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Abstract

Life courses are studied across disciplines for understanding the implications of life transitions
on different aspects of life. Life course trajectories include, e.g., family trajectories, residential
histories, and occupational careers. Trajectories embed events and transitions that may be
singular or repetitive. Links between events and choices in different life domains form an
interdependent system, often requiring joint analysis of different dimensions.

This thesis considers and compares different statistical approaches – event history analy-
sis (EHA), hidden Markov models (HMMs), and sequence analysis (SA) – in the analysis of
complex life sequence data. EHA is the traditional method for analysing the effects of time-
constant and time-varying covariates on the timing and duration of events and transitions. In
hidden Markov modelling we assume a latent or hidden level, i.e., one or more unobservable
statuses that may be constant or time-varying. Observed states are regarded as being gener-
ated by a hidden or latent Markov chain. SA is a more recent model-free data-mining type of
approach where the focus is on the comparison of whole trajectories. It is a descriptive tool,
typically used for finding and visualizing groups of individuals with similar trajectories.

These methods are described and tested with empirical analyses, e.g., to study which
types of joint family and career trajectories are typical and which atypical, to find associations
between individuals’ childhood characteristics and their future partnership trajectories, and
to compress information across various life domains into more general life stages. This thesis
also presents new software for the analysis and visualization of complex sequence data.

The three approaches provide versatile information on the phenomena of interest, as the
methods capture time in different ways. The choice of the method(s) depends on the type of
the data and the aims of the study. Applying model-free and modelling approaches or even
combining them is often beneficial as they are not substitutes but complete each other in the
analysis of life course data.
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II Helske, S., Steele, F., Kokko, K., Räikkönen E., and Eerola, M. (2015) Partnership
formation and dissolution over the life course: applying sequence analysis and event
history analysis in the study of recurrent events. Longitudinal and Life Course Studies.
6(1), 1–25. doi:http://dx.doi.org/10.14301/llcs.v6i1.290

III Helske, S. ja Helske, J. (2015) Mixture hidden Markov models for sequence data: the
seqHMM package in R. (Submitted.)

IV Helske, S., Helske, J. and Eerola, M. (2016) Analysing complex life sequence data with
hidden Markov modelling. In G. Ritschard & M. Studer (eds), Proceedings of the Inter-
national Conference on Sequence Analysis and Related Methods, Lausanne, June 8-10,
2016, pp 209–240.

The author of this dissertation has constructed data and performed all analyses in all
of the included articles. She had the main responsibility in writing Articles II–IV and the
sequence analysis part of Article I. Some of the research questions and statistical models have
been formulated in collaboration with the co-authors.

8



Contents

Abstract 5

Acknowledgements 6

List of original publications 8

1 Introduction 10
1.1 Life course context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Life sequence data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Overview on methods for categorical sequence data . . . . . . . . . . . . . . . . 11

2 Event history analysis 14

3 Sequence analysis 18
3.1 Assessing sequence dissimilarities . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Dissimilarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Analysing sequence dissimilarities . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Hidden Markov modelling 22
4.1 Hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Mixture hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Graphical illustrations for sequence data 27
5.1 Visualizing sequence data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Visualizing hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Comparison of methods 31

Summary of original publications 33

9



Chapter 1

Introduction

Longitudinal life courses are studied across disciplines – e.g., sociology, developmental psy-
chology, demography, economics, and epidemiology – for understanding the implications of
life transitions on different aspects of life. Social, physical, or environmental exposures and
choices during earlier life stages can influence, e.g., educational choices, family formation,
health, and well-being later in life.

Life course data are longitudinal in nature, but data structures vary depending on data
collection and statistical methods. An event history is a longitudinal record of the timing(s)
of one or more types of events. Time can be measured as continuous or discrete. Sequence
data may consist of individual-level time series or be collected as panel data, with continuous
or categorical observations. Sometimes the timings and durations of the states are omitted
altogether and the focus is merely on the order of the states or transitions. Transitions from
one data type into another are often possible, although not necessarily reciprocally.

This thesis considers methods for analysing categorical life sequence data with fixed time
intervals (annual or monthly observations), mainly following the social science paradigm.

1.1 Life course context

Life courses can be formally described with four concepts: trajectory, stage, event, and tran-
sition (Levy, 2005). A trajectory describes all that happens between two boundaries, e.g.
the whole lifespan from birth to death, and can be seen as “long-term patterns of stability
and change” (George, 1993). On a formal level, a trajectory is composed by a sequence of
transitions and stages (Levy, 2005). An individual’s life course is naturally composed of not
only one but multiple interdependent trajectories describing different life domains such as
education, work, family, and residence.

A life stage typically refers to a life period of relative stability between two transitions
(e.g., marriage or unemployment). A transition is a relatively short period of change from one
stage to another (e.g., transition into parenthood). Events are less clearly qualified and the
definitions also vary between scientific disciplines. They are momentary occasions that can
be singular or repetitive. Transitions are often referred to as events, but there are also events
that do not state an apparent transition (e.g., committing a crime). From a statistical point
of view, the difference between a transition and an event is often (but not always) negligible.
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1.2 Life sequence data

In social science applications, the term sequence typically refers to successions of categorical
states or events that describe a trajectory. The states come from a finite state space often
referred to as the alphabet. The order of the states must be explicit; it need not be temporal,
but usually events unfold over a period of time. Life sequences may include, e.g., family
trajectories, residential histories, and occupational careers. Links between events and choices
in different life domains form an interdependent system, often requiring joint analysis of
different dimensions. In multidimensional or multichannel life sequence data, the life course
of an individual is described with multiple parallel sequences representing the states in different
life domains. In formal notation, yitc represents the observation of individual i, i = 1, . . . , N, at
time t, t = 1, . . . , T in channel c, c = 1, . . . , C,. See Chapter 5 for illustrations of multichannel
sequence data.

The composition of sequences requires careful consideration and is dependent on, e.g.,
research questions and methods. Article II gives a more thorough discussion on the definition
of states. Joint analysis of multiple life domains poses even more challenges. With methods
focusing on whole sequences, a simple option is to combine states in different channels time
point by time point, i.e., to grow the alphabet. If the number of combined states is moderate,
this can be an informative approach. However, the number of combined states grows rapidly
as the number of channels or states grows, easily resulting in difficulties in the analysis and
visualization. Also, if data are not completely observed, combining missing and non-missing
information into one observation is usually problematic. One would have to decide whether
such observations are coded completely missing, which is simple but loses information, or
whether all possible combinations of missing and non-missing states are included, which grows
the alphabet even larger and makes interpretation more difficult.

Life course data are usually collected retrospectively, with respondents asked to recall
the timing of events of interest. Follow-up studies register repeated observations over time
and are typically regarded as producing more reliable data compared to retrospective data
collection. However, such studies can be expensive and difficult to perform. The life history
calendar (LHC; also called the event history calendar) is a data-collection tool for obtaining
reliable retrospective data about life events. The advantage of an LHC is that the order and
proximity of important transitions in multiple life domains can be studied at the same time.
It encourages respondents to incorporate temporal changes as cues in the reporting of events;
see Figure 1.1 for an illustration. The LHC approach has shown the ability to provide data of
remarkably high quality (Belli, Stafford, & Alwin, 2008). Article I discusses and demonstrates
statistical analysis of LHC data.

1.3 Overview on methods for categorical sequence data

This thesis considers three statistical methods that can be used for analysing categorical se-
quence data, namely event history analysis, sequence analysis, and hidden Markov modelling.

Traditionally, life course data have been studied with event history analysis (EHA), where
the focus is on the timing of events or transitions. Typical examples in life course settings
include the age at the first marriage, the duration of unemployment, or birth intervals of
mothers.

Sequence analysis (SA) is a more recent but steadily developing approach where the focus is
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Figure 1.1: A part of an artificial life history calendar between the ages 16–30. The individual
moved in with her first partner (C1) at the age of 20 and separated after two years. At the
age of 23 she moved in with a second partner (C2), got married to him (M2 ) the next year,
and had her first and only child at the age of 24. She went to school (SC) until starting at
the university (U) at the age of 19, graduating after three years. She had three part-time
jobs between ages 18–21, then started at a full-time job in which she stayed until the end of
the follow-up.

Marriage/cohab. Age 16 17 18 19 20 21 22 23 24 25 . . . 30
Partner(s) C1 C1 C2 M2 M2 M2
Children Age 16 17 18 19 20 21 22 23 24 25 . . . 30
Children 1 1 1
Education Age 16 17 18 19 20 21 22 23 24 25 . . . 30
Type of education SC SC SC U U U
Work Age 16 17 18 19 20 21 22 23 24 25 . . . 30
Full-time work 1 1 1 1 1 1
Part-time work 1 2 3 3
...

on complete sequences. A typical goal is to find groups of individuals with similar trajectories.
SA has become central to the life course perspective where it has been used to understand
various trajectories and crucial transitions (Gauthier, Bühlmann, & Blanchard, 2014), e.g.,
for analysing careers or partnership histories during the whole life course.

In hidden Markov models (HMMs), observed states in different life domains are regarded
as being generated by unobservable hidden or latent states. Transition probabilities between
hidden states follow the Markov property; the simplest and most common models are first
order models, where the transition to the subsequent state depends on the current state
only. The mixture hidden Markov model (MHMM) is a generalization of the simple hidden
Markov model where multiple HMMs with different parameterizations are modelled jointly
for different subpopulations.

In addition to the methods addressed in this thesis, there are also other approaches that
are suitable for categorical sequence data. Latent class analysis (LCA; e.g. Vermunt, Tran, &
Magidson, 2008) is most commonly used in cross-sectional studies but has also been applied
in various longitudinal settings for identifying subpopulations in multidimensional data. It
can be presented as a restricted variant of the MHMM where there is no change in the hidden
process within a subpopulation (i.e., one hidden state per group). LCA does not take into
account the interdependence between observations measured in different time periods; it uses
each time point as a separate variable.

Semi-parametric group-based trajectory modelling (Nagin, 1999) is another method for
finding groups of individuals with similar trajectories. The method can be used for studying
binary trajectories (as well as count data and continuous observations) but is not well suited
for categorical trajectories with more than two unordered categories.

The Markov model (MM; e.g. Vermunt et al., 2008) considers transition probabilities
between observed states. It can also be seen as a special case of the HMM without the hidden
structure (hidden states correspond to the observed states perfectly, thus sometimes also called
the manifest Markov model), or as a special case in EHA with the Markov assumption. As
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with HMMs, also the MM can be expanded to a mixture model with differing subpopulations.
The mover–stayer model (Goodman, 1961) is a well-known special case of the mixture Markov
model. Applying MMs to multichannel sequence data is not straightforward.

Markovian models have been extended and modified in numerous ways. E.g., the hierarchi-
cal HMM (Rijmen, Vansteelandt, & De Boeck, 2008) allows for hidden states and transitions
at different levels. The mixture transition distribution model (Berchtold & Raftery, 2002;
Raftery, 1985) can be used to approximate higher-order MMs. It involves a much lower num-
ber of parameters, creating models that are easier to interpret. The double chain Markov
model (DCMM; Berchtold, 1999) includes a direct relation between observed states, i.e., the
model is a combination of two Markov chains of which one is observed and the other one
hidden. The main purpose of the DCMM is the modelling of non-homogeneous time series
data, i.e., data where the transition probabilities are dependent on time.

13



Chapter 2

Event history analysis

An event history is a longitudinal record of the timing(s) of one or more types of events.
Event history analysis is a model-based probabilistic approach for the study of how individual
time-invariant and time-varying characteristics influence the timings of transitions or events.
Event history analysis is presented and discussed from various viewpoints in several books by,
e.g., Andersen and Keiding (2002), Blossfeld and Rohwer (2001), Hougaard (2012), Lee and
Wang (2003), and Mills (2011).

The term event history analysis is used primarily in social sciences, but in other fields of
application these methods go under different names. In the initial studies in biostatistics, the
event of interest was death, resulting in the term survival analysis. Other naming conventions
include, e.g., duration analysis in economics and reliability analysis in engineering.

The time before an event occurs is typically referred to as episode, spell, survival time,
risk period, or waiting time. In the simplest case, only a single event of interest occurs to each
subject. Usually we cannot observe the exact timing of the event for each subject; event times
can be censored due to, e.g., death, moving away, or the end of the follow-up. Censoring can
occur in various ways. Right-censoring is the most common type; in such case the event of
interest is not observed by the end of the follow-up.

Most processes operate in continuous time, but in practice time is measured in discrete
units. If the units are small, we can use continuous-time models, but often the exact event
times are unknown within larger time units such as years. Here the focus lies on the discrete-
time model which can be used as an approximation to a continuous-time model (Allison,
1982). An event happening “at time t” occurs during an interval [t, t+ 1). For presentations
of discrete-time event history models, see Allison (1982, 1984), Mills (2011), and Steele (2011),
among others.

A risk set is the set of individuals who are being followed in the study and “at risk” of
experiencing the event of interest at each time point. In the simplest single-event case it is
the set of individuals who have not yet experienced the event; individuals experiencing the
event are removed from the risk set. In the case of recurrent events, individuals return to the
risk set after becoming at risk again (e.g., “at risk” of a new marriage after divorce).

Failure, survival, and hazard are basic concepts in the analysis of event times. We assume
that Y is a positive random variable that represents the occurrence time of the event (such
as becoming a parent); it is recorded in discrete time points, typically time intervals, t =
1, . . . , T .1 The unconditional probability that the event occurs at time t is given by the

1The common convention in EHA is to denote the random variable with T . Due to conflicts with other
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failure function
ft = P (Y = t). (2.1)

The survival function is the probability that the event has not occurred before time t. It
is defined as

St = P (Y ≥ t). (2.2)

The hazard is the probability that an event occurs at time t given that the event has not
occurred prior to t. It can be expressed as a ratio of the failure and the survival functions:

ht = P (Y = t|Y ≥ t) =
ft
St
. (2.3)

Likewise, we can express the probability of failure at time t through the hazard and the
survival:

ft = htSt = ht

t−1∏

i=1

(1− ht). (2.4)

Suppose that at time t (or at the beginning of the interval t) the size of the risk set is Nt

and the number of events at t is dt. The general likelihood for the hazards of right-censored
data can be written

L =
T∏

t=1

hdtt (1− ht)Nt−dt . (2.5)

Cases experiencing the event contribute information on the probability of a failure (an event
happening) and censored cases only on the probability of survival.

Explanatory covariates can be included in the hazard model by conditioning not only
on the survival, but also on the covariates. For individual i with (possible time-varying)
covariates xit, the hazard is now of the form

hit = P (Yi = t|Yi ≥ t,xit). (2.6)

There are a variety of modelling possibilities available for categorical sequence data. For
binary dependent variables common choices are the logit model, the probit model, and the
complementary log-log model; the multinomial logit model can be used with more than one
state. Brown (1975) and Allison (1982) showed that such models can be estimated with
standard methods for binary data.

A general discrete-time model for the dependence of ht on time t and a vector of covariates
xit for individual i can be written (similarly to generalized linear models)

g(hit) = α(t) + β′xit, (2.7)

where g is a link function (such as the logit function); α(t) is a function of time, defining the
baseline hazard; and β are the regression coefficients related to the covariates. Typical choices
for the baseline hazard include polynomials and piecewise-constant functions. The latter are
used throughout this work, as these are simple to model and present, and typically produce
valid approximations.

conventions and to keep consistent throughout this work, here Y points to the observations and T is reserved
for the last time point.
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Cohabiting

Married

Separated

Partner died

Figure 2.1: Illustration of the competing risks event history model for the outcomes of a
cohabitational union.

Covariates are used to capture variation in the hazard between individuals. Often we do
not include all important variables, either because they are not available or because their
importance is unknown. Variability between individuals in their risk of experiencing the
event of interest that is due to unmeasured characteristics is called unmeasured heterogeneity
or frailty (Vaupel, Manton, & Stallard, 1979). The standard approach for allowing for frailty
is to include a random effect in the model:

g(hit) = α(t) + β′xit + ui. (2.8)

Now the random effect ui presents the unobserved variability between individuals, which
is typically assumed to follow the normal distribution N(0, σ2u). Another, although much
less common option to control for unobserved heterogeneity, is to use fixed-effects models
(Allison, 2009). The simple idea is to use each individual as their own control, comparing
rates at different levels of covariates. Naturally, this approach requires multiple measurements
per individual.

Most often, the basic model is not relevant in life course applications where events can be
repeatable, individuals may move between different states, or they can make choices between
competing events. Often, the interest lies in the whole history of events. The basic event
history model has been extended in several ways; many of the most important developments
are based on the counting process theory (e.g., Andersen, Borgan, Gill, & Keiding, 1993).

Competing risk models (or multiple destination models) refer to cases where subjects may
experience an event due to a number of reasons, say, ending cohabitation due to marriage,
separation, or the death of the partner (see Figure 2.1 for an illustration). There are different
techniques for the analysis of such cases. In the cause-specific model (or the latent approach),
EHA is conducted separately for each event type, while the other event types are treated as
right-censored cases.

In the competing risks model we have an initial state s0 (corresponding to cohabiting in
the example), and S absorbing states, state s, s = s1, . . . , sS corresponding to “event of type
s” (married, separated, and partner died in the example). The cause-specific hazard for event
of type s is defined

h
(s)
t = P (Y = t, event of type s|Y ≥ t). (2.9)

Competing risk models are a special case of the multistate model. Without going into
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Employed Unemployed

Out of workforce

Figure 2.2: Illustration of the multistate event history model for employment.

details here, the idea is that instead of only one transition, we study (possibly) multiple tran-
sitions between two or more states, say, employment, unemployment, and out of workforce.
Figure 2.2 illustrates a multistate model where all transitions between the employment states
are possible.
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Chapter 3

Sequence analysis

Instead of the transition-oriented EHA, in sequence analysis (SA) the focus lies on whole
trajectories. The aim is to identify patterns that account for all states of interest during the
entire observation period.

SA is a model-free data-mining type of method for the statistical analysis of sequences. It
was originally developed in bioinformatics to organize, classify, and parse protein and DNA
sequence data (see, e.g., Durbin, Eddy, Krogh, & Mitchison, 1998). SA was introduced in
social sciences in the mid-1980s by Andrew Abbott (Abbott, 1983) and since then it has
developed and spread to many disciplines. Recently, Cornwell (2015) gave a comprehensive
overview of social sequence analysis.

The idea of SA is to measure the distance or (dis)similarity between each pair of sequences
consisting of categorical states. Typical steps in SA include the following:

1. creating sequences using a finite set of states,

2. assessing the dissimilarities between sequences,

3. analysing the dissimilarities, and

4. visualizing sequence data.

The following sections focus on steps 2. and 3. Definition of states has already been dis-
cussed more thoroughly in Section 1.2 and further in Article II, and visualization of sequence
data is addressed in Chapter 5 and in Articles I and III.

3.1 Assessing sequence dissimilarities

The most crucial decision in SA concerns the definition of sequence dissimilarity. Studer and
Ritschard (2016) identified five sequence aspects that are important when assessing socially
meaningful differences in sequences (see also Billari, Fürnkranz, & Prskawetz, 2006; Settersten
& Mayer, 1997):
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1. experienced states (distinct elements in the sequence),

2. distribution of states (total time in each state),

3. timing (appearance of states),

4. duration (episode lengths), and

5. sequencing (order of states).

Aspects 1 and 2 are related to the prevalence of states while the rest are associated to
their appearance in time. The first aspect refers to the list of distinct states in a sequence.
Sequences with similar states refer to individuals with shared experiences. Accordingly, if all
states are regarded as equally dissimilar from all other states, two sequences with no common
states (e.g., studying–employed and unemployed–out of employment) are maximally dissimilar
(Dijkstra & Taris, 1995). The distribution of the states within a sequence tells about the total
time spent in each distinct state. These reveal the total exposure times to each state, e.g.,
the total years spent in education.

In the life course framework, the meaning and influence of the occurrence of a state are
typically related to age and often the interest is in the timings of transitions between states.
For instance, the transition to parenthood may have very different effects on an individual’s life
course at ages 15 and 35, as is being in or out of education at the age of 16. Episode duration,
i.e., the continuous time spent in the same state is related to the distribution of states but
allows us to differentiate between long-term and short-term exposure to, say, unemployment.

Sequencing describes the order in which states appear in a sequence; e.g., the social impli-
cations of becoming a parent have been and in many cultures still are very different depending
on whether it happened before or after marriage.

3.2 Dissimilarity measures

In practice, the (dis)similarity between a pair of sequences is assessed via a dissimilarity
measure. Many different dissimilarity measures have been proposed; they have diverse char-
acteristics and varying sensitivity to sequence aspects such as timing and sequencing. The
choice of the measure depends on which aspects are weighted.

Optimal matching (OM; Abbott & Forrest, 1986; McVicar & Anyadike-Danes, 2002) has
received the most attention so far. In OM the goal is to find the best alignment for each
pair of sequences. Their dissimilarity is computed from the operations needed for editing
or transforming one sequence into the other using insertions, deletions, and substitutions of
states. OM is a generalization of the Levenshtein distance (Levenshtein, 1966) where the
dissimilarity is the number of operations needed for the transformation. In OM, operations
can be given different costs reflecting the amount of dissimilarity between the states.

The Hamming distance (Hamming, 1950; Lesnard, 2010) can be seen as a special case of
OM where only substitutions are used; the cost of an alignment is the number of substitutions
required to change one sequence into the other. In a generalization of the Hamming distance,
different substitutions are weighted differently. Another special case, the Levenshtein II dis-
tance (Lesnard, 2010) uses only insertions and deletions; it corresponds to finding the length
of the longest common subsequence (LCS) between a pair of sequences (Kruskal & Liberman,
1983).

19



Several researchers have criticised the OM approach (e.g., Elzinga, 2003; Halpin, 2010;
Hollister, 2009; Lesnard, 2010; Levine, 2000; Wu, 2000). They have expressed concern over
arbitrary and symmetrical transformation costs, lack of sociological meaning of edit opera-
tions, and for the representation of order and timing of states. Several efforts have been made
to address these issues. Other modified “edit distances” include, e.g., time-warp edit distance
(Halpin, 2014; Marteau, 2008), localized OM (Hollister, 2009), duration-adjusted OM (Halpin,
2010), and dynamic Hamming distance (Lesnard, 2010). Some methods use OM but modify
the sequences. In the transition SA method (Biemann, 2011), sequences are constructed from
the transitions between states. Another method measures the distance between sequences of
spells (Studer & Ritschard, 2016), considering spells of different lengths as different elements.

More fundamentally different approaches that are not based on sequence alignment have
also been developed. DT coefficients (Dijkstra & Taris, 1995) rest upon common pairs of
ordered states, discarding repetitions and unshared states. Elzinga (2003) and Elzinga and
Studer (2015) have proposed methods based on counting common attributes such as the num-
ber of matching subsequences (NMS). A generalization of the NMS, the subsequence vector
representation metric (SVR; Elzinga & Studer, 2015), weights matching subsequences ac-
cording to their length and accounts for the duration of the spells. Euclidean distance and
χ2-distance have been used for finding differences in state distributions (Deville & Saporta,
1983; Grelet, 2002).

Studer and Ritschard (2016) have compared dissimilarity measures in regard to three
sequence aspects: duration, timing, and sequencing. Methods sensitive to duration include
LCS (Levenshtein II) and OM as well as Euclidean and χ2-distances. With some tuning, the
latter two can also be used when the interest is in timing. Naturally, Hamming distances are
also very sensitive to timing. Transition SA, OM of spells, and SVR metrics are useful for
finding differences in sequencing of states.

SA has also been applied in more complex settings. Multichannel SA (Gauthier, Wid-
mer, Bucher, & Notredame, 2010) and globally interdependent multiple SA (Robette, Bry, &
Lelièvre, 2015) have been proposed for the analysis of multichannel sequence data. Two-stage
OM (2SOM; Lesnard & Kan, 2011) is a method for analysing nested sequence data (e.g.,
24-hour days within 7-day weeks in time use data).

In Article I we discuss probabilistic SA which is commonly used in bioinformatics but to
our knowledge has not been applied for social sequence analysis. It can be used for assigning
substitution costs in edit distances; the cost for aligning a given pair of states is defined as an
odds ratio of two models, of which one assumes that the sequences are related and the other
that the states occur randomly.

See Aisenbrey and Fasang (2010), Robette and Bry (2012), Elzinga and Studer (2015),
and Studer and Ritschard (2016) for more detailed comparisons between different dissimilarity
criteria.

3.3 Analysing sequence dissimilarities

Regardless of the chosen dissimilarity method, the result is a matrix of pairwise dissimilarities.
Information in dissimilarities is always compressed in some way, typically with cluster analysis.
The idea is to find typologies of sequences such as typical life courses. Ward’s agglomerative
clustering method (Batagelj, 1988; Ward, 1963) is a common choice since it usually works
well with sequence dissimilarities and creates meaningful and relatively even-sized clusters
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compared to other methods (Aassve, Billari, & Piccarreta, 2007, and Article II). At each step,
the algorithm combines the two clusters (at the first step, sequences) that minimize within-
cluster discrepancy (variance for dissimilarities; Studer, Ritschard, Gabadinho, & Müller,
2011) and maximize inter-cluster discrepancy. Another useful clustering algorithm is the
partitioning around medoids (PAM; Kaufman & Rousseeuw, 2009; Studer, 2013) which seeks
to minimize the sum of distances from the medoid (an observation whose average dissimilarity
to all objects in the cluster is minimal).

Choosing the best number of clusters is not a straightforward task. Studer (2013) discusses
and compares several measures of the quality of clustering for sequence data, e.g., the pseudo-
R2 value (Studer et al., 2011) which can be interpreted as the share of the total discrepancy of
the sequences that is accounted for by the clustering (or by any covariate). Piccarreta (2015)
proposes criteria for assessing the clustering of multichannel data.

Also other methods for investigating sequence dissimilarities have been considered. Multi-
dimensional scaling (MDS; see e.g. Halpin & Chan, 1998; Piccarreta & Lior, 2010, and Article
I) is a technique for visualizing the (dis)similarity of sequences in a low-dimensional space.
The first MDS dimension (when rotated according to principal components) describes the
most distinctive characteristic of the sequences, the second the next most distinctive charac-
teristic, and so on. MDS is useful in ordering sequences meaningfully and for assessing the
quality of clustering.

Another clustering method for sequence dissimilarities is a self-organizing map (SOM,
also called a Kohonen map; Kohonen, 2001). See Massoni, Olteanu, and Rousset (2009)
and Rousset, Giret, and Grelet (2012) for applications to sequence data. The idea behind
SOM is similar to MDS: by using the dissimilarity matrix, sequences are projected on a low-
dimensional discretized representation. The result is a grid where similar sequences are in the
same or neighbouring clusters.

External information can be taken into account after clustering (e.g., as predictors in
a regression model) or during the clustering phase. Regression trees (Breiman, Friedman,
Olshen, & Stone, 1984) have been used for discovering the most significant discriminant co-
variates (Studer et al., 2011, and Article II). The idea of regression trees is to recursively
partition data into clusters using the values of a predictor. Binary splits for the values of a
variable are created so that the highest proportion of variation is explained (measured with
pseudo-R2).

Also the ANOVA-like discrepancy analysis framework (Studer et al., 2011) can be used for
studying the relationship between sequence dissimilarities and a set of covariates (a similar
approach called analysis of dissimilarity was also published by Bonetti, Piccarreta, & Salford,
2013). This approach gives information on which covariates are significant in explaining
differences between sequences, but unlike regression trees, it is not very useful in showing
what theirs effects are.
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Chapter 4

Hidden Markov modelling

Hidden Markov models (HMMs) have been widely used in economics, bioinformatics, and
engineering (see, e.g., Durbin et al., 1998; MacDonald & Zucchini, 1997; Rabiner, 1989) to
study time series or other types of single sequences. In social sciences, such models are
commonly referred to as latent Markov (chain) models (van de Pol & De Leeuw, 1986; Wiggins,
1955, 1973); typically they have been used for analysing panel data with a few measurement
points.

HMMs are strongly connected to EHA; they are generalizations of Markov models, which
in turn are special cases of event history models with the Markov assumption. The main
characteristic of the HMM is that observed sequences are regarded as being generated by an
unobservable stochastic process, a hidden (or latent) Markov chain.

In the social science framework, Vermunt, Langeheine, and Bockenholt (1999) extended
the HMM to include individual covariates and Bartolucci, Pennoni, and Francis (2007) further
developed it for multichannel observations. The basic model was generalized to the mixture
hidden Markov model (MHMM) by van de Pol and Langeheine (1990) (who called it the mixed
Markov latent class model) and further extended to include time-constant and time-varying
covariates by Vermunt et al. (2008) (who named the resulting model as the mixture latent
Markov model). In a mixture model, we assume that the data consists of latent subpopulations
with differing model structures.

Hidden Markov modelling can be applied in various longitudinal settings; for accounting
for measurement error and unobserved heterogeneity (e.g., Breen & Moisio, 2004; Pavlopoulos
& Vermunt, 2015; Poulsen, 1990; van de Pol & Langeheine, 1990; Vermunt et al., 2008), for
finding latent subpopulations (e.g., Bassi, 2014; McDonough, Worts, & Sacker, 2010; van de
Pol & Langeheine, 1990, and Article IV), for detecting true unobservable states (e.g., vari-
ous periods of the bipolar disorder in Lopez, 2008), and for compressing information across
multichannel sequences (e.g., for finding more general life stages as in Article IV).

To the best of my knowledge, there are only few applications of the (M)HMM approach to
multichannel social sequence data. Bartolucci et al. (2007) studied criminal trajectories using
HMMs with multiple binary sequences per subject. Ip et al. (2015) analysed and classified
binary profiles of food security for US farmworker households. Rijmen et al. (2008) studied
12 parallel trajectories of emotions among anorectic patients.

A few more studies propose extended or modified versions of the HMM or the MHMM.
In their study of emotions of anorectic patients, Rijmen et al. (2008) extended their analysis
to the hierarchical HMM. Zhang, Jones, Rijmen, and Ip (2010) studied children’s measure-
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ments of cognition and behaviour using trichotomized multichannel sequences. For that, they
proposed the extended multivariate discrete HMM. Crayen, Eid, Lischetzke, Courvoisier, and
Vermunt (2012) used a hierarchical mixture latent Markov model for two-channel categorical
sequences to model dynamics of mood regulation of university students during one week. The
hierarchical model had two parallel latent structures; one between the days and the other
within the days. Ip, Zhang, Rejeski, Harris, and Kritchevsky (2013) proposed the partially
ordered mixed hidden Markov model and applied it to binary disability sequences of older
adults. Lu, Pan, Zhang, Dubé, and Ip (2015) propose the reciprocal Markov model, an exten-
sion of the HMM with intertwined hidden and observed Markov chains, to analyse trajectories
of emotional and food intake statuses.

4.1 Hidden Markov model

In hidden Markov models, observations are related to a hidden process following a Markov
chain. Hidden states can only be detected through the observed sequence(s), as they generate
or “emit” observations on varying probabilities.

For simplicity, let us start with an example of one hidden state sequence z = (z1, z2, . . . , zT )
which generates one observed sequence y = (y1, y2, . . . , yT ). A discrete first-order hidden
Markov model is characterized by the following parameters:

• Initial probability vector π = {πs} of length S, where πs is the probability of starting
from the hidden state s:

πs = P (z1 = s); s ∈ {1, . . . , S}.

• Transition probability matrix A = {asr} of size S × S, where asr is the probability of
moving from the hidden state s at time t− 1 to the hidden state r at time t:

asr = P (zt = r|zt−1 = s); s, r ∈ {1, . . . , S}.

• Emission probability matrix B = {bs(m)} of size S ×M , where bs(m) is the probability
of the hidden state s emitting the observed state m:

bs(m) = P (yt = m|zt = s); s ∈ {1, . . . , S},m ∈ {1, . . . ,M}.

The observed state yt at time t is independent of all other observations and hidden states
given the current hidden state zt. The first order Markov assumption states that the hidden
state transition probability at time t only depends on the hidden state at the previous time
point t− 1:

P (zt|zt−1, . . . , z1) = P (zt|zt−1). (4.1)

The transition matrix A is thus enough for defining the model for the transitions of a first-order
Markov chain.

It is possible to extend the model to account for a longer history by using second- or
higher-order Markov chains. In homogeneous HMMs, transition probabilities asr are constant
over time. Modelling non-homogeneous HMMs is more complicated as such models need a
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zi1 zi2 zi3 ... ziT

yi11 yi21 yi31 ... yiT1

yi12 yi22 yi32 ... yiT2

Figure 4.1: Illustration of hidden and observed state sequences in a hidden Markov model
for two-channel data of individual i. The hidden state at time t is illustrated with zit inside
a circle and the observed state at time t in channel c with yitc inside a rectangle. Arrows
indicate dependencies between states.

set of transition matrices; see, e.g., Paliwal (1993) and Berchtold (1999) for extensions to
non-homogeneous models.

Let us now extend to multichannel sequence data with N individuals, T timepoints, and
C channels (naturally, the following applies for single-channel data, i.e., subjects with one
sequence only, by setting C = 1). Now zi = (zi1, zi2, . . . , ziT ) represents the hidden state
sequence for individual i, i = 1, . . . , N and yitc denotes the observation of individual i at time
t, t = 1, . . . , T in channel c, c = 1, . . . , C. Here we assume the same latent structure applies
for all channels, i.e., the hidden state zit emits the observed states yitc in all channels c.
Observations yit1, . . . , yitC are assumed conditionally independent given the hidden state zit,
i.e., P (yit|zit) = P (yit1|zit) · · ·P (yitC |zit) (see Figure 4.1 for an illustration for two-channel
data). Naturally, the assumption of conditional independence of observations across channels
is not unambiguously valid and must be evaluated in each case. In Article III we discuss
the matter with more detail. If conditional independence cannot be assumed, data must be
converted into single-channel representation – Section 1.2 already discussed issues relating to
this.

For multichannel data, instead of only one emission probability matrix B we now have
multiple matricesBc, one for each channel c, c = 1, . . . , C. The log-likelihood of the parameters
M = {π,A,B1, . . . , BC} of the HMM is written as

logL =
N∑

i=1

logP (Yi|M) , (4.2)

where Yi are the observed sequences for subject i. The probability of the observation sequence

24



of subject i given the model parameters is

P (Yi|M) =
∑

all z

P (Yi|z,M)P (z|M)

=
∑

all z

P (z1|M)P (yi1|z1,M)
T∏

t=2

P (zt|zt−1,M)P (yit|zt,M)

=
∑

all z

πz1bz1(yi11) · · · bz1(yi1C)

T∏

t=2

[
azt−1ztbzt(yit1) · · · bzt(yitC)

]
, (4.3)

where the hidden state sequences z = (z1, . . . , zT ) take all possible combinations of values
in the hidden state space {1, . . . , S} and where yit are the observations of subject i at t in
channels 1, . . . , C; πz1 is the initial probability of the hidden state at time t = 1 in sequence
z; azt−1zt is the transition probability from the hidden state at time t− 1 to the hidden state
at t; and bzt(yitc) is the probability that the hidden state of subject i at time t emits the
observed state at t in channel c.

4.2 Mixture hidden Markov model

The mixture hidden Markov model is, by definition, a mixture of simple hidden Markov
models. Each cluster (or latent class) is characterized by the parameters of the respective
submodel; transitions between submodels are not allowed.

Assume that we have a set of HMMsM = {M1, . . . ,MK}, whereMk = {πk, Ak, Bk
1 , . . . , B

k
C}

for submodels k = 1, . . . ,K. For each subject Yi, denote P (Mk) = wk as the prior probability
that the observation sequences of a subject follow the submodel Mk.

The log-likelihood of the parameters of the MHMM is of the form

logL =
N∑

i=1

logP (Yi|M)

=

N∑

i=1

log

[
K∑

k=1

P (Mk)
∑

all z

P
(
Yi|z,Mk

)
P
(
z|Mk

)]

=
N∑

i=1

log

[
K∑

k=1

wk
∑

all z

πkz1b
k
z1(yi11) · · · bkz1(yi1C)

T∏

t=2

[
akzt−1ztb

k
zt(yit1) · · · bkzt(yitC)

]]
. (4.4)

4.3 Covariates

Covariates can be added in the model to explain cluster memberships (in mixture models)
or initial and transition probabilities. Prior probabilities may be modelled in the usual way
with the multinomial distribution. For subject i with time-constant covariates xi, the prior
cluster probabilities are now of the form

P (Mk|xi) = wik =
eβkxi

1 +
∑K

l=2 e
βjxi

, (4.5)

where βk is the vector of regression coefficients related to submodel k. The first submodel is
set as the reference by fixing β1 = (0, . . . , 0)′.
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4.4 Model estimation

The log-likelihoods of (4.2) and (4.4) are efficiently calculated with the forward–backward
algorithm (Baum & Petrie, 1966; Rabiner, 1989). A common estimation method is the Baum–
Welch algorithm, i.e., the expectation–maximization (EM) algorithm in the HMM context.
Another option is to use direct numerical maximization.

Most of the estimation methods including the Baum–Welch algorithm require starting
values for model parameters – the closer the starting values are to the optimum, the faster it
is found. In order to reduce the risk of being trapped in a poor local optimum, a large number
of initial values should be tested. Simpler models with few parameters are fast to estimate;
therefore, it is possible to fit the model numerous times with varying random starting values
for finding the model with the best likelihood. When the model is large, estimation is more
time-consuming and good starting values for model parameters are useful or even essential.
Articles III and IV discuss the matter of efficient model estimation in more detail.

The most probable path of hidden states for each subject given their observations and the
model can be computed using the Viterbi algorithm (Rabiner, 1989; Viterbi, 1967), which
maximizes the probability of P (z|Yi,M). Individual hidden state paths are useful in visual-
izing complex sequence data in a more parsimonious way.
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Chapter 5

Graphical illustrations for sequence
data

Visualization is a powerful tool throughout the analysis process from the first glimpses into
the data to exploration and finally to presentation of the results. Tufte (1961) referred to
graphical excellence as to what “gives the viewer the greatest number of ideas, in the shortest
time, with the least ink, in the smallest space, and which tells the truth about data”. This
chapter discusses methods for visualizing sequence data and hidden Markov models. An
emphasis is put on the multichannel case which has been considered less in the literature so
far.

5.1 Visualizing sequence data

There are many options for graphical description of sequence data. Most of them either
represent sequences or summarize them. Sequence index plot is the most commonly used
example of the former (see an example applied to multichannel data in Figure 5.1). Such a
graph was proposed by Scherer (2001) to show the observations of each subject in the order
they appear, illustrating different states with different colours. The horizontal axis shows the
time points while individuals are represented on the vertical axis; thus, each horizontal line
shows the sequence of one individual.

When the number of subjects is moderate, sequence index plots give an accurate repre-
sentation of the data, offering an overview on the timing of transitions and on the durations
of different episodes. Sequence index plots become more complex to comprehend when the
number of individuals and states increases. Sequence analysis with clustering eases inter-
pretation by grouping similar histories together. Piccarreta and Lior (2010) suggested using
multidimensional scaling for ordering sequences more meaningfully (similar sequences close to
each other). Piccarreta (2012) proposed smoothing techniques that reduce individual noise.
Similar sequences are summarized into artificial sequences that are representative to the data.
Gabadinho, Ritschard, Müller, and Studer (2011) introduced representative sequence plots
where only a relatively small number of the most representative sequences (observed or ar-
tificial) are shown. A similar approach, relative frequency sequence plot, was introduced by
Fasang and Liao (2014). The idea is to find representative sequences (the medoids) in equal-
sized neighbourhoods to represent the relative frequencies in the data.
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Figure 5.1: Visualizing three-channel life sequenced data. State distributions of combined
observations (top) show the prevalence of (combined) life states at each time point. Sequence
index plots (bottom) show the sequence(s) for each individual; here the observations in three
life domains are plotted separately. Sequences are ordered by multidimensional scaling scores.

28



State distribution plots (also called tempograms or chronograms; Billari & Piccarreta,
2005; Widmer & Ritschard, 2009) summarize information in the whole data. Such graphs
show the change in the prevalence of states in the course of time (see an example in Figure
5.1). Again, the horizontal axis represents time (here age) but vertical axis is now a percentage
scale. These plots simplify the overall patterns but do not give information on transitions
between different states. Other summary plots include, e.g., transversal entropy plots (Billari,
2001), which describe how evenly states are distributed at a given time point, and mean time
plots (Gabadinho et al., 2011), which show the mean time spent in each state across the time
points.

Visualizing multichannel data is not a straightforward task. Section 1.2 discussed the
problems of dealing with multichannel sequences. Combining states into a single-channel
representation often works well if the alphabet is small and states at each time point are
either completely observed or completely missing. In other cases it can be preferable to
preserve the multichannel structure. In Article III we propose the so-called stacked sequence
plot where sequence data are plotted separately for each channel according to some criterion
such as the scores from multidimensional scaling. The order of the subjects is kept the
same in each plot and the plots are stacked on top of each other. Since the time axes are
horizontally aligned, comparing timing in different life domains should be relatively easy. This
approach also protects the privacy of the subjects; even though all data are shown, combining
information across channels for a single individual is difficult unless the data are very small.
State distribution plots can then be used to show information on the prevalence and timing
of combined states on a more general level.

Figure 5.1 illustrates state distributions and stacked sequence index plots for three-channel
life sequence data with monthly observations between ages 15–50. The data are a subset of the
NEPS data used in Article IV, presenting individuals with long education and later family. At
the start of the follow up, at age 15, almost all individuals are studying, single, and childless.
Around the age of 20, many are out of workforce due to, e.g., military service or voluntary
work. Many individuals form residential partnerships while studying. From the sequence
index plots we can see that most cohabit with one or more partners before marrying. Some
have children during their studies, while others first move to employment. After the age of
30, most individuals are married with children, typically employed. Some, however, stay out
of employment for years: between the ages 30–40, 15–30% of the individuals in this subset
are out of employment.

5.2 Visualizing hidden Markov models

Markovian models are often visualized as directed graphs where vertices (nodes) present states
and edges (arrows, arcs) show transition probabilities between states. In Article III, we extend
this basic graph in the hidden Markov model framework by presenting hidden states as pie
charts, with emission probabilities as slices, and by adjusting the thickness of edges according
to transition probabilities. Such graph allows for presenting a complex model in a very efficient
way, guiding the viewer to the most important aspects of the model.

Figure 5.2 illustrates a HMM with five hidden states for the data visualized in Figure
5.1. Following the common convention, hidden states are presented as vertices and transition
probabilities are shown as edges. Here, the width of the edge depends on the probability
of the transition; the most probable transitions are thus easy to detect. Vertices are drawn
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Figure 5.2: Illustrating a left-to-right hidden Markov model as a directed graph. Pies rep-
resent the hidden states, with emission probabilities as slices. Arrows illustrate transition
probabilities between the hidden states. Probabilities of starting in each state are shown
below the pies. The model is estimated for the data visualized in Figure 5.1. As indicated
by the arrows, transitions back to preceding hidden states are not allowed here. The com-
bined states show career/partnership/parenthood statuses: ST=studying, EM=employed,
UN=unemployed, EL=else; S=single, C=cohabiting, M=married, D=divorced/separated;
NC=no children, CH=has child(ren). The label “others” refers to combined states with
joint emission probabilities less than 0.05.

as pie charts where the slices represent emitted observations or – in a multichannel case –
combinations of observed states across channels. Also here, the size of the slice is proportional
to the emission probability of the observed state (or in a multichannel model, the product
of the emission probabilities across channels). For emphasizing the relevant information,
observations with small emission probabilities can be combined into one category. Initial
state probabilities are given below the respective vertices.

The graph shows the essence of the hidden states and the dynamics between them. Note
that the transition probabilities are small as the data consists of monthly observations and
typically individuals remain in one state for years. All individuals start from the first hidden
state (initial probability is 1) where they are single and childless and mostly studying. The
most likely transition from this hidden state (excluding transitions to the same state) is to
the second hidden state, where individuals are cohabiting or separated, typically studying or
working. The third hidden state represents childless marriage, mostly studying or working.
Transitions out of this hidden state are almost as probable to the fifth state as they are to the
fourth state. These both represent married parents; some move out of employment for some
time, while others continue working. On very small probabilities (less than 0.00025), some
transition to the last hidden state straight from the first or the second hidden state.
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Chapter 6

Comparison of methods

This thesis compares three approaches suitable for the analysis of categorical life sequences:
the model-free data mining method of SA and two model-based probabilistic approaches, EHA
and (M)HMMs. Articles I and II compare SA and EHA in two different life course settings –
multiple life domains and recurrent events – while Article IV discusses the usage of SA and
MHMMs. Table 6.1 extends Table 1 in Article I into a summary of the basic differences of
the three approaches discussed in this thesis.

Table 6.1: Basic differences of event history analysis (EHA), sequence analysis (SA), and
mixture hidden Markov models (MHMM)

EHA SA MHMM

Unit of analysis Event, transition Trajectory Trajectory
Basic tool Transition rate Dissimilarity

matrix
Initial, transition, and
emission probabilities

Direction of inference Prospective Retrospective Prospective
Mode of inference Conditional Unconditional Conditional
Type of inference Comparison

of rates
(Dis)similarity of
trajectories

Comparison of
probabilities

Aim of inference Individual level Population level Population &
individual level

SA is a descriptive tool for finding patterns and creating an overall picture of whole trajec-
tories. No assumptions about the data-generating mechanisms are needed. Joint analysis of
multichannel data is straightforward and SA helps in developing an intuitive understanding of
complex relationships. As shown in Articles I and II, SA is able to reveal typical and atypical
patterns in life courses.

EHA is a predictive method which requires structured hypotheses and well-defined systems
of hazard models. Analysing individual-level event histories is useful for drawing inferences
about the effects of covariates on the occurrence and timing of events of interest. In EHA
we can account for censoring and unobserved individual characteristics that affect the timing
and duration of states.

HMMs and MHMMs can be used for data of most versatile types: time series and panel
data, one or multiple subjects, independent sequences or multichannel data, continuous or
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categorical observations. The main difference to EHA is the inclusion of the latent level,
i.e., one or more unobservable statuses that may be constant (cluster memberships) or vary
in time (hidden states). MHMMs are able to reveal patterns in the population as well as
on individual level; clustering identifies groups of similar life trajectories, hidden states and
transition probabilities describe dynamics within groups, and most probable hidden state
paths give information on individual trajectories. Some of the main issues are related to the
Markov assumption; first-order models are (relatively) simple, but assuming that only the
previous state has an effect to the present may be problematic. Higher-order models can
account for a longer history but are much more complicated. When applying HMMs to life
course data, also the homogeneity assumption needs to be contemplated; is it reasonable that
the transition probabilities remain the same throughout the follow-up?

EHA is valuable when analysing a few well-specified events. When the number of states
and transitions between the states increases, joint analysis may become too complex. Hidden
Markov modelling and especially SA are easily applied for multichannel sequence data with
multiple states and various patterns of transitions between them.

Analysis of sequence data using model-based methods often suffers from long estimation
times – the larger the data and the more complex the model, the longer the time required for
estimation. Often, estimating a set of candidate models is required for finding the best model
structure, increasing the estimation time even further. Model-free SA is typically relatively
fast to apply.

External information can be used to explain differences in life courses in each of the
approaches. When applying SA, currently only time-constant covariates can be used. Time-
varying variables can only be included as additional parallel state sequences (channels). In
SA, the focus is on holistic patterns and as covariates are typically applied on the cluster level
and the choice of the clustering result is at least to some extent subjective, one should regard
the associations as suggestive and be cautious when drawing inferences on individual level.
For this purpose, analyzing individual-level event histories is a more appropriate approach.

At present, time-varying covariates are only possible in model-based analysis. Covariates
may have an effect on changes in the (observed or unobserved) status or the timing of an
event. In the MHMM framework, covariates can also be used to predict or explain whole
patterns of life courses (through cluster membership probabilities; see Article III).

The choice of the method(s) depends on the type of the data and the aims of the study.
Applying different approaches provides versatile information on the phenomena of interest, as
the methods capture time in different ways. Descriptive SA can also be used as a starting point
for modelling. In Article IV, SA was used to sort complex individual life courses into clusters.
Hidden Markov models were then used to compress information of multichannel sequences
into more general life stages and to describe the dynamics between them. In another recent
paper, Rossignon, Studer, Gauthier, and Le Goff (2016) used SA for identifying (time-varying)
typologies of childhood co-residence trajectories which were further included as covariates in
EHA to explain the probability of leaving parental home. As these examples reveal, model-
free and modelling approaches are not substitutes but complete each other in the analysis of
life sequence data.
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Summary of original publications

Article I compares sequence analysis and event history analysis in the analysis of life history
calendar data. EHA is used to estimate cumulative prediction probabilities of multiple life
events. Regarding SA, different dissimilarity metrics are explored and compared. As an
example, we study transitions to adulthood in three life domains in a Finnish cohort born in
1959 and assess the relationship between life trajectories and excess depressive symptoms in
midlife.

We find that the two approaches complement each other. Model-free SA is useful in
obtaining an overview of multichannel sequence data with multiple states and transitions,
offering means for large-scale comparative analysis across populations or cohorts. EHA re-
quires structured hypotheses; in complex settings analysis may be challenging. Time-varying
covariates and conditioning on individual-level history are only possible in EHA.

Article II presents SA and EHA approaches in the analysis of recurrent events and shows how
these methods can complement each other in an empirical analysis of co-residential partnership
histories. As a substantive question, we study how family background and childhood socio-
emotional characteristics are related to later partnership formation and stability in a Finnish
cohort born in 1959.

With SA we find eight partnership clusters that differ in the number and timing of part-
nerships. With discrete-time EHA we are able to capture a notable part of variation due to
time-invariant individual characteristics that in previous studies have been left to the unob-
served random part. We find that especially high self-control of emotions during childhood is
associated with the probability of partnership transitions in adulthood, e.g., a lower risk of
dissolution. High social activity in childhood is related to men’s tendency to form first and
subsequent partnerships faster.

Article III introduces the R package seqHMM for the analysis of hidden Markov models
(HMMs) and mixture hidden Markov models (MHMMs) for categorical sequence data. We
formulate the HMM for multichannel sequences and extend it to the mixture model with or
without external covariates. In seqHMM, we provide functions for estimation and inference
of the HMM and the MHMM, as well as some special cases such as latent class models and
Markov models. The package provides several alternatives for efficient and flexible model
estimation and supports fast parallel computation. We also introduce new approaches and
easy-to-use tools for visualizing multichannel sequence data and hidden Markov models.

Article IV illustrates the comparative nature of SA and (M)HMMs in an empirical analysis
of large life sequence data from a German cohort born in 1955–1959. We study two differ-
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ent approaches for analysing clustered life sequence data with sequence analysis and hidden
Markov models. In the first approach we use SA clusters as fixed and estimated HMMs sep-
arately for each group. States found with SA are used as suggestions for hidden states in the
HMM. In the second approach we treat SA clusters as suggestive and used them as a starting
point for the estimation of MHMMs. Analyses are conducted with the seqHMM package.

Model estimation with complex sequence data turns out to be challenging due to compu-
tational issues. Here, the second approach with undecided numbers and contents of hidden
states and clusters turns our to be unfeasible. With the first approach we end up in eight
clusters which describe life trajectories that differ by the timing and occurrence of career and
family states. We find that in the HMM framework, information in life sequence data can be
compressed into hidden states describing different life stages and clusters representing general
patterns in life courses. Hidden states are able to capture general life stages that include not
only rather stable episodes but also life stages characterized by relatively rapid change.
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Statistical analysis of life history calendar data

Mervi Eerola
∗
and Satu Helske

†

Abstract

The life history calendar is a data-collection tool for obtaining reliable retrospective data about

life events. To illustrate the analysis of such data, we compare the model-based probabilistic

event history analysis and the model-free data mining method, sequence analysis. In event his-

tory analysis, we estimate instead of transition hazards the cumulative prediction probabilities

of life events in the entire trajectory. In sequence analysis, we compare several dissimilarity

metrics and contrast data-driven and user-de�ned substitution costs. As an example, we study

young adults' transition to adulthood as a sequence of events in three life domains. The events

de�ne the multistate event history model and the parallel life domains in multidimensional se-

quence analysis. The relationship between life trajectories and excess depressive symptoms in

middle-age is further studied by their joint prediction in the multistate model and by regress-

ing the symptom scores on individual-speci�c cluster indices. The two approaches complement

each other in life course analysis; sequence analysis can e�ectively �nd typical and atypical life

patterns while event history analysis is needed for causal inquiries.

Keywords: Distance-based data; Life course analysis, Life history calendar; Multidimensional

sequence analysis; Multistate model; Prediction probability

1 Introduction

Follow-up studies, which register prospective events in time, are the golden standard of reliable data
collection in developmental studies and life course analysis. Yet these can be expensive and sometimes
di�cult to perform. Retrospective data collection is used mainly when a very large sample is required,
the classical example being rare outcomes and case-control designs. Recently, however, retrospective
data collection has been used in survey studies to obtain detailed information about multiple life
domains and individuals' multiple activities.1 The life history calendar (LHC), also called an event-
history calendar, is a data-collection tool for obtaining reliable retrospective data about life events.2

The advantage of a life history calendar is that the order and proximity of important transitions in
multiple life domains can be studied at the same time. The time window of a life history calendar
can be years or even an entire life-span. As a data collection tool, it encourages respondents to
incorporate temporal changes as cues in the reporting of events. It has shown the ability to provide
data of remarkably high quality.1

While life course epidemiology studies the relationship between exposure and disease, problems
of special interest to psychologists and social scientists point to an understanding of individuals'
behaviour and choices in their lives. These choices are often re�ected in the amount of time devoted
to di�erent activities. Individuals also have several social roles in their lives, and in these roles they
share values and resources which may form their decisions and experiences in a similar way. These

∗Department of Mathematics and Statistics, Assistentinkatu 7, 20014 University of Turku, Finland; tel: +358-2-
3335437, +358-40-5622913; email: mervi.eerola@utu.�
†Methodology Centre for Human Sciences/Department of Mathematics and Statistics, University of Jyväskylä
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links have been of interest especially in life course studies carried out by social scientists. Linking
di�erent life domains (e.g. education, family formation, health, working life) of a single individual
is an e�ort to study the life course as an interdependent system of life processes, and makes the
analysis multidimensional and dynamic at the same time. This is the focus of our article when
evaluating methods for the statistical analysis of life history calendar data. We believe that the
approach taken by sociologists and psychologists can be valuable also to health scientists. Variable
life patterns can have e�ects, for example, on chronic diseases or on patients' di�erential response to
clinical treatments.

Traditionally, life course data have been analysed by event history methods. There is a vast
literature on the basic principles and on more advanced methods based on the theory of counting
processes (e.g. Andersen et al.3). These methods are valuable when studying the time course of a few
well-speci�ed life events but when the number of states, and accordingly the number of transitions
between the states, increases, joint analysis of the model especially for prediction purposes becomes
rather elaborate. In this article, we compare two approaches to life course analysis: model-based
probabilistic event-history analysis (EHA) and a more recent type of approach of model-free data-
mining, sequence analysis (SA). The latter is well known in bioinformatics but has provided novel
insight to the diversity of life trajectories and their relationship to life satisfaction and depressiveness.
We emphasize the di�erences, but also the complementary tasks of the methods. As an example, we
study young adults' pathways to adulthood and consequent depressive symptoms in middle age in a
cohort established in Central Finland in 1968. The cohort members have been followed for 42 years,
from age 8 until age 50.

The article is structured as follows. In Section 2, some concepts and principles of prospective
and retrospective approaches to life course analysis are contrasted, the �rst in terms of predictive
probabilities and the latter in terms of typologies of life sequences. Section 3 provides comparative
analysis of the cohort data and some sensitivity analysis. Finally, Section 4 presents a methodological
discussion about the di�erent informational content of the two approaches.

2 Prospective and retrospective analysis of the life course

From a methodological point of view, the timing and order of events is of fundamental relevance
in life course analysis. Events represent transitions, marking developmental stages in life, while
the role and statuses accompanying such transitions feature the essential characteristics of the life
course.4 Trajectories are sequences of previously occupied life states, which provide a long-term view
of usually one dimension of an individual's life course. Transitions between the states, which are
of course embedded in the life trajectories, provide a short-term view of the dynamics of the life
course. Historically, transitions have been more important concepts because they relate directly to
important changes in life history.

Recently, more attention has been given to micro-settings and diversity of the dynamics involved
in the individual's di�erent activities, roles, and relationships. This change in scope has emphasized
the analysis of whole trajectories instead of events. The role of transitions and trajectories as the
basic unit of analysis is described in the next sections.

2.1 Event history analysis

Prospective analysis is based on short-term predictions of transitions in the life course. These pre-
dictions can be modi�ed by some informative covariates Z which themselves may vary in time. A
concise review of event history methods can be found, for example, in Andersen and Keiding.5 Here
we prefer, however, an approach based on a marked point process (T,X) = {(Tn, Xn), n ≥ 1}. Rather
than a system of states accompanied with a transition matrix, we model the life course as a sequence
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of events by specifying a pair of random variables, the occurrence time T and a mark X identifying
the event. An extensive overview of such models and theory is given by Arjas.6

Let Nx(t) =
∑

n≥1 1{Tn ≤ t,Xn = x} be a process counting x-speci�c events in an individual's
life course such that

∑
xNx(t) = N(t) is the total number of life events by time t. Since life history

calendar data is often recorded on a yearly basis, we de�ne the discrete event-speci�c hazard in the
age interval t = 1, 2, ... as the conditional probability of a change in the value of Nx

px(t) = P (∆Nx(t) = 1|FN
t−1) (1)

given the internal history FN
t−1 of the counting process. We will denote the history of the occurrence

times and marks by time t asHt. The crude hazard that some event occurs in the interval t, regardless
of which one, is the sum over the event-speci�c hazards, p(t) =

∑
x px(t).

The likelihood contribution of an individual's life history can be interpreted as a product of a
sequence of multinomial trials over the intervals. Since ∆Nx(t) can only have the value of 1 or 0 in a
short interval t, the outcome of the multinomial trial within each interval can be read from its value.
This determines which one of the x-components of N contributes to the likelihood. For a generic
individual, the likelihood contribution by time t is

L(t) =
∏

s≤t

∏

x

px(s)∆Nx(s)(1− p(s))1−∆N(s). (2)

While the hazard gives a very short-term prediction of the life course, the prediction process

associated with a marked point process gives a long-term prediction of some random event related
to (T,X) for the whole observed trajectory.7�10 We can then view the prediction process as the
conditional distribution of that random event given the history Ht. The prediction probabilities
are again functions of event-speci�c hazards, so modelling the hazards brings external explanatory
information to the prospective analysis of the whole life trajectory.

In Section 3.2, we shall consider in detail the speci�cation and estimation of prediction probabil-
ities in a multistate model. For a tutorial on event history analysis and prediction probabilities, we
refer to Putter et al.10 In the next section, we contrast the model-based predictions of life events, ex-
tended to the whole observed trajectory, with the model-free approach of sequence analysis. Since it
is still less familiar than event history analysis to health scientists, we give a more extensive overview
of its basic principles.

2.2 Life sequence analysis

A completely di�erent approach is taken in sequence analysis (SA), originally used in bioinformat-
ics to organize, classify, and parse protein and DNA sequence data.11 In the 1980s, data mining
methods were developed to analyse molecular sequences as texts (e.g. TGACT = Thymine-Guanine-
Adenine-Cytosine-Thymine). Comparing sequences corresponds to comparing amino acids in protein
sequences or nucleotides in DNA sequences at each position. The goal is to identify regions of sim-
ilarity that may be a consequence of functional, structural, or evolutionary relationships between
the sequences. This is accomplished by aligning the sequences pairwise. Gaps are inserted between
the elements so that identical or similar characters are aligned in successive columns. Mismatches
between the sequences can have biological interpretations as point mutations and gaps as insertion or
deletion mutations introduced in one or both lineages since their divergence from a common ancestor.

In the life course setting, sequence analysis was �rst introduced by the social scientist A. Abbott.12

He criticized the event-oriented method as being unable to reveal life patterns when focusing only
on isolated events. Aligning life sequences provided correspondences with similar life patterns, while
mismatches and gaps corresponded to di�erential timing and/or a lack of certain life events or
episodes. Studying trajectories as the basic units allowed them to be interpreted as connected series
of experiences or summaries of lives, not isolated events.13
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Table 1: Basic di�erences of sequence analysis and event history analysis.

Method Sequence analysis Event-history analysis

Unit of analysis sequence event
Basic tool distance matrix transition rate
Direction of inference retrospective prospective
Mode of inference static, unconditional dynamic, conditional
Type of inference alignment of sequences comparison of rates
Aim of inference population-level individual-level

While event-history analysis models the risk of life events with explanatory covariates, sequence
analysis aims at forming typologies of life trajectories based on their similarity and characterizing
them by means of covariates. To assess similarity, pairwise distances of the sequences are �rst
calculated. The distance matrix is then used as data for clustering to �nd similar life patterns. Table
1 summarizes the basic di�erences of the two methods. We notice that, from a statistical point of
view, they have in many respects completely di�erent approaches. One can expect that they also
provide di�erent types of information about the life course.

2.2.1 Probabilistic sequence analysis

We start with reviewing a probabilistic approach to SA to more clearly contrast the prospective
and retrospective probabilistic life course analyses, and then focus on the non-probabilistic sequence
analysis that has been used exclusively in life sequence analysis to date. We follow closely Durbin et
al.11 in the probabilistic SA presentation.

Sequence alignment depends on a scoring model, on the algorithm for optimizing the scoring, and
on statistical methods to evaluate the goodness of the results. In a probabilistic scoring model, the
substitution score measures the relatedness of sequences in the observed data with the expected case,
where matching occurs only randomly at each position. The log odds ratio of the scoring models for
the whole sequences compares the log of observed and �expected by chance� models.

Consider two sequences, x and y with lengths mx and my. Let xi be the symbol of ith site of x
and yj be the symbol of the jth site of y. In the case of DNA sequences, the symbols are elements of
{A, T, C,G} so there are K = 4 symbols. We want to assign a score to the alignment that measures
the relative likelihood that the sequences are related as opposed to being unrelated. The unrelated
scoring model assumes that a symbol, say a, occurs independently with frequency qa. For sequences
of equal length, the unrelated or random model is then of the form

P (x, y|R) =
∏

i

qxi

∏

j

qyj (3)

whereas the related or match model M is the product of joint probabilities for the whole alignment

P (x, y|M ) =
∏

i

pxiyi . (4)

Here pab is the joint probability of elements a and b occurring as an aligned pair. The ratio of the
models is the odds ratio

P (x, y|M )

P (x, y|R)
=

∏
i pxiyi∏
i qxi

qyi
. (5)
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To have an additive score model, we take a logarithm of the odds ratio which can further be
written as

log

∏
i pxiyi∏
i qxi

qyi
=
∑

i

log
pxiyi

qxi
qyi

=
∑

i

s(xi, yi). (6)

The substitution costs s(a, b) for each aligned pair of elements can be arranged in a K×K matrix
which gives a statement about the probability of ab occurring jointly. The probabilities p and q are
based on biological theory.

An optimal alignment algorithm to minimize the total cost of dissimilarity (or maximize the score
of similarity) is based on dynamic programming. Optimal matching (OM) computes generalized
Levenshtein distances14 by minimizing the cost of elementary operations: substitution, insertion,
or deletion of an element. Insertions or deletions are jointly called indels. The cost of a gap (one
or more conjoined indels) is often set as the length of the gap, but opening and extending gaps
can also be given di�erent weights. OM quanti�es the e�ort needed to transform one sequence to
another. Example 1 illustrates a possible alignment of two sequences and the OM operations needed
to compute the cost.

Example 1
sequence 1: AAAABBBB
sequence 2: AAA�BBCC

The alignment above contains �ve matching elements, two mismatches, and a gap
of length 1. For de�ning the cost of this alignment, sequence 2 is transformed to
sequence 1 using an insertion of an element A and two substitutions of an element C
with B (shown bold).

AAAABBBB → AAAABBBB → AAAABBBB
AAABBCC → AAAABBCC → AAAABBBB

The cost of the alignment is the sum of the costs of the operations. Transforming
sequence 1 would lead to exactly the same result. The best possible alignment with
the lowest cost is found using dynamic programming.

A global alignment algorithm is, for example, the Needleman�Wunsch algorithm.15 The idea
is to build up an optimal alignment, using previous solutions for optimal alignments of smaller
subsequences. To �nd the alignment with the lowest score, a matrix D is allocated. The value
D(i, j) is the score of the best alignment between the initial segments x1...i and y1...j and can be built
recursively. First D(0, 0) = 0 is initialized. The matrix is then �lled from top left to bottom right
with

D(i, j) = min





D(i− 1, j − 1) + s(xi, yj)
D(i− 1, j)− o
D(i, j − 1)− o,

(7)

where s(xi, yj) is the cost of a substitution and o of an indel. In the �rst row xi is aligned with yj;
in the second row xi is aligned with a gap in y; and in the third row yj is aligned with a gap in x.
The best score up to (i, j) will be the smallest of these. The equation is applied repeatedly until the
matrix is �lled. The value in the �nal cell D(mx,my) is the best score for an alignment of x with y.

The signi�cance of a particular alignment M can be assessed, for example, by Bayesian model
comparison. The posterior of alignment M is

P (M |x, y) =
P (x, y|M)P (M)

P (x, y)
, (8)

5



where P (M) is the prior probability of M and P (x, y|M) the likelihood of data given alignment M .
The Bayes factor of the odds ratio is then

log

(
P (x, y|M)

P (x, y|R)

)
+ log

(
P (M)

P (R)

)
(9)

where R is the random model.

2.2.2 Non-probabilistic sequence analysis

In life sequence applications, only non-probabilistic sequence analysis has been used to date. These
methods are either based on sequence editing and pairwise alignment of sequences as in the proba-
bilistic case, or on counting common sequence attributes (non-alignment methods).

Substitution costs. The most important di�erence is that in pairwise alignment the substitution
cost s(xi, yj) is not a log odds ratio as in probabilistic SA but rather a given constant, de�ned by the
analyst. At least three alternatives have been used. The �rst derives costs from substantive theory

that often suggests some order between the states. Di�erent substantive questions have of course
di�erent interpretations for the similarity of states. In social science applications, a theory-based
cost matrix is often preferred because the timing of events and the similarity of states are considered
conceptually separate issues (e.g. Halpin16).

Subjectivity in cost de�nition can be reduced by data-driven costs which are inversely proportional
to transition frequencies from state A to B and B to A.17,18 The time-independent cost of substituting
A to B is then

2− p(A,B)− p(B,A)

where p(A,B) is the estimated proportion of transitions from A to B. The substitution cost is
therefore symmetric.

A third alternative is to calculate pairwise distances from some theory-driven prototypes.19

Sequence alignment. When the cost matrix is de�ned, pairwise distances between the sequences
are calculated as in probabilistic SA. Optimal matching (OM) algorithm, described in the previous
section, has been used most often in life sequence analysis. However, changing the order of states with
insertions and deletions (indels) have been criticized for warping the time in an unnatural way.20,21

A generalization of the Hamming distance22 is a special case of optimal matching where indels are
not used, and thus only states at the same position (time) are aligned.

The assumption of independent positions within a sequence may be a reasonable approximation
to reality in bioinformatics but unrealistic in life course analysis. Most of the criticism of life sequence
analysis has been directed at the ignorance of time order, which is so fundamental in prospective
analysis (e.g. Wu23). In the probabilistic setting, it would be natural to model a life sequence as a
Markov chain and generalize the independent elements (iid) assumption by assuming homogeneity
or non-homogeneity of the chain.

In non-probabilistic SA, several ad-hoc alternatives for duration-dependence have been proposed
to account for the length of time spells in sequence comparison. Stovel et al.24 used a decay-function,
which depends on a speci�c index period. Halpin16 suggested a variant of OM that makes substitu-
tions and indels cheaper for long spells than short spells. Marteau25 used time-warping, which locally
compresses or expands the time-scale to minimize the distance to the other sequence. Lesnard21

proposed a time-dependent cost matrix for each time unit, depending on the neighbouring states
(dynamic Hamming distance).

Non-alignment metrics. Elzinga26�28 has taken a completely di�erent approach, based on com-
binatorial methods, which does not require any cost matrix. The distance between two sequences is
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generally de�ned as

d(x, y) = A(x, x) + A(y, y)− 2A(x, y), (10)

where A is some sequence attribute. Some natural attributes are shown in table 2. As an illustration,
the distance between the two sequences in example 1, now based on the LCS metric (the length of
the longest common subsequence), is shown in example 2.

Example 2
sequence 1: AAAABBBB
sequence 2: AAABBCC

The longest common subsequence of sequences 1 and 2 is AAABB of length 5, so the
distance based on the LCS metric is 8 + 7− 2× 5 = 5.

While being intuitively meaningful and more objective than user-de�ned cost matrices, these dis-
tance criteria usually produce quite di�erent results compared to alignment methods and have not
been used often in real applications. Table 2 summarizes di�erences of some distance metrics used
in life sequence analysis.

Censoring. A common problem in life history data are censored observations which in sequence
analysis amounts to sequences of uneven length. The assumption of uninformative censoring in EHA
is closely related to prediction; the predictions of observable participants are assumed to also be
valid for the censored cases. In SA, the problem is how an incomplete observation window for some
individuals a�ects the distance values. The solution is either to simply use shorter sequences or to
extend the state space with a new �missing� state. Table 2 summarizes how censoring is handled
with di�erent metrics.

Multiple life domains. In the case of one life domain only, the alignment procedure is straight-
forward and most problems are related to the choice of the distance metric and the de�nition of the
substitution costs. Multiple interdependent life domains complicate analysis in that not only does
the state space grow rapidly, but the meaningfulness of the substitution costs also becomes more of
an issue. For non-alignment metrics no methods for multi-domain sequences have been proposed to
date. For alignment methods at least two approaches have been suggested.

In the extended alphabet approach, the letter corresponding to a particular state is replaced by a
combination of letters (e.g. being simultaneously in states A, C, G, and J is denoted by ACGJ).13,17,29

This can extend the state space rapidly. A conceptual problem is that the same cost matrix is applied
to all states although it is not straightforward what a substitution of one state with another means in
this approach. Gauthier et al.30 de�ne instead a separate cost matrix for each life domain c = 1, . . . , C
and take an average of the costs at each position. If sc(xi, yj) is the cost for aligning xi with yj for
the life-domain c, the average substitution (or indel) cost is calculated as

s(xi, yj) =

∑C
c=1 sc(xi, yj)

C
. (11)

Typology of sequences. Once the distance matrix has been obtained with some of the alternative
metrics in table 2, the goal is to �nd a typology of sequences by means of clustering methods. In life
course studies, the di�erences between sequences should somehow be related to the timing of events,
lengths of episodes determined by onset events, and the complete lack of some events or episodes.

Several alternatives are again available. In life sequence applications, Ward's agglomerative al-
gorithm31 is most commonly used because it tends to produce more equal-sized clusters than other
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clustering algorithms, and this has been preferable for interpretation purposes. At each step, the
algorithm combines the two clusters that minimize the within-cluster variability. No unique typology
may exist if several pairs of sequences have the same distance value (i.e. there are ties) because a
random start of the clustering algorithm can lead to di�erent clustering results.

To determine the optimal number of clusters, generalizations of the usual goodness-of-�t statistics,
coe�cient of determination R2 and F -test for non-Euclidian metrics have been used .32 The sums of
squares

SS =
1

n

n∑

x=1

n∑

y=x+1

d(x, y) (12)

are now based on the chosen dissimilarity criterion d(x, y) between sequences x and y. The pseudo R2

and pseudo F -test, although de�ned as usual as the ratio of the between and within sum of squares,
and that multiplied with the ratio of the degrees of freedom, can now have a di�erent interpretation
than in the Euclidean metric.

3 Application to life history calendar data

3.1 The JYLS Study

We illustrate the di�erences of the prospective and retrospective approaches with the Jyväskylä Lon-
gitudinal Study of Personality and Social Development (JYLS), ongoing in Finland. The participants,
born in 1959, have been followed from age 8 to 50.33 In 1968, twelve randomly selected second-grade
classes in Jyväskylä, Central Finland, were chosen for the study. All of the pupils participated, so
the initial attrition was zero. The original sample consisted of 173 girls and 196 boys. During the
follow-up, no systematic attrition has been found.34,35

A LHC was used to retrospectively collect information about partnership status, children, stud-
ies, and work, as well as other important life events. The occurrence, timing, and duration of the
transitions were recorded annually from age 15 to age 42 (in 200136) and from age 42 to age 50 (in
2009) during interviews in which 275 participants gave reports based on memory and visual aids
provided by the LHC-sheet (Figure 1). The information collected with the LHC was complemented
using other sources of information, such as life situation questionnaires and interviews at ages 27,
36, and 42.

Figure 1: A section of the �rst life history calendar of the JYLS study.
Year

Marriage/cohab. Age 15 16 17 18 19 20 21 22 23 24 25 . . . 42

Partner(s)

Children 15 16 17 18 19 20 21 22 23 24 25 . . . 42

First child

Second child
...

Other parenthood

Education 15 16 17 18 19 20 21 22 23 24 25 . . . 42

Type of education

Work 15 16 17 18 19 20 21 22 23 24 25 . . . 42

Fulltime work
...
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We compared event history methods and sequence analysis in a setting where the dynamics
of three inter-dependent life domains � partnership formation, parenthood, and employment � are
studied in parallel. In EHA, we speci�ed a multistate model for the event-speci�c transitions and
in SA we speci�ed domain-speci�c cost matrices. As a more substantive question, we studied the
relationship between di�erent life paths and excess depressive symptoms in middle age. These were
assessed at age 42 using a shortened version of General Behavior Inventory (GBI).37,38

3.2 A multistate model

We note �rst that all events (partnership formation, child births, and career events) can be repeated
several times in an individual's life course, making some simpli�cation necessary. We limited the state
space to the �rst transitions in each domain. In particular, we de�ned �employment� as the year when
the person de�nitively had entered working life. The timings of initial partnership (either marriage or
cohabitation) and parenthood are usually easily de�ned, but the onset of steady employment requires
some thought. We de�ned it as the year which was followed by two subsequent years of employment.
Studying and working in the same year was coded either in accordance with the subject's individual
situation. The hazards for these events are shown in �gure 2, while a histogram of GBI depression
scores at age 42 is presented in �gure 3.

Age

H
az

ar
d

15 20 25 30 35 40 45 50

0.
00

0.
04

0.
08

0.
12

Employment
Partnerships
Parenthood

Figure 2: JYLS data: smoothed hazards of initial partnership, parenthood, and employment by age.

We were interested in how the timing of initial partnership and steady employment a�ect the
joint prediction of remaining childless and having excess depressive symptoms at age 42. Excess
depressive symptoms was de�ned as a higher than median GBI score value (GBImed = 1.44).

For the sake of simplicity, we excluded cases who had become a parent before the prediction time
(age 20) and also one case who had incomplete information on the transitions. This led to a sample
size of 260 cases. Figure 4 shows the possible transitions between the states.

The events of interest were denoted by W=entering working life, P=forming an initial part-
nership, and C=becoming a parent, and their occurrence times by TW , TP , and TC , respectively.
The time interval of the LHC recordings was one year and we denote this interval by t, where
t = 20, ... . . . , 42. Because of the coarse data, it was possible for two or all three events of interest
to occur within the same year. Since in that case we do not know the order of events, we simply
multiply the discrete hazards in that year in the prediction formulae.
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Figure 3: JYLS data: histogram of GBI depression scores at age 42.

No steady employment,
no partnerships,
no children

Employment

Partnership

Parenthood

Figure 4: JYLS data: the multistate event history model.

Event-speci�c hazards. The discrete hazard of entering working life (W ) at age t when neither
an initial partnership (P ) nor parenthood (C) has yet occurred, can be written in the general form
as

pW (t) = P (TW = t|TW ≥ t, TP ≥ t, TC ≥ t). (13)

Since any of the events P , W , or C can occur �rst, a similar hazard model can be de�ned for initial
partnership and parenthood. If both P and W have already occurred at times w Q v < t, the
conditional hazard of having a �rst child at age t is then

pC|WP (t|v, w) = P (TC = t|TW = v, TP = w, TC ≥ t). (14)

Other conditional hazards are de�ned in an obvious way.
We used piecewise constant logistic hazard models where

px(t) = (1 + exp(−β′Zt))
−1 (15)

is the discrete hazard of event x. The e�ect of the preceding events was modelled with time-dependent
covariates which were simple indicators because the sample size did not allow for more complicated
modelling. For example, in the hazard pP |W (t|v), the covariate Zt(W ) ≡ 1, t ≥ v, when W occurred
at v, whereas in pP (t) the covariate Zt(W ) was not de�ned. Although possible, no other covariates
were used in the models. Men and women were both included in the �nal model because no apparent
di�erences in the e�ects of timing of partnership and work on the response event were found in
separate analyses.

Prediction probabilities. In the multistate model the possible paths of not having children within
the prediction interval depend on the occurrence times of initial partnership and steady employment.
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Figure 5: Survival probabilities of not having children for individuals who have or have not entered
working life or initial partnership by the prediction time, age 20. �Neither� corresponds to no initial
partnership nor employment by age 20.

The most complicated situation is when nothing has yet happened by the prediction time t. In
this case, we must account for all possible timings of partnership and employment. We then have
the prediction

P (TC > u|TW > t, TP > t, TC > t) =
u∏

s=t+1

(1− pW (s)− pP (s)− pC(s))

+
u∑

s=t+1

s−1∏

r=t+1

(1− pW (r)− pP (r)− pC(r))pW (s)

×P (TC > u|TW = s, TP > s, TC > s)

+
u∑

s=t+1

s−1∏

r=t+1

(1− pW (r)− pP (r)− pC(r))pP (s)

×P (TC > u|TW > s, TP = s, TC > s)

−
u∑

s=t+1

s−1∏

r=t+1

(1− pW (r)− pP (r)− pC(r))pW (s)pP (s)

×P (TC > u|TW = s, TP = s, TC > s). (16)

The last sum accounts for the paths in which P and W occur within the same year and their order
is unknown.

The other paths are special cases of (16). In particular, when initial partnership (P ) and entering
working life (W ) have occurred by the prediction time t, the prediction is simply, for 0 < v Q w <
t < u,

P (TC > u|TW = v, TP = w, TC ≥ t) =
u∏

s=t+1

(1− pC|WP (s|v, w)). (17)

The prediction probability is a function of the prediction time t and the prediction interval
I = (t, u] and its realizations depend on the history H. By letting one of them be variable and �xing
the values of the other two, we can obtain di�erent views of the life course dynamics. In �gure 5, we
obtain the usual survival probability S(u) of not having children by age u when �xing the prediction
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Figure 6: Innovation gains in predicting no children by age u = 42 from observing employment (W)
and initial partnership (P) at the prediction time t = 20, ..., 42, given that nothing/the other one
has occurred previously (0 = nothing has yet happened). The con�dence intervals are based on 5000
bootstrap samples of the data.

time at t = 20 and history at H20 and letting the prediction interval vary with ages u = 21, ..., 42.
We notice that half of those who had formed initial partnership already by age 20, had children by
age 25, whereas the e�ect of employment by age 20 had a much smaller e�ect on early parenthood
compared to those who had neither formed initial partnership nor entered working life at that age.

Factual and counterfactual predictions. Instead of �xing the prediction time t we now identify
it with the variable occurrence time t = 20, ..., 42 of either initial partnership or employment. When
comparing these predictions at age u = 42, we obtain a visual representation of the e�ect of timing
of initial partnership P and employment W on the prediction of no parenthood by age 42. In �gure
6, we consider the di�erence of the two predictions:

P (TC > u|TP = t, TW > t, TC > t)− P (TC > u|TP > t, TW > t, TC > t). (18)

This is the innovation gain from observing initial partnership at age t = 20, ..., 42 related to the
prediction of not having children by age 42, given no steady employment by age t. If a person
actually forms an initial partnership at age t, the �rst probability is a factual prediction of not
having children by age u, given the history, and the second probability is a counterfactual prediction
of the same event.

At all ages, both initial partnership and employment decreased the probability of remaining
childless compared to the situation where neither has occurred yet. The 95% con�dence limits show,
however, that the timing of steady employment had a signi�cant e�ect only if it occurred before age
30 if no partnership had been formed yet. Initial partnership around ages 28 to 31 decreased the
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Figure 7: Di�erence in the joint prediction probabilities of excess depressive symptoms and having
children versus not having children by age 42, given that employment or/and initial partnership have
occurred at the prediction time t = 20, ..., 42. �Neither� corresponds to no partnership or employment
(yet) at the time of prediction. The con�dence intervals are based on 5000 bootstrap samples of the
data.

prediction of remaining childless the most, but had a signi�cant e�ect at any age. It should be noted
that, while controlling for the history e�ect, the size of the innovation gain from observing initial
partnership depends on the length of the remaining prediction interval.

Joint prediction probability. Finally, to evaluate the relationship between possible histories of
family formation and employment with depressive symptoms (D) in middle age, we compared the
joint prediction of parenthood/no parenthood and excess depressive symptoms at age 42, given the
history of partnership and employment. For the case of having children, we then have

P (TC ≤ 42, D42 > d∗|Ht) = P (D42 > d∗|TC ≤ 42, Ht)(1− P (TC > 42|Ht)) (19)

with obvious changes for the case of no children.
The �rst probability on the right is evaluated only at age u = 42, so it only a�ects the last terms

at time u = 42 in the prediction formulae. It is the cross-sectional logistic probability for a higher
than median GBI score d∗ at age u = 42, depending on family formation and employment

pD(42) = logit(P (D42 > d∗|Z42)) = α + β1Z42(W ) + β2Z42(P ) + β3Z42(C) (20)

where Z42(C) = 1 for the case when TC ≤ 42 and Z42(C) = 0 for the case when TC > 42. Since all
these covariates were indicators, the occurrence times did not make a di�erence.
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Figure 7 shows the di�erences in the joint prediction probabilities of having children versus not
having children by age 42 and excess depressive symptoms at that age, given initial partnership
or employment at the time of prediction. This analysis provides �limiting� ages for increasingly
higher prediction of excess depressive symptoms in middle age and remaining childless, compared
to having children. We �nd that if initial partnership is formed later than at age 31, the di�erence
of these joint probabilities becomes positive and increasing. For steady employment but no initial
partnership, this age limit is about 27 years. For those who have no initial partnership nor steady
employment at the prediction time, this limit is reached already at age 26. By age 34, the prediction
of excess depressive symptoms and no children is already about 80% higher than the prediction of
excess predictive symptoms and children.

This analysis shows that, having estimated the event-speci�c hazards, we can evaluate joint pre-
dictions of events related to both dynamic and non-dynamic parts of a multistate model. Including
explanatory covariates in the hazard models (which we did not do), would allow to compare predic-
tions of hypothetical individuals with di�erent histories and characteristics.

3.3 Multidimensional sequence analysis

In sequence analysis, instead of transitions we studied the distribution of individuals in the states
year by year. This di�erence corresponds to annually evaluating the prevalence of the states instead
of incidence. We de�ne the state space of partnership, parenthood, and career histories from age 15
to 50 as shown in table 3.

Table 3: Life domains and respective states for three-domain sequence analysis.

Life domain States

Partnership single, in partnership, divorced/separated/widowed
Parenthood no children, has children (biological, adopted, foster)
Career studying, working, other (unemployed, out of labour force)

Unlike in the EHA example, we did not restrict the analysis to the �rst events but used all events
for the three life domains. This state space results in 18 possible state combinations for each year.
The transition matrix was sparse, but in non-probabilistic sequence analysis and with domain-speci�c
costs this is not a serious issue.

In our data, sequence lengths vary because of the two data collection phases and small di�erences
in ages: 215 participants have sequences of length 36, 14 participants of length 35, and 46 partici-
pants of length 28.

Dissimilarity criteria. We compared six dissimilarity metrics suitable for multidimensional se-
quence analysis. They were based on di�erent de�nitions of the substitution costs. In optimal
matching (OM) and Hamming distance, we used either user-de�ned or data-driven substitution
costs. In dynamic Hamming distance, they were based on estimated transition probabilities taking
into account the neighbouring states of the previous and the following year.21 The LCS criterion (the
length of the longest common subsequence) corresponds to OM with the speci�c choice of substitution
cost 2 and indel cost 1.

Since Hamming distance does not allow indels, censored positions were replaced by a �missing�
state. The e�ect of di�erent costs for missing states was investigated by de�ning costs 0, 0.5, or 1
times the largest substitution cost. With larger costs, the sequences with missing states tend to form
their own uninformative cluster. Thus, using no cost at all resulted in the best results.
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Table 4: Partnership, parenthood and career-related substitution costs based on theory (user-de�ned)
or transition probabilities.

User-de�ned Transition probabilities

→ S → P → D → * → S → P → D → *

Single (S) → 0 2 3 0 0 1.89 2.00 0
Partnership (P) → 2 0 1 0 1.89 0 1.80 0

Divorced/sep. (D) → 3 1 0 0 2.00 1.80 0 0
Missing (*) → 0 0 0 0 0 0 0 0

User-de�ned Transition probabilities

→ N → C → * → N → C → *

No children (N) → 0 3 0 0 1.94 0
Has children (C) → 3 0 0 1.94 0 0

Missing (*) → 0 0 0 0 0 0

User-de�ned Transition probabilities

→ S → W → O → * → S → W → O → *

Studying (S) → 0 3 1.5 0 0 1.77 1.87 0
Working (W) → 3 0 1.5 0 1.77 0 1.67 0

Other (O) → 1.5 1.5 0 0 1.87 1.67 0 0
Missing (*) → 0 0 0 0 0 0 0 0

Combined substitution costs. The substitution cost matrix was de�ned separately for each three
domain and then averaged. The domain-speci�c costs for OM and Hamming distance are shown in
table 4. For dynamic Hamming, time-speci�c costs resulted in 36 distinct substitution cost matrices
(not shown here). It should be noted that the absolute numbers in user-de�ned substitution costs
have no meaning since the information is only relative. In our application, the states �single� and
�divorced� were the most distant because forming a partnership was regarded as one step in the
developmental process to adulthood. In another study, these could be interpreted as similar, as both
indicate a state of �living without a partner�. Compared to the transition-based costs, this is the
main di�erence in the partnership domain. For career domain, transitions from states �studying� to
�other� (or vice versa) were the least common (highest cost in the cost matrix based on transition
probabilities), but in the user-de�ned matrix the corresponding cost was set relatively low, due to
the versatile nature of the state �other�. The indel costs were set to half of the largest substitution
cost, making them equally costly. For averaging, the costs in each matrix were scaled to have the
same range in order to give equal weight to each life domain.

Typology of sequences. Ward's agglomerative clustering was used to �nd a typology of life
sequences, applying the six dissimilarity criteria for solutions starting from 2 to 15 clusters. Based
on dendrograms, the goodness-of-�t statistics, and interpretability of the clusters, an eight-cluster
solution was chosen.

The goodness-of-�t statistics in table 5 for the chosen eight cluster solutions suggested that
clustering based on the Hamming distance with theory-based substitution costs �ts the data best. It
covered around 45% of sequence variation (F = 31.56) and resulted in interpretable clusters where
all three life domains were well represented. In comparison, the second best criterion, dynamic
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Table 5: Goodness-of-�t statistics for eight cluster solutions obtained with six distance measures
based on transition probabilities or user-de�ned costs.

Dissimilarity measure Pseudo R2 Pseudo F

Hamming distance (user-de�ned) 0.453 31.56
Dynamic Hamming distance (trans. prob.) 0.433 29.18
Optimal matching (user-de�ned) 0.406 26.09
Hamming distance (trans. prob) 0.395 24.93
Optimal matching (trans. prob) 0.369 22.33
Length of longest common subsequence 0.358 21.23

Short educ. 
& delayed
parenthood

Long educ.
& later
family

Long educ. 
& early
partnership

Short educ.
& on-time
family

Early family Fast
starters

Partners
without
children

Single/
late
family

Figure 8: The dendrogram of the clustering based on Hamming distance with user-de�ned substitu-
tion costs.
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Figure 9: Scatter plot of the cluster-speci�c MDS scores based on the �rst two dimensions of multi-
dimensional scaling. Dissimilarities were computed by using theory-based Hamming distance for the
three-dimensional sequences.

Hamming, resulted in clusters where the family-related life domains dominated and the career domain
was hardly represented. The dendrogram based on the Hamming distance in �gure 8 supported the
eight cluster solution.

Time-preserving Hamming distance instead of OM seems more reasonable for sequences of uneven
length. In OM, using indels in our data would mean aligning, for example, a state at age 15 with
a state at age 23 in another sequence. Within the same metric, user-de�ned substitution costs gave
better results than costs based on transition probabilities in this three-domain setting. However,
preliminary studies with only one life domain suggested the opposite so no general guidelines can be
given.

We present the results with the Hamming distance, at the same time illustrating di�erent ways
of investigating the clustering results by sequence plots, by comparing sequence variation in clusters,
by reducing dimensionality in the multivariate categorical analysis with multidimensional scaling
and �nally, by using the cluster indicators in the regression of depressive symptom scores on cluster
membership.
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Table 6: Logistic regression of depression score on cluster membership.

β s.e. p OR

Short education & delayed parenthood −0.21 0.37 0.58 0.81
Short education & on-time family −0.51 0.37 0.16 0.60
Long education & late family −0.59 0.39 0.14 0.56
Partners without children −0.24 0.40 0.55 0.79
Early family 0.18 0.25 0.46 1.20
Single/late family 1.61 0.77 0.04 5.00
Long education & early partnership −0.05 0.33 0.87 0.95
Fast starters 0.47 0.40 0.24 1.60

Multidimensional scaling (MDS).MDS provides a concise visual representation of cluster results,
�rst by showing how well the clusters actually separate but also by providing a visual aid when the
original sequences are ordered according to MDS scores. The �rst few scaling dimensions capture the
most prominent variation in the sequences. The rotation of the solution is arbitrary, but principal
component axes can be used for achieving a meaningful rotation. The resulting dimensions often
sort the sequences according to an attribute, such as the timing of some transition.

In �gure 9, the sequences were plotted as points on the plane spanned by the �rst two MDS
dimensions with cluster identi�cation. The eigenvalues of the MDS solutions with di�erent dimen-
sions supported two MDS dimensions. Correlation between the original Hamming distances and the
distances computed from two-dimensional MDS scores was 0.93. The timing of initial partnership
and parenthood seemed to separate the clusters best (1st principal component dimension); length of
education follows (2nd dimension). Clusters of individuals with no children were clearly separated
from the others, which were more or less connected but not completely overlapping.

Sequence plots. Index plots show the individual life courses, merely re-organizing the original
data according to the similarity de�ned by clustering (�gure 10). Ordering according to some MDS
dimension assists in interpretation. State distribution plots show the prevalence of states at each
time point. We combined the di�erent life domains to give an overview of the dynamics of the state
distribution (�gure 11).

Sequence variability. Shannon's entropy39,40 is often used as a measure of disorder of a system.
In life sequence analysis, entropy is used to characterize variation in the states within one sequence,
or more interestingly, within and between clusters of sequences. When entropy is 0, all cases (of a
cluster) are in the same state. When entropy is 1, there are equally large amount of cases in each
state. Important transition times are easily seen as peaks in the cluster-speci�c plots (�gure 12).

Regression analysis. External explanatory variables can be taken into account either in the clus-
tering phase (covariance analysis instead of ANOVA), or as independent variables in a multinomial
analysis of cluster membership indicators. We used the membership indicators as explanatory factors
in a logistic regression predicting higher than median depression scores as in EHA. The �single/late
family� cluster was the only one that shows statistically signi�cant di�erences (with higher odds of
having excess depressive symptoms). This result supports the �nding of Salmela-Aro et al.41 that
postponing or lack of some stages in the transitory process to adulthood anticipate lower life satis-
faction in adulthood. Note that although we used individual-speci�c cluster membership indicators
in the regression models, the cluster characteristics may not be representative to all members of the
cluster. Clustering was based on the matrix of pairwise distances, not on the individual sequences
any more. It was therefore expected that only the most di�erent clusters (here singles) would have
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Figure 10: Index plots of partnership (top), parenthood (middle), and career (bottom) in the eight
clusters based on Hamming distance. The sequences are ordered according to the �rst dimension of
multidimensional scaling that represents the timing of partnership and children.
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Figure 11: State distribution plots of combined partnership, parenthood, and career states in the
eight clusters based on Hamming distance. Note, that �divorced� can mean either a broken marriage
or cohabitation. Positions with missing states in any life domain are excluded from the plots.
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Figure 12: Transversal entropies of partnerships, parenthood, and career sequences in clusters based
on Hamming distance.
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a signi�cant role in the regression analysis. We conclude that, unlike making individual-level predic-
tions of parenthood given the history of partnership and employment, the aim of sequence analysis
was to �nd subpopulations or clusters of individuals whose life courses were similar in terms of the
timing of initial partnership, parenthood and employment.

Computations. Sequence analyses were carried out with the TraMineR library in R.42 Logistic
hazard models and programs calculating the prediction probabilities and their bootstrap intervals in
section 3.2 were implemented with R.

4 Discussion

We compared two approaches of analysing data collected with a life history calendar: the model-
based probabilistic method of event history analysis and the model-free data mining method of
sequence analysis. Traditionally, EHA models the risk of a transition from one state to another,
but here we instead estimated the cumulative prediction probabilities of life events in a multistate
model to have a more comparable setup with sequence analysis. Instead of transitions, the analysis
was extended to the entire observed trajectory, which was the unit of analysis in SA as well. In
sequence analysis, we compared several dissimilarity metrics and contrasted data-driven and user-
de�ned substitution costs. To illustrate the two methods, we studied young adults' transition to
adulthood as a sequence of landmark events in several life domains. These landmark events de�ned
our multistate event-history model and the parallel life domains in multidimensional SA. Finally, we
analysed the relationship between life trajectories and excess depressive symptoms at age 42 by �rst
estimating their joint predictions in the multistate model and then by using the individual-speci�c
cluster indices of multidimensional SA in a further explanatory analysis for depressive symptoms.

When the same life course problem was analysed with both methods, we found that the two
approaches complement each other. SA is a descriptive tool synthesizing large amount of information
to obtain a broad picture of multidimensional data. As other dimension-reducing methods, SA helps
developing an intuitive understanding of complex relationships but the resulting clusters should not
be given a con�rmatory status. Finding descriptions for the clusters mirrors the rather subjective way
of naming factors in factor analysis. In our case, sequence analysis could reveal typical and atypical
patterns of young adults transition process to adulthood which supported the earlier �ndings that
no normative pathway to adulthood exists any longer. Individuals' enhanced opportunities to make
choices in their own lives increases diversity in the life course. These individual choices are a�ected by
various governmental and other external decisions, the results of which are di�cult to conceive at the
population level. In particular, sequence analysis has o�ered new means for large scale comparative
analysis of life patterns across nations and between age cohorts.

Multistate event history analysis, on the other hand, is a predictive method which requires struc-
tured hypotheses and a well-de�ned system of hazard models. This is opposite to the data mining
approach of SA in which no assumptions about the data generating mechanisms are made, or needed,
for that matter. We believe, however, that the analysis of increasingly complex life course data, com-
bining perhaps both biological and behavioural data, will require methods that at the initial stage
can reveal underlying structures and help generating causal hypotheses for further analysis. Causal
inquiries can only be addressed with proper �book keeping� of risk sets for transitions. Thus, correct
individual-level conditioning of the history is possible only in EHA. Multiple time scales, inherent in
many life course problems, and their separate e�ects can only be quanti�ed by modelling. Further-
more, time-varying covariates indicating individual status changes or contextual changes in time are
only possible in model-based analysis.

Sequence analysis has been criticized for violating the basic principles of prospective analysis
because the �past� and the �future� are treated symmetrically in vertical alignment. In this sense,
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it is not suitable for any causal analysis. Subjectivity of substitution cost speci�cation and non-
uniqueness of clustering results have also raised scepticism about its usefulness. In recent years,
several improvements have been suggested to the speci�cation of substitution costs, to handle cen-
soring, and to preserve timing and the order of states in sequence analysis.43 They all modify the
substitution cost matrix in some way because this is the only way of tuning the values of the distance
matrix. According to our examinations, also Elzinga's non-alignment methods26�28 seem promising,
but no multidimensional method exists yet. As a data mining method, SA is best suited for large
register-based data sets. With small data sets and large state space, all trajectories tend to be unique.
If the substitution cost matrix is based on estimated transition probabilities, small data sets run out
of observations. This was shown by Helske et al.,44 who used Hidden Markov models to cluster life
sequences probabilistically.

Statistical analysis of life sequences still has many unresolved questions, compared to the well
developed theory of event history analysis. Sequence analysis is less conventional, but its use is
expected to increase in the future, especially now that there is an easy-to-use software available in R.
Event history analysis will certainly remain the main tool for analytical life course studies. We be-
lieve that although the prediction probabilities are not a standard tool in EHA, they are valuable for
synthesizing information in a multistate model. Although the probabilistic statements and program-
ming require careful speci�cation, the probabilities can be estimated in a straightforward manner
from state-speci�c hazards. Con�dence intervals can be calculated, for example, by bootstrapping
(as we did) or, in a fully parametric case, analytically (cf. Eerola8).

As in epidemiology, prevalence indicates what is typical or atypical at a particular time, whereas
incidence is related to change, the underlying concept in all causal inquiry. Life course analysis
is obviously dynamic, but the complex pattern of interacting factors also requires �zooming� into
details. Therefore, one could summarize the complementary advantages of the methods: while se-
quence analysis provides detailed information about �how things are�, event history analysis answers
the �why�.
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Abstract 
We present two types of approach to the analysis of recurrent events for discretely 
measured data, and show how these methods can complement each other when analysing 

co-residential partnership histories. Sequence analysis is a descriptive tool that gives an 
overall picture of the data and helps to find typical and atypical patterns in histories. Event 
history analysis is used to make conclusions about the effects of covariates on the timing 

and duration of the partnerships. As a substantive question, we studied how family 
background and childhood socio-emotional characteristics were related to later partnership 

formation and stability in a Finnish cohort born in 1959. We found that high self-control of 
emotions at age 8 was related to a lower risk of partnership dissolution and for women a 
lower probability of repartnering. Child-centred parenting practices during childhood were 

related to a lower risk of dissolution for women. Socially active boys were faster at forming 
partnerships as men. 

 

Keywords: partnership formation, partnership dissolution, sequence analysis, event history analysis, 

recurrent events  

1 Introduction 
During the life course many events (such as 

marriages, child births, unemployment etc.) can 
occur several times to an individual. In this paper we 
present two approaches to the analysis of recurrent 

events for discretely measured data and show how 
these methods can complement each other when 

analysing co-residential partnership histories of a 
representative sample of Finnish men and women 
now in their fifties. The first method, sequence 

analysis, is a descriptive technique which we used to 
summarize all partner transitions made by 
individuals over the whole observation period. We 

grouped similar histories of forming and dissolving   

 
partnerships and searched for typical and atypical 

patterns. In contrast, event history analysis is a 
model-based method which we used to model the 
probability of making a transition to or from 

partnership in a given time interval as a function of 
possibly time-varying individual characteristics. 
Specifically, we examined how home background 

and socio-emotional characteristics in childhood 
were related to later partnership formation and 

stability, whether these effects differed between 
women and men, and if they played a part in a 
tendency to repartner. 
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1.1 Partnerships in a life course perspective 
Establishment of an intimate relationship has 

been recognized as one of the milestones during the 
transition to adulthood (e.g. Shanahan, 2000). In the 

past, this typically meant the start of the first and 
only marriage. However, the choice of union type is 
now no longer confined to traditional life-long 

marriage, as cohabitation has become an integral 
part of family life in Western countries (Kennedy & 
Bumpass, 2008; Kiernan, 2001). Furthermore, it is 

increasingly common for people to enter a union 
more than once during their lives. As a result, 

partnership trajectories have become diverse 
according to the type and number of unions formed 
during the life course. Regarding the first union, 

cohabiting unions have been consistently found to 
be less stable than marriages (Poortman & 
Lyngstad, 2007). In the case of the second and 

higher-order unions, the picture is more complex. In 
general, second unions have been shown to be as 

stable as the first unions, when selection based on 
individual characteristics is controlled for (Aassve, 
A., Burgess, S., Propper, C., & Dickson, M., 2006; 

Lillard, Brien, & Waite, 1995; Poortman & Lyngstad, 
2007; Steele, Kallis, Goldstein, & Joshi, 2005; Steele, 

F., Kallis, C., & Joshi, H., 2006). 
It is likely that second and higher-order unions 

differ from the first union in that they often involve 

individuals with more complex life histories, 
including multiple spells of partnerships, children 
from previous relationships, and the continuing 

influence of previous partners and their family 
members (Poortman & Lyngstad, 2007; Teachman, 

2008). Higher-order unions also involve individuals 
who have learned about the process of break up. 
Going through this often painful process may have 

caused people to be more cautious the next time 
(Furstenberg & Spanier, 1984), which may lead to 
less commitment to and fewer investments in the 

second union compared to the first. Furthermore, 
marriage market conditions have also changed 

because people are older when they search for a 
partner for the second time, and therefore the pool 
of potential partners is more restricted (Teachman, 

2008). Thus, it is likely that the factors linked to the 
dissolution of second and higher-order unions are 
not the same as those linked to the disruption of the 

first union.  
The life course perspective (Elder, 1998) suggests 

that partnership transitions are inter-related with 
other areas of life, such as parenthood. However, 
empirical evidence regarding the association 

between partnership dissolution and having 
children is somewhat mixed. Earlier research has 

found different, even opposite, effects of having 
children on partnership dissolution across countries 

and in different family situations with regard to, for 
example, the number, age, and residence of 
children (Coppola & Di Cesare, 2008; Lillard & 

Waite, 1993; Lyngstad & Jalovaara, 2010; Steele et 
al., 2005; Svarer & Verner, 2008). 

 

1.2 Partnership transitions in context  
A life course perspective suggests that decisions 

regarding life transitions are constrained by various 
contextual factors (e.g. Elder, 1998; Shanahan, 
2000), as well as by the individual’s development 

prior to the transitions (Räikkönen, Kokko, Chen, & 
Pulkkinen, 2012). Our study focused on the 
associations between partnership transitions and 

individual (i.e. gender and socio-emotional 
behaviour) and family characteristics. 

Empirical studies have demonstrated that, in 
general, women undergo family-related transitions 
for the first time at a younger age than men (e.g. 

Elder, 1998; Kokko, Pulkkinen, & Mesiäinen, 2009; 
Räikkönen et al., 2012; Ross, Schoon, Martin, & 

Sacker, 2009). Furthermore, the timing of family 
transitions may also be more closely interlinked 
among women than among men (Kokko et al., 

2009). It has been shown that early motherhood 
may weaken women’s subsequent attachment to 
the labour market (e.g. Rönkä & Pulkkinen, 1998). 

No such association has been found among men 
(Rönkä, Kinnunen, & Pulkkinen, 2000).  

To the best of our knowledge, the effects of 
childhood socio-emotional behaviour have not been 
studied in previous analyses of partnership 

formation and dissolution. However, indirect 
support for the links between childhood socio-
emotional behaviour and adult partnership 

transitions can be found in previous research. First, 
there is evidence that child behavioural problems 

predisposes individuals to earlier parenthood (e.g. 
Kokko et al., 2009; Rönkä et al., 2000), especially 
among women (Kokko et al., 2009). In contrast, 

adaptive behaviour in childhood, such as shyness, 
has been shown to be related to later parenthood in 
men (Caspi, Elder, & Bem, 1988). Second, low self-

control of emotions in childhood has been found to 
be a risk factor for later marital problems (Kinnunen 

& Pulkkinen, 2003). Third, there is evidence that 
high self-control of emotions in both genders, and 
social activity in women, contribute to favourable 
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adult development (Pulkkinen, 2009). On the basis 
of these earlier studies, we anticipated that high 

self-control of emotions would be connected to 
fewer and longer-lasting partnerships. Also, we 

expected that women with lower self-control of 
emotions and socially active men would form their 
first partnerships sooner. 

An individual’s family of origin may also influence 
union formation behaviours throughout adulthood. 
Accordingly, it has been shown that individuals who 

come from a less-advantaged family in terms of low 
socio-economic status (SES) tend to undergo their 

first partnership transition at an earlier age than 
individuals from a high SES background, for whom 
the later timing of transitions is more typical (e.g. 

Berrington & Diamond, 2000; Rönkä et al., 2000; 
Ross et al., 2009; Steele et al., 2006). Higher SES of 
the family of origin has also been linked to an 

increased risk of partnership dissolution (Bumpass, 
Martin, & Sweet, 1991; Lyngstad, 2006). In British 

cohorts, Steele et al. (2006) found that after a 
break-up, women from a higher SES background 
took longer to repartner, whereas Goldstein, Pan, 

and Bynner (2004) found no such effect among 
men. Family breakdown in childhood has been 
linked to earlier establishment of one’s own 

partnership (Aassve, Burgess, Propper, & Dickson, 
2006; Berrington & Diamond, 2000; Steele et al., 

2006), as well as to a higher risk of partnership 
dissolution (Amato, 1996; Gähler, Hong, & 
Bernhardt, 2009; Steele et al., 2006), suggesting 

that union behaviours transfer at least to some 
extent from parents to their children.  

Besides individual and family factors, the socio-
historical context promotes variability in transition 
behaviours (e.g. Elder, 1998; Shanahan, 2000). The 

present study was based on longitudinal data 
collected for a representative sample of individuals 
born in Finland in 1959 (Pulkkinen, Lyyra, & Kokko, 

2009; Pulkkinen & Kokko, 2010; Pulkkinen, 2009). 
Regarding partnership transitions in Finland, the 

mean age at first marriage was 25.9 years for 
women and 28.1 years for men in 1986–1990 
(Statistics Finland, 2010). Cohabitation before 

marriage or as an alternative to marriage was very 
popular then, just as it is now (Statistics Finland, 
1994). Among women born in 1938–42, 13% had 

cohabited, but among women born in 1958–62, 51% 
had cohabited before marriage and 33% as an 

alternative to marriage. Since the mid-1980s, the 
mean age at first marriage has risen: in 2009, the 
mean age was 30.2 years for women and 32.5 years 

for men (Statistics Finland, 2010). Most men and 
women marry only once; in 2009 11% of married 

women and 12% of married men had remarried. In 
2009, the total divorce rate in Finland was 50% and 

the mean age at the time of divorce was 41.3 years 
for women and 43.8 for men. Of marriages entered 
into in 1985, 39% had ended in divorce by 2009. 

Due to the popularity of cohabitation in Finland, in 
this article our definition of a partnership includes 
both marital and non-marital cohabitational unions, 

which are treated as substitutes for each other. 
 

2 Methods 
2.1 Sample 

We analysed data from the Finnish Jyväskylä 

Longitudinal Study of Personality and Social 
Development (JYLS). The study, established in 1968 

by Lea Pulkkinen, includes all students from 12 
randomly sampled second-grade school classes in 
Jyväskylä, Central Finland (Pulkkinen, 2009). All the 

pupils participated. The original sample consisted of 
173 girls and 196 boys, of whom the majority (94%) 
were born in 1959. All participants were native 

Finns and they have been followed from age 8 to 50. 
During the follow-up, no systematic attrition has 

been found in the JYLS sample and the participants 
have continued to be representative of their Finnish 
birth cohort (Pulkkinen, 2009; Pulkkinen & Kokko, 

2010).  
During two data collection phases in 2001 at age 

42 and in 2009 at age 50, life history calendars (LHC; 
adapted from Caspi, Moffitt, Thornton, Freedman, & 
others, 1996; Kokko, Pulkkinen, & Mesiäinen, 2009) 

were used to retrospectively collect information 
about partnership status, children, education and 
work, as well as other important life events. The 

occurrence, timing and duration of the transitions 
were recorded annually first from age 15 to age 42, 

and later from age 42 to age 50, during interviews in 
which altogether 275 participants (77% of the 
original sample still alive at age 50) gave reports 

based on their memory and visual aids provided by 
the LHC-sheet.  

The information collected with the LHCs was 

confirmed and complemented using other sources, 
such as life situation questionnaires and interviews 

at ages 27, 36, 42, and 50. We were able to derive 
almost complete partnership data between ages 
15–42, but missing information due to non-

response during the last phase of data collection at 
age 50 led to incomplete histories for 22% of the 
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participants. The length of the follow-up varies 
between individuals because of the two data 

collection phases and small differences in their ages. 
Altogether 215 participants were followed for 36 

years, 14 participants for 35 years, and 46 
participants for only 28 years. 

 

2.2 Variables 
In addition to subjects’ annual partnership 

histories, we used information from their 

parenthood histories to derive a time-varying binary 
indicator of whether or not the individual was a 

parent to biological or adopted children in a given 
year. 

Socio-economic status (SES) based on father’s 

occupation (or mother’s if she was the sole provider 
or had a higher status), was coded 0 if blue-collar 
and 1 if a white-collar worker (Pitkänen, Lyyra, & 

Pulkkinen, 2005). 
Family structure at age 14 was coded 0 if the 

participant lived with both parents and 1 if the 
parents had divorced or a parent had died (Kokko & 
Pulkkinen, 2000). 

Child-centred parenting was an average score of 
five dichotomous variables based on age 27 

recollections of parenting practices and home 
environment (parental relationship, physical 
punishment, maternal supervision, relationship with 

the father, and family structure; Kokko & Pulkkinen, 
2000). Missing data were imputed (Pitkänen, Kokko, 
Lyyra, & Pulkkinen, 2008).  

Child socio-emotional behaviour at age 8 was 
assessed using two subscales: social activity and 

high self-control of emotions (including emotional 
stability, constructiveness, and compliance; see 
Kokko, Pulkkinen, Mesiäinen, & Lyyra, 2008; 

Pulkkinen, Kokko, & Rantanen, 2012). Each item was 
rated by teachers on a scale from 0 (never) to 3 
(often). 

 

2.3 Statistical methods 
Sequence analysis (SA) is a model-free data-

mining type of approach that provides an overview 
of individual sequences over the whole observation 

period, including the most common transitions and 
time spent in each partnership state. The aim of SA 

is to measure pairwise (dis)similarity of the 
sequences, which is often followed by some kind of 
clustering method to find typologies of whole 

trajectories. Event history analysis (EHA; also known 
as survival, duration, or failure-time analysis) is used 
for the study of factors that influence the timing of 

transitions. The response variable in EHA is the 
duration between becoming at risk of experiencing 

the event of interest and the time that the event 
occurs. 

 
2.3.1 Sequence analysis 

SA was originally developed in bio-informatics to 

organize, classify, and parse protein and DNA 
sequence data (Durbin, Eddy, Krogh, & Mitchison, 
1998). In the social sciences, Abbott introduced the 

use of SA in life course analysis in the mid-1980s 
(Abbott, 1983; Abbott, 1995; Abbott & Tsay, 2000). 

The basic idea in SA is to measure the distance or 
dissimilarity of two sequences consisting of the 
succession of categorical states describing the 

trajectories. Two major issues are essential for SA. 
The first concerns the composition of sequences: 
how many and what type of states? The second 

issue is related to determining the dissimilarities 
between the sequences: which dissimilarity 

measure to use and, for some measures, how to 
assign the “cost” of converting one state to 
another? Typical steps in SA include the following: 

1) creating sequences using a finite set of states; 2) 
choosing and implementing a method for 
computing pairwise dissimilarities between 

sequences; 3) analysing the dissimilarities (e.g. 
cluster analysis and/or multi-dimensional scaling); 4) 

graphical illustration and examination of sequence 
data. 

 

Definition of states 
Technically, the number of states does not have 

to be restricted (though finite), but for practical and 
interpretational reasons the state space is often 
relatively limited. Definition of the states requires 

careful consideration. In the present application, for 
example, defining divorced as single, or 
distinguishing partnership states by the type of 

union instead of order, would give a different 
viewpoint. In previous research it has been common 

to group all co-residential partnerships together as 
one state (e.g. Aassve, Billari, & Piccarreta, 2007; 
Gauthier, Widmer, Bucher, & Notredame, 2010; 

Salmela-Aro, Kiuru, Nurmi, & Eerola, 2011) or to 
separate marriages from cohabitations (e.g. Barban 
& Billari, 2012; Elzinga & Liefbroer, 2007; Piccarreta 

& Lior, 2010). Usually these have been combined 
with information on children. 

We coded annual partnership states for each 
individual based on the order of the partner: 1) 
living single (never had a co-residential partner), 2) 
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living with the first partner, 3) with the second 
partner, 4) with at least the third partner, or 5) 

living divorced/separated/widowed. Widowhood 
was very rare and thus it was merged with the other 

states of living without a previous partner. 
Transitions between the states were more restricted 
than in most studies of partnership sequences: only 

the last two could be revisited, except for the rare 
event of going back to a previous partner. Without 
separating partnerships by order it would have been 

difficult or even impossible to distinguish sequential 
partnerships. 

 
Dissimilarities of sequences 

There are several methods for measuring 

sequence dissimilarity, optimal matching (OM) 
being the most well-known (e.g. McVicar and 
Anyadike-Danes, 2002). In OM the goal is to find the 

best alignment of two sequences. Their dissimilarity 
is computed from the operations needed to 

transform one sequence into the other using 
insertions, deletions, and substitutions of states. 
Roughly, the more operations needed, the more 

distant the sequences are. The operations can be 
given different costs to reflect the amount of 

dissimilarity between the states. Another 
completely different type of approach by Elzinga is 

based on counting or measuring common sequence 
attributes such as sub-sequences (Elzinga, 2006; 

Elzinga & Liefbroer, 2007). These methods do not 
require definition of any costs.  

In the present study, we use generalized 

Hamming distance (Hamming, 1950; Lesnard, 2010) 
which compares states at the same time positions in 
each sequence. This performs well in our data 

where the observed sequence lengths vary across 
individuals, and where the timing of the partnership 

transitions is regarded as very important. To assess 
the closeness of two partnership histories, 
sequences are aligned year by year (see Example 1). 

Shorter sequences are complemented with missing 
states to achieve equal sequence lengths required 
to compute Hamming distances. Partnership states 

at each age are compared and each comparison is 
given a cost (see Table 1). Only the ratio of the costs 

is important and usually the absolute numbers have 
no substantive meaning; multiplying the costs by a 
constant does not change the results. The 

dissimilarity of the histories is simply the sum of the 
costs.  

 

 

Example 1 

Computing generalized Hamming distances between artificial partnership 

histories. The costs are given for a comparison of partnership states at each 
age. See Table 1 for definition of states and costs. 
 

Age 20 21 22 23 24 25 26 27 28 

Sequence 1 S S S P1 P1 P1 P1 P1 P1 

Sequence 2 S S S S S S P1 P1 * 

Cost 0 0 0 2 2 2 0 0 0 

Dissimilarity = 6 

 

Age 20 21 22 23 24 25 26 27 28 

Sequence 1 S S S P1 P1 P1 P1 P1 P1 

Sequence 3 P1 P1 P1 P1 P1 D P2 P3 P3 

Cost 2 2 2 0 0 2 2 3 3 

Dissimilarity = 16 
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     Definition of the costs depends not only on the 
states themselves but also on the research question 

of interest: which states are regarded as close and 
which as distant? The most common strategies have 

been to assign the costs based on theory or 
transition probabilities between the states. The 
latter way is automatic and has been said to reduce 

subjectivity (Aisenbrey & Fasang, 2010; Gauthier, 
Widmer, Bucher, & Notredame, 2009). However, it 

is not suitable for many cases such as the present 
study, where most of the partnership transitions are 

impossible and the probabilities of the transitions 
provide little information on the dissimilarities 

between the states. Setting the costs is an ongoing 
debate and many modifications to the basic options 
have been suggested (e.g. Aisenbrey & Fasang, 

2010; Gauthier et al., 2009; Halpin, 2010; Hollister, 
2009; Lesnard, 2010).  

 
Table 1. Costs for Hamming distance computations  

 
  Sequence 2 

    S P1 P2 P3 D * 

Se
q

u
en

ce
 1

 

Single (S) 0 2 3 5 5 0 

1st partnership (P1) 2 0 1 3 2 0 

2nd partnership (P2) 3 1 0 2 2 0 

3rd+ partnership (P3) 5 3 2 0 2 0 

Divorced/separated (D) 5 2 2 2 0 0 

Missing (*) 0 0 0 0 0 0 

Note. Costs were defined to measure how distant different partnership states are regarded 

 

We set costs that would lead to clusters that 
separate histories of stable and unstable partnerships 

from those with long periods of living single or 
divorced/separated. The last two were seen as distant 

states (cost = 5) because forming a partnership was 
regarded as one step in the developmental process to 
adulthood. Second partnerships were very common, 

so the cost of alignment with the first partnership 
state was set low (cost = 1). Aligning any state to a 
missing state was defined to have zero cost to ensure 

that sequences were grouped together according to 
the known parts of the histories, not with other 

sequences with missing information. 
For the JYLS data, other dissimilarity measures 

including optimal matching, dynamic Hamming 

distance (Lesnard, 2010), the length of the longest 
common subsequence, and the number of common 

subsequences were considered together with different 
cost definitions. Generalized Hamming with the costs 
presented in Table 1 gave the most meaningful 

clusters and the best goodness-of-fit, as measured by 
the proportion of the variation explained by the 
clusters (pseudo coefficient of determination). 

Clustering sequences 
The dissimilarities between all partnership 

sequences are collected in a matrix that can be used to 
cluster similar histories together. We used Ward’s 

agglomerative algorithm (Ward Jr., 1963). At each 
step, the algorithm combines the two clusters (at the 
first step, sequences) that minimize within-cluster 

variability and maximize inter-cluster variability. It is 
commonly used to cluster sequences since it usually 
produces more equal-sized clusters than other 

algorithms (Aisenbrey & Fasang, 2010). We also tested 
other clustering options but, as also found by Aassve 

et al. (2007), most of them (single, average, and 
complete linkage) resulted in one large cluster and 
many residual clusters with only a handful of 

sequences, even several clusters with only one 
sequence. This is not desirable for the purpose of 

interpretation and possible further analyses. With our 
dissimilarities, the “partition around medoids” method 
(PAM) (Kaufman & Rousseeuw, 2009) was the best 

competitor, but not as good as Ward in terms of 
pseudo-𝑅2  (for pseudo-𝑅2  see Studer, Ritschard, 

Gabadinho, & Müller, 2011). Choosing the best 



Satu Helske, Fiona Steele, Katja Kokko, Eija Räikkönen, Mervi Eerola           Partnership formation and dissolution 

over the life course... 

7 

number of clusters is not straightforward. Our decision 
was based on the dendrogram, interpretability of the 

clusters, and change in measures including pseudo-𝑅2 , 

pseudo F (Studer et al., 2011), Hubert’s C, and 
Hubert’s Gamma (Hubert & Arabie, 1985). See Studer 
(2013) for a review of measuring the quality of 

clustering of sequence data. 
External information can be taken into account 

after clustering or at the clustering phase. We used 

regression trees (Breiman, Friedman, Olshen, & Stone, 
1984) to group similar partnership histories using 

information on subjects’ home background and socio-
emotional behaviour in childhood as predictors. The 
idea of regression trees is to recursively partition data 

into clusters using values of a predictor, creating 
binary splits for the values of a variable for which the 
highest pseudo-𝑅2  is achieved. The tree is grown until 

no further significant splits (assessed through a 

permutation F-test) are found (Studer et al., 2011). 
We studied whether sex and socio-emotional 

characteristics and home background during 

childhood predicted future partnership histories using 
regression tree methods with the same Hamming 
distances as previously. 

 
Graphical illustrations 

There are many options for graphical description of 
sequence data. The most common choices include 
cross-sectional state distribution plots and sequence 

index plots. State distributions plotted for each time 
point show the change in the prevalence of states in 

the course of time. Sequence index plots show the 
whole partnership histories for the individuals. Plotting 
all sequences at once in a random order is usually not 

very informative. Clustering eases interpretation by 
grouping similar histories together, and multi-
dimensional scaling or some other criterion is often 

used to order sequences more meaningfully. 
 

Software 
The TraMineR package in R (Gabadinho, Ritschard, 

Müller, & Studer, 2011) was used for the SA presented 

in this paper. Alternatives include TDA (Rohwer & 
Pötter, 2004) and the Stata packages SQ (Brzinsky-Fay, 
Kohler, & Luniak, 2006) and SADI (Halpin, 2014). To 

our knowledge, TraMineR has been the most versatile 
and widely used software for SA in recent years. 

However, the new SADI package in Stata appears to 
have the potential to become a strong competitor. 

 

2.3.2 Discrete-time event history model 
SA is a useful tool for obtaining an overview of 

histories. However, as the focus is the whole 
trajectory, SA cannot be used to study how the factors 

of interest – especially those which vary over time – 
are related to the timing and duration of each co-
residential partnership. EHA is a highly flexible 

approach for the study of how individual time-
invariant and time-varying characteristics influence the 
timing of partnership transitions. 

Moving in with the first partner is a milestone for 
an individual, but it may not be the only partnership 

(marriage or cohabitation) that is established during 
their life time. Instead of focusing only on the timing of 
the first partnership we can analyse the duration of all 

episodes of living without a partner. These are periods 
during which an individual is continuously “at risk” of 
establishing a new partnership. Individuals not living 

with a partner in a given time interval constitute what 
is referred to as the “risk set” for partnership 

formation. An individual’s first episode starts at the 
beginning of the follow-up and it ends when the 
individual moves in with a partner for the first time or 

is censored because of loss to follow-up. Individuals 
stay out of the risk set as long as they are living with 
the same partner. A new episode begins at dissolution 

when the individual is again “at risk” of forming a new 
partnership. 

The durations of episodes from the same individual 
are likely to be correlated, which invalidates the 
independence assumption of standard statistical 

methods. This correlation is due to unmeasured time-
invariant individual characteristics that affect the risk 

of forming any (new) partnership. The variation in the 
risks between individuals is generally called 
unobserved heterogeneity or individual frailty (e.g. 

Vaupel, Manton, & Stallard, 1979). Recurrent events 
data can be viewed as having a two-level hierarchical 
structure where the events are nested within 

individuals. These types of hierarchical data can be 
analysed with multilevel or random effects models 

(e.g. Goldstein, 2011; Raudenbush & Bryk, 2002). 
Many life transitions, such as partnerships, are 

formed in continuous time, but it is not always 

possible or practical to collect data as such. Often, 
event times are recorded in time intervals such as 
months or years because finer measurement (e.g. 

daily accuracy in a study spanning several years) 
would not be informative. At other times it is not 

possible to observe the occurrence times as 
frequently as would be preferred. In both cases the 
discrete-time model can be used as an approxi-
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mation to a continuous-time model (e.g. Allison, 
1982). 

The two LHCs from the JYLS study contain yearly 
information on individuals’ partnership statuses. We 

were interested in both the formation and 
dissolution of partnerships. However, annual 
accuracy was not always frequent enough to 

distinguish between consecutive partnerships. To 
properly define who was in the risk set of moving in 
with a new partner (i.e. living without a partner) at 

the start of a given time interval, artificial six-month 
intervals were created and the partnership status of 

the latter part of the year changed to “single” for 
those who had dissolved and formed a partnership 
during the same year (29 cases from 24 individuals). 

 
Random effects model for repeated partnership 
formation 

In our annual data, a partnership beginning “at 
age 𝑡” occurs during the one-year interval [𝑡, 𝑡 + 1). 
Suppose that 𝑡𝑖𝑗 is the number of years for which 

individual 𝑗 is observed in episode 𝑖, where an 

episode is a continuous period of time unpartnered. 
We form a data set with one record per year for 

each individual (a person-episode-period file) and 
define a binary indicator 𝑦𝑡𝑖𝑗  for each year 

𝑡 = 1, … , 𝑡𝑖𝑗 such that  
 

𝑦𝑡𝑖𝑗 = {

 1  if episode 𝑖 of an individual 𝑗                 

ends in partnership formation at  𝑡

0  otherwise                                                   

 

 

The discrete-time hazard function is defined as 

𝑝𝑡𝑖𝑗 = 𝑃(𝑦𝑡𝑖𝑗 = 1|𝑦𝑡′𝑖𝑗 = 0 for 𝑡′ < 𝑡), 

which is the conditional probability that a 
partnership is formed during interval 𝑡 of episode 𝑖 

of individual 𝑗 given that they have not moved in 
with a partner before interval 𝑡. 

A logistic regression model is commonly used to 
model the dependence of 𝑝𝑡𝑖𝑗  on the duration 

unpartnered by interval 𝑡 and a vector of (possibly 
time-varying) explanatory variables 𝒙𝑡𝑖𝑗 :  

log (
𝑝𝑡𝑖𝑗

1−𝑝𝑡𝑖𝑗

) = 𝛼′𝒛𝑡𝑖𝑗 + 𝛽′𝒙𝑡𝑖𝑗 + 𝑢𝑗 , 

where 𝒛𝑡𝑖𝑗 is a vector of functions of 𝑡 and 𝛼′𝒛𝑡𝑖𝑗 

defines the baseline hazard function. Polynomials 
and step functions are common choices for 

modelling the time-dependency. Unobserved 
variation between individuals (frailty) is represented 
by 𝑢𝑗 , which is usually assumed to follow a normal 

distribution 𝑁(0, 𝜎𝑢
2). The random effect shifts the 

log-odds of partnering up or down for the individual 

𝑗 while the effects of duration and covariates are 
assumed to be constant across individuals. 
Conditional on 𝑢𝑗 , the durations of episodes for the 

same individual are assumed to be independent. A 
similar model is specified for the risk of partnership 
dissolution. 

 
A two-state model 

We can extend the above model to study 

transitions between two (or more) states. That 
model considers transitions from a single state to 

living with a partner and the individual is dropped 
from observation after forming a partnership 
(unless they separate and re-enter the risk set). In a 

two-state model the durations of all episodes living 
with and without a partner are examined. Exit from 
one state implies entry to the other. Examples of 

the use of multistate models to study partnership 
transitions include Aassve et al. (2006), Goldstein et 

al. (2004), and Steele et al. (2006). 
We denote by 𝑆𝑡𝑖𝑗 the state of individual 𝑗’s 𝑖th 

episode at the start of interval 𝑡. Now 𝑦𝑡𝑖𝑗  is the 

binary indicator of a transition of either type, 
forming (F) or dissolving (D) a partnership. The 
conditional probability of a transition from state 

𝑠 (𝑠 = 𝐹, 𝐷), during interval 𝑡, given that a 
transition has not yet occurred in that episode, is 
now  

𝑝𝑠𝑡𝑖𝑗 = 𝑃(𝑦𝑡𝑖𝑗 = 1|𝑦𝑡′ 𝑖𝑗 = 0 for 𝑡′ < 𝑡, 𝑆𝑡𝑖𝑗 = 𝑠), 
 

and the multilevel event history model for 

transitions between the two states can be written 
as  

logit(𝑝𝑠𝑡𝑖𝑗 ) = 𝛼𝑠
′ 𝒛𝑠𝑡𝑖𝑗 + 𝛽𝑠

′𝒙𝑠𝑡𝑖𝑗 + 𝑢𝑠𝑗 ,      𝑠 = 𝐹, 𝐷 
 

Note that the baseline logit-hazard, covariates, 
coefficients, and random effects can all vary across 

states, as indicated by the 𝑠 subscripts. 
 

Software 

Random effects models for recurrent events and 
multiple states can be fitted in most mainstream 

statistical software packages such as R, SAS and 
Stata, and also with more specialist software 
including MLwiN and Sabre. The packages may vary 

in the estimation procedures used, leading to 
differences in parameter estimates and compu-

tational times (see Steele (2011) for a detailed 
summary). In our study, event history models were 
fitted using the xtlogit procedure in Stata which 

implements maximum likelihood via Gauss–Hermite 
quadrature. 
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3 Results 
3.1 Sequence analysis:  
trajectories of partnerships 
     Sequence analysis was used to provide an overall 

view of partnership histories, to obtain descriptive 
information on typical and atypical trajectories, and 
to explore how much childhood socio-emotional 

characteristics and family background predict future 
histories. 

     Figure 1 presents the prevalence of partnership 
states at each age for women and men. On average, 

men formed their first partnership later than 
women. Women spent more time living as divorced 
or separated than men, but from this figure we 

cannot see the duration of these periods.  
 

Figure 1: State distribution plots of partnership histories for women and men between ages 15–50 
in JYLS data 

 

Notes. Missing states are not included in the yearly proportions. The change in proportions at 43 is due to 
individuals who were lost to follow-up. 
 

 

 

Table 2 shows the average number of years that 
women and men spent in each partnership state. 

Women had longer first and second partnerships 
than men, but there was a lot of variation.  
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Table 2. Mean and standard deviation of years spent in each partnership state since age 15 for 
women and men in the JYLS data 

 

 Women  Men 

State Mean S.D.  Mean S.D. 

Single 7.8 5.7  10.1 6.7 

1st partnership 16.3 11.1  14.9 10.7 

2nd partnership 5.2 1.6  4.3 7.4 

3rd–6th partnership 1.6 5.0  1.9 5.1 

Divorced/separated 4.0 5.8  3.0 5.2 

Missing 1.1 2.7  1.8 3.6 

 

Table 3 shows the most frequent types of history 
ignoring the time spent in each state. Two out of 

three individuals had settled in to their first or at 
most second partnership. Since the transitions 
between states are rather limited due to several 

being absorbing, there are few possible histories. 
Except for the differences in the number of partners 

and dissolutions, the histories only differ by 
whether or not the individuals had lived alone 

between their partnerships. Taking account of the 
durations of episodes adds little additional 
information: the number of the JYLS participants is 

limited compared to the length of the follow-up so 
most of the sequences are unique. 

 
Table 3. The most common partnership histories in JYLS data, when durations are omitted  
 

State Freq. % 

S-P1 122 44.4 

S-P1-D-P2 59 21.5 

S-P1-D 25 9.1 

S-P1-D-P2-D-P3 14 5.1 

S-P1-D-P2-D 10 3.6 

S 9 3.3 

Total 239 86.9 

Notes. S=single, P1=1st partnership, P2=2nd partnership, P3=3rd–6th partnership, D=Divorced/separated/widowed. 
 

3.1.1 Clustering sequences 
Solutions with between 2 and 15 clusters from 

Ward’s algorithm were studied, and the eight-

cluster solution was chosen based on the criteria 
described in Section 2.3.1. These clusters explained 

61% of the variation between the histories. 
Sequence index plots of the clusters are shown in 
Figure 2. 

There were four larger clusters of relatively 
stable partnership histories with one or two 
partners that only differ in timing. Men were in the 

majority among those who have established a 
(typically long-lasting) late initial partnership, but in 

the “later second partnership” group the majority 
were women (Table 4). There emerged also two 
male-dominated clusters which included individuals 

with multiple partnerships, either earlier or later in 
life. Some of these individuals had experienced 

multiple partnerships but settled down after early 
adulthood, and others had not formed long-lasting 
partnerships at all. The last two clusters showed 

histories of living without a partner; some (typically 
women) had a partnership that ended in separation 
or divorce, while others (typically men) had never 

lived with a partner or had entered their first 
partnership very late.  
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Figure 2: Eight clusters of partnership histories using generalized Hamming distances as a measure of 
dissimilarity and Ward’s method for clustering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes. Multidimensional scaling was used to order sequences. 
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Table 4: Proportion of partnership clusters and the percentage of women 

Cluster Size (n) Size (%) Women (%) 

Early 1st partnership 76 27.6 55.3 

Later 1st partnership 66 24.0 34.8 

Early 2nd partnership 31 11.3 45.2 

Later 2nd partnership 33 12.0 60.6 

Early multiple partnerships 16 5.8 43.8 

Later multiple partnerships 15 5.5 33.3 

Divorced/separated 25 9.1 60.0 

Single/late partnership 13 4.7 23.1 

Total 275 100 46.5 

 

3.1.2 Clustering with external information 

     Using the regression tree method described in 
Section 2.3.1, only two of the covariates were 
statistically significant predictors of cluster 

membership; these formed altogether three 
clusters of the data (Figure 3). 

     The first and the most effective split of the data 
was achieved with child-centred parenting (CCP). 
More child-centred parenting practices in the family 

of origin (CCP > 0.4) was related to more stable 
partnership histories with usually one or two 
partners. The second split was for the lower values 

of CCP and self-control of emotions (SCE). On 
average, individuals with lower values of CCP and 

SCE had more partners compared to those who also 
had lower values of CCP but higher SCE. Altogether 
grouping on CCP and SCE explained only 3.5% of the 

variability between the partnership histories, so 

most important sources of sequence variation was 
the timing and the number of partnerships. 

 

3.2 Event history analysis: transitions to and 
from partnerships 

Event history analysis was used to examine the 
timing of partnership formation and dissolution and 
how the rate of partnership transitions depends on 

individual history and characteristics. 
As can be seen from the partnership clusters in 

the previous section and again in Table 5, recurrent 
partnerships were common: almost a half of both 
women and men had established at least two 

partnerships (marriages or cohabitations) during the 
follow-up period. Third and subsequent 
partnerships were less common, especially among 

women.
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Figure 3. Regression tree of partnership histories with two significant splitting variables: child-
centred parenting (CCP, scores 0–1) and high self-control of emotions (SCE, scores 0–3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Satu Helske, Fiona Steele, Katja Kokko, Eija Räikkönen, Mervi Eerola           Partnership formation and dissolution 

over the life course... 

14 

Table 5. Participants in the JYLS study by sex and the number of cohabitating partnerships  
 

    

 

3+ partners 

 No partners 1 partner 2 partners Individuals Partnerships 

Women 3 66 43 17 25 

Men 6 79 33 27 42 

Notes. Higher-order partnerships (3th–6th) are combined into one category due to their small number. 

 

     
Table 6 shows the means of the age at forming 
partnerships, duration of partnerships and time 

before forming new partnerships (not accounting 
for right-censoring). On average, first partnerships 
were formed around age 22 among women and age 

24 among men. The youngest formed their first 
partnership (cohabitation) at 15 and the oldest at 35 

(women) and 45 (men). On average, a new 
partnership was formed 2–3 years after dissolution 

of the previous partnership but there was 
considerable variation, with a maximum duration of 

over 20 years. 
     The average duration of first partnerships that 
ended in dissolution during the follow-up was about 

8 years. Second partnerships were of a similar 
length to first partnerships for women and two 

years shorter among men. Higher-order 
partnerships lasted 4–5 years on average. 

 

 

Table 6. Timing of partnership events: mean ages at forming partnerships, years since dissolution 

before forming a new partnership, and duration of partnerships that had ended in separation in 
the JYLS data  

 

 

 

 

Formation  Dissolution 

  Age  Time since diss.  
 

Duration  

Sex Partner       Mean     S.D. 

S.D 

         Mean     S.D. N        Mean       S.D. N 

Female 

 

1st 

 

22.17 4.16    126  8.54 6.51 68 

 2nd 

 

32.07 7.91  3.45 3.36   60  8.20 6.13 25 

 3rd+ 

 

36.17 7.95  2.72 2.42   25  4.38 3.13 13 

Male 

 

1st 

 

 

24.30 5.20    139  8.14 7.41 74 

 2nd 

 

 

31.22 7.53  2.68 3.19   59  5.97 6.30 31 

 3rd+ 

 

36.56 9.04  2.39 2.74  42  4.92 4.30 18 

Note. Right censoring was not accounted for. 
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   Hazards of forming first and recurrent 
partnerships were computed from the data. The 

hazard at a given age is the proportion who were 
newly partnered from all individuals in the risk set 

(those who were not living with a partner 
yet/anymore). The hazard function is plotted in 
Figure 4 using locally weighted scatterplot 

smoothing (lowess) to show the change in the rate 
of partnership formation by age. We also see that 
on average women formed their first partnerships 

earlier than men. On the other hand, those men 

who had established and dissolved their first 
partnerships young (before age 25) seemed to form 

subsequent partnerships quicker than young 
women in the same situation. There was an 

especially high peak for teenagers, but the risk set 
at that age was very small. In this study, the oldest 
age at first partnership was 35 for women, but is 

some suggestion that for men the hazard of first 
partnership increased in their early 40s (although, 
again, the risk set is small). 

 

Figure 4. Hazard functions of the formation of first and recurrent partnerships for women and men 

 

Note. Hazards were smoothed with lowess (locally weighted scatterplot smoothing) using 20–25% of the closest points. 

 

3.2.1 Partnership formation 
Since preliminary analyses (not all shown here) 

revealed large differences between women and 
men in the timing of partnership formation and 
dissolution and in the factors related to these 

transitions, separate event history models were 
fitted for women and men. Based on the hazard 
functions shown in Figure 4, a piecewise constant 

function was chosen as the best representation of 
the baseline hazard for partnership formation. The 

timing of first partnership was categorized into 
three periods: early (15–22 years), on-time (23–32), 
and late (33–50). The last category is wider than 

would be preferred, since it is unlikely that, for 

example, a 33-year-old and a 50-year-old have a 
same risk for establishing especially the first 

partnerships. However, as no women in our sample 
established their first partnership after age 35 it was 
not possible to use narrower age categories. Time 

since, and the duration of the last partnership were 
also considered (using linear, quadratic, logarithmic, 
categorical functions of time) as well as the type of 

the previous partnership (marriage/cohabitation), 
but these variables did not show significant effects 

for either sex and were excluded from the models. 
Covariates measured in childhood were treated as 
time-invariant, while parenthood status and 
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existence of previous partners were time-
dependent. 

We first studied the main effects of the 
covariates and their interactions with age and a 

previous partnership indicator. Interactions with age 
were considered to test the proportional hazards 
assumption, while interactions with previous 

partnership were tested to determine whether 
covariate effects differ for first and recurrent 
partnerships. Variables with effects that were 

significant at the 5% level were then tested together 
in one model, with non-significant effects dropped 

one by one. None of the interactions between age 
and any covariate were significant. 

Tables 7 and 8 show the final random effects 

models for partnership formation for women and 

men respectively. There was little evidence of 
unobserved heterogeneity among women (𝜎𝑢 was 

estimated close to 0), but among men the additional 
of random effects led to a significant improvement 

in fit (𝜎𝑢 = 0.607, significance assessed through 
likelihood ratio test). The “risk” of forming an initial 
partnership was estimated to be the highest among 

23–32 year-olds for both sexes, but the differences 
between the age categories were small and not 
statistically significant at the 5% level. Among men 

and women who had already dissolved at least one 
partnership, the risk of repartnering was 

significantly higher among 15–22 year-olds than for 
the other age groups. 

 
 

Table 7. Logistic model of partnership formation for women 

  

 Est. s.e. p OR OR 95% CI 

Constant −3.579 0.541 0.000   

Had previous partner(s) 1.841 0.670 0.006 6.302 (1.697,23.410) 

Age 15–22 0.550 0.500 0.272 1.733 (0.650,4.620) 

Age 23–32 0.975 0.507 0.054 2.651 (0.982,7.157) 

Prev. partners * Age 15–22 1.883 0.716 0.009 6.571 (1.615,26.738) 

Prev. partners * Age 23–32 −0.116 0.566 0.838 0.891 (0.294,2.702) 

Has child(ren) 1.232 0.312 0.000 3.429 (1.861,6.318) 

Prev. partners * Has child(ren) −0.935 0.411 0.023 0.393 (0.175,0.879) 

High SCE 0.025 0.138 0.856 1.025 (0.782,1.344) 

Prev. partners * High SCE −0.737 0.232 0.001 0.479 (0.304,0.754) 

Higher SES −0.058 0.208 0.782 0.944 (0.628,1.419) 

Prev. partners * Higher SES −0.889 0.394 0.024 0.411 (0.190,0.889) 

Random effect SD 𝜎𝑢  0.001 0.012    

Notes. Estimated coefficients and odds ratios (OR) are shown together with standard errors, p-values and 95% 
confidence intervals (CI) for the odds ratios. The last age category (33–50) was chosen as the reference category. SCE = 
self-control of emotions (scores 0–3), SES = socio-economic status based on the parents’ (mainly fathers') occupational 
status during the subject’s childhood (higher/lower). 
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Table 8. Logistic model of partnership formation for men 

 Est. s.e. p OR OR 95% CI 

Constant −3.410 0.480 0.000   

Had previous partner(s) 0.127 0.499 0.799 1.136 (0.427,3.023) 

Age 15–22 −0.795 0.451 0.078 0.451 (0.186,1.093) 

Age 23–32 0.334 0.409 0.414 1.396 (0.627,3.109) 

Prev. partners * Age 15–22 2.763 0.731 0.000 15.855 (3.787,66.373) 

Prev. partners * Age 23–32 0.580 0.490 0.237 1.785 (0.683,4.668) 

Has child(ren) 2.849 0.370 0.000 17.275 (8.372,35.643) 

Prev. partners * Has child(ren) −2.302 0.469 0.000 0.100 (0.040,0.251) 

Social activity 0.251 0.137 0.067 1.285 (0.982,1.682) 

Random effect SD 𝜎𝑢  0.607 0.127    

 Notes. Estimated coefficients and odds ratios (OR) are shown together with standard errors, p -values and 95% 
confidence intervals (CI) for odds ratios. The last age category (33–50) was chosen as the reference category. 
 

Altogether three childhood factors were 

associated with partnership formation: socio-
economic status (SES, Table 7), self-control of 
emotions (SCE, Table 7), and social activity (Table 8). 

Being from a higher SES family background was 
associated with a longer time to repartner for 

women. High self-control of emotions that was 
found to predict cluster membership in the 
regression tree analysis of SA, was also a predictor 

in the event history analysis of partnership 
formation: women who had higher self-control of 
emotions at age 8 had a lower risk of forming a new 

partnership following a dissolution. The effect of 
social activity was significant at the 10% level for 

men: being more socially active at age 8 was 
associated with forming partnerships sooner. The 
effect was the same for first and recurrent 

partnerships. 
Parents were faster at forming first partnerships, 

although only ten participants had a child before 
forming any co-residential partnerships. There was 
some evidence that fathers also formed recurrent 

partnerships faster compared to childless men 
(𝛽̂ = 2.849 − 2.302 = 0.548, s.e. = 0.300, p-value =
 0.068).  

Child-centred parenting, which was found to be 
the most important covariate in the regression tree, 

was not a significant predictor of partnership 

formation for either sex after controlling for the 
effects of other covariates. Childhood family 
structure was not significant in either model after 

controlling for the other childhood variables. 
 

3.2.2 Partnership dissolution 
Partnership dissolutions were explored in a 

similar way to formations. Time was captured in the 

models by two different variables: the age at the 
start of the current partnership and the duration of 
the partnership. Different functional forms (linear, 

quadratic, logarithmic, and categorical) were 
studied for both variables. Covariates measured 

during childhood were treated as time-invariant; 
type of partnership (marriage/cohabitation), 
parenthood status, and existence of previous 

partners as time-dependent. Child-centred 
parenting and family structure (included in CCP) 

were correlated, which induced multicollinearity in 
the model for women. Both variables were 
considered important and included irrespective of 

the large standard error of CCP in the common 
model. 

Tables 9 and 10 show the results from the event 

history models of partnership dissolutions for 
women and men respectively. The random effect 
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standard deviations were large but non-significant. 
The age effect was linear and decreasing for 

women. For men, the estimated effects of age and 
age squared formed a quadratic curve: the risk 

decreased until 42 years of age and then slightly 
increased (the age at which the hazard reached its 
minimum was found by taking the square root of 

the first derivative of the quadratic function). For 
men, the effect of the duration of the current 

partnership was linear and decreasing. For women, 
the risk of partnership dissolution was quadratic, 

increasing until 12 years into the partnership and 
then decreasing. 

 

Table 9. Logistic model of partnership dissolution for women  

 Est. s.e. p OR OR 95% CI 

Constant −1.589 0.594 0.007   

Age at partnership formation −0.055 0.018 0.003 0.946 (0.913,0.982) 

Partnership duration 0.095 0.055 0.086 1.100 (0.987,1.225) 

(Partnership duration)
2

 
−0.004 0.002 0.046 0.996 (0.991,1.000) 

Married −1.109 0.249 0.000 0.330 (0.204,0.534) 

High self-control of emotions −0.397 0.173 0.022 0.672 (0.479,0.944) 

Broken family at 14 0.532 0.248 0.032 

 

1.702 (1.048,2.766) 

Child-centred parenting −0.636 0.476 0.182 0.529 (0.208,1.347) 

Random effect SD 𝜎𝑢  0.518 0.254    

Notes. Estimated coefficients and odds ratios (OR) are shown together with standard errors, p -values and 95% 
confidence intervals (CI) for the odds ratios.  

 

Table 10. Logistic model of partnership dissolution for men  

 Est. s.e. p OR OR 95% CI 

Constant 1.211 1.495 0.418   

Age at partnership formation −0.254 0.105 0.019 0.782 (0.637,0.961) 

(Age at partnership formation)
2

 
0.003 0.002 0.055 1.003 (1.000,1.007) 

Partnership duration −0.040 0.019 0.032 0.961 (0.926,0.997) 

Broken partnership(s) 0.757 0.272 0.005 2.132 (1.252,3.630) 

Has child(ren) −0.701 0.228 0.002 0.496 (0.317,0.776) 

High self-control of emotions −0.443 0.158 0.005 0.642 (0.471,0.875) 

Random effect SD 𝜎𝑢  0.385 0.247    

Notes. Estimated coefficients and odds ratios (OR) are shown together with standard errors, p -values and 95% 
confidence intervals (CI) for odds ratios. 
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Previous experience of dissolution increased the 
risk of subsequent separation or divorce among 

men but not among women. Married women were 
less likely to dissolve their partnerships compared to 

cohabiting women, but cohabiting and married men 
did not differ in their risk of dissolution. 
Motherhood did not change the risk of dissolution 

but fathers had a lower risk than men without 
children.  

Three childhood characteristics were connected 

to the risk of dissolution: self-control of emotions, 
family disruption, and child-centred parenting. High 

self-control of emotions at age 8 decreased the risk 
of dissolution for both sexes and all partnerships, 
while child-centred parenting was associated with a 

lower risk of dissolution for women. The experience 
of a broken family during childhood was associated 
with a higher risk of partnership dissolution among 

women, but not men. 
 

4 Summary and discussion 
This paper had two aims: (i) to describe the use 

of complementary statistical methods, sequence 

analysis and event history analysis, in a study of 
recurrent events; and (ii) to apply both techniques 

in a study of partnership formation and dissolution 
over the life course. 

 

4.1 Statistical analysis 
Sequence analysis was used to build an overall 

picture of partnership histories from age 15 to 50. 
Using Ward’s clustering method, eight clusters were 
found, which together explained over 60% of 

sequence variation. These differed from each other 
according to the number, timing, and duration of 
partnerships. Another clustering method, that uses 

external information for the division of the data, 
was also studied. Regression tree analysis was used 

to divide data into clusters based on childhood 
covariates. Two significant predictors of partnership 
histories – high self-control of emotions and child-

centred parenting – were found, which altogether 
explained only 3.5% of the variability of partnership 
histories. In contrast, the three-cluster solution 

using Ward’s method without external information 
resulted in 𝑅2 = 35%, which increased to 61% for 

the chosen eight-cluster solution. Hence, the 
predictive power of those covariates alone was very 

low, although this was to be expected as we did not 
account for many factors that previous studies have 
found to be related to partnership formation and 

dissolution (e.g. the presence and age of children, 
educational attainment, employment, income, 

religiosity, and health-related factors; see e.g. 
Aassve et al., 2006; Berrington & Diamond, 2000; 

Jalovaara, 2012; Lyngstad & Jalovaara, 2010; South, 
2001; Steele et al., 2006). Many of these other 
factors are time-varying which is problematic with 

regression trees, and were therefore beyond the 
scope of the analysis. However, other life domains 
could be added as parallel sequences that can then 

be analysed with multi-dimensional sequence 
analysis methods (Gauthier et al., 2010; Müller, 

Sapin, Gauthier, Orita, & Widmer, 2012; Salmela-
Aro et al., 2011). In a previous study, Eerola and 
Helske (2012) compared SA and EHA in a case of 

multiple parallel life domains using the same JYLS 
data. 

Event history analysis was used to model the 

probability of partnership transitions between ages 
15 to 50 as a function of individual (i.e., social activity 

and high self-control emotions) and family 
characteristics (i.e. child-centred home environment, 
SES, and structure of the family of origin). To account 

for dependency between the durations of repeated 
episodes, random effects models for partnership 
formations and dissolutions were fitted. For all but 

one model, there was no statistically significant 
unobserved variation between individuals once the 

childhood variables were included in the analyses, 
indicating that these factors captured a substantial 
part of the variation in partnership formation and 

dissolution that is due to time-invariant 
characteristics. A joint model of partnership 

formations and dissolution (as described in Section 
2.3.2) was also fitted for women and men. The idea 
was to study whether there was correlation between 

the durations of episodes of living with and without a 
partner, for example because individuals who 
separate more rapidly tend to form new partnerships 

sooner than individuals whose partnerships last 
longer (as shown by Aassve et al., 2006; Steele et al., 

2006 using British data). However, our sample was 
too small to estimate a joint model, leading to 
confidence intervals of correlation estimates ranging 

from −1 to 1. 
Sequence analysis and event history analysis 

provide complementary information on partnership 

formation. Sequence analysis is a descriptive tool 
that gives an overall picture of the histories and 

compresses them in a form that is relatively easy to 
interpret. Sequences are often shown as colourful 
lines in an index plot, from which it is – especially 
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after clustering – easy to see the timing of 
important partnership transitions and the 

approximate duration of different episodes. 
Clustering helps to describe the data and to identify 

similar patterns in partnership formation by 
providing typologies of partnership trajectories. 
However, choosing the number of clusters is to 

some extent subjective. It is therefore important to 
consider a range of solutions and to regard the 
division of life sequences into clusters as suggestive. 

One should also be cautious about attaching too 
much meaning to a cluster or a label assigned to it, 

as the labels given to the clusters are only 
approximate since borderline cases could also be 
assigned to other clusters. For example, in the 

present study most of the members of the “later 1st 
partnership” cluster had stayed with their first 
partner but there were also several members who 

had lived separated or with a new partner for a long 
time. 

Analysis of individual-level event histories is 
better for drawing inferences about the effects of 
covariates on the timing of recurring partnership 

transitions. It can account for censoring and 
unobserved individual characteristics that affect the 
timing and duration of partnerships. However, with 

discretely measured recurrent events, forming the 
data set can be time-consuming and the size of the 

person-episode-period type-of-data may be large 
even when the number of individuals is small, 
leading to long estimation times when random 

effects models are used. 
Although SA and EHA are both methods for 

studying longitudinal life course data, their 
approaches in capturing time are different in many 
respects and they provide versatile information on 

the phenomenon of interest. In SA, the focus is on 
the holistic pattern of the histories and analysis is 
retrospective in nature. In contrast, in EHA the 

interest lies in the transitions and the direction of 
inference is prospective: how much time passes 

before an event happens. Each episode is as 
important as the others, no matter how short. In SA, 
however, especially with the most popular 

alignment methods for computing sequence 
dissimilarities such as OM and Hamming, small 
deviations from a general pattern might not be very 

influential. For example, in terms of our (rather 
restricted) state-space (Table 1), hypothetical 

sequences P1-P2-D-P3-D-P3-P3 and P1-P2-D-P3-P3-
P3-P3 would have been regarded as very similar 
even though the former person had four partners 

and five transitions and the latter one only three 
partners and three transitions. The definition of the 

state-space also matters: had we not separated 
partnerships by order, distinguishing successive 

partnerships would have been even more difficult or 
indeed impossible (as with P1 and P2 in the example 
sequences above). In such cases, if it is important to 

treat each episode as distinct, other dissimilarity 
criteria such as those based on counting common 
subsequences might be better suited. 

SA and EHA are, of course, not the only options 
suitable for studying discrete longitudinal life course 

data. For example, trajectory analysis (Nagin, 1999) 
and latent class analysis (LCA; e.g. Vermunt, Tran, & 
Magidson, 2008) come in the middle ground of the 

approaches presented in this paper by using 
statistical models to create homogenous clusters of 
similar trajectories. Semi-parametric trajectory 

analysis can be used for studying binary trajectories 
such as the histories of living single/in partnership. 

However, the method is not suited for categorical 
trajectories with more than two unordered 
categories. For categorical data, LCA has been used 

to group trajectories. The standard version of LCA 
does not take into account the correlation between 
observations measured in different time periods, 

but several modifications have been proposed to 
adjust for the temporal correlation. See Barban and 

Billari (2012) for a comparison of LCA to SA. 
 

4.2 Partnership formation and dissolution 
Different factors related to childhood and 

current life situation were found to be connected to 

partnership formation and dissolution for women 
and men. Contrary to previous research (e.g. 
Berrington & Diamond, 2000; Rönkä et al., 2000; 

Ross et al., 2009; Steele et al., 2006), we did not find 
a significant effect of SES of subjects’ fathers on the 
timing of their first partnerships. In common with 

previous research by Goldstein et al. (2004) and 
Steele et al. (2006), the SES of the childhood family 

was also not connected to men’s risk of 
repartnering, but women with higher SES 
background had a lower risk. 

Many previous studies have shown an increased 
dissolution risk for higher-order unions, but this has 
been assumed to be at least partly due to selection 

on unobserved individual characteristics. Studies 
that have considered such characteristics have not 

found an excessive risk of dissolution for recurrent 
partnerships (Aassve et al., 2006; Lillard et al., 1995; 
Poortman & Lyngstad, 2007; Steele et al., 2005; 
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Steele et al., 2006), although few have studied men. 
Our finding that repartnered men had a higher risk 

of dissolution was in contrast to studies of British 
(Aassve et al. 2006) and Norwegian (Poortman and 

Lyngstad 2007) men, which did not find differences 
in the dissolution risk by partnership order. 

In common with previous studies (e.g. 

Andersson, 2002; Liefbroer & Dourleijn, 2006; 
Manning, Smock, & Majumdar, 2004), married 
women were less likely to dissolve their 

partnerships (first as well as recurrent) compared to 
cohabiting women. In contrast, cohabiting and 

married men did not differ in their risks. 
Motherhood did not change the risk of dissolution 
but fathers had a lower risk compared to childless 

men. However, the models only accounted for 
having (biological or adopted) children in general. 
By choosing this conceptualisation of parenthood, 

some information about the effects of children on 
the risk of dissolution of partnership is inevitably 

lost. Earlier research has found different, even 
opposite, effects of the presence, number, and age 
of children on partnership dissolution across 

countries (Coppola & Di Cesare, 2008; Lillard & 
Waite, 1993; Lyngstad & Jalovaara, 2010; Steele et 
al., 2005; Svarer & Verner, 2008). 

Of the socio-emotional characteristics 
considered, high self-control of emotions at age 8 

was the strongest explanatory variable of 
partnership transitions. As expected, individuals 
with high self-control of emotions, indicated by 

emotional stability and constructive and compliant 
behaviour (Kokko et al., 2008), had a lower risk of 

partnership dissolution. For women the probability 
of repartnering was also lower but, contrary to our 
expectations, there was no association with the 

timing of the first partnership. Furthermore, high 
self-control of emotions was also related to fewer 
and more stable partnerships for participants who 

had experienced less child-centred parenting 
practices during childhood. These results suggest 

that high self-control of emotions was associated 
with a more stable family life, even for those 
individuals with a less supportive family 

environment in childhood. It is possible that a stable 
partnership was a part of a cycle of good social 
functioning linked to child’s high self-control of 

emotions (Pulkkinen, 2009). 
In accordance with our expectations, high social 

activity in childhood was related to men’s tendency 
to form first and also subsequent partnerships 
faster. Among women, social activity was not 

related to the timing or pace of partnership events. 
This difference could be partly due to diverse forms 

of social activity in boys and girls. In a previous 
study, Pulkkinen (1995) found that high social 

activity in boys was more often linked with 
unfavourable behaviour. 

 

4.3 Limitations and strengths 
When interpreting our results, there are some 

limitations that should be noted. First, our analyses 

consider only one age cohort of one nationality. 
Therefore our findings may not generalise to older 

and younger age cohorts and other nationalities, 
although many of our results were consistent with 
previous studies. Second, information on 

partnerships was gathered using the Life History 
Calendar (LHC), presented to the JYLS participants 
during the age 42 and age 50 personal interviews (in 

2001 and 2009, respectively). The LHCs covered a 
time span from age 15 to 50. The long recall period 

may raise questions about the accuracy of the 
participants’ memory and the validity of the LHC 
data. However, we do not consider this to be a 

serious flaw because prospective data on these 
transitions were also gathered in the JYLS study and 

these data have been informally used to check the 
validity of the LHC data (Kokko et al., 2009). 
Furthermore, previous studies have shown that 

information gathered with the LHC is reliable (Caspi 
et al., 1996; Freedman, Thornton, Camburn, Alwin, 
& Young-DeMarco, 1988). A third limitation of our 

study is that, in common with most other birth 
cohort studies where life histories are collected 

retrospectively, we do not have data on the 
childhood characteristics and partnership histories 
of the partners of cohort members.  

The two data collection phases led to a high 
proportion of partnership histories that were right-
censored at age 42 (the time of the first phase). We 

were therefore forced to use missing states for 
these shorter sequences, which in turn led to 

problems in the definition of costs in SA. Clustering 
results made most sense when the cost for aligning 
any state to a missing state was set to zero. 

However, this cost setting resulted in Hamming 
dissimilarities that are not metric distances, as 
assumed by most clustering methods. Since the 

chosen clusters were reasonable, and in any case 
considered suggestive, the use of non-metric 

dissimilarities is most likely not very serious. 
Even though the JYLS study is long and extensive, 

the moderate sample size imposed many restric-
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tions in model building. For example, we were 
unable to model partnership formations and 

dissolutions jointly. Moreover, when specifying a 
piecewise constant baseline hazard function we 

were forced to use broad age intervals. We 
considered only a simple indicator of being a parent 
which did not account for the different aspects of 

family structure that other studies have found to be 
related to the risk of partnership formation and 
dissolution (such as the number, age, and residence 

of the child(ren) or blended families). We also faced 
challenges due to the coarse annual measurements 

and had to be careful when defining the risk sets: 
for some individuals there seemed to be no 
unpartnered episodes between two partnerships. 

Although the use of the JYLS data imposed 
methodological restrictions, strengths of the data 
are the rich covariate information and exceptionally 

long period of follow-up (from age 8 to 50). This 
enabled the examination of childhood individual 

and family characteristics as precursors of 

partnership transitions measured up to middle-age. 
In particular, childhood socio-emotional charac-

teristics have not been studied before in this 
context. As can be seen from the non-significant 

random effect variances in some of the models, we 
could capture a notable part of the variation due to 
time-invariant individual characteristics that in 

previous studies have simply been left to the 
unobserved random part. The research question 
concerned the effects of childhood characteristics 

on the timing and stability of partnerships. These 
childhood measures were not used as proxies for 

the socio-emotional qualities of an adult. 
Nevertheless, a significant relationship between 
childhood socio-emotional characteristics and adult 

personality has been found in the JYLS data 
(Pulkkinen et al., 2012). 

Another contribution of this paper was to 

demonstrate and compare use of SA and EHA, 
which to our knowledge is the first attempt to apply 

both methods in a study of recurrent life events. 
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Abstract

Sequence analysis is being more and more widely used for the analysis of social se-
quences and other multivariate categorical time series data. However, it is often complex
to describe, visualize, and compare large sequence data, especially when there are multi-
ple parallel sequences per subject. Hidden (latent) Markov models (HMMs) are able to
detect underlying latent structures and they can be used in various longitudinal settings:
to account for measurement error, to detect unobservable states, or to compress informa-
tion across several types of observations. Extending to mixture hidden Markov models
(MHMMs) allows clustering data into homogeneous subsets, with or without external
covariates.

The seqHMM package in R is designed for the efficient modeling of sequences and
other categorical time series data containing one or multiple subjects with one or multiple
interdependent sequences using HMMs and MHMMs. Also other restricted variants of
the MHMM can be fitted, e.g. latent class models, Markov models, mixture Markov
models, or even ordinary multinomial regression models with suitable parameterization of
the HMM.

Good graphical presentations of data and models are useful during the whole analysis
process from the first glimpse at the data to model fitting and presentation of results. The
package provides easy options for plotting parallel sequence data, and proposes visualizing
HMMs as directed graphs.

Keywords: multichannel sequences, categorical time series, visualizing sequence data, visual-
izing models, latent Markov models, latent class models, R.

A CRAN-compliant modification of a manuscript submitted to Journal of Statistical Software.

1. Introduction

Sequence analysis is being more and more widely used for the analysis of categorical time
series. These data consist of multiple independent subjects with one or multiple interdepen-
dent sequences (channels). Sequence analysis is used for computing the (dis)similarities of
sequences, and often the goal is to find patterns in data using cluster analysis. However,
describing, visualizing, and comparing large sequence data is often complex, especially in the
case of multiple channels. Hidden (latent) Markov models (HMMs) can be used to compress
and visualize information in such data. These models are able to detect underlying latent
structures. Extending to mixture hidden Markov models (MHMMs) allows clustering via
latent classes, possibly with additional covariate information. One of the major benefits of
using hidden Markov modeling is that all stages of analysis are performed, evaluated, and
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compared in a probabilistic framework; e.g. well-known model selection criteria are available
for choosing the best clustering solution.

The seqHMM package for R (R Core Team 2015) is designed for modeling sequence data and
other categorical time series with one or multiple subjects and one or multiple channels using
HMMs and MHMMs. The package provides functions for the estimation and inference of
models, as well as functions for the easy visualization of multichannel sequences and HMMs.
Even though the package was originally developed for researchers familiar with social sequence
analysis, knowledge on sequence analysis or social sciences is not necessary for the usage of
seqHMM. The package is available on Comprehensive R Archive Repository (CRAN) and
easily installed via install.packages("seqHMM"). Development versions can be obtained
from GitHub1.

There are also other R packages in CRAN for HMM analysis of categorical data. The HMM
package (Himmelmann 2010) is a compact package designed for fitting an HMM for a single
observation sequence. The hmm.discnp package (Turner and Liu 2014) can handle multiple
observation sequences with possibly varying lengths. For modeling continuous-time processes
as hidden Markov models, the msm package (Jackson 2011) is available. Both hmm.discnp and
msm support only single-channel observations. The depmixS4 package (Visser and Speeken-
brink 2010) is able to fit HMMs for multiple interdependent time series (with continuous or
categorical values), but for one subject only. In the msm and depmixS4 packages, covari-
ates can be added for initial and transition probabilities. The mhsmm package (O’Connell
and Højsgaard 2011) allows modeling of multiple sequences using hidden Markov and semi-
Markov models. There are no ready-made options for modeling categorical data, but users
can write their own extensions for arbitrary distributions. The LMest package (Bartolucci
and Pandolfi 2015) is aimed to panel data with a large number of subjects and a small number
of time points. It can be used for hidden Markov modeling of multivariate and multichannel
categorical data, using covariates in emission and transition processes. LMest also supports
mixed latent Markov models, where the latent process is allowed to vary in different latent
subpopulations. This differs from mixture hidden Markov models used in seqHMM, where
also the emission probabilities vary between groups. The seqHMM package also supports
covariates in explaining group memberships. A drawback in the LMest package is that the
user cannot define initial values or zero constraints for model parameters, and thus important
special cases such as left-to-right models cannot be used.

We start with describing data and methods: a short introduction to sequence data and
sequence analysis, then the theory of hidden Markov models for such data, an expansion to
mixture hidden Markov models and a glance at some special cases, and then some propositions
on visualizing multichannel sequence data and hidden Markov models. After the theoretic
part we take a look at features of the seqHMM package and at the end show an example on
using the package for the analysis of life course data. Appendices include a list of notations
and more thorough descriptions of some important algorithms.

1https://github.com/helske/seqHMM
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2. Methods

2.1. Sequences and sequence analysis

By the term sequence we refer to an ordered set of categorical states. It can be a time series,
such as a career trajectory or residental history, or any other series with ordered categorical
observations, e.g. a DNA sequence or a structure of a story.

As an example we study the biofam data available in the TraMineR package (Gabadinho,
Ritschard, Müller, and Studer 2011). It is a sample of 2000 individuals born in 1909–1972,
constructed from the Swiss Household Panel survey in 2002 (Müller, Studer, and Ritschard
2007). The data set contains sequences of annual family life statuses from age 15 to 30. Eight
observed states are defined from the combination of five basic states: living with parents, left
home, married, having children, and divorced. To show a more complex example, we split
the original data into three separate channels representing different life domains: marriage,
parenthood, and residence. The data for each individual now includes three parallel sequences
constituting of two or three states each: single/married/divorced, childless/parent, and living
with parents / having left home.

Sequence analysis (SA) is statistical analysis of successions of states. It has roots in bioinfor-
matics and computer science (see e.g. Durbin, Eddy, Krogh, and Mitchison 1998), but during
the past few decades SA has also become more common in other disciplines for the analysis of
longitudinal data. In social sciences SA has been used increasingly often and is now “central
to the life-course perspective” (Blanchard, Bühlmann, and Gauthier 2014). SA is model-free
data-driven approach, which is used for computing (dis)similarities of sequences. The most
well-known method is optimal matching (McVicar and Anyadike-Danes 2002), but several
alternatives exist (see e.g. Aisenbrey and Fasang 2010; Elzinga and Studer 2014; Gauthier,
Widmer, Bucher, and Notredame 2009; Halpin 2010; Hollister 2009; Lesnard 2010). Also a
method for analysing multichannel data has been developed (Gauthier, Widmer, Bucher, and
Notredame 2010). Often the goal in SA is to find typical and atypical patterns in trajectories
using cluster analysis, but any approach suitable for compressing information on the dissim-
ilarities can be used. The data are usually presented also graphically in some way. So far
the TraMineR package has been the most extensive and frequently used software for social
sequence analysis.

2.2. Hidden Markov models

In the context of hidden Markov models, sequence data consists of observed states, which
are regarded as probabilistic functions of hidden states. Hidden states cannot be observed
directly, but only through the sequence(s) of observations, since they emit the observations
on varying probabilities. A discrete first order hidden Markov model for a single sequence is
characterized by the following:
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• Observed state sequence y = (y1, y2, . . . , yT ) with observed states m ∈ {1, . . . ,M}.

• Hidden state sequence z = (z1, z2, . . . , zT ) with hidden states s ∈ {1, . . . , S}.

• Transition matrix A = {asr} of size S × S, where asr is the probability of moving from
the hidden state s at time t− 1 to the hidden state r at time t:

asr = P (zt = r|zt−1 = s); s, r ∈ {1, . . . , S}.

We only consider homogeneous HMMs, where the transition probabilities asr are con-
stant over time.

• Emission matrix B = {bs(m)} of size S ×M , where bs(m) is the probability of the
hidden state s emitting the observed state m:

bs(m) = P (yt = m|zt = s); s ∈ {1, . . . , S},m ∈ {1, . . . ,M}.

• Initial probability vector π = {πs} of length S, where πs is the probability of starting
from the hidden state s:

πs = P (z1 = s); s ∈ {1, . . . , S}.

The (first order) Markov assumption states that the hidden state transition probability at
time t only depends on the hidden state at the previous time point t− 1:

P (zt|zt−1, . . . , z1) = P (zt|zt−1). (1)

Also, the observation at time t is only dependent on the current hidden state, not on previous
hidden states or observations:

P (yt|yt−1, . . . , y1, zt, . . . , z1) = P (yt|zt). (2)

For a more detailed description of hidden Markov models, see e.g. Rabiner (1989), MacDonald
and Zucchini (1997), and Durbin et al. (1998).

HMM for multiple sequences

We can also fit the same HMM for multiple subjects; instead of one observed sequence y we
have N sequences as Y = (y1, . . . ,yN )>, where the observations yi = (yi1, . . . , yiT ) of each
subject i take values in the observed state space. Observed sequences are assumed to be
mutually independent given the hidden states. The observations are assumed to be generated
by the same model, but each subject has its own hidden state sequence.

HMM for multichannel sequences

In the case of multichannel sequence data, such as the example described in section 2.1, for
each subject i there are C parallel sequences. Observations are now of the form yitc, i =
1, . . . , N ; t = 1 . . . , T ; c = 1 . . . , C, so that our complete data is Y = {Y 1, . . . , Y C}. In
seqHMM, multichannel data are handled as a list of C data frames of size N × T . We also
define Yi as all the observations corresponding to subject i.
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We apply the same latent structure for all channels. In such a case the model has one transition
matrix A but several emission matrices B1, . . . , BC , one for each channel. We assume that
the observed states in different channels at a given time point t are independent of each other
given the hidden state at t, i.e., P (yit|zit) = P (yit1|zit) · · ·P (yitC |zit).
Sometimes the independence assumption does not seem theoretically plausible. For example,
even conditioning on a hidden state representing a general life stage, are marital status and
parenthood truly independent? On the other hand, given a person’s religious views, could
their opinions on abortion and gay marriage be though as independent?

If the goal is to use hidden Markov models for prediction or simulating new sequence data,
the analyst should carefully check the validity of independence assumptions. However, if the
goal is merely to describe structures and compress information, it can be useful to accept the
independence assumption even though it is not completely reasonable in a theoretical sense.
When using multichannel sequences, the number of observed states is smaller, which leads
to a more parsimonious representation of the model and easier inference of the phenomenon.
Also due to the decreased number of observed states, the number of parameters of the model
is decreased leading to the improved computational efficiency of model estimation.

The multichannel approach is particularly useful if some of the channels are only partially
observed; combining missing and non-missing information into one observation is usually
problematic. One would have to decide whether such observations are coded completely miss-
ing, which is simple but loses information, or whether all possible combinations of missing
and non-missing states are included, which grows the state space larger and makes the inter-
pretation of the model more difficult. In the multichannel approach the data can be used as
it is.

Missing data

Missing observations are handled straightforwardly in the context of HMMs. When obser-
vation yitc is missing, we gain no additional information regarding hidden states. In such a
case, we set the emission probability bs(yitc) = 1 for all s ∈ 1, . . . , S. Sequences with varying
lengths are handled by setting missing values before and/or after the observed states.

Log-likelihood and parameter estimation

The unknown transition, emission and initial probabilities are commonly estimated via max-
imum likelihood. The log-likelihood for multiple multichannel sequences is written as

logL =

N∑

i=1

logP (Yi|M) , (3)

where Yi are the observed sequences in channels c = 1, . . . , C for subject i and M describes
the model and its parameters {π,A,B1, . . . , BC}. The probability of the observation sequence
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of subject i given the model is

P (Yi|M) =
∑

all z

P (Yi|z,M)P (z|M)

=
∑

all z

P (z1|M)P (yi1|z1,M)

T∏

t=2

P (zt|zt−1,M)P (yit|zt,M)

=
∑

all z

πz1bz1(yi11) · · · bz1(yi1C)

T∏

t=2

[
azt−1ztbzt(yit1) · · · bzt(yitC)

]
,

(4)

where the hidden state sequences z = (z1, . . . , zT ) take all possible combinations of values
in the hidden state space {1, . . . , S} and where yit are the observations of subject i at t in
channels 1, . . . , C; πz1 is the initial probability of the hidden state at time t = 1 in sequence
z; azt−1zt is the transition probability from the hidden state at time t− 1 to the hidden state
at t; and bzt(yitc) is the probability that the hidden state of subject i at time t emits the
observed state at t in channel c.

For direct numerical maximization (DNM) of the log-likelihood, any general-purpose optimiza-
tion routines such as BFGS or Nelder–Mead can be used (with suitable reparameterizations).
Another common estimation method is the expectation–maximization (EM) algorithm, also
known as the Baum–Welch algorithm in the HMM context. The EM algorithm rapidly con-
verges close to a local optimum, but compared to DNM, the converge speed is often slow near
the optimum.

The probability (4) is efficiently calculated using the forward part of the forward–backward
algorithm (Baum and Petrie 1966; Rabiner 1989, see appendix B). The backward part of the
algorithm is needed for the EM algorithm, as well as for computation of analytical gradients
for derivative based optimization routines.

The estimation process starts by giving initial values to the estimates. Good starting values
are needed for finding the optimal solution in a reasonable time. In order to reduce the risk
of being trapped in a poor local maximum, a large number of initial values should be tested.

Inference on hidden states

Given our model and observed sequences, we can make several interesting inferences regard-
ing the hidden states. Forward probabilities αit(s) (Rabiner 1989) are defined as the joint
probability of hidden state s at time t and the observation sequences yi1, . . . ,yit given the
modelM, whereas backward probabilities βit(s) are defined as the joint probability of hidden
state s at time t and the observation sequences yi(t+1), . . . ,yiT given the model M.

From forward and backward probabilities we can compute the posterior probabilities of states,
which give the probability of being in each hidden state at each time point, given the observed
sequences of subject i. These are defined as

P (zit = s|Yi,M) =
αitβit

P (Yi|M)
. (5)

Posterior probabilities can be used to find the locally most probable hidden state at each
time point, but the resulting sequence is not necessarily globally optimal. To find the single
best hidden state sequence ẑi(Yi) = ẑi1, ẑi2, . . . , ẑiT for subject i, we maximize P (z|Yi,M) or,
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equivalently, P (z, Yi|M). A dynamic programming method, the Viterbi algorithm (Rabiner
1989, see appendix C), is used for solving the problem.

Model comparison

Models with the same number of parameters can be compared with the log-likelihood. For
choosing between models with a different number of hidden states, we need to take account
of the number of parameters. We define the Bayesian information criterion (BIC) as

BIC = −2 log(Ld) + p log

(
N∑

i=1

T∑

t=1

1

C

C∑

c=1

I(yitc observed)

)
, (6)

where Ld is computed using equation 3, p is the number of estimated parameters, I is the
indicator function, and the summation in the logarithm is the size of the data. If data
are completely observed, the summation is simplified to N × T . Missing observations in
multichannel data may lead to non-integer data size.

2.3. Clustering by mixture hidden Markov models

There are many approaches for finding and describing clusters or latent classes when working
with HMMs. A simple option is to group sequences beforehand (e.g. using sequence analysis
and some clustering method), after which one HMM is fitted for each cluster. This approach
is simple in terms of HMMs. Models with a different number of hidden states and initial
values are explored and compared one cluster at a time. HMMs are used for compressing
information and comparing different clustering solutions, e.g. finding the best number of
clusters. The problem with this solution is that it is, of course, very sensitive to the original
clustering and the estimated HMMs might not be well suited for borderline cases.

Instead of fixing sequences into clusters, it is possible to fit one model for the whole data
and determine clustering during modeling. Now sequences are not in fixed clusters but get
assigned to clusters with certain probabilities during the modeling process. In this section we
expand the idea of HMMs to mixture hidden Markov models (MHMMs). This approach was
formulated by van de Pol and Langeheine (1990) as a mixed Markov latent class model and
later generalized to include time-constant and time-varying covariates by Vermunt, Tran, and
Magidson (2008) (who named the resulting model as mixture latent Markov model, MLMM).
The MHMM presented here is a variant of MLMM where only time-constant covariates are
allowed. Time-constant covariates deal with unobserved heterogeneity and they are used for
predicting cluster memberships of subjects.

Mixture hidden Markov model

Assume that we have a set of modelsM = {M1, . . . ,MK}, whereMk = {πk, Ak, Bk
1 , . . . , B

k
C}

for k = 1, . . . ,K. For each subject Yi, denote P (Mk) = wk as the prior probability that
the observation sequences of subject i belongs to the submodel/cluster Mk. Now the log-
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likelihood is extended from equation (3) as

logL =
N∑

i=1

logP (Yi|M)

=

N∑

i=1

log

[
K∑

k=1

P (Mk)
∑

all z

P
(
Yi|z,Mk

)
P
(
z|Mk

)]

=
N∑

i=1

log

[
K∑

k=1

wk
∑

all z

πkz1b
k
z1(yi11) · · · bkz1(yi1C)

T∏

t=2

[
akzt−1ztb

k
zt(yit1) · · · bkzt(yitC)

]]
.

(7)

Compared to the usual hidden Markov model, there is an additional summation over the
clusters in equation (7), which seems to make the computations less straightforward than in
the non-mixture case. Fortunately, by redefining MHMM as a special type HMM allows us to
use standard HMM algorithms without major modifications. We combine the K submodels
into one large hidden Markov model consisting of

∑K
k=1 Sk states, where the initial state

vector contains elements of the form wkπ
k. Now the transition matrix is block diagonal

A =




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AK


 , (8)

where the diagonal blocks Ak, k = 1, . . . ,K, are square matrices containing the transition
probabilities of one cluster. The off-diagonal blocks are zero matrices, so transitions between
clusters are not allowed. Similarly, the emission matrices for each channel contain stacked
emission matrices Bk.

Covariates and cluster probabilities

Covariates can be added to MHMM to explain cluster memberships as in latent class analysis.
The prior cluster probabilities now depend on the subject’s covariate values xi and are defined
as multinomial distribution:

P (Mk|xi) = wik =
eβkxi

1 +
∑K

j=2 e
βjxi

. (9)

The first cluster is set as the reference by fixing β1 = 0. Note that by convention we use β
when referring to regression coefficients. It is not to be mixed with backward probabilities,
which are usually given the same notation.

As in MHMM without covariates, we can still use standard HMM algorithms with a slight
modification; we now allow initial state probabilities to vary between subjects. Of course, we
also need to estimate the coefficients β. For direct numerical maximization the modifications
are straightforward. In the EM algorithm, regarding the M-step for β, seqHMM uses Newton’s
method with analytical gradients and Hessian which are straightforward to compute given
all other model parameters. This Hessian can also be used for computing the conditional
standard errors of coefficients. For unconditional standard errors, which take account of
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possible correlation between the estimates of β and other model parameters, the Hessian is
computed using finite difference approximation of the Jacobian of the analytical gradients.

The posterior cluster probabilities P (Mk|Yi,xi) are obtained as

P (Mk|Yi,xi) =
P (Yi|Mk,xi)P (Mk|xi)

P (Yi|xi)

=
P (Yi|Mk,xi)P (Mk|xi)∑K
j=1 P (Yi|Mj ,xi)P (Mj |xi)

=
Lik
Li
,

(10)

where Li is the likelihood of the complete MHMM for subject i, and Lik is the likelihood
of cluster k for subject i. These are straightforwardly computed from forward probabilities.
Posterior cluster probabilities are used e.g. for computing classification tables.

2.4. Important special cases

The hidden Markov model is not the only important special case of the mixture hidden
Markov model. Here we cover some of the most important special cases that are included in
the seqHMM package.

Markov model

The Markov model (MM) is a special case of the HMM, where there is no hidden structure.
It can be regarded as an HMM where the hidden states correspond to the observed states
perfectly. Now the number of hidden states matches the number of the observed states. The
emission probability P (yit) = 1 if zt = yit and 0 otherwise, i.e., the emission matrices are
identity matrices. Note that for building Markov models the data must be in a single-channel
format.

Mixture Markov model

Like MM, the mixture Markov model (MMM) is a special case of the MHMM, where there is
no hidden structure. The likelihood of the model is now of the form

logL =

N∑

i=1

logP (yi|xi,Mk) =

N∑

i=1

log

K∑

k=1

P (Mk|xi)P (yi|xi,Mk)

=
N∑

i=1

log
K∑

k=1

P (Mk|xi)P (yi1|xi,Mk)
T∏

t=2

P (yit|yi(t−1),xi,Mk).

(11)

Again, the data must be in a single-channel format.

Latent class model

Latent class models (LCM) are another class of models that are often used for longitudinal
research. Such models have been called, e.g., (latent) growth models, latent trajectory models,
or longitudinal latent class models (Vermunt et al. 2008; Collins and Wugalter 1992). These
models assume that dependencies between observations can be captured by a latent class, i.e.,
a time-constant variable which we call cluster in this paper.
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The seqHMM includes a function for fitting an LCM as a special case of MHMM where there
is only one hidden state for each cluster. The transition matrix of each cluster is now reduced
to a scalar 1 and the likelihood is of the form

logL =
N∑

i=1

logP (Yi|xi,Mk) =
N∑

i=1

log
K∑

k=1

P (Mk|xi)P (Yi|xi,Mk)

=

N∑

i=1

log

K∑

k=1

P (Mk|xi)
T∏

t=1

P (yit|xi,Mk).

(12)

For LCMs, the data can consist of multiple channels, i.e., the data for each subject consists
of multiple parallel sequences. It is also possible to use seqHMM for estimating LCMs for
non-longitudinal data with only one time point, e.g. to study multiple questions in a survey.

3. Package features

The purpose of the seqHMM package is to offer tools for the whole HMM analysis process from
sequence data manipulation and description to model building, evaluation, and visualization.
Naturally, seqHMM builds on other packages, especially the TraMineR package designed for
sequence analysis. For constructing, summarizing, and visualizing sequence data, TraMineR
provides many useful features. First of all, we use the TraMineR’s stslist class as the
sequence data structure of seqHMM. These state sequence objects have attributes such as
color palette and alphabet, and they have specific methods for plotting, summarizing, and
printing. Many other TraMineR’s features for plotting or data manipulation are also used in
seqHMM.

On the other hand, seqHMM extends the functionalities of TraMineR, e.g. by providing
easy-to-use plotting functions for multichannel data and a simple function for converting such
data into single-channel representation.

Other significant packages include the igraph package (Csardi and Nepusz 2006), which is used
for drawing graphs of HMMs, and the nloptr package (Ypma, Borchers, and Eddelbuettel
2014; Johnson 2014), which is used in direct numerical optimization of model parameters.
The computationally intensive parts of the package are written in C++ with the help of the
Rcpp (Eddelbuettel and François 2011; Eddelbuettel 2013) and RcppArmadillo (Eddelbuettel
and Sanderson 2014) packages.

In addition of using C++ for major algorithms, seqHMM also supports parallel computation
via the OpenMP interface by dividing computations for subjects between threads. The user
can choose the number of parallel threads (typically the number of cores) to use for the specific
task, using the threads argument where available.

Table 3 shows the functions and methods available in the seqHMM package. The package
includes functions for estimating and evaluating HMMs and MHMMs as well as visualizing
data and models. There are some functions for manipulating data and models, and for
simulating model parameters or sequence data given a model. In the next sections we discuss
the usage of these functions more thoroughly.

As the straightforward implementation of the forward–backward algorithm poses a great risk
of under- and overflow, typically forward probabilities are scaled so that there should be no
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Table 1: Functions and methods in the seqHMM package
Usage Functions/methods

Model construction

build_hmm, build_mhmm, build_mm, build_mmm,
build_lcm, simulate_initial_probs,
simulate_transition_probs,
simulate_emission_probs

Model estimation fit_model

Model visualization plot, ssplot, mssplot

Model inference logLik, BIC, summary

State inference
hidden_paths, posterior_probs,
forward_backward

Data visualization ssplot, ssp + plot, ssp + gridplot

Data and model manipulation
mc_to_sc, mc_to_sc_data, trim_model,
separate_mhmm

Data simulation simulate_hmm, simulate_mhmm

underflow. Although scaling is often sufficient for forward algorithm, it can still result in
an overflow problem in the backward algorithm. This is especially true in the case of global
optimization algorithms which can search infeasible areas of the parameter space. Thus,
seqHMM also supports computation on the logarithmic scale in most of the algorithms, which
further reduces the numerical unstabilities. On the other hand, as there is a need to back-
transform to the natural scale during the algorithms, the log-space approach is somewhat
slower than the scaling approach. Therefore, the default option is to use the scaling approach,
which can be changed to the log-space approach by setting the log_space argument to TRUE

e.g. in fit_model.

3.1. Building and fitting models

A model is first constructed using an appropriate build function. As Table 3 illustrates, several
such functions are available: build_hmm for hidden Markov models, build_mhmm for mixture
hidden Markov models, build_mm for Markov models, build_mmm for mixture Markov models,
and build_lcm for latent class models.

Build functions check that the data and matrices are of the right form and create an object of
class hmm (for HMMs and MMs) or mhmm (for MHMMs, MMMs, and LCMs). For the latter,
covariates can be omitted or added with the usual formula argument using symbolic formulas
familiar from e.g. the lm function. Even though missing observations are allowed in sequence
data, covariates must be completely observed.

After a model is constructed, model parameters are estimated with the fit_model function.
MMs, MMMs, and LCMs are handled internally as their more general counterparts, except
in the case of print methods, where some reduntant parts of the model are not printed.

In all models, initial zero probabilities are regarded as structural zeroes and only positive
probabilities are estimated. Thus it is easy to construct e.g. a left-to-right model by defining
the transition probability matrix as an upper triangular matrix.

The fit_model function provides three estimation steps: 1) EM algorithm, 2) global DNM,
and 3) local DNM. The user can call for one method or any combination of these steps, but
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should note that they are performed in the above-mentioned order. At the first step starting
values are based on the model object given to fit_model. Results from a former step are
then used as starting values in the latter. Exceptions to this are some global optimization
algorithms, which do not use initial values (because of this, performing just the local DNM
step can lead to a better solution than global DNM with a small number of iterations).

In order to reduce the risk of being trapped in a poor local optimum, a large number of initial
values should be tested. The seqHMM package strives to automize this. One option is to run
the EM algorithm multiple times with more or less random starting values for transition or
emission probabilities or both. These are called for in the control_em argument. Although
not done by default, this method seems to perform very well as the EM algorithm is relatively
fast compared to DNM.

Another option is to use the multilevel single-linkage method (MLSL) (Rinnooy Kan and
Timmer 1987a,b). It draws multiple random starting values and performs local optimization
from each starting point. The LDS modification uses low-discrepancy sequences instead of
random numbers as starting points and should improve the convergence rate (Kucherenko
and Sytsko 2005).

By default, the fit_model function uses the EM algorithm with a maximum of 1000 itera-
tions and skips the local and global DNM steps. For the local step, the L-BFGS algorithm
(Nocedal 1980; Liu and Nocedal 1989) is used by default. Setting global_step = TRUE, the
function performs MSLS-LDS with the L-BFGS as the local optimizer. In order to reduce the
computation time spent on non-global optima, the convergence tolerance of the local opti-
mizer is set relatively large, so again local optimization should be performed at the final step.
For DNM steps (2 and 3), any optimization method available in the nloptr package can be
used.

There are some theoretical guarantees that the MLSL method finds all local optima in a finite
number of local optimizations. Of course, it might not always succeed in a reasonable time.
Also, it requires setting boundaries for the parameter space, which is not always straightfor-
ward. In DNM steps the transition, emission, and initial probabilities are estimated using
unconstrained reparameterization using the softmax function (a generalization of the logistic
function), but good boundaries are essential for the efficient use of the MLSL algorithm. If
the boundaries are too strict, the global optimum cannot be found; if too wide, the probability
of finding the global optimum is decreased. The fit_model function uses starting values or
results from the preciding estimation step to adjust the boundaries. EM can help in setting
good boundaries, but in some cases it can also lead to worse results. For finding the best
solution, it is advisable to try a couple of different settings; e.g. randomized EM, EM followed
by MLSL, a couple of EM iterations followed by MLSL, and only MLSL.

State and model inference

In seqHMM, forward and backward probabilities are computed using the forward_backward

function, either on the logarithmic scale or in the form of scaled probabilities, depending on
the argument log_space. Posterior probabilities are obtained from the posterior_probs

function. In seqHMM, the most probable paths are computed with the hidden_paths function.
For details of the Viterbi and the forward–backward algorithm, see e.g. Rabiner (1989).

The seqHMM package provides the logLik method for computing the log-likelihood of a model.
The method returns an object of class logLik which is compatible with the generic information
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criterion functions AIC and BIC of R. When constructing the hmm and mhmm objects via model
building functions, the number of observations and the number of parameters of the model
are stored as attributes nobs and df which are extracted by the logLik method for the
computation of information criteria. The number of model parameters defined from the
initial model by taking account of the parameter redundancy constraints (stemming from
sum-to-one constraints of transition, emission, and initial state probabilities) and by defining
all zero probabilities as structural, fixed values.

The summary method automatically computes some features for the MHMM, MMM, and the
latent class model, e.g. standard errors for covariates and prior and posterior cluster proba-
bilities for subjects. A print method for this summary shows an output of the summaries:
estimates and standard errors for covariates, log-likelihood and BIC, and information on most
probable clusters and prior probabilities.

3.2. Visualizing sequence data

Good graphical presentations of data and models are useful during the whole analysis process
from the first glimpse into the data to the model fitting and presentation of results. The
TraMineR package provides nice plotting options and summaries for simple sequence data,
but at the moment there is no easy way of plotting multichannel data. We propose to use a
so-called stacked sequence plot (ssp), where the channels are plotted on top of each other so
that the same row in each figure matches the same subject. Figure 1 illustrates an example
of a stacked sequence plot with the ten first sequences of the biofam data set. The code for
creating the figure is shown in section 4.1.

The ssplot function is the simplest way of plotting multichannel sequence data in seqHMM.
It can be used to illustrate state distributions or sequence index plots. The former is the
default option, since index plots can take a lot of time and memory if data are large. Figure
2 illustrates a default plot which the user can modify in many ways (see the code in section
4.1). More examples are shown in the documentation pages of the ssplot function.

Another option is to define function arguments with the ssp function and then use previously
saved arguments for plotting with a simple plot method. It is also possible to combine several
ssp figures into one plot with the gridplot function. Figure 3 illustrates an example of such a
plot showing sequence index plots for women and men (see the code in section 4.1). Sequences
are ordered in a more meaningful order using multidimensional scaling scores of observations
(computed from sequence dissimilarities). After defining the plot for one group, a similar plot
for other groups is easily defined using the update function.

The gridplot function is useful for showing different features for the same subjects or the
same features for different groups. The user has a lot of control over the layout, e.g. dimensions
of the grid, widths and heights of the cells, and positions of the legends.

We also provide a function mc_to_sc_data for the easy conversion of multichannel sequence
data into a single channel representation. Plotting combined data is often useful in addition
to (or instead of) showing separate channels.

3.3. Visualizing hidden Markov models

For the easy visualization of the model structure and parameters, we propose plotting HMMs
as directed graphs. Such graphs are easily called with the plot method, with an object of
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Figure 1: Stacked sequence plot of the first ten individuals in the biofam data plotted with
the ssplot function. The top plot shows the original sequences, and the three bottom plots
show the sequences in the separate channels for the same individuals. The sequences are in
the same order in each plot, i.e., the same row always matches the same individual.
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Figure 2: Stacked sequence plot of annual state distributions in the three-channel biofam
data. This is the default output of the ssplot function.
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Figure 3: Showing state distribution plots for women and men in the biofam data. Two figures
were defined with the ssp function and then combined into one figure with the gridplot

function.

class hmm as an argument. Figure 4 illustrates a five-state HMM. The code for producing the
plot is shown in section 4.4.

Hidden states are presented with pie charts as vertices (or nodes), and transition probabilities
are shown as edges (arrows, arcs). By default, the higher the transition probability, the thicker
the stroke of the edge. Emitted observed states are shown as slices in the pies. For gaining a
simpler view, observations with small emission probabilities (less than 0.05 by default) can be
combined into one category. Initial state probabilities are given below or next to the respective
vertices. In the case of multichannel sequences, the data and the model are converted into a
single-channel representation with the mc_to_sc function.

A simple default plot is easy to call, but the user has a lot of control over the layout. Figure
5 illustrates another possible visualization of the same model. The code is shown in section
4.4.

For defining the colors, the plotting functions use colorpalette data, which is a list of ready-
made color palettes with 1–200 distinct colors. It is provided in the package, so the user can
easily modify colors in the plots. See also the RColorBrewer package (Neuwirth 2014) for
more color palettes with distinct colors. The plot_colors function is provided for the easy
visualization of color palettes.

The ssplot function (see section 3.2) also accepts an object of class hmm. The user can easily
choose to plot observations, most probable paths of hidden states, or both. The function
automatically computes hidden paths if the user does not provide them.

Figure 6 shows observed sequences with the most probable paths of hidden states given the
model. Sequences are sorted according to multidimensional scaling scores computed from
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Figure 6: Using the ssplot function for an hmm object makes it easy to plot the observed
sequences together with the most probable paths of hidden states given the model.

hidden paths. The code for creating the plot is shown in section 4.4.

The plot method works for mhmm objects as well. The user can choose between an interactive
mode, where the model for each (chosen) cluster is plotted separately, and a combined plot
with all models in one plot. The equivalent to the ssplot function for MHMMs is mssplot.
It plots stacked sequence plots separately for each cluster. If the user asks to plot more than
one cluster, the function is interactive by default.

4. Examples with life course data

In this section we show examples of using the seqHMM package. We start by constructing
and visualizing sequence data, then show how HMMs are built and fitted for single-channel
and multichannel data, then move on to clustering with MHMMs, and finally illustrate how
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to plot HMMs.

Throughout the examples we use the same biofam data described in section 2.1. We use
both the original single-channel data and a three-channel modification named biofam3c,
which is included in the seqHMM package. For more information on the conversion, see the
documentation of the biofam3c data.

4.1. Sequence data

Before getting to the estimation, it is good to get to know the data. We start by loading the
original biofam data as well as the three-channel version of the same data, biofam3c. We
convert the data into the stslist form with the seqdef function. We set the starting age at
15 and set the order of the states with the alphabet argument (for plotting). Colors of the
states can be modified and stored as an attribute in the stslist object – this way the user
only needs to define them once.

R> library("seqHMM")

R>

R> data("biofam", package = "TraMineR")

R> biofam_seq <- seqdef(

+ biofam[, 10:25], start = 15,

+ labels = c("parent", "left", "married", "left+marr", "child",

+ "left+child", "left+marr+ch", "divorced"))

R>

R> data("biofam3c")

R> marr_seq <- seqdef(biofam3c$married, start = 15,

+ alphabet = c("single", "married", "divorced"))

R> child_seq <- seqdef(biofam3c$children, start = 15,

+ alphabet = c("childless", "children"))

R> left_seq <- seqdef(biofam3c$left, start = 15,

+ alphabet = c("with parents", "left home"))

R>

R> attr(marr_seq, "cpal") <- c("violetred2", "darkgoldenrod2", "darkmagenta")

R> attr(child_seq, "cpal") <- c("darkseagreen1", "coral3")

R> attr(left_seq, "cpal") <- c("lightblue", "red3")

Here we show codes for creating Figures 2, 1, and 3. Such plots give a good glimpse into
multichannel data.

Figure 2: Plotting state distributions

We start by showing how to call the simple default plot of Figure 2 in section 3.3. By default
the function plots state distributions (type = "d"). Multichannel data are given as a list
where each component is an stslist corresponding to one channel. If names are given, those
will be used as labels in plotting.

R> ssplot(list("Marriage" = marr_seq, "Parenthood" = child_seq,

+ "Residence" = left_seq))



Satu Helske, Jouni Helske 19

Figure 1: Plotting sequences

Figure 1 with the whole sequences requires modifying more arguments. We call for sequence
index plots (type = "I") and sort sequences according to the first channel (the original
sequences), starting from the beginning. We give labels to y and x axes and modify the
positions of y labels. We give a title to the plot but omit the number of subjects, which
by default is printed. We set the proportion of the plot given to legends and the number of
columns in each legend.

R> ssplot(list(biofam_seq[1:10,], marr_seq[1:10,], child_seq[1:10,],

+ left_seq[1:10,]),

+ sortv = "from.start", sort.channel = 1, type = "I",

+ ylab = c("Original", "Marriage", "Parenthood", "Residence"),

+ xtlab = 15:30, xlab = "Age", title = "Ten first sequences",

+ title.n = FALSE, legend.prop = 0.63, ylab.pos = c(1, 1.5),

+ ncol.legend = c(3, 1, 1, 1))

Figure 3: Plotting sequence data in a grid

For using the gridplot function, we first need to specify the ssp objects of the separate
plots. Here we start by defining the first plot for women with the ssp function. It stores the
features of the plot, but does not draw anything. We want to sort sequences according to
multidimensional scaling scores. These are computed from optimal matching dissimilarities
for observed sequences. Any dissimilarity method available in TraMineR can be used instead
of the default (see the documentation of the seqdef function for more information). We want
to use the same legends for the both plots, so we remove legends from the ssp objects.

Since we are going to plot to two similar figures, one for women and one for men, we can pass
the first ssp object to the update function. This way we only need to define the changes and
omit everything that is similar.

These two ssp objects are then passed on to the gridplot function. Here we make a 2 × 2
grid, of which the bottom row is for the legends, but the function can also automatically
determine the number of rows and columns and the positions of the legends.

R> ssp_f <- ssp(

+ list(marr_seq[biofam3c$covariates$sex == "woman",],

+ child_seq[biofam3c$covariates$sex == "woman",],

+ left_seq[biofam3c$covariates$sex == "woman",]),

+ type = "I", sortv = "mds.obs", withlegend = FALSE,

+ title = "Women", ylab.pos = c(1, 2, 1),

+ ylab = c("Married", "Children", "Residence"), xtlab = 15:30)

R>

R> ssp_m <- update(ssp_f, title = "Men",

+ x = list(marr_seq[biofam3c$covariates$sex == "man",],

+ child_seq[biofam3c$covariates$sex == "man",],

+ left_seq[biofam3c$covariates$sex == "man",]))

R>
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Figure 7: Three-channel biofam3c data converted into single-channel data.

R> gridplot(list(ssp_f, ssp_m), ncol = 2, nrow = 2, byrow = TRUE,

+ legend.pos = "bottom", legend.pos2 = "top", row.prop = c(0.65, 0.35))

Figure 7: Converting multichannel data to single-channel

When working with multiple channels, it is useful to look at the combined data as well. The
mc_to_sc_data converts the data into a single-channel representation. At each time point of
each subject, the states in each channel are combined into one. Note that here the number
of combined observations (10 states) is larger than in the original data (8 states), because we
have split the original divorced state into three.

Also single-channel data can be plotted with the ssplot function. Figure 7 illustrates the
state distributions of the combined data. Here we ask to show the y-axis, which by default is
omitted for gaining a less cluttered output in stacked plots.

R> sc_data <- mc_to_sc_data(list(marr_seq, child_seq, left_seq))

R>

R> ssplot(sc_data, type = "d", ylab = "Proportion", yaxis = TRUE,

+ xtlab = 15:30, xlab = "Age", title = "Combined states",

+ legend.prop = 0.4)

4.2. Hidden Markov models

We start by showing how to fit an HMM for single-channel biofam data.

First we set starting values for initial, transition, and emission probabilities. Here the hidden
states are regarded as more general life stages, during which individuals are more likely to
meet certain observable life events. We expect that the life stages are somehow related to age,
so constructing starting values from the observed state frequencies by age group seems like
an option worth a try (these are easily computed using the seqstatf function in TraMineR).



Satu Helske, Jouni Helske 21

We construct a model with four hidden states using age groups 15–18, 19–21, 22–24, 25–27
and 28–30.

The fit_model function uses the probabilities given by the initial model as starting values
when estimating the parameters. Only positive probabilities are estimated; zero values are
fixed to zero. Thus, the amount of 0.1 is added to each value in case of zero-frequencies in
some categories (at this point we do not want to fix any parameters to zero). Each row is
divided by its sum, so that the row sums equal to 1.

R> sc_init <- c(0.9, 0.06, 0.02, 0.01, 0.01)

R>

R> sc_trans <- matrix(

+ c(0.80, 0.10, 0.05, 0.03, 0.02,

+ 0.02, 0.80, 0.10, 0.05, 0.03,

+ 0.02, 0.03, 0.80, 0.10, 0.05,

+ 0.02, 0.03, 0.05, 0.80, 0.10,

+ 0.02, 0.03, 0.05, 0.05, 0.85),

+ nrow = 5, ncol = 5, byrow = TRUE)

R>

R> sc_emiss <- matrix(NA, nrow = 5, ncol = 8)

R> sc_emiss[1,] <- seqstatf(biofam_seq[, 1:4])[, 2] + 0.1

R> sc_emiss[2,] <- seqstatf(biofam_seq[, 5:7])[, 2] + 0.1

R> sc_emiss[3,] <- seqstatf(biofam_seq[, 8:10])[, 2] + 0.1

R> sc_emiss[4,] <- seqstatf(biofam_seq[, 11:13])[, 2] + 0.1

R> sc_emiss[5,] <- seqstatf(biofam_seq[, 14:16])[, 2] + 0.1

R> sc_emiss <- sc_emiss / rowSums(sc_emiss)

The model is initialized with the build_hmm function. It checks that the data and matrices
are of the right form and creates an object of class hmm. Markov models are constructed in a
similar way using the build_mm function, only emission probabilities are omitted.

R> sc_initmod <- build_hmm(observations = biofam_seq, initial_probs = sc_init,

+ transition_probs = sc_trans, emission_probs = sc_emiss)

We then use the fit_model function for parameter estimation. Here we estimate the model
using the default options of the EM step.

R> sc_fit <- fit_model(sc_initmod)

The fitting function returns the estimated model, its log-likelihood, and information on the
optimization steps.

R> sc_fit$logLik

[1] -16781.99
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R> sc_fit$model

Initial probabilities :

State 1 State 2 State 3 State 4 State 5

0.986 0.000 0.014 0.000 0.000

Transition probabilities :

to

from State 1 State 2 State 3 State 4 State 5

State 1 0.786 0.175 0.0391 0.00000 0.0000

State 2 0.000 0.786 0.0751 0.07568 0.0631

State 3 0.000 0.000 0.8898 0.08342 0.0267

State 4 0.000 0.000 0.0000 0.78738 0.2126

State 5 0.000 0.000 0.0000 0.00136 0.9986

Emission probabilities :

symbol_names

state_names 0 1 2 3 4 5 6 7

State 1 1 0 0.00000 0.000 0.00000 0.0000 0.000 0.0000

State 2 1 0 0.00000 0.000 0.00000 0.0000 0.000 0.0000

State 3 0 1 0.00000 0.000 0.00000 0.0000 0.000 0.0000

State 4 0 0 0.00195 0.992 0.00581 0.0000 0.000 0.0000

State 5 0 0 0.21508 0.000 0.00000 0.0246 0.713 0.0474

As a multichannel example we fit a 5-state model for the 3-channel data. Emission probabil-
ities are now given as a list of three emission matrices, one for each channel. The alphabet

function from the TraMineR package can be used to check the order of the observed states –
the same order is used in the build functions. Here we construct a left-to-right model where
transitions to earlier states are not allowed, so the transition matrix is upper-triangular. This
seems like a valid option from a life-course prespective. Also, in the previous single-channel
model of the same data the transition matrix was estimated almost upper triangular. We also
give names for channels – these are used when printing and plotting the model.

We estimate model parameters using the local step with the default L-BFGS algorithm using
parallel computation with 4 threads.

R> mc_init <- c(0.9, 0.05, 0.02, 0.02, 0.01)

R>

R> mc_trans <- matrix(

+ c(0.80, 0.10, 0.05, 0.03, 0.02,

+ 0, 0.90, 0.05, 0.03, 0.02,

+ 0, 0, 0.90, 0.07, 0.03,

+ 0, 0, 0, 0.90, 0.10,

+ 0, 0, 0, 0, 1),

+ nrow = 5, ncol = 5, byrow = TRUE)

R>

R>



Satu Helske, Jouni Helske 23

R> mc_emiss_marr <- matrix(

+ c(0.90, 0.05, 0.05,

+ 0.90, 0.05, 0.05,

+ 0.05, 0.90, 0.05,

+ 0.05, 0.90, 0.05,

+ 0.30, 0.30, 0.40),

+ nrow = 5, ncol = 3, byrow = TRUE)

R>

R> mc_emiss_child <- matrix(

+ c(0.9, 0.1,

+ 0.9, 0.1,

+ 0.1, 0.9,

+ 0.1, 0.9,

+ 0.5, 0.5),

+ nrow = 5, ncol = 2, byrow = TRUE)

R>

R> mc_emiss_left <- matrix(

+ c(0.9, 0.1,

+ 0.1, 0.9,

+ 0.1, 0.9,

+ 0.1, 0.9,

+ 0.5, 0.5),

+ nrow = 5, ncol = 2, byrow = TRUE)

R>

R> mc_initmod <- build_hmm(

+ observations = list(marr_seq, child_seq, left_seq),

+ initial_probs = mc_init, transition_probs = mc_trans,

+ emission_probs = list(mc_emiss_marr, mc_emiss_child, mc_emiss_left),

+ channel_names = c("Marriage", "Parenthood", "Residence"))

R>

R> # For CRAN vignette: load the estimated model object for speed-up

R> data("hmm_biofam")

R> # mc_fit <- fit_model(mc_initmod, em_step = FALSE, local_step = TRUE,

R> # threads = 4)

We store the model as a separate object for the ease of use and then compute BIC.

R> # Vignette: already loaded hmm_biofam

R> # hmm_biofam <- mc_fit$model

R> BIC(hmm_biofam)

[1] 28842.7

4.3. Clustering and mixture hidden Markov models

When fitting mixture hidden Markov models, the starting values are given as lists, with one
component per cluster. For multichannel data, emission probabilities are given as a list of
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lists. Here we fit a model for two clusters with 5 and 4 hidden states. For the cluster with
five states we use the same starting values as for the multichannel HMM described earlier.
Covariates are defined with the usual formula and data arguments.

Here we fit a model using 100 random restarts of the EM algorithm followed by the local
L-BFGS method. Again we use parallel computation.

R> mc_init2 <- c(0.9, 0.05, 0.03, 0.02)

R>

R> mc_trans2 <- matrix(

+ c(0.85, 0.05, 0.05, 0.05,

+ 0, 0.90, 0.05, 0.05,

+ 0, 0, 0.95, 0.05,

+ 0, 0, 0, 1),

+ nrow = 4, ncol = 4, byrow = TRUE)

R>

R> alphabet(marr_seq)

[1] "single" "married" "divorced"

R> mc_emiss_marr2 <- matrix(

+ c(0.90, 0.05, 0.05,

+ 0.90, 0.05, 0.05,

+ 0.05, 0.85, 0.10,

+ 0.05, 0.80, 0.15),

+ nrow = 4, ncol = 3, byrow = TRUE)

R>

R> alphabet(child_seq)

[1] "childless" "children"

R> mc_emiss_child2 <- matrix(

+ c(0.9, 0.1,

+ 0.5, 0.5,

+ 0.5, 0.5,

+ 0.5, 0.5),

+ nrow = 4, ncol = 2, byrow = TRUE)

R>

R> alphabet(left_seq)

[1] "with parents" "left home"

R> mc_emiss_left2 <- matrix(

+ c(0.9, 0.1,

+ 0.5, 0.5,

+ 0.5, 0.5,

+ 0.5, 0.5),
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+ nrow = 4, ncol = 2, byrow = TRUE)

R>

R>

R> init_mhmm <- build_mhmm(

+ observations = list(marr_seq, child_seq, left_seq),

+ initial_probs = list(mc_init, mc_init2),

+ transition_probs = list(mc_trans, mc_trans2),

+ emission_probs = list(list(mc_emiss_marr, mc_emiss_child, mc_emiss_left),

+ list(mc_emiss_marr2, mc_emiss_child2, mc_emiss_left2)),

+ formula = ~sex + birthyr, data = biofam3c$covariates,

+ cluster_names = c("Cluster 1", "Cluster 2"),

+ channel_names = c("Marriage", "Parenthood", "Residence"))

R>

R> # Vignette: One thread and less restarts

R> set.seed(1001)

R> mhmm_fit <- fit_model(

+ init_mhmm, local_step = TRUE, threads = 1,

+ control_em = list(restart = list(times = 10)))

R> mhmm <- mhmm_fit$model

The summary method automatically computes some features for an MHMM, e.g. standard er-
rors for covariates and prior and posterior cluster probabilities for subjects. A print method
shows some summaries of these: estimates and standard errors for covariates (see section
2.3), log-likelihood and BIC, and information on most probable clusters and prior probabili-
ties. Parameter estimates for transitions, emissions, and initial probabilities are omitted by
default. The classification table shows mean probabilities of belonging to each cluster by the
most probable cluster (defined from posterior cluster probabilities). A good model should
have values close to 1 on the diagonal.

R> summary(mhmm, conditional_se = FALSE)

Covariate effects :

Cluster 1 is the reference.

Cluster 2 :

Estimate Std. error

(Intercept) 99.3274 12.52341

sexwoman 0.1767 0.14137

birthyr -0.0522 0.00646

Log-likelihood: -12965.93 BIC: 26575.01

Means of prior cluster probabilities :

Cluster 1 Cluster 2

0.857 0.143
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Figure 8: A default plot of a hidden Markov model.

Most probable clusters :

Cluster 1 Cluster 2

count 1748 252

proportion 0.874 0.126

Classification table :

Mean cluster probabilities (in columns) by the most probable cluster (rows)

Cluster 1 Cluster 2

Cluster 1 0.9784 0.0216

Cluster 2 0.0125 0.9875

4.4. Visualizing hidden Markov models

The figures in section 3.3 illustrate the five-state multichannel HMM fitted in section 4.2.

A basic HMM graph is easily called with the plot method.

R> plot(hmm_biofam)

A simple default plot is a convenient way of visualizing the models during the analysis process,
but for publishing it is often better to modify the plot to get an output that best illustrates
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the structure of the model in hand. Figure 4 and Figure 5 show two variants of the same
model.

Figure 4: HMM plot with modifications

In Figure 4 we draw larger vertices, control the distances of initial probabilities (vertex labels),
set the curvatures of the edges, give a more descriptive label for the combined slices and give
less space for the legend.

R> plot(hmm_biofam, vertex.size = 50, vertex.label.dist = 1.5,

+ edge.curved = c(0, 0.6, -0.8, 0.6, 0, 0.6, 0),

+ legend.prop = 0.3, combined.slice.label = "States with prob. < 0.05")

Figure 5: HMM plot with a different layout

Here we position the vertices using given coordinates. Coordinates are given in a two-column
matrix, with x coordinates in the first column and y coordinates in the second. Arguments
xlim and ylim set the lengths of the axes, and rescale = FALSE prevents rescaling the
coordinates to the [−1, 1] × [−1, 1] interval (the default). We modify the positions of initial
probabilities, fix edge widths to 1, reduce the size of the arrows in edges, position legend
on top of the figure, and print labels in two columns in the legend. Parameter values are
shown with one significant digit. All emission probabilities are shown regardless of their value
(combine.slices = 0).

New colors are set from the ready-defined colorpalette data. The seqHMM package uses
these palettes when determining colors automatically, e.g. in the mc_to_sc function. Since
here there are 10 combined states, the default color palette is number 10. To get different
colors, we choose the ten first colors from palette number 14.

R> plot(hmm_biofam, layout = matrix(c(1, 2, 2, 3, 1,

+ 0, 0.5, -0.5, 0, -1), ncol = 2),

+ xlim = c(0.5, 3.5), ylim = c(-1.5, 1), rescale = FALSE,

+ vertex.label.pos = c("left", "top", "bottom", "right", "left"),

+ vertex.size = 50, edge.curved = FALSE, edge.width = 1,

+ edge.arrow.size = 1, withlegend = "left", legend.prop = 0.4,

+ label.signif = 1, combine.slices = 0,

+ cpal = colorpalette[[30]][c(14:5)])

Figure 6: ssplot for an HMM object

Plotting observed and hidden state sequences is easy with the ssplot function: the function
accepts an hmm object instead of (a list of) stslists. If hidden state paths are not provided,
the function automatically computes them when needed.

R> ssplot(hmm_biofam, plots = "both", type = "I", sortv = "mds.hidden",

+ xtlab = 15:30, xlab = "Age",

+ title = "Observed and hidden state sequences")
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4.5. Visualizing mixture hidden Markov models

Objects of class mhmm have similar plotting methods to hmm objects. The default way of
visualizing a model is to plot in an interactive mode, where the model for each cluster is
plotted separately. Another option is a combined plot with all models in one plot, although
it can be difficult to fit several graphs and legends in one figure.

Figure 9 illustrates the MHMM fitted in section 4.3. By setting interactive = FALSE and
nrow = 2 we plot graphs in a grid with two rows. The rest of the arguments are similar to
basic HMM plotting and apply for all the graphs.

R> plot(mhmm, interactive = FALSE, nrow = 2, legend.prop = 0.45,

+ vertex.size = 50, vertex.label.cex = 1.3, cex.legend = 1.3,

+ edge.curved = 0.65, edge.label.cex = 1.3, edge.arrow.size = 0.8)

The equivalent of the ssplot function for mhmm objects is mssplot. It shows data and/or
hidden paths one cluster at a time. The function is interactive if more than one cluster is
plotted (thus omitted here). Subjects are allocated to clusters according to the posterior
cluster probabilities.

R> mssplot(mhmm, ask = TRUE)

If the user wants more control than the default mhmm plotting functions offer, they can use the
separate_mhmm function to convert a mhmm object into a list of separate hmm objects. These
can then be plotted as any hmm objects, e.g. use ssp and gridplot for plotting sequences and
hidden paths of each cluster into the same figure.

5. Conclusion

Hidden Markov models are useful in various longitudinal settings with categorical observa-
tions. They can be used for accounting measurement error in the observations (e.g. drug use
as in Vermunt et al. 2008), for detecting true unobservable states (e.g. different periods of
the bipolar disorder as in Lopez 2008), and for compressing information accross several types
of observations. The life course example of this paper serves as a simple illustration of such a
problem, where hidden states are regarded as general life stages during which individuals are
more likely to encounter certain life events.

The seqHMM package is designed for analyzing categorical sequences with hidden Markov
models and mixture hidden Markov models, as well as their restricted variants Markov models,
mixture Markov models, and latent class models. It can handle many types of data from a
single sequence to multiple multichannel sequences. Covariates can be included in MHMMs
to explain cluster membership. The package also offers versatile plotting options for sequence
data and HMMs, and can easily convert multichannel sequence data and models into single-
channel representations.

Parameter estimation in (M)HMMs is often very sensitive to starting values. To deal with
that, seqHMM offers several fitting options with global and local optimization using direct
numerical estimation and the EM algorithm.
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Figure 9: Plotting submodels of an MHMM with the plot method.
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Almost all intensive computations are done in C++. The package also supports parallel
computation.

Especially combined with the TraMineR package, seqHMM is designed to offer tools for the
whole analysis process from data preparation and description to model fitting, evaluation, and
visualization. In future we could develop MHMMs to deal with time-varying covariates and
add an option to incorporate sampling weights for model estimation. Also, the computational
efficiency of the restricted variants of (M)HMMs, such as latent class models, could be im-
proved by taking account of the restricted structure of those models in EM and log-likelihood
computations.

A. Notations

Symbol Meaning

Yi Observation sequences of subject i, i = 1 . . . , N
yit Observations of subject i at time t, t = 1, . . . , T
yitc Observation of subject i at time t in channel c, c = 1, . . . , C
mc ∈ {1, . . . ,Mc} Observed state space for channel c
zit Hidden state at time t for subject i
s ∈ {1, . . . , S} Hidden state space
A = {asr} Transition matrix of size S × S
asr = P (zt = r|zt−1 = s) Transition probability between hidden states s and r
Bc = {bs(mc)} Emission matrix of size S ×Mc for channel c
bs(mc) = P (yitc = mc|zit = s) Emission probability of observed state mc in channel c given

hidden state s
bs(yit) = bs(yit1) · · · bs(yitC) Joint emission probability of observations at time t in channels

1, . . . , C given hidden state s
π = (π1, . . . , πS) Vector of initial probabilities
πs = P (z1 = s) Initial probability of hidden state s
ẑi(Yi) The most probable hidden state sequence for subject i
xi Covariates of subject i
Mk, k = 1, . . . ,K Submodel for cluster k (latent class/cluster)
wik Probability of cluster k for subject i
βk Regression coefficients for cluster k
{πk, Ak, Bk

1 , . . . , B
k
C , βk} Model parameters for cluster k

B. Forward–Backward Algorithm

The forward variable
αit(s) = P (yi1, . . . ,yit, zt = s|M)

is the joint probability of partial observation sequences for subject i until time t and the
hidden state s at time t given the model M . Let us denote bs(yit) = bs(yit1) · · · bs(yitC), the
joint emission probability of observations at time t in channels 1, . . . , C given hidden state s.
The forward variable can be solved inductively:

1. Initialization
αi1(s) = πsbs(yi1), i = 1, . . . , N, s = 1, . . . , S
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2. Induction
αi(t+1)(r) =

[∑S
s=1 αit(s)asr

]
br(yi(t+1)), t = 1, . . . , T − 1, r = 1, . . . , S

3. Termination
P (Yi|M) =

∑S
s=1 αiT (s)

The backward variable
βit(s) = P (yi(t+1), . . . ,yiT |zt = s,M)

is the joint probability of the partial observation sequence after time t and hidden state s at
time t given the model parameters M . (By convention we use the notion β for the backward
variable. This is not to be confused with the regression coefficients in the mixture HMM.)
This can also be solved inductively:

1. Initialization
βiT (s) = 1, i = 1, . . . , N, s = 1, . . . , S

2. Induction
βi(t+1)(s) =

[∑S
r=1 asr

]
bs(yi(t+1))βi(t+1)(r), t = T − 1, . . . , 1, s = 1, . . . , S

C. Viterbi Algorithm

We define the score

δit(s) = max
zi1zi2···zi(t−1)

P (zi1 · · · zit = s,yi1 · · ·yit|M), (13)

which is the highest probability of the hidden state sequence up to time t ending in state s.
By induction we have

δi(t+1)(r) =
[
max
s
δit(s)asr

]
· br(yi(t+1)). (14)

We collect the arguments maximizing equation (14) in an array ψit(r) to keep track of the
best hidden state sequence. The full Viterbi algorithm can be stated as follows:

1. Initialization
δi1(s) = πsbs(yi1), s = 1, . . . , S
ψi1(s) = 0

2. Recursion
δit(r) = maxs=1,...,S(δi(t−1)(s)asr)bh(yit),
ψit(s) = arg maxs=1,...,S(δi(t−1)(s)asr), s = 1, . . . , S; t = 2, . . . , T

3. Termination
P̂ = maxs=1,...,S(δiT (s))
ẑiT = arg maxs=1,...,S(δiT (s))

4. Sequence backtracking
ẑit = ψi(t+1)(ŝi(t+1)), t = T − 1, . . . , 1.
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To avoid underflow an error due to multiplying many small probabilities, the Viterbi algorithm
can be computed in log space, i.e., calculating log(δit(s)).
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Analysing Complex Life Sequence Data with
Hidden Markov Modelling

Satu Helske, Jouni Helske, and Mervi Eerola

Abstract When analysing complex sequence data with multiple channels (dimen-
sions) and long observation sequences, describing and visualizing the data can be
a challenge. Hidden Markov models (HMMs) and their mixtures (MHMMs) offer
a probabilistic model-based framework where the information in such data can be
compressed into hidden states (general life stages) and clusters (general patterns in
life courses).

We studied two different approaches to analysing clustered life sequence data
with sequence analysis (SA) and hidden Markov modelling. In the first approach
we used SA clusters as fixed and estimated HMMs separately for each group. In the
second approach we treated SA clusters as suggestive and used them as a starting
point for the estimation of MHMMs.

Even though the MHMM approach has advantages, we found it to be unfeasible
in this type of complex setting. Instead, using separate HMMs for SA clusters was
useful for finding and describing patterns in life courses.

1 Introduction

In social science applications, sequence analysis (SA) has gained more and more
interest since its introduction in the mid-80s. It is now central to the life course
perspective where it has been used to understand various trajectories and crucial
transitions (Gauthier et al., 2014).
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Often the goal in SA is to find a typology of life sequences described as categor-
ical time series data. Dissimilarities between each pair of sequences is determined
using some criterion. Common choices have been optimal matching (McVicar and
Anyadike-Danes, 2002) and Hamming distances (Hamming, 1950; Lesnard, 2010),
but many modifications to these and also more fundamentally different methods
have been developed (see, e.g., Aisenbrey and Fasang, 2010; Elzinga and Studer,
2014). Usually these dissimilarities are then grouped using cluster analysis such as
Ward’s agglomerative algorithm.

Life course data often consists of not only one sequence per subject, but mul-
tiple parallel sequences, one for each life domain of interest. We refer to complex
sequence data for data which consist of multiple subjects and long multichannel
(multidimensional) sequences.

One option for studying such data is to combine the sequences of each subject
time point by time point by extending the state space of observations. This approach
is simple if the number of possible combinations is moderate, but the combined
state space grows rapidly as the number of domains and/or states grows. Multichan-
nel sequence analysis (Gauthier et al., 2010) has been used for computing pairwise
dissimilarities and finding clusters in complex sequence data (see, e.g., Eerola and
Helske, 2016; Müller et al., 2012; Spallek et al., 2014). However, the dissimilarities
are largely affected by the chosen dissimilarity metric and the cluster allocation may
not be well suited to borderline cases. Also, describing, visualizing, and comparing
such data is difficult. We use hidden Markov modelling for gaining a probabilistic
descriptions of complex sequence data.

Hidden Markov models (HMMs) have been widely used in biological sequence
analysis (Durbin et al., 1998) and speech recognition (Rabiner, 1989). Typically, the
interest is in one long time series or another type of sequence. In social sciences this
approach has been called latent Markov modelling. Typically, the data consists of a
few measurements for multiple subjects.

Mixture hidden Markov model (MHMM) is a generalization of the HMM. There
we assume that the data consists of latent subpopulations with different model struc-
tures. In the context of social sciences, the mixture hidden Markov model approach
was formulated by van de Pol and Langeheine (1990) as the mixed Markov latent
class model and later generalized to include time-constant and time-varying covari-
ates by Vermunt et al. (2008) (who named the resulting model as the mixture latent
Markov model, MLMM).

Multidimensional responses are included in the formulation of the MLMM but,
to our knowledge, there are no empirical studies with complex life sequence data.
Few studies use (M)HMMs for multichannel social science data. Helske and Hel-
ske (2016) have illustrated HMMs and MHMMs for multichannel data but do not
conduct actual analyses with real data. Bartolucci et al. (2007) have studied crim-
inal trajectories using HMMs with multiple binary sequences per subject. The data
were large in the number of subjects (684 000 individuals), but sequences were
short (6 age categories) and they had fixed groups (men and women) instead of lat-
ent clusters. Crayen et al. (2012) have used a hierarchical MLMM for two-channel
categorical sequences to model dynamics of mood regulation of university students
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during one week. The sequences were longer (56 time points) but the number of
subjects is moderate (164) and they used only three states in both channels. In their
hierarchical model there were two parallel latent structures; one between the days
and the other within the days.

We study two approaches to analysing complex sequence data. The first is to
use sequence analysis and cluster analysis for finding a few sets of clusters and
then, separately for each cluster, to estimate an HMM. In this approach, hidden
Markov modelling is used to compress and describe life course information within
the clusters and to help choosing the number of clusters.

The second approach is to estimate a mixture model. Now the clustering is not
fixed but we get a probability of each individual belonging to each cluster. For large
data, estimating the MHMM with the maximum likelihood can be a complex and
time-consuming task unless the set of candidate models is restricted. We study the
option of using SA clusters and simple HMMs as a starting point for mixture mod-
elling.

2 Interpretation of hidden Markov models for life sequences

One rationale behind using the HMM approach for life sequence analysis was the
attempt to identify similar life course patterns based on similar hidden state traject-
ories. The similarity of hidden state sequences can be attributed to both external
factors, which are common to groups of populations, or to internal behavioural sim-
ilarities between individuals with similar features. Finding hidden dynamics is thus
important for analysing and grouping life courses and also for understanding rela-
tionships between factors that are measured. The significance of hidden states in life
sequence data is dependent on the chosen structure of the model. The goals of our
analysis were two-folded:

1. to group individuals with similar life course patterns (clusters) and
2. to compress information in observed states across life domains to capture patterns

and dynamics within a group (hidden states)

The aim was to find hidden states that compress the information across several
life domains into more general life stages. These life stages could be either stable
episodes between two transitions (e.g., employed and married without children) or
characterized by transitions in some of the life domains (e.g., moving between un-
employment and short-term jobs). We restricted to left-to-right models where trans-
itions back to previous hidden states are not possible. Such representation makes it
easier to comprehend the overall dynamics within a group and is also natural from
the life course perspective: even though individuals may be in similar states at dif-
ferent times, the second time has a different history compared to the first time. E.g.,
there could be a group where, at some points of their lives, individuals are married
with children, then divorced for a while, and later again married with children (but
with the history of having experienced a divorce).
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3 Data

We illustrate the analysis of complex life sequence data using a subsample of the
German National Educational Panel Survey (NEPS) (Blossfeld et al., 2011).

We restricted to life courses of an age cohort born in 1955–1959. Only individu-
als who were born in Germany or moved there before age 14 were included.

The data consisted of monthly life statuses of 1731 individuals in three life do-
mains (career, partnerships, and parenthood) from age 15 to age 50. For each in-
dividual, there were three parallel sequences of length 434, which made altogether
2,253,762 data points. Using the monthly time scale allowed for detecting also smal-
ler fluctuations in life courses, e.g. recurrent transitions between unemployment and
employment.

3.1 Sequences

The sequences in three life domains were constructed as follows:

Career with 4 states:

• Studying (in school, vocational training, or vocational preparation)
• Employed (full-time or part-time)
• Unemployed
• Else (parental leave, military or non-military service, voluntary work, or other

gap in employment history)

Partnerships with 4 states:

• Single (never lived with a partner)
• Cohabiting
• Married/in a registered partnership
• Divorced/separated/widowed

Parenthood with 2 states:

• No children
• Has (had) children (biological, adopted, or foster children)

The coding for parenthood was very simple. A practical reason was that this
record was available for most individuals, whereas more detailed information was
often missing. On the other hand, we can argue that specifically the experience of
becoming a parent is relevant as one step in the developmental process into adult-
hood.

For the latter two life domains, the status of each month was usually determined
from the latest event. An exception was made for the rare partnerships that lasted
for less than a month; there separation was coded from the following month onward.
In a case of multiple records per month in the career domain, the final status was
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given according to assumed importance: school and vocational training came before
employment, which in turn dominated over vocational preparation, unemployment,
and other non-employment statuses.

Altogether 306 individuals (17.7%) had some missing information in one or two
life domains. Thus, at each time point we have at least some information from each
individual.

4 Hidden Markov models

In the context of hidden Markov models, observed states are determined via a
Markov process of hidden states. These hidden states cannot be observed dir-
ectly, but only through the sequence(s) of observations, since hidden states generate
(“emit”) observations on varying probabilities.

Assume we have multichannel sequence data for N individuals with C paral-
lel sequences of length T . Naturally, the following applies for single-channel data
(subjects with one sequence only) by setting C = 1. Let us denote the observation
in channel c, c = 1, . . . ,C, of individual i, i = 1, . . . ,N, at time t, t = 1, . . . ,T, with
yitc and the corresponding hidden state with zit . A discrete first order hidden Markov
model M is characterized by the following parameters:

• Initial probability of hidden state s:

πs = P(zi1 = s); s ∈ {1, . . . ,S}, for all i = 1, . . . ,N.

• Transition probability from hidden state s to hidden state r:

asr = P(zit = r|zi(t−1) = s); s,r ∈ {1, . . . ,S}, for all i = 1, . . . ,N.

• Emission probability of observed state mc in channel c given the hidden state s:

bs(mc) = P(yitc = mc|zit = s); s ∈ {1, . . . ,S}, mc ∈ {1, . . . ,Mc},
for all i = 1, . . . ,N. (1)

The (first order) Markov assumption states that the hidden state transition prob-
ability at time t only depends on the hidden state at the previous time point t−1:

P(zit |zi(t−1), . . . ,zi1) = P(zit |zi(t−1)). (2)

Also, the observed states at time t are independent of all other observations and
hidden states given the hidden state at t. For multichannel sequence data, we as-
sume the same latent structure applies for all channels, i.e., the hidden state at time
t for individual i generates the observed state yitc in all channels c. Observations
yit1, . . . ,yitC are assumed independent of each other given the hidden state zit , i.e.,
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P(yit |zit) = P(yit1|zit) · · ·P(yitC|zit). Fig. 1 illustrates an HMM with a hidden state
sequence and two channels.

zi1 zi2 zi3 ... ziT

yi11 yi21 yi31 ... yiT 1

yi12 yi22 yi32 ... yiT 2

Fig. 1 Illustration of the hidden Markov model structure for two-channel sequence data for indi-
vidual i with hidden states zi1 . . . ,ziT and observed states yi1c . . . ,yiT c,c = 1,2.

The log-likelihood for the HMM is written as

logL =
N

∑
i=1

logP(Yi|M ) , (3)

where Yi are the observed sequences in channels 1, . . . ,C for subject i and M de-
scribes the model and its parameters {π,A,B1, . . . ,BC}, where A = {asr} is a matrix
of transition probabilities and Bc = {bs(mc)} is a matrix of emission probabilities
for channel c. The probability of observation sequences for subject i given the model
is

P(Yi|M ) = ∑
all z

P(Yi|z,M )P(z|M )

= ∑
all z

P(z1|M )P(yi1|z1,M )
T

∏
t=2

P(zt |zt−1,M )P(yit |zt ,M )

= ∑
all z

πz1bz1(yi11) · · ·bz1(yi1C)
T

∏
t=2

[
azt−1zt bzt (yit1) · · ·bzt (yitC)

]
,

(4)

where the hidden state sequences z = (z1, . . . ,zT ) take all possible combinations of
values in the hidden state space {1, . . . ,S} and where yit are the observations of
subject i at t in channels 1, . . . ,C; πz1 is the initial probability of the hidden state at
time t = 1 in sequence z; azt−1zt is the transition probability from the hidden state at
time t−1 to the hidden state at t; and bzt (yitc) is the probability that the hidden state
of subject i at time t emits the observed state at t in channel c.
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4.1 Mixture hidden Markov model

The mixture hidden Markov model is, by definition, a mixture of simple hidden
Markov models. We assume that the population consists of subpopulations of in-
dividuals (latent classes or clusters) with different life patterns. Respectively, the
mixture model consists of varying submodels that characterize the clusters. Trans-
itions from one cluster to another are not allowed.

Assume that we have a set of HMMs M = {M 1, . . . ,M K}, where M k =
{πk,Ak,Bk

1, . . . ,B
k
C} for clusters k = 1, . . . ,K. We denote P(M k) = wk as the prior

probability that an arbitrary observation sequence is generated by the submodel M k

such that ∑K
k=1 wk = 1.

The log-likelihood of the MHMM is of the form

logL =
N

∑
i=1

logP(Yi|M )

=
N

∑
i=1

log

[
K

∑
k=1

P(M k)∑
all z

P
(

Yi|z,M k
)

P
(

z|M k
)]

=
N

∑
i=1

log

[
K

∑
k=1

wk ∑
all z

πk
z1

bk
z1
(yi11) · · ·bk

z1
(yi1C)

T

∏
t=2

[
ak

zt−1zt b
k
zt (yit1) · · ·bk

zt (yitC)
]]
.

(5)
For more detailed description of MHMMs, see Helske and Helske (2016) or Ver-

munt et al. (2008).

4.2 Model estimation

The log-likelihoods of (4) and (5) are efficiently calculated with the forward–back-
ward algorithm (Baum and Petrie, 1966; Rabiner, 1989). A common maximum
likelihood estimation method is the Baum–Welch algorithm, i.e., the expectation–
maximization (EM) algorithm in the HMM context.

The Baum–Welch algorithm requires starting values for model parameters. In
order to reduce the risk of being trapped in a poor local optimum, a large number
of initial values should be tested. Simpler models with few parameters are fast to
estimate; therefore, it is possible to fit the model numerous times with varying ran-
dom starting values for finding the model with the best likelihood. When the model
is large, estimation is more time-consuming and good starting values for model
parameters are useful or even essential.

The most probable path of hidden states for each subject given their observa-
tions and the model can be computed using the Viterbi algorithm (see, e.g., Rabiner,
1989). This path maximizes the probability of P(z|Yi,M ).
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The forward–backward algorithm can also be used for computing posterior
cluster probabilities (the probability that subject i belongs to a certain cluster) for
MHMMs. These can be used for classifying subjects into different groups.

4.3 Model comparison

Models with the same number of parameters can be compared with the value of the
log-likelihood function. For choosing between models with a different number of
hidden states, we need to take account of the number of parameters.

Bayesian information criterion (BIC) is the usual criterion for comparing (M)HMMs.
We define it as

BIC =−2log(L)+ p log

(
N

∑
i=1

T

∑
t=1

1
C

C

∑
c=1

I(yitc observed)

)
, (6)

where L is given in equation 3, p is the number of estimated parameters, I is the
indicator function, and the summation in the logarithm is the size of the data. If
data are completely observed, the summation is simplified to N× T . The smaller
the BIC, the better the model.

When computing the log-likelihood for the combined model with fixed SA
clusters we simply sum the log-likelihoods of the cluster-wise HMMs. BIC of the
combined model is determined as

BIC =−2×
K

∑
k=1

log(Lk)+
K

∑
k=1

pk log

(
N

∑
i=1

T

∑
t=1

1
C

C

∑
c=1

I(yitc observed)

)
, (7)

where Lk is the likelihood of the HMM of cluster k, pk is the number of estimated
parameters in the HMM for cluster k, and the summation in the logarithm is the size
of the full data set.

5 Visualizing sequence data and models

Visualization is an important tool throughout the analysis process from the first
glimpses into the data to presenting the results. As an example, we consider the
data and the HMM for one of the preliminary clusters described “Long education
and later family” (from the ten-cluster solution).

Fig. 2 illustrates a five-state HMM with the following life stages:

1. Single and (mostly) studying
2. Cohabiting, separated, or divorced; studying or employed
3. Married, studying or employed
4. Married with children, non-employed
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Fig. 2 Illustrating the hidden Markov model for the cluster of individuals with long education
and later family. Pies present five hidden states, with slices showing the emission probabilities
of combinations of observed states. States with emission probability less than 0.05 are combined
into one slice for easier interpretation. The edges show the transtion probabilities – the thicker
the edge, the higher the probability. Initial probabilities of the hidden states are given below
the pies. The descriptions of the combined states show career/partnership/parenthood statuses:
ST=studying, EM=employed, UN=unemployed, EL=else; S=single, C=cohabiting, M=married,
D=divorced/separated; NC=no children, CH=has child(ren).

5. Married with children, employed

The hidden states are described by the most probable emitted observations, but there
are also less probable states that are omitted from the plot for readability. E.g., the
second state also emits marriages with a small probability—from the most probable
hidden state paths in Fig. 3 we can see that these are marriages which end in divorce
relatively fast. We could interpret that the second hidden state describes a life stage
of searching for a partner before forming a long-lasting marriage.

All subjects start from the first state at age 15. At the start of the follow-up they
are all single and mostly studying. The most common transition is to the second
state, but the third state is quite probable also. Due to the monthly data, the transition
probabilities are small—individuals usually spend years in each state.

Most individuals move to the third hidden state which describes childless mar-
riage. It is the hidden state where individuals spend the least time on average. Trans-
itions to the fourth and the fifth hidden state are almost as common. These both de-
scribe parenthood; some move out of workforce for a while or until the end of the
follow-up, while some continue working.

6 Analysis

Estimating a large MHMM for complex sequence data can be difficult and time-
consuming unless the structure of the model is fixed or known, even approxim-
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Fig. 3 State distributions of combined observations (top) and sequences of observations in each
channel as well as the most probable paths of hidden states (bottom). Sequences are ordered by
multidimensional scaling scores. States 1–5 correspond to the hidden states presented in Fig. 1.
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ately. In other cases, the set of candidate models must be somehow restricted. In this
case we had little prior knowledge on the structure of the model; hence, how many
clusters to choose and how many hidden states to include in each cluster? As trans-
itions were frequent in some of the trajectories and infrequent in others, it was clear
that some of the clusters should contain more hidden states than others, leading to
an unfeasible large number of possible model structures.

We compared two different approaches for the analysis of complex sequence
data, of which both were conducted in a stepwise manner. The first two steps applied
for both approaches, whereas step 3 was different (denoted as 3a and 3b). More
detailed descriptions of the analysis process are given in the following sections.

1. Sequence analysis. Computing the dissimilarities between the subjects with the
Hamming distance. Using Ward’s hierarchical method for clustering individuals
with similar life courses. Choosing a set of reasonable clustering solutions for
preliminary analysis.

2. Hidden Markov models. Separately for each SA cluster, fitting simple HMMs
with a different number of hidden states. Choosing the best model for each pre-
liminary cluster.

3a. Combined HMMs. Constructing a combined model from separate HMMs (from
step 2), keeping parameters fixed. Computing the likelihood and BIC for com-
bined models with 7–12 clusters for determining the number of clusters. Com-
puting the most probable path of hidden states for each individual.

3b. Mixture hidden Markov models. For each clustering solution (7–12 clusters),
estimating an MHMM by using parameters of the corresponding HMMs (from
step 2) as starting values. Computing the likelihood and BIC of the MHMMs for
determining the number of clusters. Computing the most probable path of hidden
states for each individual.

6.1 Step 1: Sequence analysis and preliminary clustering

We started by applying multichannel sequence analysis and computed the dissimil-
arities between the sequences. These were then used in cluster analysis.

6.1.1 Sequence dissimilarities

We compared a few dissimilarity metrics that are suitable for multichannel data: op-
timal matching (OM), generalized Hamming distance (HAM), and dynamic Ham-
ming distance (DHD) (Lesnard, 2010). We chose the generalized Hamming distance
with theory-driven substitution costs (see Table 1). The metric compares observed
states time point by time point and gives a cost for mismatches. It generally works
relatively well in a problem where timing is important and also here resulted in
meaningful clusters with high goodness-of-fit (see Sect. 6.1.2).
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Table 1 Substitution costs for Hamming distances.

Career status → ST → EM → UN → EL → *

Studying (S)→ 0 3 2 1 0
Employed (EM)→ 3 0 2 2 0

Unemployed (UN)→ 2 2 0 1 0
Else (EL)→ 1 2 1 0 0

Missing (*)→ 0 0 0 0 0

Partnership status → S → C →M → D → *

Single (S)→ 0 2 2 3 0
Cohabiting (C)→ 2 0 1 2 0

Married (M)→ 2 1 0 2 0
Divorced/sep. (D)→ 3 2 2 0 0

Missing (*)→ 0 0 0 0 0

Parenthood status → NC → CH → *

No children (NC)→ 0 3 0
Has children (CH)→ 3 0 0

Missing (*)→ 0 0 0

6.1.2 Cluster analysis

Ward’s method was chosen for clustering since it typically produces usable and
relatively even-sized clusters compared to most of the other clustering methods
(Aassve et al., 2007; Helske et al., 2015). We chose six clustering solutions with
7–12 clusters for further examination. The choice was based on the dendrogram and
interpretability of the clusters. Ward’s method is agglomerative, so when two smal-
ler clusters are merged, all other clusters remain the same. This means that within
the six sets of clustering results there were only 7+2+2+2+2+2 = 17 distinct
clusters (see Fig. 4 for an illustration).

Table 2 shows the goodness-of-fit statistics for different clustering results and
dissimilarity metrics, as measured by the proportion of the variation explained by
the clusters (pseudo coefficient of determination (R2); see Studer et al., 2011). Here,
generalized Hamming distances resulted in meaningful clusters with a relatively
high goodness-of-fit. OM resulted in clusters with as high goodness-of-fit while
DHD resulted in somewhat lower values of R2 (though not by much). OM clusters
were similar to HAM clusters in many ways but had more variation in the timings
of first transitions into employment, partnerships, and parenthood.
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Fig. 4 Clustering structure for Ward’s agglomerative method shown for six sets of clustering res-
ults with 7–12 clusters.

Table 2 Proportion of variation covered by 7–12 clusters. Clustering was based on different dis-
similarity metrics; generalized Hamming distance (HAM), optimal matching (OM), and dynamic
Hamming distance (DHD)).

Clusters HAM OM DHD

7 0.38 0.38 0.35
8 0.40 0.40 0.37
9 0.42 0.42 0.38
10 0.43 0.43 0.40
11 0.44 0.44 0.41
12 0.44 0.45 0.42

6.2 Step 2: Simple hidden Markov models for clusters

At the next step, we estimated five HMMs with 4–9 hidden states separately for each
of the 16 clusters—fewer hidden states for simpler clusters, more for more complex
ones. Since the goal was to find life stages between adolescence and middle age,
having too few or too many hidden states was not plausible nor interpretational.

6.2.1 Model estimation

We set starting values for parameters by determining candidate hidden states from
observed data and re-estimated the model numerous times by altering these values
as follows. At first, we estimated the model 10,000 times with a large variation
in starting values. For each re-estimation step we added noise from the N(0,0.32)
distribution to the the original starting values (with proper scaling and correction of
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signs). The aim of this estimation was to broadly explore the parameter space and
to get closer to the global maximum.

To make sure that we were at or near the global optimum, we re-estimated the
model by using the model with the highest likelihood as a stating point, now adding
noise from the N(0,0.152) distribution. If the model with the highest likelihood
was found only a few times, similar estimation was repeated (again using the best
model as the new starting point) in order to be fairly certain to have found the global
optimum. For clusters with fewer members and models with fewer hidden states, the
first estimation step was often enough for finding the (assumed) global maximum.

6.2.2 Model comparison

For each cluster, the HMMs with a different number of hidden states were compared
to find the best model to use in the mixture models. BIC and other information
criteria are common choices for comparison of HMMs with different numbers of
hidden states. Another common option for model selection is cross-validation.

We chose to use BIC as it generally selects parsimonious models. BIC has been
proven consistent for ergodic stationary HMMs (Whiting and Pickett, 1988), but not
to left-to-right HMMs. Here, also BIC consistently chose models with more hidden
states and clusters than is interpretational or plausible.

A likely reason for poor performance of information criteria in this problem was
that we were comparing models which all were considerably simple compared to the
complexity of real life. The goal was to simplify and describe the overall patterns
and dynamics in life trajectories, not to find data-generating models.

However, we did use BIC as one source of information for choosing the number
of hidden states by looking for turning points in BIC after which additional hidden
states were not as profitable. In addition to BIC, the choice of the number of hidden
states was based on interpretability of the model and the prevalence of an additional
hidden state in the most probable hidden state paths—if a hidden state was “visited”
only rarely it was regarded as unnecessary.

6.3 Step 3 a: Combined HMMs

At this step we used the separate cluster-specific HMMs to construct combined mod-
els with 7–12 clusters. For each combined model, we computed the likelihood and
BIC to determine the best number of clusters.

The combined model with the smallest BIC was used for determining the best
number of clusters. Given the best clustering, we computed the most probable paths
of hidden states for each individual.
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6.4 Step 3 b: Mixture hidden Markov models

At this step we constructed six MHMMs with 7–12 clusters. We used the estimated
parameters of respective cluster-wise HMMs as starting values for mixture models.
To avoid non-structural zeros in starting values, we added a small amount of 0.001 to
each starting value (with proper scaling). We estimated models in a similar manner
to the previous step, by using randomized starting values—first with a larger noise
and, after getting closer to the optimum, again with a smaller noise.

6.5 Software

Analyses were conducted with the R software (R Core Team, 2015) by using pack-
ages TraMineR (Gabadinho et al., 2011) for sequence analysis, cluster (Maechler
et al., 2015) for cluster analysis, and seqHMM (Helske and Helske, 2016) for hid-
den Markov modelling.

7 Results

The number of hidden states per cluster varied between six and eight. We applied
both the combined model and the mixture model approach for describing data and
determining the best number of clusters.

7.1 Combined model approach

Table 3 shows the BICs for models with 7–12 clusters. The model with eight clusters
resulted in smallest BIC (even the highest likelihood) and was chosen as the best
model. The model with seven clusters was almost as good; the only difference was
that the two childless clusters (see Fig. 6) were combined into one.

Table 3 Number of parameters, log-likelihood, and BIC for combined models with 7–12 clusters.
The smallest value of BIC is shown in bold.

Clusters Parameters Log-likelihood BIC

7 533 −369075.7 745059.4
8 595 −364825.9 743368.2
9 643 −370746.2 755208.7
10 705 −368985.0 751686.5
11 767 −368977.5 751671.5
12 800 −373550.3 760817.0
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Fig. 5 and Fig. 6 illustrate the HMM structure for each of the eight clusters.
More detailed visualizations with observed sequences and most probable hidden
state paths are shown in the Appendix.

The clusters were well separated from each other by the timing and occurrence
of career and family states. The two largest clusters were characterized by (mostly)
short education and family. They differed in the timing of partnership and parent-
hood transitions which occurred either earlier in life (cluster A with 461 members of
which 59% were females) or later (cluster B, 403 members, 54% males) The third
largest cluster (cluster C, 266 members, 68% males) mostly consisted of individuals
with long education and later family. Another cluster with early family transitions
(cluster D, 159 members, 96% females) was characterized with a long career break
for mostly taking care of children.

Two clusters were characterized by no or very late parenthood. They differed in
timing of the partnerships; the larger cluster (cluster E, 177 members, 51% males)
had earlier first partnerships while in the smaller cluster (cluster F, 116 members,
59% males) partnerships were delayed or omitted altogether.

The two smallest clusters consisted of single parents (cluster G, 47 individuals,
72% females) or parents living divorced or separated (cluster H, 102 individuals,
61% females).

7.2 Mixture model approach

The estimation of ordinary HMMs can be challenging due to multiple local optima
in likelihood surfaces, since typical parameter estimation algorithms often only find
these suboptimal solutions. Therefore, multiple starting values for the estimation
are needed to ensure that the global optimum is found. The same problem is even
more prevalent in complex MHMM settings with a large amount of parameters and
mixture components. In addition, when the structure of the model (the number of
mixture components and/or hidden states) is unknown, the amount of required com-
puting resources naturally multiplies.

Therefore, even after using allegedly reasonable starting values (from simple
HMMs), parallel computation, and extensive computing resources, we were not able
reach satisfactory results. With different starting values the estimation always res-
ulted in a different solution, so finding the global optimum would have required an
unfeasible amount of computing time and/or resources.

Even though we were not able to find optimal MHMMs, we did study some of the
suboptimal solutions. To study the differences of SA and MHMM clusters, we es-
timated a mixture model by keeping the initial, transition, and emission parameters
of the submodels fixed (i.e., estimating only prior cluster probabilities, later referred
to as the “non-estimated MHMM”). This approach was similar to the combined
model approach, but instead of keeping the cluster memberships fixed we allowed
individuals to switch clusters. Each individual was assigned to the cluster with the
highest posterior cluster probability given their observed sequences.
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Fig. 5 HMM graphs for the eight cluster solution (clusters A–D). State abbreviations show ca-
reer/partnership/parenthood statuses: ST=studying, EM=employed, UN=unemployed, EL=else;
S=single, C=cohabiting, M=married, D=divorced/separated; NC=no children, CH=has child(ren).
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Fig. 6 HMM graphs for the eight cluster solution (clusters E–H). State abbreviations show ca-
reer/partnership/parenthood statuses: ST=studying, EM=employed, UN=unemployed, EL=else;
S=single, C=cohabiting, M=married, D=divorced/separated; NC=no children, CH=has child(ren).
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Many individuals switched clusters compared to the SA solution (see Table 4).
Some cluster were more stable; close to 90% of the members of the SA clusters
“Single parents” and “Partners and no children” stayed in the same cluster in the
MHMM solution. Others had many switchers; less than half of the members of SA
clusters “Short education and early family” and “Long education and later family”
stayed in their original clusters in the MHMM solution.

Table 4 Comparison of SA cluster memberships (left) to most probable cluster memberships from
the non-estimated MHMM (top). Probabilities of staying in the same cluster are shown in bold.

MHMM clusters

SA clusters A B C D E F G H Members

Short educ. & early fam. (A) 0.32 0.35 0.15 0.11 0.00 0.00 0.06 0.01 461
Short educ. & later fam. (B) 0.09 0.64 0.16 0.09 0.00 0.00 0.03 0.00 403
Long educ. & later fam, (C) 0.06 0.32 0.43 0.13 0.00 0.00 0.07 0.00 266
Career break & early family (D) 0.04 0.39 0.03 0.54 0.00 0.00 0.00 0.00 159
Partnership(s) & no child (E) 0.00 0.05 0.03 0.00 0.87 0.05 0.00 0.01 177
No or late family (F) 0.00 0.03 0.01 0.03 0.32 0.60 0.00 0.01 116
Divorced parents (G) 0.04 0.00 0.03 0.16 0.00 0.00 0.77 0.00 102
Single parents (H) 0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.94 47

Number of cluster members 207 577 260 228 191 79 138 51 1731

If the MHMM parameters were estimated jointly, the differences compared to
the SA clusters were even larger (we do not report the findings as we were not
able to find the globally optimal model). In both MHMM approaches, the order and
occurrence of states were generally more determining for the cluster memberships
than the timing and duration of states. Fig. 7 illustrates this difference seen in the
cluster “Short education and early family”, showing the observed and hidden state
sequences of members of the SA cluster and the cluster from the non-estimated
MHMM. One can easily see that the variation in the timing of transitions between
states (both observed and hidden) is much larger in the MHMM cluster compared
to the SA cluster.

8 Discussion

When analysing complex sequence data with multiple channels, describing and
visualizing the data can be a challenge. Hidden Markov models and their mixtures
offer a probabilistic model-based framework where the information in data can be
compressed into hidden states (different life stages) and clusters (general patterns
in life courses). Hidden states can capture general life stages that include not only
rather stable episodes (as the fifth hidden state of work, marriage, and children in
Fig. 2) but also life stages characterized by change (as the second hidden state of
searching for a partner in Fig. 2).
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Fig. 7 Comparison of a cluster (Short education and early family) given by SA and the non-
estimated MHMM.

Mixture hidden Markov modelling has several advantages. With posterior cluster
probabilities we get information on certainty of the clustering for each individual
and a measure for the goodness of the classification. We can also extend the model
by adding covariates for explaining cluster memberships or transitions between hid-
den states. The MHMM approach has been used successfully in simpler settings,
e.g., for accounting for measurement error and for finding clusters of “movers” and
“stayers” between two hidden states.

The downsides of MHMM analysis are related to computational issues. Max-
imum likelihood estimation of parameters of a complex MHMM is computationally
heavy. Due to multimodality of the likelihood surface we need to estimate the model
numerous times with different starting values. Also, often the structure of the model
(in terms of the number of hidden states and/or clusters) is not known and in general
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selecting the best structure is a nontrivial task. Thus, finding the globally optimal
MHMM can become unfeasible without constraining the problem.

Using sequence analysis and cluster analysis as a starting point might be useful
by providing preliminary classification and by limiting the set of candidate models
for a complex MHMM setting. In our study we were not able to reach satisfactory
results. Our data was much more complex than in a typical MHMM analysis where
sequences often come from panel data with a moderate number of measurement
points. The multichannel structure, long sequences, and the relative large number
of individuals in our data was a challenging combination for parameter estimation.
Also, typically the number of candidate models is rather limited; when HMMs are
used for accounting for measurement error, the number of hidden states is known
in advance and usually the state space is very limited (e.g., poor/nonpoor or drug
user/nonuser). In our study the model structure was unknown and we expected to
find several clusters, each with an unknown number of hidden states.

Instead of using mixture models, we treated the SA clusters as fixed and estim-
ated HMMs separately for each cluster (the combined model approach). With SA
we found clusters that were adequately well separated by the timing and duration of
life states. Hidden Markov models were used for choosing the number of clusters
and for describing the overall dynamics within clusters.

Clusters found using SA and the MHMM were different in several ways. When
defining sequence dissimilarities, we considered the timing of the events very im-
portant and used Hamming distances. In the MHMM analysis many individuals
switched clusters; the order of states was generally more determining than their
timing and duration. Further research is needed in order to determine distance met-
rics that result in SA clusters which capture similar features as HMMs. Metrics that
weight the order of states instead of their timing such as the number of matching sub-
sequences or the subsequence vectorial representation metric (Studer and Ritschard,
2016), might produce clustering results that are better suited for the starting point
of MHMM estimation. Unfortunately, using these metrics with multichannel data is
not a straightforward task.

Another topic for further research is model selection of left-to-right HMMs and
MHMMs. In our study, BIC performed poorly. Further theoretical and empirical
studies are needed for detecting the reasons for its failure and for discovering selec-
tion criteria that are better suited for finding parsimonious HMMs.

The aim of our study was to describe complex life sequence data. For that goal,
SA and the combined HMM approach gave satisfactory results in a reasonable
time. We were able to find meaningful clusters and to visualize their complex life
course information by using stacked sequence plots, combined state distributions,
and HMM graphs.
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Appendix

Detailed visualizations of the eight SA clusters and the respective HMMs. Figures
show state distributions of combined observations at each time point (top), observed
sequences in three life domains and the most probable hidden state paths given the
HMM (middle), as well as HMM graphs with initial and transition probabilities
(bottom). See Sect. 5 for more information on how to interpret the visualizations.
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0.0066

0.00012

0.0027

0.006

0.0022

0.0088

1 0 0 0 0 0 0

EL/S/NC
ST/S/NC
EM/S/NC
EM/C/NC

EM/D/NC
EM/M/NC
ST/C/NC
ST/M/NC

EL/M/CH
EM/M/CH
ST/M/CH
EL/D/CH

EM/D/CH
UN/D/CH
EM/C/CH
others
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0.015

0.001

0.0038

0.0065

0.00075

0.013

0.00074

0.00083

0.002

0.00084

1 0 0 0 0 0

EL/S/NC
ST/S/NC
EM/S/NC

EL/S/CH
EM/S/CH
ST/S/CH

UN/S/CH
EL/C/CH
EM/C/CH

EM/D/CH
EM/M/CH
others
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Lévy processes. (21 pp.) 2012

138. GUO, CHANGYU, Generalized quasidisks and the associated John domains. (17 pp.) 2013
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