. However, it does lead to a
dephasing term in the Lindblad equation when we trace out the environment.

The dephasing Lindblad term is

LPj [ρ] = Γφ
N∑
j=1

(PjρPj −
1
2{Pj, ρ}), (5.5)
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where the dephasing rate Γφ = 2πJj(0)N(0). Since the Bose-Einstein distribution ap-
proaches infinity as the frequency goes to zero, we have to be careful with what we mean
by Jj(0)N(0). It is to be understood as the limit limω→0 Jj(ω)N(ω). Now to get a finite
dephasing rate, the spectral density, proportional to the coupling, Jj(ω) must go to zero
sufficiently fast as frequency goes to zero.[14]

We neglect the Lamb shift term

i
∑
j

∆j[Pj, ρ] = i
∑
j

P
∫

dω
g2
j (ω)
ω

(2N(ω) + 1)[Pj, ρ] (5.6)

as we expect the energy shift ∆j to be small compared to the other energies in the system.

5.3 Inelastic scattering with phonons
The same phonons that cause dephasing may also scatter inelastically, that inelastic
scattering may cause the decay of an individual molecule excitation. The Lindblad term
describing the inelastic scattering is

LL∆j [ρ] = Γ∆

N∑
j=1

∑
σ=x,y,z

(n̂j · ûσ)2(LjρL†j −
1
2{L

†
jLj, ρ}) (5.7)

where Γ∆ is the decay rate due to inelastic scattering. Since the decay of the molecule
excitations due to inelastic scattering emits phonons it does not contribute to the emission
of light.

The complete Lindblad equation with excitation into the hybrid states, SPP and molecule
decay, dephasing and inelastic scattering is

ρ̇ =i[ρ,H] + Γφ
N∑
j=1

(PjρPj −
1
2{Pj, ρ}) + Γexc(L†bρLb −

1
2{LbL

†
b, ρ})

+ Γp
[
(ûp · ûz)2(LpρL†p −

1
2{L

†
pLp, ρ}) + (ûp · ûx)2(LpρL†p −

1
2{L

†
pLp, ρ})

]

+ Γm
N∑

jk=1

∑
σ=x,y,z

(n̂j · ûσ)(n̂k · ûσ)(LjρL†k −
1
2{L

†
kLj, ρ})

+ Γ∆

N∑
j=1

∑
σ=x,y,z

(n̂j · ûσ)2(LjρL†j −
1
2{L

†
jLj, ρ}),

(5.8)

where H is the strong coupling Hamiltonian (3.5). The rest of this thesis is dedicated to
finding the solution to this Lindblad equation. In section 6 we limit the case to only few
molecules and find the numerical solution to get an understanding of the behavior of the
system. Using the observations from the numerical solution we then find an analytical
solution under some simplifying assumptions in section 7.



6 Numerical solution with few molecules
Since the Lindblad equation is a (N +2)× (N +2)-dimensional matrix differential equation
it is advisable to try to find limits where some of the matrix elements can be neglected. In
this section we discuss a numerical solution to the Lindblad equation (5.8) in a simple case
of just two molecules, N = 2, to get a better understanding of what the relevant limits
are. The two molecule case however is not big enough to show some of the properties of
the solution, so to support it we also look at the N = 4 case.

We trust that the results obtained are general enough to justify the assumptions that
are necessary for the analytical solution for a large number of molecules (N →∞) in the
next section. The rigorous proof of the validity of these assumptions is left as an open
question for further research.

In finding the analytical solution we make two assumptions:
• Because of the excitation term the system evolves into a stationary state, for which

the density matrix is independent of time ρ̇ = 0.
• If the rates of the dissipative processes are small compared to the coupling inside

the system, the off-diagonal terms of the density matrix in the eigenbasis vanish in
the stationary state.

The validity of these assumptions is supported by the numerical solution. In section 6.3
we look at the properties of the stationary solution. The second assumption is discussed
in terms of the numerical solution in section 6.2.

In addition to the two assumptions we make several observations about the numerical
solution. These observations, while interesting, may not aid us in finding the analytical
solution.

6.1 Numerical methods
We used the Wolfram Mathematica 10.4 [16] software to write the Lindblad equation in
an orthonormal eigenbasis. The eigenbasis was determined by using the Eigensystem
function, which for numerical matrices determines the eigenvalues and an eigenbasis of
independent vectors.[17] The eigenvectors were checked to be orthonormal. That was done
by first storing the eigenvectors in a matrix and checking that the conjugate transpose of
the matrix times the matrix gives a unit matrix.

We then used the DSolve [18] function to solve the 4 × 4 (or 6 × 6 in the case of 4
molecules) system of differential equations. The full code can be found in Appendix C.

The accuracy of the numerical treatment is mainly limited by two error sources, the
intrinsic accuracy of the numerical method and the precision of the numbers. We used
decimal numbers, that are stored with machine precision. The functions Eigensystem
and DSolve were able to give out results with the same machine precision. The machine
precision in Mathematica corresponds to numbers that can be expressed with 53 binary
bits.[19] Even this level of precision is much more than we actually need. In this section
we are only interested in the behaviour of the density matrix in different limits and the
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actual numbers are not that important.
The molecule dipole moments were given by

n̂j = {sin(θj) cos(φj), sin(θj) sin(φj), cos(θj)}, (6.1)

where the angles θj = π(j−1)
N−1 and φj = 2π(j−1)

N−1 were evenly distributed. The SPP polarization
was into z-direction

ûp = {0, 0, 1}. (6.2)

The molecule state energy was set to ωm = 10g. Excitation of the system was only into the
bonding hybrid state |b〉. For most of the calculations the system was initially prepared
into the bonding state |b〉, i.e. ρbb(0) was set to 1 and all other elements were 0. The
coupling constant was set to g = 1, and the units in the numerics were set accordingly so
that for example the time coordinate used is the time in SI-units divided by g, t = tSI/g.

6.2 System-environment interaction rates
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(a) Solution for very large rates Γ/g = 10.
The green line below zero represents the
ρab and ρba elements.
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(b) Solution for Γ/g = 1. The off-diagonal
elements are getting smaller.
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(c) Solution for very small rates Γ/g = 0.01.
The off-diagonal elements are so small that
they can be neglected.

Figure 6.1: Real part of the density matrix, solved from the Lindblad equation without inelastic scattering
Γ∆ = 0, with different process rates Γexc = Γp = Γm = Γφ = Γ. Coupling constant is set to g = 1
and the system is near resonance δ = 0.01. With very large process rates the solution has off-diagonal
elements (green line below zero) that do not vanish in the stationary limit. For very small process rates
the off-diagonal elements essentially vanish.
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There are several remarks to be made from the numerical solution in different limits.
We begin by looking at how changing the rates Γi of the Lindblad processes affects the
time evolution of the off-diagonal terms of the density matrix.

Figure 6.1 shows the real part of a numerical solution to the Lindblad equation with
dephasing but without the inelastic scattering, i.e. Γ∆ = 0. The coupling constant is set
to g = 1 and the system is near resonance with δ = 0.01. Note that initially, at time t = 0,
the density matrix has only one non-zero element ρbb = 1.

For large Γi the density matrix evolves in a way that creates off-diagonal terms. However
the only off-diagonal elements that are created are ρab and ρba. When Γi are much smaller
than the coupling (here Γi/g = 0.01) the off-diagonal terms get so small that they can be
neglected.

The limit Γi � g means that the interactions between the system and its surroundings
are much weaker than the strong coupling inside the system. This a reasonable assumption
in many open quantum systems and especially in our strong coupling system. The result
that the off-diagonal terms vanish in this limit is made use of below in finding the analytical
solution.

Four molecule case

The N = 2 case has only one molecule superposition state |m〉 and thus the density matrix
does not have off-diagonal elements between molecule eigenstates. In the N = 4 case,
however, there are three molecule superposition states and the density matrix can have
off-diagonal elements between the molecule eigenstates. We still need to find out how they
evolve.

Using the same parameters as above the Lindblad equation can be solved for the N = 4
case. The time evolution of the real part of the density matrix is shown in figure 6.2. It
can be easily noticed that there are now off-diagonal elements even after long time has
passed and even with small interaction rates. The off-diagonal elements that remain are
elements between the molecule superposition states. The off-diagonal elements involving
hybrid states still disappear with reducing interaction rates.

The molecule superposition states are degenerate eigenstates of the strong coupling
Hamiltonian (3.5) with energy δ/2. As discussed in section 3.3 there is some freedom
in choosing the degenerate eigenstates. Because of this freedom there is probably an
eigenbasis where the off-diagonal molecule state-molecule state elements vanish.

It is evident that the basis that was obtained with the Eigensystem function in Math-
ematica was not the best choice for the eigenbasis. The proper choice for the molecule
superposition states is an open question in the scope of this thesis. In this section we
proceed with the two-molecule case where this problem does not exist. For the analytical
solution in section 7 we use the spherical harmonics basis specified in section 3.3. We trust
that the results that we obtain still have some merit even if the molecule superposition
states may not be chosen properly.
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(a) Solution for small rates Γ/g = 0.01.
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(b) Solution for very small rates Γ/g = 10−4.

Figure 6.2: N = 4. Real part of the density matrix, solved from the Lindblad equation with dephasing,
Γexc = Γp = Γp = Γφ = Γ, Γ∆ = 0. Coupling constant is set to g = 1 and the system is near resonance
δ = 0.01. The off-diagonal molecule-molecule elements do not vanish with a smaller Γ/g ratio.

6.3 Stationary solution and the energy difference
Proceeding with the N = 2 case we look at what effect the excitation term has and how
the system evolves into the stationary solution. We also look at what happens when the
SPP and molecules are far from resonance, quantified by the energy difference δ = ωm−ωp.

Stationary solution

Due to the excitation the density matrix reaches a stationary state where the matrix
elements no longer change with time. The time it takes for the system to reach the
stationary state, the relaxation time τ , depends on the strength of the system-environment
coupling. In figure 6.1 the relaxation time is proportional to 1/Γ. Without the excitation
term the system always eventually decays into the vacuum state, see figure 6.3.

Changing the initial state of the system from |b〉 to any other state does not change
the stationary state. For example in figure 6.1c the initial state is |b〉, changing the initial
state to |ψ〉 = 1√

2(|a〉+ |b〉) (or ρ(0) = |ψ〉〈ψ| in terms of the density matrix) changes the
diagonal elements of the solution in the long-time limit (t → ∞) by ∼ ±1/t. In other
words in the long time limit the solutions with different initial states approach each other.
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Figure 6.3: Real part of the density matrix without excitation and inelastic scattering, i.e. Γexc = Γ∆ = 0,
Γp = Γm = Γφ = Γ. Without excitation the system eventually decays into the vacuum state.

Thus the stationary state does not depend on the initial state. Figure 6.4 shows the
solutions with different initial states.

The existence of a stationary state makes the system easier to solve in the case of many
molecules. Instead of solving the full matrix differential equation we can let the system
evolve into the stationary state. In the stationary state we can set ρ̇ = 0 and we are left
with just a linear system of equations.

Near and far from resonance

The difference between the energies of the molecule states and the SPP state, δ = ωm−ωp,
represents how far from resonance the system is. Figure 6.5 shows the solution to the
Lindblad equation with dephasing with different values of δ.

Increasing δ leads to decreasing the population of the antibonding state and the molecule
state. This is because with large positive values of δ the bonding state behaves like the free
SPP state, see figure 3.1. For large negative values of δ the population of the antibonding
state disappears, but the molecule state is much higher in population. This happens
because the bonding state behaves like the free molecule state with large negative δ.

The difference between the populations of the bonding state and vacuum decreases as
δ increases. Far from resonance when δ is positive the energy of the bonding state and
the vacuum state are close in energy (see Figure 3.1). In the negative side, however, the
bonding state energy is much higher than the vacuum energy and decay into vacuum is
less likely.

At resonance the bonding state is much higher in population than the antibonding state.
That is because there is excitation only into the bonding state.



30

500 1000
t

0.2

0.4

0.6

0.8

1.0

Re(ρ(t))

(a) Initial state |0〉.
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(b) Initial state |b〉.
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(c) Initial state |ψ〉 = 1
2 (|a〉 + |b〉).

The decaying off-diagonal terms are
ρab and ρba.
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(d) Initial state |m = 1〉.

Figure 6.4: Evolution of different initial states. Other parameters are as in figure 6.1c. The initial state
does not significantly change the stationary state.
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(a) Solution with large positive δ = 9.
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(b) Solution at resonance δ = 0.
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(c) Solution with large negative δ =
−9.

Figure 6.5: Real part of the density matrix, solved from the Lindblad equation with dephasing, Γexc =
Γp = Γp = Γφ = Γ,Γ∆ = 0. Far from resonance the system starts to behave more like the free SPP state
(for positive δ) or the free molecule state (for negative δ).
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6.4 Effect of dephasing and inelastic scattering
Dephasing

Above the Lindblad equation we numerically solve always has the dephasing term. Fig-
ure 6.6 shows the real part of the solution to the Lindblad equation without dephasing and
without inelastic scattering using otherwise the same parameters as figure 6.1c. Without
dephasing the only non-zero matrix elements in the stationary solution are ρ00 and ρbb.
Thus it is due to the dephasing term that the stationary solution in, for example, figure 6.4,
has non-zero elements on the whole diagonal. The stationary solution with dephasing is
a statistical mixture of all of the eigenstates, while without dephasing only the vacuum
state |0〉 and bonding state |b〉 are allowed.

The excitation of the hybrid molecule states takes energy, but the dephasing term is
not supposed to change the total energy of the system. The addition of the dephasing
term seems to violate energy conservation. This is because of the way we construct the
Lindblad equation in section 5, where we neglect the strong coupling. At the expense
of momentum conservation energy could be conserved, if we let the SPP transfer to a
different momentum.

If the initial state has off-diagonal elements, e.g. ρ(0) = |ψ〉〈ψ| = 1
2(|b〉〈b| + |a〉〈a| +

|a〉〈b| + |b〉〈a|), the off-diagonal elements decay with and without dephasing. However
dephasing causes the off-diagonal elements to decay faster. Without dephasing in figure 6.6b
the off-diagonal elements decay with the same rate as the antibonding element ρaa. With
dephasing in figure 6.4c the decay of the off-diagonal elements is faster.

In conclusion, the dephasing term allows the stationary state to be a statistical mixture
of all of the eigenstates and makes the decay of the off-diagonal terms faster.
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(a) Initial state |b〉.
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(b) Initial state |ψ〉 = 1√
2 (|a〉+ |b〉).

Figure 6.6: Real part of the solution without dephasing Γφ = 0 and without the inelastic scattering
Γ∆ = 0. Parameters are otherwise as in figure 6.1c. Without dephasing the stationary solution does not
have the antibonding or the molecule superposition states. When the initial state contains off-diagonal
elements, figure 6.6b, they decay with the same rate as the antibonding state (red line) decays.

Inelastic scattering

In the numerical solution inelastic scattering term, proportional to the inelastic decay rate
Γ∆, only changes the populations of the states in the stationary state. The change in
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population is proportional to Γ∆, the bigger the ratio between the inelastic decay rate and
the other interaction rates, the bigger an effect inelastic scattering has on the populations.
Figure 6.7 shows the real part of the solution with inelastic scattering. Inelastic scattering
does not contribute to the emission of photons from the system and to simplify the
analytical solution we neglect this term.
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(a) Large inelastic decay rate Γ∆ = 0.01 =
Γ.
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(b) Small inelastic decay rate Γ∆ = 0.001 =
0.1Γ.

Figure 6.7: Real part of the solution with inelastic scattering. Parameters are otherwise as in figure 6.1c.
Inelastic scattering raises the population of the vacuum state with the expense of the other states. The
change in population is proportional to Γ∆.



7 Analytical solution
Equipped with the observations from the numerical solution we are now able to solve the
Lindblad equation (5.8) analytically in the stationary state. We begin with the Lindblad
equation (5.8) without inelastic scattering. Then we add a correction term and observe
that it allows s-polarization in the light emitted from the system to the external field.

7.1 Dephasing Lindblad equation
We transform the Lindblad equation into the energy eigenbasis using the transformation
specified in section 3.4. In the eigenbasis the density matrix can be written as

ρ =
∑
h,h′

ρhh′|h〉〈h′|, (7.1)

where the h sums go over all eigenstates h, h′ = 0, a, b,m. The unitary term does not have
diagonal elements in the eigenbasis

i[ρ,H] =
∑
h,k

ρhk(Ek − Eh)|h〉〈k|, (7.2)

where the h and k sums go over all eigenstates h, k = 0, a, b,m. The other terms in the
Lindblad equation become

L†bρLb −
1
2{LbL

†
b, ρ} =ρ00|b〉〈b| −

1
2
∑
h

(ρ0h|0〉〈h|+ ρh0|h〉〈0|),

LpρL
†
p −

1
2{L

†
pLp, ρ} =

∑
l,l′=a,b

γ∗l γl′ρll′ |0〉〈0|

− 1
2
∑

l,l′=a,b

∑
h

(γlγ∗l′ρl′h|l〉〈h|+ γlγ
∗
l′ρhl|h〉〈l′|),

LjρL
†
k −

1
2{L

†
kLj, ρ} =

∑
h,h′

ε∗jhεkh′ρhh′|0〉〈0|

− 1
2

∑
h1,h2,h3

(ε∗jh3εkh2ρh3h1 + ε∗jh1εkh3ρh2h3)|h2〉〈h1| and

PjρPj −
1
2{Pj, ρ} =

∑
h1h2h3h4

εjh1ε
∗
jh2εjh3ε

∗
jh4ρh2h3|h1〉〈h4|

− 1
2
∑

h1h2h3

(εjh1ε
∗
jh2ρh2h3 + εjh2ε

∗
jh3ρh1h2)|h1〉〈h3|,

(7.3)

where the h sums go over all the eigenstates and the l sums sum only the bonding and
antibonding states.

33
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Using the numerical results in section 6.2 as a guideline, we use the two assumptions of
section 6. We assume that the system has had time to evolve into the stationary state
ρe = limt→∞ ρ(t), so that ρ̇e = 0. We also assume that the rates of the dissipative processes
are small compared to the strong coupling inside the system, i.e. Γi/g → 0 and that in
this limit the off-diagonal elements of the density matrix vanish in the stationary state.
With these assumptions the Lindblad equation reduces from an (N + 2)× (N + 2) system
of differential equations into a system of (N + 2) ordinary equations.

The remaining (N + 2) equations in the eigenbasis are (Γ∆ = 0)

0 = ρ̇00 =
Γpup

ωg − δ
2ωg

+ Γm
ωg + δ

2ωg
1∑
l g

2
l

N∑
jk=1

njkgjgk

 ρaa
+
Γpup

ωg + δ

2ωg
+ Γm

ωg − δ
2ωg

1∑
l g

2
l

N∑
jk=1

njkgjgk

 ρbb
+ Γm

N∑
jk=1

njk
∑
m

η∗mkηmjρmm − Γexcρ00

0 = ρ̇aa =
Γφ

(ωg + δ

2ωg

)2 ∑
j g

4
j

(∑l g
2
l )2 −

ωg + δ

2ωg

− Γpup
ωg − δ

2ωg
− Γm

ωg + δ

2ωg
1∑
l g

2
l

N∑
jk=1

njkgjgk

 ρaa
+ Γφ

∑
j g

4
j

ω2
g

∑
l g

2
l

ρbb + Γφ
ωg + δ

2ωg
1∑
l g

2
l

∑
j

g2
j

∑
m

η∗mjηmjρmm

0 = ρ̇bb =
Γφ

(ωg − δ
2ωg

)2 ∑
j g

4
j

(∑l g
2
l )2 −

ωg − δ
2ωg

− Γpup
ωg + δ

2ωg
− Γm

ωg − δ
2ωg

1∑
l g

2
l

N∑
jk=1

njkgjgk

 ρbb
+ Γφ

∑
j g

4
j

ω2
g

∑
l g

2
l

ρaa + Γφ
ωg − δ

2ωg
1∑
l g

2
l

∑
j

g2
j

∑
m

η∗mjηmjρmm + Γexcρ00

0 = ρ̇nn =Γφ
ωg + δ

2ωg
1∑
l g

2
l

N∑
j=1

g2
j η
∗
njηnjρaa + Γφ

ωg − δ
2ωg

1∑
l g

2
l

N∑
j=1

g2
j η
∗
njηnjρbb

− (Γm
N∑

jk=1
njkη

∗
njηnk + Γφ)ρnn + Γφ

N∑
j=1

η∗njηnj
∑
m

η∗mjηmjρmm.

(7.4)

Here up = (ûp · ûz)2 +(ûp · ûx)2 = 1, njk = ∑
σ=x,y,z(n̂j · ûσ)(n̂k · ûσ) and we have substituted

the basis transformation coefficients from section 3.4.
We assume in section 3.3 that the transition dipole moments of the molecules are evenly

distributed in all directions. Now if the number of molecules is large, N → ∞, we can
replace the sums over all molecules by integrals as we did in section 3.3

∑
j

→ N

4π

∫ 2π

0
dφj

∫ π

0
dθj sin(θj). (7.5)

Writing the coupling constants in terms of the angles θ and φ as gj = g(n̂j · ûp) = g cos θj
and the directions of the molecule dipole moments as n̂j = (sin θj cosφj, sin θj sinφj, cos θj)
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allows us to evaluate some of the sums in equation (7.4):

∑
j

g2
j =Ng

2

4π

∫ 2π

0
dφ
∫ π

0
dθ sin θ cos2 θ = Ng2

3∑
j

g4
j =Ng

4

4π

∫ 2π

0
dφ
∫ π

0
dθ sin θ cos4 θ = Ng4

5∑
jk

njkgjgk =N
2g2

16π2 ((
∫ 2π

0
dφ
∫ π

0
dθ sin θ cos θ sin θ cosφ)2

+ (
∫ 2π

0
dφ
∫ π

0
dθ sin θ cos θ sin θ sinφ)2

+ (
∫ 2π

0
dφ
∫ π

0
dθ sin θ cos θ cos θ)2)

=N
2g2

9 .

(7.6)

It is useful to note that here we chose the coordinate system where z′-direction is the
SPP polarization direction and y′-direction is parallel to the surface. This coordinate
system can be obtained from the natural coordinates that we use in section 2 by a rotation
in the xz-plane.

We proceed by choosing the molecule superposition states with spherical harmonics
coefficients (see section 3.3)

ηmj = 1√
N
Y 0
m(θj, φj) = 1√

N

√
2m+ 1Pm(cos θj), (7.7)

where m = 0, 2, 3, . . . , N . Using the properties of the Legendre polynomials we can
calculate almost all of the remaining sums over j:

∑
j

g2
j η
∗
mjηmj =Ng

2

4π

∫ 2π

0
dφ
∫ π

0
dθ sin θ cos2 θ

1
N

(2m+ 1)Pm(cos θ)2

= 2m2 + 2m− 1
(2m+ 3)(2m− 1)g

2 = Amg
2

∑
jk

njkη
∗
mkηmj = N2

16π2 ((
∫ 2π

0
dφ
∫ π

0
dθ sin θ sin θ sinφ 1√

N

√
2m+ 1Pm(cos θ))2

+ (
∫ 2π

0
dφ
∫ π

0
dθ sin θ sin θ cosφ 1√

N

√
2m+ 1Pm(cos θ))2

+ (
∫ 2π

0
dφ
∫ π

0
dθ sin θ cos θ 1√

N

√
2m+ 1Pm(cos θ))2

=0

(7.8)
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Substituting all the calculated sums into equation (7.4) we get

0 = ρ̇00 =
(

Γpup
ωg − δ

2ωg
+ Γm

N

3
ωg + δ

2ωg

)
ρaa +

(
Γpup

ωg + δ

2ωg
+ Γm

N

3
ωg − δ

2ωg

)
ρbb

− Γexcρ00

0 = ρ̇aa =
Γφ

 9
5N

(
ωg + δ

2ωg

)2

− ωg + δ

2ωg

− Γpup
ωg − δ

2ωg
− Γm

N

3
ωg + δ

2ωg

 ρaa
+ Γφ

9
5N

(ωg + δ)(ωg − δ)
(2ωg)2 ρbb + Γφ

3
N

ωg + δ

2ωg
∑
m

Amρmm

0 = ρ̇bb =
Γφ

 9
5N

(
ωg − δ

2ωg

)2

− ωg − δ
2ωg

− Γpup
ωg + δ

2ωg
− Γm

N

3
ωg − δ

2ωg

 ρbb
+ Γφ

9
5N

(ωg + δ)(ωg − δ)
(2ωg)2 ρaa + Γφ

3
N

ωg − δ
2ωg

∑
m

Amρmm + Γexcρ00

0 = ρ̇nn =Γφ
3
N

ωg + δ

2ωg
Anρaa + Γφ

3
N

ωg − δ
2ωg

Anρbb

− Γφρnn + Γφ
N∑
j=1

η∗njηnj
∑
m

η∗mjηmjρmm.

(7.9)

Taking a sum over all the molecule states n of the last equation in (7.9) allows us to
eliminate the sum ∑

nAnρnn from the rest of the equations. Using the orthonormality
condition (3.11) and the integrals calculated above we get

Γφ
3
N

∑
m

Amρmm = Γφ
3
N

(
ωg + δ

2ωg
ρaa + ωg − δ

2ωg
ρbb

)∑
m

Am. (7.10)

Equation (7.10) suggests that ρmm can be chosen so that they do not depend on m, so
that

ρmm = ωg + δ

2ωg
ρaa + ωg − δ

2ωg
ρbb (7.11)

for all m ∈ {0, 2, 3, . . . , N − 1}. We can calculate a value for ∑mAm by taking a sum over
m of the first equation in (7.8). Using the useful equation (3.22) we get

∑
m

Am = N

3 −
3
5 (7.12)

Equation (7.10) can be replaced into the first three equations in (7.9) to obtain

ρ00 = 1
Γexc

(
−Γpup

δ

ωg
+ Γm

N

3
δ

ωg
−

Γ2
pu

2
p

Γφ
− ΓpupΓm

Γφ
N

3
2(ω2

g + δ2)
ω2
g − δ2 + Γ2

m

Γφ
N2

9

)
ρaa

ρbb =
(

1 + Γpup
Γφ

2ωg
ωg + δ

+ Γm
Γφ

N

3
2ωg
ωg − δ

)
ρaa.

(7.13)
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These can be substituted into equation (7.11) to get

ρmm =
(

1 + Γpup
Γφ

ωg − δ
ωg + δ

+ Γm
Γφ

N

3

)
ρaa, (7.14)

for all m ∈ {0, 2, 3, . . . , N − 1}. Finally ρaa can be solved from the trace condition of the
density matrix Tr(ρ) = ρ00 + ρaa + ρbb +∑

n ρnn = 1.

7.1.1 Origin of the emitted light

The ρ̇00 element of the Lindblad equation represents how the population of the vacuum
state changes. All positive terms in the 00 element increase the population of the vacuum
state, i.e. they describe decay into the vacuum. Negative terms describe excitation from
the vacuum state and decrease the population. Since the decay into the vacuum state
happens by emitting photons we can theoretically predict which part of the emitted
photons is produced by different decay mechanisms.

Adding up the terms that come from SPP decay in the first equation in (7.9) we get
the rate at which the stationary system emits light that comes from plasmon decay

fp = Γp
(
ωg − δ

2ωg
ρaa + ωg + δ

2ωg
ρbb

)
. (7.15)

Similarly we can look at the molecule decay terms and get the rate at which the system
emits light that came from molecule decay

fm = Γm
N

3

(
ωg + δ

2ωg
ρaa + ωg − δ

2ωg
ρbb

)
. (7.16)
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Figure 7.1: The ratio between the rate at which SPP decay emits light and the molecule decay emits light
as a function of δ/

√
Ng, with different dephasing rates. The SPP decay rate is Γp = N

3 Γm, so that at
resonance the two rates are equal. Excitation is here into the bonding state |b〉. For an excitation into the
antibonding state |a〉, the curve is the same but δ → −δ.

Plugging in ρbb from equation (7.13), the ratio between the rate at which the SPP decay
emits light and the rate at which the molecule decay emits light becomes

fp
fm

=
Γp(Γp(ωg − δ)(ωg + δ) + N

3 Γm(ωg + δ)2 + Γφ(ωg − δ)(ωg + δ))
N
3 Γm(Γp(ωg − δ)2 + N

3 Γm(ωg − δ)(ωg + δ) + Γφ(ωg − δ)(ωg + δ))
. (7.17)
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At resonance the ratio is 3Γp/(NΓm). If we choose Γp = N
3 Γm, the two emission rates are

equal at resonance. Note that dephasing affects the results only outside the resonance
condition.

Figure 7.1 shows the ratio with different dephasing rates as a function of δ√
Ng

. Dephasing
broadens the area where the strong coupling is significant. For larger values of Γφ the
changes in the emission ratio are smaller. This is probably connected to the fact that in
our model dephasing causes the stationary state to have molecule superposition states, as
discussed in section 6.4.

With negative values of δ the emitted light mainly originates from molecule decay. For
positive values of δ SPP decay is dominant. This is reasonable since in the stationary
state, due to the excitation into the |b〉 state, the ρbb element is the largest. With negative
values of δ the bonding hybrid state is closer to the free molecule state while for positive
values of δ the bonding state is closer to the free SPP state.

Polarization of the emitted light

In addition to the origin of the emitted light we can look at which external field they were
emitted into. We divide the external fields into three parts according to the polarization
direction. In the coordinate system where the SPP polarization direction is in the z′
direction the system does not emit light that has a polarization vector into the x′-direction,
fx′ = 0. The rate into y-direction is also zero, fy = 0. This is because the only contribution
to those directions would come from terms involving the first two integrals of the last
equations of (7.6) and (7.8). Those integrals give zero and thus the contribution to x′-
and y′-directions is zero.

Into the z′-direction the emission rate is

fz′ =
(

Γp + Γm
N

3

)
(ρaa + ρbb). (7.18)

Since z′-direction is the SPP polarization direction, the emitted light has the same
polarization as the SPP.

This is because the only contribution to the other two directions would come from terms
involving the first two integrals of the last equations of (7.6) and (7.8). Those integrals
give zero and thus the contribution to x′- and y′-directions is zero.

In the natural coordinate system used in section 2, where x- and y-directions are parallel
to the surface and the plasmon polarization direction is in the xz-plane ûp = (sin β, 0, cos β)
the emission rates into x- and z-directions become

fx = sin2 β
(

Γp + Γm
N

3

)
(ρaa + ρbb)

fz = cos2 β
(

Γp + Γm
N

3

)
(ρaa + ρbb).

(7.19)

For s-polarized light the only component the polarization vector has is the y-component.
Since the emission rate into y-direction is zero, pure dephasing is not enough to produce
s-polarized light.
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Symmetrical excitation
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Figure 7.2: Symmetrical excitation case. The ratio between the rate at which SPP decay emits light and
the molecule decay emits light as a function of δ/

√
Ng, with different dephasing rates. The SPP decay

rate is Γp = NΓm.

So far we have only considered excitation into the bonding hybrid state |b〉. We can
however modify the model slightly to get a model for excitation symmetrically into both of
the hybrid states. Symmetrically here means that half of the photons excite the bonding
state and half excite the antibonding state. The only thing we need to do is change the
excitation term in the third equation in (7.9) into 1

2Γexcρ00 and add the same term into
the second equation.

With the symmetrical excitation the ρbb element in terms of ρaa becomes

ρsym
bb =

Γp
2 (ωg − δ) + Γm

2
N
3 (ωg + δ) + Γφ(ωg − δ)(ωg + δ)

Γp
2 (ωg + δ) + Γm

2
N
3 (ωg − δ) + Γφ(ωg − δ)(ωg + δ)

ρaa. (7.20)

Now the ratio between the rate of SPP emissions and the rate of molecule emissions
becomes in the symmetrical excitation case

f sym
p

f sym
m

=
Γp(Γp(ω2

g + δ2) + N
3 Γm(ω2

g − δ2) + Γφ(ω2
g − δ2))

N
3 Γm(Γp(ω2

g − δ2) + N
3 Γm(ω2

g + δ2) + Γφ(ω2
g − δ2))

. (7.21)

At resonance the ratio is again 3Γp/(NΓm). However if we now choose Γp = N
3 Γm

the two emission rates are equal even far from resonance. Thus we choose Γp = NΓm.
Figure 7.2 shows the ratio between the emission rates with different dephasing rates.
Because of the symmetrical excitation the ratio is now symmetric with respect to δ. With
large values of |δ| the emission ratio saturates to lim|δ|→∞ fp/fm = 9. Again increasing the
dephasing rate broadens the area in which the coupling is relevant.
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7.2 Finding the s-polarization
As discussed in section 7.1.1 pure dephasing alone is not enough to produce emission of
s-polarized light. In this section we add a term that allows the emission of s-polarized
light.

In section 4.2.3 we construct a decay term for the molecules assuming that they are all
coupled to a common external field. In that construction we assume that the correlation
length of the photons is infinite so that they can interact with all molecules at the same
time. If, however, the correlation length of the photons is finite compared to the correlation
length of the molecules, as a first correction we get a term that effectively couples the
molecules into separate external fields. This term is the same as the term for the inelastic
scattering with phonons, except now the bath is the external photon field and thus the
decay rate is different

Lj[ρ] = Γj
N∑
k=1

∑
σ=x,y,z

(n̂k · ûσ)2(LkρL†k −
1
2{L

†
kLk, ρ}). (7.22)

To simplify the calculation we now disregard dephasing. Adding the correction term
leads to the following equations in the stationary state (symmetrical excitation):

0 = ρ̇00 =Γj
∑
m

ρmm − Γexcρ00 +
(

Γpup
ωg − δ

2ωg
+ Γm

N

3
ωg + δ

2ωg
+ Γj

ωg + δ

2ωg

)
ρaa

+
(

Γpup
ωg + δ

2ωg
+ Γm

N

3
ωg − δ

2ωg
+ Γj

ωg − δ
2ωg

)
ρbb

0 = ρ̇aa =−
(

Γpup
ωg − δ

2ωg
+ Γm

N

3
ωg + δ

2ωg
+ Γj

ωg + δ

2ωg

)
ρaa + Γexc

2 ρ00

0 = ρ̇bb =−
(

Γpup
ωg + δ

2ωg
+ Γm

N

3
ωg − δ

2ωg
+ Γj

ωg − δ
2ωg

)
ρbb + Γexc

2 ρ00

0 = ρ̇nn =Γjρnn.

(7.23)

These equations can be easily solved to obtain

ρ00 = 2
Γexc

(
Γpup

ωg − δ
2ωg

+ Γm
N

3
ωg + δ

2ωg
+ Γj

ωg + δ

2ωg

)
ρaa

ρbb =
Γp(ωg − δ) + ΓmN

3 (ωg + δ) + Γj(ωg + δ)
Γp(ωg + δ) + ΓmN

3 (ωg − δ) + Γj(ωg − δ)
ρaa

ρnn =0.

(7.24)

Again ρaa can be obtained from the trace condition Tr(ρ) = ρ00 + ρaa + ρbb +∑
n ρnn = 1.

Similarly to section 7.1.1 we can look at the polarization of the emitted light. In the
natural coordinate system of section 2 the emission rates to the external fields with different
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polarizations are

fx =
[
sin2 βΓp

ωg − δ
2ωg

+ sin2 βΓm
ωg + δ

2ωg
+ Γj

(3
5 sin2 β + 1

5 cos2 β
)
ωg + δ

2ωg

]
ρaa

+
[
sin2 βΓp

ωg + δ

2ωg
+ sin2 βΓm

ωg − δ
2ωg

+ Γj
(3

5 sin2 β + 1
5 cos2 β

)
ωg − δ

2ωg

]
ρbb

+ Γj
1
2
∑
m

(1− Am)ρmm

fy =Γj
1
5
ωg + δ

2ωg
ρaa + Γj

1
5
ωg − δ

2ωg
ρbb + Γj

1
2
∑
m

(1− Am)ρmm

fz =
[
cos2 βΓp

ωg − δ
2ωg

+ cos2 βΓm
ωg + δ

2ωg
+ Γj

(1
5 sin2 β + 3

5 cos2 β
)
ωg + δ

2ωg

]
ρaa

+
[
cos2 βΓp

ωg + δ

2ωg
+ cos2 βΓm

ωg − δ
2ωg

+ Γj
(1

5 sin2 β + 3
5 cos2 β

)
ωg − δ

2ωg

]
ρbb

+ Γj
∑
m

Amρmm.

(7.25)

Now due to the correction term some of the light is emitted with polarization into the
y-direction, i.e. some of the light is s-polarized.

N Γm 5N Γm 10N Γm
Γ j

0.1

0.2

0.3

0.4

fy /fx

Figure 7.3: Symmetrical excitation case. The ratio between the rate at which light is emitted with
polarization into y-direction and with polarization into x-direction as a function of Γj at resonance (δ = 0).
The SPP decay rate is Γp = NΓm/3, the SPP polarization angle is β = π/3 and N = 1 000 000.

At resonance (δ = 0), the ratio between the rates at which light is emitted with
polarization into y-direction and with polarization into x-direction is

fy
fx

(δ = 0) = Γj
sin2 β(5Γp + 5ΓmN

3 + 3Γj) + cos2 βΓj
. (7.26)

Figure 7.3 shows the ratio as a function of Γj. When Γj is small compared to the other
two rates Γp and ΓmN

3 , the ratio behaves almost linearly. As Γj approaches infinity the
ratio asymptotically approaches the value

fy
fx

(δ = 0,Γj →∞) = 1
2 sin2 β + 1 . (7.27)
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In the symmetrical excitation case the ratio between the different polarizations decreases
as the system leaves resonance. Figure 7.4 shows the ratio as a function of δ

g
√
N
.
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Figure 7.4: Symmetrical excitation case. The ratio between the rate at which light is emitted with
polarization into y-direction and with polarization into x-direction as a function of δ/

√
Ng, with different

Γj . The SPP decay rate is Γp = NΓm/3, the SPP polarization angle is β = π/3 and N = 1 000 000.

Excitation into the bonding hybrid state
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Figure 7.5: Excitation into the bonding hybrid state. The ratio between the rate at which light is
emitted with polarization into y-direction and with polarization into x-direction as a function of δ/

√
Ng,

with different Γj . The SPP decay rate is Γp = NΓm/3, the SPP polarization angle is β = π/3 and
N = 1 000 000. For excitation into the antibondind state |a〉 the figure is the same except δ → −δ.

If we only excite the bonding hybrid state |b〉 the ρaa element vanishes in the stationary
state and

ρasym
00 = 1

Γexc

(
Γpup

ωg + δ

2ωg
+ Γm

N

3
ωg − δ

2ωg
+ Γj

ωg − δ
2ωg

)
ρbb. (7.28)

Now the ratio between the different polarizations becomes

f asym
y

f asym
x

= Γj(ωg − δ)
sin2 β[5Γp(ωg + δ) + 5ΓmN

3 (ωg − δ) + 3Γj(ωg − δ)] + cos2 βΓj(ωg − δ)
. (7.29)
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At resonance the ratio in the asymmetric excitation case is the same as in the symmetrical
excitation case. Outside of resonance, however, the behaviour is different.

Figure 7.5 shows the ratio as a function of δ
g
√
n
. For negative values of δ the bonding

state behaves like the free molecule states. The molecule states are the origin of the
emitted light with polarization into y-direction so it is expected that the ratio for large
negative values of δ. For positive values of δ the bonding state behaves less like the free
molecule states and more like the SPP state and the system no longer emits light with
polarization into y-direction.

The addition of the correction term due to the finite correlation length of the external
photon field allows for the emission of s-polarized light. Since the ratio of the emission
rates of s-polarized light and the other polarizations is quite small, if Γj is smaller than
the other process rates Γp and ΓmN

3 , it is possible that the correction term is too small to
explain all of the s-polarized light of the experiments. Because of that, further discussion
is needed to clarify the microscopical origin of the term and to obtain an analytical formula
for the rate Γj.



8 Conclusions
Here we provide a summary of the results and discuss ideas for future research on the
topic.

We constructed a Lindblad equation for the strongly coupled surface plasmon polariton-
molecule system. The Lindblad equation included decay of both the SPP excitation and
molecule excitations into external photon fields. For the molecules we included scattering
with phonons, inelastic scattering lead to dephasing and inelastic scattering added decay
of the molecule excitations. We also added a pumping term to get access to a stationary
state. The result is equation (5.8).

We then solved the differential equation numerically in the case of two molecules. The
main result of the numerical treatment was that the off-diagonal elements of the stationary
density matrix vanish in the eigenbasis when the rates of the dissipation processes are
small compared to the coupling inside the system. This was discussed in section 6.2.
However, in the case of four molecules we saw that the off-diagonal elements between the
molecule superposition states did not vanish in the stationary state. This we attributed to
the choice of the molecule superposition eigenstates.

Using the assumption that the off-diagonal elements of the density matrix vanish we
proceeded to analytically find the stationary solution of the Lindblad equation. We
simplified the treatment by neglecting inelastic scattering with phonons. The main goal of
this thesis was to find a dissipation process that would allow for the emission of s-polarized
light from the system. In section 7.1 we found that dephasing alone is not enough to create
emission of s-polarized light. The light that is emitted from the system with dephasing
has the same polarization direction as the SPP.

We were able to find a Lindblad term, equation (7.22) that allows for the emission of
s-polarized light. We argued that such a term may arise if we take the correlation length of
the external photon field to be finite compared to the correlation length of the molecules.
The correction due to the finite correlation length would look like the molecules were
coupled to individual external fields.

In section 7.2 we solved the Lindblad equation that includes the correction term but not
dephasing. As a result we found that the ratio between s-polarized light and light with
polarization into the x-direction increases as the rate Γj in the correction term is increased,
figure 7.3. For large values of Γj the ratio saturates to the value of equation (7.27).

There are three major areas where our treatment could be improved. Firstly when
constructing the Lindblad equation we neglected the strong coupling. That makes the
construction simple but ultimately wrong. We also assumed that the dissipation processes
happen individually. Including the strong coupling and considering the cross terms
between the different processes would increase the accuracy of the model and possibly add
interesting physics in the cross terms.

Secondly we are not sure that we have chosen the correct molecule superposition
eigenstates. We assumed that the off-diagonal elements of the stationary density matrix
vanish in the eigenbasis. However, as we saw in the numerical solution for four molecules
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the off-diagonal elements between the molecule superposition states did not vanish. To
make sure that our assumption is right the molecule superposition eigenstates have to be
chosen correctly. This may already be the case for the spherical harmonics basis used in
the analytical solution but we have not checked it.

Finally further discussion is needed on the microscopical origin of the correction
term (7.22). For experimental testing of our results the process needs to be under-
stood in more detail and an analytical equation for the rate Γj is needed. Even tough the
correction term allowed the emission of s-polarized light it may be that the term is too
small to explain all of the experimental results. In the future other Lindblad terms should
also be considered.



Appendix A Spherical harmonics
Spherical harmonics are a solution to the angular part of Laplace’s equation in spherical
coordinates

∇ΩY (Ω) + l(l + 1)Y (Ω) = 0. (A.1)
They are defined as

Y m
l (θ, φ) =

√√√√2l + 1
4π

(l −m)!
(l +m)!P

m
l (cos θ)eimφ, (A.2)

where Pm
l (cos θ) are the associated Legendre polynomials. The spherical harmonics are

normalized according to∫ 2π

0
dφ
∫ π

0
dθ sin θY m

l (θ, φ)Y m′

l′ (θ, φ) = δll′δmm′ . (A.3)

We need only the functions with m = 0 and thus we only need the Legendre polynomials
with m = 0. They are a solution to the Legendre’s differential equation

d
dx

[
(1− x2) d

dxPl(x)
]

+ l(l + 1)Pl(x) = 0. (A.4)

Legendre polynomials can be defined recursively, the first two polynomials are P0(x) = 1
and P1 = x and the rest satisfy

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1. (A.5)

They are orthogonal and normalized according to∫ 1

−1
dxPk(x)Pl(x) = 2

2l + 1δlk. (A.6)

Using the orthogonality we have∫ 1

−1
dx xPl(x) =

∫ 1

−1
dxP1(x)Pl(x) = 0 (A.7)

for all l ∈ {0, 2, 3 . . . }. Another integral we need can be calculated using the recursion
relation∫ 1

−1
dx x2Pl(x)2 =

∫ 1

−1
dx 1

(2l + 1)2 ((l + 1)Pl+1(x) + lPl−1(x))2

= (l + 1)2

(2l + 1)2

∫ 1

−1
dxPl+1(x)2 + n2

(2n+ 1)2

∫ 1

−1
dxPl−1(x)2

+ 2l(l + 1)
(2l + 1)2

∫ 1

−1
dxPl+1(x)Pl−1(x)

= 2(2l2 + 2l − 1)
(2l + 3)(2l + 1)(2l − 1)

(A.8)
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Appendix B Lamb-shift part
Here we go through the details of the Lamb shift in section 4.2.3. The Lamb shift part
can be written according to equation (4.27) as

[HLS, ρ] = −
∑

k=l,εl=εk

(
ξFkl

2 [a†kal, ρ] + ξGkl
2 [aka†l , ρ]

)
, (B.1)

where

ξFkl = 2P
∫

dωgk(ω)gl(ω)
(Ω− ω) (N(ω) + 1)

ξGkl = 2P
∫

dωgk(ω)gl(ω)
(Ω− ω) N(ω).

(B.2)

Using the commutation relation [ak, a†l ] = δkl, plugging in the coefficients ξFkl and ξGkl
and changing the summation indices in the second term gives

[HLS, ρ] =−
∑
k,l

(
P
∫

dωgk(ω)gl(ω)
(Ω− ω) (N(ω) + 1)[a†kal, ρ]

+P
∫

dωgk(ω)gl(ω)
(Ω− ω) N(ω)([δkl, ρ]− [a†kal, ρ])

)

=−
∑
k,l

(
P
∫

dωgk(ω)gl(ω)
(Ω− ω) [a†kal, ρ]

)

=−
∑
k,l

∆kl[a†kal, ρ],

(B.3)

where ∆lk = P
∫

dω gk(ω)gl(ω)
(Ω−ω) and the Lamb shift HamiltonianHLS = ∑

kl ∆lka
†
kal commutes

with the system Hamiltonian Hs = Ω∑j a
†
jaj.

The energy shift ∆lk depends on the spectral density Jlk(ω) = gl(ω)gk(ω). One example
of a spectral density is the Lorentz (or Cauchy) distribution

Jlk(ω) = δlk
Iγ2

(ω − Ω)2 + γ2 , (B.4)

where I is the height of the peak of the distribution and γ is the width of the peak. For
the Lorentz distribution the energy shift vanishes.
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Appendix C Mathematica code for the numerical so-
lution

This code defines the parameters and Hamiltonian for the strong coupling system. The
code also solves the eigenbasis of the Hamiltonian and the Lindblad terms are written in
the eigenbasis. Then the Lindblad equation is solved with different dissipation processes.
ClearAll["Global‘*"];
Nm = 4;
g = 1;
a = 0.01;
\[CapitalGamma]exc = a; \[CapitalGamma]p = a; \[CapitalGamma]m = a;
\[CapitalGamma]\[Phi] = a; \[CapitalGamma]j = a;
(*Polar angles of the molecules’ polarizations*)
\[Theta]vec = Array[Function[j, (j - 1)*\[Pi]/(Nm - 1)], Nm];
(*Azimuth angles of the molecules’ polarizations*)
\[Phi]vec = Array[Function[j, (j - 1)*2*\[Pi]/(Nm - 1)], Nm];
(*Plasmon polarization angle*)
\[Beta] = 0;
G = Array[Function[j, g*Cos[\[Theta]vec[[j]]]], Nm];
\[Delta] = 0.01;
\[Omega] = 10;

(*Polarization vectors*)
u = IdentityMatrix[3]; (*x,y,z-direction vectors*)
up = {Sin[\[Beta]], 0, Cos[\[Beta]]}; (*Plasmon polarization*)
n = Array[Function[j,

{Sin[\[Theta]vec[[j]]]*Cos[\[Phi]vec[[j]]],
Sin[\[Theta]vec[[j]]]*Sin[\[Phi]vec[[j]]],
Cos[\[Theta]vec[[j]]]} ], Nm]; (*Molecule polarizations*)

(*Hamiltonian in the natural basis*)
H0 = ConstantArray[0, {Nm + 2, Nm + 2}];
H0[[1, 1]] = -\[Omega] + \[Delta]/2;
H0[[3 ;; Nm + 2, 2]] = G;
H0[[2, 3 ;; Nm + 2]] = G;
H0[[2, 2]] = -\[Delta]/2;
diagH0 = ConstantArray[\[Delta]/2, Nm];
H1 = ReplacePart[H0, {i_, i_} /; i >= 3 :> diagH0[[i - 2]]];

(*Basis transformation matrix*)
vec = Eigensystem[H1][[2, All]];
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\[Epsilon]mat = Array[Function[j,
vec[[j, All]]/Sqrt[vec[[j, All]].vec[[j, All]]]], Nm + 2];

(*Hamiltonian in the eigenbasis*)
H = DiagonalMatrix[Eigensystem[H1][[1, All]]];

(*Coherence term*) (*The density matrix will be inserted to X*)
Lcoh[X_?ArrayQ, t_] := I*(X.H - H.X);

(*Plasmon excitation*)(*Exitation to the |b> state*)
b = ConstantArray[0, Nm + 2];
b[[2]] = 1;
Lb = Outer[Times, \[Epsilon]mat[[All, 1]], b\[Conjugate]];
Lbt = Outer[Times, b, \[Epsilon]mat[[All, 1]]];
Lexc[X_?ArrayQ, t_] := \[CapitalGamma]exc*(Lbt.X. Lb

- 1/2*(Lb.Lbt.X + X.Lb.Lbt));

(*Plasmon relaxation*)
Lp = Outer[Times, \[Epsilon]mat[[All, 1]],

\[Epsilon]mat[[All, 2]]\[Conjugate]];
Lpt = Outer[Times, \[Epsilon]mat[[All, 2]],

\[Epsilon]mat[[All, 1]]\[Conjugate]];
Lprel[X_?ArrayQ, t_, dir_] := \[CapitalGamma]p*(up.u[[dir]])^2*

(Lp.X. Lpt - 1/2*(Lpt.Lp.X + X.Lpt.Lp));

(*Molecule relaxation*)
Lm = Array[Function[j,

Outer[Times, \[Epsilon]mat[[All, 1]],
\[Epsilon]mat[[All, j + 2]]\[Conjugate]]], Nm];

Lmt = Array[Function[j,
Outer[Times, \[Epsilon]mat[[All, j + 2]],
\[Epsilon]mat[[All, 1]]]], Nm];

l[X_?ArrayQ, t_, j_, k_] :=
l[X, t, j, k] =
Lm[[j]].X.Lmt[[k]] - 1/2*(Lmt[[k]].Lm[[j]].X + X.Lmt[[k]].Lm[[j]]);

Lmreljk[X_?ArrayQ, t_, dir_] := Array[Function[{j, k},
(n[[j]].u[[dir]])*(n[[j]].u[[dir]])*l[X, t, j, k]], {Nm, Nm}];

Lmrel[X_?ArrayQ, t_, dir_] := \[CapitalGamma]m *
Sum[Lmreljk[X, t, dir][[i, j]], {i, Nm}, {j, Nm}];

(*Dephasing*)
P = Array[Function[j,

Outer[Times, \[Epsilon]mat[[All, j + 2]],
\[Epsilon]mat[[All, j + 2]]\[Conjugate]]], Nm];
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Pdepj[X_?ArrayQ, t_, j_] := P[[j]].X.P[[j]] - 1/2*(P[[j]].X + X.P[[j]]);
Pdep[X_?ArrayQ, t_] := \[CapitalGamma]\[Phi]*Sum[Pdepj[X, t, j],

{j, Nm}];

(*Inelastic scattering*)
ljj[X_?ArrayQ, t_, dir_] := Array[Function[j,

(n[[j]].u[[dir]])*(n[[j]].u[[dir]])*l[X, t, j, j]], Nm];
Lj[X_?ArrayQ, t_, dir_] := \[CapitalGamma]j*

Sum[Lmreljk[X, t, dir][[i, i]], {i, Nm}];

(*Solutions to the Lindblad equations are found with the DSolve function*)

(*Only relaxation and excitation*)
Clear[\[Rho]matp, \[Rho], funcp, \[Rho]0]; (*Pdep=0,Lj=0*)
funcp[X_?ArrayQ, t_] :=

Lcoh[X, t] + Lprel[X, t, 1] + Lprel[X, t, 3] + Lmrel[X, t, 1] +
Lmrel[X, t, 2] + Lmrel[X, t, 3] + Lexc[X, t];

\[Rho]matp[t_] :=
Array[Subscript[\[Rho], #1 - Nm + 1, #2 - Nm + 1][t] &, {Nm + 2,

Nm + 2}];
\[Rho]0 = ConstantArray[0, {Nm + 2, Nm + 2}];
\[Rho]0[[2, 2]] = 1;
solp = DSolve[LogicalExpand[

D[\[Rho]matp[t], t] == funcp[\[Rho]matp[t], t] &&
\[Rho]matp[0] == \[Rho]0],

Flatten[\[Rho]matp[t]], t];

(*Relaxation, Excitation and Dephasing*)
Clear[\[Rho]mat, \[Rho], func, \[Rho]0]; (*Lj=0*)
func[X_?ArrayQ, t_] :=

Pdep[X, t] + Lcoh[X, t] + Lprel[X, t, 1] + Lprel[X, t, 3] +
Lmrel[X, t, 1] + Lmrel[X, t, 2] + Lmrel[X, t, 3] + Lexc[X, t];

\[Rho]mat[t_] :=
Array[Subscript[\[Rho], #1 - Nm + 1, #2 - Nm + 1][t] &,
{Nm + 2, Nm + 2}];

\[Rho]0 = ConstantArray[0, {Nm + 2, Nm + 2}];
\[Rho]0[[2, 2]] = 1;
sol = DSolve[LogicalExpand[

D[\[Rho]mat[t], t] == func[\[Rho]mat[t], t] &&
\[Rho]mat[0] == \[Rho]0],

Flatten[\[Rho]mat[t]], t];

(*Relaxation and Dephasing*)
Clear[\[Rho]mate, \[Rho], funce, \[Rho]0e]; (*Lj=0, Lexc =0*)
funce[X_?ArrayQ, t_] :=
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Pdep[X, t] + Lcoh[X, t] + Lprel[X, t, 1] + Lprel[X, t, 3] +
Lmrel[X, t, 1] + Lmrel[X, t, 2] + Lmrel[X, t, 3];

\[Rho]mate[t_] :=
Array[Subscript[\[Rho], #1 - Nm + 1, #2 - Nm + 1][t] &,
{Nm + 2, Nm + 2}];

\[Rho]0e = ConstantArray[0, {Nm + 2, Nm + 2}];
\[Rho]0e[[2, 2]] = 1;
sole = DSolve[LogicalExpand[

D[\[Rho]mate[t], t] == funce[\[Rho]mate[t], t] &&
\[Rho]mate[0] == \[Rho]0e],

Flatten[\[Rho]mate[t]], t];

(*Relaxation, Excitation, Dephasing and Inelastic scattering*)
Clear[\[Rho]matj, \[Rho], funcj, \[Rho]0j];
func[X_?ArrayQ, t_] :=

Pdep[X, t] + Lcoh[X, t] + Lprel[X, t, 1] + Lprel[X, t, 3] +
Lmrel[X, t, 1] + Lmrel[X, t, 2] + Lmrel[X, t, 3] + Lexc[X, t] +
Lj[X, t, 1] + Lj[X, t, 2] + Lj[X, t, 3];

\[Rho]matj[t_] :=
Array[Subscript[\[Rho], #1 - Nm + 1, #2 - Nm + 1][t] &,
{Nm + 2, Nm + 2}];

\[Rho]0j = ConstantArray[0, {Nm + 2, Nm + 2}];
\[Rho]0j[[2, 2]] = 1;
solj = DSolve[LogicalExpand[

D[\[Rho]matj[t], t] == func[\[Rho]matj[t], t] &&
\[Rho]matj[0] == \[Rho]0j],

Flatten[\[Rho]matj[t]], t];
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