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ABSTRACT

Caraffini, Fabio
Algorithmic issues in Computational Intelligence Optimization: from design to
implementation, from implementation to design
Jyväskylä: University of Jyväskylä, 2016, 94 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 243)
ISBN 978-951-39-6741-3 (nid.)
ISBN 978-951-39-6742-0 (PDF)
Finnish summary
Diss.

The vertiginous technological growth of the last decades has generated a vari-
ety of powerful and complex systems. By embedding within modern hardware
devices sophisticated software, they allow the solution of complicated tasks. As
side effect, the availability of these heterogeneous technologies results into new
difficult optimization problems to be faced by researchers in the field. In order
to overcome the most common algorithmic issues, occurring in such a variety of
possible scenarios, this research has gone through cherry-picked case-studies.

A first research study moved from implementation to design considerations.
Implementation limitations, such as memory constraints and real-time require-
ments, inevitably plague the algorithmic design. Such limitations are typical of
embedded systems. In this light, a fast and memory-saving “compact” algorithm
was designed to be used within microcontrollers. Three robotic applications were
subsequently addressed by means of selected single-solution approaches and
the proposed compact algorithm. A new memetic computing approach using
a micro-population was also designed to tackle large scale problems.

In a second moment, the opposite approach, from design to implementation,
was employed. As the benefit of metaheuristic optimization is the capability of
tackling black-box systems, 6 novel general-purpose optimizers were designed
according to different working principles. Their validity was thoroughly tested
by means of popular benchmark suites.

Finally, a theoretical study concludes this piece of research. The dynamic
behaviour of population-based optimization algorithms, such as Genetic Algo-
rithm and Particle Swarm Optimization, was observed. Their general-purpose
nature questioned. The presence of an intrinsic structural bias was graphically
displayed and rigorously formalized. It was shown that the bias prevent them
from equally exploring all the areas of the search space, with a particularly dele-
terious strength in presence of a large population size.

Keywords: hyper-heuristics, memetic computing, differential evolution, compact
algorithms, single-solution algorithms, local search, structural bias.
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PREFACE

Computational Intelligence Optimization is a relatively young discipline, origi-
nated with the coding of mathematical algorithms within the first computers in
the late '60s and early '70s. It has quickly evolved, and is now studied under sev-
eral heterogeneous aspects and sub-fields. Nowadays, regardless of the specific
nature of the optimization problem, it is a quite common and consolidated prac-
tice to employ Artificial Intelligence (AI) techniques (from which the name) in
order to codify robust, versatile, and above all smart optimizers. This evolution
has also been allowed by the vertiginous technological progress in producing a
variety of silicon-based devices. The digitalization and execution of complex rou-
tines, not only in the most sophisticated engineering applications, but especially
in addressing everyday life tasks, made us able to perform ours activities faster
and better. On the other hand, the complexity in designing more ad more efficient
systems has been increasing during the last decades. As a side effect of the tech-
nological growth, computer scientists have experienced the problem of having to
deal with multiple scenarios. Algorithms are often supposed to handle black-box
problems, but also very specific cases through a tailored design. Even more com-
plications arose by the need to consider the implementation of similar techniques,
but in completely different devices: e.g. we can think of programmable wireless
sensors with modest memory and computational power, see (Iacca, 2013), against
other distributed systems, see (Weise and Chiong, 2010), or fast multi-core per-
sonal computers, FPGA and GPU units (Tan and Zhou, 2011; Ramírez-Chavez et
al., 2011), etc. Novel optimization problems derived from new technologies, and
new challenges continue to arise for computer scientists, who are often asked to
satisfy conflicting needs as much as possible. It is quite clear that is difficult, if not
impossible, to make coexist too many properties such as versatility and efficacy,
robustness and specificity. A trade-off is inevitable.

The scientific community of computational intelligence had to react promptly
to keep up with the technological growth. Innovative “evolutionary” approaches,
already pioneered by Alan Turing in the late '40s, have been thoroughly proposed
and studied. In the last four decades, they have been significantly improved , and
the trend of using nature-inspired approaches has become established (Chiong,
2009; Chiong et al., 2012). Those more flexible algorithms borrowing some key
mechanisms from physical processes, such as evolution and animal or social
collective behaviours, see e.g. (Chiong, 2009), ended up replacing the former
gradient-based methods, e.g. Newton and Quasi-Newton strategies (Fletcher and
Powell, 1963; Press et al., 2007). Amongst them, few approaches emerged from
a plethora of similar techniques based on different metaphors: Evolutionary Al-
gorithms (EA) such as the popular Genetic Algorithm (GA) and the Evolution
Strategy (ES), see (Holland, 1975a) and (Beyer and Schwefel, 2002) respectively,
and Swarm Intelligence (SI) approaches such as the Particle Swarm Optimiza-
tion (PSO) algorithm (Kennedy and Eberhart, 1995), are now consolidated frame-
works. Also Differential Evolution (DE), by Storn and Price (1995), plays a major



role for real-valued optimization and is largely applied on engineering applica-
tions. It is finally worth mentioning the Simulated Annealing (SA) algorithm
(Kirkpatrick et al., 1983), which is employed for both discrete and real-valued
applications.

For years, it was a common believe that the aforementioned techniques were
general-purpose, and that was possible to improve them to the point of finding
some sort of “universal optimizer”. Unfortunately, experience over the years
has discouraged this belief, and the point made by the No Free Lunch Theorems
(NFLTs) in (Wolpert and Macready, 1997) has shown the need of tailoring an op-
timizer to the specific problem, when possible, in order to increase the perfor-
mance. Hence, mechanisms have been proposed to specialize a metaheuristic to
the problem at hand. As example, algorithm’s parameters can be self-adapted
on-the-fly as in (Brest et al., 2006), (Qin and Suganthan, 2005) and (Zhang and
Sanderson, 2009). Alternatively, some sort of more specialized local search rou-
tines can be embedded within the evolutionary cycle of en EA, as proposed in
(Moscato, 1989) under the name of Memetic Algorithm (MA). The latter approach
is undoubtedly interesting as it leaves room to the designer for applying differ-
ent algorithmic solutions. Therefore, the MA approach has been largely used
in the last two decades, and further extended to the generation of hybrid struc-
tures. Such algorithms are the results of the coordination, or fusion, of multi-
ple metaheuristics and (or) other operators. The most successful works on such
hybridization processes have produced similar approaches, supported from two
different school of thoughts: Memetic Computing (MC), see (Ong et al., 2010),
and Hyper-heuristics, see (Burke et al., 2003b; Özcan et al., 2008; Burke et al.,
2010). Regardless of the philosophy behind them, both the approaches generated
valid algorithmic solutions, and still seems to have a great potential. Interest-
ing MC algorithms, e.g. (Krasnogor and Smith, 2005), (Nguyen and Yao, 2008)
and (Smith, 2007), have shown to be able to adapt to the problem at hand. Also
hyper-heuristics, see (Burke et al., 2003a), (Özcan et al., 2008) and (Burke et al.,
2010), proved to work well on both discrete and real-valued problems.

Very complex MC structures have been designed by integrating several op-
timizers, see e.g. (Montes de Oca et al., 2009), (Molina et al., 2010a) and (Peng
et al., 2010). In contrast to this trend, recent studies have shown that also simple
algorithms can perform as well as complex ones, see (Iacca et al., 2012a; Caraffini
et al., 2012b, 2013), if their operators are properly coordinated within the algo-
rithmic structure (Caraffini et al., 2012a). Thus, specialized MC algorithms can be
obtained by coordinating very simple operators rather then complex algorithms.
General-purpose algorithms tend to be complex and heavy, and adding local
searchers inevitably results into a more complex structure. In this thesis, besides
a number of general purpose algorithms, lighter optimizers were proposed in or-
der to tackle hardware limitations. Simple MC algorithms were implemented on
board of microcontrollers, and other optimizers were simplified to run faster and
use a significant inferior amount memory. This was possible by considering the
bottom-up approach suggested in (Iacca et al., 2012a), the “compact” optimiza-
tion approach in (Harik et al., 1999; Mininno et al., 2011), and other solutions.



As a number of population-based algorithms are also presented in this work, an
interesting study on the side effect of having a large population of solutions was
also included.

It has to be remarked that this piece of work focusses on a subset of CIO
dealing with real-valued, statistic, singe-objective, box-constrained problems. The
multi-objective case, as well as the discrete one, the dynamic one, etc., are not
considered. Without a loss of generality, it is assumed that the optimization prob-
lem to be solved is a minimization process. All the algorithms involved in this
study are equipped with toroidal correction, see (Caraffini, 2014), to handle solu-
tions generated out of the bounds of the search space.
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1 RESEARCH QUESTIONS

This thesis presents an extensive work including 11 publications. A first research
output, focussed on memory-saving optimization for robotic applications, was
independently performed at University of Jyväskylä, within the CIO research
group. Then, the continuous involvement in the life of the research group, at-
tending conferences, and the growing interest in this discipline, generated several
side projects and international collaborations. Thus, the original research focus
has slightly changed and evolved during the years. For these reasons, this work
progressively addresses multiple research questions.

As discussed in the preface, a first interest was given to robotic applica-
tions. Several cases are included in this thesis. As for the applications in PI and
PIX, an off-line approach was appropriate for addressing simulations and train-
ing of neural networks. Conversely, the decision of optimizing the control system
on-the-fly, rather than off-line, looked more suitable, interesting and innovative
for other studies. However, the idea of performing such optimization on board of
robots, was in contrast with the use of too heavy and complex algorithms. Imple-
mentation details about the nature of the devices running the optimization pro-
cess had to be considered during the algorithmic design. The need of embedding
the optimizer together with the control system in a microcontroller forces the use
of simpler algorithmic structures. The design had to play a major role in order
to come out with algorithms that, despite being simple and memory-saving, dis-
play a good performance. Moreover, a too high computational overhead (typical
of complex metaheuristics) was undesirable in order to guarantee a real-time re-
sponse. For these reasons, the following research question (RQ) had arisen: is
it possible to design simple, but effective, optimization heuristics that can be easily em-
bedded in systems plagued by memory limitations? Is it possible to modify successful
approaches and make them faster in order to tackle real-time problems? (RQ I)

In a second moment, as dealing with general purpose algorithms, a special
attention was given to DE, MC and hyper-heuristic variants. Six novel algorithms
were proposed in order to address the following research question is it possible to
design a robust and reliable general purpose optimizer, capable of self-adapting to the
problem at hand? What alternative methods can be used, on top of those already present
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in the literature, for a better adaptation and thus for better performances? (RQ II)
Advantages of using population based algorithms have been largely com-

mended in the past (Prügel-Bennett, 2010), while their limitations have not been
addressed yet. RQ II arose the need of understanding what mechanisms take
place within population based algorithms, and which one is beneficial rather then
counterproductive. For such algorithms to be successful, is known that an effec-
tive informed (possibly not revisiting) sampling strategy is needed, as well as the
absence of a structural bias, which, if present, would predispose the algorithm
towards limiting its search to specific regions of the solution space. Only a little
is known about the latter, thus, a last RQ was formulated as follow: is the search,
in popular general-purpose heuristics such as GA and PSO, unbiased? Are they able to
equally explore different landscapes, or necessarily present a preferential bias towards a
certain region of the search space? (RQ III)

Despite the heterogeneous nature of this thesis, the 3 the research questions
raised by far have a common point, and can be summarized in a single “global re-
search question” (GRQ) motivating this piece of research: What are the successful
design strategies for efficiently tackling real-world scenarios, and in particular engineer-
ing optimization problems?

1.1 Thesis structure

The remainder of this thesis is structured as follows:
Chapter 2 contains introduction and background of this piece of research. A

formalization of the addressed optimization problem is first given in section 2.1.
Subsequently, Section 2.2 comments on the metaheuristic approach. A particular
attention is given to differences and use of global and local searchers, see Section
2.2.1. The exploration-exploitation conundrum is also discussed. A technical de-
scription of the most popular local searchers in the literature is provided as well.
It follows a wider literature review of nature inspired metaheuristics for general
purposed optimization (Section 2.3). A special mention is given to state-of-the-art
implementations, that have been involved in this work.

Chapter 3 addresses RQ I. In particular, the enhanced version of compact
differential evolution in Section 3.2, allows real-time optimization in embedded
systems. An example of optimization within embedded systems is given by the
robotic application in Section 3.3. Moreover, the robotic application in Section 3.4
was tackled by running cherry-picked memory saving optimizers on board of the
root, thus performing the optimization on the go. Finally, Section 3.5 concludes
with a novel optimizer that, despite storing in the memory a population of only
five individuals, performs brilliantly over large scale problems.

Chapter 4 tackles RQ II and proposes six novel algorithms for black-box
optimization. Varied algorithmic solutions were used. In Section 4.2 have been
grouped those approaches making use of mechanisms for tuning problem de-
pendent parameters on-the-fly. Three publications have been produced in this
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direction. A brief description of the original papers is given in Section 4.2.1, 4.2.2
and 4.2.3 respectively. Hybrid structures, employing self-adapting coordination
logics, are instead placed in Section 4.3. In particular, the three remaining opti-
mizers are introduced in Section 4.3.1, 4.3.2 and 4.3.3 respectively.

Chapter 5 answers to RQ III through a theoretical study on population-
based algorithms, pointing out the presence of a structural bias in the algorithmic
architecture. By showing a relation between bias intensity and population size,
this study concludes this piece of work.

Chapter 6 summarizes the achievements obtained during my doctoral stud-
ies. Conclusions on how this work addressed the research questions are drawn,
and promising future developments are proposed.



2 INTRODUCTION TO CIO

CIO is the subject which embeds AI into optimizers for solving those problems
that, due to the lack of an analytic formulation, lack of differentiability or com-
plexity, cannot be addressed by means of classic methods. As previously men-
tioned in the preface, during the last 4 decades the literature has exploded, and
now features a plethora of techniques inspired by the most diverse metaphors.
How to classy an algorithm according to such metaphors has become difficult.
Researchers are often in contrast and tend to support an approach rather than
another, though the difference is minimal. Many attempts are currently made in
order to design algorithms based on new metaphors, but the result is often not
so differing from previous approaches, in terms of operators employed, and per-
formances. Thus, it can be deduced that most successful algorithms share the same
working principles, and besides the inspiring metaphor they behaves quite similarly. All
the optimization algorithms are expression of the same concept, that is the balance be-
tween the capability of exploring the search space, and exploiting potential optima. Tax-
onomies are often worthless and put to much emphasis on irrelevant particulars.
On the other hand, it is useful to highlights properties such a memory footprint,
computational overhead and convergence speed, use of the gradient information,
deterministic or stochastic nature, etc. These information help the user select the
right algorithm in order to meet his needs, and the designer as well in creating
effective hybrid algorithms. In this light, the reminder of this chapter has been
organized to discuss the most important properties of metaheuristics. A special
attention is given to the concept of local and global search, and several single so-
lution local searchers are described in details. A concise literature review is given
in Section 2.3, with a strong focus on recent advances in CIO. All the optimizers
included in the attached publications are fully described in depth in the following
sections.
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2.1 Problem definition

With regards to this piece of work1, the optimization problem can be simply for-
mulated as the search of a real-valued vector x∗ ∈ D ⊂ Rn, minimizing a math-
ematical function f : D −→ C ∈ R. The cost-functional f , often called objective
function or fitness function, models the optimization problem at hand and has to
be defined accurately in order to achieve truthful results. The number n ∈ N is
the dimensionality of the problem, and the n components of a solution within the
the search space D, are usually referred to as design variables. The scalar number
C is the cost associate to a specific solution, often referred to as fitness value.

Mathematically, what discussed above can be synthetically formulated as:

find x∗ ≡ arg{min
x∈D

f (x)} = {x∗ ∈ D | f (x∗) 6 f (x) ∀ x ∈ D} (1)

2.2 The metaheuristic approach

Metaheuristic2 optimizers are those algorithms which do not make/need any as-
sumption on the problem at hand. Such approaches play a crucial role when
facing too complex, or black-box, systems. In both the cases, despite the lack
of knowledge about the problem, a fairly good (sub)optimal solution has to be
found via a trial-and-error process (Michalewicz and Fogel, 2004; Burke et al.,
2010).

The most consolidated examples of metaheuristics for optimization are pop-
ulation based algorithms. Their large use during the last years made them be-
come so popular that, often, the word metaheuristic is confused with population
based algorithms. Sometimes, this term is improperly used in the literature as
synonym of evolutionary framework for black-box optimization (BBO) . There is
a strong link between the two concepts, but they do not have the same meaning.
EAs have a stochastic nature and are efficient metaheuristics for BBO. Thus, EAs
as well as PSO, DE, etc. are contained in the metaheuristics set. But not vice
versa. For instance, deterministic3 optimizers, such as the Rosenbrock method
(Rosenbrock, 1960) and the S operator (employed in PIII, PVII and PX), are meta-
heuristics too as both can function on a generic fitness function. Conversely,
Newton/Quasi-Newton/Gradient Descent methods (Xu and Zhang, 2001), that
are often integrated within EAs, requires the problem to be differentiable in or-
der to function. Most efficient variants requires the fitness function to be twice

1 There are other optimization scenarios, where f could be e.g. a discrete function, or a
dynamic process, and even subject to both equality and inequality constraints.

2 Word deriving from ancient Greek, its literal means is “beyond the search”. It refers to any
approach to discovering or problem solving, based on a practical methodology. They do
not guarantee optimal results, but are generally valid and sufficiently accurate.

3 Algorithm free of any form of randomization logic, performing a predictable sequence of
steps.
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differentiable, as they work out second order derivatives to build up the Hessian
matrix. Thus, their use over discontinuous functions, could lead to numerical
instability. A problem that is overcome by those metaheuristics that only approx-
imate the gradient information, such as the Simultaneous Perturbation Stochastic
Approximation (SPSA), see (Spall, 1987) for details. A loss in the average per-
formance of metaheuristics, as SPSA, against the Newton method can be experi-
enced over unimodal differentiable problems. However, such loss is paid off with
a higher versatility. A mathematical explanation of this phenomenon is given in
(Wolpert and Macready, 1997). The popular NFLT rigorously formalized a con-
cept that, against the common belief of that time, can be expressed as: a universal
metaheuristic, capable of outperforming all the other algorithms over all the pos-
sible problems, does not exist. On average, the performances displayed by two
algorithms over all the possible problems are the same. A metaheuristic can po-
tentially handle every problem displaying a decent result. Therefore, cannot com-
pete against tailored algorithms. For this reason, metaheuristics are widely used
in real world scenarios as black-box systems, in absence of an analytic model,
in presence of high complexity. However, even if just a little is known abut the
problem at hand (e.g. grey system), a tailored approach is preferable.

As discussed in the preface, taxonomies are often obtained by comparing
algorithms with biological (or other natural) phenomena. These analogies often
lead to philosophical rather than practical considerations. Conversely, in this the-
sis, a strong attention is given to some of the previously mentioned properties of
an optimization algorithm. This information can be used for selecting the most
suitable optimizer, or for combining complementary algorithms together. As ex-
ample, it can be of help to know whether or not the nature of an optimizer is
purely stochastic or deterministic. Also the kind of search plays an important
role: gradient based and derivatives free searches behave differently and display
pros and cons. Stochastic mechanisms (perturbations, sampling, etc.) tend to
outperform deterministic ones over noisy landscapes. They have a better chance
to get out of local minima, while deterministic routines usually get stuck in such
critical points. In particular, those employing some sort of gradient information
converge faster and are preferable on monomodal problems. They stand out for
exploiting and refining a start point quite accurately, but are less adequate for
exploring multiple optima. Also the kind of move performed within the search
space can make the difference. Separable problems are better tackled with or-
thogonal moves rather than diagonal ones. The former, can be produced by per-
turbing a single design variable at a time, and evaluating the fitness value right
after the perturbation. The perturbation vector can be both deterministically or
randomly generated. The latter, can be obtained by using rotation matrices, see
the Rosenbrock method, or via combination of individuals in population based
algorithms. Finally, when the problem is completely unknown, and the presence
of noise (and/or multiple local optima) is likely, population based algorithms
have shown to be preferable.

The benefits of a having a population have been studied and praised in the
past years. According to Prügel-Bennett (2010), population based metaheuristics
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are stable and reliable (even though stochastic, they tend to locate very close so-
lutions if run multiple times), robust (as the use of a large population size has
the effect of filtering out noise in the fitness function), and have a number of
other beneficial advantages. On the other hand, undesired effect can occur also
when manipulating multiple solutions (e.g. stagnation, premature convergence,
etc.). In addition, tuning the population size is not trivial. Performances heavily
depend ot the optimal choice for the population size. However, even if a num-
ber of studies can be found in the literature, see e.g. (Nannen et al., 2008) and
(Mallipeddi and Suganthan, 2008), how to make this choice is still not clear. It
also appeared, from the study in PXI, that a large population size can negatively
bias the search towards preferential suburbs of the search space. In this light, also
single solution metaheuristics deserve some attention, and can play a role in some
cases. They usually display simpler structures, and requires a modest amount of
memory and computational power. In particular, a number of recent implemen-
tations have shown that, if well designed, also simple single-solution structures
can have performances as good as those of population base algorithms (Iacca et
al., 2012a; Caraffini et al., 2013; Iacca et al., 2013). These can be preferred to tackle
real-time applications in systems plagued by memory limitations. In any way, it
has to be clarified that in the vast majority of the cases both population-based and
single-solution algorithms have a linear memory occupation. Furthermore, sev-
eral efficient single solution methods, e.g. Rosenbrock and Powell (Rosenbrock,
1960; Powell, 1964), evolve a rotation matrix whose size grows quadratically with
the dimensionality of the problem. In these cases, single solution algorithms are
are not suitable for memory-saving optimization.

Finally, it is important to further remark that the core part of a metaheuristic
for optimization is common to all the approaches. All of them are variations on a
main theme, that is the generation of new candidate solutions according to a per-
turbation mechanism. When this mechanism is efficient, the algorithm is able to
learn from previous moves, and the number of unsuccessful perturbations drop
down as the optimization process proceeds. The process of acquiring informa-
tion from past trial-and-error attempts, and exploit the gathered information to
learn from past steps, is called Inductive Learning (Brownlee, 2011). An implicit
assumption is actually made when such process is employed, i.e. the learning
mechanism relies on a specific configuration (set of candidate solutions at the
previous step), that is trusted to be representative of a broader environment. This
is not entirely true, and for this reason, a certain degree of fitness diversity must
always be kept at the beginning of the optimization process. To guarantee an
appropriate balance of exploration and exploitation, is as important as difficult.
Good results have been obtained by coordinating global and local searchers, see
Section 2.2.1. However, the need of performing the optimization with a limited
computational budget (it occurs in the vast majority of real world scenarios) pre-
vent from a prolonged use of a specific operators, e.g. a local searcher.
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2.2.1 On local and global search

A global searcher seeks for a global solution, while a local one refines as much
as possible the closer local optimum. As the former usually fails at refining the
global optimum adequately, it is necessary to be able to embed some sort of LS
behaviour within global searchers. In multimodal optimization, GS is employed
to implement niching algorithms. The search aims at locating multiple clusters in
the search space, see (Thomsen, 2004), (Li, 2010) and (Yu and Suganthan, 2010),
thus exploration plays a major role. Conversely, in global optimization, a unique
global solution must be returned with a satisfactory level of precision. It is then
desirable that a LS behaviour emerges towards the end of the optimization pro-
cess. For this reason, general-purpose algorithms combine global and local search
capabilities at the same time. Ideally, the landscape has to be explored as much
as possible during an initial phase. Then, the search is focussed around potential
optima, but a certain degree of exploration is kept to avoid premature conver-
gence and promptly leave local minima. The last amount of computational bud-
get is used to exploit the most promising basins of attraction, in order to converge
within a reasonably small neighborhood of the global optimum. This process can
be iterated, or restarted, in order to minimize the risk of returning unsatisfactory
(or useless) solutions.

To make GS and LS coexist within the same framework is hard. The litera-
ture proposes several algorithmic solutions to alternate exploratory and exploita-
tive moments. In population based optimization, as instance, these moments are
intrinsically assured by the use of the population. An initial sampling makes
sure that the candidate solutions are uniformly distributed in the search space.
Then, a trial and error process guides the individuals towards promising basins
of attraction. Selection operators play a major role. If they are chosen and tuned
properly, fast convergence can be achieved (e.g. pick up fittest individuals for
generating new candidate solutions, and accept in the new population only those
with a promising fitness value). Other choices can be made to obtain the opposite
behaviour. A compromise solution can also be implemented, so that individu-
als disperse if too close and vice versa. Several solutions can be adopted by the
designer, who can modify and tune the algorithm to face a specific scenario. Un-
fortunately, black-box problems make it very difficult to understand which com-
bination of operators is best. As the problem changes, that combination should
change as well. Also the computational budget should be specifically allocated
to exploratory and exploitative moments. An option to address black-box prob-
lems is too keep the algorithmic structure generic, or even better, adaptable to the
problem (see Chapter 4). However, undesired configurations occurs (disposition
of the individuals within a particular fitness landscape), causing the algorithm to
malfunction. For examples, many GAs fails at handling plateaus due to the lack
of fitness diversity that, in return, reduces the selection pressure. In some other
cases, e.g. multimodal landscapes, individuals trapped in local minima drag the
entire population towards an undesired area of the search space (low diversity).
The local minimum get explored and refined, while the global minimum remains
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ignored. Thus, premature convergence occurs: the algorithm is not able to ex-
plore D any more, and the remaining computational budget is consumed in vain.
Modern metaheuristics embed mechanisms to re-sample the population in D, in
order to minimize the use of computational budget around local solutions. Usu-
ally, metrics are proposed to check and quantify the diversity of the population,
as in PV, to prevent premature convergence from arising. Nevertheless, other un-
desired configurations can affect the search. When stagnation occurs, as instance,
individuals reach a configuration such that the algorithm is not able to improve
upon their fitness values. Strangely, this happens with a high diversity in the
population. Stagnation is typical of DE. It can be tackled by the use of external
routines, see PIV, able to further refine the solutions within their neighborhood.
Such routines take the name of local searchers and, in opposition to general pur-
pose metaheuristics, are specialized in exploiting solutions rather than exploring
the domain.

The observation that some algorithms are better at exploring, while oth-
ers at refining results, generated new algorithmic solutions. As discussed be-
fore, the MA approach is based on the use of LS within general purpose opti-
mizers. Usually, an “evolutionary” component takes care of exploration, while
exploitation is guaranteed by the use of a specialized operator. Thus, the bal-
ance between exploration and exploitation is given by continuously alternating
operators playing different parts. An efficient coordination logic, as those pro-
posed in MC and hyper-heuristics, can repetitively launch GS and LS when is
more appropriate. This approach is promising, but does not completely resolve
the global-local search conundrum. By including LS within a population based
framework, we experience a boost in the performance. This is due to the fact that
local searchers have properties making them capable of addressing specific prob-
lems. When they are embedded within a general purpose framework, the latter
become more specialized in handling a specific class of problems. As a result,
the tailored version of that algorithm presents a peak in the performance over
that class of problems (see Figure 1), and a slight deterioration over the others
(Wolpert and Macready, 1997). As a consequence, researchers tend to equip MAs
with a list of different LS routines, to handle multiple scenarios (Tseng and Chen,
2008; Iacca et al., 2014; Caraffini et al., 2012). From the theoretical point of view
this approach is flawless. On the other hand, it is difficult to be put into prac-
tice. In order to function, the scheme requires local searchers to be run multiple
times, thus subtracting a substantial portion of the computational budget to the
other operators. Most studies, as well as popular competitions in the field, allow
a budget of 5000× n fitness evaluations (FEs) to assure convergence. However,
this budget could be insufficient in some cases, albeit quite high if compared with
the budget that can be actually used in many engineering applications. In conclu-
sion, to embed both global and local exploration capabilities is still a problematic
task.

Algorithms specialized in exploration do exist in the literature. In the past,
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FIGURE 1 Average performance of general-purpose metaheuristics (NFLT) [dashed
line], algorithms tailored to the problem [continuous line] and metaheuris-
tics enriched with LS [grey squared line].

simple methods as the random walk (stochastic), or brute force approaches (de-
terministic) have been proposed. More evolved stochastic methods were suc-
cessfully designed. For instance, Iacca et al. (2012a) and Caraffini et al. (2012)
made use of an evolved random walk algorithms, hybridized with a crossover
operator from DE. Conversely, exhaustive approaches based on the brute force
principle, are considered outdated and no longer employed. They are indeed in-
efficient if compared with modern population based algorithms. The latter, are
quite suitable for exploration and need less FEs. Moreover, their convergence can
be arrested if tuned (or designed) adequately. Selection and variation operators
have to be carefully selected in order to guarantee pure exploration, as done e.g.
in (Molina et al., 2010a). In this way, it is possible to spot the position of the
global optimum, and save the computational budget needed to converge in that
area for running a more efficient LS routine. According to this principle, former
MAs were designed by integrating LS within a GA. In conclusion, population
based algorithms are currently preferred to exhaustive methods and to single so-
lution approaches (as the random walk), and are key to perform GS in memetic
algorithms.

A rigorous definition for LS does not exist. Generally, LS algorithms are
those routines working within a sub-portion of the search space, looking for local
optima. This behaviour can be obtained by tuning general purpose algorithms
with a strong emphasis on exploitation. For example, in (Molina et al., 2010a)
a population-based ES was used to optimize locally. However, specialized LS
routines also exist and are often based on a single solution scheme. This kind
of optimizers are extremely sensitive to the initial guess and cannot be used on
their own, unless the problem is monomodal. Their search is narrowed to a small
portion of D that is usually referred to as neighborhood. The latter is simply de-
fined, in discrete domains, as the set of points reachable with a pre-fixed number
of steps. Similarly, in real-valued domains the neighborhood can be defined by
considering the set of points reachable with a single perturbation. The perturba-
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tion vector can be either deterministically worked out, or randomly generated.
In both cases, it can be seen as an exploratory radius, whose maximum length is
preferably prefixed and less than a given “small”4 value. Both discrete and real-
valued LS algorithms share the same structure, that is a loop containing a method
for generating a new neighboring solution. The new solution is then compared
with the previous one, that can potentially get replaced. Despite this similarity,
real-valued domains can (and must) be treated differently. Important considera-
tions can be made on real-valued sets, in order to speed up the search, make it
more precise, and save computational budget. Even though all the domains en-
coded in a calculator are necessarily discrete, the precision of modern calculators
is quite accurate. Thus, an estimate of the continuity of the domain can be done
with a reasonably good approximation. Usually, points within a small neigh-
borhood display smooth variations, i.e. the set is continuous, therefore it makes
sense to use the gradient information to guide the search straight to the closest
optimum. If a discontinuity is present, the gradient information could lead to
numerical instability. So, if the problem is known to be continuous, then a direct
use of the gradient is strongly suggested. Conversely, stochastic approximations
of the gradient vector (Spall, 1987), Hessian matrix (Powell, 1964; Rosenbrock,
1960; Hansen and Ostermeier, 1996), or just a simple steepest descent method
can be used to find the most promising direction to reach the minimum point.
Regardless of the nature of the LS routine (e.g. deterministic/stochastic, gradient
based/gradient free, greedy, etc.) some sort of gradient information, whether it
is mathematically worked out or just heuristically approximated, has to be inte-
grated within the perturbation logic.

It follows a brief review about LS methods. Technical details (e.g. kind of
move performed, order of the gradient information used, memory footprint, etc.)
are only schematically displayed in Table 1 from (Caraffini, 2014).

Popular local searchers

Important gradient based strategies are those deriving from the popular New-
ton method (Press et al., 2007). The original algorithm is one of the fastest LS
in term of rate of convergence, but not in terms of actual speed. Every steps in-
volves heavy calculations for obtaining and inverting the Hessian matrix. Thus,
the elapsed time is usually high due to an elevate algorithmic overhead, quadrat-
ically increasing with the dimensionality of the problem. Obviously, the Newton
method is not a metaheuristic approach, as problem has to be twice differentiable.
However, it is still largely employed. The literature provides lighter alternatives:
Quasi-Newton methods, as (Rosen, 1966) and (Xu and Zhang, 2001), requires less
computational effort as the Hessian matrix is indirectly computed. Algorithms
like the Steepest Descent method (Snyman, 2005) are even lighter, as requiring
only the first order derivatives (i.e. gradient). It must be said that the lack of
second order information results into a worse rate of convergence. Moreover, the

4 Reasonably small value, depending on the problem. Can be constant or adapted on the go,
e.g. reduced according to a logic.
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FIGURE 2 Diagonal moves along the search space.

search results quite efficient at the beginning of the optimization process, when
the initial solution is far from the target. Conversely, a lack of precision is experi-
enced when approaching the optimum.

A more robust metaheuristic LS is performed by the Powell’s Direction Set
(Powell, 1964) and the Rosenbrock (Rosenbrock, 1960) methods. The first one
makes use of a matrix containing promising linearly independent directions. Sim-
ilarly, the latter method evolves a rotation matrix for changing the coordinate
system before the perturbation. Thus, both the methods make diagonal moves in
the search space, as shown in Figure 2. The idea is to find the fastest way to the
solution. To some extent, this is equivalent to say that both methods indirectly
try to approximate the Hessian matrix. However, the deterministic logic used to
build up the two matrices is completely derivative free. The presence of an n× n
matrix makes the memory footprint grow quadratically with the dimensionally
of the problem. For this reason, they are less preferable to lighter methods in
embedded systems with limited memory capacity.

A peculiar search is performed by the Nelder-Mead method (Nelder and
Mead, 1965). Perhaps not the most efficient search, but one of the most versatile.
The algorithm does not rely on the gradient information at all, not even indi-
rectly. A simplex is randomly built up within D. Subsequently, its vertices are
moved though a succession of of geometrical transformations, according to a de-
terministic coordination logic. The algorithm can be seen as a population based
exploration too, as n + 1 vertices are needed, and there is no guarantee that they
will quickly converge.

The SPSA algorithm also presents an interesting and light structure (Spall,
1987). The gradient is stochastically estimated and can be employed in the per-
turbation also in presence of discontinuity points.

The Solis-Wets method, see (Solis and Wets, 1981), is completely random-
ized. A multivariate normal distribution is centred close to the current best solu-
tion, and used to stochastically generate a perturbation vector.
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An interesting working principle was adopted in the Hooke-Jeeves method
(Hooke and Jeeves, 1961). The main idea was to alternate two strategies, namely
exploratory and pattern moves. The exploratory strategy moves the current so-
lution (let us say xc) along the coordinate axes (i.e. orthogonal perturbations),
by adding a quantity ε to each design variable at a time. Before perturbing the
next design variable the fitness value is evaluated. If the previous configuration
was fitter, it is restored and then the same quantity, i.e. ε, is subtracted to check
also the opposite direction. Otherwise, the new configuration is retained. After
perturbing all the variables, if at least an improvement has occurred, the pattern
search can be performed to speed up the process. A “jump” is made along the
vector pointing from xc to the achieved configuration. This algorithm is no longer
used in its original form, but the exploratory search has been subsequently im-
proved to converge to the minimum. This was achieved in (Tseng and Chen,
2008) by performing an asymmetric sequence of steps along the axes according
to the logic graphically shown in Figure 4. As can be seen, the quantity is first
added, but if the fitness value does not improve only half step is performed in
the opposite direction. The asymmetry in the search minimizes the probability of
revisiting the same point multiple times. Moreover, when all the variables have
gone through this procedure, the exploratory radius is updated. In particular,
if not even 1 improvement has been registered, the radius is halved. The same
length is kept otherwise. The idea is that when the radius no longer able to im-
prove upon the fitness value, then the solution is within the neighborhood. Thus,
a shorter distance exploration is attempted. This logic has shown to be able to
refine a local minimum efficiently. It has been successfully employed in many
studies, e.g. (Iacca et al., 2012a), (Caraffini et al., 2012), and (Caraffini et al., 2013),
where it has taken the name of “S”5 operator. This is a deterministic logic, making
orthogonal moves along the coordinate axes, as shown in Figure 3, that appeared
to be particularly promising on separable and large scale problems.

2.3 Brief literature review and recent advances in CIO

2.3.1 Evolutionary algorithms

Amongst the most important families of population-based optimizers, EAs are
probably the former and most popular implementations. The first ESs appeared
in the mid '60s (Schwefel, 1965)6, even though the idea of using evolution for
driving the search of extrema is older, see (Bremermann, 1962). Conversely, the
well-known GA (probably the most popular algorithm!) appeared in the mid '70s
(Holland, 1975b). Other EA based frameworks are e.g. Evolutionary and Genetic
Programming (Fogel et al., 1966; Koza, 1992). All the aforementioned frameworks

5 It stands for “Short” distance exploration, in opposition to the other L (Long distance ex-
ploration) operator in (Iacca et al., 2012a).

6 A description in English is given in (Schwefel, 1981).
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FIGURE 3 Perturbation moves along the axes.

FIGURE 4 S operator logic.
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TABLE 1 Local searchers main properties (n refers to the dimensionality of the prob-
lem).

LS algorithm Search Logic Derivatives Memory Footprint Processed Points Convergence

NEWTON
Deterministic

1st and 2nd order
O
(
n2)

Single-solution q-quadraticallya
(gradient descent) (Hessian matrix)

HOOK-JEEVES Deterministic Derivative free O (n) Single-solution No proof

S
Deterministic

Derivative free O (n) single-solution No proof
(along the axis)

NELDER-MEAD Deterministic Derivative free
O
(
n2)

Multiple-solutions Convergenceb
(simplex vertices)

ROSENBROCK
Deterministic

Derivative free
O
(
n2)

Single-solution Convergencec
(diagonal move) (rotation matrix)

POWELL
Deterministic

Derivative free
O
(
n2)

Single-solution n (n + 1) stepsd
(diagonal move) (directions matrix)

SOLIS-WETS
Stochastic

Derivative free O (n) Single-solutions Convergencee
(diagonal move)

SPSA
Stochastic

1st order O (n) Single-solutions Convergencef
(gradient descent)

a Only for unimodal and locally twice Lipschitz continuously differentiable functions.
b For convex functions in 1 and 2 dimensions.
c Under hypothesis on the fitness, such as differentiability, and on the line search method

employed (Rinaldi, 2012).
d Using the classic method in (Powell, 1964) on quadratic forms.
e If f quasi-convex and inf-compact, converges in a neighborhood of the local minimum.

(Solis and Wets, 1981).
f Under conditions on f and the distribution of probability used as in (Spall, 1992).

have their own peculiarities, but share the common EA structure displayed in
Figure 5.

Genetic algorithms

In a GA, “selection” refers to both the first and the last step displayed in the gen-
eral pseudocode (Figure 5). Usually, the first step is indicated as parent selection,
while the second as survivor selection. However, many other nomenclatures can
be found in the literature, as many variants have been designed. Some selec-
tion approaches are usable for both parent and survivor selection. Some other
approaches, are specifically meant for a single purpose. Also for variation op-

Initialisation . Randomly sample initial population
while condition on budget or fitness do

Selection . Pick the parents
Recombination . Generate offspring
Mutation . Alter genes
Replacement . Survivors drive the evolutionary process

end while
Output best individual

FIGURE 5 Pseudocode of an evolutionary algorithm
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erators, i.e. recombination (aka crossover for GAs) and mutation, the literature
provides a wide range of options.

A peculiarity of the GA is that parents are selected in a stochastic way (
the same individual can be chosen multiple times for breeding), so that fitter
solutions have a higher probability to guide the evolution. As they are more
likely to generate a promising offspring than mediocre individuals, the latter are
given a smaller, but still positive, chance to be picked up. A null probability of
being selected has to be avoided also for very unfit solutions, so that a certain
degree of population diversity is maintained. Diversity is important in order to
assure exploration, thus preventing the algorithm from getting trapped in a local
minimum. Classic methods for parent selection are the Roulette Wheel Selection
(RWS), preferable for selecting a single individual at a time, and the Stochastic
Universal Sampling (SUS), mostly used when multiple points are to be picked up
in a row. Both the methods mimic the functioning of a roulette wheel. However,
in the first case an unconventional wheel is adopted, with each sector having a
different size proportionate to the fitness function of a corresponding individual.
Thus, the wheel has to be spun k times to select k individuals. If the sampling is
performed without replacement, a fit individual (e.g. local minimum) could be
selected too often. This could lead to premature convergence. Conversely, with
SUS only one spin is necessary to get the k desired points in one go, see Eiben
and Smith (2003) for details. Generally, both the methods guarantee an appro-
priate level of selection pressure during the first part of the optimization process.
Unfortunately, a dramatic decrease of such pressure can occur later on, when
individuals tend to be close to each others. In this case, as well as in presence
of plateaus, fitness values are very similar and so are the corresponding selec-
tion probabilities. This implicates that every point has the same chance of being
selected. The selection mechanisms becomes a uniform selection, that is not de-
sirable. To ease this problem, one of the Sigma Scaling methods proposed by
Goldberg (1989) can be used. Such methods help diversify the selection probabil-
ities in presence of steady landscapes. Alternative solutions to this problems are
the rank based selections Eiben and Smith (2003). With respect to the aforemen-
tioned fitness based method, rank based routines display a slower convergence.
On the contrary, they are not sensitive to fitness values, and assign the same rank
whether the difference between the fitness of two individuals is huge or tiny. A
very simple and used approach is the k−Fitness Tournament Selection scheme.
To implement it, a set of k individuals have to be randomly picked up from the
population to then select the fittest one amongst them. Finally, it is worth men-
tioning the Positive/Negative Assortative Mating selection. The two variants,
i.e. positive and negative, can be chosen to obtain opposite effects. If a strong
emphasis on exploration is sought, then the negative scheme is preferable. As
example, it can be used to enhance GS capabilities in MAa, as done in (Molina
et al., 2010a). The scheme aims at selecting distant individuals, see (Fernandes
and Rosa, 2001). The first is usually selected via RWS. Then, a set of k points is
also generated by means of RWS. A metric is chosen to work out the distances
between the k points and the first parent, e.g. Hamming distance for binary do-
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mains, Euclidean distance in real-valued ones, etc. The farthest point gets chosen
as second parent. Positive Assortative Mating is conversely used to speed up
convergence as selecting close parents (Fernandes et al., 2001).

As for crossover, a plethora of variants exist in the literature, see (Eiben
and Smith, 2003). The main purpose of this operator is to generate an offspring
by exchanging components (design variables) between two candidate solutions
(parents). Multi-parents schemes also exist, but are rarely employed. Obviously,
there are specific crossover methods for binary, combinatorial, integer, domains.
Some of them can be transferred to the real-valued domain, e.g. see the one-point
crossover (keeps the components of the first parent up to a given position, then
exchanges the reaming sequence), and the two point crossover (exchanges a burst
of genes within two given positions). Multi-point crossover routines have been
defined too. Specific real-valued strategies are those performing the arithmetic
average between the two parents, or other kind of processing, rather than a sim-
ple swap of the components. A peculiar crossover for real-valued domains is the
BLX crossover operator (Eshelman and Schaffer, 1992). Given two individuals x1
and x2 and a parameter α ≥ 0, e.g. 0.5, BLX-α generates an offspring xoffspring by
means of the following:

xoffspring [i] = U (mini − δi · α, maxi − δi · α) i = 0, 1, ..., n (2)

with maxi and mini being the maximum and the minimum value between the
i− th component of x1 and x2 respectively, and δi equal to the interval maxi−mini
(U (a, b) is a uniform distributed random number within [a, b]). A value of 0.5 for
α is sufficient to spread the distribution of the chromosome during the evolution,
while BLX-0 is used to shrink the population distribution. Many other interesting
crossover schemes can be found in (Gwiazda, 2006).

Mutation is conversely responsible for the exploration of new zones of the
search space. In real-valued domains this is mainly done by altering the offspring
solution via Gaussian or Uniform distribution based perturbations. A particu-
lar scheme, i.e. BGA mutation, was proposed in (Mühlenbein and Schlierkamp-
Voosen, 1993) as:

xmutated
offspring[i] = xoffspring[i] + B±1 (0.5) · rangei ·

15

∑
k=0

αk · 2−k (3)

with B±1 (p) being a modified Bernoulli distribution (returns 1 with probability p
and −1 with probability 1− p), rangei = 0.1 ·

(
xU[i]7−xL[i]8 ), i = 1, . . . , n and αk

randomly sampled from {0, 1}with a probability p (αk = 1) = 1
16 . Such probabil-

ity implicates that the mutation is expected to occur 1 time for each gene, since the
summation in Formula 3 iterates 16 times (k = 0, 1, ..., 15). As a result, the mutated
gene is contained within the interval

[
xoffspring[i]− rangei, xoffspring[i]− rangei · 2−15]∪[

xoffspring[i] + rangei · 2−15, xoffspring[i] + rangei
]
.

7 Upper-bound for the ith design variable in D.
8 Lower-bound for the ith design variable in D.
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Finally, also survivor selection can take place with different modalities. From
this point of view, the GA is more flexible than other algorithms, where only few
options are available. For example, old good individuals can be replaced with
newly generated worse solutions to better handle multivariate functions (a logic
that i rarely implemented by other optimizers). Moreover, exploratory imple-
mentations may require to replace the entire population, or just a few carefully
selected individuals. Exploitative replacement schemes also exist to speed up
the search. In order to be able to distinguish between survivor selection meth-
ods, a nomenclature is needed. Usually, those survivor selection schemes where
the fitness value is not taken into consideration (or it is only partially taken into
consideration) are referred to as aged-based, i.e. the new individual necessarily
replace the old one. The others are instead referred to as fitness-based, e.g. the
roulette wheel selection could be employed to select individuals forming a new
population. Mixed combinations exist. As example, in the steady-state GA λ new
solutions (λ < µ = population size) are produced through variation operators.
Usually, λ = 1 or 2 depending on the crossover being used. The offspring can
then simply replace those solutions that have been kept in the population for a
longer time (aged-based replacement), or replace the worst between the parents
(regardless of the fitness value of the offspring, but considering the fitness value
of the parents). When λ = µ and the new population entirely replaces the previ-
ous one, the GA is said to be generational. Another commonly used approach is
to always insert in the new generation the best µ solutions out of µ old + λ new
points, i.e. (µ + 1/2) survivor selection. The last approach is said to be elitist,
as the best individual (i.e. the elite) is always inserted in the new population.
This approach, as well as most fitness based approaches, is oriented towards an
exploitative behaviour. Aged base and generational approaches tend to be more
exploratory, as unfit solutions are accepted to promote the exploration of unex-
plored sectors of the search space.

Evolution strategies

ESs are completely randomized frameworks based on the ideas of adaptation
an evolution. Modern implementations make use of a probabilistic approach to
implement adaptation and drive the evolutionary process. In particular, a distri-
bution density function is continuously updated to model the behaviour of a con-
verging population of candidate solutions. Mutants are randomly sampled from
the distribution, and their fitness values are evaluated. A parent-distribution is
so evolved, rather than a parent-population or mating pool. The produced indi-
viduals (offspring) are used to adapt the distribution to the problem at hand, see
(Rechenberg, 1971) and (Eiben and Smith, 2003). The search for extrema is then
mainly mutation-driven. Mutants are usually thrown from a multivariate Gaus-
sian distribution, whose statistical parameters (i.e. mean vector and covariance
matrix) have to be adjusted at every iteration. Unlike EP (Fogel et al., 1966), both
the variation operators are employed, as reported in Figure 5. However, recom-
bination plays a secondary role, that is the production of an offspring individual
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to serve as mean vector for the distribution. On top of the coordinates of each
individual (control variables), variances and angles for rotating the distribution
(strategy parameters) have to be stored in memory. To promote adaptations, pa-
rameters are linked to individuals and evolved with them. In this light, in the
most general case an individual can be encoded as 〈x, σ, α〉. This representation
is heavy from both the computational side (calculations are needed to convert
strategy parameters into a covariance matrix) and the memory side (the memory
footprint grows quadratically with n). On the other hand, the beauty of this of
framework is that strategy parameters are not to be tuned manually, but auto-
matically adapted to the problem (many ESs are parameterless). It can be stated
that ESs are the first self-adaptive EAs ever designed, as the strategy parame-
ters are evolved to find the optimal tuning on the fly. While control parameters
are obtained from mutation, strategy parameters only undergo a recombination
process. The process can be seen as a loop where good strategy parameters are
recombined to updated a covariance matrix, that is then used to sample mutants.

As mentioned, recombination plays only a minor role but it is still required
to generate the offspring x, where the distribution is centred. There are two prin-
cipal schemes: discrete and intermediary recombination. For each scheme, a local
and global variant exists. Thus, four combinations can be used, namely local or
global discrete recombination, and local or global intermediary recombination. It
has been found that, in practice, ESs tend to perform best if discrete recombina-
tion is performed on the control variables and intermediate recombination on the
strategy parameters (Eiben and Smith, 2003). To perform the local variant two
parents, let us say P1 and P2, are randomly picked up from the population. The
two parents are used to implement either the discrete and intermediary scheme.
In the local discrete case every component of x has 50% probability to come from
P1 and 50% probability to come from P2. In the local intermediary case every com-
ponent of x is the arithmetic average of the corresponding component in P1 and
the corresponding component in P2 (i.e. x[i] = P1[i]+P2[i]

2 ). To perform the global
variant the two parents are made up of components from the entire populations,
chosen by balanced9 roulette wheel selection. Thus, in the global discrete scheme
the offspring x inherits its components from any member of the population with
probability 1

µ (where µ is the population size). In the global intermediary scheme
it inherits components which are the average of the components inserted in P1
and P2 via balanced RWS.

In order to perform mutation a new mean vector and new covariance matrix
must be first worked out. While the control variables x = x1, x2, . . . , xn of the
offspring individual are simply used as mean vector, the covariance matrix C is
obtained by manipulating the strategy parameters (σ10= σ1, σ2, ..., σnσ and α11=
α1, α2, ..., αnα), see (Eiben and Smith, 2003) for details. Finally, the new “mutated”

9 Equally spaced RWS.
10 σ represents the standard deviation vector, also called step sizes vector, used to work out

the variances on the diagonal of C.
11 α contains the angles of the rotation matrix for the Normal distribution, which therefore

can be used to calculate the cross-correlation between two variables in C.



36

FIGURE 6 Graphical representation of ES mutation operators. Uncorrelated mutation
with 1 step size (left), uncorrelated mutation with n step sizes (middle) and
correlated mutation wit covariance matrix C (right). The oval represents the
distribution from which points are sampled.

individuals are simply thrown from the distribution:

xnew ∼ N (x, C)

This scheme is efficient at handling ill-conditioned problems, noisy landscapes,
and discontinuities. However, it can sometimes be to heavy. Lighter schemes
can be implemented by using less strategy parameters. For example, is worth
mentioning the uncorrelated mutation with n step sizes (i.e. no cross-correlation α,
C = diag {σ1, σ2, . . . , σn} ) and uncorrelated mutation with 1 step size (i.e. σ is a
scalar value multiplying the identity matrix I, C = σI ). For the sake of clarity,
the capabilities of these mutations are graphically shown in Figure 6. As can be
seen, the first variant is able to adapt the Gaussian distribution by changing its
size and shape. The lack of cross-correlation makes it unable to rotate. In the
second variant, instead, only the size can change. Simpler implementations also
exist, e.g. the single solution (1 + 1)-ES with 1/5 rule (Auger, 2009). However,
because of their simplicity, they usually return less accurate results.

Finally, there are two principal replacement schemes: (µ, λ) survivor selec-
tion (also referred to as comma selection), and (µ + λ) survivor selection (also
referred to as plus selection). Unlike what happens in GAs, the first strategy can
also have λ > µ, and the old population is replaced by choosing the µ fittest in-
dividuals out of a pool of λ new points. The second method, preserves old dated
solutions (good in dynamic environments) by selecting the best µ individuals out
of a set containing all the µ + λ solutions.

The Covariance Matrix Adaptation ES (CMA-ES) is the most significant ex-
ample of ES. It is designed on a solid and elegant mathematical basis, see (Hansen
and Ostermeier, 1996), and is considered a benchmark for real-valued optimiza-
tion. CMA-ES features several desirable properties, such as lack of problem de-
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pendent parameters and invariance to many transformations. It is extremely effi-
cient in solving ill-conditioned and monomodal problems. CMA-ES keeps being
used for solving real world applications, see (Iruthayarajan and Baskar, 2010) and
(Fang et al., 2011), and for designing MAs as in (Molina et al., 2010a) and (Baggett
and Skahill, 2010). Also in this piece of work, it has been involved in the design
of PVII, PVI and PX. In particular, the standard CMA-ES with rank-µ-update and
weighted recombination, see (Nikolaus and Stefan, 2004), was employed. In this
algorithm the sampling of an individual xk (k = 1, 2, . . . , λ), at a generic genera-
tion g + 1, is obtained by implementing the following formula:

x(g+1)
k ∼ N

(
〈x〉(g)

w , (σg)2 C(g)
)

(4)

where N
(
m, σ2C

)
is a multivariate normal distribution of mean vector m, step-

size σ, and estimated covariance matrix C. From the implementation point of
view, the sampling is made by decomposing the covariance matrix as the product
of two components. The first is a diagonal matrix D. The second is an orthonor-
mal matrix B, which is obtained via principal component analysis as indicated
in (Hansen and Ostermeier, 2001). The decomposition is done so that C(g) =

B(g)D(g)2
D(g)T

. Processing multiple matrices is a slow and computationally ex-
pensive (sometimes numerically unstable) procedure, but allows the coding of
the sampling routine in the following way: x(g+1)

k ∼ 〈x〉(g)
w +σ(g)B(g)D(g)N (∅, I).

With regard to the mean vector 〈x〉(g)
w , it is a simple weighted sum of the µ fittest

candidate solutions (µ ≤ λ) of the generation g. This vector corresponds to a
recombination result:

〈x〉(g)
w =

µ

∑
i=1

wix
g
i:λ (5)

where x(g)
i:λ denotes the ith best individuals at the generation g amongst the λ

available, and wi are weight factors so that ∑
µ
i=1 wi = 1, see (Nikolaus and Stefan,

2004) for details. In order to work out the covariance matrix C, first, the so called
evolution path Pc has to be considered:

pc
(g+1) = (1− cc)pc

(g) + H(g+1)
σ

√
cc · (2− cc) ·

√
µe f f

σ(g)

(
〈x〉(g+1)

w − 〈x〉(g)
w

)
(6)

and used in the formula below:

C(g+1) = (1− ccov)C(g) + ccov ·
1

µcov
pc

(g+1)
(

pc
(g+1)

)T

+ccov ·
(

1− 1
µcov

) µ

∑
i=1

(
x(g+1)

i:λ − 〈x〉(g)
w

) (
x(g+1)

i:λ − 〈x〉(g)
w

)T
. (7)

All the parameters do not depend on the problem at hand and have been ac-
curately pre-tuned, see (Hansen et al., 2003) and (Nikolaus, 2005). For the sake
of brevity, a schematic description of the parameters setting is given in Table 2,
where the suggested (optimal) values are also reported. It has to be said that some
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–problem dependent user defined input parameters–

initialise n, 〈x〉(0)w and σ(0). σ(0) = 0.5, 〈x〉(0)w ∼ U (0, 1) in (Nikolaus and Stefan, 2004)
–strategy parameter setting: selection–

initialise λ, µ, µe f f and w(0)
i=1...,µ as in Table 2 . λ can be modified if needed

–strategy parameter setting: adaptation–
initialise cc, µcov, cσ, dσ and dσ as in Table 2
–initialise dynamic (internal) matrices parameters and constants–
Pc = Pσ = [∅], B = D = I, C = B ∗D (B ∗D)T

–main loop–
while stop criterion is not met do

sample λ new individuals from distribution . Formula 4
evaluate individuals and sort them based on their fitness
update 〈x〉 based on a weighted sum of the best µ individuals . Formula 5
update the evolution paths Pœ and Pc . Fomula 8 and 6
update covariance matrix C and step-size σ consequently . Formula 7 and 9

end while
Output best individual ever found xe

FIGURE 7 Pseudocode of CMAES

parameters are necessarily auto-generated. Some others, i.e. λ, µ and the initial
value for σ, can be customized (as indicated in Figure 7). The function H(g+1)

σ is
defined such that it returns 1 if

||P (g+1)
σ ||√

1−
(

1− c(g+1)2
σ

) <

(
1.5 +

1
n− 0.5

)
E (||N (∅, I) ||)

and 0 otherwise. In the previous formula, n is the dimensionality of the problem,
while E (. . . ) the expected value12. The matrix Pσ takes the name “conjugate
evolution path” and is defined as

P (g+1)
σ = (1− cσ) +

√
cσ · (2− cσ)

D(g)B(g)−1D(g)T
︸ ︷︷ ︸

C(g)− 1
2

√
µe f f

σ(g)

(
〈x〉(g+1)

w − 〈x〉(g)
w

)
(8)

where cσ is a decay factor, see Table 2 for details. This parameter is also used for
updating the step-size, as shown below:

σ(g+1) = σ(g)e
cc
dσ

( ||Pc||
E||N(∅,I)||−1

)
. (9)

Subsequently, several variants of CMA-ES have been proposed.
As the standard CMA-ES presents a deterioration of the performances over

multimodal functions, a restart mechanism was designed in (Auger and Hansen,

12 E (||N (∅, I) ||) is the expectation of the length of the n-dimensional point sampled from
N (∅, I), which is ≈ √n

(
1− 1

4n − 1
21n2

)
(Nikolaus and Stefan, 2004).



39

TABLE 2 Description of parameters in CMA-ES

Parameter Description Value
λ offspring number, new so-

lutions sampled, population
size

λ = 4 + b3ln (n)c

µ parents number, solutions in-
volved in updates of mean
value, covariance and step-
size

µ = bλ
2 c

wi=1...µ recombination weights wi=1...µ = ln(µ+1)−ln(i)
∑

µ
j=1 ln(µ+1)−ln(j)

µe f f variance effective selection
mass

µe f f =
1

∑
µ
1 w2

i

(wi=1...µ are chosen so that µe f f ≈ λ
4 )

cc decay rate for the evolution
path

cc =
4

n+4

µcov learning coefficient for the co-
variance matrix

µcov = µe f f

ccov learning rate for the covari-
ance matrix

ccov = 1
µcov

2

(n+
√

2)
2 +

(
1− 1

µcov

)
min

(
1, 2µe f f−1

(n+2)2+µe f f

)

cσ decay rate for the conjugate
evolution path

cσ =
µe f f +2

n+µe f f +3

dσ damping parameter for σ-
change

dσ = 1 + 2max
(

0,
√

µe f f−1
1+n − 1

)
+ cσ

2005). According to this scheme, the population size has to be increased after ev-
ery restart. This variant is less prone to premature converge and better handles
multiple optima. It is usually refereed to as IPOP-CMA-ES, but is also known
under the name G-CMA-ES. Further attempts heave been made to improve upon
CMA-ES by tuning the population size on the go. Some interesting implementa-
tions have been tested in (Loshchilov, 2013), where also novel step size updating
formulas are proposed. Results have shown that restarting the search make new
variants outperform the standard implementation on 23 multimodal functions
from the test suite in (Liang et al., 2013).

Conversely, the study in (Ros and Hansen, 2008) suggests the use of the un-
correlated mutation with n step sizes to tackle separable problems (sep-CMA-ES).
Numerical results empirically showed the suitability of this mutation for separa-
ble domains. It was also noted that sep-CMA-ES performs better than standard
CMA-ES over large scale problems (n larger than 100), regardless of the separa-
bility of the problem.

Memetic algorithms, memetic computing and Hyper-heuristics

Advantages of hybridizing population based algorithms with LS routines, as
those described in Section 2.2.1, have been already discussed in this piece of work.



40

Any time the population based component is an EA, and the LS is performed by
activating a local searcher within the evolutionary cycle, the optimizer can be
refer to as an MA.

The term “memetic” was introduced for the first time by Moscato (1989),
referring to the concept of meme coined by Richard Dawkins as: the basic unit
of cultural transmission, or imitation (Dawkins, 1976). Thus, the main metaphor
behind the MA does not rely on biological evolution, but on Dawkins’ Universal
Darwinism theory. This can be seen as an extension of the Darwinian theory
in that evolution is considered to take place also in all those complex systems
exhibiting the processes of inheritance, variation and selection. This happens
e.g. with elements of culture that pass on to new generations. As an idea, a
promising meme can be shared, exchanged within a community (individual of
the population in MAs, different operators in MC), adapted or improved.

Regardless of the underlying metaphor, the idea of exchanging information
between different operators has attracted the attention of researchers. Thus, it has
been studied under different point of views. Studies have been carried out to un-
derstand when and how the LS can be applied, how to improve the coordination
logic of the single components, etc. The MA concept has been quickly extended.
As example, the term MC was introduced in optimization to refer to all those
cases where interacting agents (memes) are used to face optimization tasks. Such
memes were defined as units of information encoded in computational representations
for the purpose of problem solving (Ong et al., 2010).

In this light, all hybrid algorithms can be seen as MC implementations.
Moreover, PSO and DE frameworks equipped with LS can also be referred to
as MC algorithms. MC can be seen a “superclass” that can instantiate MA ob-
jects. Unfortunately, a great deal of publications in the literature stress the fact
that is important to distinguish between MA and MC, see e.g. (Moscato, 1989)
and (Hart et al., 2004), thus forcing designers to refer to rigid definitions that do
not have a valuable and quantifiable importance from the scientific point of view.
As example, an optimizer designed by adding LS routines within a DE structure
is based on the same idea of former MAs, even though DE is not considered to be
an EA. From the point of view of the author of this thesis, it is irrelevant to discuss
about the MC rather than MA nature of such hybrid optimizers, and disquisitions
about new metaphor-driven optimization approaches should be discouraged by
the scientific community.

Early implementations of MAs exist can be found in the literature before
the definition given by Moscato (1989). Such algorithms were referred to as
Lamarckian-EAs and Baldwinian-EAs. As the name could suggest, there is a
slight but crucial difference between the two approaches. The former makes use
of LS to improve upon the genotype of some individuals, while in the latter only
the phenotype gets modified, see (Geoffry E. Hinton and, 1987) and (Whitley
et al., 1994). Subsequently, the Genetic Local Search Algorithms were proposed
(García-Martínez and Lozano, 2008). A standard GA (Whitley, 1994) was usually
equipped with hill-climber routines as shown in (García-Martínez and Lozano,
2008).
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As the memetic approach became more employed, the problem of coordi-
nating the operators included in the MA arose. The Meta-Lamarckian Learning
mechanism, see e.g. (Ong and Keane, 2004) and (Neri et al., 2012), was intro-
duced to tackle this problem by assigning to each local searcher a probability to
be executed. At every iteration, the probability of a specific local searcher his up-
dated on the basis of its previous success. The operator to be run is then selected
via RWS. Self-adaptive and Co-evolutionary MAs (Krasnogor and Smith, 2005),
(Smith, 2007), and (Smith, 2012), made use of a different mechanisms in which a
rule-based representation of LS is co-adapted alongside candidate solutions.

In (Molina et al., 2010a), the LS chains mechanism is instead used to better
exploit the potentialities of the local searcher. The proposed algorithm, Memetic
Algorithm based on Local Search Chains (MACh), is made up of an instance of
a steady-state GA, and several instances of the LS routine (i.e. CMA-ES in this
case). In order to enhance exploration, the GA was equipped with the Negative
Assortative Mating selection strategy (Fernandes and Rosa, 2001), described in
Section 2.3.1, with the BGA mutation displayed in Formula 3, and with the BLX-
α crossover, see Formula 2. Individuals undergo LS for a prefixed number of FEs.
The CMA-ES is applied by centring its distribution on the solution to be refined.
After the application, the CMA-ES instance is frozen, so that if the same indi-
vidual is selected again the very same instance is unblocked and can start over
with its previous setting. This means that parameters, needed to work out the
covariance matrices of each CMA-ES instance, have to be kept stored in mem-
ory during the optimization process. Numerical results show great performances
over several test functions. However, there could be, potentially, a CMA-ES in-
stance for every candidate solution. Evolving a population of CMA-ES objects
is computationally expensive. From the memory occupation point of view, it is
extremely onerous. Thus, the described approach is not suitable for LSOPs. For
this reason, a lighter version was designed to address LSOPs, see (Molina et al.,
2010b). This variant makes use of the Solis-Wets method to replace CMA-ES in
performing the LS. Obviously, the lighter variant is more versatile and usable in
many real-world applications, but cannot compete with the previous one in terms
of numerical results.

As antithesis of the previous complex and heavy algorithm, a simple and
light MC optimizer was presented in (Iacca et al., 2012a). The so called 3SOME
algorithm makes the point that also minimalistic single-solution approaches can
display a performance which is as good as that one of a complex population-
based structures, if the algorithmic design is done carefully. The three compo-
nents forming 3SOME, are neither complex population based algorithms, nor
efficient optimizers that can be used on their own. However, their efficient co-
ordination displayed good numerical results over benchmark functions and real
world applications, see e.g. (Iacca et al., 2013).The success of 3SOME is deter-
mined by the fact that the employed operators are not redundant and play com-
plementary roles. Their coordination, shown in Figure 9, is simple. It follows a
strong logic based on the bottom-up approach depicted in Figure 8, in order to
gradually tackle a black-box problem. In order to reach the final goal, i.e. find
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FIGURE 8 Bottom-up design strategy.

the global optimum, the algorithm keeps going through three stages. Such stages
are unnecessarily repeated in the same order that is followed the first time. In the
first stage, namely “long distance exploration”, the L operator performs a ran-
dom exploration of D. Unlike pure random-walk algorithms, L also exchanges
a small portion of the genetic heritage of the newly randomly sampled solution
with the elite solution. This inheritance mechanisms is achieved via exponential
crossover (Storn and Price, 1995), see Figure 15, and has proven to work nicely in
several cases, e.g. (Caraffini et al., 2013) and (Caraffini et al., 2013b). L is stopped
as soon as a fitter position if found in D. This solution is passed on to the M opera-
tor to undergo the second stage: “middle distance exploration”. Once the second
stage is activated, it is run as long as M is successful, i.e. produces a fitter solu-
tion than the current one. This operator perform the same search logic of L, but
with a strong bias towards the elite (elevate crossover rate) and within a narrow
portion of D. In details, the random sampling is carried out within a hypercube
centred on the elite, whose edge has a width equal to the 20% of the width of
D. The final stage, i.e. “short distance exploration”, further refines the current
solution by running the S algorithm (described in Section 2.2.1). Figure 9 shows
the coordination logic of the three stages. The three operators are not simply it-
erated: if S fails at refining the solution than a new exploratory phase is needed
and L is run, otherwise it is skipped. For the sake of clarity it must be said that
Figure 9, as well as other figures, follows the representation method introduced
in (Caraffini et al., 2013b). The Memetic Node (MN) represents a decisional state.
Usually, a MN shows a probability of moving to a state rather than another one.
For 3SOME, the decision is deterministically made according to the fitness value
of the refined solution. Thus, the algorithm does not know what the next stage
will be before that S returns its solution. This coordination logic is simple, and
has shown to be as efficient as meta-lamarckian learning and other adaptive log-
ics (Neri et al., 2012). Further studies confirmed the efficiency of this memetic
approach and obtained good results with simple modifications. For example, the
second stage get sensibly more efficient if the hypercube is progressively shrunk
(Poikolainen et al., 2013). Moreover, performances can be significantly increased
over separable problems by slightly modifying M and S (Poikolainen et al., 2012;
Caraffini et al., 2012b).

The success of 3SOME has been followed by a number of attempt of de-
signing single solution optimizers based on the same principle of simplicity. Se-
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FIGURE 9 3SOME coordination logic.

riously simple algorithms have been designed and proven to perform extremely
well, also on large scale problems. The Re-sampled Search (RS) algorithm, for
instance, is an efficient implementation of iterated local search (Caraffini et al.,
2013a). It can be seen as an extreme simplification of the 3SOME algorithm, and
performs even better that its predecessor on large scale problems. The M oper-
ator turned up to have a minor impact on the overall performance of 3SOME,
see (Caraffini et al., 2012a), hence it was removed to obtain a simpler structure.
Moreover, it was clear from (Caraffini et al., 2012a) that such good performances
displayed by 3SOME were the outcome of its efficient coordination logic rather
than the the merit of each single operators. Therefore, there was no need of re-
placing S with a more complex LS to design an efficient variant. On the con-
trary, both S and L were further simplified to save computational budget. S was
equipped with an exit condition on the exploratory radius, while L was reduced
to a single random sampling within D. The RS algorithm was thus designed by
simplifying an existing optimizer, in contrast with the common practice of adding
extra components. An improvement in the performance of RS was obtained by
simply employing the exponential crossover, as in L, after the random sampling.
This variant, namely Re-sampled Inheritance Search (RIS) performs superbly on
large scale problems, and can spot good solutions even with a limited computa-
tional budget (Caraffini et al., 2013). Finally, the Very Intelligent Single Particle
Optimization (VISPO) further confirmed that large scale problems can be han-
dled with seriously simple algorithmic structures. VISPO stochastically perturbs
a single design variable at a time for a fixed amount of FEs, and with decreasing
magnitude. When the exploratory radius is too short, or the search is unsuccess-
ful, a restart procedure occurs. Details can be found in (Iacca et al., 2013).

An interesting algorithmic structure was proposed in (Caraffini et al., 2013b).
In the Paralle Memetic Structure (PMS) algorithm, the L operator can be followed,
with equal probability, by either S or the Rosenbrock method. Hence, after explo-
ration, LS can take place according to two different logics. The search space is
better covered as diagonal and orthogonal paths are exploited. A boost in the
average performance was noted with respect to 3SOME, as PMS is more versatile
and robust.

In SPAM (Caraffini et al., 2014), a preliminary analysis of the landscape was
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performed to enhance PMS. CMA-ES is executed for a limited amount of FEs,
and the covariance matrix evaluated to work out the degree of linkage between
the variables. As can be seen in Figure 20, such information is used to adapt
the activation probability for S and the Rosenbrock method to the problem. The
SPAM framework makes use of simple operators to carry out the actual opti-
mization process, but requires a heavy component, i.e. CMA-ES, to process the
covariance matrix. This philosophy is in contrast with some popular solutions
that can be found in the literature. As instance, the portfolios approach to al-
gorithms selection consists of a set of several algorithms, picked up according
to a simple criterion (Vrugt et al., 2009; Peng et al., 2010). This is similar to the
hyper-heuristic approach, where multiple heuristics (algorithms, operators, etc.)
are coordinated by a supervisor (Özcan et al., 2008; Burke et al., 2010). Also in this
case, the approach is more oriented towards selecting an algorithm every time is
needed during the optimization process, rather than fixing the algorithmic struc-
ture (e.g. activation probabilities for operators) with a preliminary procedure. In
this light, SPAM is quite peculiar as differing from adaptive MC algorithms too.
In effect, the latter adapt their parameters during the optimization process. Con-
versely, SPAM analyzes the landscape to “design” an optimizer by tuning some
parameters in advance. Potentially, in particular cases the outcome of the pre-
liminary analysis can result into an iterated local search made up of only L+S or
L+Rosenbrock. Thus, if the linkage (correlation) between the variables is nearly
0, an algorithm similar to RIS is used. Conversely, a high correlation is handled
by activating only Rosenbrock. All the intermediary cases can occur according to
different degrees of correlation amongst the variables. In these cases, a MC with
two LS routines is employed. The method proposed for SPAM has a great po-
tential. Researchers talk about automatic generation of optimization algorithms,
see (Ong et al., 2009) and (Ong et al., 2010), but SPAM is the first actual imple-
mentation for real-valued domains. In fact, other ideas have been presented e.g.
in (Meuth et al., 2009; Zhu et al., 2010) and also in (Hoos, 2012; Wu et al., 2012),
but they have not been formalized in technical terms yet. If software platforms
for the automatic design of optimization algorithms already exist for combinato-
rial domains, e.g. the SATzilla portfolio-based selection platform (Xu et al., 2008;
Hamadi et al., 2012), or the software package F-RACE and its iterated version
IRACE (Birattari et al., 2010; Lopez-Ibanez et al., 2011), only little has been done
for the real-valued case. A proper software platform capable of designing opti-
mizers for real-valued problems is yet to come. The SPAM framework could be
enhanced with more advanced fitness analysis methods, as those in (Malan and
Engelbrecht, 2013) and (Malan and Engelbrecht, 2014), to combine together more
than just two local searchers.

Regardless of the definition, MC and hyper-heuristics have a lot in common.
Memetic computing is an umbrella name, and most algorithms can be seen from
the MC perspective. The same can be said for hyper-heuristics. In the latter, the
emphasis is put in the coordination logic. The aim of hyper-heuristic approaches
is to optimize the coordination of multiple optimization algorithms, rather than
trying to optimize the actual problem. The search is taken to a higher level and
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the optimization takes pace in the search space of heuristics. However, this means
that in practise some sort of adaptive logic must be adopted to supervise the sin-
gle algorithms. Similar logics are used in a MA to guarantee a fair balance be-
tween exploration and exploitation, or in a MC approach to run the most appro-
priate operator. The hyper-heuristic point of view resulted very useful in discrete
and combinatorial problems, where the gradient information cannot be used to
guide the search. For this reason, moving the attention to an equivalent, but dif-
ferent, search space (i.e. of heuristics) presents its advantages. Great results have
been obtained by adopting this approach for timetabling and rostering problems,
see (Cowling et al., 2000) and (Burke et al., 2003a) respectively. Successful super-
visory schemes are e.g. those employing the so called choice function (Cowling et
al., 2000), or a combination of choice function and randomized criteria (Kendall
et al., 2002). More sophisticated approaches make use of reinforcement learning
as in (Burke et al., 2003a) and (Dowsland et al., 2007), but also memory-based
mechanisms, see (Burke and Bykov, 2008). The multi-agents approach (Acam-
pora et al., 2011a,b) also displayed a good performance. In Chapter 4.3.3 of this
piece of work , a novel hyper-heuristic structures is proposed by improving the
coordination logic proposed in (Caraffini et al., 2014) for the SPAM algorithm.

2.3.2 Swarm Intelligence

A number of popular nature-inspired optimizers follow the SI logic, which was
firstly introduced in robotics (Beni and Wang, 1989), and then adopted in all ar-
eas of AI, including CIO. The general structure of a SI based optimizer is given
in Figure 10. The main idea is to mimic the behaviour of groups of animals,
e.g. a flock of birds crossing the sky or a school of fish turning together in the sea.
These communities display remarkable self-organisation skills, despite the lack of
a central coordination logic. Optimizers can simulate this behaviour. A “swarm”
of solutions move in the search space. A single solution can only wander in the
search space, keeping track of its best e worst position. However, by exchanging
this information within its neighborhood, solutions can be perturbed more effi-
ciently. Thus, a collective intelligence can arise from non intelligent units. Several
approaches exploit this concept. Examples are: Artificial Bee Colony (ABC), see
(Karaboga and Basturk, 2007) and (Pham and Castellani, 2009), Bacterial Foraging
Optimization (BFO), see (Passino, 2002), and Ant Colony Optimization (ACO), as
in (Colorni et al., 1991) and (Socha and Dorigo, 2008). Amongst them stood the
PSO algorithm by Kennedy and Eberhart (1995), which is undoubtedly the most
used.

Particle swarm optimization

In PSO a set (or swarm) of P solutions (i.e. the particles) are perturbed taking into
consideration the history of their neighbors, and of the entire swarm. In order
to implement this logic for each particle p = 1, 2, . . . , P is required to store: cur-
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rent position (xp), personal best position (xb
p) and personal worst position (xw

p
13).

In addition to these positions, a velocity14 vector vp is also associated to each
particle. So, in the most general case, each particle is associated with its design
variables, plus 3 more vectors:

〈
xp, xb

p, xw
p , vp

〉
. The first three vectors contain

positions, while the latter contains perturbation parameters. In order to perturb a
particle, vp is first updated according to Formula 10, and then used to move xp as
shown in Formula 11. The fitness value of the particle in its new position has to
be evaluated to understand whether or not xb

p and xw
p are changed. The particle

with the fittest personal best position is copied into the global best position xgb.
Such point is always kept up to date and returned as global solution at the end of
the optimization process.

v
′
p = φ1vp + φ2

(
xb

p − xp

)
+ φ3

(
xgb − xp

)
(10)

x
′
p = xp + vp (11)

With reference to Formula 10, φ1, φ2, and φ3 are three weights, usually contain-
ing a random component (Clerc and Kennedy, 2002). Since performances heavily
depend on the choice made for these problem depending parameters, see (Yuhui
and Eberhart, 1998), a great deal of research have been done to make them self-
adaptive, e.g. in (Zheng et al., 2003) a dynamic time-decreasing inertia weight
φ1 is employed. It can be noted that there are two moves embedded in Formula
10: a first one towards the personal best position of the particle being perturbed,
and a second one towards the global best solution. These two forces and the
old velocity vector are weighted and summed up in order to generate a new ve-
locity vector. Thus, the perturbation takes into consideration local and global
information. The particle is moved and left in the new position regardless of the
corresponding fitness value. This is not a problem as xb

p and xw
p keep track of best

and worst explored positions. This logic can be seen as the evolution of multiple
populations. One is used to explore D and contains the particles. This population
does not converge. Conversely, the one containing the local best positions con-
verges to the optimum. It is evident that PSO does not need selection: parents
do not have to be picked up as each velocity vector is applied to its particle, and
not to a selected one from the swarm. Moreover, replacement does not happen in
the classic way, as particles are moved by adding a component to their previous
position, which is lost. Replacement occurs only for the local best positions, that
can be seen as the real population of PSO. Solutions are usually perturbed one at
a time from the first to the last one. If an improvement occurs, it is immediately
registered by replacing the corresponding local best vector. This logic is called
1-to-1 spawning.

Newer perturbations schemes can be found in the literature and many vari-
ations on the theme of PSO have been designed. As instance, a compact variant

13 This vector is rarely used.
14 It must not be confused with the physical meaning of this term, strictly speaking it is a

displacement rather than a velocity.
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Initialisation . Randomly sample initial swarm
while Condition on budget do

for each x ∈ Swarm do
Update perturbation parameters and apply perturbation: x =⇒ x

′

Update swarm
end for

end while
Output Best Individual

FIGURE 10 Pseudocode of swarm intelligence optimization

(it does not employ a proper swarm but a probabilistic representation of it) is
presented in (Neri et al., 2013), while multiple perturbation strategies have been
used together in the well-known Frankenstein’s PSO (Montes de Oca et al., 2009).

Amongst the most representative PSO variants, is worth mentioning the
Comprehensive Learning PSO (CLPSO). As the name suggests, CLPSO uses a
learning strategy whereby all the particles take part and share their history to
update t velocity vector as below:

vp = φ1vp + φ2U×
(

xrb
p − xp

)
(12)

where U is a n× n matrix of uniform distributed random numbers, xrb
p is a vector

built up by randomly sampling components from all the local bests vectors xb
p.

The sampling procedure makes use of a threshold, Pc, which has to be generated
for each dimension i = 1, 2, . . . , n:

Pc−i = 0.05 + 0.45 · e
10(i−1)

P−1 − 1
e10 − 1

(13)

where P is the swarm size (number of particles). A random number is drawn and,
if higher than Pc, the i− th component of the corresponding local best particle is
taken. Otherwise, two randomly selected local best positions are compared ac-
cording to their fitness value. The fittest of the two donates the i− th component
to xrb

p . This scheme has shown to be versatile and efficient for addressing up to
50 design variables (Liang et al., 2006).

The Cooperatively Coevolving Particle Swarms for large scale optimization
(CCPSO2), proposed in (Li and Yao, 2012), features an interesting sub-grouping
mechanism for decomposing the swarm in lower-dimensional swarms. These
sub-swarms are evolved at the same time, so facing easier sub-problems, and re-
turn partial components of the global solutions of the LSOP. An example of the
sub-grouping routine is graphically given in Figure 11, where N is the dimension-
ality of the problems, S is a randomly chosen admissible divisor (dimensionality
of each sub-swarm) and K is the number of sub-swarms, i.e. k = N

S . Unexpect-
edly, this logic has shown to perform well also for low-dimensional problems
(e.g. 30, 50 and 100 design variables). The perturbation scheme slightly differs
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FIGURE 11 Graphical representation of the sub-grouping strategy in CCPSO2 for large
scale optimization. N is the number of variables, S is the number of vari-
ables per sub-particle, and K is the number of sub-particles.

from the classic one for PSO algorithms, since a Gaussian/Cauchy perturbation
is directly applied to the position vector:

xi =

{
xb

i + C (0, 1) |xb
i − xgb

i| i f U (0, 1) < p
xgb

i +N (0, 1) |xb
i − xgb

i | otherwise
i = 1, 2, . . . , S (14)

where the probability p can be set equal to 0.5, xb
i refers to the personal best of the

ith sub-particle, and xgb
i to the global best position within a small neighborhood

of the ith sub-particle (i.e. fittest among ith particle and its immediate left and
right neighbors). Fitness functional calls are performed by reconstructing the
design vector with the concatenation of all the components coming from the sub-
swarms.

Finally, (Zhen et al., 2010) introduces an extraordinarily simple single-solution
variant, namely Intelligent Single Particle Optimizer (ISPO). Thanks to its mini-
malistic structure, the algorithm could be successfully used to perform memory-
saving optimization in PIII. ISPO simply perturbs the n design variables (i =
1, 2, . . . , n) of a single particle for a number H = 30 of attempts in a row. The
following velocity vector is used to perturb the particle:

vh+1
i =

A

(h + 1)P · U (−0.5, 0.5) + B · Lh, h = 1, 2, . . . , H (15)

where A, P, and B are three problem dependent parameters called acceleration,
acceleration power factor, and learning coefficient. The learning factor L is in-
stead initially set to zero and then updated after each perturbation t, i.e. x [i]t+1 =
x [i]t + v[i]t+1. If the new particle improves upon (or equals) the old one, then
Lh+1 = vh+1[i], otherwise (if L 6= 0) Lh+1 = Lh

SF
, where SF is a shrinking factor.

L is reinitialized to zero if its absolute value gets too small, i.e |L| < E = 10−5,
due to a sequence of unsuccessful perturbations. This mechanism ensures a ran-
domised search along each dimension, whose exploratory radius is larger at the
beginning of the optimization process and progressively shrinks as h is increased.
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2.3.3 Simulated annealing

A popular single solution optimizer for global optimization is the SA algorithm.
Unlike the aforementioned ISPO, SA does not focus on a single design variable at
a time. Conversely, all the design variables are changed through a stochastic per-
turbation. SA is based on a working principle inspired from metallurgy. When a
metal is heated and subsequently cooled down, its crystal structure is strength-
ened as defects fade. At high temperatures, atoms are not confined within the
crystal structure but free to move chaotically (exploration of the landscape). They
settle down as soon as the temperature decreases (exploitation). By controlling
the cooling, atoms are placed in a configuration of minimum energy within the
new crystal. A similar behaviour is obtained in SA by means of the procedure
reported in Figure 12. Atoms represent the design variables.Their motion is the
outcome of a stochastic Gaussian or Cauchy perturbation. Local minima make
the search difficult, and in order to reach the position of minimum energy the
heating and cooling procedures have to be alternated several times. Poor config-
urations may occur. These configurations are accepted according to a stochastic
rule, see Figure 12, that tends to promote exploration at the early stages of the
optimization process, to gradually became more selective. Thus, towards the end
of the optimization process, a new solution is accepted only if fitter than the pre-
vious one. This is achieved by decreasing the probability of accepting bad config-
urations exponentially: exp

{
− f (xk)− f (xk−1)

Tk

}
. The temperature Tk is commonly

updated as follows:

Tk =
T0

ln (1 + k)
(16)

where T0 is the initial (or maximum) temperature. SA was first proposed for com-
binatorial optimization in (Kirkpatrick et al., 1983), but it was quickly adapted for
real-valued optimization.

An interesting SA is presented in (Xinchao, 2011), under the name nuSA
(non uniform SA). The name refers to the use of the following perturbation:

xk[i] =
{

xk−1[i] + ∆
(
k, xU[i]− xk[i]

)
i f U (0, 1) > 0.5

xk−1[i]− ∆
(
k, xk[i]− xL[i]

)
otherwise

i = 1, 2, . . . , n (17)

that depends on the generation counter k. As k increases, the perturbation acts
differently. At the early the stages of the optimization process Formula 17 ap-
proximates a Cauchy perturbation, i.e. long steps are made within D, and subse-
quently a Gaussian perturbation, i.e. locally distributed around its mean value.

This behaviour is guaranteed by ∆ (k, y) = y ·
(

1−U (0, 1)(1− k
K )

b
)

, which con-

verges towards zero as k increases. The b parameter is problem dependent and
takes integers values, e.g. b = 5 in (Xinchao, 2011).The following geometric pro-
gression is used for cool-down:

Tk = α · Tk−1 (18)
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k← 0
xk ← randomSampling (1, N,D)
xsa ← xsa
while budget condition do

k← k + 1
xk ← createNeighborSolution (k) . e.g. Equation 17 in nuSA
Tk ← cooling (k) . e.g. Equation 16 and 18 for SA ans nuSA respectively

if f (xk) ≤ f (xk−1) || e−
f (xk)− f (xk−1)

Tk < U (0, 1) then
if f (xk) ≤ f (xsa) then

xsa ← xk
end if

else
xk ← xk−1

end if
end while
Output xsa

FIGURE 12 Pseudocode of simulated annealing

with α ∈ [0.9, 0.99]. The initial temperature T0 is automatically tuned with a
simple procedure: a set of 10 points is uniformly sampled and the following value
is worked out T0 = − f (xworst)− f (xbest)

ln(ξ) . The parameter ξ is the initial acceptance (a
value of ξ = 0.9 assures a exploration of D by accepting mediocre solutions). The
vectors xbest and xworst are respectively the fittest and the worst solution in the
set.

2.3.4 Differential evolution

DE was designed by Storn and Price (1995) in the attempt to solve a fitting prob-
lem. It was designed on the simple idea of computing a scaled difference between
randomly picked individuals to generate new solutions. An idea that turned up
to be a very efficient mutation strategy. DE displayed outstanding GS capabil-
ity, flexibility, and reliability. This algorithm follows the scheme reported in Fig-
ure 13, see (Rainer and Kenneth, 1997) for technical details. It can be noted that
DE implementation is simple with respect to other algorithms, as its structure
is linear. This was a crucial factor promoting the use of this optimizer in vari-
ous fields of engineering, see e.g. (Storn, 1996), (Storn, 1999), (Storn, 2005) and
(Price et al., 2005). Individuals are perturbed one at a time from the first one to
the last one, according to the 1-to-1 spawning scheme from SI. No parent selec-
tion is needed. From each individual a new one is generated, but unlike PSO
is temporarily saved and and left unused. Only when a complete new genera-
tion is produced, the new individuals are compared with the ones located in the
same position. Replacement occurs if a new individual displays a better fitness
value than its predecessor. Variation operators follow an unconventional order,
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g← 1 . First generation
Popg ← randomly sample M n-dimensional individuals within D
xbest ← fittest individual ∈ Popg

while Condition on budget do
for each xj ∈ Popg do . j = 0, 1, 2, ..., M

xm ←Mutation . e.g. Formula 19 in (Storn and Price, 1995)
xoff ←CrossOver

(
xj, xm

)
. e.g. Figure 14 in (Storn and Price, 1995)

if f (xoff) ≤ f
(
xj
)

then
Popg+1[j]← xoff

else
Popg+1[j]← xj

end if
end for
g← g + 1 . Replace the old with the new generation
xbest ← fittest individual ∈ Popg . update best individual

end while
Output Best Individual xbest

FIGURE 13 Pseudocode of differential evolution

as mutation take place before crossover. This is the peculiarity of DE. During the
mutation process Individuals from the population are linearly combined to de-
tect promising directions. This approach distinguishes DE from other optimizers,
as linear combinations are usually employed to perform crossover in real-valued
GAs. The outcome of mutation is referred to as “mutant” vector. The latter is used
to generate an “offspring” solution. This is obtained by breeding the individual
under consideration with the mutant vector by means of crossover operator.

The former implementation from 1995, made use of the so called rand/1 mu-
tation followed by the “binomial” crossover. The rand/1 mutation is performed by
implementing Formula 19. The three points xr1 , xr2 and xr3 have to be picked up
so that r3 6= r2 6= r1 6= j, and linearly combined by using a scale factor F properly
chosen in [0, 2]. The mutant xm can be seen as the summation of two component:
xr1 and a difference vector, whose aim is to move xr1 towards the optimum. With
reference to Figure 13, xm is thereafter mated with the jth individual via bino-
mial crossover. The latter, see Figure 14, exchanges design variables according
to a given probability CR. A generation is completed after m executions of the
sequence mutation→crossover, with m being the population size (j = 1, 2 . . . , m).

A second crossover routine, namely “exponential” crossover, was also pre-
sented by Storn and Price. The latter, exchanges a burst of consecutive design
variables whose length depends on the CR value. The probability of having one
more gene in the exchanged sequence follows the geometric progression, and de-
cays exponentially (from which the name). Implementation details are given in
Figure 15.

The DE community has been growing quickly during the last 2 decades.
Several alternative mutation formulas have been proposed by researchers in the
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filed. The most employed are listed below:

- rand/1:
xm = xr1 + F (xr2 − xr3) (19)

- best/1:
xm = xbest + F (xr1 − xr2) (20)

- rand/2:
xm = xr1 + F (xr2 − xr3) + F (xr4 − xr5) (21)

- best/2:
xm = xbest + F (xr1 − xr2) + F (xr3 − xr4) (22)

- current-to-best/1:

xm = xj + F
(
xbest − xj

)
+ F (xr1 − xr2) (23)

- current-to-rand/1:

xm = xj + K
(
xr1 − xj

)
+ F

′
(xr2 − xr3) (24)

- rand-to-best/1:
xm = xr1 + F

(
xbest − xj

)
+ F (xr2 − xr3) (25)

- rand-to-best/2:

xm = xr1 + F
(
xbest − xj

)
+ F (xr2 − xr3) + F (xr4 − xr5) (26)

A particular DE implementation can be obtained by combining the aforemen-
tioned mutations and crossover strategies together. Despite several crossover
strategies have been proposed, binomial and exponential are the most common
choices for DE. Conversely, a wide range of mutations is available for implement-
ing a DE algorithm. A specific implementation is usually identified by means of
the DE/x/y/z notation. The first member, x, refers to the vector being mutated
(namely the one to which difference vectors are added), y is the number of dif-
ference vectors employed, and z refers to the crossover strategy. For example, x
could be rand (Formulas 19 and 21), best (Formulas 20 and 22) or even a combina-
tion of two vectors as in current-to-best, current-to-rand and rand-to-best (Formulas
23, 24, 25 and 26).

Different mutations correspond to different moves across D. The current-to-
best/1 strategy, for instance, can be of help in speeding up the convergence when
dealing with non-critical fitness functions. However, it could be inadequate for
highly multimodal functions, since privileging the direction toward the current
best solution (a basic rand/1 would be preferred in this case). The current-to-rand/1
mutation (Equation 24 with K = U (0, 1) and F

′
= K · F) is instead recommended

for problems having a strong linkage among variables (e.g. rotated functions). It
is worth stressing the fact that the latter scheme does not require crossover, since
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procedure XOVERBIN(x1, x2)
Index ← I (1, n)a

for i = 1 : n do
if U (0, 1) ≤ CR || i == Index thenb

xoff[i]← x1[i]
else

xoff[i]← x2[i]
end if

end for
Output xoff

end procedure

a Random integer number uniformly distributed in [0, n] ⊂N
b Random real number uniformly distributed in [0, 1] ⊂ R

FIGURE 14 Pseudocode of binomial crossover

already contains a built-in arithmetic crossover. This crossover strategy, unlike bi-
nomial and exponential, is rotational invariant. This aspect has been stressed and
commended in (Takahama and Sakai, 2010), (Neri and Tirronen, 2010) and (Das
and Suganthan, 2011). However, it can be questioned that having a rotational in-
variant operator is necessarily beneficial. Black-box problems are unknown and
is not possible to know if the problem is a rotated version of another one. More-
over, the algorithm cannot benefit from knowing this information as the problem
cannot be rotated back, and even if it could be brought back to an equivalent
problem, general purpose metaheuristics have no guarantee of working well on
the non rotated one. Real world problems are rarely similar to benchmark func-
tions.

The selling point of DE is undoubtedly the simplicity of its algorithmic
structures. Only two parameters, i.e. the scale factor F and the crossover rate
CR, are required. Nonetheless, they need to be accurately tuned in order to
avoid a deterioration of the performance. Originally, F was allowed in [0, 2] and
CR, being a probability, in [0, 1]. However, further experimentations in (Liu and
Lampinen, 2005) have found F ∈ [0.5, 1] and CR ∈ [0.8, 1] to be the optimal
ranges to use. The same study also suggested to tune the population size so that
it is equal to ten times the dimensionality of the problem at hand. This result is
arguable, as in LSOPs such high number of individuals would require an elevate
computational budget to get convergence, i.e. optimization would be infeasible
in the real world case. Moreover, a too large population size could negatively
bias the search, as shown in PXI. On the other hand, a small population size
leads to quick convergence. An observation that is not necessarily true for DE.
Micro-populations (µ-DE) of about 5 individuals have shown to perform well, in
particular in LSOPs (Parsopoulos, 2009). The population size is the third prob-
lematic parameter to tune. A general rule for choosing the population size does
not exist yet. Moreover, unlike other EAs the DE framework seems to be particu-
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procedure XOVEREXP(x1, x2)
xoff ← x2
Index ← I (1, n)a

xoff[Index]← x2[Index]
i← Index + 1
while U (0, 1) ≤ CR || i 6= Index dob

xoff[i]← x1[i]
i← i + 1
if i > n then

i← 1
end if

end while
Output xoff

end procedure

a Random integer number uniformly distributed in [0, n] ⊂N
b Random real number uniformly distributed in [0, 1] ⊂ R

FIGURE 15 Pseudocode of exponential crossover

larly prone to stagnation rather than premature convergence. This phenomenon
takes place even in presence of high population diversity, and can occur in µ-DE
as well. The algorithm simply fails at improving upon individuals and needs an
external force to exit the impasse. As example, in PIV a LS is launched to over-
come stagnation. Other methods alternate multiple mutations to have a higher
diversity of the moves performed across D (Iacca et al., 2014, 2015). Others, see
the CoDE algorithm in (Wang et al., 2011), use multiple mutations to generate
multiple mutants, and then make use of the fittest one while the others are dis-
carded. Strategies resizing the population size on the go have also been proposed
to ease stagnation, see (Brest and Maučec, 2008). Finally, in order to remove the
burden of tuning F and CR, several self-adapting DE variants were designed. The
most significant approaches are described in the remainder of this Section.

In Self-adaptive Differential Evolution (SADE), parameters are continuously
adjusted on the strength of successful and unsuccessful past attempts (Qin and
Suganthan, 2005). Two mutation schemes, DE/rand/1/bin (Formula 19) and DE/current-
to-Best/2/bin (Formula 24), are alternately activated according to a probability p.
Initially, a value of p15= 50% assures a balanced execution of the two schemes.
Subsequently, p is changed in order to privilege the most successful one accord-
ing to:

p =
ns1 · (ns2 + n f2)

ns2 · (ns1 + n f1) + ns1 · (ns2 + n f2)
(27)

where ns1 and n f1 are counters to register the number of successes and failures

15 p is the probability of selecting the first mutation scheme, therefore there is a 1− p proba-
bility of selecting the second mutation scheme. The selection between the two mutation is
done by generating a random number, that is compared with p.
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of mutation number 1. Similarly, ns2 and n f2 are increased to control mutation
number 2. The probability p is updated after a learning period LP = 50. Thus,
the four counters are reset every 50 generations. For each individual scale factor
F and crossover rate CR are randomly generated every 5 generations. In partic-
ular, F is drawn from a normal distribution with fixed mean value (i.e. 0.5) and
standard deviation (i.e. 0.3). As for CR, the standard deviation is kept equal to
0.1, while the mean value CRm is changed every 25 generations (initialized to 0.5).
During this period promising CR values, i.e the offspring solution is accepted in
the population, are stored. The median value is extracted from that set to update
CRm. In conclusion, SADE features multiple mutation schemes and capabilities.
A newer version employing 4 mutation straegies, i.e. DE/rand/2 (Formula 21)
and DE/current-to-rand/1 (Formula 24) were added, was subsequently proposed
in (Qin et al., 2009).

A similar idea was adopted in(Omran et al., 2005). This study also proposes
a Self-adaptive DE (SDE) where the strategy parameters are drawn from a Gaus-
sian distribution.

A simple approach to implement self-adaptive control parameters in DE
was proposed by Brest et al. (2006). The jDE algorithm is a basic DE/rand/1/bin
with randomized scale factor and crossover rate. Each individual in the popula-
tion has its own F and CR, and can be seen as the 3-tuple 〈x, F, CR〉. A fit offspring
solution gets a place in the new population, making the strategy parameters that
led to its production available for future iterations. Conversely, a poor offspring
gets discarded together with its unsuccessful F and CR values.This idea was al-
ready used in EAs. In jDE, control parameters have a probability to be randomly
re-sampled. Before applying the mutation operator, a uniformly distributed ran-
dom number is thrown and compared with the threshold τ1. If U (0, 1) < τ1 then
F = Fl + U (0, 1) · Fu. The same is done for the crossover rate: if U (0, 1) < τ2
then CR = U (0, 1). According to the authors, τ1 = τ2 = 0.1 leads to good results.
As for the lower and upper bounds of the scale factor, Fu was set up equal to 1,
while Fl to 0.1. The last value was picked up to prevent F from being equal to
zero. With F = 0 only the crossover would be performed. Despite its simplicity,
this method has shown to be efficient.

The popular JADE algorithm, see (Zhang and Sanderson, 2009), introduced
a novel mutation strategy called DE/current-to-pbest/1. It can be seen as a modifi-
cation of Formula 23 (current-to-best), where the best individual xbest is replaced
with xp%

best. The latter vector is randomly selected from a set containing a percent-
age p% of the fitter individuals in the population. Let us consider a population P
of size M, the mutation is defined as:

xm = xj + Fj

(
xp%

best − xj

)
+ Fj (xr1 − xr2) (28)

with xr1 randomly chosen from P, and xr2 from P ∪A (xr1 6= xr2 6= xrj). A is an
optional archive that can either be empty A = ∅ or filled up with M individu-
als. The archive is used to promote fitness diversity in the population. The idea
is to have an empty set A, that occasionally accepts those solutions failing the
survivor selection procedure. Thus, at most M individuals can be inserted in a
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single generation cycle. At the end of every generation, if |A| > M, a number of
|A| −M solutions are randomly deleted. Self-adaptation is also guaranteed. For
each jth individual in P a scale factor Fj is sampled from a Cauchy distribution, i.e.
Fj = C (µF, 0.1), while CRj from a Gaussian distribution, i.e. CRj = N (µCR, 0.1).
Unacceptable values, i.e. Fj = 0 and CRj /∈ [0, 1], are discarded. Initial values to
be used in the first generation are µF = µCR = 0.5. Subsequently, µF and µCR get
updated after each generation by means of

µF = (1− c) · µF + c ·
∑

F∈SF

F2

∑
F∈SF

F
, µCR = (1− c) · µCR + c ·

∑
CR∈SCR

CR

|SCR|
(29)

where c ∈ [0, 1], SF and SCR are two memory stacks. The latter have to be filled
up with successful combinations of Fj and CRj. Parameters are successful if led
to the production of a new individual wining the survivor process.

The Ensemble of Parameters and Mutation Strategies Differential Evolution
(EPSDE) proposed in (Mallipeddi et al., 2011), is instead based on a completely
different working principle. The scale factor F and crossover rate CR are simply
randomly selected from the sets {0.5, 0.9} and {0.1, 0.5, 0.9} respectively. These
figures are carefully picked values as suggested in the literature. Similarly, mu-
tations and crossover operators are also picked up from two separated pools.
In (Mallipeddi et al., 2011) one between DE/current-to-pbest/1 and DE/current-to-
rand/1 mutation is randomly selected and equipped with a crossover strategy.
The crossover is also uniformly chosen from a pool containing the binomial and
exponential options. This method allows multiple combinations of strategies and
parameters during the optimization.

The Modified Differential Evolution with p-best crossover (MDE-pBX) pro-
posed in (Islam et al., 2012) implements the scheme DE/current-to-gr_best/pBX.
Similarly to JADE, the algorithm makes use of a novel mutation where the best
individual of the population is replaced by the best individual of a subset of the
population. Such point, i.e. xq_best, is extracted from a set containing a percentage
q of randomly sampled individuals. Mutation can be more or less exploitative ac-
cording to this percentage. If high, there is a higher probability to include the best
solution in the set, thus promoting exploitation. As usual, the mutation is a linear
combination of points:

xm = xj + Fj
(
xq_best − xj

)
+ Fj (xr1 − xr2) (30)

where xr1 and xr2 are chosen at random and xj is the jth individual. As for crossover,
the best p points in the population are selected to form a second set. A point is
randomly picked up from the set to undergo binomial crossover with the mutant
vector. Therefore, the current solution xj is only indirectly involved in the gen-
eration of the offspring, as taking part in the mutation. Unlike q, which is fixed
during the optimization (suggested value is 15%), p changes at run-time with the
number of passed generations: p = ceil

[
n
2 ·
(

1− g−1
gmax

)]
(g is the counter, gmax is

the maximum amount of generations). Scale factor and crossover rate are drawn
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from Cauchy and Gaussian distributions with variable mean value µF and loca-
tion parameter µCR. In the wake of JADE, two memory stacks, i.e. SF and SCR,
are used to keep track of promising control parameters. Mean value and locate
factor of the Gaussian and a Cauchy distributions are updated as follow:

µF = WF · µF + (1−WF) · ∑
F∈SF

(
Fz

|SF|

) 1
z

(31)

µCR = WCR · µCR + (1−WCR) · ∑
F∈SCR

(
CRz

|SCR|

) 1
z

(32)

with z = 1.5, W f = 0.8 + 0.2 · U (0, 1) and W f = 0.9 + 0.1 · U (0, 1). These distri-
butions are employed to automatically generate Fj and CRj for each individual,
at each generation. The use of power mean and Cauchy distribution for µF leads
to large perturbations. These are preferable to minimize the risk of premature
convergence. Gaussian distribution is preferable for CRm, which is limited in a
smaller interval, i.e. [0, 1].

The last algorithm is an example of complex structure. Numerical results
show that MDE-pBX can be used to address a vast range of benchmark functions.
However, similar results can be obtained with simpler structure, e.g. see com-
parisons in (Caraffini et al., 2012, 2014). Usually simper solutions are to prefer as
it is quite difficult to comprehend the rationale behind a too complex algorithm.
Consequently, it is difficult to build knowledge and draw conclusions when us-
ing unnecessarily complex algorithms. Some operators could be redundant. To
support this statement, one can consider (Iacca et al., 2015). The study proposes
a simplified version of a precedent DE based algorithm, designed by removing
parts rather than complicating the original framework. This process appears not
to jeopardize the performance of the algorithm.

2.3.5 Compact algorithms

Compact algorithms implement the logic of popular population based algorithms
without the need of storing the actual population. The lack of candidate solu-
tions to process is compensated for the presence a probabilistic representation of
the population, in the fashion of Estimation of Distribution Algorithms (EDA)s,
see (Baluja, 1994) and (Pelikan et al., 2000). This approach attempts to reproduce
the beneficial aspects of having a population, see (Prügel-Bennett, 2010), with-
out the problem of tuning the population size. A first compact GA (cGA) was
implemented for combinatorial domains in (Harik et al., 1999) and a second in
(?). A real-valued compact GA (rcGA) was then designed, see (Mininno et al.,
2008). The use of a distribution for sampling individuals when needed is suitable
for real-valued domains. The design variables can be easily sampled and scaled
within the search space. Therefore, other compact implementations followed for
BFO, see (Iacca et al., 2012b), and PSO, see (Neri et al., 2013). A compact Differ-
ential Evolution (cDE) was also proposed in (Mininno et al., 2011) and further
improved in PI of this thesis.
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Compact differential evolution

In cDE the optimization process takes place into the normalized domain [−1, 1].
Solutions do not need to be saturated or corrected. However, a normalization
procedure must proceed the optimization process, as well as the final solution
has to be re-scaled within the original domain at the end. A (2× n)-matrix,
namely perturbation vector PV = [µ, σ], must be pre-allocated with µ = ∅ and
σ = 10 ones (n)16. Such a high value for σ flattens the PV distribution within the
range [−1, 1], and makes it behave/look like a uniform distribution at the early
stage of the optimization process. This is important to assure an unbiased initial
sampling. Then, the perturbation vector will adapt to the landscape by shrink-
ing (the standard deviation) and moving (the mean value) towards to promising
basins of attraction. With reference to the pseudocode in Figure 16, it can be seen
that the only individual to be stored in memory is the elite xe, i.e. current best
solution found by the algorithm during the optimization. The three solutions
required for performing the well-known DE/rand/1 mutation scheme (Formula
19) are instead drawn from the distribution obtained by using mean value and
standard deviation from PV in the truncated17 Gaussian PDF:

PDF (truncNorm (x[i])) =
e
− (x−µ[i])2

2σ[i]2 ·
√

2
π

σ [i] ·
(

erf
(

µ[i]+1√
2σ[i]

)
− erf

(
µ[i]−1√

2σ[i]

)) (33)

where er f is the error function, see (Gautschi, 1972), and i iterates from the first
to the last design variable. The corresponding CDF must be worked out in order
to sample a point. This is done by means of the Chebyshev polynomials approx-
imation described in (Cody, 1969). This procedure is the bottleneck of cDE, since
computational expensive. However, it cannot be completely avoided as neces-
sary to sample each design variable. In PI (Chapter 3.2), the number of required
sampling was minimized to have a faster structure. When the candidate solu-
tions are sampled, the mutation strategy is performed. The resulting mutant is
then mated with xe via exponential crossover. If the offspring is fitter than xe, it
takes the name of “winner” while the elite solution is labelled as “looser” (and
vice-versa). Winner and looser are used to update PV, as shown in Formula 34
and 35 in Figure 16. The symbol ◦ is used to represent the element-by-element
product between two vectors.

16 ones (n) is a vector of ones, with size n.
17 The tails are taken off and then bell resized in [−1, 1] to guarantee a unitary area.
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t = 1
µt ← ∅

σt ← λones (n) . e.g. λ = 10
xelite ∼ PV
while Budget available do

xr
xs
xt



 ∼ PV(t)

xm ← xrr + F (xrs − xrt) . DE/rand/1, Formula 19
xoffspring ←XOVEREXP(xelite, xm) . Figure 15
if f

(
xoffspring

)
≤ f (xelite) then

xloser ← xelite
xelite ← xoffspring
xwinner ← xoffspring

else
xwinner ← xelite
xloser ← xoffspring

end if

µ(t+1) = µ(t) +
1

Np
(xwinner − xloser) (34)

σ2 (t+1)
= σ2 (t)

+ µ ◦ µ (t) − µ ◦ µ (t+1)

+
1

Np
(xwinner ◦ xwinner − xloser ◦ xloser)

(35)

t← t + 1 . PV(t+1) becomes the current PV
PV(t) = [µ(t), σ(t)] . Update next generation PV

end while
Output xelite

FIGURE 16 Pseudocode of compact differential evolution



3 TAILORED ALGORITHMS
FOR MEMORY SAVING AND REAL-TIME OPTIMIZATION

This chapter proposes algorithmic solutions for tackling real-world applications
in the field of Robotics. In several cases, optimization problems in this discipline
have to be carried out on board of modest microcontrollers and in real-time. Thus,
the need of using simple algorithms based on efficient working principles arises.
Optimizers with these features display a negligible computational overhead and
memory footprint. Approaches like 3SOME, ISPO and nuSA, are suitable can-
didate and can have a major role in tackling these problems. Also cDE can be
easily implemented in embedded systems, and thanks to its stochastic nature is
suitable for handling noisy fitness functions. However, the sampling procedure
requires some processing time that can be inappropriate when the solution has
to be provided quickly. In this light, an improved (faster) version of cDE was
proposed in PI. The mechanism employed to reduced the number of sampling is
shortly described in Section 3.2. The improved algorithm, cDE-light, is tested on
a robotic application in PII, as described in Section 3.3. In PIII, 5 memory-saving
algorithms, i.e. 3SOME, cDE, cDE-light, ISPO and nuSA, were plugged into a
basic microcontroller and compared in solving a control task on the go. This real-
world application is described in Section 3.4. Finally, a light µDE empowered
with an extra move along the axes, i.e. µ-DEA see PIV, is presented in Section 3.5.

3.1 Relation with this piece of research

The real-world applications presented in this chapter are plagued by memory
and computational limitations. The cDE-light algorithm have been specifically
designed to overcome those limitations. Implementation details, rather than the-
oretical ons, had to be taken into consideration before performing the design. As
example, it was important to understand how much memory was left after load-
ing the operating system, the control system, drivers, etc., into the device. Com-
patibility and synchronization of the optimizer with the other software compo-
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nents had to be assured to guarantee the functioning of the whole system. Thus,
the implementation point of view preceded the design. Moreover, an existing
implementation of cDE was taken into consideration and modified to produce
cDE-light. This approach moved from implementation to design, so addressing RQ
I. A similar consideration can be done for µ-DEA, and the single solution algo-
rithms involved in the studies presented in this chapter.

3.2 PI: compact differential evolution light

Objectives and goal

The aim of this piece of work is to improve upon cDE, in order to make it faster
and suitable for real-time applications in embedded systems, without deteriorat-
ing the performance with respect to the original algorithm.

Methodologies

Two algorithmic solutions were adopted. First, the DE/rand/1 scheme was re-
placed with an equivalent mutation. The proposed option is faster, as it does
not need to sample three individuals to produce a mutant vector. Second, a light
implementation for the exponential crossover was employed.

The DE/rand/1 schemes is a simple linear combination of three points. How-
ever, to obtain a point the CDF has to be evaluated. This is a computational ex-
pensive and slow process. Fortunately, mathematics help us avoid an excessive
use of the sampling procedure. In cDE the population is probabilistically repre-
sented. Therefore, solutions can be seen as stochastic variables, whose realization
is sampled from PV (which is a fair approximation of a Gaussian distribution).
The three realizations are then combined according to Formula 19. The produced
mutant can also be seen as a stochastic variable with Gaussian distribution. This
distribution can be obtained by exploiting the properties of stochastic Gaussian
variables, and is equivalent to: N

(
µ, (1 + 2F2)σ2), with F being the scale factor,

while µ and σ2 are directly taken from PV. This “trick” can be used to sample
mutants without having to sample three solutions and implement Formula 19. A
single point is sampled per iteration.

The mutant and the elite solutions mate via exponential crossover light. The
original exponential crossover exchanges a sequence of l design variables from
the elite solution into the mutant vector. A loop is sued to swap variables: while
U (0, 1) ≤ Cr is true, a variable is exchanged. Therefore, the length l of the ex-
changed sequence is not known a-priori. However, in the light variant, l is esti-
mated in function of CR value: l ∼ round

(
log(rand(0,1))

log(CR)

)
(see PI for explanations).

Hence, the l design variables can be simply copied from a random position.
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Results

The cDE-light algorithm has shown to perform as well as its predecessor when
applied to benchmark problems, simulations of a path following application, and
two real-world robotic applications (PII and PIII). The algorithmic computational
overhead has been measured to be lower than the one of cDE. In the real-world
case, cDE-light is sensibly faster than cDE.

3.3 PII: space robot base disturbance optimization

Objectives and goal

This study faces a complex space applications. A robotic arm is mounted on a
spacecraft for maintenance purposes. The trajectory of its end effector has to be
planned by taking into consideration the disturbance at the bases of the robotic
arm. The disturbance has to be minimized to prevent the spacecraft from chang-
ing its motion. This would results in a waste of fuel to re-adjust the orbit. In this
light, the aim of this work is to plan the trajectory causing the least disturbance.
This is a control task that can be formulated as an optimization problem.

Methodologies

The algorithm proposed in PI showed to work well on noisy environments. It is
also light and suitable for embedded systems. For these reasons, it was chosen to
act as controller for this application. In order to perform the optimization the sys-
tem has been studied thoroughly. Useful inputs have been found in the literature.
In particular, the interpolation method proposed in (Ren et al., 2006) was consid-
ered for designing the trajectory, while the study in (Xu, 1993) for evaluating the
dynamic coupling between the manipulator and the base. The latter is a complex
task that requires a deep knowledge of Robotics. By using a similar approach
to the one proposed in (Xu, 1993), the optimization problem was formulated as:
to detect angular positions, angular velocities and angular accelerations of each
joint, for each knot k, so that the corresponding trajectory is the one with the least
base disturbance. The fitness function was defined as the integral over time of the
norm of the acceleration vector on the base. The functions describing the position
of each joint over time were modelled via 5th order polynomial splines. Consid-
ering that the robot manipulator under study has 3 joints, that the trajectory was
marked by k = 2 knots, and that each joint is fed with angular position, velocity,
and acceleration, the problem requires 3× 2× 3 = 18 design variables.

Results

In comparison with other memory-saving algorithms, i.e. ISPO, nuSA and cDE,
cDE-light displayed the best results.
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3.4 PIII: MC for path-following mobile robots

Objectives and goal

The goal of this piece of work is to equip an Automated Guided Vehicle (AGV),
e.g. (Müller, 1983; Hollier, 1987), with self-tuning capabilities. The AVG, has
to be able to “learn” to follow a path by tuning and continuously adjusting its
controller. In order to achieve this result, a suitable optimization algorithm has
to be embedded within the AGV to minimize the error in following a path. If
the path gets changed, such system will be able to promptly adapt the control
system to the new configuration, without the need of manually programming
the controller from scratch.

Methodologies

In order to keep the budget, a Lego Mindstorms NXT robot was chosen to serve
as AGV. Despite its simplicity, the robot is suitable for this task as its NXT brick
contains a common 32 bit ARM7 CPU. This device is widely used in industrial ap-
plications. It provides 256 KB flash memory and 64 KB RAM. On the same board
is also present an 8 bit AVR microcontroller, with 4 KB flash memory and 512
bytes RAM. In order to handle sensors and run the control system as in a proper
AGV, the NXT brick was equipped with a custom open source multi-tasking Real-
Time Operating System (RTOS), namely the nxtOSEK RTOS (Chikamasa, 2012).
The rapid prototyping approach was used to integrate control system and the
optimization algorithms within the robot. This allowed for a quick design by
means of Simulink. The Simulink scheme was subsequently converted into C
code via the Matlab Real Time Workshop (Embedded Coder) Toolbox. The gen-
erated C code was cross-compiled using a GNU ARM tool-chain, thus obtaining
the executable binary for the ARM7 architecture. Once flashed into the micro-
controller, the software was able to perform all the required tasks, i.e. from sen-
sor calibration to optimization of the control system. Moreover, the system was
continuously monitored by keeping alive a bluetooth communication during the
entire optimization process. The operating system did not leave much memory
for the remaining tasks. An effort was made to save as much memory as possi-
ble in designing the control system. The latter was measured to occupy 28.528
KB of memory (part of which was required by the BIOS, which was linked to the
user application). Memory saving algorithms were key to achieve optimization.
The cDE and cDE-light algorithms required only 15 KB. Even less memory was
needed for 3SOME, ISPO and nuSA (about 10 KB each). Despite their simple
structure, the selected algorithms successfully optimized the parameters of the
PID regulator on the fly.
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Results

The 3SOME algorithm showed to perform best for this specific application. Fur-
ther simulations confirmed that 3SOME is actually generally suitable for tuning
PID regulators. Popular metaheuristics as Hooke-Jeeves and Nelder-Mead were
also outperformed, as well as ad-hoc procedures like the Ziegler-Nichols open-
loop method (Ziegler and Nichols, 1942), and the areas method (Nishikawa et al.,
1984). Unlike ISPO, that perturbs the same variables several times before mov-
ing onto the next one, 3SOME performs at most 2 steps on each design variable.
Thus, 3SOME’s structure is not efficient only on separable problems. Moreover,
it is suitable for tasks where variables have to be tuned according to the value of
the previous ones. This is the case of PID regulators. For tuning such regulators,
the proportional term is usually adjusted first, while the derivative and integral
terms accordingly.

3.5 PIV: µ-DE with extra moves along the axes

Objectives and goal

To design a light but still efficient general purpose algorithm. Ideally, the pro-
posed optimizer has to be fast, versatile and able to address LSOPs. The idea
was to provide one more simple approach that can be used in high dimensional
problems. This algorithm can be an alternative to cDE-light, that performs well
up to 30 design variables, but displays a deterioration in the performance at 1000
dimension values.

Methodologies

Unlike other EAs, DE seems not to be affected from premature convergence, even
when a small population size is employed. Micro-populations, with a size not
superior to 5 individuals, have been used in several studies (Das and Suganthan,
2011). Despite the small number of individuals, they can still suffer form stagna-
tion. In this light, a µ-DE was considered in this study for its small memory foot-
print, but further enhanced in the fashion of MC. The S operator was integrated
within the DE framework to add a complementary move, i.e. along the axes, in
support of the diagonal move performed by means of the DE/rand/1 scheme. S
was also chosen as it was proven to be efficient on LSOPs (Caraffini et al., 2013a).
Moreover, the local search performed by the S operator is beneficial in presence
of stagnation. The proposed µ-DEA adopts a coordination logic similar to the LS
chains method described in (Molina et al., 2010a). The DE scheme is iterated for
a fixed number of generations. Subsequently, there is a probability η = 20% to
apply S on the best individual. In this case, the initial value for the exploratory
radius ρ is equal to 40% of the size of D. Such value assures an initial exploration.
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FIGURE 17 µ-DEA coordination logic.

After a fixed number of FEs, S is paused. According to the S logic, see Section
2.2.1, the radius decreases during the optimization to gradually converge and be-
have as a proper LS. The idea is not to restart S for the future iterations. The new
value of ρ is saved for the next activation. S is unpaused, rather than restarted.
In case of stagnation, the DE part is not able to improve upon individuals. There-
fore, the S logic will work on the same solution as if it was not stopped. Basically,
in presence of stagnation the S algorithm keeps on working on the same solution
until stagnation is overcome. The activation logic for the S operator is depicted
in Figure 17.

Results

This work proposes a DE-based MC algorithm with a modest memory footprint
and a high performance. The µ-DEA algorithm improves upon classic DE, and
equals state-of-the-art DE variants, over several test suites for real-valued opti-
mization. In particular, similar numerical results to those of SADE, JADE and
MDE-pBX are obtained at low dimension values. Superior results are instead ob-
tained on LSOPs. The extra move along the axes has shown to be efficient and
seems to help avoid stagnation.



4 ALGORITHMS WHICH ADAPT TO THE PROBLEM

This chapter contains 6 novel optimizers with self-adaptive capabilities. In Sec-
tion 4.2 are included classic approaches. For instance, PV presents an innovative
mechanisms for tuning the parameters of the proposed algorithm. In PVI and
PVII, the super-fit approach (Caponio et al., 2009a) is proposed. Conversely, Sec-
tion 4.3 includes hyper-heuristic algorithms. Three different algorithmic solution
are presented. The first one in PVIII sees the activation of multiple LS routines, in
the fashion of MAs. The algorithms in PIX and PX make use of more complicated
coordination strategies, e.g. an adaptive logic from hyper-heuristic methods is
employed in PX.

4.1 Relation with this piece of research

The novel optimizers presented in this chapter were designed to be robust and
versatile, thus facing black-box problems. They contains mechanisms to imple-
ment adaptation to the problem at hand based on multiple working principles.
Popular adaptive systems have been employed. New ones have been designed,
to generate dynamic algorithmic structures able to self-tune their parameters, see
e.g. PV. For this reasons, they have been grouped in this chapter to thoroughly
address RQ II. Obviously, these optimizers display a different algorithmic struc-
ture to those in Chapter 3. In this case, a major attention was paid to actualize
adaptivity. Hence, the proposed optimizers tend to be heavier, and more com-
plex to increase their versatility. The optimization process generally takes place
off-line, in personal computers and a higher number of FEs can be used with
respect to real-time applications. Thus, the implementation aspect plays a sec-
ondary role with respect to other algorithmic considerations. In this regard, the
opposite approach, i.e.from design to the implementation, is presented.
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4.2 Empiric approach

This Section is meant to introduce a sophisticated adaptive DE algorithm, Section
4.2.1, and its super-fit variant. A third super-fit approach is also presented.

4.2.1 PV: multicriteria adaptive differential evolution

Objectives and goal

This work aims at designing a versatile DE algorithm. The algorithm is supposed
to display several desirable features, such as adaptation to the problem. In order
to achieve adaptation, an empiric mechanism to automatically tune parameters,
i.e. F and CR, has to be designed. The same has to be done for efficiently handling
the computational budget. Versatile DE implementations make use of several
mutation schemes. A novel approach to efficiently distribute the budget amongst
the perturbation strategies is needed.

Methodologies

Multicriteria Adaptive Differential Evolution (MADE), was designed around 4
classic perturbation schemes from DE: DE/rand/1/bin, DE/rand/2/bin, DE/rand-to-
best/2/bin and current-to-rand/1 (see Section 2.3.4). Control parameters F and CR
are adjusted during the optimization process. Similarly to JADE, and other suc-
cessful adaptive DE variants, F is sampled from a Cauchy distribution, while CR
from a Gaussian distribution. Both the distributions are updated according to
intermediary results, obtained during the execution of the algorithm. Details are
given in PV.

Novel methods have been proposed to select the most appropriate pertur-
bation scheme according to the specific problem. Three approaches have been
compared in this study. They requires each perturbation scheme to be associated
to a probability pk, with k = {1, 2, 3, 4}. Initially, such probability is set up equal
to pk = 0.25 (∀k), to be subsequently updated after every generation. Specifically,
at a generic generation g the Normalized Relative Fitness Improvement (NRFI)
index, and the Normalized Distance to the Best Individual (NDBI) index, are cal-
culated as follows:

1. Normalized relative fitness improvement (NRFI):

η
g
i =

η̃
g
i

max{η̃g
i |i = 1, 2, . . . , NP} (36)

where

η̃
g
i =

f (xg
i )− f (xg+1

i )

f (xg
i )− f (xg

best)
(37)
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2. Normalized distance to the best individual (NDBI):

τ
g
i =

τ̃
g
i

max{τ̃g
i |i = 1, 2, . . . , NP} (38)

where

τ̃
g
i =

√
∑D

j=1 (x
g
i,j − xg

best,j)
2
. (39)

The index η
g
i is used to have information abut the quality of the ith individual. To

some extent, it measures the potential of the individual in leading the search.
Conversely, τ

g
i is used to maintain some degree of fitness diversity. The two

indexes are combined to generate the “impact” γ
g
i (for each ith individual at a

generic generation g). The impact is used to work out the selection probability.
Amongst the three method proposed in PV to work out γ

g
i , the most robust ap-

pears to be the number-of-dominating-impacts method. It consists of the following
formula:

γ
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j , τ
g
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g
i , τ

g
i ) � (η

g
j , τ

g
j ), j ∈ hg

i }| (40)

where | · | denotes the cardinality of a set; a � b means that vector a = (a1, . . . , ak)
dominates vector b = (b1, . . . , bk), i.e. ∀i ∈ {1, . . . , k}, ai ≥ bi∧∃i ∈ {1, . . . , k}, ai >
bi. Details on how to generate the set hg

i = {⋃K
k=1 sg

k}\s
g
ni are in PV. The calcula-

tion of a good impact index is key to obtain pk. On the basis of the impact of the
operator, the credit of each perturbation strategy is calculated by

rg
k =

∑ni∈sg
k

γ
g
i∣∣sg

k

∣∣ (41)

where k = 1, . . . , K (K = 4 as four recombination strategies were used). Subse-
quently, the quality qg

k of each perturbation scheme is updated by the following
additive relaxation mechanism:

qg
k = (1− β) · qg

k + β · rg
k (42)

where β (β ∈ [0, 1]) is the adaptation rate, and q0
k is initialized with 1. Finally, the

probabilities pk for the incoming generation are computed:

pg+1
k = pmin + (1− K · pmin)

qg
k

∑K
k=1 qg

k

. (43)

Results

MADE was executed on 38 scalable problems at 30 and 50 dimensionality values,
and used to solve a real-world problem, i.e. Lennard-Jones potential minimiza-
tion at multiple dimension values. Numerical results suggested that, over the
considered problems, MADE is superior to jDE, SDE, SADE and EPSDE, but also
competitive with JADE and CoDE in terms quality of the solution and rate of
convergence.
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4.2.2 PVI: super-fit MADE

Objectives and goal

The main objective of this work is to improve upon the performance of the MADE
algorithm, with a particular attention on solving the problems in the CEC 2013
test suite for real-valued optimization (Liang et al., 2013).

Methodologies

Several papers in the literature present “super-fit” schemes for improving upon
the classic DE framework. As can be seen in (Caponio et al., 2009b; Iacca et al.,
2011), the presence of a fit individual in the initial population is beneficial. Explo-
ration is not jeopardized, and the risk of stagnation lowered.

In the attempt of tackling the problems in (Liang et al., 2013), it was clear
that CMA-ES was able to solve monomodal problems by using only 30% of the
allowed computational budget. Moreover, “mildly” multimodal problems were
nearly solved with such limited amount of FEs, meaning that promising basin of
attraction were spotted, but not adequately refined by CMA-ES.

In this light, a Super-fit MADE (SMADE) variant was designed by using a
standard CMA-ES, as described in Section 2.3.1. A number of FEs equal to 30%
of the total computational budget is used to run CMA-ES. The returned solution
takes the place of the worse individual in the initial population of a MADE in-
stance. The remaining 70% of the total budget is left to MADE to complete the
process.

Results

SMADE showed to be extremely efficient over the whole test suite in (Liang et
al., 2013), optimized at 10, 30 and 50 dimension values. Experiments were per-
formed according to the specifications for the “Special Session & Competition
on Real-Parameter Single objective Optimization of the IEEE Congress on Evolu-
tionary Computation (CEC) 2013”. As expected, unimodal or mildly multimodal
problems, even when non-separable and ill-conditioned, were solved during the
early stages of the optimization. Highly multimodal landscapes were efficiently
tackled by the presence of MADE. SMADE has been ranked 7th best algorithm in
the CEC 2013 competition.

4.2.3 PVII: super-fit RIS

Objectives

Similarly to PV, the study in PVII presents another attempt to tackle the problems
of the CEC 2013 benchmark for the special session in real-valued optimization.
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FIGURE 18 CMA-ES-RIS coordination logic.

Methodologies

As discussed in Section 4.2.2, a too promulgated use of CMA-ES over the prob-
lems listed in (Liang et al., 2013) is meaningful. Monomodal problems are opti-
mized by using only a portion, i.e. 30%, of the allowed budget. While addressing
multimodal problems, CMA-ES stops improving after that amount of FEs. On
mildly multimodal landscapes mediocre results are returned, as the solution is
not refined adequately. Thus, was decided to add a light and fast LS to refine it.
As the risk of refining a local optimum is still present on highly multimodal func-
tions, the LS should be re-started as many times as possible with the renaming
70% of the total budget. The RIS algorithm, see Section 2.3.1, was the best option
to implement such task. The resulting algorithm, namely CMA-ES-RIS, can be
seen as the execution of 3 memes, coordinated as in Figure 18.

Results

Numerical results showed that CMA-ES-RIS outperforms state-of-the-art algo-
rithms, such as CCPSO2, MDE-pBX and CMA-ES, over the problems in (Liang
et al., 2013) in 10, 30 and 50 dimension values. This optimizers was ranked 12th

across the 21 algorithms in the CEC 2013 competition on on real-parameter single
objective optimization 2013.

4.3 Hyper-heuristic approach

Flexible algorithms can be obtained with the coordination of multiple heuristics.
Hyper-heuristics make use a supervisory logic to execute single heuristics. Suc-
cessful logics can be simple, e.g. random activation, or more elaborated. Three
different examples are shown in the following sections, i.e. Section 4.3.1, 4.3.2
and 4.3.3.
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FIGURE 19 EPSDE-LS coordination logic.

4.3.1 PVIII: EPSDE with a pool of LS algorithms

Objectives

To make the EPSDE algorithm in (Mallipeddi et al., 2011) more efficient and ro-
bust against stagnation.

Methodologies

EPSDE is based on a simple idea, that is the ensemble of control parameters and
mutations. In a nutshell, this approach can be described as the random selection
of parameters from a pool containing the most successful values for F and CR.
The same happens for mutations and crossover strategies, that are piked up from
separate pools. Combinations of parameters and variation operators, that man-
age to generate fitter individuals, are used again in the future generations. This
logic can be easily extended by placing novel operators within the pools, or by
adding more pools, e.g. containing LS routines. Adding LS within a population
based framework usually results into a boost in the performance of the algorithm,
and in case of DE, also helps prevent stagnation. EPSDE-LS was designed based
on this consideration. As shown in Figure 19, one amongst Nelder-Mead simplex
method, Powell’s conjugate direction method and Rosenbrock’s algorithm (see
Section 2.2.1), is activated with equal probability. The LS is applied to the best
individual of the population. If the simplex algorithm is selected, the current best
solution in the population takes the place of the first point of the initial randomly
generated polytope. The diversity of moves performed by the three different
LS methods, helps handle different landscapes. Although the last two methods
share a similar working principle, they differ since Rosenbrock performs a single
diagonal move, while Powell detects n conjugate directions where the fitness is
optimized by means of a line-search method. The EPSDE-LS algorithm can be
seen as a MA activating LS routines within a DE evolutionary cycle.
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Results

EPSDE-LS showed to be able to improve upon its predecessor EPSDE, and also to
outperform state-of-the-art algorithms such as MDE-pBX, CCPSO2 and CMA-ES
on a significant number of benchmark problems.

4.3.2 PIX: Multi-strategy coevolving aging particle optimization

Objectives

To design a robust and versatile general purpose algorithm, able to address com-
plex problems at different dimensionality values. The algorithms was supposed
to be used to train a Feedforward Neural Network, modelling the forward kine-
matics of an 8-link an all-revolute robot manipulator. In order to try multiple
configurations with different numbers of of layer and nodes, the algorithm is ex-
pected to perform well in terms of scalability, as the dimensionality of the prob-
lem can change.

Methodologies

In order to achieve robustness, complementary algorithm logics have been com-
bined together in a solid optimizer, able to handle multiple scenarios. As the
name suggests, the Multi-Strategy Coevolving Aging Particles (MS-CAP) can
make use of different variation operators and perturbation strategies. It also
makes use of an aging system to check the evolution of every single solution
so that, if needed, it can be either replaced or re-sampled. This approach was
created to escape from local basin of attractions or arrest stagnation.

MS-CAP was thought as a population-based algorithm alternating two un-
related logics to evolve the same population.

In the first stage, namely the Coevolving Aging Particles stage, each solu-
tion is seen as a particle that is perturbed independently. The perturbation acts
along each dimension with a progressively decaying radius. Similarly to PSO,
the particle is subject to a force pointing towards the best solution. Unlike PSO,
such force is not constant but increasing, thus turning the search from being ex-
ploratory into exploitative. Additionally, when the perturbed particle improves
upon its parent, a replacement occurs, and the particle’s lifetime is set to zero.
Otherwise, the lifetime is increased by one. The lifetime of each particle is used
to work out a decay factor, i.e. decay = e−li f etime. If this factor is too small, the
solution get replaced by another randomly picked up solution from the swarm.
Conversely, the solution is re-sampled. Subsequently, the exploratory radius is
shrunk according to the value of the decay factor, see PIX for details. This mecha-
nism is tangled but leads to good results. Its rationale is that each particle, while
being attracted to the best solution, is also perturbed along each dimension with a
radius decaying exponentially with the particle’s “age”. In other words, the par-
ticles in the swarm act as local searchers with an embedded restart mechanism



73

based on the particle decay.
In the second stage, the particles are mutated and recombined according

to a Multi-Strategy approach, in the fashion of the ensemble of control parame-
ters and mutation strategies in DE, see EPSDE (Mallipeddi et al., 2011). Hence,
also the second component implements a complex but efficient framework. The
latter is executed, for a fixed amount of FEs, when the first search logic fails at
improving upon the best individual of the population.

The applicability of the MS-CAP algorithm was thoroughly tested and It
was compared against SADE, JADE, jDE, MDE-pBX, EPSDE,CLPSO, CCPSO2,
PMS and MACh (the two variant with CMA-ES and Solis-Wets were used ac-
cording to the dimensionality of the problem). Experiments were executed by
using 28 problems from CEC 2013 (Liang et al., 2013) at 30, 50 and 100 dimen-
sion values, but also 20 problems from CEC 2010 (Hansen et al., 2010) at 1000
dimension values. Moreover, 6 further optimization problems were considered.
Three neural networks, with 8 input nodes, and 3, 4, and 5 hidden nodes respec-
tively, were employed to approximate the forward kinematics of a robot. The
three configurations were trained by using two different level of noise in the data
set. Thus, three models with 27, 36, and 45 variables respectively, were optimized
twice (with moderate and high noise level). Ad-hoc algorithms, i.e. Error Back
Propagation (Rumelhart et al., 1986) and Resilient Propagation (Riedmiller and
Braun, 1993), were also added on top of the aforementioned comparison algo-
rithms.

Results

MS-CAP showed a very competitive performance, in training the neural net-
works, with respect to both general-purpose optimizers and ad-hoc algorithms.
Numerical results, from benchmark functions, further confirmed that MS-CAP is
capable of outperforming the comparison algorithms at multiple dimensionality
values.

4.3.3 PX: Hyper-SPAM with Adaptive Operator Secletion

Objectives

The goal of this study was to improve upon the performance of the SPAM algo-
rithm (Caraffini et al., 2014).

Methodologies

The SPAM algorithm was proven to be efficient but can still be improved in some
directions. As example, its algorithmic structure is heavy, due to the use of the
CMA-ES algorithm to work out the “separability index”. On the other hand,
this meme plays a major role as it also perform part of the optimization pro-
cess. Moreover, CMA-ES seems to be the best method for estimating the Pearson
correlation matrix |ρ| and subsequently work out the separability index ς. As
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FIGURE 20 SPAM coordination logic.

can be seen from Figure 20 the probabilities ψS (ς), for the activation of S, and
ψR (ς) = 1− ψS (ς), for the activation of Rosenbrock, depend on that value. In
particular, the MN works out such probability at the beginning of the optimiza-
tion process by means of a linear function ψS, see (Caraffini et al., 2014) for details.
The ς index showed to be accurate in estimating the linkage between variables in
most problems from popular test suites, e.g. (Hansen et al., 2010; Suganthan et
al., 2005; Liang et al., 2013). However, in some problems the index is not truthful.

Thus, the idea of re-adjusting the probabilities during the optimization pro-
cess appeared to be valid to improve upon the SPAM scheme. This was achieved
by means of an adaptive model used in hyper-heuristics, i.e. the Adaptive Oper-
ator Selection (AOS) method. The CMA-ES part is still employed as beneficial in
off-line cases. However, it could be removed for handling real-time applications,
without preventing the adaptive model from working. The proposed SPAM-AOS
variant requires two modules to function: a credit assignment module C and the
actual adaptive modelM. The main role of the former is to estimate the quality
of an operators after its application, based on feedback from the obtained fitness
values (Fialho, 2010; Epitropakis et al., 2012). The latter, takes as input the esti-
mated quality of each operator and returns, by means of the Probability Matching
method in (Fialho, 2010; Thierens, 2005, 2007), the adjusted selection probabilities.

Results

SPAM-AOS improves upon the SPAM algorithm, and is competitive against mod-
ern state-of-the-art metaheuristics over 28 problems of CEC 2013 (Liang et al.,
2013) at 10, 30 and 50 dimension values, as well as the 20 problems of BBOB 2010
(Hansen et al., 2010).

This optimizer can be seen as an attempt to think about algorithmic design
from metaphor-free perspective, and in the specific case, to show how MC and
hyper-heuristics are essentially very similar ideas (if not even the same idea).



5 A THEORETICAL STUDY ON
POPULATION-BASED ALGORITHMS

The investigation performed PXI, concludes this thesis with a theoretical study
on the dynamic behaviours of population-based algorithms for black-box opti-
mization.

5.1 Relation with this piece of research

Despite the plethora of nature-inspired approaches that can be found in the lit-
erature, there are actually few significant strategies, and several variants. All
the metaheuristics for general purpose optimization are expression of the same
principle, and share similar issues. As example, one can think of premature con-
vergence, stagnation etc. It is difficult to achieve versatility. Population based
approaches claimed to be versatile and able to efficiently explore any possible fit-
ness landscape. However, if computationally efficient perturbation strategies can
be easily designed (for generating new solutions), and control mechanisms can
be implemented to prevent algorithms from revisiting the same areas of D, it is
obviously not entirely true that populations of candidate solutions can display
the same degree of exploration for all the problems. In this investigation, the last
point is addressed and formalized, in the form of a structural bias intrinsically
nested in some population based algorithms. When it arises, such bias plagues
the search as it limits exploration capabilities towards specific regions of D. By
discussing the structural bias, Chapter 5 addresses RQ III.
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5.2 PXI: structural bias in population-based algorithms

Objectives

When an algorithm is not capable of reaching all the parts of the search space with
equal efficiency, favouring certain areas of the search space over others indepen-
dently of the fitness function, it is exhibiting a structural bias. This study aims
to provide theoretical and empirical analyses for displaying and understanding
the structural bias in population-based algorithms for optimization, in order to
be able to reduced it.

Methodologies

In this study two popular population based algorithms, i.e. GA and PSO, were
taken under consideration. A particular test-function, presenting the same prop-
erties on each possible direction, had to be implemented to be able to study the
bias. This function, named f0, maps real numbers given in the interval [0, 1]n into
a uniformly distributed random real number within [0, 1]. With such function, an
algorithm like a typical GA is expected to keep the individuals disperse within
[0, 1]. Conversely, by displaying the best individuals over 50 runs in parallel co-
ordinates, for both GA and PSO, was clear that, in particular when increasing the
population size up to 100 individuals, a structural bias arose and manifested as
non-uniform clustering of the population over time.

In order to formalize what graphically seen, a different approach was sued.
A simplified GA was designed to state and prove a theorem on the variance of
the population (See PXI for details). The implications of such theorem make the
point that individuals cannot spread over the entire interval [0, 1]n during the
search, but necessarily converge in a smaller sub-portion of D (as confirmed by
numerical results). Moreover, it was shown that such variance decreases as the
population size increases, i.e. the higher the population size, the stronger the
effect of the bias.

Finally, the Kolmogorov-Smirnov test was also performed on the distribu-
tion of the best individuals obtained over 50 runs on the problems of the CEC
2005 test suite (Suganthan et al., 2005). This statistic test further confirmed the
presence of a stronger bias for problems with a complex superior to that of f0.

Results

According to this study, theory predicts that structural bias in population-based
optimizers is exacerbated with increasing population size, and increasing prob-
lem difficulty. These predictions, supported by the empirical analyses in PXI, re-
vealed two previously unrecognised aspects of structural bias, that would seem
vital for algorithm designers and practitioners. First, increasing the population
size, though ostensibly promoting diversity, will magnify any inherent structural
bias. Second, the effects of structural bias are more apparent when faced with
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difficult problems.
In this paper was argued, from both theoretical and empirical standpoints,

that structural bias is likely to be common in practice, and amplified when we
would least expect it (when we increase the population size in hope of a more
exploratory search) and when it may cause most damage (on difficult problems).

The proposed approach to revealing the structural bias can be easily repli-
cated, and its use is recommended prior to finalising the parametric and design
configurations of any optimization algorithm to be deployed on real-world prob-
lems.



6 CONCLUSIONS AND WAY FORWARD

This thesis is a collection of 11 papers covering multiple heterogeneous scenarios.
The design of novel algorithms is shown from different perspectives and several
winning strategies for tackling real-world applications are reported. A theoreti-
cal study was also performed to better understand and overcome limitations of
population based algorithms. The amount of material produced for this thesis
provides several alternatives for tackling heterogeneous optimization problems,
in particular in the field of robotic engineering. In other words, the GRQ can be
considered fully addressed.

Some algorithmic solutions presented in this thesis give inspiration for fu-
ture developments.

For instance, the compact approach appeared to be promising and suitable
for optimization in embedded systems. In particular, the proposed light variant
of cDE is based on an elegant mathematical procedure for generating the mu-
tant vector. Future studies can further enhance compact algorithms and make
them more robust. For example, a potential study could be done by adopting
alternative distributions to the Normal one, as there is no proof that Gaussian
distributions are the best choice. The use of different distributions, or mixture of
Gaussian distributions, could be beneficial in some cases. Obviously, it will com-
plicate the sampling procedure, as well as the entire algorithmic structure. Thus,
this idea requires a great deal of attention during the algorithmic design.

As for black-box optimization, the SPAM-AOS framework displays great
adaptation capabilities. However, challenges for the future would see the re-
placement of the CMA-ES meme with a lighter operator. Possible alternatives
to work out an index of operational separability could be based on the concept
of variables linkage, see (Harik et al., 2006; Chen, 2012). Even lighter methods
should be tried, based on simple empiric rules.

Finally, the study on the structural bias in population based algorithms must
be completed. As done for GA and PSO in 5, also DE and other paradigms for
real-valued optimization will have to be examined. The same procedure em-
ployed in 5 can be simply used to reveal the presence, and the strength, of a
structural bias.
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YHTEENVETO (FINNISH SUMMARY)

Algoritmien suunnittelusta ja implementoinnista laskennallista älykkyyttä hyö-
dyntävässä optimoinnissa

Tietotekniikan huima kehitys viime vuosikymmenien aikana on tuonut usei-
ta tehokkaita ja monimutkaisia tekoälyä sisältäviä järjestelmiä teollisuuden ja ta-
vallisen kuluttajan saataville. Tarjolla on laitteita, jossa on elektroniikka ja sen
tarvitsema ohjelmisto sulautettuna, ja jotka käyttävät tietojärjestelmiä internetin
kautta, käyttäjän sitä oikeastaan huomaamatta. Tällaiset laitteet suorittavat mo-
nimutkaisiakin tehtäviä, mutta esimerkiksi laitteen ”opettaminen” niiden suo-
rittamiseen hyvin edellyttää usein vaikeiden optimointiongelmien ratkaisemista.
Tässä työssä perehdytään tällaisten optimointitehtävien ratkaisemiseen lasken-
nallista älykkyyttä hyväksikäyttämällä.

Ensimmäinen tutkimuskysymys liittyy optimointialgoritmien suunnitteluun
tapauksessa jossa laskentakapasiteetti, muisti ja käytettävissä oleva laskenta-aika
ovat etukäteen rajoitettu hyvin pieniksi. Tällainen tilanne tulee vastaan esimer-
kiksi kun halutaan sisällyttää laskennallista älykkyyttä hyödyntävä optimointial-
goritmi reaaliaikaiseen sulautettuun järjestelmään. Työssä suunniteltiin muistia
säästäviä optimointialgoritmeja, jotka voidaan implementoida mikrokontrolle-
riin. Lisäksi esiteltiin ja ratkaistiin kolme robotiikan sovellusta.

Toisessa tutkimuskysymyksessä lähestymistapa oli päinvastainen. Työssä
kehitettiin kuusi uutta ”musta laatikko” -tyyppisten kustannusfunktioiden op-
timointiin sopivaa laskennallista älykkyyttä hyödyntävää optimointialgoritmia.
Näiden suorituskykyä testattiin tunnettuihin benchmark-tehtäviin.

Työn kolmantena tutkimuskysymyksenä tarkasteltiin populaatiopohjaisiin
optimointialgoritmeihin liittyvää ns. rakenteellista vinoutumaa kahden yleisesti
käytetyn laskennallista älykkyyttä hyödyntävän algoritmin, geneettisten algorit-
mien (GA) ja parvioptimoinnin (PSO), tapauksessa. Rakenteellinen vinoutuma
tarkoittaa sitä, että optimointialgoritmi tutkii sallittujen ratkaisujen joukkoa epä-
tasaisesti, mutta tämä epätasaisuus ei ole peräisin optimoitavan kohdefunktion
ominaisuuksista, vaan menetelmästä itsestään. Vinoutumaa analysoitiin teoreet-
tisesti ja visualisoitiin myös graafisesti.
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a  b  s  t  r  a  c  t

In  this  paper,  a recently  proposed  single-solution  memetic  computing  optimization  method,  namely  three
stage  optimization  memetic  exploration  (3SOME),  is  used  to implement  a  self-tuning  PID  controller  on
board  of  a  mobile  robot.  More  specifically,  the  optimal  PID  parameters  minimizing  a measure  of the fol-
lowing  error  on  a path-following  operation  are  found,  in  real-time,  during  the  execution  of  the  control
loop.  The  proposed  approach  separates  the  control  and  the  optimization  tasks,  and  uses  simple  operat-
ing system  primitives  to share  data. The  system  is  able  to  react  to  modifications  of  the  trajectory,  thus
endowing  the robot  with  intelligent  learning  and  self-configuration  capabilities.  A popular  commercial
robotic  tool,  i.e. the  Lego  Mindstorms  robot,  has  been  used  for  testing  and  implementing  this  system.
Tests  have  been  performed  both  in  simulations  and  in a real  Lego robot.  Experimental  results  show  that,
compared  to  other  online  optimization  techniques  and  to empiric  PID tuning  procedures,  3SOME  guaran-
tees a robust  and  efficient  control  behaviour,  thus  representing  a valid  alternative  for  self-tuning  control
systems.

© 2012  Elsevier  B.V.  All rights  reserved.

1. Introduction

Some real-world problems, due to real-time, space, and cost
requirements, often impose the solution of an optimization prob-
lem within limited computational resources. This situation is
typical in mobile robots where the specific application might
require that all the computation is embedded within the robot
hardware (a computer is not involved in the optimization process).
In addition, there are some engineering applications that require
the solution of complex optimization problems despite a limited
hardware. An example of this class of problems is the space shuttle
control. Despite the constant growth of the power in computational
devices, space applications are an interesting exception. In order
to reduce fault risks, very simple hardware is often used on pur-
pose on space shuttles. This choice allows a high reliability of the
computational cores. For example, since over 20 years, National
Aeronautics and Space Administration (NASA) employs, within the
space shuttles, IBM AP-101S computers, see [1].  These computers
constitute an embedded system for performing the control oper-
ations. The memory of computational devices is of only 1 Mb,  i.e.
much less capacious than any modern device. It must be remarked
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that the computational devices on board of a space shuttle should
reliably work without any reboot for months or even for years.
Thus, the necessity of having an efficient control notwithstanding
the hardware limitations (both memory and computational power)
arises.

In these cases, the optimization algorithms should perform the
task without a high employment of memory and computational
resources. Unfortunately, high performance algorithms are usu-
ally fairly complex structures employing a population of candidate
solutions and other computationally expensive components such
as learning systems or classifiers, see e.g. [2].

In the present paper, a mobile robot path-following appli-
cation is presented, in which the following controller, namely
a proportional-integrative-derivative (PID), is tuned on-line by
means of an optimization algorithm. Path-following robots, also
called automated guided vehicles (AGVs) [3,4], are mobile robots
whose main task is following a generic path, denoted e.g. by means
of markers or wires on a surface. Since they increase efficiency and
reduce costs, path-following robots are nowadays widely used in
industry (see Fig. 1) for moving raw materials, transporting pal-
lets and finished goods, removing scrap, etc. They are becoming
increasingly popular also in the health-care industry, e.g. for effi-
cient transportation of linens, trash and medical waste, patient
meals, soiled food trays, and surgical case carts, and in many other
application domains.

In this study, a test path-following application is implemented
on a popular commercial hardware, namely the embedded micro-
controller of Lego Mindstorms NXT, see Section 2. The robot

1568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
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Fig. 1. An industrial path-following mobile robot.

configuration is a two driving-wheels rover, following a black ellip-
tic path over a white background. Two sensors have been used,
an ultrasonic sensor for registering the beginning and the end of
each iteration of the closed trajectory, and a light sensor to follow
the black path. More specifically, the light sensor measures the
“amount” of black and white, i.e. the percentage of light, thus
allowing a raw measure of the following error. In other words, the
path-following task is translated into the requirement that, at each
step of the control loop, the light sensor must measure 50% of white
and 50% of black during the elliptic path. When the light/darkness
proportion changes, an error is measured. The maximum error,
obviously, occurs when 100% of white and 0% of black (or dually
100% of black and 0% white) is measured. A global measure of
the error along the path is then computed as the integral abso-
lute error (IAE). The optimization problem consists of finding those
parameters proportional-integrative-derivative (PID) which allow
a minimal IAE: in this way, the robot capable of learning the best
set of parameters to follow a generic path. In addition, at every step
of the control loop, if the IAE error goes beyond a fixed threshold,
a bang-bang control is provided in order to move the robot to the
correct place, and another PID parameter set is quickly computed
by the optimization algorithm.

It is important to remark that in this work we  propose an
architecture in which both the control scheme and the optimiza-
tion algorithm are implemented on board of the Lego Mindstorms,
despite its severely limited computational and memory resources,
thus avoiding any external computing device. In addition, it should
be noted that, due to hardware limitations, the implementation
of classical population based algorithms would not be a viable
option on an embedded system of this kind. In other words, in this
paper we show that the application of an advanced optimization
algorithm can allow the accomplishment of a complex industrial
task despite the employment of extremely limited hardware con-
ditions.

Although some recent studies proved that population-based
algorithms usually have a better performance than algorithms
processing a single candidate solution, see [5],  still there are
some population-less (not only single-solution) methods which are
able to provide relatively good results despite a limited memory
footprint. If properly designed, population-less algorithms can be
competitive with population-based algorithms in specific applica-
tions (in accordance with the no free lunch theorem, see [6])  and
thus can be a satisfactory alternative when the hardware limita-
tions forbid the use of a complex algorithms. We  will refer in these

Fig. 2. The NXT brick.

papers to these methods as “memory-saving” algorithms, i.e. algo-
rithms which do not make use of a population of solutions or the
support of memory structures. Since this article considers a specific
application characterized by severe hardware limitations we  will
focus on memory-saving algorithms.

The remainder of this paper is structured as follows. Section 2
describes the experimental hardware and software setup. Section 3
introduces the optimization problem and the proposed approach
for solving it. More specifically, the real-time tasks which compose
the control architecture are described in detail. Section 4 briefly
explains the working principles of the optimization algorithm used,
namely 3SOME. Section 5 presents the experimental results: a first
subsection describes preliminary simulation experiments in which
3SOME was compared with two classical local search algorithms,
namely the Hooke–Jeeves and the Nelder–Mead methods, and four
different state-of-the-art memory-saving global optimization algo-
rithms. A validation of the simulation results in the real-world case
is then presented in the second subsection. Finally, in Section 6
the conclusion of this work is given. For the interested reader,
Appendix A presents an additional experimental setup in which
two empiric tuning procedures were compared with the 3SOME-
based proposed online optimization approach.

2. The mobile robot path follower: hardware and software
setup

2.1. Hardware configuration

Lego Mindstorms [7] is a line of the Lego products which
includes a programmable NXT brick, electric motors, sensors, and
other useful pieces such as gears, axles and pneumatics to build
robots or other automated systems. One of the most important fea-
tures of the Lego Mindstorms is the wide selection of pieces one can
choose for designing the robot, which allows many different kinds
of robotics applications, such as pick-and-place, fixed and mobile
robotics. Originally designed to be used like a toy, the Lego Mind-
storms has quickly become an important academic and educational
instrument.

What makes the Lego Mindstorms an interesting tool is the NXT
brick, see Fig. 2, which includes four input ports for connecting
sensors, three output ports for connecting motors, Bluetooth wire-
less communication, and a reasonably powerful micro-controller,
namely a 32 bit ARM7 micro-controller, with 256 KB flash memory
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Fig. 3. The NXT brick: hardware and software architecture.

and 64 KB RAM, a 8 bit AVR micro-controller, with 4 KB flash mem-
ory and 512 bytes RAM. It is interesting to note that, even though
the NXT brick is basically a toy, its processing power makes it even
more powerful than the computer used on the Apollo 11 Moon
mission.

2.2. Software configuration

The NXT brick can be programmed by means of the Lego visual
programming environment called NXT-G, but a variety of unofficial
languages and interface libraries publicly available exists, such as
NXC, NBC, leJOS NXJ, and RobotC. Although NXT-G provides a very
intuitive and simple graphical interface to develop simple tasks,
high-level programming languages are way more powerful, as they
allow to develop complex applications, like a control system or an
optimization algorithm.

In this work, the NXT brick was equipped with a custom open
source multi-tasking real-time operating system (RTOS), namely
the nxtOSEK (or simply OSEK) RTOS [8].  To implement the con-
trol system and the optimization algorithms and execute it on the
OSEK RTOS on board of the NXT brick, a rapid prototyping approach
was adopted: the application was designed and implemented in
Simulink, and then the C code was automatically generated using
the Matlab Real Time Workshop (Embedded Coder) Toolbox. The
generated C code was cross-compiled using a GNU ARM tool-chain,
thus obtaining the executable binary for the ARM7 architecture
flashed to the micro-controller via a USB cable.

Fig. 3 is an outline of the NXT architecture described so far. The
lowest layer shows the internal bus system of the NXT brick. For
each sensor connected to the brick, a proper bus is used to han-
dle the communication. The ultrasonic sensor and the Bluetooth
TX/RX are handled separately: the first device needs a continuous
data exchange with the main core by means of I2C bus to keep the
communication alive, while the Bluetooth protocol must be exe-
cuted by a specific Bluecore circuit. The other sensors are instead
handled by the AVR co-processor: since the servo motor revolution
sensor provides a digital signal the co-processor can read its data
without any processing, while the signals from the others sensors
must be acquired by the analog to digital (A/D) converter. The mid-
dle layer in Fig. 3 represents the firmware. It contains the basic input
output service (BIOS) that must be flashed with the program into
the micro-controller to handle the peripheral devices. On the top-
most layer the interrupt service routine (ISR) is shown. The main
ARM7 processor accesses sensors (to read sensor A/D value) and
servo motors (to set the PWM  duty ratio and brake mode) inde-
pendently through periodical ISRs. Motor revolutions are directly
captured by pulse-triggered ISRs. The ultrasonic sensor has its own
ISR to directly communicate interrupt to the main ARM7 processor
via the I2C communication channel.

The OSEK RTOS comes with a complete C/C++Application Pro-
gramming Interface (API), called Embedded Coder Robot (ECRobot),

which allows developers to access interrupts and data of every sen-
sor and actuator. In addition to that, ECRobot includes a custom
Matlab Simulink toolbox named ECRobot NXT, through which it
is possible to implement programs for Lego Mindstorms robots
as Simulink schemes, and generate the C/C++code for the NXT
architecture. It contains several blocks to access all the features
of the Lego NXT sensors, actuators and communications services
(USB/Bluetooth), thus providing powerful modelling capabilities
for NXT control strategies and plant dynamics. ECRobot NXT also
includes a Real-Time Workshop Embedded Coder target to gener-
ate binaries for the OSEK RTOS and a 3-D virtual reality graphical
environment.

3. Self-tuning PID controller for a path-following robot

This section describes the design of the control and optimization
scheme for the path-follower robot, based on the HW/SW platform
described in the previous section. The robot under consideration
was equipped with two servo-drives (i.e. two driving wheels), a
light sensor and an ultrasonic sensor. The light sensor was used to
“see” the path to follow. The robotic system was  firstly simulated
in Simulink (using the ECRobot NXT toolbox) and then tested in a
real-world configuration. In the latter case, in addition to the light
sensor the Bluetooth channel was used to send data from the robot
to a logger PC, and the ultrasonic sensor was  used to recognize the
robot initial position, in order to detect when the closed path is
completed and a new set of PID parameters must be computed.

Both in the simulation and in the real-world implementation,
the optimization process is performed as follows. Whenever the
path is completed, the optimization algorithm on board the robot
attempts to adjust the parameters of a PID controller, which in turn
affect the following capability, to make the movement as smooth as
possible. After a predetermined number of evaluations, the robot
uses the “best” PID parameters found so far, that is those ones mini-
mizing the IAE cost-function. It is important to remark that, in order
to get different robot behaviours, other objective functions could
be used without modifying the general scheme of the application.
In this case, we  minimize the IAE to obtain a smooth trajectory.
If a fast motion was  also required, the objective function could be
modified, e.g. adding a time-dependent term.

3.1. System overview

With respect to Fig. 4, the entire control and optimization
system is wrapped within the SYSTEM block, supervised by the
ExpFcnCall scheduler. The SYSTEM block contains four tasks in which
the application has been decomposed, namely (1) initialization, (2)
control system, (3) optimization and (4) data logging, see Fig. 5.
The scheduler allows them to work at different operating frequen-
cies and cooperate. The tasks can communicate with each other by
writing data to shared memories, allocated into a selected region
of the micro-controller memory stack.

The system has two inputs, namely the measures read by the
NXT Light Sensor Interface and Ultrasonic Sensor Interface blocks of
the ECRobot NXT toolbox, and two  outputs, i.e. the actuation signals
on the two motors (see the two Sensor Motor Interface blocks on the
right side of Fig. 4).

3.2. Task 1: initialization

The first task is a simple initialization task. Its priority is the
highest, so it is executed before all the others tasks and only once.
This task performs all the procedures necessary to enable motors,
encoders, and reset memories of all the integrators used. In this way
it assures the correct start of the system. It also provides the initial
solution for the optimization algorithm, in order to initialize the
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Fig. 4. System overview: scheduler, tasks and sensors interfaces.

optimization process and keep it ready to work. The first solution
is not completely random. The derivative and integrative terms, in
fact, are set to zero while the proportional term assumes a random
value within the given search space (see later). Thus, at the begin-
ning a simple random proportional regulator is used, while as the
optimization goes on the various terms are adjusted. At the end of
the initialization, a flag called startFlag is set to zero. This indicates
that the system is initialized but not yet ready, since the light sen-
sor must still be calibrated before starting the optimization process.
This flag is saved into a memory shared with the other tasks, so that
every task is able to read it and wait it to become non-zero.

3.3. Task 2: control system

This task is responsible for the motion of the robot. It is the
fastest and it is activated every 1 ms.  At each execution, a new value
from the light sensor is acquired. Comparing the reading with a
predetermined value (set-point), a controller is be able to know if

the robot is in the correct position or not, and updates the motor
speed accordingly. However, these operations are executed only
if the startFlag is set as true. Whenever the control system task
is activated, the startFlag is checked. If the read value is equal to
zero, the control scheme is disabled and the calibration of the light
sensor starts. The calibration is performed only once, so that when
it is completed the startFlag value is permanently set to one.

3.3.1. Light sensor calibration
One of the problem that arises when light is used as an input

source, is that it changes with time, and from place to place. In other
words, different environments have different light conditions. The
idea behind calibration is to adjust the sensor to the conditions
expected in the room. Depending on the room, the sensor can be
calibrated only once, even if the robot must be used multiple times
within the same day. But if the environment light changes, e.g.
because there is a large window that lets the natural sunlight come
into the room, the sensor readings could be corrupted. In an ideal

Fig. 5. Overview of the four tasks (top) and of the shared memories (bottom).
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Fig. 6. The control scheme.

environment, the NXT returns the maximum light value when it
“sees” white and the minimum value when black is “seen”. These
values are represented in a scale [0,100], but rarely an uncalibrated
sensor would return them correctly. In our experiments, e.g. we
measured values in the range [30,70].

By calibrating the NXT sensor, we instead allow the robot to
run in different environments without changing the program code.
The calibration procedure consists of the following. One of the two
wheels is kept still while the other one moves with a very low con-
stant speed. In this way the robot describes an arc, passing through
the black line. During this trajectory the robot sees a completely
white zone, a completely black zone and all the intermediate val-
ues. At every step, two memory areas are updated: one with the
highest read value, and one with the lowest one. These values are
used to evaluate the dynamic range of the sensor and its bias fac-
tor, and then are stored into two shared memories, called BIAS and
RANGE.

3.3.2. Control scheme
The motion of the robot is controlled by the scheme shown in

Fig. 6. At every step, the input data coming from the light sensor
is subtracted from the set-point value, to generate the error signal
e(t).

Starting from e(t), a control signal u(t) is built by means of a PID
regulator. As we can see in Fig. 6, without considering the u(t) con-
tribution, both the motors (right and left) are set to the maximum
value of 100 (the motor speed can be set in the range [−100,100]).
Two saturation blocks are included in the scheme to limit the speed
range to [0,100], and to ensure that the motors move always in the
same direction. The set-point value is equal to 50; it follows that
e(t) becomes zero only if the robot is exactly in the middle between
the black line and the white space. This is because such position
involves a light reading of 50%. When this situation occurs, also the
signal u(t) is zero, so that the robot moves forward at the maximum
speed. Note that u(t) is added to the right motor speed but is sub-
tracted from the left one. For this reason, when the robot deviates
from the correct position, and therefore the absolute value of u(t)
increases, the robot will turn to the right or left. In particular the
robot will turn to right for u(t)) > 0, and to left if u(t) < 0.

For the sake of clarity, the PID regulator is a simple control
strategy widely used in industrial plants, which takes into account
three error contributions, weighted by three parameters, namely
the proportional, integral and derivative gains. Intuitively, the three
contributions can be interpreted in terms of time as follows:

1 a contribution depending on the current error;

2  a contribution depending on the accumulation of past errors;
3 a contribution depending on a prediction of future errors, based

on the current rate of change.

The weighted sum of these three terms is used to control a process.
The simplest (continuous) form of the PID is:

u(t) = Kpe(t) + Ki

∫ t

0

e(�) d� + Kd
d

dt
e(t) (1)

where Kp, Ki and Kd are, respectively, the aforementioned propor-
tional, integral and derivative gain. The proportional term makes
a change to the output that is proportional to the current error
value. The proportional response can be adjusted by multiplying
the error by Kp. A high proportional gain results in a large change in
the output for a given change in the error. If the proportional gain is
too high, the system can become unstable. In contrast, a small gain
results in a small output response to a large input error, and a less
responsive or less sensitive controller. If the proportional gain is too
low, the control action may  be too small when responding to system
disturbances. The contribution from the integral term is propor-
tional to both the magnitude of the error and the duration of the
error. The integral in a PID controller is the sum of the instantaneous
errors over time and gives the accumulated offset that should have
been corrected previously. The integral term accelerates the move-
ment of the process towards set-point and eliminates the residual
steady-state error that occurs with a pure proportional controller.
However, since the integral term responds to accumulated errors
from the past, it can cause the present value to overshoot the set-
point value. The derivative term slows the rate of change of the
controller output. Derivative control is used to reduce the mag-
nitude of the overshoot produced by the integral component and
improve the combined controller-process stability. However, the
derivative term slows the transient response of the controller. Also,
differentiation of a signal amplifies noise and thus this term in the
controller is highly sensitive to noise in the error term, and can
cause a process to become unstable if the noise and the derivative
gain are sufficiently large.

By tuning the three parameters in the PID algorithm, the con-
troller can provide an at least sub-optimal control action designed
for specific process requirements. There exist classical techniques
to properly tune these parameters, starting from some knowledge
or approximation of the plant to be controlled or from desired
closed-loop properties. However, when this knowledge is not
available, a trial and error process should be used, see e.g. the
Ziegler–Nichols method [9].  Although these methods are proven,
they often require some experience of the process and in some cases
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Fig. 7. The optimization task.

they are not robust enough. In the last three decades, automated PID
tuning methods have become increasingly popular. These methods
often involve the employment of an optimization algorithm which
minimizes a given error measure. They are robust, versatile, and
most of all they do not require any knowledge of the process. The
present work falls in this class of methods.

With reference to the robot application, the PID controller has
been implemented using an embedded Matlab function. The result-
ing algorithm is a discretized version of the formula (1).  The three
terms have been approximated as follows:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e(t) = e[k];

Ts

∫ t

0

e(�) d� ≈
n∑

k=1

e[k];

d

dt
e(t) ≈ e[k − 1] − e[k]

Ts
;

(2)

where t = k · Ts, being Ts the sample time of the system (1 ms), and
e[k] and e[k − 1] are, respectively, the error at the kth and k − 1th
step.

As mentioned before, the goal of the optimization is to find the
optimal configuration of Kp, Ki and Kd which gives the minimum
value for the integral absolute error (IAE), defined as follows:

IAE =
∫ ∞

0

|e(t)| dt (3)

So, every Ts ms,  a discrete version of IAE (i.e. with the sum operator
instead of the integral) is updated and its value is stored into a
shared memory. At the end of every path iteration, the optimization
task (see the next subsection) reads the IAE from this memory and
uses it as fitness value.

A final remark should be done on this application. From the
scheme described above, it is clear that the error signal is pro-
portional to the distance from the black line, measured in term of
brightness percentage. For this reason, from a control perspective a
P or a PI controller would be enough. Nevertheless, in order to test
the general applicability of the proposed approach, we decided to
let the algorithm tune a PID regulator.

3.4. Task 3: optimization

This task is responsible for the execution of the optimization
algorithm. Every time the algorithm computes a new set of PID

parameters, it writes their values on three additional shared mem-
ories, so that the control system task reads them and tries a new PID
controller configuration. Fig. 7 shows that the optimization block
is executed in a triggered mode. The trigger signal comes from the
ultrasonic sensor, which signals the completion of a path iteration.
Since the ultrasonic sensor has a fixed 20 ms  refresh rate, the fre-
quency of this task depends on this value. In order to obtain a fast
and efficient control, we decided to separate the control system,
which is executed at a higher frequency, from the optimization
task, which is slower. The trigger signal is stored into the start-
Flag memory. Each time the scheduler activates Task 3, the value of
startFlag is checked: if the system is ready and the ultrasonic sen-
sor “sees” that the robot has returned to its original position (more
realistically in a neighbourhood of the initial position), a step the
optimization algorithm is executed and a new PID configuration is
computed. Otherwise, the tasks are idle.

The search spaces for Kp, Ki and Kd have been set, respectively, to
[2,20], [0,5], [0,0.5]. These bounds have been empirically chosen to
guarantee the proper (i.e. stable) functioning of the system. It must
be noted that the search space is asymmetric: the proportional term
cannot be null (otherwise there would not be any control action),
but its search space is larger. The other two terms however may
be equal to zero, in order to obtain the PI or the PD configurations,
but they cannot be very high, otherwise the system would become
unstable.

To keep track of the elapsed iterations, a counter (doneEvalua-
tions) is updated. As soon as the value of doneEvaluations reaches
the computation budget, i.e. the number of fitness evaluations allot-
ted to the optimization process (see Section 5), the optimization
algorithm is stopped. At this point, the gray block in Fig. 7 is exe-
cuted, which reinitializes the PID controller with the optimal set
of parameters found so far, thus bypassing the optimization algo-
rithm.

The rightmost block in Fig. 7, instead, is used to reinitialize all
the shared memories that need a reset whenever a path repeti-
tion is completed, namely those ones used to store the IAE, the
PID parameters, and all the integrators memories. In addition, after
each step of the optimization algorithm, this block sets the send
flag to zero. This flag is used by the data logging task (see next sec-
tion), to trigger the sending of the data via Bluetooth. By means of
this flag, it is possible to avoid unnecessary transmissions, which
would result in an excessive consumption of the batteries of the
robot. Both the optimization and reinitialization blocks are trig-
gered by the same signal (Fig. 6). However, the first is performed
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during the rising phase, the second during the falling phase of the
trigger signal. Considering that send is set to one at the end of the
optimization task, the Bluetooth transmission is enabled only for a
short while.

3.5. Task 4: data logging

This task handles the Bluetooth communication used to log the
data of the optimization process. Just like the optimization task,
whose refresh frequency is limited by the ultrasonic sensor, the
period of this task is 20 ms.  Since the Lego Bluetooth device has
a high energy consumption, it is necessary to handle it efficiently
in order to increase the battery life of the robot. Thus, although
the Bluetooth connection is always active during the optimization
process, packets are transmitted to the logging PC only when new
data are available, i.e. a new PID configuration is computed and
evaluated. To do this, all the data to transmit are stored into a shared
memory, and only at the end of every iteration of the path data are
transmitted. Each time the data logging is executed, the send flag is
checked to decide whether transmission should take place or not,
and the data packet is created and sent accordingly. On the logging
PC at the other end, a Matlab script is used to keep the Bluetooth
communication with the robot active, receive data and log them in
real-time.

4. Three-stage optimal memetic exploration

To solve the IAE minimization problem described in the previ-
ous section, the three stage optimal memetic exploration (3SOME)
algorithm, introduced in [10], has been considered. 3SOME is a
single-solution algorithm, based on the interaction of three memes.
Despite its simplicity 3SOME proved to have a respectable perfor-
mance on a large amount of test problems and be competitive with
complex modern algorithms. Each of the three memes composing
the 3SOME algorithm provides different search capabilities, and
the coordination of the three of them guarantees a high chance of
reaching optimal solutions. Although 3SOME exploits the concept
of meme,  it is not a proper MA,  but rather it can be consid-
ered a memetic computing approach. MC  is a “paradigm that uses
the notion of meme(s) as units of information encoded in com-
putational representations for the purpose of problem-solving”,
where meme  is an abstract concept which can be, e.g. a strat-
egy, an operator, or a search algorithm. In this sense MC  is a
much broader concept with respect to a MA.  As just said before,
the algorithm is composed of three memes: the first two are
stochastic, respectively with a “long” and a “moderate” search
radius, while the third one is deterministic and with a short search
radius. The bottom-up combination of the three operators is coor-
dinated by means of a natural, simple sequential trial and error
logic.

More specifically, during the long distance exploration, simi-
lar to a stochastic global search, a new solution is sampled within
the entire decision space by using a crossover-like operator (see
Algorithm 1). In other words, this exploration stage performs a
global stochastic search, attempting to detect unexplored promis-
ing basins of attraction. On the other hand, while this search
mechanism extensively explores the decision space, it also pro-
motes retention of a small section of the elite within the trial
solution, which appears to be extremely beneficial in terms of per-
formance with respect to a stochastic blind search (which would
generate a completely new solution). This mechanism is repeated
until it does not detect a solution that outperforms the original elite.
When a new promising solution is detected, and thus the elite is
updated, the middle distance exploration is activated, in order to
allow a more focused search around the new solution.

Algorithm 1 (Long distance exploration pseudo-code).
generate a random solution xt within D
generate i = round (n · rand (0, 1))
xt[i] = xe[i]
while rand (0, 1) ≤ Cr do

xt[i] = xe[i]
i = i + 1
if i = = n then

i  = 1
end

end
if f(xt) ≤ f(xe) then

xe = xt

end

Algorithm 2 (Middle distance exploration pseudo-code).
hypercube with side width ı centred in xe

for j = 1 : k × n do
generate a random solution xt within the hypercube
generate i = round (n · rand (0, 1))
xt[i] = xe[i]
while rand (0, 1) ≤ Cr ′ do

xt[i] = xe[i]
i = i + 1
if i = = n then

i  = 1
end

end
if f (xt ) ≤ f (xe) then

xe = xt

end
end

Algorithm 3 (Short distance exploration pseudo-code).
while local budget condition do

xt = xe

xs = xe

for i = 1 : n do
xs[i] = xe[i] − �
if f (xs) ≤ f (xt ) then

xt = xs

else
xs[i] = xe[i] + �

2
if f(xs) ≤ f(xt) then

xt = xs

end
end

end
if f(xt) ≤ f(xe) then

xe = xt else
� = �

2
end

end

During the middle distance exploration, an hyper-cube is
generated around the candidate solution and some points are
stochastically generated within it, in order to explore a limited
bounded region of the decision space (see Algorithm 2). In other
words, this stage attempts to focus the search around promising
solutions in order to determine whether the current elite deserves
further computational budget or other unexplored areas of the
decision space must be explored. More specifically, a hyper-cube
whose edge has side width equal to ı is constructed around the elite
solution xe. Within this region, a fixed number of trial points is gen-
erated by random perturbing the elite along a limited number of
dimensions, thus making a randomized exploitation of the current
elite solution. At the end of this stage, if the elite has been updated a
new hypercube is constructed around the new elite and the search
is repeated. On the contrary, if the middle distance exploration does
not lead to an improvement, an alternative search logic is applied,
that is the deterministic logic of the short distance exploration.

During the short distance exploration, a simple deterministic
local search is applied to the solution, in order to quickly exploit
the most promising search directions and refine the search, see
Algorithm 3. The meaning of this exploration stage is to perform the
descent of promising basins of attraction and possibly finalize the
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search if the basin of attraction is globally optimal. In a nutshell the
short distance exploration is a simple steepest descent determinis-
tic local search algorithm, with an exploratory logic similar to that
of Hooke–Jeeves algorithm [11]. This exploration is repeated until
a prefixed budget is exceeded. After that, if there is an improve-
ment in the quality of the solution, the focused search of middle
distance exploration is repeated subsequently. Otherwise, if no
improvement in solution quality is found, the long distance search
is activated to attempt to find new basins of attractions.

For the sake of clarity, the pseudo-code displaying the working
principle of 3SOME and highlighting the coordination amongst the
three levels of exploration is given in Algorithm 4.

Algorithm 4 (Coordination of the exploration stages pseudo-code).
generate the solution xe

while global budget condition do
while xe is not updated do

apply to xe the long distance exploration as in Alg. 1
end
while xe is updated do

apply to xe the middle distance exploration as in Alg. 2
end
apply to xe the short distance exploration as in Alg. 3
if xe has been updated then

apply middle distance exploration as in Alg. 2
else

apply long distance exploration as in Alg. 1
end

end

5. Experimental results

In this section we present the experimental results we  obtained
on the IAE minimization problem described above. A first simu-
lation campaign was conducted in order to test the applicability
of the proposed approach and draw some preliminary conclusions
about the performance of 3SOME on the specific optimization prob-
lem at hand. To further strengthen this initial analysis, results
obtained with the 3SOME algorithm were compared with the
results obtained with two classical optimization local search
algorithms, four modern memory-saving global optimization algo-
rithms. The simulation results were then validated executing the
path-following application online on a real Lego Mindstorms robot.
For the sake of efficiency, only the algorithms displaying the best
performances in simulation were selected for real-world imple-
mentation.

5.1. Noise estimation

In order to make the simulations as close as possible to the real-
world robot behaviour, we first of all tried to model the system
noise. The presence of noise in sensors and the hardware precision
(e.g. in actuators) heavily affect results. From the optimization per-
spective, this means that it is not possible to distinguish the average
performances of two algorithms if their difference is smaller than
the noise level, regardless of the choice of the PID parameters.
Therefore an accurate estimation of the noise is needed. To esti-
mate the noise level, we performed a set of 100 paths repetitions,
maintaining the same set of parameters for the PID regulator (tuned
manually). As shown in Fig. 8, we measured that the IAE nominal
value is affected by a Gaussian noise with zero mean and standard
deviation � = 2.8.

5.2. Simulation results

In the first test phase, the control system described in Section 3
and depicted in Fig. 4 was simulated using Matlab Simulink and
the ECRobot NXT toolbox. The noise model described in the previ-
ous subsection was used, in simulation, to inject artificially a noisy

component into the fitness value. The 3SOME algorithm described
before was executed with inheritance factor ˛e = 0.05, width of the
hypercube for middle distance exploration ı = 20% of the total deci-
sion space width, coefficient of generated points k = 4, and initial
exploratory radius for short distance exploration � = 40% of the
total decision space width. 3SOME was compared with the follow-
ing classical local search algorithms, with their original parameter
setting:

• Hooke–Jeeves algorithm [11], with tolerance ε = 1e − 6 and step
reduction coefficient  ̨ = 2.

• Nelder–Mead algorithm [12], with reflection coefficient � = 1,
expansion coefficient � = 2, contraction coefficient � = −1/2 and
shrink coefficient � = −1/2.

In addition to these two methods, four memory-saving algorithms
recently proposed in the literature were selected for compari-
son. More specifically, the algorithms hereinafter listed, with the
parameter setting suggested in the original papers, have been con-
sidered:

• Simplified intelligence single particle optimization (ISPO) pro-
posed in [13] with acceleration A = 1, acceleration power factor
P = 10, learning coefficient B = 2, learning factor reduction ratio
S = 4, minimum learning threshold E = 1e − 5, and learning steps
PartLoop = 30.

• Non-uniform simulated annealing (nuSA) proposed in [14] with
mutation exponent B = 5, temperature reduction ratio  ̨ = 0.9,
temperature reduction period Lk = 3, and number of initial solu-
tions to set the initial temperature initialSolutions = 10.

• Compact differential evolution with rand/1 mutation and expo-
nential crossover, cDE/rand/1/exp, here simply indicated as cDE,
proposed in [15]. The cDE algorithm has been run with virtual
population size equal to 300, scale factor F = 0.5, and proportion
of genes undergoing exponential crossover, see [16], ˛m = 0.25.

• Compact differential evolution light (cDELight), proposed in [17].
The virtual population size has been set equal to 300, scale factor
F = 0.5, and proportion of genes undergoing crossover, see [16],
˛m = 0.25.

It should be noticed that all the algorithms listed above were imple-
mented in Stateflow, so that the same Simulink scheme shown in
Fig. 4 (except the data logging task, which was  not used in simu-
lation), could be used both for simulation and for real-world tests.
After the simulation stage, the Simulink scheme (this time includ-
ing the data logging task) was  used to automatically generate the
C code optimized for the ARM7 architecture. This code was then
cross-complied and executed on the target micro-controller of the
robot to perform the real-world experiments described in the next
subsection.

For each algorithm, 30 simulated runs have been performed,
each one consisting of 300 complete repetitions of the closed path
to follow. This value of computational budget comes from the-
oretical and practical considerations. Firstly, it is related to the
complexity of the problem, which has only three parameters (a
higher dimensional problem would require a higher number of fit-
ness evaluations). In addition to that, since in the real-world case
(see below) each repetition of the path took, on average, about 15 s
(using the 80% of the robot maximum velocity), the budget was
bounded essentially by the battery duration. Especially due to the
Bluetooth communication used for logging data, which is extremely
energy consuming, in the real-world case the system had about a
3-h battery life.

As an additional remark, it should be noticed that the algorithms
listed above represent a fairly comprehensive selection of classi-
cal optimization algorithms and state-of-the-art memory-saving
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Fig. 8. Noise on the integral absolute error.

algorithms. Considering in particular the latter algorithms, it is
important to understand that they use different nature-inspired
metaphors. More specifically, ISPO is Particle Swarm [18,19] algo-
rithm in which the “swarm” is reduced to a single particle; nuSA is
an advanced version of the popular stochastic algorithm named
simulated annealing [20]; cDE and cDELight are two compact
(i.e. based on a probabilistic model of the population, see EDAs)
implementations of the popular evolutionary algorithm named dif-
ferential evolution [21–23].  In particular, cDELight maintains the
same structural features of cDE, but with a reduced computational
footprint. Finally, 3SOME is memetic framework which shares some
ideas with Variable Neighbourhood Search [24,25] and Iterated
Local Search [26] algorithms.

Fig. 9 shows the average fitness trend obtained in simulation
with the seven algorithms considered. The final values of IAE ±
standard deviation are reported in Table 1. Also the output of the
Wilcoxon rank-sum test [27] is shown, applied with a confidence
level of 0.95. The symbol “=” indicates a statistical equivalent per-
formance, while “+” indicates a superior performance of 3SOME
with respect to the algorithm on the selected row in the table. From
the fitness trend plot, it can be seen that all the selected algorithms
are able to improve upon the initial solution of the problem at hand.
However, 3SOME emerges as the best of the algorithms considered
in this test, since it outperforms particularly ISPO and the two classi-
cal local search algorithms (i.e. the Hooke–Jeeves and Nelder–Mead
methods), while it shows similar performance to nuSA, cDE and
cDELight. This result can be explained considering that, despite its
limited dimensionality, the fitness function measuring the IAE is
highly multi-modal; moreover, it is affected by noise. Due to the
combination of these two landscape features, extremely exploita-
tive algorithms (see ISPO) and local search methods (such as
Hooke–Jeeves and Nelder–Mead) are not particularly efficient on

Table 1
Average final IAE obtained ± standard deviation and Wilcoxon test outcome (refer-
ence: 3SOME) on the simulation experiments.

Algorithm IAE Std. Dev. W

3SOME 80.7073 12.0787
nuSA 81.2889 16.9048 =
cDE  77.6358 2.9000 =
cDELight 78.4746 4.0249 =
ISPO 143.1742 21.3450 +
Hooke–Jeeves 93.7439 30.4175 +
Nelder–Mead 101.8764 27.8688 +

this specific problem. Instead these algorithms produce very few
fitness improvements (especially ISPO), clearly suffering from pre-
mature convergence. In addition to that, it is interesting to notice
that the Nelder–Mead method requires more memory than all the
other algorithms considered in this study, since it needs to store
n + 1 solutions (the simplex), where n is the problem dimension-
ality. While in this particular 3-dimensional problem this memory
footprint is still acceptable, a higher dimensional problem (e.g. a
more complex controller, with more parameters) would require
a much higher memory capacity, thus making the Nelder–Mead
method not memory-wise efficient. On the other hand, modern
global memory-saving optimization algorithms (3SOME, nuSA, cDE
and cDELight), despite their simplicity, are able to handle the multi-
modal noisy fitness landscape of the IAE more efficiently than ISPO
and the two classical local search methods. Additionally, they have
a very similar performance, as indicated by the Wilcoxon test in
Table 1.

For the sake of completeness, the best PID parameters obtained
with the aforementioned algorithms are reported in Table 2: it is
interesting to notice how 3SOME and cDE, as well as Hooke–Jeeves,
tend to a very high value of Kp (almost close to its upper bound),
although the average performance of Hooke–Jeeves is worse. Sim-
ilar considerations can be made about the pairs nuSA/ISPO and
cDELight/Nelder–Mead, which converge to lower values of Kp. On
the other hand, the best values of Ki and Kd differ a lot from one
algorithm to another, also when the average performance is the
same. In other words very small differences in the parameter space
produce very different values of IAE, while very different sets of PID
parameters produce PID regulators which guarantee an equally low
level of IAE. This diversity in the best PID parameters can be seen as
an indirect evidence of the multi-modality of fitness landscape at
hand. Together with the noise which affects the IAE, this feature of
the landscape justifies the need for a robust global optimizer which

Table 2
Best PID parameters obtained on the simulation experiments.

Algorithm Kp Ki Kd

3SOME 17.5992 4.2104 0.0920
nuSA 2.3710 1.3213 0.4103
cDE  18.2708 0.3255 0.2481
cDELight 13.1273 0.1454 0.1434
ISPO 2.1263 0.5705 0.2970
Hooke–Jeeves 16.9844 2.5159 0.1724
Nelder–Mead 12.5015 2.5573 0.2127



2012 G. Iacca et al. / Applied Soft Computing 13 (2013) 2003–2016

0 50 100 150 200 250 300
60

80

100

120

140

160

180

200

220

240

260

Fitness evaluations (path repetitions)

F
itn

es
s 

va
lu

e 
(I

A
E

)

cDE
3SOME
ISPO
cDELight
nuSA
Hooke−Jeeves
Nelder−Mead

Fig. 9. Average performance trends of the algorithms considered in the simulation experiments.

is able to explore efficiently the landscape and conclude the search
with a fine tuning of the parameters.

5.3. Real-world results

In the real-world case, due to long execution time and battery
life, for each algorithm only eight complete runs have been per-
formed, consisting again of 300 path iterations. As anticipated in
the previous section, the same Simulink control scheme employed
for simulations was used for generating the binary ARM7-specific
file executed on the Lego Mindstorms robot. Only the algorithms
displaying the best performance in simulation, namely the four
modern memory-saving algorithms (3SOME, nuSA, cDE and cDE-
Light), were selected for real-world implementation and tests. For
each algorithm, the same parameter setting used in simulation was
selected.

Fig. 10 shows the fitness trends, averaged on eight algorithm
repetitions, obtained logging data coming from the Lego Mind-
storms NXT 2.0. The final values of IAE ± standard deviation are
reported in Table 3, together with the result of the Wilcoxon
rank-sum test. Recalling the noise analysis presented in Sec-
tion 5.1,  from these experimental results we can conclude that the
pairs 3SOME-nuSA and cDE-cDELight have a practically indistin-
guishable performance (as confirmed also by the Wilcoxon test),
although 3SOME is able to provide an average lower value of IAE,
noise-wise more robust than cDE and cDELight.

In order to give a practical interpretation of these results, let us
remember that the robot requires, on average, 15 s to perform the
entire path once. The sensor samples the error every millisecond.

Table 3
Average final IAE obtained ± standard deviation and Wilcoxon test outcome (refer-
ence: 3SOME) on the real-world experiments.

Algorithm IAE Std. Dev. W

3SOME 74.1579 11.7389
nuSA 83.0540 1.5326 =
cDE 90.0341 7.0072 +
cDELight 87.433 3.9071 +

Thus, on average, totally 15,000 samples are performed. Each sam-
ple corresponds to a measure of error between −50 (sensor sees all
white) and 50 (sensor sees all black). Due to the application of the
absolute values, see formula (3),  each contribution to the IAE can be
between 0 and 50. Considering that the IAE is composed of 15,000
contributions, numerical results in Table 3 show that all the algo-
rithms considered in this study, especially 3SOME, display a very
good performance in terms of IAE minimization. In other words,
the proposed self-optimized control system allows the execution
of the path-following task very precisely, despite the very limited
computational power and sensor precision of the toy robot used in
this work.

Also in this case we report the best PID parameters obtained
with selected algorithms (Table 4). Similarly to the simulated case,
3SOME and cDE tend to a very high value of Kp, while nuSA and cDE-
light converge to lower values of Kp. On the other hand, only cDE
converges to a value of Ki close to its upper bound, while 3SOME,
nuSA and cDELight converge to quite different values ranging from
0.8412 to 4.0621. Similar considerations can be made about Kd.
It should be noticed that, due to the stochasticity of the algo-
rithms and to simulation approximations, the numerical results
are slightly different from the experimental ones (both in terms of
convergence and final values). However, the general trends are the
same, and similar conclusions about the features of the landscape
(see the previous subsection) can be drawn.

5.4. Memory consumption

In order to have an indication of the memory consumption,
in the real-world case the memory footprint for the selected

Table 4
Best PID parameters obtained on the real-world experiments.

Algorithm Kp Ki Kd

3SOME 19.5414 4.0621 0.2802
nuSA 14.2172 3.7887 0.2972
cDE  18.2438 4.9695 0.3677
cDELight 7.6512 0.8412 0.2483
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Fig. 10. Average performance trends of the algorithms considered in the real-world experiments.

algorithms was also measured. The following memory footprints
where measured:

• 38.240 KB, with 3SOME:
• 37.400 KB, with nuSA;
• 43.664 KB, with cDE;
• 43.632 KB, with cDELight.

These measurements can be explained as follows. The entire
control scheme application, without the optimization algorithm,

occupies 28.528 KB of memory (part of which contains the BIOS,
which is linked to the user application). When one of the four
memory-saving algorithms is added, there is an additional memory
overhead. With nuSA and 3SOME, this overhead is about 10 KB,
while the cDE schemes require about 15 KB. These latter schemes
are slightly more expensive, in terms of memory, due to the
sampling mechanism which requires some mathematical libraries
to be linked. In any case, it is important to notice that this limited
memory footprint could not be achieved by any population-based
algorithm.
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Fig. A.11. Comparison of the IAE trends obtained with the Ziegler–Nichols method, the areas method and the 3SOME algorithm (for the latter, the average trend over 30
runs  is shown).
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6. Conclusions

In this paper we proposed an architecture for tuning on-line
a PID controller on board of an embedded system, i.e. the ARM7
micro-controller of the Lego Mindstorms NXT 2.0 robot. A recently
proposed memetic algorithm, namely 3SOME, has been used to
minimize the IAE in a path-following robotic application. To vali-
date the optimization results, two experiment campaigns have
been performed: in the first one, a model of the system has been
simulated with Simulink, and 3SOME was compared with two
classical local search algorithms and four state-of-the-art memory
saving algorithms employing different logics. In the second stage,
the algorithms displaying the four best performances in simula-
tion (including the 3SOME structure) have been implemented on a
real Lego Mindstorms NXT 2.0 robot. Despite its simple structure
and limited memory footprint, 3SOME proved extremely good at
rapidly improving upon the initial solution and exploiting promis-
ing search directions. Among the selected algorithms, 3SOME was
indeed able to find the minimum value of IAE.

Although it has been tested on popular commercial gadget, the
proposed approach may  be easily extended and applied in all those
industrial contexts or engineering problems plagued by limited
hardware. This study confirms our previous finding that in some
specific applications characterized by poor hardware resources
and real-time requirements, a very simple algorithm, if carefully
designed, should be preferred to complex algorithms characterized
by a large memory consumption and a high computational over-
head. In other words, this work aims at showing that the future of
artificial intelligence is in the developed of efficiently designed soft
computing techniques and their integration in various every day
life situations, even when the available hardware is very limited.
The fact that, thanks to a highly performing soft computing tech-
nique, an embedded optimization over a toy allows the solution of
a complex industrial problem at a professional level is an argument
to support our intuition. Future works will likely go in this direc-
tion, further extending memetic structures composed of simple,
memory-saving memes, whose topology and coordination strategy
could be able to adapt to the specific optimization problem.
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Appendix A. Comparison with empiric tuning methods

This section validates the control performance obtained with
the proposed algorithmic approach by comparing it with tradi-
tional tuning methods. In order to carry out this comparison, we
designed an additional experiment where the results obtained by
means of the 3SOME algorithm are compared with two  traditional
tuning methods. It should be remarked that most of the tuning pro-
cedures known in the literature rely on a trial and error process
and require the system under analysis to be tested in an open-
loop configuration and/or excited with a step signal. However, both
these conditions would turn out being rather impractical to be
applied on the 2-wheels robotic system presented above. Recall-
ing the control scheme presented in Fig. 6, it can be noticed that
the system reference (and its feedback measure) is a percentage
of black/white, while the input for the motors is a delta of veloc-
ity. Feeding this system with a “black/white step” would lead the
robot to an improper functioning, since the path-following task, as
it was implemented, would be impossible to be performed (this task
needs, by definition, a constant input setting). Obviously, also an
open-loop configuration might bring the robot to an uncontrolled
condition. For this reason, and in order to draw some intuitive phys-
ical conclusions, we focused our analysis on a single NXT motor fed
with a velocity step, rather than the rover robot described in the
previous sections. A dynamic model of the NXT motor, obtained
via experimental measures and available in [8,28], was used to
tune a PID regulator. The model also includes an accurate model
characterization. The motor was  excited with a velocity step of
amplitude U = 60 (% maximum velocity) starting at � = 0.5 s. All the
experiments were performed simulating the system with Matlab
Simulink.
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Fig. A.13. Comparison of the control signal generated with the Ziegler–Nichols method, the areas method and the 3SOME algorithm (for the latter, the best PID configuration
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Two empirical tuning methods were used and compared
with the 3SOME-based self-tuning approach, namely the
Ziegler–Nichols open-loop tuning method (also called process
reaction method) [9] and the areas method [29]. Both the methods
approximate the system under study with an asymptotically
stable, strictly proper first order plus dead time (FOPDT) model:

G(s) = �

1 + sT
e−� s (A.1)

where �, T and � are respectively the static gain, the time constant
and the delay of the system. The step response of the FOPDT system
can be analytically expressed as follows:

y(t) = � U(1 − e(t−�/T)) · 1(t  − �) (A.2)

where 1(t  − �) indicates a unit step starting at time �. In both
the Ziegler–Nichols and the areas methods, the open-loop step
response (process reaction curve) of the real system is graphically
analyzed to determine some physical characteristics of the system.
The PID parameters are empirically determined by these features.

In the Ziegler–Nichols method, starting from the process reac-
tion curve the following system parameters are determined:

• the dead time (delay) �, defined as the time at which the system
response starts;

• Y∞, the asymptotic ultimate value that the system reaches at
steady-state;

• the time constant T, obtained as difference between the time
intercept of the tangent to the reaction curve in � with the asymp-
totic line y = Y∞.

The PID constants are then empirically set as Kp = 1.2U/	,
Ki = Kp/(2.0T) and Kd = 0.5KpT, where 	 = � Y∞/T. Applying this proce-
dure to the NXT motor, we measured Y∞ = 30, � = 0.1 and T = 0.8823.
Hence, being 	 = 3.4, we obtained Kp = 21.1765, Ki = 11.9994 and
Kd = 9.3431. The IAE, measured over a time period of 10 s, was
246.0139.

Similarly to the Ziegler–Nichols approach, the areas method
determines from a graphical analysis of the open-loop step
response of the system two “characteristic areas”:

• S1 =
∫ ∞

0 [Y∞ − y(t)] dt, i.e. the area between the asymptotic line
y = Y∞ and the process reaction curve;

• S2 =
∫ �+T

0
y(t)dt, i.e. the area “below” the process reaction curve

limited by t = � + T.

In this case the time constant T is computed as S2e/Y∞, while
the delay � is set equal to (S1 − S2e)/Y∞. Defining the static
gain � = Y∞/U, the values of Kp, Ki and Kd are then computed,
respectively, as Kp = 1.2T/(� �), Ki = Kp/(2.0�). In our case, we mea-
sured S1 = 46.1235 and S2 = 8.7900. Thus it resulted T = 0.7965 and
� = 0.7409. Subtracting from this value of � the delay of the input
signal (0.5 s) we obtained � = 0.2409. Finally, being � = 0.5, we  cal-
culated Kp = 7.9352, Ki = 16.4699 and Kd = 0.9562, with an IAE of
373.1705 measured over 10 s.

The results obtained with the two methods described above
were then compared with the average results obtained by means
of 3SOME. More specifically, 30 independent runs of the algorithm
were performed, each one consisting of 300 fitness evaluations.
The bounds for the three parameters Kp, Ki and Kd were kept pur-
posely large [0,50], in order to test the robustness of the 3SOME
algorithm and to explore a larger search space. A comparison of the
IAE trend in a time frame of 10 s obtained by means of three meth-
ods is reported in Fig. A.11, where it can be clearly seen that 3SOME
is able to converge to a much lower value of IAE compared to the two
empiric methods. For the sake of completeness, we  also report the
step response (Figs. A.12 and A.13) and the control signal (Fig. A.13)
measured with the three methods: in case of 3SOME, we considered
the best PID configuration found in 30 runs. Although the control
signal generated by the PID obtained with 3SOME is slightly higher,
it can be seen intuitively how the proposed approach guarantees a
more rapid response, with a shorter settling time. This result con-
firms that the proposed approach represents a valid alternative for
self-tuning control systems.
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[24] N. Mladenović, P. Hansen, Variable neighborhood search, Computers and Oper-
ations Research 24 (1997) 1097–1100.
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Abstract—This paper proposes a novel implementation of
micro-Differential Evolution (μDE) that incorporates within the
DE scheme an extra search move that attempts to improve the
best solution by perturbing it along the axes. These extra moves
complement the DE search logic and allows the exploration of
the decision space from an alternative perspective. In addition,
these extra moves at subsequent activations tend to explore
a progressively narrowing area. This mechanism increases the
exploitation of the original scheme thus helping μDE to pre-
vent from stagnation. An experimental set-up including various
test problems and dimensionality values has been considered.
Numerical results show that the proposed algorithm enhances
upon the original μDE performance and, despite its simplicity,
is competitive with modern complex DE based algorithms.

I. INTRODUCTION

Population-size a crucially important, if not the most impor-
tant, parameter in algorithms that process multiple solutions,
such as Evolutionary and Swarm Intelligence Algorithms (EAs
and SIAs, respectively), see e.g. [1]. The tuning of this param-
eter is hard since, the success of a given problem can heavily
depend on it. Looking at this issue from a complementary
perspective, a robust algorithmic design might have a variable
population size. This variation can be deterministic as in [2]
or self-adaptive as in [3], [4], and [5]. The topic whether a
large, a small, or unitary population is preferable is a topic
under discussion in computational intelligence community.

In this regard, an extensive study on population-based al-
gorithms and their advantages over single solution algorithms
has been reported in [6]. Five distinct mechanisms that would
justify the superiority of population-based algorithms over
schemes that perturb a single solution have been identified
and studied. The first mechanism is that a population offers a
diversified pool of building blocks whose combination might
generate new promising solutions. The second mechanism
is the result of focusing of the search caused by recombi-
nation operators. Since most recombination operators have
the property that, if both parents share the same value of
a variable, then the offspring also has the same value in

correspondence of that variable, see [7], recombination has
the power of exploring the part of the search space where
individuals disagree. In contrast, mutation explores the entire
search space. According to this analysis this mechanism of
focusing of the search by crossover can dramatically enhance
the speed of the algorithm to detect a good solution. The
third mechanism is the capability of a population to act as
a low-pass filter of the landscape, ignoring short-length scale
features in the landscape (e.g. shallow basins of attractions).
The fourth mechanism is the possibility to search different
areas of the decision space. This mechanism can be seen
also in a different way: since population-based algorithms
naturally perform an initial multiple sampling, the chance that
an unlucky initial sample jeopardizes the entire algorithmic
functioning is significantly mitigated. The fifth mechanism is
the opportunity of using the population to learn about good
parameters of the algorithm, i.e. to find a proper balance
between exploration and exploitation.

For the above-listed reasons, the employment of a
population-based algorithm would, in principle, be preferable
when possible. However, in counter-tendency with the anal-
ysis in [6], some algorithms recently proposed in literature,
although based on a single solution, still display an excellent
performance, even when compared with that of modern com-
plex population-based algorithms, see e.g. [8].

Contradictory results in literature are not only about the
advisability of using or not a population within an optimization
framework, but also about the proper sizing of the population.
Some studies clearly suggest the usage of large populations
in order to ensure the success of the algorithm, see [9]. On
the other hand, in [10] and [11], it is shown that, if properly
designed, a population-based algorithm with a very small
population size can efficiently solve large scale problems, see
also [12] and [13].

The latter kind of algorithms, i.e. population-based algo-
rithm that use a small population, are indicated as micro algo-
rithms and indicated by the prefix μ. An early implementation
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of micro algorithm is the micro Genetic Algorithm (μGA), see
e.g. [14] and [15]. Over the latest years, micro algorithms have
been employed in various engineering applications as they are
proven to be lighter in terms of hardware requirements and
thus are prone to their use in embedded systems, see [16].
In addition, algorithms that make use of small populations are
more exploitative than the large ones and thus quickly achieve
improvements during the early stages of the optimization
process. This feature makes micro-algorithms especially useful
in real-time applications when a quick answer is needed, see
e.g. [17]. The effect of small populations is obviously different
when applied to various search strategies, see [18].

Amongst the various micro algorithms proposed in liter-
ature, micro-Differential Evolution (μDE) is a successfully
applied scheme. For example, in [19] a μDE employing
opposition-based mechanism has been proposed for image
thresholding problems. In [20] a μDE apprach is proposed
for evolving an indirect representation of the Bin Packing
Problem.

This paper proposes a novel implementation of μDE,
namely micro-Differential Evolution with Axis-moves
(μDEA). The proposed μDEA is a DE/rand/1/exp scheme,
see [21], that employs a very small population. In addition,
μDEA makes use of an extra refinement operator that perturbs
the solution of the micro-population characterized by the
highest performance. This refinement operator attempts to
improve upon the solution by means of an exploratory move
in the direction of each variable.

The remainder of this paper is organized in the following
way. Section II describes the working principles of the pro-
posed μDEA. Section III displays the experimental results of
this study. Section IV gives the conclusions of this work.

II. MICRO-DIFFERENTIAL EVOLUTION WITH AXIS MOVES

Without a loss of generality, in order to clarify the notation
in this paper, we refer to the minimization problem of an
objective function f(x), where the candidate solution x is a
vector of n design variables (or genes) in a decision space D.
The ith design variable of the vector x is indicated as x[i].
The proposed μDEA algorithm consists of a DE framework
and the extra moves along the axes. Section II-A and II-B
describe framework and extra moves, respectively. Section II-C
analyzes the μDE behavior and gives a justification to the
proposed algorithmic structure.

A. Micro-Differential Evolution framework

At the beginning of the optimization process, a sampling
of Spop individuals is performed randomly with a uniform
distribution function within the decision space D. In our
implementation, the μDE population size Spop has been set
equal to 5.

At each generation, for each individual xj of the Spop , three
individuals xr, xs and xt are randomly extracted from the
population. According to the DE logic, a provisional offspring
x′
off is generated by mutation:

x′
off = xt + F (xr − xs) (1)

xoff = xj

generate i = round (n · rand (0, 1))
xoff [i] = x′

off [i]
k = 1
while rand (0, 1) ≤ Cr AND k < n do

xoff [i] = x′
off [i]

i = i + 1
if i == n then

i = 1
end if
k = k + 1

end while

Fig. 1. Pseudo code of the exponential crossover

where F ∈ [0, 1 + ε[ is a scale factor which controls the length
of the exploration vector (xr−xs) and thus determines how far
from point xj the offspring should be generated. With F ∈
[0, 1 + ε[, it is meant here that the scale factor should be a
positive value which cannot be much greater than 1 (i.e. ε is
a small positive value), see [22]. While there is no theoretical
upper limit for F , effective values are rarely greater than 1.0.
The mutation scheme given in Equation (1) is also known
as DE/rand/1. In literature many other mutation variants have
been proposed, see [21] and [23].

When the provisional offspring has been generated by
mutation, a popular crossover, namely exponential crossover is
applied to the parent solution xj and the provisional offspring
x′
off , see [22]. In this crossover scheme, the number of

variables xj that are exchanged during one crossover follows a
geometric distribution. A geometric distribution is the discrete
counterpart of the exponential distribution (that gives the name
to this operator).

In the exponential crossover, a design variable of the pro-
visional offspring x′

off (j) is randomly selected and copied
into the jth design variable of the solution xi. This guar-
antees that parent and offspring have different genotypes.
Subsequently, a set of random numbers between 0 and 1 are
generated. As long as rand (0, 1) ≤ CR, where the crossover
rate CR is a predetermined parameter, the design variables
from the provisional offspring (mutant) are copied into the
corresponding positions of the parent xi. The first time that
rand (0, 1) > CR the copy process is interrupted. Thus, all the
remaining design variables of the offspring are copied from the
parent. When this crossover is combined with the DE/rand/1
mutation, the algorithm is referred to as DE/rand/1/exp (in our
case μDE/rand/1/exp). For the sake of clarity the pseudo-code
of the exponential crossover is shown in Fig. 1.

As shown in [24], it can easily be observed that for a
given value of Cr, the meaning of the exponential crossover
would change with the dimensionality of the problem. For
low dimensionality problems the trial solution would inherit
most of the genes from the elite while for high dimensionality
problems, only a small portion of xe would be copied into
xt. In order to avoid this problem and make the crossover
action independent on the dimensionality of the problem, the
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following quantity is fixed:

αe ≈
ne

n
(2)

where ne is the number of genes we expect to copy from
parent to offspring in addition to that gene deterministically
copied. The probability that ne genes are copied is Crne =
Crnαe . In order to control the approximate amount of copied
genes and to achieve that about ne genes are copied into the
offspring with probability 0.5, we imposed that

Crnαe = 0.5. (3)

It can easily be seen that, for a chosen αe, the crossover rate
can be set on the basis of the dimensionality as follows:

Cr =
1

nαe
√

2
. (4)

By means of formula (4), the expected quantity of information
to be transmitted from parent to offspring is controlled.

B. Extra moves along the axes

Let us indicate with xp the pivot individual, i.e. the individ-
ual of the micro-population that displays the best performance.
With a given probability η, the pivot individual undergoes the
following operator that perturbs a single solution along its n
axes, i.e. separately perturbs each design variable. This oper-
ator can be seen as a modification of a classical hill-descend
algorithm and employs the perturbation logic proposed in [25].

The implementation of this operator requires an additional
solution, which will here be referred to as xs. The pivot
individual xp is perturbed by computing, for each variable
i:

xs[i] = xp[i]− ρ, (5)

where ρ is the exploratory radius. Subsequently, if xs outper-
forms xp, its values (the values of the vector elements) are
saved and the pivot solution is updated), otherwise a half step
in the opposite direction is taken:

xs[i] = xp[i] +
ρ

2
. (6)

Again, xs replaces xp if it outperforms it. If there is no update,
i.e. the exploration was unsuccessful, the radius ρ is halved.
This operation is repeated a limited prefixed amount of times
Iter, thus working as a shallow local search. The current value
of ρ is saved and used as the initial radius for the subsequent
activation of this operator.

The complete pseudo-code of the proposed μDEA algorithm
is shown in Fig. 2.

C. Algorithmic functioning

The DE algorithm is a very versatile and efficient optimizer
for continuous optimization problem. However, the original
scheme has a wide margin of improvement. For this reason,
part of the computer science community put an energetic
effort in order to propose DE variants that can outperform
the original DE scheme over various optimization problems.
Some of these variants turned out to be very successful.

generate randomly Spop individuals of the initial population
and compute their fitness values
while the computational budget is smaller than the prefixed
amount do

for j = 1 : Spop do
select three individuals xr , xs, and xt

compute mutant individual xoff = xt + F (xr − xs)
compute exponential crossover in Fig. 1

end for
for j = 1 : Spop do

compute f (xj)
end for
if rand(0, 1) < η then

extract the pivot individual xp from the micro-
population
xs = xp

for k = 1 : Iter do
for i = 1 : n do

compute xs[i] = xp[i] − ρ
if f (xs) ≤ f (xp) then

xp = xs

else
compute xs[i] = xp[i] + ρ

2
if f (xs) ≤ f (xp) then

xp = xs

end if
end if

end for
end for

end if
end while

Fig. 2. Pseudo code of the μDEA algorithm

For example, the so called jDE [26] proposed a controlled
randomization of the DE parameters. Another popular DE
variant based on controlled randomization of the parameters
has been proposed in [27]. The Self-Adaptive Differential
Evolution (SADE) proposed in [28] employs multiple mutation
strategies and a randomized coordination scheme based on
an initial learning. Another efficient coordination strategy for
a multiple mutation structure has been proposed in [29]. A
modified selection strategy, based on the location within the
population, for the individuals undergoing mutation has been
proposed in [30]. Another example of efficient DE variant has
been proposed in [31] where a novel DE mutation is combined
with a randomized fitness based selection of the individuals
undergoing mutation.

As highlighted in [23] and [32], the reasons behind the
wide margin of improvements for the original DE scheme
are mainly two. The first reason is that DE scheme has
a limited amount of search moves. Thus, DE variants that
include extra moves into the original framework, usually,
lead to improved versions. The extra moves can be explicitly
implemented within the DE framework, see e.g. [33] and
[34], or can be implicitly contained in other perturbation
mechanism. The randomization, as shown in [32] and [35],
plays a very important role as it allows the generation of
candidate solutions that would not be generated by standard
mutation and crossover operations. The second reason is that
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DE can be excessively exploratory. As shown in [36], a
typical challenge in DE functioning is that the solutions in
a population can be diverse and still unable to outperform the
individual with the best performance (i.e. DE can easily suffers
from stagnation). In order to prevent from this condition, the
employment of exploitative component or the implementation
of exploitative actions can be beneficial to DE performance.

The μDE schemes, due to the fact that use a small
population-size, are intrinsically more exploitative than stan-
dard DE schemes and this would, in principle, make them
less prone to stagnation issues. On the other hand, small
populations could potentially lead to an excessively quick
diversity loss and thus to a premature convergence. The
undesired premature convergence effect would actually have
a major impact on the performance on a micro-Evolutionary
Algorithm (μEA), such as a μGA. Unlike μEAs, the DE search
logic does not appear to lead too often to a diversity loss.
In low dimensions and for simple fitness landscapes, a DE
with a small population would obviously lose the diversity
and converge to a solution. On the other hand, in complex
multi-modal and multi-dimensional problems (already in 30
dimensions), even though only a few solutions (e.g. 5) com-
pose the population of a DE scheme, the μDE population
tends to keep the diversity high and its solutions could still be
distant within the decision space D. Since the distance among
solutions in a μDE scheme is correlated to the position of
the potential offspring, after initial improvements, a μDE can
be too exploratory and generate new points far away from
the interesting areas. On the contrary, in order to continue
achieving fitness improvements, the algorithm may require to
enhance the exploitation and focus the search in the areas of
interest.

The proposed μDEA aims at compensating this effect by
including within the search moves an alternative exploration
rule for the neighbourhood of the best solution. The extra
moves along the axes are supposed to offer, in a simplistic
way, a support to the μDE framework. These moves offer an
alternative search logic with respect to the normal DE muta-
tion and crossover and, most importantly, performs thorough
exploration of the most interesting areas so far detected, i.e.
the areas surrounding the solution characterized by the best
performance. As a result, μDEA explicitly incorporates extra
moves within a μDE framework and increases the exploitation
of the original scheme. Finally, the fact that the exploratory
radius of the moves along the axes is not re-initialized (but
used for the subsequent activation) results in a natural increase
in the exploitation action of this operator. In this way, the
moves along the axes explore a progressively narrowing area
around the pivot solution xp.

III. NUMERICAL RESULTS

All the test problems included in the following four test-
beds have been considered in this study.

• The CEC2005 benchmark described in [37] in 30 dimen-
sions (25 test problems)

• The BBOB2010 benchmark described in [38] in 100
dimensions (24 test problems)

• The CEC2008 benchmark described in [39] in 1000
dimensions (7 test problems)

• The CEC2010 benchmark described in [40] in 1000
dimensions (20 test problems)

Thus, 76 test problems have been considered in this study.
For each algorithm in this paper (see following subsections)
100 runs have been performed. Each run has been continued
for 5000×n fitness evaluations, where n is the dimensionality
of the problem. For each test problem and each algorithm, the
average final fitness value ± standard deviation over the 100
available runs has been computed. In order to strengthen the
statistical significance of the results, for each test problem the
Wilcoxon Rank-Sum test [41] has been also applied, with a
confidence level of 0.95.

The proposed μDEA has been run with Spop = 5, F = 0.7,
αe = 0.5, see eq. (2), Iter = 20, η = 0.25, and ρ = 0.4 of
the width of the decision space D.

The following algorithms with respective parameter setting
have been considered for comparison against μDEA.

• A μDE with the same parameter setting of μDEA
• Self-Adaptive Differential Evolution (SADE) proposed in

[28] with population size equal to 50 individuals.
• Adaptive Differential Evolution (JADE) proposed in [27]

with population size equal to 60 individuals, group size
factor p = 0.05 and parameters adaptation rate factor
c = 0.1.

• Modified Differential Evolution with p-Best Crossover
(MDE-pBX) proposed in [31] with population size equal
to 100 individuals and group size q equal to 15% of the
population size.

Tables I, II, III, and IV show the comparison against μDE
for the four benchmarks under consideration. Tables V, VI,
VII, and VIII, show the comparison against SADE, JADE, and
MDE-pBX. The tables in this study display the average final
fitness value over the 100 available runs and the corresponding
standard deviation value. The results of the Wilcoxon test
are also reported in terms of pair-wise comparisons. The
symbols“=” and “+” (“-”) indicate, respectively, a statistically
equivalent performance and a better (worse) performance of
RIS compared with the algorithm in the column label.

The numerical comparison between μDEA and μDE shows
that the extra moves along the axes tend to have a positive
effect on the algorithmic performance in the majority of the
considered cases. This fact confirms the validity of the analysis
reported in [23] about the lack of moves in DE frameworks and
that extra moves appear to be beneficial for DE. In addition, as
shown Tables III and IV, the success of μDEA with respect to
μDE in high dimensions demonstrates that an increase in the
exploitation is beneficial also in DE schemes that employ a
micro-population. In our opinion, this fact can be interpreted
by considering that even in the case micro-populations, DE
solutions tend to be scattered in the decision space, thus using
a large exploration step whilst a neighbourhood search would
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TABLE I
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON

RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST μDE ON
CEC2005[37] IN 30 DIMENSIONS.

μDEA μDE
f1 −4.50e + 02 ± 2.18e − 13 −3.98e + 02± 5.14e + 02 +
f2 −4.50e + 02 ± 2.43e − 12 −4.29e + 02± 1.28e + 02 +
f3 1.83e + 05 ± 1.05e + 05 1.66e + 07± 5.61e + 06 +
f4 6.74e + 04 ± 1.60e + 04 7.59e + 02± 1.22e + 03 -
f5 7.20e + 03 ± 2.22e + 03 9.49e + 03± 2.07e + 03 +
f6 8.52e + 02 ± 1.03e + 03 2.79e + 07± 1.94e + 08 =
f7 −1.80e + 02 ± 1.35e − 02 2.99e + 11± 1.20e + 12 +
f8 −1.20e + 02 ± 4.75e − 03 −1.19e + 02± 5.98e − 02 +
f9 −1.17e + 02 ± 1.16e + 00 −1.16e + 02± 1.78e + 00 =
f10 2.62e + 02 ± 2.05e + 01 2.56e + 02± 1.89e + 01 -
f11 1.18e + 02 ± 3.55e + 00 1.21e + 02± 2.50e + 00 +
f12 1.49e + 03 ± 2.90e + 03 1.55e + 04± 6.55e + 03 +
f13 −1.22e + 02 ± 1.45e + 00 −1.27e + 02± 1.20e + 00 -
f14 −2.86e + 02 ± 2.78e − 01 −2.87e + 02± 2.60e − 01 -
f15 1.45e + 03 ± 2.89e + 00 1.45e + 03± 4.25e + 00 -
f16 1.59e + 03 ± 1.56e + 01 1.58e + 03± 1.20e + 01 =
f17 1.74e + 03 ± 1.81e + 01 1.61e + 03± 1.13e + 01 -
f18 9.10e + 02 ± 5.26e − 12 9.10e + 02± 5.41e − 02 +
f19 9.10e + 02 ± 5.82e − 12 9.10e + 02± 1.64e − 01 +
f20 9.10e + 02 ± 5.61e − 12 9.10e + 02± 4.18e − 01 +
f21 1.72e + 03 ± 1.09e + 01 1.72e + 03± 8.91e + 00 +
f22 2.60e + 03 ± 5.80e + 01 2.54e + 03± 4.93e + 01 -
f23 1.73e + 03 ± 9.39e + 00 1.72e + 03± 8.43e + 00 -
f24 1.71e + 03 ± 1.44e + 01 1.71e + 03± 9.66e + 00 =
f25 1.88e + 03 ± 3.40e + 02 1.91e + 03± 1.37e + 02 =

TABLE II
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON

RANK-SUM TEST (REFERENCE = μDEA) FOR μDEA AGAINST μDE ON
BBOB2010[38] IN 100 DIMENSIONS.

μDEA μDE
f1 7.95e + 01 ± 3.23e − 03 7.95e + 01± 2.08e − 01 +
f2 −1.50e + 02 ± 1.73e + 02 1.67e + 03± 1.13e + 04 +
f3 −2.20e + 02 ± 1.05e + 02 −4.09e + 02± 2.79e + 01 -
f4 −1.16e + 02 ± 1.12e + 02 −3.81e + 02± 3.26e + 01 -
f5 −8.26e + 00 ± 2.06e + 00 −6.49e + 00± 4.89e + 00 +
f6 8.73e + 01 ± 1.34e + 02 4.32e + 02± 1.03e + 02 +
f7 4.42e + 02 ± 1.71e + 02 6.35e + 02± 8.28e + 01 +
f8 2.74e + 02 ± 9.87e + 01 2.99e + 02± 9.18e + 01 +
f9 1.92e + 02 ± 5.80e + 01 2.26e + 02± 2.78e + 01 +
f10 5.65e + 04 ± 9.88e + 04 2.07e + 05± 2.87e + 04 +
f11 8.30e + 02 ± 1.30e + 02 6.43e + 02± 6.68e + 01 -
f12 6.52e + 02 ± 3.39e + 03 7.29e + 04± 3.11e + 05 +
f13 4.02e + 01 ± 1.04e + 01 6.89e + 01± 9.00e + 01 =
f14 −5.23e + 01 ± 1.73e − 02 −5.23e + 01± 2.41e − 01 +
f15 2.36e + 03 ± 3.43e + 02 2.87e + 03± 2.09e + 02 +
f16 9.04e + 01 ± 6.19e + 00 9.80e + 01± 3.31e + 00 +
f17 −7.56e + 00 ± 2.73e + 00 −3.41e + 00± 2.08e + 00 +
f18 1.75e + 01 ± 8.38e + 00 3.62e + 01± 7.70e + 00 +
f19 −9.29e + 01 ± 2.50e + 00 −9.08e + 01± 8.39e − 01 +
f20 −5.45e + 02 ± 2.07e − 01 −5.46e + 02± 6.08e − 02 -
f21 4.98e + 01 ± 6.24e + 00 4.32e + 01± 2.40e + 00 -
f22 −9.87e + 02 ± 9.58e + 00 −9.95e + 02± 6.34e + 00 -
f23 8.60e + 00 ± 8.04e − 01 9.85e + 00± 3.78e − 01 +
f24 1.71e + 03 ± 3.62e + 02 2.10e + 03± 1.88e + 02 +

be more beneficial. The extra moves along the axes, explore
progressively narrowing neighbourhood and support the basic
DE search moves to detect solutions characterized by a high
quality.

Numerical results in 30 dimensions show that the proposed
μDEA is, in general, slightly less promising that some of

TABLE III
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON

RANK-SUM TEST (REFERENCE = μDEA) FOR μDEA AGAINST μDE ON
CEC2008[39] IN 1000 DIMENSIONS.

μDEA μDE
f1 −4.50e + 02 ± 1.42e − 09 5.49e + 02± 2.25e + 03 +
f2 −4.50e + 02 ± 2.53e − 02 −3.59e + 02± 1.33e + 01 +
f3 1.52e + 03 ± 8.92e + 01 2.83e + 08± 1.52e + 09 +
f4 5.77e + 03 ± 4.56e + 02 2.16e + 02± 5.30e + 01 -
f5 −1.80e + 02 ± 1.89e − 03 −1.70e + 02± 2.25e + 01 +
f6 −1.40e + 02 ± 5.01e − 07 −1.37e + 02± 7.81e − 01 +
f7 −1.35e + 04 ± 6.61e + 01 −1.44e + 04± 2.61e + 01 -

TABLE IV
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON

RANK-SUM TEST (REFERENCE = μDEA) FOR μDEA AGAINST μDE ON
CEC2010[40] IN 1000 DIMENSIONS.

μDEA μDE
f1 4.44e − 18 ± 7.20e − 19 4.45e + 07± 1.87e + 08 +
f2 5.71e + 03 ± 3.66e + 02 5.26e + 02± 4.45e + 01 -
f3 2.47e − 02 ± 9.79e − 02 2.88e + 00± 8.15e − 01 +
f4 2.07e + 13 ± 3.99e + 12 3.12e + 13± 7.40e + 12 +
f5 4.49e + 08 ± 1.16e + 08 6.32e + 08± 8.94e + 07 +
f6 1.90e + 07 ± 3.01e + 06 2.04e + 07± 2.15e + 05 +
f7 1.92e + 10 ± 4.99e + 09 1.83e + 10± 3.99e + 09 =
f8 2.36e + 10 ± 1.22e + 10 2.70e + 11± 1.71e + 12 +
f9 1.71e + 08 ± 7.24e + 06 4.55e + 08± 2.53e + 08 +
f10 7.23e + 03 ± 2.88e + 02 6.95e + 03± 2.85e + 02 -
f11 1.48e + 02 ± 4.56e + 01 2.08e + 02± 2.18e + 00 +
f12 8.39e + 04 ± 1.48e + 05 3.79e + 05± 2.10e + 04 +
f13 2.26e + 05 ± 9.13e + 04 9.57e + 07± 4.98e + 08 =
f14 1.33e + 08 ± 2.53e + 08 9.38e + 08± 4.51e + 07 +
f15 7.31e + 03 ± 3.08e + 02 1.37e + 04± 3.75e + 02 +
f16 2.23e + 02 ± 1.08e + 02 4.11e + 02± 2.25e + 00 +
f17 1.14e + 05 ± 2.39e + 05 8.07e + 05± 2.43e + 04 +
f18 3.57e + 04 ± 1.21e + 04 3.71e + 08± 2.08e + 09 +
f19 5.47e + 05 ± 3.43e + 04 2.82e + 05± 2.68e + 04 -
f20 1.49e + 04 ± 1.10e + 03 1.99e + 08± 7.66e + 08 +

 

 

μ
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Fig. 3. Performance trend for f1 of CEC2010 [40] in 1000 dimensions.

the other three modern DE versions but still is capable to
display a respectable performance. More specifically, μDE out
performs each of the other three algorithms in slightly less
than half of the cases. In 100 dimensions, μDE is still slightly
outperformed by SADE and MDE-pBX while is definitely
competitive with JADE. The most interesting results of this
study are reported in the large scale cases. In 1000 dimensions,
μDE displays a surprisingly good performance with respect to
the other modern DE based algorithms considered in this study.
In high dimensions, μDEA displays the best performance
(see Table VIII) by slightly outperforming SADE and clearly
outperforming JADE and MDE-pBX. This result is especially
interesting if we take into account that μDEA is a very simple
and light (in terms of memory requirement and computational
overhead) algorithm. It is important to remark that this study
shows that small DE populations are more adequate than large
ones to tackle large scale problems. Fig 3 shows the average
performance in a case of successful application of the μDEA
scheme.
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TABLE V
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST SADE, JADE AND

MDE-PBX ON CEC2005[37] IN 30 DIMENSIONS.

μDEA MDE-pBX SADE JADE
f1 −4.50e + 02 ± 2.18e − 13 −4.50e + 02± 1.62e − 13 = −4.50e + 02± 2.90e − 14 = −3.51e + 02± 1.99e + 02 +
f2 −4.50e + 02 ± 2.43e − 12 −4.50e + 02± 2.54e − 03 + −4.39e + 02± 2.31e + 01 + 3.08e + 02± 7.32e + 02 +
f3 1.83e + 05 ± 1.05e + 05 2.81e + 05± 1.99e + 05 + 8.97e + 05± 4.27e + 05 + 3.71e + 06± 1.77e + 06 +
f4 6.74e + 04 ± 1.60e + 04 −1.29e + 02± 9.67e + 02 - −8.60e + 01± 5.87e + 02 - 2.27e + 03± 1.68e + 03 -
f5 7.20e + 03 ± 2.22e + 03 2.74e + 03± 6.34e + 02 - 2.86e + 03± 5.36e + 02 - 3.91e + 03± 9.18e + 02 -
f6 8.52e + 02 ± 1.03e + 03 4.33e + 02± 4.81e + 01 - 4.16e + 02± 3.62e + 01 - 5.07e + 06± 1.53e + 07 +
f7 −1.80e + 02 ± 1.35e − 02 2.03e + 06± 1.88e + 07 + 4.39e + 02± 6.16e + 03 + 1.69e + 13± 1.78e + 13 +
f8 −1.20e + 02 ± 4.75e − 03 −1.19e + 02± 4.23e − 01 + −1.19e + 02± 4.24e − 01 + −1.19e + 02± 5.75e − 02 +
f9 −1.17e + 02 ± 1.16e + 00 −1.17e + 02± 1.14e + 00 - −1.17e + 02± 4.60e − 01 - −1.17e + 02± 1.22e + 00 =
f10 2.62e + 02 ± 2.05e + 01 2.23e + 02± 2.44e + 01 - 2.27e + 02± 2.25e + 01 - 2.02e + 02± 2.20e + 01 -
f11 1.18e + 02 ± 3.55e + 00 1.11e + 02± 4.59e + 00 - 1.16e + 02± 3.54e + 00 - 1.16e + 02± 4.48e + 00 -
f12 1.49e + 03 ± 2.90e + 03 3.77e + 03± 3.87e + 03 + 4.90e + 03± 5.23e + 03 + 1.72e + 04± 1.54e + 04 +
f13 −1.22e + 02 ± 1.45e + 00 −1.19e + 02± 2.28e + 00 + −1.24e + 02± 9.45e − 01 - −1.26e + 02± 9.64e − 01 -
f14 −2.86e + 02 ± 2.78e − 01 −2.87e + 02± 4.50e − 01 - −2.87e + 02± 4.22e − 01 - −2.87e + 02± 2.02e − 01 -
f15 1.45e + 03 ± 2.89e + 00 1.46e + 03± 6.43e + 00 + 1.44e + 03± 1.67e + 00 - 1.45e + 03± 3.45e + 00 =
f16 1.59e + 03 ± 1.56e + 01 1.58e + 03± 1.11e + 01 - 1.56e + 03± 8.59e + 00 - 1.56e + 03± 6.50e + 00 -
f17 1.74e + 03 ± 1.81e + 01 1.62e + 03± 9.04e + 00 - 1.62e + 03± 9.84e + 00 - 1.59e + 03± 7.53e + 00 -
f18 9.10e + 02 ± 5.26e − 12 9.10e + 02± 8.31e − 11 + 9.10e + 02± 4.66e − 09 + 9.10e + 02± 2.62e − 01 +
f19 9.10e + 02 ± 5.82e − 12 9.10e + 02± 2.42e − 10 + 9.10e + 02± 5.64e − 09 + 9.10e + 02± 1.31e − 01 +
f20 9.10e + 02 ± 5.61e − 12 9.10e + 02± 3.41e − 11 + 9.10e + 02± 1.36e − 10 + 9.10e + 02± 1.40e − 01 +
f21 1.72e + 03 ± 1.09e + 01 1.70e + 03± 5.51e + 00 - 1.70e + 03± 7.05e + 00 - 1.69e + 03± 4.32e + 00 -
f22 2.60e + 03 ± 5.80e + 01 2.41e + 03± 4.97e + 01 - 2.34e + 03± 3.99e + 01 - 2.29e + 03± 3.44e + 01 -
f23 1.73e + 03 ± 9.39e + 00 1.70e + 03± 5.28e + 00 - 1.71e + 03± 6.04e + 00 - 1.70e + 03± 4.48e + 00 -
f24 1.71e + 03 ± 1.44e + 01 1.67e + 03± 1.55e + 01 - 1.67e + 03± 1.21e + 01 - 1.66e + 03± 1.40e + 01 -
f25 1.88e + 03 ± 3.40e + 02 1.83e + 03± 1.55e + 02 = 1.78e + 03± 2.05e + 02 - 1.86e + 03± 4.65e + 01 =

TABLE VI
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST SADE, JADE AND

MDE-PBX ON BBOB2010[38] IN 100 DIMENSIONS.

μDEA MDE-pBX SADE JADE
f1 7.95e + 01 ± 3.23e − 03 7.95e + 01± 7.60e − 05 = 7.95e + 01± 9.67e − 13 = 8.77e + 01± 7.64e + 00 +
f2 −1.50e + 02 ± 1.73e + 02 −2.10e + 02± 6.06e − 03 - −2.10e + 02± 9.83e − 13 - 5.73e + 04± 8.69e + 04 +
f3 −2.20e + 02 ± 1.05e + 02 3.29e + 01± 7.94e + 01 + −2.94e + 02± 4.40e + 01 - −3.11e + 02± 4.95e + 01 -
f4 −1.16e + 02 ± 1.12e + 02 4.03e + 02± 1.31e + 02 + −1.61e + 02± 1.19e + 02 - −1.43e + 02± 9.83e + 01 -
f5 −8.26e + 00 ± 2.06e + 00 −3.09e − 02± 1.27e + 01 + −9.16e + 00± 4.59e − 01 - 1.24e + 02± 5.08e + 01 +
f6 8.73e + 01 ± 1.34e + 02 8.03e + 01± 3.32e + 01 - 1.11e + 02± 3.87e + 01 + 3.92e + 02± 1.18e + 02 +
f7 4.42e + 02 ± 1.71e + 02 3.70e + 02± 7.43e + 01 - 3.39e + 02± 6.69e + 01 - 3.08e + 02± 6.50e + 01 -
f8 2.74e + 02 ± 9.87e + 01 3.40e + 02± 6.77e + 01 + 2.82e + 02± 6.22e + 01 + 7.24e + 03± 6.15e + 03 +
f9 1.92e + 02 ± 5.80e + 01 2.52e + 02± 3.75e + 01 + 2.28e + 02± 2.45e + 01 + 1.78e + 03± 1.33e + 03 +
f10 5.65e + 04 ± 9.88e + 04 1.64e + 04± 7.99e + 03 - 5.22e + 04± 2.07e + 04 - 1.94e + 05± 8.87e + 04 +
f11 8.30e + 02 ± 1.30e + 02 9.16e + 01± 7.45e + 00 - 1.83e + 02± 2.72e + 01 - 2.11e + 02± 2.76e + 01 -
f12 6.52e + 02 ± 3.39e + 03 −5.99e + 02± 7.07e + 01 - −6.14e + 02± 7.07e + 00 = 2.22e + 07± 2.13e + 07 +
f13 4.02e + 01 ± 1.04e + 01 3.47e + 01± 6.70e + 00 - 3.20e + 01± 2.81e + 00 - 7.69e + 02± 2.46e + 02 +
f14 −5.23e + 01 ± 1.73e − 02 −5.23e + 01± 2.55e − 03 = −5.23e + 01± 1.86e − 03 = −4.65e + 01± 3.89e + 00 +
f15 2.36e + 03 ± 3.43e + 02 1.66e + 03± 1.10e + 02 - 1.35e + 03± 6.05e + 01 - 1.59e + 03± 8.67e + 01 -
f16 9.04e + 01 ± 6.19e + 00 8.85e + 01± 4.46e + 00 = 9.72e + 01± 4.30e + 00 + 1.01e + 02± 3.46e + 00 +
f17 −7.56e + 00 ± 2.73e + 00 −1.35e + 01± 4.83e − 01 - −1.38e + 01± 5.21e − 01 - −1.45e + 01± 5.96e − 01 -
f18 1.75e + 01 ± 8.38e + 00 −4.84e + 00± 1.68e + 00 - −5.07e + 00± 1.98e + 00 - −8.79e + 00± 2.11e + 00 -
f19 −9.29e + 01 ± 2.50e + 00 −1.00e + 02± 7.13e − 01 - −9.98e + 01± 6.72e − 01 - −9.50e + 01± 2.26e − 01 -
f20 −5.45e + 02 ± 2.07e − 01 −5.44e + 02± 1.14e − 01 + −5.45e + 02± 1.61e − 01 + −5.12e + 02± 9.92e + 01 +
f21 4.98e + 01 ± 6.24e + 00 4.49e + 01± 5.88e + 00 - 4.63e + 01± 5.76e + 00 - 4.93e + 01± 6.25e + 00 =
f22 −9.87e + 02 ± 9.58e + 00 −9.92e + 02± 9.11e + 00 - −9.93e + 02± 7.97e + 00 - −9.94e + 02± 6.66e + 00 -
f23 8.60e + 00 ± 8.04e − 01 9.34e + 00± 7.99e − 01 + 9.17e + 00± 6.78e − 01 + 1.07e + 01± 3.78e − 01 +
f24 1.71e + 03 ± 3.62e + 02 4.75e + 02± 4.72e + 01 - 3.73e + 02± 3.17e + 01 - 1.03e + 03± 4.44e + 01 -

In addition to the results presented above, the ranking
among all the algorithms considered in this article has been
performed by means of the Holm-Bonferroni procedure, see
[42] and [43], for the 5 algorithms under study and the 76
problems under consideration. The Holm-Bonferroni proce-
dure consists of the following. Considering the results in
the tables above, the 5 algorithms under analysis have been
ranked on the basis of their average performance calculated
over the 76 test problems. More specifically, a score Ri for
i = 1, . . . , NA (where NA is the number of algorithms under
analysis, NA = 5 in our case) has been assigned. The score
has been assigned in the following way: for each problem,
a score of 5 is assigned to the algorithm displaying the best
performance, 4 is assigned to the second best, 3 to the third and
so on. The algorithm displaying the worst performance scores
1. For each algorithm, the scores obtained on each problem
are summed up averaged over the amount of test problems (76
in our case). On the basis of these scores the algorithms are

sorted (ranked). With the calculated Ri values, RIS has been
taken as a reference algorithm. Indicating with R0 the rank
of RIS, and with Rj for j = 1, . . . , NA − 1 the rank of one
of the remaining eleven algorithms, the values zj have been
calculated as

zj =
Rj −R0√
NA(NA+1)

6NT P

(7)

where NTP is the number of test problems in consideration
(NTP = 76 in our case). By means of the zj values, the
corresponding cumulative normal distribution values pj have
been calculated. These pj values have then been compared
with the corresponding δ/j where δ is the level of confidence,
set to 0.05 in our case. Table IX displays the ranks, zj

values, pj values, and corresponding δ/j obtained in this way.
The rank of μDEA is shown in parenthesis. Moreover, it is
indicated whether the null-hypothesis (that the two algorithms
have indistinguishable performances) is “Rejected”, i.e. μDEA
statistically outperforms the algorithm under consideration, or
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TABLE VII
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST SADE, JADE AND

MDE-PBX ON CEC2008[39] IN 1000 DIMENSIONS.

muDEA MDEpBX SADE JADE
f1 −4.50e + 02 ± 1.42e − 09 1.20e + 05± 4.41e + 04 + 5.06e + 03± 6.00e + 03 + 1.02e + 06± 3.49e + 05 +
f2 −4.50e + 02 ± 2.53e − 02 −3.33e + 02± 4.09e + 00 + −3.19e + 02± 5.11e + 00 + −3.20e + 02± 7.98e + 00 +
f3 1.52e + 03 ± 8.92e + 01 3.13e + 10± 1.65e + 10 + 9.97e + 08± 1.66e + 09 + 4.40e + 11± 2.18e + 11 +
f4 5.77e + 03 ± 4.56e + 02 7.60e + 03± 2.55e + 02 + 5.88e + 03± 3.95e + 02 = 4.43e + 03± 8.64e + 02 -
f5 −1.80e + 02 ± 1.89e − 03 1.08e + 03± 4.60e + 02 + −1.20e + 02± 6.46e + 01 + 8.70e + 03± 2.95e + 03 +
f6 −1.40e + 02 ± 5.01e − 07 −1.21e + 02± 5.10e − 02 + −1.21e + 02± 1.77e − 01 + −1.22e + 02± 5.79e − 01 +
f7 −1.35e + 04 ± 6.61e + 01 −1.11e + 04± 1.63e + 02 + −1.11e + 04± 1.28e + 02 + −1.19e + 04± 4.24e + 02 +

TABLE VIII
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =μDEA) FOR μDEA AGAINST SADE, JADE AND

MDE-PBX ON CEC2010[40] IN 1000 DIMENSIONS.

μDEA MDE-pBX SADE JADE
f1 4.44e − 18 ± 7.20e − 19 1.05e + 09± 6.58e + 08 + 2.89e + 07± 1.02e + 08 + 1.40e + 10± 6.91e + 09 +
f2 5.71e + 03 ± 3.66e + 02 7.02e + 03± 2.38e + 02 + 5.55e + 03± 2.99e + 02 - 4.56e + 03± 1.04e + 03 -
f3 2.47e − 02 ± 9.79e − 02 1.93e + 01± 4.76e − 02 + 1.89e + 01± 2.83e − 01 + 1.76e + 01± 6.75e − 01 +
f4 2.07e + 13 ± 3.99e + 12 3.21e + 12± 9.76e + 11 - 1.95e + 12± 8.82e + 11 - 2.62e + 12± 1.03e + 12 -
f5 4.49e + 08 ± 1.16e + 08 1.54e + 08± 2.77e + 07 - 1.03e + 08± 1.83e + 07 - 8.58e + 07± 1.77e + 07 -
f6 1.90e + 07 ± 3.01e + 06 3.65e + 06± 1.75e + 06 - 9.16e + 05± 1.21e + 06 - 3.48e + 06± 1.40e + 06 -
f7 1.92e + 10 ± 4.99e + 09 6.79e + 06± 1.01e + 07 - 1.01e + 08± 2.36e + 08 - 3.37e + 09± 3.66e + 09 -
f8 2.36e + 10 ± 1.22e + 10 2.03e + 08± 1.63e + 08 - 7.08e + 07± 3.71e + 07 - 6.31e + 13± 1.80e + 14 +
f9 1.71e + 08 ± 7.24e + 06 1.68e + 09± 1.00e + 09 + 2.11e + 08± 2.93e + 08 + 1.67e + 10± 5.87e + 09 +
f10 7.23e + 03 ± 2.88e + 02 7.33e + 03± 2.55e + 02 + 6.22e + 03± 3.15e + 02 - 7.50e + 03± 1.07e + 03 +
f11 1.48e + 02 ± 4.56e + 01 2.06e + 02± 2.40e + 00 + 2.05e + 02± 4.34e + 00 + 1.94e + 02± 7.49e + 00 +
f12 8.39e + 04 ± 1.48e + 05 2.92e + 05± 6.60e + 04 + 3.15e + 05± 1.36e + 05 + 2.32e + 06± 4.55e + 05 +
f13 2.26e + 05 ± 9.13e + 04 2.88e + 09± 3.17e + 09 + 5.67e + 07± 2.48e + 08 = 8.02e + 10± 4.76e + 10 +
f14 1.33e + 08 ± 2.53e + 08 1.04e + 09± 1.97e + 08 + 3.77e + 08± 1.13e + 08 + 1.31e + 10± 4.64e + 09 +
f15 7.31e + 03 ± 3.08e + 02 7.44e + 03± 2.80e + 02 + 6.49e + 03± 2.38e + 02 - 8.51e + 03± 1.03e + 03 +
f16 2.23e + 02 ± 1.08e + 02 3.84e + 02± 1.22e + 00 + 3.82e + 02± 2.00e + 00 + 3.83e + 02± 1.19e + 01 +
f17 1.14e + 05 ± 2.39e + 05 4.35e + 05± 8.33e + 04 + 6.37e + 05± 2.00e + 05 + 2.63e + 06± 7.56e + 05 +
f18 3.57e + 04 ± 1.21e + 04 3.73e + 10± 1.95e + 10 + 7.60e + 08± 1.14e + 09 + 4.42e + 11± 1.91e + 11 +
f19 5.47e + 05 ± 3.43e + 04 9.22e + 05± 1.06e + 05 + 2.11e + 06± 1.61e + 05 + 3.59e + 06± 7.17e + 05 +
f20 1.49e + 04 ± 1.10e + 03 4.18e + 10± 2.02e + 10 + 2.26e + 09± 3.42e + 09 + 5.48e + 11± 2.10e + 11 +

TABLE IX
HOLM TEST ON THE FITNESS, REFERENCE ALGRITHM = μDEA (RANK =

3.24E+00 )

j Optimizer Rank zj pj δ/j Hypothesis
1 SADE 3.68e+00 2.14e+00 9.84e-01 5.00e-02 Accepted
2 MDE-pBX 3.08e+00 -7.54e-01 2.25e-01 2.50e-02 Accepted
3 μDE 2.53e+00 -3.39e+00 3.46e-04 1.67e-02 Rejected
4 JADE 2.46e+00 -3.71e+00 1.05e-04 1.25e-02 Rejected

“Accepted” if the distribution of values can be considered the
same (there is no out-performance).

As shown in Table IX, the proposed μDEA is ranked second
after SADE over all the 76 problems included in this study,
thus confirming that μDEA is a valuable algorithm that makes
use of a micro-population.

IV. CONCLUSION

This paper proposes a micro-Differential Evolution scheme
that includes, in a memetic fashion, a shallow local search that
performs, a limited amount of times exploitation in the direc-
tions of each variable of the candidate solution displaying the
best performance. The extra moves according to the axes com-
plement the search carried out by the DE logic and support the
external workshop to detect solutions with a high performance.
More specifically, DE schemes, even when characterized by
a small population, tend to keep the candidate solutions far
from each other. This may result into an excessive exploration,
especially in high dimensions, thus resulting into an undesired
stagnation condition. The extra moves increase the exploitation
of the algorithm and allow an overall better performance. The

comparison with modern DE based algorithms show that the
proposed algorithm, notwithstanding its simplicity, is nearly as
good as them for low dimensional problem, thus displaying
a respectable performance. The comparison in large scale
domains show that the proposed algorithm outperforms all the
other algorithms contained in this study. From this finding, we
can conclude that small populations in DE schemes can lead
to performance higher than that of DE schemes that use large
populations.

The proposed micro-Differential Evolution implementation
appears a good and robust alternative that can be promisingly
applied in those application characterized by a limted hard-
ware, such as embedded systems, and in those problems that
impose a modest computational overhead, such as real-time
optimization problems. Future work will consider randomized
operators and mechanisms that impose a narrowing of the
search in the late stage of the optimization.
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Abstract—This paper proposes an algorithm to solve the
CEC2013 benchmark. The algorithm, namely Super-fit Multi-
criteria Adaptive Differential Evolution (SMADE), is a Memetic
Computing approach based on the hybridization of two algo-
rithmic schemes according to a super-fit memetic logic. More
specifically, the Covariance Matrix Adaptive Evolution Strategy
(CMAES), run at the beginning of the optimization process, is
used to generate a solution with a high quality. This solution
is then injected into the population of a modified Differential
Evolution, namely Multicriteria Adaptive Differential Evolution
(MADE). The improved solution is super-fit as it supposedly
exhibits a performance a way higher than the other population
individuals. The super-fit individual then leads the search of the
MADE scheme towards the optimum. Unimodal or mildly multi-
modal problems, even when non-separable and ill-conditioned,
tend to be solved during the early stages of the optimization
by the CMAES. Highly multi-modal optimization problems are
efficiently tackled by SMADE since the MADE algorithm (as
well as other Differential Evolution schemes) appears to work
very well when the search is led by a super-fit individual.

I. INTRODUCTION

Differential Evolution (DE) is a simple, efficient, and
versatile algorithm that has been successfully applied to many
problems in engineering and applied sciences, see [1]. For
example, in [2] a DE is applied to a sensor fusion problem.
In [3] and [4] a modified DE is used to address a filter design
in the context of signal processing. In [5] a DE based hybrid
algorithm with compact structure has successfully applied in
the field of industrial robotics. Other applications, in mobile
and space robotics, of DE schemes with compact structures
are reported in [6] and [7].

As reported in [8], although DE is a very good algo-
rithmic framework, it is characterised by a wide margin of

improvement. During the latest years, computer scientists have
proposed many enhanced versions of the original DE schemes.
Paper [8] highlights that DE schemes suffer from a limited
amount of search moves and an excessive determinism in the
search logic. These facts can lead to a stagnation condition.
On the other hand, DE schemes can be be easily improved
by integrating new search moves in the offspring generations.
The pool of search moves can be easily broaden by including
a certain degree of randomization in the generation of new
solutions, see [9] and [10]. The amount of search moves
in DE schemes has been also increased by explicitly using
multiple search logics. For example, in [11] the use of multiple
mutation strategies is proposed. In [12] and [13] a local search
is integrated within the DE framework to support the offspring
generation. In [4] multiple local search assist the offspring
generation of DE.

A special way to perform the hybridisation between a DE
framework and an explicit extra search logic, is by means of
the super-fit memetic logic, see [14]. It has been observed that
DE, unlike Evolutionary Algorithms EAs, performs well when
one individual is characterised by a higher fitness with respect
to the other population individuals. This effect is due to the fact
that, in DE frameworks, the relationship between diversity and
algorithmic performance is different with respect to other EAs,
see [15], [16], [17], [18], and [18]. If we consider for example
the Evolution Strategies (ES), a proper algorithmic functioning
occurs when to the exploration necessity corresponds a high di-
versity condition and to the exploitation necessity corresponds
a low diversity condition. In high diversity conditions, the
algorithm is capable of exploring the entire decision space
while in low diversity conditions the algorithm finalizes the
search. DE schemes, unlike an ES, tend not to lose the diversity
even when the algorithm is no longer producing enhancements.
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When one individual has a much better performance than the
others, the pivot individual (or super-fit individual) guides the
search and is then outperformed by the other individuals of the
population. Thus, in super-fit schemes an exploitative search is
applied to a solution that is then inserted into a DE population.
In order to generate this desirable condition, specifically in
[14] an exploitative search at the beginning of the DE search
is performed by applying the Particle Swarm Optimization
to one individual of the population that is then injected in
the DE population. The success of the super-fit logic within
DE schemes has been confirmed in [19], where a super-fit
individual generated by means of the Rosenbrock Algorithm
[20] is applied to a DE having compact structure.

The present paper, in order to obtain a competitive al-
gorithm for solving the testbed introduced in [21], proposes
a super-fit hybridization of a DE algorithm. The initial im-
provement is achieved by means of the Covariance Matrix
Adaptation Evolution Strategy (CMAES), see [22] and [23].
The DE scheme employed in this case is the recently developed
Multicriteria Adaptive Differential Evolution (MADE), [24].
The resulting algorithm is here termed Super-fit Multicriteria
Adaptive Differential Evolution (SMADE).

The remainder of this paper is organized in the following
way. Section II describes the operators composing the proposed
algorithm and their combination in a memetic fashion. Section
III displays the numerical results obtained in this study on the
testbed defined in [21] and, finally, Section IV presents the
conclusion of this work.

II. SUPER-FIT MULTICRITERIA ADAPTIVE DIFFERENTIAL
EVOLUTION

Without a loss of generality, in order to clarify the notation
in this paper, we refer to the minimization problem of an
objective function f(x), where the candidate solution x is a
vector of n design variables (or genes) in a decision space D.

A. Covariance Matrix Adaptation Evolution Strategy

The CMAES algorithm is a popular and efficient optimizer
for continuous optimization problems. The main powerful
advantage of CMAES is that it adapts the search by sampling
solutions in a region of the decision space that takes the
shape of the basin of attraction. This feature makes CMAES
very efficient for non-separable and ill-conditioned problems,
especially when the fitness landscape is not highly multi-
modal. More specifically, CMAES samples a set of candi-
date solutions from a multi-variate normal distribution. The
equivalent of the variance in a multi-variate distribution is the
covariance matrix whose dimensions are n× n and that gives
the name to this algorithm. The fitness values of the sampled
candidate solutions are calculated and the solution are then
sorted. The performance of the sampled solutions are then used
to update the state variables including the covariance matrix,
i.e. modifying the shape of the multi-variate distribution for
the new set of samples. Implementations details of CMAES
are in [23] and [25]. It is worthwhile mentioning that several
CMAES variants have been proposed in the literature, see e.g.
[26], [27].

In the CMAES framework, at each step, λ new solutions
are sampled from a multivariate normal distribution whose

mean and covariance matrix are adaptively updated from a
weighted sum of the best µ solutions in the population. The
loop goes on until a stop condition is met. It is interesting to
note that, compared to classic evolution strategies employing
the (µ, λ) or (µ + λ) survivor selection schemes, CMAES is
said to employ a (µ/µw, λ) strategy, where µw represent the
weights on the best µ individuals used to update the distribu-
tion model. For the sake of completeness, a simplified pseudo-
code illustrating the main steps of CMAES, see Algorithm 1.

Algorithm 1 Pseudo-code of CMAES
initialize covariance matrix C = I, and step-size σ
initialize the mean vector m with a random sample in D
while CMAES stop criterion is not met do

(activate Covariance Matrix Repairing method, if needed)
sample λ new individuals from distribution N (m, σ2C)
evaluate individuals and sort them based on their fitness
update m based on a weighted sum of the best µ
individuals
update covariance matrix C and step-size σ

end while
return best individual xe

B. Multicriteria Adaptive Differential Evolution

A population of NP individuals is sampled within the
decision space D. As in DE schemes, each element is taken
into consideration. Similar to several successful DE versions
proposed in the literature, such as [11], [28], and [29], MADE
makes use of multiple mutation/crossover strategies. More
specifically, for each individual of the population, in order to
generate the offspring, the four mutation/crossover strategies
in Fig. 1 are considered. In accordance with the analysis
reported in [8], the employment of multiple search strategies
is here proposed to increase the pool of search moves and thus
enhance the DE performance.

Each strategy is associated to a probability pk for k =
{1, 2, 3, 4}. These probability values dynamically vary during
the evolution. At the beginning of the optimization process,
the probability values are set to be the same, i.e. pk = 0.25,
∀k. The probability values are then updated on the basis of a
feedback on the evolution. More specifically, at the generation
g the Normalized Relative Fitness Improvement (NRFI) and
Normalized Distance to the Best Individual (NDBI), measuring
respectively the fitness impact (ηgi ) and the diversity impact
(τgi ) related to the individual i at the generation g, are
calculated. These two metrics are formulated as follows:

1) Normalized relative fitness improvement (NRFI):

ηgi =
η̃gi

max{η̃gi |i = 1, 2, . . . , NP} (1)

where

η̃gi =
f(xgi )− f(xg+1

i )

f(xgi )− f(xgbest)
(2)

2) Normalized distance to the best individual (NDBI):

τgi =
τ̃gi

max{τ̃gi |i = 1, 2, . . . , NP} (3)
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1) rand/1/bin:

ugi,j =
{

xgr1,j + F (i) · (xgr2,j − xgr3,j) if randj(0, 1) ≤ Cr(i) or j = jr
xgi,j otherwise

2) rand/2/bin:

ugi,j =
{

xgr1,j + F (i) · (xgr2,j − xgr3,j) + F (i) · (xgr4,j − xgr5,j) if randj(0, 1) ≤ Cr(i) or j = jr
xgi,j otherwise

3) rand-to-best/2/bin:

ugi,j =
{

xgr1,j + F (i) · (xgbest,j − xgi,j) + F (i) · (xgr1,j − xgr2,j) + F (i) · (xgr3,j − xgr4,j) if randj(0, 1) ≤ Cr(i) or j = jr
xgi,j otherwise

4) current-to-rand/1:
ugi = xgi + rand(0, 1) · (xgr1 − xgi ) + F (i) · (xgr2 − xgr3)

Fig. 1. Recombination strategies used by MADE

where

τ̃gi =

√∑D

j=1
(xgi,j − xgbest,j)

2 (4)

Here, NRFI measures the degree of fitness improvement
and NDBI weights the potential of escaping from a local
optimum. The two indexes are then combined to generate the
impact γgi related to each individual i at the generation g by
means of the so called number-of-dominating-impacts method,
consisting of the following:

γgi = |{(ηgj , τgj )|(ηgi , τgi ) � (ηgj , τ
g
j ), j ∈ hgi }| (5)

where | · | denotes the cardinality of a set; a � b means that
vector a = (a1, . . . , ak) dominates vector b = (b1, . . . , bk),
i.e., ∀i ∈ {1, . . . , k}, ai ≥ bi ∧ ∃i ∈ {1, . . . , k}, ai > bi;
hgi = {⋃Kk=1 s

g
k}\sgni

denotes the set of indexes of the target
vectors which use the operator differing from the operator ni
used by xgi .

On the basis of the calculated impact of the operator, the
credit of each operator in the current generation is calculated
by

rgk =

∑
ni∈sgk γ

g
i

|sgk|
(6)

where k = 1, . . . ,K (in our case K = 4 as we have four
recombination strategies). Then the operator quality is updated
by an additive relaxation mechanism, i.e.,

qgk = (1− β) · qgk + β · rgk (7)

where β (β ∈ [0, 1]) is the adaptation rate; q0k is initialized
with 1. Finally, the probability of each operator to be selected
at the next generation is updated by

pg+1
k = pmin + (1−K · pmin)

qgk∑K
k=1 q

g
k

. (8)

Apart from the trial vector generation strategy, the control
parameters F and Cr are also adaptively adjusted by introduc-
ing a degree of randomization and rewarding the successful
strategies. Let sFk and sCrk denote the sets containing the
LP (stands for Learning Period) most recent values of F

and Cr associated with the kth strategy which generates trial
vectors entering the next generation. At each generation g, for
each target vector xgi that selects the kth trial vector generation
strategy, the scale factor F (i) is sampled according to a Cauchy
distribution with a local parameter µFk and a scale parameter
0.1 by:

F (i) = randc(µFk, 0.1) (9)

and re-sampled if F (i) > 1 or F (i) ≤ 0; the crossover rate
Cr(i) is generated following a normal distribution with mean
µCrk and standard deviation 0.1 by

Cr(i) = randn(µCrk, 0.1). (10)

and regenerated if Cr(i) > 1 or Cr(i) < 0.

In (9) and (10), the local parameter µFk and the mean
µCrk are initialized as 0.5. At the end of each generation,for
LP generations if |sFk| < LP , the values of µFk and µCrk
remain unchanged, otherwise old values of sFk and sCrk are
first removed to guarantee |sFk| = |sCrk| = LP . Then they
are updated by

µFk =

∑
F∈sFk

F 2

∑
F∈sFk

F
(11)

and

µCrk =

∑
Cr∈sCrk Cr

LP
. (12)

By means of these procedure an offspring individual is
eventually generated. As for all the DE based algorithms, if
the offspring solution outperforms the parent that generated it,
then the parent solution is replaced by its offspring otherwise
no replacement occurs. For the sake of clarity, the pseudo-
code describing the working principles of MADE is reported
in Algorithm 2.

C. Super-fit Memetic Hybridization and parameter setting

A the beginning of the optimization process, a population
of NP individuals is sampled within the decision space D.
By following the principles explained in [14] and [19], in
the proposed SMADE, CMAES is run for 30% of the total
budget. At the end of this procedure, the best solution detected
by CMAES is injected into the MADE initial population and
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Algorithm 2 Pseudo-code of MADE algorithm
Require: NP , LP , β, pmin

1: g = 0, K = 4
2: Generate initial population P 0 = {x01, x02, . . . , x0

NP } and
evaluate P 0

3: Set q0k = 1, p0k = 0.25, µFk = µCrk = 0.5, sFk =
sCrk = ∅, k = 1, . . . ,K

4: while termination criterion is not satisfied do
5: for i = 1 to NP do
6: Select a strategy k via a roulette-wheel selection

scheme for xgi
7: Generate F (i) by (9) and regenerate it if F (i) > 1

or F (i) ≤ 0
8: Generate Cr(i) by (10) and regenerate it if Cr(i) > 1

or Cr(i) < 0
9: Generate ugi using kth strategy and parameter values

F (i) and Cr(i)
10: Evaluate ugi as f(ugi )
11: if f(ugi ) ≤ f(xgi ) then
12: xg+1

i = ugi ; sFk = sFk ∪ {F (i)}; sCrk = sCrk ∪
{Cr(i)}

13: else
14: xg+1

i = xgi
15: end if
16: end for
17: for k = 1 to NP do
18: Calculate fitness impact ηgi by (1)
19: Calculate diversity impact τgi by (3)
20: Calculate aggregated impact γgi by (5)
21: end for
22: for k = 1 to K do
23: Calculate reward rgk by (6)
24: Update quality qgk by (7)
25: Update probability pgk by (8)
26: if |sFk| ≥ LP then
27: Remove old values from sFk and sCrk so that

|sFk| = |sCrk| = LP
28: Update µFk and µCrk by (11) and (12)
29: end if
30: end for
31: g = g + 1
32: end while
Ensure: the best solution

replaces the worst solution of the population. The MADE
algorithm continues the optimization until the budget reaches
its limit. As for the CMAES part of the algorithm, we used the
default parameter setting of the original Java implementation
[25]. In particular, the evolution strategy was configured with
the standard values λ = b4 + 3 ln(D)c, µ = bλ/2c, and
initial step-size σ = 0.2, which are broadly accepted in the
literature. The parameters of MADE, with reference to Fig.
2, are chosen in the following way: NP = 50, β = 0.7,
pmin = 0.02. As mentioned in the algorithmic description, we
set as initial values µFk = µCrk = 0.5 and qk = 1. While the
setting pmin = 0.02 appears to be good for all the problems,
we suggest that NP and β are selected from the intervals
[20, 60] and [0.4, 0.8]. The initial values of µFk and µCrk are
selected at the centre of their interval and let evolve according
to formulas (11) and (12). Thus the parameters to be selected

are essentially β and NP .

By means of this hybridization, we expect that uni-modal
or mildly multi-modal problems are solved (or nearly solved)
during the first 30% of the budget. Due to the CMAES features,
non-separable and ill-conditioned problems, stated that they
are not highly multi-modal, should quickly be solved. For
highly multi-modal landscapes, although CMAES is not likely
to detect solutions with an extraordinary high performance, its
application can be beneficial to achieve some improvements.
The improved solution will then act as a super-fit individual to
guide the search of MADE towards the optimum. The choice of
30% has been carried out on the basis of a tuning and general
considerations. Given the total budget for this competition,
we observed that 1500 × n fitness evaluations are enough,
for CMAES, to achieve a reasonably good result and stop
improving upon the solution. It has been observed that a shorter
budget can be not enough to reach high quality solutions and
a too long budget would not lead to any further improvement.
Usually, uni-modal problems are very easily/quickly solved
by CMAES while highly multi-modal problems are likely to
never been solved by it. We noticed that if CMAES has not
solved yet the problem within 1500×n fitness evaluation, the
problem will unlikely be solved within a longer budget. On the
other hand, MADE appears to efficiently explore the decision
space and make use of the super-fit individual. Although
sometimes MADE improvements can be slow, the action of
this algorithmic component appears to be efficient when a
long budget is assigned. On the basis of these consideration,
we recommend that most of the budget is assigned to MADE
and only a moderate portion of the budget is initially given to
CMAES.

III. NUMERICAL RESULTS

The proposed SMADE has been run over the 28 test
problems contained in the testbed CEC2013 described in [21].
The problems of the testbed have been considered in 10, 30,
and 50 dimensions. The SMADE algorithm, for each test
problem and dimensionality value, has been run 51 times. Each
run has been continued for 10000×n fitness evaluations. Tables
I, II, and III report best, worst, median, and mean fitness values
(in terms of fitness error at the end of the budget) as well the
corresponding standard deviation in 10, 30, and 50 dimensions.

The proposed SMADE succeeded at solving, at least once,
eight problems in 10D, seven problems in 30D, and five
problems in 50D.

Fig.s 2, 3, and 4 show the average performance trends
for some of the test problems listed in Tables I, II, and III.
More specifically, in each figure, one example where CMAES
solve the problems in the early stages of the optimization is
depicted. This is the case of unimodal and moderately multi-
modal optimization problems with or without ill-conditioning,
such as f1, f2, f3, and f4. In addition, in each figure, the
average trends of some cases where the initial improvement
and thus the super-fit individual assists the DE based evolution
is also shown. This would be the case of highly multi-modal
and complex problems, such as f17, f20, and f25.
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TABLE I. RESULTS OF SMADE IN 10D.

Func. Best Worst Median Mean Std

1 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

2 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

3 0.00e + 00 6.32e + 00 0.00e + 00 2.48e − 01 1.23e + 00

4 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

5 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

6 0.00e + 00 9.81e + 00 9.81e + 00 5.41e + 00 4.76e + 00

7 7.03e − 03 2.32e + 01 3.05e − 01 2.27e + 00 4.45e + 00

8 2.00e + 01 2.05e + 01 2.04e + 01 2.03e + 01 1.03e − 01

9 8.33e − 01 3.84e + 00 2.36e + 00 2.29e + 00 7.19e − 01

10 0.00e + 00 3.95e − 02 1.23e − 02 1.42e − 02 9.58e − 03

11 0.00e + 00 9.95e − 01 0.00e + 00 9.75e − 02 2.96e − 01

12 1.99e + 00 1.79e + 01 6.96e + 00 7.80e + 00 4.10e + 00

13 1.99e + 00 2.73e + 01 1.18e + 01 1.21e + 01 6.40e + 00

14 1.87e − 01 1.87e + 01 3.48e + 00 3.64e + 00 4.39e + 00

15 1.60e + 02 1.14e + 03 7.93e + 02 7.36e + 02 2.60e + 02

16 3.00e − 02 1.45e + 00 2.90e − 01 4.04e − 01 3.14e − 01

17 1.01e + 01 1.08e + 01 1.02e + 01 1.03e + 01 1.55e − 01

18 1.42e + 01 3.57e + 01 2.50e + 01 2.46e + 01 4.68e + 00

19 1.64e − 01 6.79e − 01 3.84e − 01 3.95e − 01 1.25e − 01

20 1.60e + 00 3.48e + 00 2.67e + 00 2.65e + 00 4.48e − 01

21 2.00e + 02 4.00e + 02 4.00e + 02 3.83e + 02 5.50e + 01

22 8.29e + 00 2.12e + 02 2.60e + 01 4.93e + 01 5.33e + 01

23 1.07e + 01 1.38e + 03 5.17e + 02 5.78e + 02 3.16e + 02

24 1.17e + 02 2.18e + 02 2.05e + 02 2.02e + 02 1.76e + 01

25 2.00e + 02 2.08e + 02 2.01e + 02 2.02e + 02 1.91e + 00

26 1.02e + 02 2.00e + 02 1.08e + 02 1.26e + 02 3.69e + 01

27 1.80e + 02 4.00e + 02 3.03e + 02 3.37e + 02 5.23e + 01

28 3.00e + 02 6.00e + 02 3.00e + 02 3.17e + 02 6.87e + 01

TABLE II. RESULTS OF SMADE IN 30D.

Func. Best Worst Median Mean Std

1 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

2 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

3 0.00e + 00 3.52e + 05 2.25e + 00 9.82e + 03 4.94e + 04

4 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

5 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

6 0.00e + 00 2.64e + 01 0.00e + 00 2.67e + 00 7.85e + 00

7 3.66e + 00 6.53e + 01 3.38e + 01 3.25e + 01 1.61e + 01

8 2.08e + 01 2.10e + 01 2.10e + 01 2.10e + 01 4.80e − 02

9 1.24e + 01 3.15e + 01 2.21e + 01 2.23e + 01 3.57e + 00

10 0.00e + 00 5.42e − 02 1.23e − 02 1.84e − 02 1.34e − 02

11 3.98e + 00 1.99e + 01 1.09e + 01 1.09e + 01 4.18e + 00

12 2.89e + 01 1.10e + 02 5.47e + 01 5.72e + 01 1.70e + 01

13 4.95e + 01 2.24e + 02 1.31e + 02 1.28e + 02 3.50e + 01

14 1.31e + 01 5.47e + 02 7.29e + 01 1.33e + 02 1.27e + 02

15 2.10e + 03 6.12e + 03 4.07e + 03 4.10e + 03 8.47e + 02

16 3.46e − 02 3.72e − 01 1.06e − 01 1.31e − 01 7.57e − 02

17 3.14e + 01 4.08e + 01 3.47e + 01 3.48e + 01 1.52e + 00

18 5.28e + 01 1.89e + 02 8.12e + 01 8.33e + 01 2.06e + 01

19 1.24e + 00 3.90e + 00 2.52e + 00 2.55e + 00 5.18e − 01

20 8.54e + 00 1.23e + 01 1.05e + 01 1.05e + 01 8.07e − 01

21 2.00e + 02 4.44e + 02 3.00e + 02 3.27e + 02 8.65e + 01

22 1.27e + 02 2.95e + 02 1.66e + 02 1.79e + 02 4.50e + 01

23 2.72e + 03 6.41e + 03 4.18e + 03 4.22e + 03 8.74e + 02

24 1.40e + 02 2.60e + 02 2.40e + 02 2.32e + 02 2.57e + 01

25 2.43e + 02 2.94e + 02 2.79e + 02 2.78e + 02 9.90e + 00

26 1.37e + 02 3.48e + 02 2.00e + 02 2.15e + 02 5.25e + 01

27 4.00e + 02 8.56e + 02 6.73e + 02 6.47e + 02 1.37e + 02

28 1.00e + 02 1.38e + 03 3.00e + 02 3.88e + 02 3.23e + 02

TABLE III. RESULTS OF SMADE IN 50D.

Func. Best Worst Median Mean Std

1 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

2 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

3 5.52e − 06 9.30e + 06 1.38e + 04 3.81e + 05 1.35e + 06

4 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

5 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

6 0.00e + 00 4.91e + 01 4.34e + 01 4.30e + 01 6.28e + 00

7 1.89e + 01 1.02e + 02 4.22e + 01 4.32e + 01 1.66e + 01

8 2.10e + 01 2.12e + 01 2.11e + 01 2.11e + 01 3.85e − 02

9 3.64e + 01 5.25e + 01 4.26e + 01 4.36e + 01 4.06e + 00

10 0.00e + 00 7.14e − 02 2.46e − 02 2.47e − 02 1.48e − 02

11 2.39e + 01 8.76e + 01 4.68e + 01 4.81e + 01 1.49e + 01

12 7.06e + 01 2.77e + 02 1.55e + 02 1.57e + 02 4.52e + 01

13 2.07e + 02 4.57e + 02 3.40e + 02 3.35e + 02 5.63e + 01

14 5.41e + 01 7.90e + 02 3.14e + 02 3.41e + 02 2.05e + 02

15 6.27e + 03 1.05e + 04 8.74e + 03 8.54e + 03 9.77e + 02

16 1.95e − 02 2.38e − 01 7.91e − 02 8.96e − 02 4.24e − 02

17 5.46e + 01 8.45e + 01 6.46e + 01 6.57e + 01 5.27e + 00

18 1.19e + 02 2.67e + 02 1.91e + 02 1.93e + 02 3.46e + 01

19 3.11e + 00 7.63e + 00 5.57e + 00 5.43e + 00 1.07e + 00

20 1.72e + 01 2.12e + 01 1.92e + 01 1.92e + 01 8.86e − 01

21 2.00e + 02 1.12e + 03 8.36e + 02 8.46e + 02 3.43e + 02

22 8.69e + 01 1.18e + 03 2.64e + 02 3.39e + 02 2.24e + 02

23 6.34e + 03 1.30e + 04 1.06e + 04 9.89e + 03 1.90e + 03

24 2.72e + 02 3.26e + 02 3.02e + 02 3.00e + 02 1.20e + 01

25 3.29e + 02 3.92e + 02 3.69e + 02 3.68e + 02 1.36e + 01

26 1.82e + 02 4.15e + 02 2.01e + 02 2.91e + 02 9.70e + 01

27 8.10e + 02 1.57e + 03 1.17e + 03 1.18e + 03 1.67e + 02

28 4.00e + 02 4.26e + 03 4.00e + 02 1.07e + 03 1.27e + 03
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Fig. 2. Average fitness (error) trend of SMADE for f2 and f20 in 10D
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Fig. 3. Average fitness (error) trend of SMADE for f4 and f17 in 30D
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Fig. 4. Average fitness (error) trend of SMADE for f5 and f25 in 50D
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TABLE IV. COMPUTATIONAL COMPLEXITY.

T0 T1 T̂2 (T̂2−T1)/T0
D = 10 824.0 1847.0 48.7
D = 30 21.0 2005.0 5764.2 179
D = 50 3417.0 13280.8 469.7

A. Computational Complexity

Table IV reports four measures of the computational
complexity of SMADE by following the procedure reported
in [21]. More specifically, T0 is the execution time of a
benchmark program performing some simple mathematical
operations in double precision, T1 is the time needed to
compute 200000 evaluations of the benchmark function f14,
and T̂2 it the average execution time (over 5 repetitions) of
a run of SMADE while performing 200000 evaluations on
the benchmark function f3. Parameters T1, T1 and T̂2 are
here expressed in ms. A fourth, adimensional metric, is also
defined as (T̂2−T1)/T0. In order to show how the algo-
rithmic complexity varies with the problem dimension, T1,
T̂2, (T̂2−T1)/T0 are reported for the three dimensionality
values considered in this study (10, 30 and 50).

As in our previous experiments, the algorithm, as well
as the program to compute its complexity, was coded in
Java, wrapping the C/C++ implementation of the benchmark
functions through JNI. The program was executed, in single
thread, on a Linux Ubuntu system, version 12.04.2, with
2.66 GHz Intel Core 2 Quad processor, and 4 GB RAM.
The timestamps were measured through the Java system call
System.currentTimeMillis().

The proposed SMADE contains two fairly complex com-
ponents. The use of a covariance matrix has an important
impact on the computational times as it introduces a quadratic
complexity in the early stages of the optimization. On the
other hand, the presence of CMAES at the beginning of the
optimization is of great help to solve some problems in the
benchmark and assists the DE framework to achieve solutions
with a high quality. Although the MADE framework requires
some non-trivial calculations to select the mutation strategy, its
complexity is much lower than that of CMAES. In other words,
the impact of MADE on complexity after the first 30% of the
budget partially mitigates that of CMAES usage to generate
the super-fit individuals. The computational complexity of the
entire SMADE is thus super-linear but still sub-quadratic.
This property makes the SMADE algorithm as an attractive
option for optimization problem with a medium-relatively high
number of dimensions.

B. Comparison against state-of-the-art algorithms

In order to provide a clear understanding of the SMADE
performance, we compared the results shown in the previous
section - on the same CEC 2013 benchmark and under
the same conditions of budget and repetitions - with three
different state-of-the-art optimization algorithms, namely the
original CMAES [23], the Self-Adaptive Differential Evolution
with pBX crossover (MDE-pBX) [29], and the Cooperatively
Coevolving Particle Swarms Optimizer (CCPSO2) [30]. As
suggested in their original papers, MDE-pBX was run with
population size equal to 100 individuals and group size q equal

TABLE V. HOLM TEST ON THE FITNESS, REFERENCE ALGORITHM =
SMADE (RANK = 3.18E+00 )

j Optimizer Rank zj pj δ/j Hypothesis
1 MDE-pBX 2.49e+00 -4.47e+00 3.82e-06 5.00e-02 Rejected
2 CCPSO2 2.23e+00 -6.17e+00 3.37e-10 2.50e-02 Rejected
3 CMAES 1.87e+00 -8.49e+00 1.06e-17 1.67e-02 Rejected

to 15% of the population size, while CCPSO2 was executed
with population size equal to 30 individuals, Cauchy/Gaussian
sampling selection probability p = 0.5 and set of potential
group sizes S = {2, 5}, S = {2, 5, 10}, S = {2, 5, 10, 25},
for experiments in 10, 30 and 50 dimensions, respectively.
To provide a fair comparison, CMAES and SMADE were
configured with the same values of λ, µ, σ.

Tables VI, VII and VIII, show the average fitness error
(with respect to the target fitness) and its standard deviation,
over 51 repetitions, obtained by the four algorithms under
comparison after T = 10000 × D fitness evaluations. We
report also the result of the Wilcoxon test [31] applied, with
confidence level 0.95, to each pair-wise comparison on the
final values obtained by SMADE against CMAES, MDE-
pBX and CCPSO2 (“+”, “-” and “=” indicate, respectively, a
better, worse or equivalent performance of SMADE against the
other algorithms). It can been seen that SMADE is extremely
competitive: indeed, it outperforms MDE-pBX in 12 cases in
10D, 16 cases in 30D, and 18 cases in 50D, thus showing
an excellent scalability. Most impressively, SMADE system-
atically outperforms (with few exceptions) both CMAES and
CCPSO2 in all the three dimensionality values. This result is
confirmed by the Holm-Bonferroni prodedure [32], which we
performed as described in [33], with confidence level 0.05.
As shown in Table V, SMADE is ranked first among the four
algorithms, with the null-hypothesis (that SMADE and one
of the other algorithms have indistinguishable performances)
rejected in all the pair-wise comparisons.

IV. CONCLUSION

This paper proposes a novel algorithm for tackling the
twenty-eight optimization problems listed in the CEC2013
benchmark in 10D, 30D, and 50D. The proposed algorithm
applies the super-fit memetic logic to enhance upon a modified
DE scheme. The super-fit logic consists of enhancing upon the
initial performance of one solution by means of an exploitative
component and injecting the improved solution into a starting
population of DE. The solution has been here improved by
means of the popular CMAES, thus allowing that unimodal and
mildly multi-modal fitness landscapes are nearly solved in the
initial stages of the optimization. The DE scheme here used is
modified by the presence of multiple mutation strategies and an
adaptive mechanism that tends to reward the most successful
ones. This structure should then be able to handle high multi-
modalities and thus continue the search performed by CMAES
towards the optimum.

Numerical results show that the proposed SMADE is
capable to solve several problems in the benchmark and can
consistently achieve good results.
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TABLE VI. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =SMADE) FOR SMADE AGAINST
MDE-PBX, CMAES, AND CCPSO2, ON CEC2013[21] IN 10 DIMENSIONS.

SMADE MDE-pBX CMAES CCPSO2
f1 0.00e + 00 ± 0.00e + 00 0.00e + 00± 0.00e + 00 boh 0.00e + 00± 0.00e + 00 = 1.92e − 04± 1.16e − 03 +
f2 0.00e + 00 ± 0.00e + 00 4.15e + 02± 9.60e + 02 + 0.00e + 00± 0.00e + 00 = 9.93e + 05± 7.58e + 05 +
f3 2.48e − 01 ± 1.23e + 00 4.96e + 03± 4.66e + 04 + 5.69e − 01± 1.81e + 00 = 2.13e + 07± 3.13e + 07 +
f4 0.00e + 00 ± 0.00e + 00 6.50e − 02± 6.38e − 01 + 0.00e + 00± 0.00e + 00 = 8.80e + 03± 2.50e + 03 +
f5 0.00e + 00 ± 0.00e + 00 0.00e + 00± 7.54e − 14 = 0.00e + 00± 0.00e + 00 = 2.94e − 03± 8.06e − 03 +
f6 5.41e + 00 ± 4.76e + 00 6.18e + 00± 4.73e + 00 + 6.74e + 00± 6.74e + 00 = 1.52e + 00± 2.91e + 00 =
f7 2.27e + 00 ± 4.45e + 00 5.63e + 00± 7.94e + 00 + 5.45e + 08± 5.38e + 09 + 3.27e + 01± 8.31e + 00 +
f8 2.03e + 01 ± 1.03e − 01 2.05e + 01± 1.06e − 01 + 2.03e + 01± 1.32e − 01 = 2.04e + 01± 7.66e − 02 =
f9 2.29e + 00 ± 7.19e − 01 2.37e + 00± 1.41e + 00 = 1.50e + 01± 3.65e + 00 + 4.98e + 00± 9.13e − 01 +
f10 1.42e − 02 ± 9.58e − 03 1.25e − 01± 9.20e − 02 + 1.33e − 02± 1.39e − 02 = 1.47e + 00± 6.44e − 01 +
f11 9.75e − 02 ± 2.96e − 01 2.48e + 00± 1.61e + 00 + 2.31e + 02± 2.67e + 02 + 1.97e + 00± 1.18e + 00 +
f12 7.80e + 00 ± 4.10e + 00 1.06e + 01± 4.76e + 00 + 3.49e + 02± 3.81e + 02 + 2.64e + 01± 7.93e + 00 +
f13 1.21e + 01 ± 6.40e + 00 2.01e + 01± 7.94e + 00 + 2.94e + 02± 3.99e + 02 + 3.56e + 01± 8.30e + 00 +
f14 3.64e + 00 ± 4.39e + 00 1.25e + 02± 1.12e + 02 + 1.88e + 03± 4.25e + 02 + 5.27e + 01± 3.86e + 01 +
f15 7.36e + 02 ± 2.60e + 02 7.26e + 02± 2.61e + 02 = 1.80e + 03± 3.92e + 02 + 8.92e + 02± 2.18e + 02 +
f16 4.04e − 01 ± 3.14e − 01 5.43e − 01± 4.49e − 01 = 4.51e − 01± 5.06e − 01 = 1.18e + 00± 2.19e − 01 +
f17 1.03e + 01 ± 1.55e − 01 1.32e + 01± 1.85e + 00 + 9.55e + 02± 3.42e + 02 + 1.60e + 01± 2.07e + 00 +
f18 2.46e + 01 ± 4.68e + 00 1.93e + 01± 4.67e + 00 - 9.01e + 02± 3.10e + 02 + 5.41e + 01± 6.33e + 00 +
f19 3.95e − 01 ± 1.25e − 01 6.44e − 01± 2.09e − 01 + 1.19e + 00± 5.00e − 01 + 7.65e − 01± 2.52e − 01 +
f20 2.65e + 00 ± 4.48e − 01 2.87e + 00± 5.25e − 01 + 4.68e + 00± 3.79e − 01 + 3.50e + 00± 1.96e − 01 +
f21 3.83e + 02 ± 5.50e + 01 3.98e + 02± 1.99e + 01 + 3.68e + 02± 8.71e + 01 = 3.73e + 02± 6.75e + 01 -
f22 4.93e + 01 ± 5.33e + 01 1.33e + 02± 1.04e + 02 + 2.32e + 03± 4.25e + 02 + 7.27e + 01± 4.98e + 01 +
f23 5.78e + 02 ± 3.16e + 02 8.82e + 02± 3.08e + 02 + 2.25e + 03± 4.48e + 02 + 1.15e + 03± 2.58e + 02 +
f24 2.02e + 02 ± 1.76e + 01 2.02e + 02± 1.56e + 01 = 3.83e + 02± 1.57e + 02 + 2.01e + 02± 2.54e + 01 -
f25 2.02e + 02 ± 1.91e + 00 2.00e + 02± 1.23e + 01 - 2.62e + 02± 4.92e + 01 + 2.12e + 02± 1.09e + 01 +
f26 1.26e + 02 ± 3.69e + 01 1.47e + 02± 4.36e + 01 + 2.57e + 02± 1.13e + 02 + 1.58e + 02± 2.40e + 01 +
f27 3.37e + 02 ± 5.23e + 01 3.06e + 02± 2.76e + 01 - 4.23e + 02± 1.35e + 02 + 4.27e + 02± 4.91e + 01 +
f28 3.17e + 02 ± 6.87e + 01 3.07e + 02± 5.78e + 01 = 1.21e + 03± 1.21e + 03 + 3.01e + 02± 1.28e + 02 -

TABLE VII. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =SMADE) FOR SMADE AGAINST
MDE-PBX, CMAES, AND CCPSO2, ON CEC2013[21] IN 30 DIMENSIONS.

SMADE MDE-pBX CMAES CCPSO2
f1 0.00e + 00 ± 1.27e − 13 0.00e + 00± 4.09e − 13 = 0.00e + 00± 5.57e − 14 = 2.27e − 13± 1.21e − 12 +
f2 0.00e + 00 ± 1.74e − 13 9.56e + 04± 6.16e + 04 + 0.00e + 00± 7.88e − 14 = 9.95e + 05± 5.24e + 05 +
f3 9.82e + 03 ± 4.94e + 04 1.80e + 07± 3.12e + 07 + 1.53e + 01± 1.23e + 02 - 5.59e + 08± 5.57e + 08 +
f4 0.00e + 00 ± 1.86e − 13 1.32e + 01± 5.46e + 01 + 0.00e + 00± 5.08e − 14 = 5.57e + 04± 2.06e + 04 +
f5 1.14e − 13 ± 2.75e − 13 1.14e − 13± 8.35e − 13 = 1.14e − 13± 1.14e − 14 = 2.62e − 08± 6.05e − 08 +
f6 2.67e + 00 ± 7.85e + 00 1.99e + 01± 2.22e + 01 + 3.05e + 00± 8.33e + 00 + 2.19e + 01± 2.27e + 01 +
f7 3.25e + 01 ± 1.61e + 01 5.70e + 01± 1.77e + 01 + 9.83e + 03± 6.44e + 04 = 1.15e + 02± 3.11e + 01 +
f8 2.10e + 01 ± 4.80e − 02 2.11e + 01± 5.94e − 02 + 2.09e + 01± 6.66e − 02 - 2.10e + 01± 4.60e − 02 =
f9 2.23e + 01 ± 3.57e + 00 2.22e + 01± 4.80e + 00 = 4.45e + 01± 6.99e + 00 + 2.84e + 01± 2.08e + 00 +
f10 1.84e − 02 ± 1.34e − 02 1.64e − 01± 1.20e − 01 + 1.73e − 02± 1.25e − 02 = 1.48e − 01± 6.90e − 02 +
f11 1.09e + 01 ± 4.18e + 00 4.62e + 01± 1.44e + 01 + 9.47e + 01± 2.36e + 02 + 1.19e − 01± 2.90e − 01 -
f12 5.72e + 01 ± 1.70e + 01 6.94e + 01± 2.00e + 01 + 7.11e + 02± 9.66e + 02 + 2.12e + 02± 5.24e + 01 +
f13 1.28e + 02 ± 3.50e + 01 1.49e + 02± 3.66e + 01 + 1.64e + 03± 1.66e + 03 + 2.44e + 02± 3.44e + 01 +
f14 1.33e + 02 ± 1.27e + 02 1.17e + 03± 3.95e + 02 + 5.21e + 03± 7.37e + 02 + 4.48e + 00± 2.87e + 00 -
f15 4.10e + 03 ± 8.47e + 02 3.95e + 03± 6.57e + 02 = 5.37e + 03± 6.73e + 02 + 3.85e + 03± 4.52e + 02 =
f16 1.31e − 01 ± 7.57e − 02 1.25e + 00± 6.19e − 01 + 1.26e − 01± 8.87e − 02 = 2.16e + 00± 3.76e − 01 +
f17 3.48e + 01 ± 1.52e + 00 7.05e + 01± 1.24e + 01 + 3.95e + 03± 7.89e + 02 + 3.07e + 01± 3.03e + 00 -
f18 8.33e + 01 ± 2.06e + 01 8.26e + 01± 1.89e + 01 = 4.23e + 03± 8.31e + 02 + 2.31e + 02± 5.43e + 01 +
f19 2.55e + 00 ± 5.18e − 01 9.54e + 00± 5.54e + 00 + 3.66e + 00± 9.52e − 01 + 7.77e − 01± 1.58e − 01 -
f20 1.05e + 01 ± 8.07e − 01 1.07e + 01± 7.75e − 01 + 1.50e + 01± 6.45e − 02 + 1.35e + 01± 5.50e − 01 +
f21 3.27e + 02 ± 8.65e + 01 3.40e + 02± 7.62e + 01 + 3.05e + 02± 9.01e + 01 = 2.37e + 02± 6.71e + 01 -
f22 1.79e + 02 ± 4.50e + 01 1.17e + 03± 4.92e + 02 + 6.97e + 03± 1.06e + 03 + 9.87e + 01± 6.70e + 01 -
f23 4.22e + 03 ± 8.74e + 02 4.70e + 03± 7.70e + 02 + 6.76e + 03± 6.82e + 02 + 4.99e + 03± 6.31e + 02 +
f24 2.32e + 02 ± 2.57e + 01 2.31e + 02± 8.60e + 00 - 8.19e + 02± 6.15e + 02 + 2.80e + 02± 6.34e + 00 +
f25 2.78e + 02 ± 9.90e + 00 2.79e + 02± 1.38e + 01 = 3.46e + 02± 1.45e + 02 + 2.98e + 02± 6.94e + 00 +
f26 2.15e + 02 ± 5.25e + 01 2.26e + 02± 5.15e + 01 = 5.51e + 02± 5.14e + 02 + 2.00e + 02± 6.76e − 01 -
f27 6.47e + 02 ± 1.37e + 02 6.50e + 02± 1.04e + 02 = 8.53e + 02± 2.42e + 02 + 1.04e + 03± 8.09e + 01 +
f28 3.88e + 02 ± 3.23e + 02 3.09e + 02± 1.50e + 02 - 1.96e + 03± 3.40e + 03 + 4.35e + 02± 5.10e + 02 +

TABLE VIII. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE =SMADE) FOR SMADE AGAINST
MDE-PBX, CMAES, AND CCPSO2, ON CEC2013[21] IN 50 DIMENSIONS.

SMADE MDE-pBX CMAES CCPSO2
f1 2.27e − 13 ± 0.00e + 00 1.11e − 11± 7.68e − 11 + 2.27e − 13± 0.00e + 00 = 6.82e − 13± 1.31e − 12 +
f2 2.27e − 13 ± 0.00e + 00 4.37e + 05± 1.64e + 05 + 2.27e − 13± 0.00e + 00 = 1.85e + 06± 9.33e + 05 +
f3 3.81e + 05 ± 1.35e + 06 8.45e + 07± 1.46e + 08 + 9.64e + 02± 4.49e + 03 - 1.98e + 09± 2.09e + 09 +
f4 2.27e − 13 ± 0.00e + 00 3.05e + 01± 6.62e + 01 + 2.27e − 13± 0.00e + 00 = 1.00e + 05± 3.57e + 04 +
f5 6.82e − 13 ± 2.38e − 12 1.93e − 11± 9.76e − 11 + 6.82e − 13± 1.57e − 12 = 2.70e − 10± 8.03e − 10 +
f6 4.30e + 01 ± 6.28e + 00 5.48e + 01± 2.12e + 01 + 4.32e + 01± 7.10e + 00 + 4.35e + 01± 1.36e + 01 +
f7 4.32e + 01 ± 1.66e + 01 6.59e + 01± 1.06e + 01 + 4.19e + 01± 1.70e + 01 = 1.37e + 02± 2.31e + 01 +
f8 2.11e + 01 ± 3.85e − 02 2.12e + 01± 4.44e − 02 + 2.11e + 01± 9.75e − 02 - 2.11e + 01± 4.49e − 02 =
f9 4.36e + 01 ± 4.06e + 00 4.32e + 01± 7.71e + 00 = 7.66e + 01± 7.77e + 00 + 5.79e + 01± 4.39e + 00 +
f10 2.47e − 02 ± 1.48e − 02 1.34e − 01± 1.23e − 01 + 2.24e − 02± 1.49e − 02 = 1.24e − 01± 4.62e − 02 +
f11 4.81e + 01 ± 1.49e + 01 1.24e + 02± 2.87e + 01 + 2.19e + 02± 4.56e + 02 + 4.31e − 01± 5.74e − 01 -
f12 1.57e + 02 ± 4.52e + 01 1.58e + 02± 3.25e + 01 = 2.25e + 03± 1.37e + 03 + 4.46e + 02± 7.92e + 01 +
f13 3.35e + 02 ± 5.63e + 01 3.24e + 02± 4.74e + 01 = 3.36e + 03± 1.09e + 03 + 5.49e + 02± 6.67e + 01 +
f14 3.41e + 02 ± 2.05e + 02 2.65e + 03± 8.86e + 02 + 8.82e + 03± 1.04e + 03 + 6.45e + 00± 3.20e + 00 -
f15 8.54e + 03 ± 9.77e + 02 7.46e + 03± 7.95e + 02 - 9.09e + 03± 9.43e + 02 + 7.95e + 03± 7.11e + 02 -
f16 8.96e − 02 ± 4.24e − 02 1.75e + 00± 7.40e − 01 + 8.01e − 02± 4.72e − 02 = 2.39e + 00± 5.90e − 01 +
f17 6.57e + 01 ± 5.27e + 00 1.75e + 02± 3.72e + 01 + 6.97e + 03± 1.07e + 03 + 5.14e + 01± 2.84e − 01 -
f18 1.93e + 02 ± 3.46e + 01 1.85e + 02± 3.40e + 01 = 7.08e + 03± 9.14e + 02 + 4.94e + 02± 1.08e + 02 +
f19 5.43e + 00 ± 1.07e + 00 4.25e + 01± 2.66e + 01 + 6.32e + 00± 1.18e + 00 + 1.40e + 00± 2.19e − 01 -
f20 1.92e + 01 ± 8.86e − 01 2.00e + 01± 9.04e − 01 + 2.50e + 01± 9.73e − 02 + 2.28e + 01± 7.85e − 01 +
f21 8.46e + 02 ± 3.43e + 02 9.22e + 02± 3.06e + 02 + 8.12e + 02± 3.73e + 02 - 3.27e + 02± 2.64e + 02 -
f22 3.39e + 02 ± 2.24e + 02 3.09e + 03± 9.98e + 02 + 1.19e + 04± 1.26e + 03 + 7.58e + 01± 8.58e + 01 -
f23 9.89e + 03 ± 1.90e + 03 8.88e + 03± 1.20e + 03 - 1.18e + 04± 8.52e + 02 + 1.05e + 04± 1.11e + 03 =
f24 3.00e + 02 ± 1.20e + 01 2.87e + 02± 1.47e + 01 - 1.64e + 03± 1.05e + 03 + 3.56e + 02± 9.89e + 00 +
f25 3.68e + 02 ± 1.36e + 01 3.69e + 02± 1.78e + 01 = 4.94e + 02± 1.88e + 02 + 3.96e + 02± 1.19e + 01 +
f26 2.91e + 02 ± 9.70e + 01 3.50e + 02± 7.93e + 01 + 6.04e + 02± 7.11e + 02 = 2.09e + 02± 3.92e + 01 -
f27 1.18e + 03 ± 1.67e + 02 1.24e + 03± 1.56e + 02 = 1.28e + 03± 2.51e + 02 + 1.79e + 03± 8.78e + 01 +
f28 1.07e + 03 ± 1.27e + 03 4.33e + 02± 3.26e + 02 - 3.27e + 03± 5.60e + 03 + 6.33e + 02± 8.95e + 02 -
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Abstract—The super-fit scheme, consisting of injecting an
individual with high fitness into the initial population of an
algorithm, has shown to be a simple and effective way to
enhance the algorithmic performance of the population-based
algorithm. Whether the super-fit individual is based on some
prior knowledge on the optimization problem or is derived
from an initial step of pre-processing, e.g. a local search, this
mechanism has been applied successfully in various examples
of evolutionary and swarm intelligence algorithms. This paper
presents an unconventional application of this super-fit scheme,
where the super-fit individual is obtained by means of the
Covariance Adaptation Matrix Evolution Strategy (CMA-ES),
and fed to a single solution local search which perturbs iteratively
each variable. Thus, compared to other super-fit schemes, the
roles of super-fit individual generator and global optimizer are
switched. To prevent premature convergence, the local search
employs a re-sampling mechanism which inherits parts of the best
individual while randomly sampling the remaining variables. We
refer to such local search as Re-sampled Inheritance Search (RIS).
Tested on the CEC 2013 optimization benchmark, the proposed
algorithm, named CMA-ES-RIS, displays a respectable perfor-
mance and a good balance between exploration and exploitation,
resulting into a versatile and robust optimization tool.

I. INTRODUCTION

Despite the important theoretical framework of the no free
lunch theorem [1], which proved that a “universal” optimizer
able to find the optimum on all possible fitness functions does
not exist, or, in other words, that the average performance of
any two algorithms on all possible fitness functions is equiv-
alent, researchers all over the world are still putting a strong
effort in designing robust and versatile algorithms for tackling
diverse problems. The idea is that it is worthwhile, from
both a conceptual and practical point of view, to study novel
algorithmic structures that, if properly tuned, can guarantee a
robust and reliable performance at least on on a broad range
of optimization problems. With this aim in mind, the research
community developed, in recent years, increasingly complex
algorithms made up, in the Memetic Computing fashion,
of multiple components (memes) and/or using sophisticated

learning techniques able to adapt the algorithmic behaviour
to the features of the fitness landscape, e.g. multi-modality,
ill-conditioning, non-separability. Some examples of modern
algorithms of this kind can be found in [2]-[6].

Such modern algorithmic structures, on the other hand, are
often characterized by an excessive computational overhead,
both in terms of memory and CPU operations, or by a high
number of parameters which require a fine-tuning on the
problem at hand. Thus, their applicability is sometimes limited
in practical contexts. In addition to that, as shown in [7]
and [8], minimalistic memetic approaches featuring two or
three simple components, if properly coordinated, show in
many cases at least the same performance as overwhelmingly
complex algorithmic structures, yet requiring a much lower
computational overhead. In [7], this finding was explained in
the light of the Ockham’s Razor, i.e. applying the principle
of parsimony to Memetic Computing, and, in general, to the
algorithmic design process: minimal structures composed of
few simple memes should be preferred to complex ones.

In this paper, we propose to combine the law of parsimony
with the super-fit logic by enhanching upon the performance
of a multi-start local search. The latter, namely Re-sampled
Inheritance Search (RIS), is a simple single-solution algorithm
composed of two memes, exploitative local search and a
re-sampling mechanism, respectively. The idea of super-fit
individual, introduced in the context of Differential Evolution
in [9] and [10], consists of “drugging” the initial population
by injecting one individual (the so called super-fit) resulting
from an exploitative search. The investment of an initial budget
for performing an exploitative search pays off by a much
high performance of the population-based framework, see [9]
and [10]. In Differential Evolution frameworks, the super-fit
individual appears to lead the search and attract the other
candidate individuals towards the most promising area of the
search space, similarly to the global best particle in swarm
intelligence. This injection of a super-fit individual into the
initial population has the clear effect of promoting exploitation
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over exploration. However, in [9] it is shown that, since
Differential Evolution naturally maintains a certain degree of
population diversity during the optimization process, the super-
fit scheme allows a good balance between exploitation and
exploration without excessively biasing the search but rather
gently guiding it.

In the approach we propose here, instead of using a local
search for super-fit individual generation as in [9] and [10],
we use a population-based algorithm, namely the Covariance
Adaptation Matrix Evolution Strategy (CMA-ES). Different
from a local search, CMA-ES has a lower chance of being
trapped into a local optimum, providing a super-fit individual
which is likely close to the global optimum. After a limited
number of fitness evaluations, the super-fit individual found
by CMA-ES is then passed to RIS. The latter is supposed
to improve upon it and, in case of premature convergence,
restart the search inheriting some information from the best
individual. The resulting algorithm, named CMA-ES-RIS, is
thus characterized by a proper combination of exploration
and exploitation. Most of all, its simple structure allows to
distinguish clearly the contribution of each component to the
overall algorithmic performance.

The remainder of this paper is organized as follows. Section
II describes the CMA-ES-RIS structure and its components.
Section III presents the numerical results obtained with the
CMA-ES-RIS algorithm on the CEC 2013 real-parameter
optimization benchmark in three different dimensionalities,
namely 10, 30 and 50 and some considerations on its com-
putational complexity. Finally, Section IV concludes this work
and suggests a possible follow-up of this research.

II. THE PROPOSED APPROACH

Without loss of generality, in the following we refer to the
problem of minimizing an objective function f(x), where the
candidate solution x is a vector of n design variables (or genes)
in a decision space D. We indicate with x[i] the ith element of
the vector x. The proposed CMA-ES-RIS algorithm attempts
to solve this problem at first generating a super-fit individual,
and then refining the search to improve upon it. The two stages
of the algorithm are executed sequentially by two different
components, respectively CMA-ES and RIS, described in the
next subsections. The general structure of CMA-ES-RIS is
illustrated at the end of this section.

A. Covariance Adaptation Matrix Evolution Strategy (CMA-
ES)

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [11], [12], [13] is a powerful variant of classic
Evolution Strategies (ES), see [14] and [15], which makes use
of distribution model of the population. More specifically, at
each step of the algorithm λ new solutions are sampled from
a multivariate normal distribution whose mean and covariance
matrix are adaptively updated from a weighted sum of the best
µ solutions in the population. The loop goes on until a stop
condition is met. It is interesting to note that, compared to
classic evolution strategies employing the (µ, λ) or (µ + λ)
survivor selection schemes, CMA-ES is said to employ a
(µ/µw, λ) strategy, where µw represent the weights on the best
µ individuals used to update the distribution model. A detailed

initialize covariance matrix C = I, and step-size σ
initialize the mean vector m with a random sample in D
while CMA-ES stop criterion is not met do

(activate Covariance Matrix Repairing method, if needed)
sample λ new individuals from distribution N (m, σ2C)
evaluate individuals and sort them based on their fitness
update m based on a weighted sum of the best µ individuals
update covariance matrix C and step-size σ

end while
return best individual xe

Fig. 1. Pseudo-code of CMA-ES

description of CMA-ES is out of the scope of this paper, while
interested readers can find all relevant information in the vast
literature on this algorithm. We report instead, for the sake of
completeness, a simplified pseudo-code illustrating the main
steps of CMA-ES, see Fig. 1.

Due to its solid theoretical background, its simple param-
eter setting, and its invariance to several transformations of
the fitness function, CMA-ES is considered one of the state-
of-the-art stochastic real-parameter optimization algorithms. In
the last decade, it has been used as building block in a number
of complex modern algorithms, either extending its original
structure, introducing e.g. a restart scheme and an increasing
population size as in [16]; hybridising it with other meta-
heuristics, such as DE, see the DCMA-EA algorithm proposed
in [17]; using it as an intense local search in a memetic
structure, as proposed in [2]; or even simplifying its scheme
as in [18], where a computationally efficient (1+1)-CMA-ES
with Cholesky update for the covariance matrix is presented.
Here we follow this research trend, using CMA-ES as super-
fit individual generator for the Re-sampling Inheritance Search
described in the next subsection.

As shown in Fig. 4, we here refer to the super-fit individual
generated by CMA-ES as to xe (“elite”). As a final remark, it
is important to note that in this work we introduced into the
original scheme of CMA-ES, the Covariance Matrix Repairing
(CMR) method devised in [19] to fix ill-posed covariance
matrices. This mechanism, activated whenever the distribution
model has to be used to sample new solutions, works as
follows: at the beginning, a correction factor K = 1 is
initialized. Then, for a fixed number of iterations, first the
eigenvalues of C are calculated: if all of them are positive,
the loop is stopped as this condition ensures that C is well-
posed; otherwise, if at least one of the eigenvalues is negative,
i.e. C is ill-posed, the CMR update rule C = C+ |γ| ·K · I is
applied, where γ is the minimum (negative) eigenvalue of C.
The factor K is subsequently multiplied by a factor ∆ = 1.5
and the loop goes on until a maximum number of iterations
is reached. In [19], it is shown that 5 iterations are generally
enough to guarantee the numerical stability of C, as we also
confirmed during our numerical experiments.

B. Re-sampling Inheritance Search (RIS)

The Re-sampling Inheritance Search (RIS) is an extremely
simple single-solution algorithm for numerical optimization
designed on the basis of the Ockham Razor’s principle in MC,
see [7]. The RIS algorithm makes use of only two operators
which perturb, alternatively, a single solution. In the CMA-
ES-RIS scheme, the initial solution is obviously the super-fit
individual xe generated by the CMA-ES during the previous
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input: xe

generate a random solution xt within D
generate i = round (n · rand (0, 1))
compute Cr according to eq. (1)
xt[i] = xe[i]
k = 1
while rand (0, 1) ≤ Cr and k < n do
xt[i] = xe[i]
i = i+ 1
if i == n then
i = 1

end if
k = k + 1

end while
if f (xt) ≤ f (xe) then

xe = xt

end if
return xt, xe

Fig. 2. Pseudo-code of re-sampling with inheritance

stage. Then, the following two operators are applied to perturb
xe.

1) Re-sampling with inheritance: Similar to the exponen-
tial crossover used in Differential Evolution [20], this oper-
ator modifies the current solution xe in order to generate
a perturbed solution xt (“trial”). With reference to Fig. 2,
the operator works as follows: at the beginning, the trial
solution is randomly sampled within the decision space D.
Then, one gene of xe is randomly selected and copied into
the corresponding gene of xt, to ensure that at least one gene
of the current solution is inherited by the new individual.
Starting from this gene, a copy process of the genes of xe

into the corresponding genes of xt is continued until r ≤ Cr,
where r is a random number in U(0, 1) – generated for
each gene – and Cr (crossover rate) is a parameter affecting
the number of transferred genes. As shown in [21], instead
of setting Cr explicitly, we rather set the inheritance factor
alphae ≈ ne/n, where ne is the expectation of the number
of genes copied from xe into xt in addition to the first gene,
which is deterministically copied. Given that the probability
that ne genes are copied is Crne = Crnαe , it can be easily
shown that, in order to achieve that approximately ne genes
are copied into the offspring with probability 0.5, the crossover
rate can be set as:

Cr =
1

nαe
√

2
. (1)

Thus Cr can be easily derived from the problem dimension
n and the inheritance factor αe, making its effect independent
on problem dimension. As soon as r > Cr, the process is in-
terrupted and the remaining genes of xt remained unchanged.
The copy process is applied as for a cyclic buffer, i.e. when
the nth gene is reached, the next to be copied is the first one.

Once the trial solution xt has been generated, its fitness
is computed and compared with that of xe. In case of
improvement, xt replaces xe; otherwise, the elite xe is not
modified. In both cases, the trial solution xt is passed to the
next operator, i.e. the exploitative local search, which will use
it as a starting point. Thus, this mechanism can be seen as
a “smart” restart for the exploitative local search, i.e. a non-
destructive re-sampling which preserves parts of the genes of
the current best individual in order to reuse the achievements
obtained so far by the algorithm.

input: xt, xe

ρ = δ · (ub− lb)
while ρ < ε do

xs = xt

for i = 1 : n do
xs[i] = xt[i]− ρ
if f (xs) ≤ f (xt) then

xt = xs

else
xs[i] = xt[i] +

ρ
2

if f (xs) ≤ f (xt) then
xt = xs

end if
end if

end for
if f (xt) ≤ f (xe) then

xe = xt

else
ρ = ρ

2
end if

end while
return xe

Fig. 3. Pseudo-code of the exploitative local search

2) Exploitative local search: The exploitative local search
algorithm belongs to the family of hill-descend algorithms;
more specifically, it employs the search logic of one searcher
proposed in [22], which attempts to improve upon a given
solution perturbing separately, on both directions, each of its
design variables. With reference to Fig. 3, this operator per-
forms, iteratively, the following operations. At the beginning,
the trial solution xt generated by the first operator is copied
into a temporary solution xs. The, for each ith variable, the
solution xs is perturbed by computing:

xs[i] = xt[i]− ρ, (2)

where ρ is the search radius, initialized as fraction δ of the
search space D. I.e., ρ = δ · (ub − lb), where ub and lb are
respectively the upper and lower bound of D. If the newly
perturbed solution xs outperforms the initial trial solution xt,
the trial solution xt is replaced by xs, otherwise a perturbation
in the opposite direction is performed, of width ρ/2:

xs[i] = xt[i] +
ρ

2
(3)

and again xt is replaced by xs in case of improvement. After
all the variables have been perturbed in both directions, the
elite xe is replaced by xt if it is outperformed by it. If the
elite is not updated, the radius ρ is halved further. The search
is then repeated again, for all the design variables, within the
new search radius. This process is continued until the radius
ρ becomes smaller than a fixed threshold ε.

C. General structure of CMA-ES-RIS

Fig. 4 displays the global structure of CMA-ES-RIS, as
serial activation of the components described before. The co-
ordination of the components is rather straightforward. At the
beginning of the algorithm, for a given fraction rCMA−ES×T
of the total computational budget T , CMA-ES is executed
to generate a super-fit individual xe. This will be the best
individual in the final population processed by CMA-ES.
The super-fit individual is then passed to the RIS part of
the algorithm, which is continued for the remaining budget
(1− rCMA−ES) × T . During each step of this second stage,
first the re-sampling with inheritance processes the current elite
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xe and generates a trial solution xt, which is then processed
by the exploitative local search. At the end of the local search,
the (possibly improved) elite xe is passed to the next iteration
of RIS, and the loop goes on until the budget T is consumed.

Each component has a clear role in the algorithmic struc-
ture and gives a different contribution to the overall perfor-
mance. As said before, the CMA-ES plays the role of super-
fit individual generator: compared to other algorithms, CMA-
ES efficiently exploits the parameter linkages, thanks to the
covariance matrix, thus converging quickly – and reliably
– towards a promising area of the search space. This area
represents the starting point for the second stage, i.e. the
RIS algorithm, a simple multi-start local search which, in
the fashion of Memetic Computing, combines an explorative
component (the re-sampling mechanism) with an exploitative
local search. A crucial element of RIS is the exchange of
information between the two components, in the form of a
partial transmission of genes from the elite to the perturbed
solution, which balances exploration and exploitation in a
simple but apparently effective way.

While super-fit individual generated by CMA-ES is pro-
cessed by the RIS a double action is taken. The exploitative
local search attempts to quickly improve upon the algorith-
mic performance while the re-sampling mechanism allows an
enhancement of the global search features and thus that the
solution is trapped within a local optimum. The inheritance
mechanism integrated within the re-sampling helps to make
the search excessively exploratory and thus randomly search
throughout the decision space. Finally, it must be observed that
the exploitative local search has a very different search rule
with respect to that of CMA-ES. While the first perturbs the so-
lution by moving along the axes, the second follows the shape
of the basin of attraction thus performing diagonal moves. The
proposed CMA-ES-RIS is supposed to harmonically combine
these features and offer a robust performance over a diverse
array of optimization problems, including separable and non-
separable problems.

From a complexity point of view, it has been shown [13]
that, due to the covariance matrix update, the time complexity
of the CMA-ES is quadratic. On the other hand, the re-
sampling with inheritance performs, on average, 0.5 · n + 1
copies from the elite to the best, being n the problem di-
mensionality. In the worst case (which is however rather
improbable), it performs n copies. Thus its complexity is
O(n). As for the exploitative local search, it performs, at
each step, 2 · n perturbations. Therefore also its asymptotic
complexity is linear. We can conclude then that the complexity
of RIS is O(n), while the global complexity of CMA-ES-RIS
(see below) is between O(n) and O(n2), depending on the
value of rCMA−ES .

As a final remark, we note that CMA-ES-RIS makes use
of a toroidal handling of the search space bounds: in other
words, if x[i] exceeds its upper bound ub[i] by a quantity ζ
(x[i] = ub[i] + ζ), the replacement x[i] = lb[i] + ζ occurs. A
specular mechanism is applied on the lower bound.

III. NUMERICAL RESULTS

Following the rules of the CEC 2013 Special Session on
Real-Parameter Optimization, we tested the proposed approach

CMA-ES stop criterion: rCMA−ES × T
execute CMA-ES as in Fig. 1
RIS stop criterion: (1− rCMA−ES)× T
while RIS stop criterion is not met do

execute re-sampling with inheritance as in Fig. 2
execute exploitative local search as in Fig. 3

end while
return best individual xe

Fig. 4. Pseudo-code of CMA-ES-RIS

on the 28 minimization problems defined in [23]. The whole
benchmark was tested in D = 10, D = 30 and D = 50
dimensions, and for each test function and problem size the
CMA-ES-RIS algorithm was executed 51 times, as dictated
by the competition rules. Each run was continued for T =
10000×D fitness evaluations. All the experiments were coded
in Java, although we used the C/C++ original implementation
of the CEC 2013 benchmark which was wrapped through the
Java Native Interface (JNI) [24]. The 28×51 experiments were
run, in parallel, on a heterogeneous network of Linux/Mac
computers, through the distributed platform Kimeme [25].

A. Detailed results of CMA-ES-RIS

Tables III, IV and V show, respectively, the numerical
results obtained with D = 10, D = 30 and D = 50
dimensions. For each test function, we report the best, worst,
median and mean fitness value obtained at the end of the
computational budget T , together with its standard deviation
over the 51 runs available.

It can be seen that, apart from f3 and f5 (only in 50D),
which however show a small deviation from the global op-
timum, all the unimodal functions (f1 − f5) are solved in
all the three dimensioned considered. As for the multimodal
functions (f6−f20), in 10 dimensions the optimum is detected
in 4 cases, while the mean error ranges from 1.24e − 02 to
6.17e+ 02 and the standard deviation ranges from 7.49e− 02
to 1.72e + 02, depending on the benchmark function. In 30
dimensions, the optimum is detected in 2 cases, while the
mean error ranges from 6.94e − 04 to 3.13e + 03 and the
standard deviation ranges from 5.41e − 03 to 4.53e + 02.
In 50 dimensions, the optimum is detected in 1 case, while
the mean error ranges from 8.60e − 03 to 6.30e + 03 and
the standard deviation ranges from 5.86e− 03 to 6.74e+ 02.
Finally, regarding the composition functions (f21− f28), the
mean error is in the order of 1e+ 02 textdiv 1e+ 03 for all
the three dimensionalities, while the standard deviation ranges
from 2.27e+ 01 to 1.89e+ 02, from 8.41e+ 00 to 1.32e+ 03,
and from 3.25e−02 to 1.53e+03, respectively for 10, 30 and
50 dimensions.

It can be seen that, in case of the unimodal function f1,
CMA-ES-RIS is able to quickly converge to the optimum
for all the problem dimensionalities considered. As for the
multimodal function f16, CMA-ES-RIS obtains, fast and reli-
ably, a rather small average error. On the other hand, on the
composition function f24 the error is relatively large.

B. Comparison against state-of-the-art algorithms

To provide a deeper understanding of the performance of
CMA-ES-RIS, we compared the results shown in the previous
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TABLE I. HOLM-BONFERRONI TEST, REFERENCE = CMA-ES-RIS
(RANK = 3.13E+00)

j Optimizer Rank zj pj δ/j Hypothesis
1 MDE-pBX 2.64e+00 -3.16e+00 7.80e-04 5.00e-02 Rejected
2 CCPSO2 2.24e+00 -5.79e+00 3.60e-09 2.50e-02 Rejected
3 CMA-ES 1.79e+00 -8.72e+00 1.41e-18 1.67e-02 Rejected

section - on the same CEC 2013 benchmark and under the
same conditions of budget and repetitions - with three differ-
ent state-of-the-art optimization algorithms, namely the orig-
inal CMA-ES [13], the Self-Adaptive Differential Evolution
with pBX crossover (MDE-pBX) [26], and the Cooperatively
Coevolving Particle Swarms Optimizer (CCPSO2) [27]. As
suggested in their original papers, MDE-pBX was run with
population size equal to 100 individuals and group size q equal
to 15% of the population size, while CCPSO2 was executed
with population size equal to 30 individuals, Cauchy/Gaussian
sampling selection probability p = 0.5 and set of potential
group sizes S = {2, 5}, S = {2, 5, 10}, S = {2, 5, 10, 25},
for experiments in 10, 30 and 50 dimensions, respectively. To
provide a fair comparison, CMA-ES and CMA-ES-RIS were
configured with the same values of λ, µ, σ (see next section).

Tables VI, VII and VIII, show the average fitness error
(with respect to the target fitness) and its standard deviation,
over 51 repetitions, obtained by the four algorithms under com-
parison after T = 10000×D fitness evaluations. We report also
the result of the Wilcoxon test [28] applied, with confidence
level 0.95, to each pair-wise comparison on the final values
obtained by CMA-ES-RIS against CMA-ES, MDE-pBX and
CCPSO2 (“+”, “-” and “=” indicate, respectively, a better,
worse or equivalent performance of CMA-ES-RIS against
the other algorithms). It can been seen that CMA-ES-RIS is
extremely competitive: indeed, it outperforms MDE-pBX in
12 cases in 10D, 16 cases in 30D, and 18 cases in 50D, thus
showing an excellent scalability. Most impressively, CMA-ES-
RIS systematically outperforms (with few exceptions) both
CMA-ES and CCPSO2 in all the three dimensionalities. This
result is confirmed by the Holm-Bonferroni prodedure [29],
which we performed as described in [30], with confidence level
0.05. As shown in Table I, CMA-ES-RIS ranks first among
the four algorithms, with the null-hypothesis (that CMA-ES-
RIS and one of the other algorithms have indistinguishable
performances) rejected in all the pair-wise comparisons.

C. Parameters

The CMA-ES-RIS algorithm was executed with the fol-
lowing parameters. As for the CMA-ES part of the algorithm,
we used the default parameter setting of the original Java
implementation [31]. In particular, the evolution strategy was
configured with the standard values λ = b4 + 3 ln(D)c,
µ = bλ/2c, and initial step-size σ = 0.2, which are broadly
accepted in the literature.

The RIS algorithm has instead three main parameters which
affect its performance, namely the inheritance factor αe, the
initial search radius ρ and the stop-threshold ε. As said, the
inheritance factor represents the approximate percentage of
genes transferred during re-sampling, with probability 0.5,
from the elite to the trial solution. Its value ranges in (0, 1]:
the smaller αe, the lower is the number of genes copied from
the best individual, and vice versa. If one needs to improve

the exploration capabilities of the algorithm, a smaller value
of αe should be used: this might be needed, for example,
to tackle highly multi-modal landscapes. Otherwise, a larger
value would increase the exploitation pressure.

Similarly, possible values for the fraction δ of the search
space (used to initialize the search radius ρ in the exploitative
local search) are (0, 0.5], so that smaller values make the
local search explore in a narrow neighbourhood of the current
solution xs, and vice versa. This parameter should be related
to the width of the basin(s) of attraction present in the fitness
landscape, so that, if one has some prior knowledge about
the fitness, the initial search radius should be as large as the
smaller basin.

As for the stop-threshold ε, its value obviously affects the
exploitation pressure of the local search: smaller values let RIS
refine the search deeper, larger ones instead produce a coarser
exploitation stage in favor of exploration. This parameter
depends on the precision one wants to obtain on the fitness,
and is related to the steepness (or, on the contrary, flatness) of
the fitness landscape. Therefore ε may take arbitrarily small
values, depending on the required precision.

Finally, the most crucial – and sensitive – parameter in the
CMA-ES-RIS structure is the budget ratio between rCMA−ES
which determines the amount of budget assigned to both CMA-
ES and RIS. This parameter ranges, theoretically, in (0, 1).
However, according to our empirical observation in order to
have a well-balanced combination of the two algorithms this
parameter should be selected within the range [0.2, 0.5]. A
value larger than 0.5 would obviously assign more budget to
the super-fit individual generation. As shown in the compara-
tive experiments, the RIS application has an important impact
on the performance with respect to the sole CMA-ES action,
see Section III-B. This parameter should be set based both on
theoretical and practical considerations: on one hand, allotting
more budget to CMA-ES means that more effort is put in
the first stage to learn the variable linkages and determine a
super-fit individual; on the other, due to the higher complexity
of CMA-ES with respect to RIS (see below), a larger value of
rCMA−ES increases the overall complexity of CMA-ES-RIS.

The numerical results shown in the previous section were
obtained with αe = 0.5, δ = 0.2, ε = 10−6, and rCMA−ES =
0.3. These values were selected tuning each parameter keeping
the others at a fixed value chosen from a predefined set. More
specifically, we tested the following sets of values: αe =
{0.2, 0.5, 0.8}, δ = {0.2, 0.3, 0.5}, ε = {10−10, 10−6, 10−4}
and rCMA−ES = {0.2, 0.3, 0.5}. We recorded the average
fitness error (over 51 runs) obtained with CMA-ES-RIS on
the whole CEC 2013 benchmark at the three different dimen-
sionalities, and then selected, for each parameter, the value
showing the best global mean fitness error. The performance
obtained with the best parameter setting can be explained as
follows: αe = 0.5 forces the trial solution to inherit at least half
genome from the elite (with probability 0.5), thus guaranteeing
a well-balanced inheritance ratio. Moreover, configuring the
local search so that it explores a neighbourhood equal to
1/5 of the whole search space provides a sufficiently large
space for fitness improvements, still being enough focused
on a restricted area of the search space. Similarly, the value
ε = 10−6 guarantees a good trade-off between the re-sampling
with inheritance and the exploitation local search, as well as
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rCMA−ES = 0.3 guarantees the best trade-off between CMA-
ES and RIS, allowing an optimal usage of the budget.

D. Algorithm complexity

Table II reports four measures of the computational com-
plexity of the proposed CMA-ES-RIS, as defined in [23].
More specifically, T0 is the execution time of a benchmark
program performing some simple mathematical operations in
double precision, T1 is the time needed to compute 200000
evaluations of the benchmark function f14, and T̂2 it the av-
erage execution time (over 5 repetitions) of a run of CMA-ES-
RIS performing 200000 evaluations of the benchmark function
f3. T1, T1 and T̂2 are here expressed in ms. A fourth,
adimensional metric, is also defined as (T̂2−T1)/T0. To
show how the algorithm complexity changes with the problem
dimension, T1, T̂2, (T̂2−T1)/T0 are reported for the three
dimensionalities considered in this study (10, 30 and 50).

TABLE II. COMPUTATIONAL COMPLEXITY

T0 T1 T̂2 (T̂2−T1)/T0
D = 10 544.0 496.0 −1.8
D = 30 27.0 914.0 2451.6 56.9
D = 50 1520.0 6390.2 180.4

As in our previous experiments, the algorithm, as well
as the program to compute its complexity, was coded in
Java, wrapping the C/C++ implementation of the bench-
mark functions through JNI. The program was executed,
in single thread, on a Mac OS X system, version 10.7.5,
with 2.2 GHz Intel Core i7 processor, and 4 GB RAM.
The timestamps were measured through the Java system call
System.currentTimeMillis().

It can be seen that the time complexity of CMA-ES-RIS
grows super-linearly (but sub-quadratically) with the problem
dimensionality, showing a trade-off between the complexity
of CMA-ES, which is quadratic, and that of RIS, which is
linear, as proven previously. For the sake of completeness,
it is interesting to note the also the space complexity is
quadratic for the CMA-ES part (because of the covariance
matrix, which requires n2 elements), and linear for RIS (which
instead requires only 3 n-dimensional vectors, i.e. xe, xs and
xt). Thus the proposed approach is mostly indicated for low-
medium scale problems, while for large-scale problems the first
part of the algorithm, based on CMA-ES, becomes naturally
more time consuming.

IV. CONCLUSION

In this paper we introduced CMA-ES-RIS, a simple yet
powerful optimization algorithm composed of two sequential
elements: an initial CMA-ES step which is used to generate
a super-fit individual, and a local search with inheritance
which improves upon it. In the first stage, thanks to the
covariance matrix adaptation mechanism, the features of the
fitness landscape are implicitly analysed and exploited to
rapidly converge to a promising area of the search space. Once
this area is detected, the best individual in the final population
of CMA-ES is selected as a starting point for the local search
algorithm, which refines the search further. During this second
stage, based on a fitness threshold, the algorithm is however

allowed to perform a re-sampling with partial inheritance of the
current best individual, so to prevent premature convergence
and explore other areas of the search space. We presented the
numerical results obtained on the CEC 2013 real-parameter
optimization benchmark and discussed the parameter setting
and time complexity of the proposed approach, showing that
CMA-ES-RIS is able to obtain good solutions fast and reliably
on a broad range of optimization problems. In the future,
the CMA-ES-RIS structure will be further investigated testing
different super-fit mechanisms and local search methods.

TABLE III. RESULTS FOR 10D

Func. Best Worst Median Mean Std

1 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

2 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

3 0.00e + 00 3.29e + 01 0.00e + 00 7.04e − 01 4.57e + 00

4 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

5 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

6 0.00e + 00 9.81e + 00 2.42e − 03 1.10e + 00 2.85e + 00

7 1.99e + 00 1.78e + 02 4.01e + 01 5.33e + 01 4.63e + 01

8 2.00e + 01 2.06e + 01 2.03e + 01 2.03e + 01 1.36e − 01

9 1.10e + 00 5.48e + 00 3.63e + 00 3.59e + 00 1.03e + 00

10 0.00e + 00 5.17e − 02 9.86e − 03 1.24e − 02 1.33e − 02

11 0.00e + 00 7.96e + 00 2.98e + 00 3.57e + 00 1.46e + 00

12 1.99e + 00 2.59e + 01 1.29e + 01 1.29e + 01 5.36e + 00

13 4.48e + 00 5.00e + 01 2.64e + 01 2.56e + 01 1.07e + 01

14 3.60e + 00 2.60e + 02 1.13e + 02 1.02e + 02 7.32e + 01

15 1.42e + 02 1.03e + 03 6.33e + 02 6.17e + 02 1.72e + 02

16 0.00e + 00 3.55e − 01 1.76e − 01 1.64e − 01 7.49e − 02

17 1.69e + 00 1.79e + 01 1.18e + 01 1.04e + 01 3.70e + 00

18 1.95e + 01 4.59e + 01 2.95e + 01 2.98e + 01 6.10e + 00

19 3.94e − 01 1.62e + 00 7.61e − 01 8.14e − 01 2.71e − 01

20 3.35e + 00 4.70e + 00 4.25e + 00 4.16e + 00 3.95e − 01

21 1.00e + 02 4.00e + 02 2.00e + 02 1.61e + 02 5.97e + 01

22 5.05e + 01 4.77e + 02 2.68e + 02 2.44e + 02 1.07e + 02

23 3.40e + 02 1.23e + 03 8.34e + 02 8.35e + 02 1.89e + 02

24 1.07e + 02 1.32e + 02 1.18e + 02 1.19e + 02 5.63e + 00

25 1.14e + 02 2.17e + 02 2.07e + 02 1.93e + 02 3.39e + 01

26 1.04e + 02 2.00e + 02 2.00e + 02 1.61e + 02 4.02e + 01

27 2.25e + 02 4.00e + 02 3.08e + 02 3.13e + 02 2.27e + 01

28 1.74e − 06 3.00e + 02 3.00e + 02 2.06e + 02 1.06e + 02

TABLE IV. RESULTS FOR 30D

Func. Best Worst Median Mean Std

1 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

2 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

3 0.00e + 00 7.73e + 04 9.65e − 01 2.24e + 03 1.09e + 04

4 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

5 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

6 0.00e + 00 9.78e − 03 0.00e + 00 6.94e − 04 1.99e − 03

7 1.03e + 00 1.25e + 02 3.79e + 01 4.48e + 01 2.93e + 01

8 2.07e + 01 2.10e + 01 2.09e + 01 2.09e + 01 8.11e − 02

9 1.99e + 01 2.76e + 01 2.38e + 01 2.37e + 01 1.93e + 00

10 0.00e + 00 2.46e − 02 7.40e − 03 8.31e − 03 5.41e − 03

11 1.49e + 01 4.97e + 01 2.39e + 01 2.54e + 01 6.30e + 00

12 2.79e + 01 1.61e + 02 5.77e + 01 7.94e + 01 4.35e + 01

13 5.57e + 01 2.41e + 02 1.45e + 02 1.56e + 02 5.36e + 01

14 3.27e + 02 1.30e + 03 8.08e + 02 7.92e + 02 2.19e + 02

15 1.90e + 03 4.60e + 03 3.12e + 03 3.13e + 03 4.53e + 02

16 2.28e − 02 3.17e − 01 9.03e − 02 1.07e − 01 6.71e − 02

17 4.00e + 01 6.71e + 01 5.49e + 01 5.50e + 01 5.19e + 00

18 1.34e + 02 2.44e + 02 1.89e + 02 1.89e + 02 2.71e + 01

19 1.54e + 00 4.21e + 00 2.71e + 00 2.80e + 00 6.35e − 01

20 1.23e + 01 1.45e + 01 1.45e + 01 1.43e + 01 5.69e − 01

21 1.00e + 02 3.00e + 02 2.00e + 02 1.86e + 02 3.97e + 01

22 6.34e + 02 1.74e + 03 1.18e + 03 1.17e + 03 2.90e + 02

23 2.71e + 03 5.35e + 03 4.01e + 03 4.03e + 03 5.38e + 02

24 1.97e + 02 2.80e + 02 2.65e + 02 2.59e + 02 1.74e + 01

25 2.59e + 02 3.01e + 02 2.82e + 02 2.82e + 02 8.41e + 00

26 1.32e + 02 2.00e + 02 2.00e + 02 1.97e + 02 1.20e + 01

27 4.00e + 02 1.01e + 03 8.15e + 02 7.49e + 02 1.85e + 02

28 1.00e + 02 9.57e + 03 3.00e + 02 5.39e + 02 1.32e + 03
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TABLE V. RESULTS FOR 50D

Func. Best Worst Median Mean Std

1 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

2 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

3 9.56e − 05 3.96e + 06 8.55e + 03 2.83e + 05 7.80e + 05

4 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

5 1.29e − 08 7.64e − 08 3.26e − 08 3.54e − 08 1.44e − 08

6 0.00e + 00 4.34e + 01 3.52e + 00 9.51e + 00 1.41e + 01

7 1.39e + 01 1.09e + 02 4.50e + 01 4.81e + 01 2.16e + 01

8 2.09e + 01 2.12e + 01 2.11e + 01 2.10e + 01 6.02e − 02

9 4.21e + 01 5.37e + 01 4.69e + 01 4.72e + 01 2.76e + 00

10 0.00e + 00 2.71e − 02 9.86e − 03 8.60e − 03 5.86e − 03

11 2.89e + 01 9.55e + 01 5.07e + 01 5.36e + 01 1.31e + 01

12 7.46e + 01 4.28e + 02 2.91e + 02 2.66e + 02 1.02e + 02

13 2.04e + 02 5.94e + 02 4.70e + 02 4.56e + 02 8.54e + 01

14 8.13e + 02 2.40e + 03 1.49e + 03 1.49e + 03 3.07e + 02

15 4.60e + 03 8.73e + 03 6.38e + 03 6.30e + 03 6.74e + 02

16 2.37e − 02 2.02e − 01 7.76e − 02 8.66e − 02 4.20e − 02

17 8.39e + 01 1.24e + 02 1.01e + 02 1.02e + 02 1.04e + 01

18 2.89e + 02 5.43e + 02 4.18e + 02 4.18e + 02 5.24e + 01

19 2.97e + 00 6.86e + 00 4.88e + 00 5.04e + 00 9.33e − 01

20 2.11e + 01 2.45e + 01 2.45e + 01 2.43e + 01 5.49e − 01

21 1.00e + 02 8.36e + 02 2.00e + 02 2.85e + 02 2.20e + 02

22 1.48e + 03 3.34e + 03 2.36e + 03 2.39e + 03 3.67e + 02

23 6.73e + 03 1.19e + 04 8.27e + 03 8.37e + 03 1.01e + 03

24 2.70e + 02 3.50e + 02 3.29e + 02 3.22e + 02 1.95e + 01

25 3.45e + 02 3.94e + 02 3.67e + 02 3.66e + 02 9.94e + 00

26 2.00e + 02 2.00e + 02 2.00e + 02 2.00e + 02 3.25e − 02

27 4.00e + 02 1.58e + 03 1.24e + 03 1.25e + 03 2.08e + 02

28 4.00e + 02 7.25e + 03 4.00e + 02 1.24e + 03 1.53e + 03

carried out on the computer network of the De Montfort Uni-
versity by means of the software for distributed optimization
Kimeme [25].
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mentellen Forschung in der Strömungstechnik,” Ph.D. dissertation,
Technical University of Berlin, Hermann Föttinger–Institute for Fluid
Dynamics, 1965.

[15] I. Rechenberg, “Evolutionsstrategie – Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution,” Ph.D. dissertation, Tech-
nical University of Berlin, 1971.

[16] A. Auger and N. Hansen, “A Restart CMA Evolution Strategy With
Increasing Population Size,” in Proceedings of the IEEE Congress on
Evolutionary Computation, 2005, pp. 1769–1776.

[17] S. Ghosh, S. Roy, S. Islam, S. Das, and P. Suganthan, “A differential
covariance matrix adaptation evolutionary algorithm for global opti-
mization,” in Differential Evolution (SDE), 2011 IEEE Symposium on,
april 2011, pp. 1 –8.

[18] C. Igel, T. Suttorp, and N. Hansen, “A Computational Efficient Co-
variance Matrix Update and a (1+1)-CMA for Evolution Strategies,” in
Proceedings of the Genetic and Evolutionary Computation Conference.
ACM Press, 2006, pp. 453–460.

[19] W. Dong and X. Yao, “Covariance matrix repairing in Gaussian based
EDAs,” in IEEE Congress on Evolutionary Computation, 2007, pp.
415–422.

[20] F. Neri and V. Tirronen, “Recent Advances in Differential Evolution:
A Review and Experimental Analysis,” Artificial Intelligence Review,
vol. 33, no. 1–2, pp. 61–106, 2010.

[21] F. Neri, G. Iacca, and E. Mininno, “Disturbed Exploitation compact
Differential Evolution for Limited Memory Optimization Problems,”
Information Sciences, vol. 181, no. 12, pp. 2469–2487, 2011.

[22] L.-Y. Tseng and C. Chen, “Multiple trajectory search for Large Scale
Global Optimization,” in Proceedings of the IEEE Congress on Evolu-
tionary Computation, 2008, pp. 3052–3059.

[23] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. Hernndez-Daz,
“Problem Definitions and Evaluation Criteria for the CEC 2013 Special
Session on Real-Parameter Optimization,” Zhengzhou University and
Nanyang Technological University, Zhengzhou China and Singapore,
Tech. Rep. 201212, 2013.

[24] L. Sheng, The Java Native Interface: Programmer’s Guide and Speci-
fication (The Java Series). Addison-Wesley, 1999.

[25] Cyber Dyne Srl Home Page, “Kimeme,” 2012, http://cyberdynesoft.it/.
[26] S. Islam, S. Das, S. Ghosh, S. Roy, and P. Suganthan, “An Adaptive

Differential Evolution Algorithm With Novel Mutation and Crossover
Strategies for Global Numerical Optimization,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42, no. 2,
pp. 482–500, april 2012.

[27] X. Li and X. Yao, “Cooperatively Coevolving Particle Swarms for Large
Scale Optimization,” Evolutionary Computation, IEEE Transactions on,
vol. 16, no. 2, pp. 210–224, april 2012.

[28] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[29] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

[30] S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, “A study of statis-
tical techniques and performance measures for genetics-based machine
learning: accuracy and interpretability,” Soft Computing, vol. 13, no. 10,
pp. 959–977, 2008.

[31] N. Hansen, “The CMA Evolution Strategy,” 2012, http://www.lri.fr/
∼hansen/cmaesintro.html.

1129



TABLE VI. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE=CMA-ES-RIS) FOR CMA-ES-RIS
AGAINST STATE-OF-THE-ART ALGORITHMS IN 10D

CMA-ES-RIS MDE-pBX CMA-ES CCPSO2
f1 0.00e + 00 ± 0.00e + 00 0.00e + 00± 0.00e + 00 = 0.00e + 00± 0.00e + 00 = 1.92e − 04± 1.16e − 03 +
f2 0.00e + 00 ± 0.00e + 00 4.15e + 02± 9.60e + 02 + 0.00e + 00± 0.00e + 00 = 9.93e + 05± 7.58e + 05 +
f3 7.04e − 01 ± 4.57e + 00 4.96e + 03± 4.66e + 04 + 5.69e − 01± 1.81e + 00 = 2.13e + 07± 3.13e + 07 +
f4 0.00e + 00 ± 0.00e + 00 6.50e − 02± 6.38e − 01 + 0.00e + 00± 0.00e + 00 = 8.80e + 03± 2.50e + 03 +
f5 0.00e + 00 ± 2.76e − 14 0.00e + 00± 7.54e − 14 = 0.00e + 00± 0.00e + 00 = 2.94e − 03± 8.06e − 03 +
f6 1.10e + 00 ± 2.85e + 00 6.18e + 00± 4.73e + 00 + 6.74e + 00± 6.74e + 00 + 1.52e + 00± 2.91e + 00 +
f7 5.33e + 01 ± 4.63e + 01 5.63e + 00± 7.94e + 00 - 5.45e + 08± 5.38e + 09 = 3.27e + 01± 8.31e + 00 =
f8 2.03e + 01 ± 1.36e − 01 2.05e + 01± 1.06e − 01 + 2.03e + 01± 1.32e − 01 = 2.04e + 01± 7.66e − 02 +
f9 3.59e + 00 ± 1.03e + 00 2.37e + 00± 1.41e + 00 - 1.50e + 01± 3.65e + 00 + 4.98e + 00± 9.13e − 01 +
f10 1.24e − 02 ± 1.33e − 02 1.25e − 01± 9.20e − 02 + 1.33e − 02± 1.39e − 02 = 1.47e + 00± 6.44e − 01 +
f11 3.57e + 00 ± 1.46e + 00 2.48e + 00± 1.61e + 00 - 2.31e + 02± 2.67e + 02 + 1.97e + 00± 1.18e + 00 -
f12 1.29e + 01 ± 5.36e + 00 1.06e + 01± 4.76e + 00 - 3.49e + 02± 3.81e + 02 + 2.64e + 01± 7.93e + 00 +
f13 2.56e + 01 ± 1.07e + 01 2.01e + 01± 7.94e + 00 - 2.94e + 02± 3.99e + 02 + 3.56e + 01± 8.30e + 00 +
f14 1.02e + 02 ± 7.32e + 01 1.25e + 02± 1.12e + 02 = 1.88e + 03± 4.25e + 02 + 5.27e + 01± 3.86e + 01 -
f15 6.17e + 02 ± 1.72e + 02 7.26e + 02± 2.61e + 02 + 1.80e + 03± 3.92e + 02 + 8.92e + 02± 2.18e + 02 +
f16 1.64e − 01 ± 7.49e − 02 5.43e − 01± 4.49e − 01 + 4.51e − 01± 5.06e − 01 + 1.18e + 00± 2.19e − 01 +
f17 1.04e + 01 ± 3.70e + 00 1.32e + 01± 1.85e + 00 + 9.55e + 02± 3.42e + 02 + 1.60e + 01± 2.07e + 00 +
f18 2.98e + 01 ± 6.10e + 00 1.93e + 01± 4.67e + 00 - 9.01e + 02± 3.10e + 02 + 5.41e + 01± 6.33e + 00 +
f19 8.14e − 01 ± 2.71e − 01 6.44e − 01± 2.09e − 01 - 1.19e + 00± 5.00e − 01 + 7.65e − 01± 2.52e − 01 =
f20 4.16e + 00 ± 3.95e − 01 2.87e + 00± 5.25e − 01 - 4.68e + 00± 3.79e − 01 + 3.50e + 00± 1.96e − 01 -
f21 1.61e + 02 ± 5.97e + 01 3.98e + 02± 1.99e + 01 + 3.68e + 02± 8.71e + 01 + 3.73e + 02± 6.75e + 01 +
f22 2.44e + 02 ± 1.07e + 02 1.33e + 02± 1.04e + 02 - 2.32e + 03± 4.25e + 02 + 7.27e + 01± 4.98e + 01 -
f23 8.35e + 02 ± 1.89e + 02 8.82e + 02± 3.08e + 02 = 2.25e + 03± 4.48e + 02 + 1.15e + 03± 2.58e + 02 +
f24 1.19e + 02 ± 5.63e + 00 2.02e + 02± 1.56e + 01 + 3.83e + 02± 1.57e + 02 + 2.01e + 02± 2.54e + 01 +
f25 1.93e + 02 ± 3.39e + 01 2.00e + 02± 1.23e + 01 + 2.62e + 02± 4.92e + 01 + 2.12e + 02± 1.09e + 01 +
f26 1.61e + 02 ± 4.02e + 01 1.47e + 02± 4.36e + 01 - 2.57e + 02± 1.13e + 02 + 1.58e + 02± 2.40e + 01 =
f27 3.13e + 02 ± 2.27e + 01 3.06e + 02± 2.76e + 01 - 4.23e + 02± 1.35e + 02 + 4.27e + 02± 4.91e + 01 +
f28 2.06e + 02 ± 1.06e + 02 3.07e + 02± 5.78e + 01 = 1.21e + 03± 1.21e + 03 + 3.01e + 02± 1.28e + 02 +

TABLE VII. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE=CMA-ES-RIS) FOR CMA-ES-RIS
AGAINST STATE-OF-THE-ART ALGORITHMS IN 30D

CMA-ES-RIS MDE-pBX CMA-ES CCPSO2
f1 0.00e + 00 ± 1.68e − 13 0.00e + 00± 4.09e − 13 = 0.00e + 00± 5.57e − 14 = 2.27e − 13± 1.21e − 12 +
f2 0.00e + 00 ± 1.83e − 13 9.56e + 04± 6.16e + 04 + 0.00e + 00± 7.88e − 14 = 9.95e + 05± 5.24e + 05 +
f3 2.24e + 03 ± 1.09e + 04 1.80e + 07± 3.12e + 07 + 1.53e + 01± 1.23e + 02 - 5.59e + 08± 5.57e + 08 +
f4 0.00e + 00 ± 1.68e − 13 1.32e + 01± 5.46e + 01 + 0.00e + 00± 5.08e − 14 = 5.57e + 04± 2.06e + 04 +
f5 2.88e − 10 ± 4.04e − 10 1.14e − 13± 8.35e − 13 - 1.14e − 13± 1.14e − 14 - 2.62e − 08± 6.05e − 08 +
f6 6.94e − 04 ± 1.99e − 03 1.99e + 01± 2.22e + 01 + 3.05e + 00± 8.33e + 00 + 2.19e + 01± 2.27e + 01 +
f7 4.48e + 01 ± 2.93e + 01 5.70e + 01± 1.77e + 01 + 9.83e + 03± 6.44e + 04 = 1.15e + 02± 3.11e + 01 +
f8 2.09e + 01 ± 8.11e − 02 2.11e + 01± 5.94e − 02 + 2.09e + 01± 6.66e − 02 + 2.10e + 01± 4.60e − 02 +
f9 2.37e + 01 ± 1.93e + 00 2.22e + 01± 4.80e + 00 - 4.45e + 01± 6.99e + 00 + 2.84e + 01± 2.08e + 00 +
f10 8.31e − 03 ± 5.41e − 03 1.64e − 01± 1.20e − 01 + 1.73e − 02± 1.25e − 02 + 1.48e − 01± 6.90e − 02 +
f11 2.54e + 01 ± 6.30e + 00 4.62e + 01± 1.44e + 01 + 9.47e + 01± 2.36e + 02 + 1.19e − 01± 2.90e − 01 -
f12 7.94e + 01 ± 4.35e + 01 6.94e + 01± 2.00e + 01 = 7.11e + 02± 9.66e + 02 = 2.12e + 02± 5.24e + 01 +
f13 1.56e + 02 ± 5.36e + 01 1.49e + 02± 3.66e + 01 = 1.64e + 03± 1.66e + 03 + 2.44e + 02± 3.44e + 01 +
f14 7.92e + 02 ± 2.19e + 02 1.17e + 03± 3.95e + 02 + 5.21e + 03± 7.37e + 02 + 4.48e + 00± 2.87e + 00 -
f15 3.13e + 03 ± 4.53e + 02 3.95e + 03± 6.57e + 02 + 5.37e + 03± 6.73e + 02 + 3.85e + 03± 4.52e + 02 +
f16 1.07e − 01 ± 6.71e − 02 1.25e + 00± 6.19e − 01 + 1.26e − 01± 8.87e − 02 = 2.16e + 00± 3.76e − 01 +
f17 5.50e + 01 ± 5.19e + 00 7.05e + 01± 1.24e + 01 + 3.95e + 03± 7.89e + 02 + 3.07e + 01± 3.03e + 00 -
f18 1.89e + 02 ± 2.71e + 01 8.26e + 01± 1.89e + 01 - 4.23e + 03± 8.31e + 02 + 2.31e + 02± 5.43e + 01 +
f19 2.80e + 00 ± 6.35e − 01 9.54e + 00± 5.54e + 00 + 3.66e + 00± 9.52e − 01 + 7.77e − 01± 1.58e − 01 -
f20 1.43e + 01 ± 5.69e − 01 1.07e + 01± 7.75e − 01 - 1.50e + 01± 6.45e − 02 + 1.35e + 01± 5.50e − 01 -
f21 1.86e + 02 ± 3.97e + 01 3.40e + 02± 7.62e + 01 + 3.05e + 02± 9.01e + 01 + 2.37e + 02± 6.71e + 01 +
f22 1.17e + 03 ± 2.90e + 02 1.17e + 03± 4.92e + 02 = 6.97e + 03± 1.06e + 03 + 9.87e + 01± 6.70e + 01 -
f23 4.03e + 03 ± 5.38e + 02 4.70e + 03± 7.70e + 02 + 6.76e + 03± 6.82e + 02 + 4.99e + 03± 6.31e + 02 +
f24 2.59e + 02 ± 1.74e + 01 2.31e + 02± 8.60e + 00 - 8.19e + 02± 6.15e + 02 + 2.80e + 02± 6.34e + 00 +
f25 2.82e + 02 ± 8.41e + 00 2.79e + 02± 1.38e + 01 - 3.46e + 02± 1.45e + 02 + 2.98e + 02± 6.94e + 00 +
f26 1.97e + 02 ± 1.20e + 01 2.26e + 02± 5.15e + 01 + 5.51e + 02± 5.14e + 02 + 2.00e + 02± 6.76e − 01 +
f27 7.49e + 02 ± 1.85e + 02 6.50e + 02± 1.04e + 02 - 8.53e + 02± 2.42e + 02 = 1.04e + 03± 8.09e + 01 +
f28 5.39e + 02 ± 1.32e + 03 3.09e + 02± 1.50e + 02 - 1.96e + 03± 3.40e + 03 = 4.35e + 02± 5.10e + 02 -

TABLE VIII. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REFERENCE=CMA-ES-RIS) FOR CMA-ES-RIS
AGAINST STATE-OF-THE-ART ALGORITHMS IN 50D

CMA-ES-RIS MDE-pBX CMA-ES CCPSO2
f1 2.27e − 13 ± 0.00e + 00 1.11e − 11± 7.68e − 11 + 2.27e − 13± 0.00e + 00 = 6.82e − 13± 1.31e − 12 +
f2 2.27e − 13 ± 0.00e + 00 4.37e + 05± 1.64e + 05 + 2.27e − 13± 0.00e + 00 = 1.85e + 06± 9.33e + 05 +
f3 2.83e + 05 ± 7.80e + 05 8.45e + 07± 1.46e + 08 + 9.64e + 02± 4.49e + 03 - 1.98e + 09± 2.09e + 09 +
f4 2.27e − 13 ± 0.00e + 00 3.05e + 01± 6.62e + 01 + 2.27e − 13± 0.00e + 00 = 1.00e + 05± 3.57e + 04 +
f5 3.54e − 08 ± 1.44e − 08 1.93e − 11± 9.76e − 11 - 6.82e − 13± 1.57e − 12 - 2.70e − 10± 8.03e − 10 -
f6 9.51e + 00 ± 1.41e + 01 5.48e + 01± 2.12e + 01 + 4.32e + 01± 7.10e + 00 + 4.35e + 01± 1.36e + 01 +
f7 4.81e + 01 ± 2.16e + 01 6.59e + 01± 1.06e + 01 + 4.19e + 01± 1.70e + 01 = 1.37e + 02± 2.31e + 01 +
f8 2.10e + 01 ± 6.02e − 02 2.12e + 01± 4.44e − 02 + 2.11e + 01± 9.75e − 02 + 2.11e + 01± 4.49e − 02 +
f9 4.72e + 01 ± 2.76e + 00 4.32e + 01± 7.71e + 00 - 7.66e + 01± 7.77e + 00 + 5.79e + 01± 4.39e + 00 +
f10 8.60e − 03 ± 5.86e − 03 1.34e − 01± 1.23e − 01 + 2.24e − 02± 1.49e − 02 + 1.24e − 01± 4.62e − 02 +
f11 5.36e + 01 ± 1.31e + 01 1.24e + 02± 2.87e + 01 + 2.19e + 02± 4.56e + 02 + 4.31e − 01± 5.74e − 01 -
f12 2.66e + 02 ± 1.02e + 02 1.58e + 02± 3.25e + 01 - 2.25e + 03± 1.37e + 03 + 4.46e + 02± 7.92e + 01 +
f13 4.56e + 02 ± 8.54e + 01 3.24e + 02± 4.74e + 01 - 3.36e + 03± 1.09e + 03 + 5.49e + 02± 6.67e + 01 +
f14 1.49e + 03 ± 3.07e + 02 2.65e + 03± 8.86e + 02 + 8.82e + 03± 1.04e + 03 + 6.45e + 00± 3.20e + 00 -
f15 6.30e + 03 ± 6.74e + 02 7.46e + 03± 7.95e + 02 + 9.09e + 03± 9.43e + 02 + 7.95e + 03± 7.11e + 02 +
f16 8.66e − 02 ± 4.20e − 02 1.75e + 00± 7.40e − 01 + 8.01e − 02± 4.72e − 02 = 2.39e + 00± 5.90e − 01 +
f17 1.02e + 02 ± 1.04e + 01 1.75e + 02± 3.72e + 01 + 6.97e + 03± 1.07e + 03 + 5.14e + 01± 2.84e − 01 -
f18 4.18e + 02 ± 5.24e + 01 1.85e + 02± 3.40e + 01 - 7.08e + 03± 9.14e + 02 + 4.94e + 02± 1.08e + 02 +
f19 5.04e + 00 ± 9.33e − 01 4.25e + 01± 2.66e + 01 + 6.32e + 00± 1.18e + 00 + 1.40e + 00± 2.19e − 01 -
f20 2.43e + 01 ± 5.49e − 01 2.00e + 01± 9.04e − 01 - 2.50e + 01± 9.73e − 02 + 2.28e + 01± 7.85e − 01 -
f21 2.85e + 02 ± 2.20e + 02 9.22e + 02± 3.06e + 02 + 8.12e + 02± 3.73e + 02 + 3.27e + 02± 2.64e + 02 =
f22 2.39e + 03 ± 3.67e + 02 3.09e + 03± 9.98e + 02 + 1.19e + 04± 1.26e + 03 + 7.58e + 01± 8.58e + 01 -
f23 8.37e + 03 ± 1.01e + 03 8.88e + 03± 1.20e + 03 + 1.18e + 04± 8.52e + 02 + 1.05e + 04± 1.11e + 03 +
f24 3.22e + 02 ± 1.95e + 01 2.87e + 02± 1.47e + 01 - 1.64e + 03± 1.05e + 03 + 3.56e + 02± 9.89e + 00 +
f25 3.66e + 02 ± 9.94e + 00 3.69e + 02± 1.78e + 01 = 4.94e + 02± 1.88e + 02 + 3.96e + 02± 1.19e + 01 +
f26 2.00e + 02 ± 3.25e − 02 3.50e + 02± 7.93e + 01 + 6.04e + 02± 7.11e + 02 + 2.09e + 02± 3.92e + 01 +
f27 1.25e + 03 ± 2.08e + 02 1.24e + 03± 1.56e + 02 = 1.28e + 03± 2.51e + 02 = 1.79e + 03± 8.78e + 01 +
f28 1.24e + 03 ± 1.53e + 03 4.33e + 02± 3.26e + 02 = 3.27e + 03± 5.60e + 03 = 6.33e + 02± 8.95e + 02 -
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Abstract—One of the main challenges in algorithmics in gen-
eral, and in Memetic Computing, in particular, is the automatic
design of search algorithms. A recent advance in this direction (in
terms of continuous problems) is the development of a software
prototype that builds up an algorithm based upon a problem
analysis of its separability. This prototype has been called the
Separability Prototype for Automatic Memes (SPAM). This article
modifies the SPAM by incorporating within it an adaptive model
used in hyper-heuristics for tackling optimization problems. This
model, namely Adaptive Operator Selection (AOS), rewards at
run time the most promising heuristics/memes so that they are
more likely to be used in the following stages of the search process.
The resulting framework, here referred to as SPAM-AOS, has
been tested on various benchmark problems and compared with
modern algorithms representing the-state-of-the-art of search for
continuous problems. Numerical results show that the proposed
SPAM-AOS is a promising framework that outperforms the
original SPAM and other modern algorithms. Most importantly,
this study shows how certain areas of Memetic Computing and
Hyper-heuristics are very closely related topics and it also shows
that their combination can lead to the development of powerful
algorithmic frameworks.

I. INTRODUCTION

The No Free Lunch Theorems (NFLTs) [1] state that,
under certain hypotheses, the performance of any pair of
algorithms A and B averaged over all possible problems is the
same. The hypotheses of the NFLTs are that the algorithms
are non-revisiting and that the decision space is discrete.
The satisfaction of these hypotheses is often non-realistic.
For example, Auger and Teytaud [2] show that NFLTs are
not valid for continuous problems while Poli and Graff [3]
show that the NFLTs are not valid in meta-spaces, i.e. the
space of operators. Nonetheless, NFLTs has been an extremely
important result for the computer science community as it
changed the landscape of search methodology research. More
specifically, until the 1990s, many researchers were attempting
to define a “super-algorithm” that is an algorithm which is
superior to all the other algorithms over all problems, see e.g.
[4]. After the publication of the NFLTs, researchers had to
radically change their way of thinking. The search algorithm
became a domain specific solver. The problem can be seen
as the starting point for an algorithmic design process whose
outcome is a procedure that addresses the features of that given
problem, see e.g. [5], [6], and [7].

Since a problem change would result in a new design
(and thus human effort), some research has been oriented

towards a design of “flexible” search algorithm, i.e. those
algorithms that change their features and adapt to (usually
slightly) diverse problems hence displaying a reasonable good
performance on an array of problems without the need of a
major human intervention from the algorithmic designer, see
[8]. This flexibility is usually achieved by means of the use
of multiple algorithmic operators and an adaptive system that
coordinates these operators, see e.g. [9] and [10]. The main
idea is that multiple diverse algorithmic operators compensate
for each other with their search logics. In this way, the
algorithmic framework that employs multiple operators can
reliably and robustly tackle various problem features, thus
adapting to a new problem. This idea is the backbone of
two algorithmic philosophies, Hyper-heuristics and Memetic
Computing.

A hyper-heuristic is an algorithm composed of multiple
algorithms coordinated by another software component. Usu-
ally, the latter incorporates a machine learning technique and
acts as a supervisor structure that learns which algorithms are
the most suitable for a given problem. An extensive literature
on this topic is available, for example, see [11] and [12].
More recently, graph colouring heuristics have been hybridized
with a random ordering heuristic [13]. Extensive discussions
about advances in hyper-heuristics are given in [14]–[17]. The
most challenging part of the hyper-heuristic design is the logic
behind the coordination of the algorithms. A classical approach
consists of assigning a score and rewarding the most promising
heuristics: the so called choice function [11]. Recently, a wide
range of diverse approaches have been proposed. Many of
these approaches are based on reinforcement learning in a
stand alone and combined fashion, see for example [12], [18]–
[20] and [21]. Reinforcement learning, making use of memory-
based mechanisms has also been proposed [22]. Modern hyper-
heuristics also make use of multi-agent operators, see [23]
and [24]. A competition for hyper-heuristic development was
held in 2011 based on a framework called HyFlex [25].
This competition generated several effective hyper-heuristic
methods1, see for example [26].

The concept of the hyper-heuristic is explored also under
the name of algorithm portfolios where the emphasis is placed
upon the diversity of the available algorithms that are available
to compose the entire framework. Algorithms of this kind can
be designed using heuristic rules for the coordination, see [27]

1See http://www.asap.cs.nott.ac.uk/external/chesc2011/
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and [28]. A famous portfolio platform oriented towards the
solution of the propositional satisfiability problem is called
SATzilla, see [29] and [30]. Among the several studies that
have been carried out on this platform, we highlight here the
work on the automatic coordination system in [31] and on the
prediction of the algorithm run time [32].

Memetic Computing (MC) is an area that investigates
algorithmic structures that include multiple interacting het-
erogeneous operators. The interaction (coordination) amongst
operators allows the proper functioning of the entire frame-
work, see [33] and [8]. Clearly, there is a major overlap
between hyper-heuristics and many areas of MC. However,
the two concepts can be distinguished for a philosophical
point that has some important implications in the algorithmic
implementation. While a hyper-heuristic can be seen as a
list of search methods and a component performing their
coordination, a MC algorithm can be viewed as a whole
algorithm composed of many parts in an unspecified way. In
addition, in a hyper-heuristic, a unit representing the external
framework can be thought of as a ‘whole’ search method with
a ‘budget’. In contrast, the unit of a MC structure can be seen
as an algorithmic operator, that is a tuple composed of search
move and a selection logic, see [34] and [35]. In other words,
the unit representing many MC structures can (as a generalized
statement) be viewed as being much ‘smaller’ than the unit
composing a hyper-heuristic.

In many areas of MC, as well as for hyper-heuristics,
the coordination between operators is the hardest and most
challenging aspect in guaranteeing a good algorithmic per-
formance. An example of meme coordination within memetic
frameworks is meta-Lamarckian learning, [36], where the local
search components are rewarded on the basis of their success
history. In [37] [38], and [39], the coordination of the operators
relies on evolution. The operators are encoded within the
solution (self-adaptation) or in in a parallel population linked
to the solutions (co-evolution). The operators related to the
fittest individuals are selected for the subsequent generations.
Another way to perform the coordination of the operators
is by means of a control on the population diversity or its
estimates [40]–[42].

All these adaptive optimization algorithms coordinate the
sub-algorithms at runtime on the basis of feedback given by the
algorithmic functioning. In most cases, this feedback is based
on the success of the sub-algorithm/local search/algorithmic
operator. Recent studies in MC propose a different logic: the
algorithm is automatically built up on the basis of an analysis
carried out on the problem and aiming at extracting its features.
These studies at first focused on elementary structures, namely
sequential and parallel [43], [44]. Subsequently a first working
prototype of automatic design based on problem analysis
restricted to the separability, namely Separability Prototype for
Automatic Memes (SPAM), was proposed in [35].

This paper, whilst considering the algorithmic operators
in [35], proposes to coordinate them by means of a hyper-
heuristic rule. More specifically, we adopt the general concept
of adaptive operator selection [18], [45]–[48] and incorporate
it in the core structure of the SPAM algorithm. In this way, the
resulting framework has the structure and operators of SPAM
but, at run time, the selection of the components is intended

to adapt progressively , on the basis of a success criterion, to
the requirements of the problem.

The remainder of this paper is structured in the following
way. Section II briefly illustrates the logic and the structure of
the SPAM. Section III describes the proposed modified SPAM
with hyper-heuristic coordination of the operators. Section IV
displays the comparative results and the performance of the
proposed algorithm with respect to the state-of-the-art. Section
V gives the conclusions of this work.

II. SEPARABILITY PROTOTYPE FOR AUTOMATIC MEMES

The SPAM algorithm is a prototype of a large and am-
bitious project, that is a software platform for the automatic
design of search methods in continuous optimization. This
platform, currently under development, will analyze a given
problem, in order to extract its features. These features will
then be used to design the algorithm by selecting, combining,
and linking the suitable algorithmic operators.

Before entering into the implementation details, let us de-
fine the notation used in this paper. Without loss of generality,
we will refer to the minimization problem of an objective
function (or fitness) f(x), where the candidate solution x is
a vector of n design variables (or genes) in a decision space
D. Thus, the optimization problem considered in this paper
consists of the detection of that solution x∗ ∈ D such that
f(x∗) < f(x), and this is valid ∀x ∈ D. Array variables are
highlighted in bold face throughout this paper.

The SPAM algorithm is composed of two local search
operators connected in parallel, see [44]. The first operator,
here indicated with S, is a local search algorithm which deals
with a single solution along its n axes, i.e. it separately perturbs
each design variable. This meme can be viewed as a fairly
straightforward hill-descent algorithm. It was previously used
in [49] within a memetic structure.

The S implementation requires a generic input solution x
and a trial solution xt. S perturbs the candidate by computing,
for each coordinate i (each gene), xt

i = xi − ξ, where ξ
is the exploratory radius. Subsequently, if xt outperforms x,
the solution x is updated (the values of xt are copied in it),
otherwise a half step in the opposite direction is performed:
xt

i = xi +
ξ
2 . Again, xt replaces x if it outperforms it. If there

is no update, then the exploration was unsuccessful. In this
case, the radius ξ is halved. This is repeated for all the design
variables. It has to be noted that the initial value of radius ξ
is usually fixed and proportionate to the range of optimization
space bounds (here ξ in fixed to 0.4). For the sake of clarity,
Algorithm 1 describes the working principles of the S operator.

The second operator is the Rosenbrock algorithm (R) [50].
This operator, has been shown to always converge to a local
optimum, under specific conditions [51]. At the beginning
of the process, R is similar to S as it explores each of
the n directions, by perturbing the input solution x with an
initial step size vector h. A matrix A is initialized as the
identity matrix. While ever new improvements are found, for
j = 1, 2, . . . , n, a new trial point xt is generated by perturbing
the ith design variable of solution x in the following way:

xt
i = xi + hj · Ai,j (1)



Algorithm 1 Pseudo-code of the S operator.
1: INPUT x
2: while condition on the local computational budget do
3: for i = 1 : n do
4: xt

i = xi − ξ

5: if f
(
xt

)
≤ f (x) then

6: x = xt

7: else
8: xt

i = xi + ξ
2

9: if f
(
xt

)
≤ f (x) then

10: x = xt

11: end if
12: end if
13: end for
14: if x == xt then
15: ξ = ξ

2
16: end if
17: end while
18: OUTPUT x

for i = 1, 2, . . . , n. When successful, x is updated and the
step size is increased by a factor α (hj = α · hj), otherwise
it is decreased by means of a factor β then the opposite
direction will be considered (hj = −β · hj). We repeat this
procedure until an improvement of solution x is found. After
every success has been determined and examined in each base
direction, then the Gram-Schmidt orthogonalization procedure
is used to rotate the coordinate system towards the approxi-
mated gradient. This operation yields an updated version of
the matrix A. After this, the step size vector h is reinitialized
and the process is repeated, employing the rotated coordinate
system, and changing the value of x according to Eq. (1).
It is important to note that, the use of a rotated coordinate
system means that the trial generation mechanism corresponds
to a diagonal move by following the direction determined by
the gradient. The termination criterion of R is determined by
two conditions. The first criterion is based on the minimum
element of the vector h. The second criterion concerns the
minimum difference between xt and x design variables. In
formal terms, R is run until the following condition is true:
min(|h|) > ε OR min(|xt − x|) > ε, where min() is the
minimum vector element. If there is no improvement at all,
only the first condition is considered2.

These two local search operators are clearly very diverse
in terms of the search logic. Whilst S attempts to optimize
the problem by perturbing the axes separately (moves along
the axes), R attempts to follow the directions of the gradient,
hence performing diagonal moves.

The SPAM is based on the idea that (due to their features),
S is efficient for tackling separable problems whilst R should
be used only when the problem is not separable. Furthermore,
the separability of a problem is considered in [35] as a fuzzy
property of optimization problems. More specifically, it is
possible to consider a problem as being separable to a certain
degree. In this light, a problem analyzer has been designed
to extract the degree of separability of the given problem.
The degree of separability is an index between 0 and 1 that
results from the problem analysis phase. On the basis of this
parameter, an activation probability is given to S and R. Thus,

2Note that, the parameter values are fixed to α = 2, β = 0.5, ε = 10−5

and the initial values of hj to hj = 0.1, j = 1, 2, . . . , n.

a fully separable problem (e.g. the sphere function) will be
solved only by S activations. In contrast, in the case of a highly
non separable problem, the entire budget or a large portion of
it is devoted to R. In the case of intermediate features, the
budget will be shared between the two local searchers.

The parameter representing the degree of separability is
calculated, for each problem, at the beginning of the search, by
letting the Covariance Matrix Adaptation Evolution Strategy
(CMAES) [52] perform some optimization steps and then
manipulate the estimated covariance matrix. More specifically,
from the covariance matrix, the Pearson correlation matrix |ρ|
is computed, and its elements are averaged and normalized in
order to extract the index that describes the separability of the
problem. For implementation details, see [35].

III. THE PROPOSED FRAMEWORK

As discussed previously, a problem analysis might reveal
useful information on selecting an appropriate operator for the
problem at hand. However, the selection of the “most suitable”
operator might be a very challenging task, especially in cases
where the problem analysis is not insightful enough. To
alleviate the problem of selecting the most “suitable” operator
a priori, we incorporate an Adaptive Operator Selection (AOS)
model in SPAM’s structure to adaptively choose the most
preferable operator at hand. This section briefly describes the
main algorithmic concepts behind the proposed framework
SPAM-AOS, (SPAM with an Adaptive Operator Selection
model).

The SPAM-AOS framework incorporates two main con-
cepts, a credit assignment module C and an adaptive oper-
ator selection model M, or a selective hyper-heuristic. The
main role of the former is to estimate the quality of the
applied operators based on feedback from the search process,
whilst the latter adopts the estimated qualities to adaptively
select which search operator to apply at the current stage.
Intuitively, the model will select the most successful operator
based on the historical information that has been acquired by
the search process until the current stage. Several operator
selection models have been proposed in the literature which
are inspired by similar concepts from different scientific fields.
Each model exhibits different characteristics and dynamics
that are based on the acquired feedback during the search
process. The proposed framework is a general strategy that
is able to adopt any of the aforementioned adaptive operator
selection models. Representative examples of such models
include: probability matching [47], [48], adaptive pursuit [47],
[48], statistical based models like the multinomial distribution
with history forgetting [45], [46], and reinforcement learning
approaches [18], [53]. However, for simplicity (and due to
space limitations), in this paper we incorporate the well-known
and widely used Probability Matching model [47], [48]. Future
work will include extensive comparisons between the most
representative models.

The credit assignment module and the adaptive operator
selection model used in this paper are elucidated in the
following sections.

A. Credit assignment module

The main role of a credit assignment module is to assign a
representative score, or credit, that rewards the most “suitable”



operator at the current search stage. For each available oper-
ator we adopt as credit the simple fitness improvement [18],
[45] between the current solution xp and the best solution
ever found by the algorithm xe (the elite solution). Thereby,
the fitness improvement ηa of an operator a can be easily
calculated according to:

ηa = |f(xp) − f(xe)| (2)

Notice that the credit equals zero, if no improvement is
achieved.

In general, various different reward approaches can be used
at this point, such as the latest reward (instantaneous), the
average or a ranked-based reward [18]. However some of them
tend to be unstable and noisy estimations of credit due to
the stochastic nature of the search process. To alleviate this
drawback, we estimate the empirical quality (or credit) of an
operator by utilizing the average value of a sliding window of
its latest w rewards. In detail, suppose that we have a pool of
κ available operators, A = {a1, a2, . . . , aκ}; let Si be a set of
the latest w fitness improvement rewards (ηai ) achieved by the
operator ai during the time step t of the algorithm. We adopt
as the final credit assignment value rai

(t), the average reward
of the sliding window Sai

, which can be calculated according
to:

rai(t) =

∑|Sai
|

j=1 Sai(j)

|Sai |
(3)

where |Sai | denotes the cardinality of the set Sai .

B. Adaptive Operator Selection model: Probability Matching

We utilize, as the adaptive operator, selection model the
simple and well-known Probability Matching (PM) [18], [47],
[48]. Intuitively, PM updates the selection probability of a
specific operator proportionally to its empirical quality with
respect to the others. In detail, suppose we have a set of
κ available operators A = {a1, a2, . . . , aκ} and a selection
probability vector P (t) = {p1(t), p2(t), . . . , pκ(t)}. Initially,
all operators have equal probability of being selected (pi =
1/κ, ∀i ∈ {1, 2, . . . , κ}). After the application of an operator
on a solution vector, a reward (rai

(t)) is calculated based
on the credit assignment module. The environment in which
the adaptation procedure operates is non-stationary and the
estimation of the empirical quality can be more reliable if
the newest rewards influence the empirical quality more than
the older ones. Thereby, PM estimates the empirical quality
qai(t) of the operator ai according to the following relaxation
mechanism:

qai
(t + 1) = qai

(t) + γ(rai
(t) − qai

(t)) (4)

where γ ∈ (0, 1] is the adaptation rate (γ is fixed to 0.1) [18],
[47], [48].

Based on the quality estimate value of the operator ai,
PM updates its selection probability (pai ) according to the
following formula:

pai
(t + 1) = pmin + (1 − κ · pmin)

qai(t + 1)∑κ
i=1 qai

(t + 1)
(5)

where pmin ∈ [0, 1] denotes the minimal probability value
of each operator, to ensure that the chances of applying

Algorithm 2 The general SPAM-AOS algorithmic scheme
1: Perform problem analysis as in [35] and calculate xe.
2: INPUT: an initial solution xe, a credit assignment module C, and an AOS

model M.
3: Initialize the AOS model M and the credit assignment module C.
4: xp = xe

5: while the remaining budget is available do
6: Select kstr based on the AOS model M
7: if kstr = 1 then
8: Apply the S operator to xp

9: else
10: Apply the R operator to xp

11: end if
12: Update credit assignment module C based on the fitness improve-

ment of xe, xp. (based on Eqs. (2), (3))
13: Update the AOS model M (based on Eqs. (4), (5) )
14: if the operator succeeded at improving upon xe performance then
15: xe = xp

16: end if
17: if the operator failed at improving upon xe performance and the

selected operator is the same that failed then
18: Perturb xp according to an exponential crossover perturbation [35].
19: if xp has a better performance against xe then
20: xe = xp

21: end if
22: end if
23: end while

each operator will not vanish [47], [48]. Having calculated
the probabilities of all operators in the pool, we employ a
stochastic selection procedure (a simple roulette wheel) to
select which operator to apply.

C. SPAM with an adaptive operator selection model

Having defined the SPAM algorithm and the two main
concepts of the proposed framework, we proceed with the
description of the proposed approach.

More specifically, the algorithmic framework of SPAM-
AOS is strongly based on SPAM’s structure. The proposed
general algorithmic framework is briefly demonstrated in Algo-
rithm 2. Initially the separability problem analysis is performed
(line 1 of Alg. 2) and the best located solution or elite solution,
xe, is used as the initial point of the algorithm (line 2 of
Alg. 2). As previously described, the separability problem
analysis involves the application of the CMAES algorithm for
a limited budget of function evaluations. Next, an initialization
process of the credit assignment module C and the AOS model
M is performed, if necessary (line 3 of Alg. 2). C initializes
the data structures for the sliding windows and M assigns
equal probabilities to all the used operators. For each step
of the algorithm, we employ an AOS model M to select
which operator kstr to apply on the xp solution. In the general
case, we might have a pool of κ available search operators,
i.e., kstr ∈ {1, 2, . . . , κ}. As in SPAM, we incorporate the
S and R operators (κ = 2) and select one of them accord-
ingly (lines 6–11 of Alg. 2). The current version of SPAM-
AOS incorporates the PM model described previously, which
stochastically selects kstr. After the application of the kstr
operator, we score it based on the credit assignment module C,
which appropriately rewards the most suitable operator. Here,
we utilize a reward based on the fitness improvement between
the resulting solution xp and the elite solution xe, (line 12 of
Alg. 2). Having calculated the reward of the applied operator,
we update its quality estimation value and the corresponding



selection probability based on Eqs. (4), (5) (line 13 of Alg. 2).
The remaining steps of the algorithm are similar to SPAM
(lines 14–22 of Alg. 2), i.e., we update the elite solution if
we have improved it and we apply an exponential crossover
perturbation strategy, if the applied operator failed to improve
the elite solution xe [35].

IV. NUMERICAL RESULTS

The proposed SPAM-AOS has been compared with the
original SPAM algorithm [35], the CCPSO2 [54], and the
MDE-pBX [55]. Their effectiveness is assessed on two bench-
mark suites that include scalable problems with different
characteristics: the recently proposed CEC 2013 [56] (28
benchmark functions) and BBOB 2010 benchmark suites [57]
(25 benchmark functions). In this paper, we consider the 10,
30 and 50-dimensional versions of the CEC 2013 suite and the
100-dimensional versions of the BBOB 2010 suite. A detailed
description of the benchmarks can be found in the [56], [57].
It has to be noted that all considered algorithms use their
default parameter settings [35], [54], [55], whilst the proposed
SPAM-AOS utilizes its default parameter values as previously
described.

Throughout this section, we adopt the experimental pro-
tocol used in [35]. Specifically, for each algorithm and each
benchmark function, we conduct 100 independent runs. For
each run, a budget of maxFES = 5000 · D function eval-
uations is employed, where D is the dimensionality of the
problem. Tables I, II, III, and IV, show the results of our
experiments in terms of final average error and correspond-
ing standard deviation. A boldface font has been used to
indicate the best performing algorithm, for each problem. To
assess the statistical significance of the observed performance
differences, for each problem and each algorithm we apply
the non-parametric Wilcoxon rank sum test [58] between the
corresponding algorithm and the proposed SPAM-AOS. The
mark “+” denotes the cases where the null hypothesis is
rejected at the 5% significance level and SPAM-AOS performs
significantly better. Similarly, the mark “-” shows the rejection
of the null hypothesis at the 5% level of significance and
SPAM-AOS exhibits inferior performance. In the remaining
cases, which we mark with “=”, the null hypothesis is accepted
which indicates that the performance of the algorithms being
compared is statistically indistinguishable.

To this end, Tables I, II, III, and IV exhibit the extensive
experimental results of all algorithms on the 10, 30, 50-
dimensional CEC 2013 and on the 100-dimensional BBOB
2010 benchmark sets respectively. It can be clearly observed
that, in the majority of the cases, SPAM-AOS either signifi-
cantly outperforms the other algorithms or it behaves equally
well. There are some cases where it produces an inferior
performance (10-dimensional cases against the MDE-pBX al-
gorithm), but this behavior radically changes as the dimension-
ality increases. Specifically, the impact of the adaptive operator
selection approach on SPAM-AOS is evident since for the
majority of the cases the performance gains are significantly
better than the original SPAM algorithm. Similarly, comparing
SPAM-AOS with CCPSO2, we can observe that SPAM-AOS
exhibits superior performance in more than 60% of the tested
cases. MDE-pBX is better than SPAM-AOS in the majority of

the 10-dimensional CEC 2013 functions, but once more this
behavior radically changes in the remaining experiments.

Finally, to have a general statistical sense of the signifi-
cance of the algorithms across all problems and to alleviate the
problem of having Type I errors in multiple comparisons with a
higher probability, we employ the Holm-Bonferroni correction,
see [59]. As such, Table V reports the rankings of the algorithm
and the numerical results from the Holm-Bonferroni test.
Clearly, the performance differences between SPAM-AOS and
the other implemented algorithms are statistically significant.

TABLE V. HOLM-BONFERRONI PROCEDURE (REFERENCE:
SPAM-AOS, RANK = 2.94E+00)

j Optimizer Rank zj pj δ/j Hypothesis
1 MDE-pBX 2.56e+00 -2.86e+00 2.13e-03 5.00e-02 Rejected
2 SPAM 2.25e+00 -5.10e+00 1.67e-07 2.50e-02 Rejected
3 CCPSO2 2.18e+00 -5.65e+00 8.14e-09 1.67e-02 Rejected

To summarize the performance obtained by the imple-
mented algorithms, we provide a graphical illustration of their
overall performance across all benchmark functions used in
this suite of experiments. As such, we employ the Empirical
Cumulative Distribution Function (ECDF) graph of the nor-
malized performance. In detail, to be able to compare all al-
gorithms on different benchmark problems we normalize their
performance values per benchmark problem linearly in a com-
mon range, such as in [0, 1]. Note that, in the current setting,
performance is measured by the optimal objective value found
by an algorithm on one execution run. Thus, normalized per-
formance values close to zero indicate best performance, whilst
the performance becomes worse as the values increase to one.
Having calculated the normalized performance values of an
algorithm A over all benchmark functions, ECDF values can
be measured according to ECDF (x) = 1

n

∑n
i=1 I(−∞,x](xi),

where n is the number of benchmark functions times the num-
ber of independent executions of algorithm A per benchmark
function and I(−∞,x](·) is the indicator function which is equal
to one if xi ≤ x, and to zero otherwise. Intuitively, an ECDF
curve of an algorithm A depicts the empirical probability of
observing a performance value y that is less than or equal to
y. This enables a summarizing comparison between different
algorithms, since higher ECDF values for the same normalized
performance value indicate better performance.

Figure 1 illustrates the ECDF graph of the four imple-
mented algorithms across all benchmark sets considered in this
paper. It can be clearly observed that the SPAM-AOS algorithm
exhibits great potential across all benchmark functions, since
for the same performance value it always has higher ECDF
values against the other algorithms. As such, it is more likely
that it can provide better performance gains against the other
three algorithms. Regarding the overall performance of the re-
maining algorithms, SPAM comes second since, for the lower
normalized performance values, it exhibits higher cumulative
frequencies against CCPSO2 and MDE-pBX. Similarly, MDE-
pBX outperforms CCPSO2, since its ECDF curve values are
always higher than the corresponding ECDF values of the
CCPSO2 algorithm.

V. CONCLUSION

This paper proposes the integration of a technique nor-
mally used within hyper-heuristic frameworks within an MC



TABLE I. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REF.: SPAM-AOS) ON CEC2013 [56] IN 10 DIMENSIONS.
SPAM-AOS SPAM CCPSO2 MDE-pBX

f1 0.00e + 00 ± 0.00e + 00 0.00e + 00 ± 0.00e + 00 = 3.08e − 03 ± 1.05e − 02 + 0.00e + 00 ± 2.27e − 14 =
f2 0.00e + 00 ± 1.36e − 13 0.00e + 00 ± 0.00e + 00 = 1.80e + 06 ± 1.21e + 06 + 2.54e + 03 ± 5.07e + 03 +
f3 1.31e + 00 ± 3.50e + 00 1.08e + 02 ± 7.77e + 02 = 7.41e + 07 ± 1.12e + 08 + 1.41e + 05 ± 1.23e + 06 +
f4 0.00e + 00 ± 0.00e + 00 0.00e + 00 ± 0.00e + 00 = 1.05e + 04 ± 2.69e + 03 + 3.82e + 00 ± 3.15e + 01 +
f5 1.14e − 13 ± 6.63e − 14 3.46e − 10 ± 1.34e − 09 + 2.20e − 02 ± 6.13e − 02 + 0.00e + 00 ± 7.01e − 14 -
f6 4.11e + 00 ± 4.78e + 00 5.63e + 00 ± 4.78e + 00 + 4.67e + 00 ± 7.85e + 00 + 5.70e + 00 ± 4.83e + 00 =
f7 6.04e + 01 ± 6.04e + 01 7.57e + 10 ± 7.18e + 11 = 3.99e + 01 ± 1.26e + 01 = 7.37e + 00 ± 1.02e + 01 -
f8 2.04e + 01 ± 1.38e − 01 2.05e + 01 ± 1.22e − 01 + 2.04e + 01 ± 7.48e − 02 + 2.05e + 01 ± 9.69e − 02 +
f9 6.73e + 00 ± 1.72e + 00 1.42e + 01 ± 4.69e + 00 + 5.48e + 00 ± 8.99e − 01 - 2.16e + 00 ± 1.39e + 00 -
f10 1.48e − 02 ± 1.40e − 02 1.47e − 02 ± 1.40e − 02 = 1.93e + 00 ± 9.27e − 01 + 1.06e − 01 ± 8.03e − 02 +
f11 6.30e + 00 ± 2.86e + 00 1.67e + 01 ± 7.81e + 01 = 2.76e + 00 ± 1.85e + 00 - 2.89e + 00 ± 1.72e + 00 -
f12 1.80e + 01 ± 9.61e + 00 1.27e + 02 ± 2.01e + 02 + 3.39e + 01 ± 1.02e + 01 + 1.02e + 01 ± 4.53e + 00 -
f13 3.55e + 01 ± 1.52e + 01 2.83e + 02 ± 4.49e + 02 + 4.22e + 01 ± 8.88e + 00 + 1.94e + 01 ± 8.85e + 00 -
f14 2.18e + 02 ± 1.05e + 02 7.63e + 02 ± 6.39e + 02 + 8.67e + 01 ± 6.15e + 01 - 1.08e + 02 ± 9.77e + 01 -
f15 1.00e + 03 ± 3.65e + 02 1.64e + 03 ± 4.51e + 02 + 1.03e + 03 ± 2.70e + 02 = 7.56e + 02 ± 2.63e + 02 -
f16 2.92e − 01 ± 1.98e − 01 5.32e − 01 ± 6.39e − 01 + 1.31e + 00 ± 2.35e − 01 + 5.74e − 01 ± 4.62e − 01 +
f17 1.58e + 01 ± 4.28e + 00 2.19e + 02 ± 4.34e + 02 + 1.79e + 01 ± 2.64e + 00 + 1.32e + 01 ± 1.92e + 00 -
f18 4.17e + 01 ± 1.42e + 01 7.78e + 02 ± 5.07e + 02 + 5.82e + 01 ± 6.30e + 00 + 2.02e + 01 ± 5.18e + 00 -
f19 7.33e − 01 ± 3.44e − 01 9.20e − 01 ± 3.30e − 01 + 1.00e + 00 ± 3.69e − 01 + 6.57e − 01 ± 2.22e − 01 =
f20 4.11e + 00 ± 3.64e − 01 4.45e + 00 ± 4.82e − 01 + 3.59e + 00 ± 2.16e − 01 - 2.73e + 00 ± 6.04e − 01 -
f21 2.86e + 02 ± 1.26e + 02 3.25e + 02 ± 1.14e + 02 + 3.68e + 02 ± 6.68e + 01 + 3.98e + 02 ± 1.99e + 01 +
f22 3.34e + 02 ± 1.19e + 02 1.19e + 03 ± 8.95e + 02 + 1.23e + 02 ± 6.60e + 01 - 1.77e + 02 ± 1.37e + 02 -
f23 1.52e + 03 ± 4.16e + 02 2.23e + 03 ± 5.07e + 02 + 1.37e + 03 ± 2.82e + 02 - 8.43e + 02 ± 3.48e + 02 -
f24 1.93e + 02 ± 4.46e + 01 2.72e + 02 ± 1.43e + 02 + 2.11e + 02 ± 1.80e + 01 = 2.05e + 02 ± 5.21e + 00 +
f25 2.15e + 02 ± 1.90e + 01 2.52e + 02 ± 7.08e + 01 + 2.12e + 02 ± 1.46e + 01 - 2.01e + 02 ± 8.24e + 00 -
f26 1.67e + 02 ± 6.02e + 01 2.51e + 02 ± 1.45e + 02 + 1.71e + 02 ± 2.37e + 01 + 1.40e + 02 ± 4.16e + 01 -
f27 3.81e + 02 ± 7.32e + 01 4.24e + 02 ± 2.72e + 02 = 4.33e + 02 ± 5.71e + 01 + 3.04e + 02 ± 1.72e + 01 -
f28 2.92e + 02 ± 9.79e + 01 1.00e + 03 ± 1.14e + 03 + 4.01e + 02 ± 1.63e + 02 + 3.04e + 02 ± 5.53e + 01 +

TABLE II. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REF.: SPAM-AOS) ON CEC2013 [56] IN 30 DIMENSIONS.
SPAM-AOS SPAM CCPSO2 MDE-pBX

f1 0.00e + 00 ± 2.05e − 13 0.00e + 00 ± 2.01e − 13 = 1.36e − 12 ± 6.01e − 12 + 2.27e − 13 ± 4.86e − 13 +
f2 1.75e + 03 ± 1.90e + 03 1.58e + 03 ± 1.50e + 03 = 2.14e + 06 ± 1.04e + 06 + 2.70e + 05 ± 2.62e + 05 +
f3 7.88e + 05 ± 1.79e + 06 9.96e + 05 ± 1.94e + 06 = 1.13e + 09 ± 1.18e + 09 + 5.19e + 07 ± 1.18e + 08 +
f4 5.16e − 04 ± 4.54e − 03 4.05e − 02 ± 4.03e − 01 = 5.64e + 04 ± 2.09e + 04 + 3.49e + 02 ± 3.18e + 02 +
f5 1.14e − 13 ± 6.49e − 13 1.09e − 07 ± 1.00e − 06 + 3.04e − 07 ± 8.74e − 07 + 1.09e − 10 ± 1.00e − 09 +
f6 9.73e − 02 ± 4.74e − 01 4.80e − 01 ± 2.74e + 00 = 3.44e + 01 ± 2.78e + 01 + 3.41e + 01 ± 2.77e + 01 +
f7 4.00e + 01 ± 2.58e + 01 7.54e + 04 ± 7.50e + 05 = 1.19e + 02 ± 2.33e + 01 + 5.61e + 01 ± 1.90e + 01 +
f8 2.09e + 01 ± 7.13e − 02 2.10e + 01 ± 5.45e − 02 + 2.10e + 01 ± 5.44e − 02 + 2.10e + 01 ± 5.93e − 02 +
f9 3.00e + 01 ± 3.58e + 00 3.16e + 01 ± 5.34e + 00 + 3.02e + 01 ± 2.20e + 00 = 2.16e + 01 ± 4.36e + 00 -
f10 1.28e − 02 ± 7.93e − 03 1.01e − 02 ± 5.30e − 03 - 2.00e − 01 ± 9.45e − 02 + 1.81e − 01 ± 1.10e − 01 +
f11 2.94e + 01 ± 6.43e + 00 2.50e + 01 ± 6.22e + 00 - 5.76e − 01 ± 6.49e − 01 - 4.68e + 01 ± 1.54e + 01 +
f12 9.80e + 01 ± 6.27e + 01 3.34e + 02 ± 6.51e + 02 = 2.13e + 02 ± 5.62e + 01 + 6.91e + 01 ± 2.20e + 01 =
f13 1.99e + 02 ± 6.82e + 01 5.18e + 02 ± 9.98e + 02 = 2.58e + 02 ± 4.39e + 01 + 1.50e + 02 ± 3.56e + 01 -
f14 7.83e + 02 ± 2.03e + 02 1.85e + 03 ± 1.67e + 03 + 6.57e + 00 ± 3.69e + 00 - 1.20e + 03 ± 4.25e + 02 +
f15 4.78e + 03 ± 7.59e + 02 4.63e + 03 ± 8.62e + 02 = 4.03e + 03 ± 4.77e + 02 - 4.01e + 03 ± 7.00e + 02 -
f16 1.42e − 01 ± 1.23e − 01 1.26e − 01 ± 6.29e − 02 = 2.40e + 00 ± 4.03e − 01 + 1.32e + 00 ± 8.61e − 01 +
f17 5.71e + 01 ± 7.70e + 00 2.69e + 02 ± 8.25e + 02 + 3.13e + 01 ± 4.89e − 01 - 6.89e + 01 ± 1.24e + 01 +
f18 2.37e + 02 ± 5.44e + 01 8.63e + 02 ± 1.37e + 03 + 2.44e + 02 ± 5.78e + 01 = 8.31e + 01 ± 1.66e + 01 -
f19 2.64e + 00 ± 6.63e − 01 2.76e + 00 ± 8.35e − 01 = 8.55e − 01 ± 1.71e − 01 - 9.10e + 00 ± 4.94e + 00 +
f20 1.45e + 01 ± 5.14e − 01 1.46e + 01 ± 4.86e − 01 + 1.39e + 01 ± 4.52e − 01 - 1.09e + 01 ± 7.97e − 01 -
f21 2.40e + 02 ± 5.62e + 01 2.35e + 02 ± 5.54e + 01 = 2.58e + 02 ± 7.21e + 01 + 3.09e + 02 ± 7.63e + 01 +
f22 1.08e + 03 ± 3.02e + 02 2.37e + 03 ± 2.02e + 03 + 1.21e + 02 ± 7.28e + 01 - 1.11e + 03 ± 5.46e + 02 =
f23 6.05e + 03 ± 9.37e + 02 5.95e + 03 ± 1.04e + 03 = 5.26e + 03 ± 7.22e + 02 - 4.47e + 03 ± 7.32e + 02 -
f24 3.00e + 02 ± 1.88e + 02 3.20e + 02 ± 2.59e + 02 = 2.81e + 02 ± 1.08e + 01 - 2.31e + 02 ± 1.11e + 01 -
f25 2.94e + 02 ± 1.84e + 01 2.95e + 02 ± 1.75e + 01 = 3.03e + 02 ± 6.25e + 00 + 2.75e + 02 ± 1.55e + 01 -
f26 2.80e + 02 ± 8.66e + 01 3.07e + 02 ± 2.44e + 02 = 2.02e + 02 ± 4.53e + 00 = 2.16e + 02 ± 4.31e + 01 -
f27 8.27e + 02 ± 1.92e + 02 8.63e + 02 ± 2.08e + 02 = 1.07e + 03 ± 1.13e + 02 + 6.55e + 02 ± 1.13e + 02 -
f28 6.27e + 02 ± 1.36e + 03 1.04e + 03 ± 2.30e + 03 + 5.43e + 02 ± 5.77e + 02 - 3.11e + 02 ± 1.11e + 02 -

TABLE III. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REF.: SPAM-AOS) ON CEC2013 [56] IN 50 DIMENSIONS.
SPAM-AOS SPAM CCPSO2 MDE-pBX

f1 2.27e − 13 ± 0.00e + 00 2.27e − 13 ± 0.00e + 00 = 7.05e − 12 ± 3.53e − 11 + 3.32e − 11 ± 2.60e − 10 +
f2 2.66e + 04 ± 1.35e + 04 2.64e + 04 ± 1.24e + 04 = 4.37e + 06 ± 2.29e + 06 + 9.06e + 05 ± 4.90e + 05 +
f3 8.55e + 06 ± 1.43e + 07 6.32e + 06 ± 1.11e + 07 = 3.09e + 09 ± 3.03e + 09 + 1.42e + 08 ± 1.57e + 08 +
f4 5.59e + 02 ± 5.01e + 02 4.79e + 02 ± 6.48e + 02 - 1.08e + 05 ± 3.86e + 04 + 1.09e + 03 ± 8.33e + 02 +
f5 3.41e − 13 ± 1.05e − 12 3.81e − 10 ± 6.24e − 10 + 3.92e − 04 ± 3.89e − 03 + 2.54e − 05 ± 2.52e − 04 =
f6 2.74e + 01 ± 1.75e + 01 3.96e + 01 ± 1.34e + 01 + 4.74e + 01 ± 1.34e + 01 + 5.67e + 01 ± 2.24e + 01 +
f7 4.75e + 01 ± 2.38e + 01 4.83e + 01 ± 1.97e + 01 = 1.43e + 02 ± 2.39e + 01 + 6.81e + 01 ± 1.22e + 01 +
f8 2.11e + 01 ± 6.66e − 02 2.11e + 01 ± 6.58e − 02 = 2.12e + 01 ± 3.86e − 02 + 2.12e + 01 ± 4.36e − 02 +
f9 5.49e + 01 ± 5.03e + 00 6.85e + 01 ± 1.12e + 01 + 5.87e + 01 ± 3.26e + 00 + 4.27e + 01 ± 6.99e + 00 -
f10 1.24e − 02 ± 7.26e − 03 1.28e − 02 ± 8.01e − 03 = 2.03e − 01 ± 1.80e − 01 + 4.09e − 01 ± 5.57e − 01 +
f11 5.87e + 01 ± 1.05e + 01 5.13e + 01 ± 8.62e + 00 - 9.07e − 01 ± 8.53e − 01 - 1.21e + 02 ± 2.97e + 01 +
f12 2.98e + 02 ± 1.43e + 02 3.18e + 02 ± 2.59e + 02 = 4.55e + 02 ± 8.03e + 01 + 1.62e + 02 ± 3.45e + 01 -
f13 5.33e + 02 ± 1.12e + 02 5.61e + 02 ± 2.38e + 02 = 5.69e + 02 ± 8.18e + 01 + 3.22e + 02 ± 5.39e + 01 -
f14 1.41e + 03 ± 3.09e + 02 3.09e + 03 ± 2.95e + 03 + 7.35e + 00 ± 3.55e + 00 - 2.79e + 03 ± 8.06e + 02 +
f15 8.50e + 03 ± 1.09e + 03 8.54e + 03 ± 1.05e + 03 = 8.31e + 03 ± 8.71e + 02 = 7.58e + 03 ± 8.01e + 02 -
f16 8.36e − 02 ± 3.88e − 02 9.21e − 02 ± 4.43e − 02 = 2.75e + 00 ± 5.96e − 01 + 1.93e + 00 ± 8.76e − 01 +
f17 9.62e + 01 ± 1.11e + 01 9.83e + 01 ± 7.83e + 00 = 5.16e + 01 ± 3.28e − 01 - 1.79e + 02 ± 3.56e + 01 +
f18 5.37e + 02 ± 9.93e + 01 1.86e + 03 ± 2.49e + 03 + 4.87e + 02 ± 9.77e + 01 - 1.86e + 02 ± 3.17e + 01 -
f19 4.73e + 00 ± 8.92e − 01 4.99e + 00 ± 1.09e + 00 = 1.49e + 00 ± 2.32e − 01 - 3.94e + 01 ± 2.10e + 01 +
f20 2.44e + 01 ± 2.86e − 01 2.44e + 01 ± 4.10e − 01 = 2.33e + 01 ± 8.19e − 01 - 2.01e + 01 ± 9.17e − 01 -
f21 4.27e + 02 ± 3.30e + 02 5.00e + 02 ± 3.85e + 02 = 4.42e + 02 ± 3.45e + 02 + 8.91e + 02 ± 3.44e + 02 +
f22 2.06e + 03 ± 3.17e + 02 3.99e + 03 ± 3.56e + 03 + 1.11e + 02 ± 9.60e + 01 - 3.22e + 03 ± 1.06e + 03 +
f23 1.12e + 04 ± 1.27e + 03 1.16e + 04 ± 1.25e + 03 + 1.09e + 04 ± 1.34e + 03 = 9.08e + 03 ± 1.05e + 03 -
f24 3.62e + 02 ± 2.14e + 02 1.20e + 03 ± 1.04e + 03 + 3.60e + 02 ± 9.64e + 00 - 2.88e + 02 ± 1.56e + 01 -
f25 3.79e + 02 ± 1.99e + 01 4.51e + 02 ± 1.27e + 02 + 3.97e + 02 ± 1.08e + 01 + 3.68e + 02 ± 1.48e + 01 -
f26 3.08e + 02 ± 2.97e + 02 5.15e + 02 ± 6.42e + 02 + 2.15e + 02 ± 4.95e + 01 - 3.55e + 02 ± 7.46e + 01 +
f27 1.28e + 03 ± 2.33e + 02 1.32e + 03 ± 3.32e + 02 = 1.82e + 03 ± 8.56e + 01 + 1.23e + 03 ± 1.49e + 02 =
f28 1.63e + 03 ± 2.22e + 03 3.40e + 03 ± 5.33e + 03 = 7.24e + 02 ± 1.08e + 03 - 5.05e + 02 ± 5.99e + 02 =

algorithm for continuous optimization. The employed algo-
rithmic structure and operators are the same as those used
by a MC approach previously proposed in literature. The
hyper-heuristic adaptive technique integrates, on the top of
the original memetic logic, a success-based adaptation. The
resulting framework appears to improve upon the original MC
approach and is competitive with modern meta-heuristics. This

study can be seen as an attempt to consider about algorithmic
design from a metaphor-free perspective and, in the specific
case, to show how some areas of MC and hyper-heuristics
contain essentially very similar ideas (if not even the same
idea).



TABLE IV. AVERAGE ERROR ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST (REF.: SPAM-AOS) ON BBOB2010 [57] IN 100
DIMENSIONS.

SPAM-AOS SPAM CCPSO2 MDE-pBX
f1 2.42e − 13 ± 2.12e − 13 2.42e − 13 ± 2.13e − 13 = 4.12e − 13 ± 1.97e − 13 + 8.12e − 07 ± 3.91e − 06 +
f2 1.71e − 13 ± 1.55e − 13 2.84e − 13 ± 1.92e − 13 + 9.66e − 13 ± 1.77e − 12 + 3.22e − 02 ± 2.86e − 01 +
f3 1.04e + 02 ± 1.70e + 01 9.69e + 01 ± 1.51e + 01 - 8.09e + 00 ± 8.40e + 00 - 5.06e + 02 ± 9.57e + 01 +
f4 1.37e + 02 ± 2.01e + 01 1.34e + 02 ± 1.86e + 01 = 2.24e + 01 ± 1.31e + 01 - 8.32e + 02 ± 1.28e + 02 +
f5 4.93e − 08 ± 2.91e − 07 2.13e − 11 ± 8.26e − 12 - 2.41e − 04 ± 1.20e − 03 + 7.53e + 00 ± 1.01e + 01 +
f6 6.15e − 08 ± 7.12e − 08 1.79e − 11 ± 1.14e − 11 - 8.94e + 01 ± 4.02e + 01 + 3.36e + 01 ± 2.62e + 01 +
f7 5.26e + 01 ± 1.40e + 01 5.32e + 01 ± 1.36e + 01 = 3.45e + 02 ± 4.90e + 01 + 2.79e + 02 ± 7.50e + 01 +
f8 3.66e + 01 ± 1.11e + 01 3.49e + 01 ± 9.88e + 00 - 1.20e + 02 ± 3.42e + 01 + 1.78e + 02 ± 6.58e + 01 +
f9 4.39e + 01 ± 7.26e + 00 4.43e + 01 ± 6.96e + 00 + 1.06e + 02 ± 2.78e + 01 + 1.29e + 02 ± 3.80e + 01 +
f10 5.27e + 02 ± 1.50e + 02 4.83e + 02 ± 1.43e + 02 = 2.62e + 04 ± 6.64e + 03 + 1.51e + 04 ± 6.24e + 03 +
f11 8.72e + 01 ± 3.08e + 01 7.86e + 01 ± 2.53e + 01 = 5.45e + 02 ± 1.95e + 02 + 1.62e + 01 ± 6.78e + 00 -
f12 5.29e − 02 ± 1.98e − 01 2.61e − 02 ± 8.27e − 02 = 7.95e + 00 ± 1.20e + 01 + 2.70e + 01 ± 1.29e + 02 +
f13 1.06e + 00 ± 1.24e + 00 1.31e + 00 ± 1.78e + 00 = 3.16e + 00 ± 4.20e + 00 + 4.80e + 00 ± 9.83e + 00 +
f14 5.07e − 05 ± 6.32e − 06 3.17e − 05 ± 3.66e − 06 - 1.32e − 03 ± 2.34e − 04 + 2.21e − 03 ± 1.70e − 03 +
f15 2.75e + 02 ± 4.48e + 01 2.73e + 02 ± 4.25e + 01 = 1.33e + 03 ± 2.32e + 02 + 6.53e + 02 ± 9.63e + 01 +
f16 2.31e + 00 ± 8.27e − 01 2.42e + 00 ± 7.82e − 01 = 2.74e + 01 ± 4.27e + 00 + 1.35e + 01 ± 3.23e + 00 +
f17 8.55e + 00 ± 4.71e + 00 8.59e + 00 ± 4.52e + 00 = 8.65e + 00 ± 1.62e + 00 = 3.36e + 00 ± 4.02e − 01 -
f18 1.84e + 01 ± 1.15e + 01 1.95e + 01 ± 1.32e + 01 = 3.30e + 01 ± 6.61e + 00 + 1.19e + 01 ± 2.08e + 00 -
f19 1.96e + 00 ± 4.27e − 01 1.67e + 00 ± 2.95e − 01 - 7.90e + 00 ± 1.29e + 00 + 2.26e + 00 ± 6.47e − 01 +
f20 1.14e + 00 ± 1.09e − 01 1.25e + 00 ± 1.66e − 01 + 4.95e − 01 ± 6.73e − 02 - 2.12e + 00 ± 9.26e − 02 +
f21 3.89e + 00 ± 4.11e + 00 4.32e + 00 ± 6.61e + 00 = 3.36e + 00 ± 3.38e + 00 = 3.79e + 00 ± 5.07e + 00 =
f22 7.94e + 00 ± 9.28e + 00 4.93e + 00 ± 6.86e + 00 = 5.11e + 00 ± 5.83e + 00 - 8.94e + 00 ± 8.84e + 00 +
f23 8.23e − 01 ± 3.93e − 01 7.60e − 01 ± 3.66e − 01 = 2.52e + 00 ± 4.22e − 01 + 2.48e + 00 ± 9.31e − 01 +
f24 3.10e + 02 ± 6.43e + 01 3.19e + 02 ± 5.82e + 01 = 1.08e + 03 ± 1.53e + 02 + 3.48e + 02 ± 5.00e + 01 +

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalized performance

C
um

ul
at

iv
e 

fre
qu

en
cy

CCPSO2 MDE−pBX SPAM SPAM−AOS

Fig. 1. The Empirical Cumulative Distribution Function graph of the
normalized objective values for all algorithms, across all problem instances
and runs. It can be clearly observed that SPAM-AOS always achieves higher
cumulative frequency of lower objective values across all problem instances
and runs (better performance gains).
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a b s t r a c t

Challenging optimisation problems are abundant in all areas of science and industry. Since
the 1950s, scientists have responded to this by developing ever-diversifying families of
‘black box’ optimisation algorithms. The latter are designed to be able to address any
optimisation problem, requiring only that the quality of any candidate solution can be cal-
culated via a ‘fitness function’ specific to the problem. For such algorithms to be successful,
at least three properties are required: (i) an effective informed sampling strategy, that
guides the generation of new candidates on the basis of the fitnesses and locations of
previously visited candidates; (ii) mechanisms to ensure efficiency, so that (for example)
the same candidates are not repeatedly visited; and (iii) the absence of structural bias,
which, if present, would predispose the algorithm towards limiting its search to specific
regions of the solution space. The first two of these properties have been extensively
investigated, however the third is little understood and rarely explored. In this article
we provide theoretical and empirical analyses that contribute to the understanding of
structural bias. In particular, we state and prove a theorem concerning the dynamics of
population variance in the case of real-valued search spaces and a ‘flat’ fitness landscape.
This reveals how structural bias can arise and manifest as non-uniform clustering of the
population over time. Critically, theory predicts that structural bias is exacerbated with
(independently) increasing population size, and increasing problem difficulty. These
predictions, supported by our empirical analyses, reveal two previously unrecognised
aspects of structural bias that would seem vital for algorithm designers and practitioners.
Respectively, (i) increasing the population size, though ostensibly promoting diversity, will
magnify any inherent structural bias, and (ii) the effects of structural bias are more
apparent when faced with (many classes of) ‘difficult’ problems. Our theoretical result also
contributes to the ‘exploitation/exploration’ conundrum in optimisation algorithm design,
by suggesting that two commonly used approaches to enhancing exploration – increasing
the population size, and increasing the disruptiveness of search operators – have quite
distinct implications in terms of structural bias.
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1. Introduction

Successful implementation of any randomised population-based optimisation algorithm depends on the efficiency of
both its sampling component and exploitation of previously sampled information. Among other fields, Evolutionary
Computation (EC) [13] provides various examples of randomised population-based search strategies. Greatly simplified,
any evolutionary computation algorithm is a guided re-sampling strategy where movement of points is directed by its
operators assisted by selection criteria based on currently attained values of the objective function. A vast body of research
in the field of Evolutionary Computation deals with efficient exploitation of information already contained within the
population [49] while little attention has been paid to investigation of whether or not a specific combination of algorithmic
operators is actually capable of reaching all parts of the search space efficiently. This paper attempts to draw attention to this
issue and starts to investigate the latter question.

Inspection of recent literature [40,9,38,55] confirms the presence of a tendency to (over-) complicate both the design of
individual algorithmic operators and the logic of their assembly, counter to the rationale of the well-known Occam’s razor,1

sometimes to such a degree that the end result turns out to be intractable. Researchers seem regularly to be swayed by an
attraction towards ‘multiplying entities beyond necessity’. We suggest that a materially greater contribution to the understand-
ing of population-based algorithms and their design can be obtained via ‘going back to basics’. More specifically, the great
majority of optimisation algorithms fall within a class of generate-and-test methods, iteratively alternating between these
two components until a termination criterion is met. Ideally, the generating/sampling component of such methods should have
the following characteristics [51]:

1. future samples should be biassed by information obtained from previously visited points, i.e., the algorithm should be
informed,

2. future samples should be previously unvisited samples i.e., the algorithm should be non-redundant,
3. every solution in the search space should be equally accessible i.e., the algorithm should be complete.

It is worth noting our use of the phrase equally accessible within the ‘completeness’ characteristic. Often, for example,
algorithm designers may be subconsciously swayed by the fact that the randomness of the initialisation process means that
every part of the search space is reachable, and hence feel no further need to consider this characteristic. Reachability and
completeness (the way we define it here) are however very different. For example, if a stochastic hill-climbing algorithm
includes a uniform random initialisation in Rn, then all points are reachable, however if the perturbation operator is designed
to add only integer-valued vectors, then there are extreme variations in the accessibilities of different points in the space.

Clearly, evolutionary computation methods build richly upon their ‘generate-and-test’ backbone architecture. However
the above guidelines remain valid, and, in practice, they translate well into rules for algorithm design. The first two proper-
ties – informedness and non-redundancy in the sampling process – have been extensively researched, each from a variety of
viewpoints. To some extent, however, contributions related to these two properties have appeared in diverse and uncon-
nected literature, using varying terminology, and there remains a need to creatively assimilate their findings.

For example, with sufficient imagination one can see that the informedness property is closely linked to the concepts of
exploration, exploitation, and their balance, which is considered to be primary in the behaviour of evolutionary algorithms
(EAs), as examples of stochastic ‘‘generate-and-test’’ methods [11]. Exploration and exploitation are fundamental for evolu-
tionary optimisation [13] but surprisingly, several decades after the first examples of EAs have been proposed, they still
lacked even a proper definition. Over the following years, a lot of research has been carried out in this direction - the latest
survey of results can be found in [49]. The current consensus definitions consider exploration as the process of visiting
entirely new regions of a search space whilst exploitation as the process of visiting those regions of a search space within
the neighbourhood of previously visited points [49].

The second characteristic, non-redundancy, has been investigated under the guise of ‘non-revisiting’ algorithms. Inspired
by ideas from Tabu search [15,16], basic evolutionary algorithms have been extended to ensure the non-revisiting property
[52–54]. Another direction of research into the non-redundancy property is the study of diversity management in evolving
populations. Diversity in populations can refer to differences in solutions in either the values of coordinates (‘genotypic’
diversity) or the objective function (‘phenotypic’ diversity). To date, no single measure exists which can suitably characterise
diversity in the face of all kinds of problems and search logics [37]. The situation is further complicated by the fact that a
diverse population offers benefits at some stages of evolutionary process (helps avoid premature convergence to local
optima) and creates obstacles in others (impedes exploitation) [7]. The most popular diversity-preserving mechanisms
include [18] niching, crowding, restricted mating, sharing, multiploidy, elitism, injection, alternative replacement strategies
[32] and fitness uniform selection [20].

Much promising research is also carried out that tries to explore the connections between informedness and non-redun-
dancy, stemming from the fact that exploration of the search space is only possible if populations are diverse enough [49].
However, different amounts of exploration and exploitation are needed for different optimisation problems. Currently there

1 Originally attributed to William of Occam, reformulated by Betrand Russell as ‘‘Whenever possible, substitute constructions out of known entities for
inferences to unknown entities’’. [43]
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are no accepted techniques for direct measurement of this balance; it can only be noisily sensed via a proxy (such as ‘level of
diversity’). Feedback from online monitoring of such a proxy, if it is suitably computationally efficient, can then be used to
dynamically tilt the exploration–exploitation balance [49,29,6].

1.1. Completeness and incompleteness: bias and its treatment in the research literature

Meanwhile, in recent decades, the third important property of the generating component, which we can call completeness,
has been treated as an obscure topic and largely ignored by modern research efforts – the latest reference to this issue, [12],
briefly deals with the accessibility of a solution through evolution as a necessary condition for reaching the optimum by a
genetic algorithm in the discrete case.

However, there has been a recent revival of interest pertaining to this topic, in the form of a focus on certain deficiencies
in completeness – in other words biases – that have been frequently observed in studies on real-valued function
optimisation. The interest of a small group of researchers has recently been sparked by the popular belief [14,2] that many
population-based algorithms (and particularly PSO) tend to perform better when the true optimum is located at or near the
centre of the initialisation region. Two types of bias in particular have been investigated: initialization-region bias (IRB), and
centre-seeking bias (CSB). IRB basically refers to the tendency for the search process to stay close to the region of the initial
population of points, while CSB refers to the tendency for the search process to gravitate towards the origin of the search
space. The reader may find further detail in [8]. The foci of recent articles on this topic have been on (i) observing either
IRB or CSB or both in the context of specific algorithms and optimisation landscapes, and (ii) constructing algorithmic
mechanisms that avoid them. In [8], for example, metrics are proposed for measurement of both IRB and CSB, and having
observed rampant IRB and CSB in a specific algorithm, proposing a modified version that displays much less bias.

To date, such studies have focussed on a small number of algorithm variants and there is little or no evidence to support
the presence of such a bias in the more general case. For example, having investigated the effects of modifying the search
domains of three benchmark problems on results produced by an unusual variant of PSO, the authors of [36] concluded
the presence of origin-seeking bias in their specific algorithm/problem scenarios, and suggested that their results could
be generalised towards all population-based methods. However these results were later disputed and have been largely
dismissed [24]. As regards theoretical analysis of the movement of particles in a PSO swarm, a study of particle trajectories
[48] reveals that under certain conditions every particle converges to a stable point defined by its personal and global best
positions, with weights determined by the acceleration coefficients. Experimental results also suggest that, for the
well-known sphere objective function, the movement of particles is influenced by the direction of the coordinate axis which
potentially makes the algorithm sensitive to rotation of the objective function [23]. Further theoretical analysis [45]
indicates that there is an angular bias in the core PSO algorithm which consists of two parts. The first part, skew, pushes
particles towards bearings parallel with the diagonals, meanwhile the second part, spread, indicates that diagonal directions
are highly unstable. The combination of the two parts creates a PSO bias that favours particle bearings that are aligned with
the coordinate axes. The latest publication on this topic [8] extends the work from [36] and proposes a metric for centre-
seeking and initialisation biases based on multiple re-runs of the algorithm in modified domains.

The majority of authors implicitly suppose their algorithms fare well in the ability to potentially cover the whole search
domain. Put another way, researchers tend to take for granted the property of ‘completeness’. Such quiet confidence about
this property probably stems from the perception that, given the stochastic nature of standard initialisation methods and
standard operators, all parts of the search space are reachable. However, this ignores the prospect that reachability may
actually be highly non-uniform across the search space. Results presented in this paper demonstrate that even the most
commonly used algorithms exhibit inherent preferences towards certain parts of the search domain. We refer to this pref-
erence as the structural bias of the algorithm. In contrast to the recent work discussed above, our focus is on understanding
the inherent structural bias of an algorithm, rather than measuring the effects of any such bias on specific optimisation land-
scapes. Although the latter effects are of course important, our hypothesis is that a more fundamental understanding of
structural bias will help to better characterise, and inform how to avoid, CSB, IRB, and other manifestations of inherent struc-
tural bias in applied work.

To help illustrate the concept of structural bias, it may be helpful to imagine a pinball machine where a player has to operate
a system of mechanical devices to allow a ball to stay on the game surface as long as possible before hitting the drain, see Fig. 1.
We can consider the whole system – the pinball machine and the actions of the player – to represent an algorithm, while the
ball represents a solution travelling around the search space. We can conceptualise multiple games on such a machine,
overlapped in time, to represent the case of an algorithm that maintains a population of solutions. In the ideal case, the
population should be able to access the entire game surface. A population-based algorithm exhibiting structural bias is then rep-
licated by an overlapping in time of such machines which are unfairly tilted at some angle. Clearly, even in this case the actions of
the player have a certain effect on the movement of the balls. However, due to gravity, the ball ends up constantly rolling to the
lower side of the machine i.e., exhibiting a certain preference and limiting the overall coverage of the game surface.

1.2. An overview of the remainder

The remainder of the paper is arranged as follows. In Section 2 we argue that studying the structural bias that may be
inherent in an algorithm can be facilitated by decoupling the effects of the search landscape from the algorithmic operations.
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This section then introduces and analyses a test function f 0, which allows such decoupling. Section 3 takes the function f 0

and uses it as a ‘structural bias probe’, presenting several experiments in which we investigate whether structural bias seems
to be present in typical designs of a genetic algorithm and a particle swarm optimisation algorithm. Visualisations of the
results of our experiments in this section offer evidence that structural bias is indeed present in these algorithms, and sen-
sitive to parameters such as population size. This section ends with remarks concerning pseudorandom number generators,
in particular those used in our implementation, and offers evidence – following further empirical investigation – that
supports the view that our observations in the previous section were uncontaminated by artefacts of the pseudorandom
generator. In Section 4 we turn to a theoretical investigation, which considers a simplified genetic algorithm (nevertheless
capturing well the behaviour of a typical genetic algorithm on f 0). The theorem proved in this section shows that the
considered (simplified but otherwise standard) algorithm design will, under certain but unexceptional conditions, induce
a continual reduction in sample variance over time; this means that the population will increasingly cluster around certain
areas of the domain while avoiding others. Reasoning based on the theorem leads to expectations of the relationship
between a genetic algorithm’s population size and the occurrence of structural bias, which match our empirical findings
from Section 3; further reasoning predicts a relationship between structural bias and problem difficulty, which is tested
in the experiments of the next section. Section 5 begins by outlining and demonstrating approaches to visually investigate,
and then to quantify, the levels of structural bias inherent in the design of an optimisation algorithm. This is followed by an
examination of how structural bias seems to manifest differently when we apply our standard genetic algorithm to variety of
functions from a well-known test suite. The findings from these experiments again match with theory-grounded expecta-
tions arising from our arguments in Section 4. Finally, Section 6 provides a summary of the paper, and brief discussions
of its wider relevance, such as the manifestation of structural bias in combinatorial spaces.

2. Structural bias

When faced with the task of optimising a given function, the amount of information usually available regarding its fea-
tures is highly limited. Therefore, one wishes to design an algorithm capable of locating the optima no matter where exactly
they are in the search space. This implies that the generating operators of the algorithm must be able to, first, reach every
region of the search space and second, ideally, do so without imposing any preferences for some regions of the domain over
others. Clearly, different functions and domains give rise to different situations, greatly complicating the prospects for a
general theoretical analysis. In addition, such an analysis cannot be tackled directly due to the apparent coupling between

Fig. 1. A typical pinball machine.
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the landscape of the objective function and artefacts from the iterative application of algorithmic operators i.e., structural
bias. It is therefore highly desirable to be able to separate these effects. A closer inspection reveals that, in almost all cases,
the action of a selection operator actually can be characterised as the imposition of a stochastic rank-ordering over a specific
set of values of the objective function in the current population. If we replaced the objective function with uniform random
noise, over a series of statistically significant number of independent runs, this would enable us to separate ‘landscape
effects’ from ‘algorithm design effects’, eliminating the influence of the (‘geographical’) position of selected points, but
retaining algorithmic artefacts.

Therefore, one way to overcome this coupling issue is to use ‘the most random’ test function, such that its value at any
point does depends neither on the values within its neighbourhood nor on the past (independent) evaluations at this point
i.e., be independent and identically distributed (i.i.d.). For the sake of simplicity, and without loss of generality, we can con-
sider an artificial objective function

f 0 : D � Rn ! ½0;1�; where x 2 UniformðDÞ; f 0ðxÞ 2 Uniform½0;1�; x and f 0ðxÞ are i:i:d: ð1Þ

as this ‘most random’ function. Again, without loss of generality, we can consider D ¼ ½0;1�n. Such an f 0 contains no structure
stable over different runs, therefore an ideal optimisation method will arrive at different regions of the search space over a
series of runs. Indeed, over multiple runs, it will cover the entire search space with uniform probability. In other words, when
an algorithm is applied to f 0, we can expect that the distribution of its outcomes over multiple runs will show no bias of any
kind, if and only if the algorithm itself possesses no inherent structural bias (see Section 2.1). In contrast to the enterprise of
observing bias on a real-world (or other) function optimisation problem, this means that f 0 is able to reveal bias that is inher-
ent in the algorithm itself, rather than effects that may be caused, in whole or in part, by features of the optimisation land-
scape at hand. This also makes f 0 an ideal testing substrate for engineering the algorithm in such a way that bias is
minimised or eliminated. Also, when tests on f 0 reveal structural bias, this serves to warn the practitioner that its effects
may divert the results of applications of the algorithm. In what way, and to what extent the bias will affect the application,
depends (we believe) on aspects of the fitness landscape, and we return to this point specifically in Section 5.1.

As shown in Fig. 2, the typical progress of a capable evolutionary algorithm consists of three stages [13]: in the beginning,
the population is spread randomly over the domain, roughly halfway through the optimisation the population starts rolling
down the hill, and in the final stages of optimisation the whole population is concentrated around the minima. Thanks to the
construction of f 0, independent runs of the algorithm provide different landscapes, all of identical difficulty (due to the i.i.d.
property), where populations move/converge towards minima located at different parts of the domain. In other words, over a
series of runs of the algorithm, the situation shown in Fig. 2 is replicated for different landscapes where the optimisation
process arrives at different parts of the domain – that is, red points will be distributed all over the interval. In the following
section we show that minima of f 0 are in fact distributed uniformly over D. This implies that the distribution of minima
found by an ideal unbiased algorithm across different runs should be uniform as well.

2.1. Distribution of minima of f 0

Assume that points Z1; . . . ; ZN are independent and identically distributed. Assume that each of these points (say, Zi) is
assigned a mark Xi and assume that X1;X2; . . . ;XN is a collection of i.i.d. random variables with an absolutely continuous dis-
tribution. Assume also that the sets X1;X2; . . . ;XN and Z1; . . . ; ZN are mutually independent. Let I ¼ arg miniXi be the index of
the point with the lowest mark.

Remark 1. We only assume that the distribution is absolutely continuous for convenience here. This ensures that
PðXi ¼ XjÞ ¼ 0 for any i – j. This makes our proofs shorter and more transparent but is not essential for our statements to
hold.

Remark 2. In the notation above, Z1; . . . ; ZN represent the vector of points’ coordinates and X1; . . . ; XN represent values of
the objective function at these points.

(a) beginning (b) halfway through (c) end

Fig. 2. Sketch of a typical progress of an evolutionary algorithm on a minimisation problem in terms of population distribution with projections of points’
coordinate, adapted from [13]. Red points mark best points in the population. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

472 A.V. Kononova et al. / Information Sciences 298 (2015) 468–490



Proposition. The distribution of ZI is the same as that of Z1 (or the same as the distribution of any of the initial points).

Proof. Note first that PðI ¼ iÞ ¼ 1=N for any i. This is evident as

XN

i¼1

PðI ¼ iÞ ¼ 1;

and all probabilities are equal to each other due to the identical distribution of X.
We can now calculate, for any set of points A

PðZI 2 AÞ ¼
XN

i¼1

PðI ¼ iÞPðZI 2 AjI ¼ iÞ ¼
XN

i¼1

1
N

PðZi 2 AÞ ¼ PðZ1 2 AÞ �

This shows that minima of f 0 defined in (1) are distributed uniformly over D.

2.2. Further comments on f 0

Since, by construction, f 0 is in effect a noisy signal with zero smoothness i.e., no correlation between neighbouring points,
it is clearly not suited for testing the quality of fitness improvement or as a direct guide in assembling the algorithm. As
explained previously, the rationale behind using f 0 is solely to elucidate the underlying structural bias of the tested algo-
rithm. More comments on this issue are given in Section 5.1.

3. Numerical results

In this section we illustrate the use of f 0 in investigating the occurrence of structural bias in different algorithm config-
urations. We apply this ‘structural bias probe’ to two algorithms that are frequently deployed in optimisation practice and
research, namely: a genetic algorithm (GA), and particle swarm optimisation (PSO). In both cases, our instantiations of the
algorithms (and the subsequent further analyses), are in the context of optimisation in a continuous decision space (i.e. the
optimisation of vectors of real-valued parameters). Combinatorial optimisation is certainly also of interest, and we later
briefly speculate on structural bias in that scenario. However, our focus here on real-valued decision spaces is consistent
with the observation that real-valued optimisation (particularly via PSO variants) is the most rampant breeding ground
for the publication of new algorithms. As such, real-valued optimisation can be considered in relatively more need for tech-
niques that can help researchers or practitioners discern performance-related properties of new algorithm designs.

3.1. Typical genetic algorithm

As the first example of a randomised population-based algorithm used to solve the problem of minimisation of
f 0 : ½0;1�n ! ½0;1�, we consider the most straight-forward example – a typical steady-state genetic algorithm (GA) where
solutions are encoded as strings of real values of length n and are subject to the following transformations:

1. initialize and evaluate a population of N solutions within the boundaries of problem domain;
2. continue until the maximum number of fitness evaluations is reached (300,000);
2.1. select parent1 from the population via tournament selection [17] of size nt (here, nt ¼ 2) in the following manner;
2.1.1. select at random nt solutions;
2.1.2. based on their fitness values, choose the best solution to become a parent;
2.2. similarly, select parent2 via tournament selection of size nt, independently on the choice of another parent;
2.3. generate child solution as parent1 þ a � ðparent2 � parent1Þ;a � Uniformð�d;1þ dÞ re-sampled for each dimension,
d ¼ 0:25;
2.4. with probability p ¼ 1, mutate child solution via Gaussian mutation – perturb every coordinate independently with
d � Nð0;md � rÞ;md ¼ 0:01; r is the width of search domain in this coordinate;
2.5. evaluate child solution;
2.6. if child solution is better or equal to current worst solution in population then child solution replaces it;
2.7 end of loop, go to step 2. h

All specified parameters represent standard choices in the field of evolutionary computation. If a result of an operator, in
some dimension, goes outside the domain, it is corrected in a saturation manner where it is forced to the closest domain
boundary in this dimension. The dimensionality of the problem is set to n ¼ 30 as a value high enough to be relevant for
the field but low enough to allow clear visualisation. This also dictates the choice of the termination criterion as 300,000
fitness evaluations, following [47]. We consider three settings for population size: N ¼ 5;N ¼ 20;N ¼ 100. To provide enough
statistical power for the results, 50 independent runs are considered for each parameter setting. According to [41], in the
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limit, this algorithm converges to the global minimum of any real-valued function f : M ! R whose values are bounded
below and M is an arbitrary domain.

3.2. Numerical results for a typical genetic algorithm

A convenient way of visualising multidimensional data is by the method of ‘parallel coordinates’ [10,21] which allows an
insight into the space regardless of its dimensionality. Using this technique to visualise an n-dimensional point, a backdrop
consisting of n vertical equally spaced parallel lines is drawn and a point in n-dimensional space is represented as a collec-
tion of markers on each of these n lines, each matching a value of the corresponding coordinate. Traditionally, these markers
are connected to form polylines (piecewise linear curves) which can reveal 2-dimensional patterns for certain high dimen-
sional properties [22]. Unfortunately, finding the correct layout for each dataset to facilitate data exploration is a problem on
its own [56], especially for high values of n [19]. Such investigation is currently beyond the scope of our interests, however it
may become of interest for algorithms that use highly correlated search strategies. Since the focus of this paper is solely the
movement of the population of points in the search domain, unconnected markers suffice. Using colour allows us to visualise
the additional dimension – the value of the objective function at the point.

Following the technique described above, Fig. 3 shows, in parallel coordinates, positions of points with the best fitness val-
ues in the first (left column) and the last (right column) populations for 50 runs of the considered genetic algorithm, for dif-
ferent population sizes N ¼ 5;N ¼ 20;N ¼ 100. Clearly, for all population sizes, the initial distribution of positions in the left
columns of the figures is close enough to uniform. However, in the right column, instead of seeing a near-uniform distribution
of points, a clear bias towards the centre of the search space becomes more evident in the final populations as population size
increases. In other words, a genetic algorithm with bigger populations tends to avoid the corners of the search domain and
concentrates more on sampling points closer to the middle of the interval, for no obviously apparent reason. Such behaviour
is barely noticeable for N ¼ 5, more pronounced for N ¼ 20 and is very clear for N ¼ 100. These anomalies represent structural
bias. Our numerical results also suggest that this behaviour is consistent throughout time and does not depend on termination
criterion - consecutive populations spread out less and less from the middle of the search domain, see Fig. 4 which shows the
evolution in time of positions of all points of 50 populations in a selected dimension for all three population sizes. We therefore
conclude that, owing to structural bias, a typical genetic algorithm with a large population potentially wastes the fitness evaluations
budget via oversampling a region of the search domain, to the detriment of overall performance.

3.3. Typical particle swarm optimisation algorithm

Particle swarm optimisation (PSO) is another example of a population-based optimisation algorithm introduced by
Kennedy and Eberhart in [25], and then developed in various variants for test problems and applications. The main metaphor
employed in particle swarm optimisation is that a group of particles makes use of their personal and social experience in
order to explore a decision space and detect solutions with high performance.

More specifically, to minimise f 0 : ½0;1�30 ! ½0;1�, the following steps are taken:

1.1. initialise a population of N solutions within the boundaries of the problem at t ¼ 0
1.2. evaluate every solution in the population based on the objective function
1.3. for each solution, assign its personal best position ppb

t ¼ p0

1.4. assign the global best position to pgb
t

1.5. for each solution, initialise a speed vector v0 ¼ ðv1
0; . . . ;vn

0Þ such that v i
0 � Uniform½0;0:1�

2. continue until the maximum number of fitness evaluations is reached (300,000)
2.1. update the speed vector for every solution in the population as v tþ1 ¼ c0v t þ c1a1ðppb

t � ptÞ þ c2a2ðpgb
t � ptÞ, where

a1;a2 � Uniform½0;1� are re-sampled independently for each solution and c0 ¼ 1; c1 ¼ 2; c2 ¼ 2

2.2. if v tþ1k k2 > 0:2 substitute it coordinate-wise with
0:2v i

tþ1

v tþ1k k2

; i ¼ 1; . . . ;n

2.3. update the position of every solution in the population as ptþ1 ¼ pt þ v tþ1, evaluate the new solution

2.4. if needed, update personal best position ppb
t for each solution

2.5. if needed, update the global best position pgb
t

2.6. t ¼ t þ 1, end of loop, go to step 2 �

As well as in the previous section, the algorithm and specified parameters represent standard choices in the field of evo-
lutionary computation. To allow fair comparison, the termination criterion is kept as 300,000 fitness evaluations. Finally,
echoing the experiments done with a typical genetic algorithm, here we also use the three settings for population size
N ¼ 5;N ¼ 20;N ¼ 100, and we perform 50 independent runs for each.

3.4. Numerical results for PSO

The same techniques as in Section 3.2, applied to the analysis of PSO, reveal a rather different situation as shown in Fig. 5.
As expected, the distribution of initial positions of points with the best fitness shown in the left columns of the figures is
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close enough to uniform. But, as in the case of the typical genetic algorithm, instead of a near-uniform distribution, positions
of the final points show a clear bias, albeit of a different nature. A more complex type of dependency of the population size on
the bias induced is present for the highest and lowest values of the considered population sizes. In the case of N ¼ 5,
positions of final points clearly group around the corners and avoid regions in the middle of the search domain. Meanwhile,
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Fig. 3. Positions of points with the best fitness values in the first (left column) and the last (right column) populations of 50 runs of the considered GA for
different population sizes in parallel coordinates; horizontal axis shows the ordinal number of the coordinate, vertical axis shows the range of this
coordinate; fitness value of each point is shown in colour. A clear bias towards the centre of the search space is visible in the last populations as population
size increases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for N ¼ 100, the final points tend to be positioned closer to one corner of the hypercube domain and avoid its opposite cor-
ner. The behaviour of PSO with N ¼ 20 is also not ideal in terms of the distribution of final points, as they appear slightly
further apart compared to the initial distribution. These anomalies clearly demonstrate the presence of structural bias in
the considered version of PSO. Moreover, since none of the operators that makes up this PSO clearly predispose its popula-
tion to cluster in such manner, this effect seems to be emerge from their combined dynamics.

3.5. Remarks regarding the random generator

The empirical results for the genetic algorithm in this paper are produced involving the use of a standard Java 48-bit ran-
dom generator underpinning, where required, the generation of ‘random’ numbers within the implemented algorithm. This
commonly-used pseudorandom generator is based on the linear congruential generator (LCG) with a period of
248 � 2:8 � 1014, while the seed is automatically generated via the system routine System.currentTimeMillis(). Meanwhile,
our empirical PSO results are produced using the standard Unix function drand48 with the same parameters as above and
the seed value is obtained via srand48. It is well-known [33] that when a series of consecutive values are obtained from this
type of random generator to form multidimensional points, they end up lying on a finite number of hyperplanes intersecting
the intended domain. This property is usually referred to as the Marsaglia effect. Clearly, unless the precision of the random
generator is close to the precision used by the algorithm, this constitutes a problem as, even in the limit, these points cannot
fill all of the domain. The number of such planes is bounded by ðn!mÞ1=n, where n is the dimensionality and m is the modulus
of the LCG. For the case of 30 dimensions, the bound on the number of planes is 36. The quality of each version of LCG can be
further assessed based on its values of increment and multiplier via estimating the distance between the hyperplanes. How-
ever, such calculations are feasible reliably only for low dimensionalities [30].

Another usual concern about random generators is how random their output actually is, in the sense of correlation
between successive instances (as opposed to their coverage of the domain). There are two kinds of random generators which
differ in how the numbers are produced: true random generators sample some source of entropy [26], whereas pseudoran-
dom number generators use a deterministic algorithm to produce random looking numbers. True random generators mea-
sure some physical phenomenon that is expected to be random and then compensates for possible biases in the
measurement process. Example sources include measuring atmospheric noise, thermal noise, and other external electromag-
netic and quantum phenomena. Being truly non-deterministic and aperiodic, unfortunately, these generators are also slow,
costly, inefficient and not reproducible which makes them a bad choice for practical sampling applications. It is still an open
question as to whether it is possible in any practical way to distinguish the output of a well designed pseudorandom gen-
erator from a perfectly random source without knowledge of the generator’s internal state [26].

How should these observations concern us? Like virtually all implemented stochastic algorithms, our ‘random’ numbers
are pseudorandom. Intuitively, we might expect bias in the pseudorandom generator to be swamped by the combined action
of the algorithmic operations and subsequently be invisible in the results – this is, indeed, the common (implicit) approach.
However, the design of f 0 explicitly removes one of the several dynamic forces that we would otherwise expect to contribute
to this ‘washing out’ of any effects from the pseudorandom generator. To some, combining this with the perhaps-unexpected
appearance of evidence for structural bias may lead to a suspicion that what we have observed could be artefacts of the

Fig. 4. Evolution in time of 50 populations of a typical genetic algorithm in selected dimension for N ¼ 5;N ¼ 20 and N ¼ 100. Horizontal axis shows values
of coordinate, vertical axis represents time. Colour of the dots corresponds to values of objective function. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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pseudorandom generator. Intuition for the opposite conclusion is well-fuelled. For example, the Marsaglia effect is quickly
obscured by aspects of the algorithm that distort the uninterrupted sequential mapping that the Marsaglia effect assumes,
and (especially) are dense in operations that will move points away from the ‘Marsaglia planes’. Also, as we discuss further
below, modern pseudorandom generators are quite effective at avoiding periodic correlations. Nevertheless, in this section
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Fig. 5. Positions of points with the best fitness values in the first (left column) and the last (right column) populations of 50 runs of the considered PSO for
different population sizes in parallel coordinates; horizontal axis shows the ordinal number of coordinate, vertical axis shows the range of this coordinate;
fitness value of each point is shown in colour. A more complex type of dependency of the population size on the bias induced is present for the top and
bottom values of the population size. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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we place the pseudorandom generator under close scrutiny in order to uncover evidence as to whether it may have a bearing
on our findings.

To achieve this we have devised three tests, borrowing their design from the body of research that has gone into designing
new classes of pseudo-random generators and testing their properties from various angles [42,50,34,1,26]. Each test within
these test suites is aimed at finding a different kind of non-randomness, but as yet no specific finite set of tests is deemed
complete to guarantee that some generator is foolproof [26]. For the purposes of this paper, the aspects mostly of interest are
true uniformity and the absence of correlations in a long sequence of random values. There is no problem with uniformity as
generators employed for this paper are among the most popular implementations used and tested widely.2 Regarding
cross-correlations in the sequence of random values, apart from the aforementioned Marsaglia effect investigated for low
dimensionalities, little in the way of theoretical results is available. Values of cross-correlation lag (or ‘effective period’ as we
refer to it here) which need to be studied usually exceed the dimensionality of the objective function, since the majority of algo-
rithms use random values for altering various parameters throughout the run. Careful examination of the pseudocode provided
in Sections 3.1 and 3.3 shows that both the genetic algorithm and PSO start with initialisation of their populations which require
ðdimþ 1ÞNpop random numbers for the genetic algorithm3 and ðdimþ 1þ dimÞNpop random numbers for PSO, where dim ¼ 30 is
the dimensionality of the domain and Npop is population size set to 5;20 and 100 for both algorithms. Subsequent functioning of
the algorithm is periodic in the following sense: producing every new point to be examined by the algorithm requires the same
amount of random numbers – 2dimþ 5 for the genetic algorithm and 2dimNpop þ 1 for PSO. In other words, if i is an index of the
element of the pseudorandom sequence which is used to generate the position of the new point in dimension j, then iþ pe is the
index of the next pseudorandom element which will be used to generate the position of the subsequent new point in dimension
j, where pe is the effective period.4

To eliminate the possibility that structural bias observed in algorithms considered in this paper originates from the nature
of the pseudorandom number generation rather than being inherent to the algorithm, let us suppose the opposite: there is a
correlation between random numbers that are used to generate the values of some coordinate of two subsequent points
examined by the algorithm. To examine any such correlations between elements of the pseudorandom sequences, we pro-
pose three tests. Test 1 selects some dimension and examines the correlation between consecutive pairs of random values
used to generate points in this dimension. Test 2 replicates Test 1 for all dimensions simultaneously. Test 3 tracks the cor-
relation between consecutive values in the pseudorandom string or, in other words, replicates Test 1 with period 1. Sche-
matically, these tests are explained in Fig. 6, where squares represent consecutive elements of the pseudorandom
sequence and loops denote the considered correlations; the length of the loops is constant for each test and referred to as
the period of the test.

We apply these three tests to each of two kinds of long sequences, one coming from a true random generator and another
from a pseudorandom generator used to produce results in Section 3. Our ‘true random’ sequence uses data from a reputable
online service random.org which generates randomness via atmospheric noise picked up by a radio. This service is subject to
a battery of daily tests which confirm that it maintains all of the randomness properties claimed [26]. In addition, a series of
sequences has been produced via the standard Java generator discussed above for a selection of realistic values of seeds.
Lengths of all sequences is set to 100,000 elements. Results of tests 1–3 for these two sequences are shown in Fig. 7, where
the period for tests 1 and 2 is set to 65, which is the effective period of our genetic algorithm implementation for population
size 5. The period for test 3 is 1, as explained above. Visual inspection does not reveal any significant differences between the
true and pseudorandom sequences. Results for other period values and for random sequences with different seeds are of
identical nature. This suggests that our observations of structural bias do not originate from the random generator but rather rep-
resent artefacts from the iterative application of algorithmic operators.

Fig. 6. Schematic explanation of tests 1–3 examining correlations between elements of random sequences. Squares represent consecutive elements of
random sequence and loops denote considered correlations where length of the loop is constant for each test and referred to as period of this test. Such
types of correlations can potentially induce patterns similar to those produced by structural bias.

2 This is also supported by our tests.
3 in this and the next three formulas, one extra random number is added to account for evaluation of f 0.
4 For reference, the Marsaglia effect bounds for these effective periods are the following: 41 for 65 dimensions for GA with Npop ¼ 5;125 for 301 dimensions

for GA with Npop ¼ 20;455 for 1201 dimensions for GA with Npop ¼ 100 and 2221 for 6001 dimensions in all three PSO implementations.
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In practice, the situation is slightly more complicated, since for some algorithms (like the genetic algorithm considered in
this paper), not all examined points enter the population. This means that some of the dots shown in Fig. 7 are sieved out and
others are moved via a series of trivial parallel projections depending on whether or not the point constructed with these
dots has entered the population based on its fitness values and particulars of the algorithm. At the current stage of our
research, simulations involving such tracking is impractical and deemed of no particular value.

Finally, while investigating known properties of pseudorandom generators, we stumbled upon a good example of a highly
(structurally) biased algorithm. In what was a serious attempt by a skilled algorithm designer to design a ‘‘super-random’’
number generator, Donald Knuth came up with Algorithm K, which turned out to have unexpected properties [27]. Given a
10-digit decimal number, the algorithm functions as follows5:

K1. Choose number of iterations. Set Y  bX=109c, the most significant digit of X (Steps K2–K13 are executed exactly Y þ 1
times, that is randomizing transformations are applied a random number of times.)

K2. Choose random step. Set Z  bX=108cmod10, the second most significant digit of X. Go to step Kð3þ ZÞ (i.e., jump to a
random step).

K3. Ensure P 5 � 109. If X < 5;000;000;000, set X  X þ 5;000;000;000.
K4. Middle square. Replace X by bX2=105cmod1010.
K5. Multiply. Replace X by 1001001001Xmod1010.
K6. Pseudo-compliment. If X < 100; 000;000, then set X  X þ 9;814;055;677; otherwise set X  1010 � X.
K7. Interchange halves. X  105ðXmod105Þ þ bX=105c i.e., interchange the low-order five digits of X with the high-order

five digits.
K8. Multiply. Same step as K5.
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(b) Test 2 for pseudorandom sequence
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(c) Test 3 for pseudorandom sequence
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(d) Test 1 for true random sequence
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(e) Test 2 for true random sequence
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(f) Test 3 for true random sequence

Fig. 7. Correlations between elements of pseudorandom sequences of different nature. Results of tests 1–3 for two sequences obtained from pseudorandom
(first line) and true random (second line) generators each made up of 100,000 numbers from ½0;1�. Period for tests 1 and 2 is set to 65 which is a value of
effective period of GA implementation considered in this paper for population size 5; period for test 3 is equal to 1. Visual comparison does not reveal any
significant differences between true and pseudorandom sequences. Results for other period values and random sequences with different seeds are of
identical nature. This suggests that structural bias cannot originate from random generator but rather represents artefacts from the iterative application of
algorithmic operators.

5 The pseudocode is given here to demonstrate how complicated the algorithm is; there is no need to follow it in detail.

A.V. Kononova et al. / Information Sciences 298 (2015) 468–490 479



K9. Decrease digits. Decrease each nonzero digit of the decimal representation of X by one.
K10. 99,999 modify. If X < 105, set X  X2 þ 99;999; otherwise set X  X � 99;999.
K11. Normalize. (At this point X cannot be zero.) If X < 109, set X  10X and repeat this step.
K12. Modified middle square. Replace X by bXðX � 1Þ=105cmod1010.
K13. Repeat? If Y > 0, decrease Y by 1 and return to step K2. If Y ¼ 0, the algorithm terminates with X as the desired ‘‘ran-

dom’’ value h

Initial tests of this generator revealed that, depending on the starting value, the output of this algorithm is far from being
‘‘super-random’’: it either converges to the 10-digit value 6065038420, or the sequence begins to repeat itself after 7401 val-
ues, in a cyclic period of length 3178 [27]. This example strengthens the view that thoughtlessly assembled overcomplicated
algorithms have elevated chances of possessing undesirable and intractable properties.

4. Structural analysis of a simplified genetic algorithm

In this section we are going to look at a simplified version of a genetic algorithm, and theoretically analyse this algorithm
with a view to uncovering dynamics that may cause structural bias. Our simplifications will allow us to analyse changes in
the sample variance of the positions of points in the population when we generate a new point (and replace one from the
current population). However, the simplifications, though necessary to facilitate analysis, do not materially change the per-
formance of the algorithm on a function such as f 0, as we explain later with both heuristic arguments and numerical
experiments.

Consider a genetic algorithm, as in Section 3.1, with the following amendments to its operation.

1. Selection is uniformly random – i.e. there is a purely random choice of parents;
2. the child replaces a randomly chosen member of the population.

More precisely, we define a process fXðtÞgt2Zþ , where XðtÞ 2 RN for each t and Xið0Þ is uniformly distributed in ½0;1� for
each i ¼ 1; . . . ;N. The change from time t to time t þ 1 is as follows:

	 Pick two numbers from 1 to N at random (with replacement). Let these numbers be j and k.
	 Generate a new coordinate

Y ¼ min aXj þ ð1� aÞXk þ Z;1
� �� �þ

; ð2Þ

where xþ ¼maxðx;0Þ;a is a random variable uniformly distributed on ð�d;1þ dÞ for a positive d and Z is a Normal ran-
dom variable with mean 0 and variance r2.
This represents a choice of a new point which is absorbed at the boundaries.
	 Pick a number from 1 to N at random; let this number be i.
	 Replace Xi by Y.

Let S2ðtÞ denote the sample variance of the vector XðtÞ

S2ðtÞ ¼ 1
N � 1

X
XiðtÞ2 �

P
XiðtÞð Þ2

N

 !
:

We can prove the following theorem.

Theorem 1. If

d <
�1þ

ffiffiffiffiffiffiffiffiffi
3Nþ9
N�1

q
2

;

then there exist 0 < K <1 and e > 0 such that if S2ðtÞ > K, then

E S2ðt þ 1Þ � S2ðtÞjXðtÞ
� �

< �e:

We prove the theorem by bounding the sample variance of the real next step by the sample variance of the next step
without absorption at the boundaries. Indeed, it is immediate to check that the sample variance of the non-absorbed values
at the next step is an upper bound for the sample variance of the original (possibly absorbed) values, and the difference
between (non-absorbed) sample values at two subsequent steps is equal to

ðN � 1ÞE S2ðt þ 1Þ � S2ðtÞjXðtÞ
� �

¼ 1
N3

X
j;k;l

ðS2 � X2
l þ EY2Þ � 1

N
E

1
N3

X
j;k;l

ðS1 � Xl þ YÞ2
 !

� S2 þ
1
N

S2
1;
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where Y is defined in (2), S2 ¼
P

XiðtÞ2 and S1 ¼
P

XiðtÞ. The remainder of the argument consists in re-arranging terms and

noting that EU ¼ 1=2 and EU2 ¼ 1þdþd2

3 �

Note that
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(f) simplified GA N = 100 end

Fig. 8. Positions of points with the best fitness values in the first (left column) and the last (right column) populations of 50 runs of the simplified genetic
algorithm for different population sizes in parallel coordinates; horizontal axis shows the number of coordinate, vertical axis shows the range of these
coordinate; the fitness value of each point is shown in colour. A clear bias towards the centre of the search space is visible in the last populations as
population size increases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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K ¼ r2ð1� 1=NÞ
N þ 1� 2 1þdþd2

3 ðN � 1Þ
:

The theorem implies that if the sample variance of the points’ locations is larger than K, then on average it will decrease.
This, heuristically, means that the points will tend not to spread over the entire interval ½0;1�. We conjecture that there is a
stronger result showing that points’ locations converge to a strict subset of ½0;1�. This is supported by our numerical results
but so far we have not demonstrated it theoretically.

For vectors with N components all taking values in ½0;1�, it is clear that the largest value of the sample variance is N
2ðN�1Þ

and is always bounded away from 0 (in fact, converges to 1=2 as N !1). One can easily see, however, that K ! 0 as N !1.
This means that for a sufficiently large number of points in the population, the range of configurations in which the average
change in variance is negative (i.e. configurations from which the points tend to become spread less at the next time instance
than at the previous one) is not empty and becomes larger as the number of points increases.

Finally, before closing this section with a brief empirical test of the simplified algorithm that we have analysed, we note
certain observations that follow from the theorem, and that we will refer to subsequently. First, numerical exploration of the
expression of Theorem 1 with typical and reasonable values suggests that the implied ‘reducing variance’ dynamics may be
commonplace in genetic algorithm designs. Further, and interestingly, as N (population size) increases, the ‘burden’ on d to
be small increasingly relaxes, which suggests that structural bias will become more prominent at larger population sizes,
despite perhaps high levels of exploration (larger d) among the algorithm’s operators. We note that this expectation, for
more prominence in structural bias at higher population sizes, resonates strongly with our empirical findings in Section 3.1.
Next, considering that ‘difficult’ landscapes may tend to keep a population scattered across multiple local optima (at least in
early or middle stages of a genetic algorithm’s search), the theorem indirectly suggests that the consequent high position
variance in such circumstances will exacerbate structural bias. In other words, the theorem provides a theoretical root sug-
gesting that many kinds of ‘difficult’ landscapes (where we might expect high positional variance during search) will be sen-
sitive to an algorithm’s structural bias, while ‘easy’ landscapes (for which a good algorithm can be expected to focus quickly
around optimal areas, with consequent low variance) will be relatively insensitive to an algorithm’s structural bias. In Sec-
tion 5, after first presenting approaches to visualise and quantify structural bias, we perform experiments that allow us to
start to evaluate these suggestions.

Numerically, the behaviour on f 0 of the simplified genetic algorithm is very similar to the behaviour of the typical genetic
algorithm presented in Section 3.1 as Fig. 8 shows. One can expect this due to simple heuristic arguments. Indeed, given that
fitness at every step is chosen from a uniform distribution, independently of the fitness of all other points, and a point will only
be accepted if its fitness is better than that of at least one existing point, the fitnesses of all points will converge to the optimal
one. Therefore removing a random point instead of the worst one should not strongly influence the performance of the algo-
rithm. The same concerns the choice of parents. Thus, this analysis approximately describes the typical genetic algorithm.

5. Quantifying structural bias and observing its consequences

Returning briefly to analogies, let us consider a football team running trials for a new goal-keeper. Imagine that the final
choice is to be made between two persons: one talented but rather lazy keeper who prefers to stand still beside the left goal-
post, no matter what the actions of the striker, and one very energetic keeper who can reach every part of the goal but occa-
sionally fails. In this analogy, we intend the goal to represent the problem domain, the goal-keeper plays the role of the
algorithm and the strategy of the striker, unknown to the goal-keeper, represents the objective function. It is then the duty
of the goal-keeper to locate as close as possible a position where the ball is going to approach the goal, just as the algorithm
needs to identify the region of the goal which contains an optimum of the current objective function. In life, it can happen
that, by pure luck, the striker is equally limited and can hit only the region of the left goalpost. Clearly, our lazy goalkeeper
will have no problem defending the goal from such a striker. However, as it usually happens that strikers tend to target dif-
ferent regions of the goal, a more flexible goalkeeper will end up being a better choice for the team regardless of his or her
occasional shortcomings.

We propose, first of all, a simple visual test for structural bias that amounts to visualising the performance of the goal-
keeper in such a trial. Our visual test is meant to identify whether or not an algorithm has any structural bias, or to compare
the degrees of such bias among a suite of algorithms. In this test, conclusions can be made based on the distribution of coor-
dinates of points with the best fitness values in the final populations of the algorithms under consideration running on f 0 for
roughly the same fitness evaluation budget as intended for their deployment on real objective functions.

Application of this visual test to the algorithms explored in Section 3 amounts to observing the parallel coordinates fig-
ures presented earlier, thereby inspecting the distributions of the positions of the 50 best points (the best point from each of
50 independent trials), for each of the algorithm configurations. Such inspection suggests that an appreciable level of struc-
tural bias is exhibited by the genetic algorithm with population size 100 (Fig. 3(c)), and by PSO with population sizes of both
N ¼ 5 and N ¼ 100 (Fig. 5(a) and (c)). Meanwhile, the genetic algorithm with N ¼ 20 exhibits milder structural bias, see
Fig. 3(b). The remaining two cases – the genetic algorithm with N ¼ 5 and PSO with N ¼ 20 – seem to provide satisfactory
performance in terms of structural bias, but are clearly more difficult to differentiate objectively based on a purely visual test
of Figs. 3(a) and 5(b).
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For an objective test of the level of structural bias, we propose use of the Kolmogorov–Smirnov test [28,44,46], specifically
to compare the empirical distribution function of the sample of coordinates and the cumulative distribution function of the
uniform distribution. By using the Kolmogorov–Smirnov test in this way, we obtain a p-value that expresses the probability
that the sample comes from a uniform distribution given the null-hypothesis is correct. Fig. 9 summarises the results of this
test, performed independently for each dimension, for the same sets of points discussed earlier in the context of visual tests.
These results numerically support our aforementioned conclusions based on visual analysis of Figs. 3 and 5. For example, the
cluster of low p-values plotted against ‘‘PSOp5f0’’ corresponds to the observation of high levels of structural bias for PSO with
N ¼ 5.

Our proposed approach to quantifying an algorithm’s inherent structural bias therefore comprises running repeated trials
of the algorithm(s) in question using f 0 as the objective function, and subsequently applying one or both of: parallel-coor-
dinates based visual inspection of the final points, and the Kolmogorov–Smirnov test to assess the uniformity of the distri-
bution of those points. The proposed method is computationally highly efficient in comparison to approaches (such as that of
[8]) that require numerous optimisation trials with the actual objective function (and also needing to be re-applied for every
new objective function of interest). Our proposed approach is potentially suitable as an algorithmic design tool for general
use. It is important to note that, on its own, a strategy of maintaining a more even coverage of the search space by the
algorithm does not ensure a satisfactory algorithmic design capable of fast convergence to a near-optimum solution. The sole
objective of such a strategy is to identify a combination of operators that forces the algorithm to explore the domain with
more equal probability. This strategy is therefore complementary and should be used in conjunction with more comprehen-
sive design strategies which ensure other favourable properties of optimisation algorithms such as those discussed in Sec-
tion 1 or other properties specific to a particular class of algorithms.

5.1. Further numerical results: consequences of structural bias on a suite of test functions

To investigate the consequences of structural bias when one aims to optimise a standard test function, in this subsection
we perform experiments using the CEC 2005 test function suite, which is widely used to test and compare algorithms in the
field of evolutionary computation [47]. We later consider the results of these experiments in the light of the different levels
of inherent bias observed earlier for the same algorithm in our tests on f 0. As we will see, this exercise represents a rehearsal
of our proposal that, by observing behaviour on f 0, we are able to better understand the degree to which bias is in effect
when the algorithm is applied to a real function; further, as we shall see, our findings (considered also in the light of our
theoretical investigation) suggest how we can start to understand the differential effects of inherent structural bias in the
presence or absence of different features of the optimisation landscape.

Exact specifications of the CEC 2005 functions can be found in [47]. The benchmark suite comes along with source code
that allows users to treat the individual functions in the test suite as ‘black box’ functions that simply return a fitness value
when given an n-dimensional coordinate. No other information is provided to the optimisation algorithm, except for spec-
ifications of the range of the search domain. The benchmark suite makes its functions available for specific dimensionalities
(e.g. 10, 30 and 50).
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Fig. 9. Results of the Kolmogorov–Smirnov tests for the considered genetic algorithm and PSO, with three population sizes each. For each algorithm, the test
is run independently for each dimension of the problem; the p-value returned by each test is shown with a marker. The p-values in the first, third and sixth
columns are significantly lower than others, which translates into stronger structural bias present in results for these algorithms. p-values shown in the
second column correspond to the case of milder structural bias, meanwhile the fourth and fifth columns characterise algorithms with the weakest
structural bias observed in our series of experiments. These results support our conclusions regarding strength of structural bias based on purely visual
analysis of Figs. 3 and 5.

A.V. Kononova et al. / Information Sciences 298 (2015) 468–490 483



For the purpose of illustration, we select a limited number of functions from the CEC 2005 benchmark suite for which the
genetic algorithm considered in this paper:

	 f 8 shifted rotated Ackley function in ½�32;32�30 with global optimum on the bounds
	 f 9 shifted Rastrigin function in ½�5;5�30,
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Fig. 10. Positions of points with the best fitness in the last population of 50 runs of the considered GA for different population sizes in parallel coordinates -
f 8 and f 9 are sensitive to structural bias of GA. Horizontal axis shows the ordinal number of coordinate, vertical axis shows the full range of domain in this
coordinate kept constant for each function; fitness value of each point is shown in colour. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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	 f 13 shifted expanded Griewank and Rosenbrock function in ½�5;5�30,
	 f 14 shifted rotated expanded Scaffer F6 function in ½�100;100�30,
	 f 21 rotated hybrid composition function in ½�5;5�30,
	 f 24 rotated hybrid composition function in ½�5;5�30.
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Fig. 11. Positions of points with the best fitness in the last population of 50 runs of the considered GA for different population sizes in parallel coordinates –
f 13 and f 21 are insensitive to structural bias of GA. Horizontal axis shows the ordinal number of coordinate vertical axis shows the full range of domain in this
coordinate kept constant for each function; fitness value of each point is shown in colour. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Parallel coordinates visualisations of our genetic algorithm’s results on these functions are shown in Figs. 10–12. Each
individual plot summarises the results of 50 independent trials of the genetic algorithm on the function concerned, by show-
ing, in parallel coordinates fashion, 50 30-dimensional points, comprising the best point reached in each trial. It is important
to stress that interpretation of these figures should be entirely different from interpretation of those shown in Figs. 3 and 5.
Unless specifically constructed so, it is not expected that the final distribution of positions of the best points in the final
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Fig. 12. Positions of points with the best fitness in the last population of 50 runs of the considered GA for different population sizes in parallel coordinates –
f 14 and f 24 are highly sensitive to structural bias of GA. Horizontal axis shows the ordinal number of coordinate, vertical axis shows the full range of domain in
this coordinate kept constant for each function; fitness value of each point is shown in colour. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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generation is close to uniform in the case of any function other than f 0. In sharp contrast to the f 0 results, we would naturally
expect in these plots to see a strong effect due to the combined activity of selection and the shape of the landscape, resulting
in the identification of regions at or close to optima of the objective function.

At any point in time during the optimisation process, two forces can be conceptualised which simultaneously act on the
population – landscape bias and structural bias. The first force pulls the population towards better values of the objective
function, meanwhile the second force can be thought of as pulling the population towards ‘attractors’ in the domain (perhaps
complex attractors) whose nature arises from the combination of algorithm design choices. Both of these forces are unknown
and, therefore, their sum – which defines population movement – is also unknown. The use of f 0 to help quantify structural
bias is precisely based on the idea of eliminating one of the unknowns, the ‘landscape force’, hence revealing any structural
bias. It follows that, to interpret the visualisations of Figs. 10–12, we can proceed as follows. For a given objective function,
we can observe how the distribution of final points varies as a function of the algorithm configurations considered, and con-
sider how this correlates with the relative degrees of structural bias previously observed (via experiments with f 0) over the
same set of configurations. Obviously, attention should also be paid to the final attained values of the objective function and
their variances.

In such analysis of results over the CEC 2005 benchmark suite, we have observed three types of behaviour, which we con-
ceptualise as resulting from the combination of structural bias in the algorithm configuration itself combined with more or
less sensitivity to that bias inherent in the objective function at hand:

	 Sensitivity to structural bias, as exemplified by f 8 and f 9, see Fig. 10. For f 8, all three series of runs attained similar values
of final fitness over 50 runs, but runs with larger populations failed to find good solutions closer to the boundary of the
domain. We attribute such failures to structural bias of the genetic algorithm, as also observed for N ¼ 50 on f 0. On f 8, the
genetic algorithm exhibits behaviour overall similar to the case of f 0. Meanwhile, for f 9, final fitness values are quite dif-
ferent across the three series of runs, but the variance of positions of final best points demonstrates the pattern of sen-
sitivity to structural bias.
	 Insensitivity to structural bias, as exemplified by f 13 and f 21, see Fig. 11. All parameter settings considered lead to similar

results in terms of the fitness values attained, positions of final best points and variances in their positions.
	 High sensitivity to structural bias, as exemplified by f 14 and f 24, see Fig. 12. In the case of f 14, quite similar values of final

fitness are attained over the three series of runs; however, drastic changes are clear from one series to another in terms of
variances of positions of final best points. For N ¼ 5, these points fill the whole domain and better points, indicated on the
figure with red markers, are uniformly spread out across the domain. The situation is to some extent similar for N ¼ 20
but all points start to shift towards the middle of the interval and those with better fitness values in particular. For
N ¼ 100, no final best points are located in the outer regions of the domain, but their distribution in the centre of the
domain is rather uniform. As for f 24, there are drastic changes both in terms of final fitness values and distribution of posi-
tions of final best points. It is interesting to note that for the genetic algorithm with N ¼ 100 on f 24, it is rather easy to find
a region with low fitness values consistently over the series of 50 runs suggesting that this particular function possesses a
special property of some kind.

As regards other functions from the CEC2005 suite, it is worth mentioning that functions in the top of the list tend to be
less sensitive to the structural bias of our genetic algorithm. These functions are known to be unimodal or close to unimodal
[47]. This observation aligns well with our speculation in Section 4, and suggests that the theoretical analysis of the simpli-
fied genetic algorithm may have captured at least part of the essence of the factors that underpin structural bias and also the
sensitivity to structural bias of any given objective function (via informed expectations of how the landscape may affect pop-
ulation variance). However, we are of course very much only at the beginning of a theoretical understanding of structural
bias, in terms of both underpinning causes and of the effects of particular landscapes. This state of affairs goes hand in hand
with a need for approaches to investigate and quantify inherent structural bias, such as proposed in this paper. Returning to
the relative sensitivity to structural bias of different objective functions, we speculate that further work, involving analyses
of particular collections of objective functions, might reveal similarities in the structure of basins of attraction in the land-
scapes might correlate with similarities in sensitivity. Empirically, we have seen that evolving populations seems to be less
‘‘confused’’ by structural bias in stronger regions of attraction which characterise unimodal optimisation as opposed to a
weaker pull from multiple closer regions of attraction in the multimodal situation. This also points towards similarities
between the effects of structural bias and noise in the objective function. Just as a noisy objective function induces false
optima in the landscape, structural bias deceptively pushes the evolving population towards regions potentially unremark-
able in terms of objective function values.

6. Conclusions and discussion

6.1. Summary and main conclusions

A vast body of research in the field of population-based optimisation algorithms deals with efficient exploitation of
information already contained within the population, while little attention is paid to investigation of whether or not a
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specific combination of algorithmic operators and algorithm strategies is actually capable of reaching all parts of the search
space with equal efficiency. When an algorithm is not capable in the latter sense – favouring certain areas of the search space
over others – independently of the fitness function, it is exhibiting ‘structural bias’.

In this paper we have argued, from both theoretical and empirical standpoints, that structural bias is likely to be common
in practice, and amplified when we would least expect it (when we increase the population size in hope of a more explor-
atory search) and when it may cause most damage (on ‘difficult’ problems). In this paper, in order to empirically investigate
the structural bias of an algorithm, we neutralised the role of the optimisation landscape thereby isolating the role of any
inherent bias in the algorithm design – by performing experiments with f 0 (as defined in Section 2). This enabled us, by visu-
alising the results of multiple experiments, to observe structural bias in terms of its effects on the distribution of the final
best points. Since we would expect these distributions to be uniform in the absence of structural bias, the pattern of observed
non-uniformity, in combination with other considerations, can be taken as informative of the structural bias inherent in the
optimisation algorithm.

To some extent, one can posit an alternative explanation for such effects by appeal to undesirable properties of the
pseudo-random number generator used. Such an objection can be difficult to discount, since the effects of the complex ways
in which pseudo-random number generators are indeed non-random are extremely difficult to predict. Nevertheless, our
analysis in Section 3.5, coupled with our theoretical findings and the pattern of empirical results, suggest that this approach
reveals structural bias rather than pseudo-random artefacts.

Our approach to revealing and quantifying structural bias is easily replicated, and we recommend its use prior to final-
ising the parametric and design configuration of any optimisation algorithm to be deployed on real-world problems. Such
can be seen as an additional validation step, coupled with other investigations of the algorithm design which would normally
be done to reveal the configuration that provides the best and/or fastest solutions to the class of problems of interest. For
example, if the best algorithm configuration also has minimal or no structural bias, then all is well. However this may very
often not be the case. When optimisation is used for system identification problems (for example, determining the param-
eters of a function or model that best fit a set of empirically obtained points), it is usually deemed important to find, as far as
possible, all good solutions, or a fair representation thereof. Finding the true system parameters in such problems is always
potentially confounded by factors such as noisy or insufficient empirical data or a poorly chosen fitness function. But, if the
otherwise preferred algorithm configuration exhibits structural bias, this will further exacerbate the possibility that the true
system parameters may not be uniformly accessible to the algorithm.

We have also contributed a theoretical argument that partially explains how structural bias can arise in a simple popu-
lation-based algorithm. The analysed algorithm is simplified, but exhibits the primary strategies common to almost all pop-
ulation based optimisation algorithms, including a parameter d that controls the degree of exploration induced by the
variation operator – the larger d, the higher the chance and extent to which a new sample will extend beyond the region
of search space occupied by its parents. By performing experiments with a simple genetic algorithm on both f 0 and on
the functions of the CEC2005 test suite, we were able to link our observations of inherent structural bias with our theoretical
results. In particular, we found evidence that increasing the population size, and increasing problem difficulty, both (inde-
pendently) correlated with increased evidence of bias; both of these findings can be predicted as a consequence of the
dynamics set out in Theorem 1. One interesting area of future work would be to replicate such experiments using a selection
of state of the art optimisation algorithms from varying styles of population-based search (for example, memetic search [35],
differential evolution [39], or advanced PSO [31], thereby gaining understanding of the inherent biases in such varied con-
figurations of strategy/operator recipes.

6.2. Discussion and speculations

The crucial step in the argument leading to our theoretical result for GA is to show that, on average, and under certain
conditions, the population variance will decrease with time, despite the clear opportunities for search to extend beyond
the current locations of the population. If we consider a truly random algorithm RA in such circumstances, in which each
new sample is generated uniformly at random in the search space and replaces a randomly chosen previous sample, we
can expect unbiased coverage of the search space and maintenance of a constant variance over time, which (under the con-
ditions of the theorem) would be 1

12. For typical choices of parameters (r2 ¼ 0:1;N ¼ 50; d ¼ 0:2), the value of K in the the-
orem is much lower than 1

12, suggesting that such an algorithm will rarely be able to maintain the levels of exploration
required to eliminate structural bias without careful design. Algorithm RA exhibits ‘pure’ exploration, however any effective
optimisation algorithm incorporates exploitation, which is invariably achieved by biassing samples towards the regions of
previously visited points. The ‘reducing variance’ theorem suggests that such exploitation is intimately related to the emer-
gence of structural bias, but it also suggests that the latter can be controlled by reducing the population size, or by raising d
(or, alternatively, by revisiting the algorithm’s design to introduce mechanisms that introduce additional new samples in a
way that is not tied to the locations of previous samples). By raising d, we (usually) increase the likelihood of structural bias
but reduce the efficiency of exploitation; meanwhile, by reducing the population size we reduce the likelihood of structural
bias but reduce the level of exploration.

The inverse relationship between structural bias and population size (strictly in the context of standard and simple
genetic algorithms, which was the substrate of our theoretical analysis) that is at first counter-intuitive – to increase the
population size would seem to inject more diversity, which we should expect to alleviate such bias. However, we believe
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this phenomenon can be explained by an effect akin to ‘preferential attachment’ in the evolution of complex systems. Struc-
tural bias, manifested as the concentration of search progress in ever narrower regions, builds on initial seed areas which
begin to attract further points. In our context, if two parent solutions happen to be close together, their offspring will stay
nearby and increase the density in this region, and the positive feedback dynamics of this process will exacerbate the non-
uniform distribution. When the population size is increased, there is more opportunity for such initial seeds to be present.

The results we have presented seem less surprising when iterative population-based algorithms are considered in relation
to Iterated Function Systems which, by definition, are finite sets of mappings of complete metric space or, symbolically,
F ¼ ðX; f 1; f 2; . . . ; FMÞ; f m : X! X; m ¼ 1;2; . . . ; M. Depending on the properties of functions that make them up, IFSs exhi-
bit a variety of behaviours. According to the collage theorem [3], for any given set/image there exists a strictly contractive IFS
whose attractor arbitrarily closely approximate this set/image. A linear IFS on Rn has a unique attractor located at the origin
[4]. Any projective IFS has at most one attractor [5] but behaviour of such attractors appears to be more complicated than in
the case of affine IFSs as they might not depend continuously on parameters [5]. Moreover, there are examples of non-con-
tractive projective IFS with an attractor [5]. These results point to a potentially fruitful direction for the analysis of algorithms
through studying the properties of their operators.

Finally, it is instructive to speculate on the existence of structural bias in combinatorial optimisation. Investigations in
this article are pinned to the context of real-valued vector optimisation. At first sight, it is not at all obvious that structural
bias may occur in the combinatorial case. However, it is trivial to see that it could occur. For example, were we so inclined, we
could purposely design operators to favour certain regions of the space independently of fitness. Imagine, say, a permutation
space with an even number of objects, in which the only operator in use was to swap an item with its neighbour two steps
away; this search is then confined to the cross-product of two subspaces, omitting most of the permutation space. Also,
despite the ‘real-value’ focus of the theoretical argument, it is intuitively reasonable to speculate that a similar argument,
couched in terms of suitable metrics, may be meaningful for combinatorial spaces. For example, the perturbation effect of
a combinatorial operator on one or more points can be characterised as a distribution of edit distances from those points.
Structural bias in combinatorial search algorithms might arise from the dynamics of the variance of this distribution in
the context of other aspects of the algorithm’s configuration.
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