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The analysis of the stability and numerical simulation of Costas loop circuits for high-
frequency signals is a challenging task. The problem lies in the fact that it is necessary to
simultaneously observe very fast time scale of the input signals and slow time scale of
phase difference between the input signals. To overcome this difficult situation it is
possible, following the approach presented in the classical works of Gardner and Viterbi,
to construct a mathematical model of Costas loop, in which only slow time change of
signal's phases and frequencies is considered. Such a construction, in turn, requires the
computation of phase detector characteristic, depending on the waveforms of the
considered signals. While for the stability analysis of the loop near the locked state (local
stability) it is usually sufficient to consider the linear approximation of phase detector
characteristic near zero phase error, the global analysis (stability in the large) cannot be
accomplished using simple linear models.

The present paper is devoted to the rigorous construction of nonlinear dynamical
model of classical Costas loop, which allows one to apply numerical simulation and
analytical methods (various modifications of absolute stability criteria for systems with
cylindrical phase space) for the effective analysis of stability in the large. Here a general
approach to the analytical computation of phase detector characteristic of classical Costas
loop for periodic non-sinusoidal signal waveforms is suggested. The classical ideas of the
loop analysis in the signal's phase space are developed and rigorously justified. Effective
analytical and numerical approaches for the nonlinear analysis of the mathematical model
of classical Costas loop in the signal's phase space are discussed.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

The Costas loop [1,2] is a classical phase-locked loop
(PLL) based circuit for carrier recovery. Nowadays among
the applications of Costas loop there are Global Positioning
Systems (see, e.g., [3–7]), wireless communication (see, e.
g., [8–14] and others [15–23].
er B.V. This is an open acces

, Finland.
. Kuznetsov).
A PLL-based circuit behaves as a nonlinear control
system and its physical model in the signal space can be
described by nonlinear nonautonomous difference or
differential equations. In practice, numerical simulation is
widely used for the analysis of nonlinear PLL-based mod-
els (see, e.g., [24–28]). However the explicit numerical
simulation of the physical model of Costas loop or its
mathematical model in the signal space (e.g., full SPICE-
level simulation) is rather complicated for the high-
frequency signals. The problem lies in the fact that it is
necessary to consider simultaneously both very fast time
s article under the CC BY license
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scale of the signals and slow time scale of phase difference
between the signals, so one very small simulation time-
step needs to be taken over a very long total simulation
period [29–31].

To overcome this difficult situation it is possible, following
the approach presented, e.g., in the classical works of
Gardner and Viterbi, to construct a mathematical model in
the signal's phase space, in which only slow time change of
signal's phases and frequencies is considered. Such a con-
struction, in turn, requires the computation of phase detector
characteristic, which depends on PD physical realization and
the waveforms of the considered signals [32–35]. Note that
“understanding how phase detectors work is one of the major
keys to understanding how PLLs work” [36].

Nowadays the following scheme
1.
 consideration of the physical model in the signal space;

2.
 computation of phase detector characteristic and the

construction of the mathematical model in the signal's
phase space (phase-domain macromodel [29]);
3.
 nonlinear analysis of the transient processes of the signal's
phases adjustment and the estimation of the dependence
of various important acquisition characteristics on circuit's
parameters in the mathematical model in the signal's phase
space by numerical and analytical methods,

which goes back to pioneering works on PLL and consid-
ered below in the paper, is widely used [29,37] (see, e.g.,
modern engineering literature [25–28,36,38–47] and
others). Such an approach allows one to analyze effectively
the transient processes of signal's phases adjustment and to
estimate the dependence of many important acquisition
characteristics on circuit's parameters by numerical and
analytical methods. It is important to note that the con-
struction of mathematical model and the use of results of its
analysis for the conclusions on the behavior of the con-
sidered physical model are needed for rigorous mathema-
tical foundation [35,48], but it is often ignored in
engineering studies. The attempts to justify analytically
the reliability of conclusions, based on simplified engineer-
ing approaches, and rigorous study of nonlinear models are
quite rare (see, e.g., [49–61]).

In the present paper a general effective approach to
analytical computation of phase detector characteristic is
presented; the classical ideas of analysis and design of PLL-
based circuits in the signal's phase space are developed and
rigorously justified; for various non-sinusoidal waveforms
of high-frequency signals (see, e.g., various applications of
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Fig. 1. Costas loop is in lock: m(t) is a useful information ð71Þ; ω is a freq
PLL-based circuits with non-sinusoidal signals in [62–68])
its phase-detector characteristics are obtained for the first
time and its dynamical model is constructed.

2. Physical model of Costas loop in the signal space

Various modifications of analog and digital Costas loops and
PLL with squarer are widely used for BPSK (Binary Phase Shift
Keying) and QPSK (Quadrature Phase Shift Keying) demodula-
tion in telecommunication. Because the realization of squaring
circuits can be quite difficult, the Costas loop is the preferred
variant [26]. In digital circuits, the maximum data rate is
limited by a speed of ADC (Analog-to-Digital Converter). In
the following classical analog Costas loop, used for BPSK
demodulation (similar analysis can also be done for QPSK
Costas loop), is considered.

Consider the Costas loop operation (see Fig. 1) with the
sinusoidal carrier and VCO (Voltage-Controlled Oscillator)
signals with the same frequencies after transient processes.
The input signal is BPSK signal, which is a product of the
transferred data mðtÞ ¼ 71 and the harmonic carrier
sin ðωtÞ with the high frequency ω. Since here the Costas
loop in lock is considered, VCO signal is synchronized with
the carrier (i.e. there is no phase difference between VCO
signal and input carrier). On the lower branch (Q branch)
after the multiplication of VCO signal, shifted by 901, and
the input signal by the multiplier block (�) one has

Q ¼ 1
2 m tð Þ sin 0ð Þ�m tð Þ sin 2ωtð Þð Þ ¼ �1

2m tð Þ sin 2ωtð Þ: ð1Þ

From an engineering point of view, the high-frequency part
sin ð2ωtÞ in (1) is removed by a low-pass filter on Q branch.
Thus, after filtration a signal on Q branch is zero
(a constant in the general case when the initial frequencies
are different).

On the upper branch (I) the input signal is multiplied by
the output signal of VCO:

I ¼ 1
2 m tð Þ cos 0ð Þ�m tð Þ cos 2ωtð Þð Þ

¼ 1
2 m tð Þ�m tð Þ cos 2ωtð Þð Þ: ð2Þ

The high-frequency term cos ð2ωtÞ is filtered by a low-pass
filter. Thus, on the upper branch I after filtration one can
obtain the demodulated data m(t).

Then both branches are multiplied together and after an
additional filtration one gets the signal g(t) to adjust VCO
frequency to the frequency of input carrier signal. After a
transient process there is no phase difference and the control
input of VCO is zero. In the general case when the initial
g(t)≡0

0

LPF1

LPF2

Loop filterO

)-m(t)cos(2ωt))

)-m(t)sin(2ωt))

φ(t)≡0
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2

uency of input carrier and VCO output; mðtÞ sin ðωtÞ is an input signal.
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Fig. 2. Costas loop. Operation in the general case.
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Fig. 3. Block diagram of simplified Costas loop.

1 The functions with a finite number of jump discontinuity points
differentiable on their continuity intervals.
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frequencies are different the control input of VCO is constant:

gðtÞ � const: ð3Þ
Consider the case (see Fig. 2) when the phase of the

input carrier θ1ðtÞ and the phase of VCO θ2ðtÞ are different.
The latter means that either (1) the frequencies are
different or (2) the frequencies are the same but there is
a constant phase difference. For engineers it is a well-
known fact [69] that in the considered case of sinusoidal
signals the input of loop filter can be approximated as

φ tð Þ � 1
8 sin 2θ2 tð Þ�2θ1 tð Þ� �

:

This approximation depends on the phase difference of signals
and is called a phase detector characteristic of Costas loop for
sinusoidal signals. When the phase difference of signals is
small, using the linearization φðtÞ � Kðθ2ðtÞ�θ1ðtÞÞ, one can
consider a linearized mathematical model of Costas loop for
sinusoidal signals (see details in Section 4). This allows one to
estimate approximately acquisition parameters by the same
methods that were developed for the analysis and design of
classical PLLs (see, e.g., [69–72] and others).

In the next section a rigorous mathematical approach
to the analytical computation of phase detector character-
istic and the nonlinear analysis of classical Costas loop for
non-sinusoidal waveforms is considered.

2.1. Simplified model of Costas loop

The low-pass filters on the upper and the lower
branches of Costas loop (Fig. 2) are responsible for demo-
dulation process (see Fig. 1) and therefore they can be
applied separately from the loop (see, e.g., [4]). From a
point of view of the analysis of stability, the filter at the
input of VCO executes their filtering functions.

Thus one can consider a simplified physical open-loop
model of Costas loop (Fig. 3) with only one filter at the
input of VCO. In this case the transmitted data m(t) can be
omitted (i.e. mðtÞ � 1) because after the multiplication of
the upper and the lower branches at the input of filter the
data are squared: (mðtÞ2 ¼ ð71Þ2 ¼ 1). Here the signal
f 1ðtÞ ¼ f 1ðθ1ðtÞÞ represents the carrier and θ1ðtÞ represents
its phase. In analogy, f 2ðtÞ ¼ f 2ðθ2ðtÞÞ represents the output
signal of VCO, and θ2ðtÞ represents its phase. The functions
f 1;2ðθÞ are called waveforms.

Consider the analysis of Costas loop for general periodic
signal waveforms. Suppose that the waveforms f 1;2ðθÞ are
bounded 2π-periodic piecewise differentiable functions1

(this is true for the most considered waveforms, e.g.,
sinusoidal, squarewave, sawtooth, triangular, and polyhar-
monic). Consider the following Fourier series representa-
tion:

f p θ
� �¼ ∑

1

i ¼ 1
api cos iθ

� �þbpi sin iθ
� �� �

; θZ0

api ¼
1
π

Z π

�π
f p θ
� �

cos iθ
� �

dθ;

bpi ¼
1
π

Z π

�π
f p θ
� �

sin iθ
� �

dθ; p¼ 1;2:

The relation between the input φðtÞ and the output gðtÞ
of linear filter is as follows [73]:

gðtÞ ¼ α0ðtÞþ
Z t

0
γðt�τÞφðτÞ dτ; ð4Þ

where γðtÞ is an impulse response function of filter and
α0ðtÞ is an exponentially damped function depending on
the initial state of filter at t¼0.

By (4) the filter output g(t) has the form

g tð Þ ¼ α0 tð Þþ
Z t

0
γ t�τð Þf 1 θ1 τð Þ� �

f 2 θ2 τð Þ� �
f 1 θ1 τð Þ� �

f 2 θ2 τð Þ�π
2

� �
dτ: ð5Þ
2.2. High-frequency signals

For solving the above problem, posed by D. Abramo-
vitch, and applying the averaging methods it is necessary
to consider mathematical properties of high-frequency
signals. Here an approach is applied and used which is
developed for the study of the classical PLL [32,35,48,74].



Fig. 4. Phase detector (PD) of Costas loop and filter.
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A high-frequency property of signals can be reformulated in
the following way. Suppose that for the frequencies2

ω1;2ðtÞ ¼ _θ1;2ðtÞ; ð6Þ
there exist a sufficiently large numberωmin such that on a fixed
time interval ½0; T �, where T is independent of ωmin, the
conditions

ω1;2ðtÞZωmin40 ð7Þ
are satisfied. The frequency difference is assumed to be
uniformly bounded:

jω1ðtÞ�ω2ðtÞjrωmax
Δ ; 8tA ½0; T �: ð8Þ

Requirements (7) and (8) are obviously satisfied for the tuning
of two high-frequency oscillators with close frequencies. Let us
introduce δ¼ω�1=2

min . Consider the relations

jωpðtÞ�ωpðτÞjrΩ; p¼ 1;2;

jt�τjrδ; 8t; τA ½0; T �; ð9Þ

whereΩ is independent of δ. Conditions (7)–(9) mean that the
functionsωpðτÞ are almost constant and the functions f pðθpðtÞÞ
are rapidly oscillating time functions on the small intervals
½t; tþδ�.

To study the filtration of high-frequency signals by filter
(4) it is assumed that the impulse response function of filter
is a differentiable function with a bounded derivative (this
is true for the most considered filters [73]). The bounded-
ness of derivative of γðtÞ implies that

jγðτÞ�γðtÞj ¼ OðδÞ; jt�τjrδ; 8τ; tA ½0; T �: ð10Þ
3. Analytical computation of phase detector
characteristics for non-sinusoidal waveforms

Consider a block diagram in Fig. 4. Here PD is a non-
linear block (describing the operation of all intermediate
elements in Fig. 3 between inputs and filter) and its output
is 2π-periodic function φðθ2ðtÞ�θ1ðtÞÞ (the phase detector
characteristic of Costas loop); G(t) is the output of filter.

Suppose that the characteristics and the initial state of
filters in Fig. 3 and in Fig. 4 coincide. By (4) the output has
the form

GðtÞ ¼ α0ðtÞþ
Z t

0
γðt�τÞφðθ2ðτÞ�θ1ðτÞÞ dτ: ð11Þ

Theorem 1. Consider 2π-periodic function φðθÞ of the form

φ θ
� �¼ A1

0A
2
0

4
þ1
2

∑
1

l ¼ 1
A1
l A

2
l þB1

l B
2
l

� �
cos lθ

� ��

þðA1
l B

2
l �B1

l A
2
l Þ sin ðlθÞ

�
; ð12Þ

where the coefficients Ap
l and Bpl are expressed via the
2 A phase of analog signal can be defined as an integral of instanta-
neous frequency of signal.
coefficients of the waveforms f 1;2ðθÞ in the following way:

A1
l ¼

a10a
1
l

2
þ1
2

∑
1

m ¼ 1
a1m a1mþ lþa1m� l

� �þb1m b1mþ lþb1m� l

� �h i
;

B1
l ¼

a10b
1
l

2
þ1
2

∑
1

m ¼ 1
a1m b1mþ l�b1m� l

� �
�b1m a1mþ l�a1m� l

� �h i
;

A2
l ¼

a20α
2
l

2
þ1
2

∑
1

m ¼ 1
α2
m α2

mþ lþα2
m� l

� �þβ2
m β2

mþ lþβ2
m� l

� �h i
;

B2
l ¼

a20β
2
l

2
þ1
2

∑
1

m ¼ 1
α2
m β2

mþ l�β2
m� l

� �
�β2

m α2
mþ l�α2

m� l

� �h i
;

ð13Þ
and

α2
k ¼

a2k ; k¼ 4p;

b2k ; k¼ 4pþ1;
�a2k ; k¼ 4pþ2;

�b2k ; k¼ 4pþ3;

β2
k ¼

b2k ; k¼ 4p;
�a2k ; k¼ 4pþ1;

�b2k ; k¼ 4pþ2;
a2k ; k¼ 4pþ3:

8>>>>><
>>>>>:

8>>>>><
>>>>>:

ð14Þ

If high-frequency conditions (7)–(9) and condition on filter
(10) are satisfied, then the relation

jgðtÞ�GðtÞj ¼OðδÞ; 8 tA ½0; T� ð15Þ

is valid.

In other words, this theorem separates the low-
frequency error-correcting signal from parasitic high-
frequency oscillations and proves that the considered
function φðθÞ is a phase detector characteristic of Costas
loop. Thus the filter input can be approximated by the
function φðθÞ in the sense that a change in the filter output
signal is sufficiently small (see (15)).

For sinusoidal waveforms this fact was known to engi-
neers [2] without rigorous justification.

Remark 1. Since f 1;2ðθÞ are piecewise-differentiable, then

A1;2
k ¼O

1
k

� �
; B1;2

k ¼ O
1
k

� �
; ð16Þ

and φðθÞ is a smooth function.

Remark 2. For the most considered waveforms, infinite
series (12) can be truncated up to the first

ffiffiffiffiffiffiffiffiffiffi
ωmin

p
terms. By

(13) and (16), the remainder R½1=δ� of series (12) can be
estimated as

jR½1=δ� xð ÞjrO ∑
1

l ¼ ½1=δ�þ1

1

l2

 !
rO δ

� �
:
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The theorem allows one to compute a phase detector
characteristic3,4 for the following typical signals given
below in the table.
4. Description of classical Costas loop in the signal's
phase space

From a mathematical point of view, linear filter (4) can
also be described by a system of linear differential equa-
tions

_x ¼AxþbφðtÞ; σ ¼ cnx; ð17Þ
a solution of which has the form (4). Here A is a constant
matrix, xðtÞ is the state vector of Filter, b and c are constant
vectors. The model of VCO is usually assumed to be linear:

_θ2ðtÞ ¼ωfreeþLGðtÞ; tA ½0; T �; ð18Þ
3 It can be proved that the phase detector characteristic for Costas
loop in Fig. 2 coincides with (12) under some essential conditions on
frequency characteristics of filters on the upper and lower branches.

4 Since there is an integration in VCO model (18), for the case of
proportional-integrating filter one can easily prove an analog of the
theorem with the estimation j R t0 GðtÞ� R t0 gðtÞj ¼OðδÞ.
where ωfree is the free-running frequency of VCO and L is
the gain of VCO. Similarly, one can consider various non-
linear models of VCO (see, e.g., [37]). Therefore the initial
VCO frequency is as follows:

_θ2ð0Þ ¼ωfreeþLcnxð0Þ:
By equations of filter (17) and VCO (18) one has

_x ¼Axþbf 1 θ1 tð Þ� �
f 2 θ2 tð Þ� �

f 1 θ1 tð Þ� �
f 2 θ2 tð Þ�π

2

� �
;

_θ2 ¼ωfreeþLcnx: ð19Þ
Nonautonomous system (19) describes physical model

of Costas loop in the signal space (see Fig. 5) and is rather
difficult for the study.

Suppose that the frequency of reference signal is a
constant

_θ1ðtÞ �ω1: ð20Þ
Then Theorem 1 allows one to consider more simple
autonomous system of differential equations (in place of
nonautonomous (19)), which describes the mathematical
model of Costas loop in the signal's phase space:

_x ¼AxþbφðθΔÞ; θΔ ¼ωfree�ω1þLcnx;
θ ¼ θ �θ : ð21Þ
Δ 2 1



Fig. 5. Block diagram of Costas loop in the signal space.

Fig. 6. Block diagram of Costas loop in the signal's phase space.
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Here the initial difference of frequencies (at t¼0) has
the form _θΔð0Þ ¼ωfree�ω1þLcnxð0Þ.5

The well-known averaging method permits6 to show
that the solutions of (19) and (21) are close on time interval
½0; T �, where T5ωmin, under some assumptions [75,76].
Thus the block diagram of Costas loop in the signal space
(Fig. 5) can be asymptotically changed (for high-frequency
generators, see conditions (7)–(10)) to the block diagram in
the signal's phase space (Fig. 6). Here PD has the corre-
sponding characteristics (12).

Linearized model (21), where φðθΔÞ is changed to KθΔ,
may be used for analysis in the case when the considered
circuit “is in lock, but analysis of the acquisition behavior
cannot be accomplished using the simple linear models and
nonlinear analysis techniques are necessary” [28]. Note that
the linearization and the analysis of linearized models of
control systems may result in incorrect conclusions,7 so one
can read in [37] “the use of linear macromodels can lead to
qualitatively incorrect prediction of important PLL phenom-
ena”. At the same time the attempts to justify analytically
the reliability of conclusions, based on simplified engineer-
ing approaches, and rigorous study of nonlinear models are
quite rare and one of the reasons is that “nonlinear analysis
techniques are well beyond the scope of most undergraduate
courses in communication theory” [28].

While the physical model of Costas loop in the signal
space (19) is nonautonomous and its rigorous global
analysis (transient processes, stability in the large, cycle
slipping, etc.) is rather difficult and creative task, for the
global analysis of nonlinear autonomous model (21) of
Costas loop, the well-known methods of analysis of
5 Note that to consider one-dimensional stability domains, e.g.,
defined by ωΔ ¼ω1�ωfree , one has to assume that cnxð0Þ ¼ 0. In the
general case one has to consider multi-dimensional stability domains
taking into account the initial state of loop filter — vector xð0Þ.

6 Note that the derivation of dynamical model (21) and the rigorous
justification of its adequacy for the analysis of stability are possible here
only under condition (20), while formula (12) is obtained for PD char-
acteristic in the general case without condition (20).

7 See also counterexamples to the filter hypothesis, Aizerman's and
Kalman's conjectures on the absolute stability of nonlinear control
systems [77], and the Perron effects of the largest Lyapunov exponent
sign inversions [78], etc.
pendulum-like systems can be applied (see, e.g., [79,54,80,
56,81,60]). Modification of direct Lyapunov method with the
construction of periodic Lyapunov-like functions, the method
of positively invariant cone grids, and the method of nonlocal
reduction turned out to be most effective [82,83,80,81]. The
last method, which combines the elements of direct Lyapunov
method and bifurcation theory, allows one to extend the
classical results of Tricomi [84] and his progenies to the
multidimensional dynamical systems [83,85].
5. Simulation of Costas loop

Since in the block diagram in Fig. 6 and system (21) only
slow time change of signal's phases and frequencies is
considered, they can be effectively studied numerically.

For the simulation of system (21) with the function φð�Þ
of the form (12), in place of conditions (8) and (10) the
conditions jωmax

Δ j5ωmin; jλAj5ωmin should be considered,
where λA is the largest (in modulus) eigenvalue of matrix A.
Also, it is necessary to consider T5ωmin to justify the
transition from Eqs. (35)–(39) (see Appendix) and to use
Remark 1.

The considered theoretical results are justified by the
simulation8,9 of those considered in the previous section of
Costas loop models in the signal and signal's phase spaces.
In Fig. 7 are shown the transient processes of VCO input in
block diagrams in Figs. 5 and 6 (here it is important if and
when VCO input becomes a constant, see (3)).

Here the simulation in the signal's phase space is more
than 100 times faster. Unlike the filter output in the signal's
phase space, in the signal space the filter output contains
additional high-frequency oscillation. These high-frequency
oscillations interfere with qualitative analysis and efficient
simulation of Costas loop. The passage to the analysis of
autonomous dynamical model of Costas loop (in place of
the nonautonomous one) allows one to overcome the
difficulties that relate to the analysis of Costas loop in the
signal space.

The approach described can be adapted to digital Costas
loops [4,88], where the filter and the VCO are digital unlike
those in Fig. 5. If a discretization step is sufficiently small,
then a digital filter acts similar to an analog filter. In this
case it can be shown that the considered mathematical
model in the signal's phase space is adequate (see Fig. 8).

In conclusion it should be remarked that in the signal's
phase space a similar numerical simulation of the whole
transient process (around 10 s – see Fig. 7) of Costas loop
with frequencies around 1 GHz¼109 Hz takes less than 1 s.
At the same time to perform the accurate simulation of
Costas loop in the signal space for such frequencies one has
to use a discretization step much less than 10�9, what
results in a very long simulation time to oversee the whole
transient process: during 10 s of simulation in the signal
8 One can compare the numerical integration of systems (19) and (21)
with the simulation of realization of block diagrams in Figs. 5 and 6, f.e., in
Matlab Simulink (see, e.g., [28,86] and the patent application [87]).

9 While we consider a very simple filter, sawtooth and triangle
waveforms in simulation, one can consider similar effects for lag-lead or
PI filters and other waveforms.
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space only 3.5�10�8 s of 10 s of transient process was
obtained (see Fig. 9).

These difficulties are described in [37]: “Direct time-
domain simulation of PLLs at the level of SPICE circuits is
typically impractical because of its great inefficiency. PLL
transients can last hundreds of thousands of cycles, with each
cycle requiring hundreds of small time steps for accurate
simulation of the embedded voltage-controlled oscillator
(VCO). Furthermore, extracting phase or frequency informa-
tion, one of the chief metrics of PLL performance, from time-
domain voltage/current waveforms is often difficult and
inaccurate.”

6. Conclusion

The approach, proposed in this paper, allows one to
compute analytically PD characteristics for the general
case of periodic waveforms and to construct the nonlinear
mathematical model in the signal's phase space for classi-
cal Costas loop and, ultimately, to apply numerical simula-
tion and analytical methods (various modifications of
absolute stability criteria for pendulum-like systems) for
the effective analysis of its stability in the large.
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Appendix A

A.1. Averaging method

Application of averaging methods [75,76,89,90]
requires the consideration of constant data signal and
constant frequency of input carrier (20):

θ1ðtÞ ¼ω1tþθ1ð0Þ:
In this case (19) is equivalent to

_x ¼ Axþbf 1 ω1tþθ1 0ð Þ� �
f 2 ω1tþθ1 0ð ÞþθΔ
� �

f 1 ω1tþθ1 0ð Þ� �
f 2 ω1tþθ1 0ð ÞþθΔ�

π
2

� �
;

_θΔ ¼ωΔþLðcnxÞ: ð22Þ
Assuming that input carrier is a high-frequency signal

(ω1 is large), one can consider small parameter

ε¼ 1
ω1

: ð23Þ

Denote

τ¼ω1t: ð24Þ
Then system (22) can be transformed as

dx
dτ

¼ ε Axþbf 1 τþθ1 0ð Þ� �
f 2 τþθ1 0ð ÞþθΔ
� ��

f 1 τþθ1 0ð Þ� �
f 2 τþθ1 0ð ÞþθΔ�

π
2

� ��
;

dθΔ
dτ

¼ ε ωΔþLðcnxÞ� �
; ð25Þ

and represented in such a way that

dz
dτ

¼ εF z; τð Þ; z¼ ðx;θΔÞn: ð26Þ

In the classical averaging theory such a form of system is
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called a standard form. Consider an averaged equation

dy
dτ

¼ εF yð Þ; ð27Þ

where

F yð Þ ¼ 1
P

Z P

0
F y; τð Þ dτ: ð28Þ

Suppose D is a bounded domain containing the point
z0 ¼ ðxð0Þ;θΔð0ÞÞ. Consider solutions zðτ; εÞ and yðτ; εÞ with
the initial data z0 ¼ y0. In this case there exists a constant T
such that zðτ; εÞ and yðτ; εÞ remain in the domain D for
0rτrT=ε. Define εmax ¼ 1=ωmin.

Consider system of differential equations

dz
dτ

¼ F τ; z; λ
� �

; ð29Þ

where z, F are points of n-dimensional Euclidean space En, λ
is a parameter.

Let function Fðτ; z; λÞ be real measurable function in
τA ½0; T=ε�, zAD for any λAΛ; λ0AΛ, where Λ is a domain
of En.

Theorem 2. Consider the following system:

dz
dτ

¼ εF τ; zð Þ: ð30Þ

Assume that the right-hand side Fðτ; zÞ is uniformly bounded
and integralsZ τ

0

Z z

c
Fðτ; xÞ dx dt; 0rτo1; yAD ð31Þ

are smooth for any fixed cAD; the following limit

lim
T-1

1
T

Z T

0
F τ; zð Þ dτ¼ F zð Þ ð32Þ

exists (uniformly with respect to zAD); uniformly with
respect to y, rm:

lim
T-1

1
T

Z T

0

FΔðτ; z1;…; ziþrm;…; znÞ�FΔðτ; zÞ
rm

dτ¼ 0;

zþð0;…;0; rm;0;…;0ÞT AD; ð33Þ
where rm is a decreasing sequence (rm-0 while m-1), and
FΔ ¼ Fðτ; zÞ�F ðzÞ; F ðzÞ are k-Lipschitz functions; solution yðτÞ
of the averaged equation (27) for any τ from 0rτo1
belongs to the domain D together with its
ρ-neighborhood, and solution of the (30) with initial condi-
tions zð0Þ ¼ yð0Þ is unique.
Then for any η40; T40 there is an ε040, such that for

0oεoε0 the solution zðτÞ of (30) satisfies

jz τð Þ�y τð Þjoη; τA 0;
T
ε

	 

ð34Þ

A.2. Proof of the main theorem

Suppose, tA ½0; T�. Consider a difference

g tð Þ�G tð Þ ¼
Z t

0
γ t�sð Þ

	
f 1ðθ1ðsÞÞf 2ðθ2ðsÞÞ

f 1 θ1 sð Þ� �
f 2 θ2 sð Þ�π

2

� �
�φ θ2 sð Þ�θ1 sð Þ� �i

ds: ð35Þ

Let mAN0 such that tA ½mδ; ðmþ1Þδ�. By definition of δ,
one has moT=δþ1. The continuity condition implies that
γðtÞ is bounded on ½0; T � and f 1ðθÞ; f 2ðθÞ are bounded on R.
Since f 1;2ðθÞ are piecewise differentiable, one getsZ ðmþ1Þδ

t
γ t�sð Þf 1 θ1 sð Þ� �

f 2 θ2 sð Þ� �
f 1 θ1 sð Þ� �

f 2 θ2 sð Þ�π
2

� �
ds¼O δ

� �
;Z ðmþ1Þδ

t
γðt�sÞφðθ2ðsÞ�θ1ðsÞÞ ds¼OðδÞ: ð36Þ

It follows that (35) can be represented as

g tð Þ�G tð Þ ¼ ∑
m

k ¼ 0

Z
½kδ;ðkþ1Þδ�

γ t�sð Þ	
f 1 θ1 sð Þ� �

f 2 θ2 sð Þ� �
f 1 θ1 sð Þ� �

f 2 θ2 sð Þ�π
2

� �

�φðθ2ðsÞ�θ1ðsÞÞ


dsþOðδÞ: ð37Þ

Prove now that on each interval ½kδ; ðkþ1Þδ� the corre-
sponding integrals are equal to Oðδ2Þ.

Condition (10) implies that on each interval ½kδ; ðkþ1Þδ�
the following relation

γðt�sÞ ¼ γðt�kδÞþOðδÞ; t4s; s; tA ½kδ; ðkþ1Þδ� ð38Þ
is satisfied. Here OðδÞ is independent of k and the relation is
satisfied uniformly with respect to t. By (37), (38), and the
boundedness of functions f 1ðθÞ; f 2ðθÞ;φðθÞ it can be
obtained that

g tð Þ�G tð Þ ¼ ∑
m

k ¼ 0
γ t�kδ
� �

Z
½kδ;ðkþ1Þδ�

f 1 θ1 sð Þ� �
f 2 θ2 sð Þ� �

f 1 θ1 sð Þ� �
f 2 θ2 sð Þ�π

2

� �h
�φðθ2ðsÞ�θ1ðsÞÞ

�
dsþOðδÞ: ð39Þ

Denote

θk
pðsÞ ¼ θpðkδÞþ _θpðkδÞðs�kδÞ; p¼ 1;2: ð40Þ

Then for sA ½kδ; ðkþ1Þδ�, condition (9) yields

θpðsÞ ¼ θk
pðsÞþOðδÞ: ð41Þ

From (8) and the boundedness of derivative φðθÞ on R it
follows thatZ
½kδ;ðkþ1Þδ�

jφðθ2ðsÞ�θ1ðsÞÞ�φðθk
2ðsÞ�θk

1ðsÞÞj ds¼Oðδ2Þ: ð42Þ

If f 1ðθÞ and f 2ðθÞ are continuous on R, then for
f 1ðθ1ðsÞÞf 2ðθ2ðsÞÞf 1ðθ1ðsÞÞf 2ðθ2ðsÞ�π=2Þ the relationZ
½kδ;ðkþ1Þδ�

f 1 θ1 sð Þ� �
f 2 θ2 sð Þ� �

f 1 θ1 sð Þ� �
f 2 θ2 sð Þ�π

2

� �
ds

¼
Z
½kδ;ðkþ1Þδ�

f 1 θk
1 sð Þ

� �
f 2 θk

2 sð Þ
� �

f 1 θk
1 sð Þ

� �
f 2 θk

2 sð Þ�π
2

� �
dsþO δ2

� �
ð43Þ

is satisfied. Consider why this estimate is valid for the
considered class of piecewise-differentiable waveforms. Since
conditions (7) and (9) are satisfied and the functions θ1;2ðsÞ are
differentiable and satisfy (8), for all k¼ 0;…;m there exist sets
Ek (the union of sufficiently small neighborhoods of disconti-
nuity points of f 1;2ðtÞ) such that the relation

R
Ek
ds¼Oðδ2Þ is

valid, in which case this relation is satisfied uniformly with
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respect to k. Then the piecewise differentiability and bound-
edness of f 1;2ðθÞ imply relation (43).

By (42) and (43), relation (39) can be rewritten as

g tð Þ�G tð Þ ¼ ∑
m

k ¼ 0
γ t�kδ
� �Z

½kδ;ðkþ1Þδ�

∑
1

j ¼ 1
a1j cos ðjθk

1ðsÞÞþb1j sin ðjθk
1ðsÞÞ

 !"

∑
1

j ¼ 1
a1j cos ðjθk

1ðsÞÞþb1j sin ðjθk
1ðsÞÞ

 !

∑
1

j ¼ 1
a2j cos ðjθk

2ðsÞÞþb2j sin ðjθk
2ðsÞÞ

 !

∑
1

j ¼ 1
a2j cos jθk

2 sð Þ� j
π
2

� �
þb2j sin jθk

2 sð Þ� j
π
2

� � !

�φðθk
2ðsÞ�θk

1ðsÞÞ
#
dsþOðδÞ: ð44Þ

By (14)

gðtÞ�GðtÞ ¼ ∑
m

k ¼ 0
γðt�kδÞ

Z
½kδ;ðkþ1Þδ�

∑
1

j ¼ 1
a1j cos ðjθk

1ðsÞÞþb1j sin ðjθk
1ðsÞÞ

 !"

∑
1

j ¼ 1
a1j cos ðjθk

1ðsÞÞþb1j sin ðjθk
1ðsÞÞ

 !

∑
1

j ¼ 1
a2j cos ðjθk

2ðsÞÞþb2j sin ðjθk
2ðsÞÞ

 !

∑
1

j ¼ 1
α2
j cos ðjθk

2ðsÞÞþβ2
j sin ðjθk

2ðsÞÞ
 !

�φðθk
2ðsÞ�θk

1ðsÞÞ
#
dsþOðδÞ: ð45Þ

Since conditions (7)–(9) are satisfied, it is possible to
choose Oð1=δÞ the sufficiently small time intervals of
length Oðδ3Þ such that outside this interval the functions
f pðθpðtÞÞ and f pðθk

pðtÞÞ are continuous.
It is known that on each interval, which has no disconti-

nuity points, Fourier series of functions f 1ðθÞ and f 2ðθÞ
converge uniformly. Then there exists a number M¼
MðδÞ40 such that outside sufficiently small neighborhoods
of discontinuity points of f pðθpðtÞÞ and f pðθk

pðtÞÞ the sum of
the first M terms of series approximates the original function
with an accuracy to OðδÞ. In this case by relation (45) and the
boundedness of f 1ðθÞ and f 2ðθÞ on R it can be obtained:

g tð Þ�G tð Þ ¼ ∑
m

k ¼ 0
γ t�kδ
� �Z

½kδ;ðkþ1Þδ�

f 1 θk
1 sð Þ

� �
f 2 θk

2 sð Þ
� �

f 1 θk
1 sð Þ

� �
f 2 θk

2 sð Þ�π
2

� �h

�φðθk
2ðsÞ�θk

1ðsÞÞ
i
dsþOðδÞ ¼ ∑

m

k ¼ 0
γðt�kδÞ

Z
½kδ;ðkþ1Þδ�

∑
M

j ¼ 1
a1j cos ðjθk

1ðsÞÞþb1j sin ðjθk
1ðsÞÞ

 !"

∑
M

j ¼ 1
a1j cos ðjθk

1ðsÞÞþb1j sin ðjθk
1ðsÞÞ

 !
∑
M

j ¼ 1
a2j cos ðjθk

2ðsÞÞþb2j sin ðjθk
2ðsÞÞ

 !

∑
M

j ¼ 1
α2
j cos ðjθk

2ðsÞÞþβ2
j sin ðjθk

2ðsÞÞ
 !

�φðθk
2ðsÞ�θk

1ðsÞÞ
#
dsþOðδÞ

ð46Þ
Thus,

gðtÞ�GðtÞ ¼ ∑
m

k ¼ 0
γðt�kδÞ

Z
½kδ;ðkþ1Þδ�

∑
M

j ¼ 1
∑
M

i ¼ 1
∑
M

l ¼ 1
∑
M

r ¼ 1

"

ða1j cos ðjθk
1ðsÞÞþb1j sin ðjθk

1ðsÞÞÞ
ða1i cos ðiθk

1ðsÞÞþb1i sin ðiθk
1ðsÞÞÞ

ða2l cos ðlθk
2ðsÞÞþb2l sin ðlθk

2ðsÞÞÞ
ðα2

r cos ðrθk
2ðsÞÞþβ2

r sin ðrθk
2ðsÞÞÞ

�φðθk
2ðsÞ�θk

1ðsÞÞ


dsþOðδÞ: ð47Þ

Remark that the addends in (47) consist of the product
of four coefficients and four trigonometric functions. Apply
the formulas of product of sines and cosines to each
addend and use Lemma 1 (assertions of Lemmas 1 and 2
are at the end of Appendix), taking into account the
conditions of high-frequency property (7)–(9) and the
introduced notion (40). Note that the addends in (47) are
similar and the types of functions (sin or cos) and
coefficients (a;b;α;β) in no way affect the conclusion of
Lemma 1 and its proof. Consider, for example, the follow-
ing addend of sum (47):

∑
M

j;i;l;r ¼ 1
a1j cos ðjθk

1ðsÞÞa1i cos ðiθk
1ðsÞÞ

a2l cos ðlθk
2ðsÞÞα2

r cos ðrθk
2ðsÞÞ: ð48Þ

By the relation

cos θ1
� �

cos θ2
� �¼ 1

2 cos θ1þθ2
� �þ cos θ1�θ2

� �� � ð49Þ
one obtains

S¼ ∑
M

j;i;l;r ¼ 1
a1j cos jθk

1 sð Þ
� �

a1i cos iθk
1 sð Þ

� �
a2l cos lθk

2 sð Þ
� �

α2
r cos rθk

2 sð Þ
� �

¼ ∑
M

j;i;l;r ¼ 1

a1j a
1
i a

2
l α

2
r

8

ð cos ðði� jÞθk
1ðsÞ�ðlþrÞθk

2ðsÞÞ
þ cos ððiþ jÞθk

1ðsÞ�ðlþrÞθk
2ðsÞÞ

þ cos ðði� jÞθk
1ðsÞþðl�rÞθk

2ðsÞÞ
þ cos ðði� jÞθk

1ðsÞþð� lþrÞθk
2ðsÞÞ

þ cos ððiþ jÞθk
1ðsÞþðlþrÞθk

2ðsÞÞ
þ cos ððiþ jÞθk

1ðsÞþðl�rÞθk
2ðsÞÞ

þ cos ððiþ jÞθk
1ðsÞþð� lþrÞθk

2ðsÞÞ
þ cos ðði� jÞθk

1ðsÞþðlþrÞθk
2ðsÞÞÞ: ð50Þ

Consider an integral of this expression over the interval
½kδ; ðkþ1Þδ�. By Lemma 1 and (40) one hasZ
½kδ;ðkþ1Þδ�

cos ðθk
pðsÞÞ ds¼Oðδ2Þ; p¼ 1;2:
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The use of relations (7) gives the estimate

Z
½kδ;ðkþ1Þδ�

apj cos jθk
p sð Þ

� �
ds¼ Oðδ2Þ

j2
; p¼ 1;2: ð51Þ

Then for the integral of the first addend of (50) over the
interval ½kδ; ðkþ1Þδ� one obtainsZ
½kδ;ðkþ1Þδ�

∑
M

j;i;l;r ¼ 1

a1j a
1
i a

2
l α

2
r

8

cos iþ jð Þθk
1 sð Þþ lþrð Þθk

2 sð Þ
� �� �

ds

¼ ∑
M

j;i;l;r ¼ 1

Oðδ2Þ
ijlr maxðiþ j; lþrÞ: ð52Þ

Since the series ∑1
i;j;l;r ¼ 11=ijlr maxðiþ j; lþrÞ converges

(iþ jZ2
ffiffiffi
ij

p
and lþrZ2

ffiffiffiffi
lr

p
), the integration over (50) givesZ

½kδ;ðkþ1Þδ�
S ds¼

Z
½kδ;ðkþ1Þδ�

∑
M

j;i;l;r ¼ 1

a1j a
1
i a

2
l α

2
r

8

ð cos ðði� jÞθk
1ðsÞ�ðlþrÞθk

2ðsÞÞ
þ cos ððiþ jÞθk

1ðsÞ�ðlþrÞθk
2ðsÞÞ

þ cos ðði� jÞθk
1ðsÞþðl�rÞθk

2ðsÞÞ
þ cos ðði� jÞθk

1ðsÞþð� lþrÞθk
2ðsÞÞ

þ cos ððiþ jÞθk
1ðsÞþðl�rÞθk

2ðsÞÞ
þ cos ððiþ jÞθk

1ðsÞþð� lþrÞθk
2ðsÞÞ

þ cos ðði� jÞθk
1ðsÞþðlþrÞθk

2ðsÞÞÞ dsþOðδ2Þ: ð53Þ

From (8) and Lemma 2 (see below) it follows thatZ
½kδ;ðkþ1Þδ�

∑
M

i;j;l;r ¼ 1;
iþ ja � lþ r

a1j a
1
i a

2
l α

2
r

8
cos iþ jð Þθk

1 sð Þþ l�rð Þθk
2 sð Þ

� �
ds

¼ ∑
M

i;j;l;r ¼ 1;
iþ ja � lþ r

O
1

ijlrjiþ jþ l�rj

� �
¼ O δ2

� �
: ð54Þ

Similarly,
Z
½kδ;ðkþ1Þδ�

∑
M

i;j;l;r ¼ 1;
i7 ja l� r

a1j a
1
i a

2
l α

2
r

8
cos i7 jð Þθk

1 sð Þ� l�rð Þθk
2 sð Þ

� �
ds¼O δ2

� �

Z
½kδ;ðkþ1Þδ�

∑
M

i;j;l;r ¼ 1;
i7 ja lþ r

a1j a
1
i a

2
l α

2
r

8
cos i7 jð Þθk

1 sð Þ� lþrð Þθk
2 sð Þ

� �
ds¼O δ2

� �
:

ð55Þ
The rest of the addends in (53) enter into definition (12) of
φðsÞ.

Note that relations (51) and (52) remain true if cos is
replaced by sin. Then

Z
½kδ;ðkþ1Þδ�

∑
M

i;j;l;r ¼ 1;
i7 ja lþ r

a1j a
1
i a

2
l α

2
r

8
sin i7 jð Þθk

1 sð Þ� lþrð Þθk
2 sð Þ

� �
ds¼O δ2

� �
;

Z
½kδ;ðkþ1Þδ�

∑
M

i;j;l;r ¼ 1;
i7 ja � l� r

a1j a
1
i a

2
l α

2
r

8
sin i7 jð Þθk

1 sð Þþ lþrð Þθk
2 sð Þ

� �
ds¼O δ2

� �
;

Z
½kδ;ðkþ1Þδ�

∑
M

i;j;l;r ¼ 1;
i7 ja l� r

a1j a
1
i a

2
l α

2
r

8
sin i7 jð Þθk

1 sð Þ� l�rð Þθk
2 sð Þ

� �
ds¼O δ2

� �
Z
½kδ;ðkþ1Þδ�

∑
M

i;j;l;r ¼ 1;
i7 ja � lþ r

a1j a
1
i a

2
l α

2
r

8
sin i7 jð Þθk

1 sð Þþ l�rð Þθk
2 sð Þ

� �
ds¼O δ2

� �
:

ð56Þ
Obviously, the changes from a1;2 to b1;2 and from α1 to β1

remain unchanged relations (56). Thus, some addends from
(47) satisfy the relations similar to (56) and the rest of the
addends enter into φðsÞ. Theorem is proved.

Lemma 1. For sufficiently large frequencies ωmin the follow-
ing relationsZ
½kδ;ðkþ1Þδ�

cos j ωminsþψ
� �� �

ds¼Oðδ2Þ
j

;

Z
½kδ;ðkþ1Þδ�

sin j ωminsþψ
� �� �

ds¼Oðδ2Þ
j

; jAN; kAN0;

ð57Þ
where δ2 ¼ω�1

min, are satisfied.

Lemma 2. The series ∑1
i;j;l ¼ 1∑

1
r ¼ 1;

jþ la � iþ r
1=ijlr jþ lþ i�rj

�� and
∑1

i;j;l ¼ 1∑
1

r ¼ 1;
jþ la � iþ r

1=ijlr jþ l� i�rj
�� converge.
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