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1 INTRODUCTION

Music performance is the epitome of music making, and the later is the most intrigu-
ing of the musical activities. Musicians have to perform highly demanding cognitive
and motor functions, while structural elements unfold within musical experience (Palmer,
1997). Music perception involves multimodal percepts and crossmodal interactions (Vines,
Krumhansl, Wanderley, & Levitin, 2006; Vuoskoski, Thompson, Spence, & Clarke, 2016),
and vision appear to have major importance in the perception of expressive music per-
formance (Davidson, 1993; Dahl & Friberg, 2007; Davidson, 1993; Vuoskoski, Thompson,
Clarke, & Spence, 2014). Bodily gestures have been proposed that play a major role
in perception of expressive music performance. The notion of musical gestures under
the prism of embodied music cognition unifies bodily movement and meaning (Cadoz,
Wanderley, et al., 2000; Leman, 2008). Therefore, it provides a bridge to study subjec-
tive experience from bodily movement (Jensenius, Wanderley, Godøy, & Leman, 2009;
M. Thompson, 2012). The study of expressive intentions in music heavily depends on
the standard paradigm (Juslin & Timmers, 2010). This paradigm assigns expressive man-
ners to musicians which are being validated via ground truth knowledge of perceptual
judgements.

The focal point of this thesis was to explore the role of bodily gestures in the perception
of expressivity, interaction, and synchronization within dyadic violin performance. The
main experiment is based on infrared optical motion capture technology. Three pairs of
violinists performed a short duration arrangement of a folk song. We conducted a per-
ceptual experiment based on stimuli that we created using stick figures from the motion
capture data and we performed regression models to predict perceptual ratings. Our
approach stems from experimental psychology research, and the main point was to pre-
dict behavioural ratings from physiological data that we collected from full body motion
capture.

Our aim was to sketch out performance variations of violin dyads while performing a
folk composition. We followed a cognitive paradigm and we approached the problem
from both a top-down and a bottom-up perspective. Our view stems from the embodied
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cognition research program (Maturana & Varela, 1987), which differs in many aspects
from the classical cognitive paradigm. In that respect we consider the Cartesian division
between mind and body as an unfortunate event in scientific evolution. We see that
physiological bodily movement has a joint role with neuronal processes in order to make
our understanding. In that respect, we focus on bodily movement with a view to describe
intersubjective experience such as expressive intentions in music performance.

The dyadic context of our study points to the social interaction. That is of particular
importance as cognitive sciences have mainly focused on the study on individuals. Ges-
tures are considered as prelinguist assets of human communication (Sebanz, Bekkering,
& Knoblich, 2006). Gestures in music performance are primary responsible for sound
production, but they may carry emotional content, or they may serve as means of com-
munication with coperformers or with the audience (Jensenius et al., 2009).

The advent of music computing technologies opened news possibilities for the study of
music using objective measures. Music research is being transformed from its artistic
roots to an interdisciplinary, and in some cases to transdisciplinary research field. Besides
that, the main focus have been placed on auditory information, though the last decades
there is a growing interest in studying bodily gestures in the context of music making. As
a consequence there is a growing interest in body movement and dance studies in music
listening conditions.

The levels of cognitive processing in music can be studied in three different domains, the
behavioural level of subjective experience, physiological measures and neural correlates
(Luck, 2016). The present study aimed to interwind the first two levels. The neural
correlates of music performance are fairly unexplored due to apparatus constraints. Sub-
jective behavioural experience such as the perception of expressive performance is a real
challenge when we are interested to present quantifiable results. The most ecologically
valid perspective to study subjective feeling is the method of self-responses (Zentner &
Eerola, 2010). The design of this experiment thus aimed to quantify subjective ratings
about expressive music performance using physiological data of bodily movement.



2 THEORETICAL BACKGROUND

Musical expression was traditionally studied from the perspective of the musical composi-
tion. That has changed since 80s where the focus was placed on the performer (Dogantan-
Dack, 2014). Musical expression studies both the musical content of a composition, that
is the composer’s layer, and the emotional content of the musician, that is the performer’s
layer (Schubert & Fabian, 2014). In the current research we focused on the later. That
might be a trade-off, but our focus was to examine novel movement measures for quan-
tifying expressivity and interactivity in music performance. We investigated attributes
of performers’ gestures in the context of music information retrieval for body movement,
which are not so well developed as the study of expressivity based on acoustical features.
We took advantage of the advent of high resolution optical motion capture systems, which
offered new opportunities to quantify human movement with precision of millimeter, con-
sequently we were able to explore fine grained gestural control in violin performance. On
the other hand, qualitative analysis of human movement has been developed for the pur-
poses of choreographers, and one of the most important qualitative approach is that of
Laban movement analysis1. In our study we ignored any qualitative descriptions of body
movement and we have fully relied on quantifiable movement measures.

2.1 Music Performance

Music performance has been studied for over a century; it is a higly demanding and
sophisticated task which involves complex motor control and cognitive skills (Palmer,
1997). The research field of music performance is multilayered and it involves aspects of
performance planning, that is mental representations of music, and performance practice,
that is performance plans and strategies (Gabrielsson, 2003). Early research in music
performance had mainly focused on issues of synchronization (Repp, 2006), though re-
cently several models have been presented either for computational applications (Widmer
& Goebl, 2004), or psychological accounts with implications in music education and re-
search (Juslin, 2003).

1https://en.wikipedia.org/wiki/Laban_Movement_Analysis

https://en.wikipedia.org/wiki/Laban_Movement_Analysis
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2.1.1 Musical Expression

Etymologically “expression” derives from the French “exprimere” which means to ’press
out’ (Dictionary, 2004), and it has Latin root. In Greek language expression is “ek-
phrasis”, the prefix ek has identical meaning with the ex, that is ’out of’, whereas phrasis
is the root word for phrase. In Greek Wiktionary2 phrasis (φ%άσις) has as root the verb
phrazo (φ%άζω), though a possible affinity might be that of phrin (φ%ήν) meaning ’mind’
or ’soul’. Translational loans between Latin and Greek have a long history, and it might
be possible that the Latin root word is a translational loan from the Greek language.
In that respect the minor affinity to phrin relates expression with high-level cognitive
processing.

Expressive music performance is among the few musical universals (Davies, 2011). With
the advent of computer music technology we were able to focus on sonic features, and in
that respect the research community made an effort to explain expressivity in performance
based on acoustical features (Dogantan-Dack, 2014). Whereas acoustical features indeed
have a crucial role, they are not enough to fully describe the phenomenon of expressiveness.
This fact is empowered by the view that movement should be taken into account in music
information retrieval (Godøy & Jensenius, 2009). A methodological problem in the study
of expressivity is that different studies use different units to quantify their results, which
makes the comparison of different studies a difficult task (Palmer, 1997).

2.1.2 Motor Control

The architecture of motor control can be divided into low-level motor control and high-
level motor control of gesture. Low-level control relies on the theory of perception (action-
perception), with which we can state the hypothesis that our perception is linked to the
gestural expression of sound-producing gestures. High-level control deals with the question
of how the nervous system deals with the body movement. Three main concepts are
involved: motor equivalence, flexibility, and prediction. Motor equivalence suggests that
there are levels of controls for the mapping between the central nervous system commands
and the muscle commands. Flexibility refers to the idea that the same planning strategies
for the accomplishment of a movement could involve different synergies of muscles (eg.
air-guitar, drumming with hands, or drumming with sticks). Prediction refers to that
the capability to make predictions is possible if there is an internal representation of the
gestures sequence (Gibet, 2009).

2https://el.wiktionary.org/wiki/%E1%BC%94%CE%BA%CF%86%CF%81%CE%B1%CF%83%CE%B9%CF%82

https://el.wiktionary.org/wiki/%CF%86%CF%81%CE%AC%CF%83%CE%B9%CF%82
http://plato.stanford.edu/entries/action-perception/
http://plato.stanford.edu/entries/action-perception/
https://el.wiktionary.org/wiki/%E1%BC%94%CE%BA%CF%86%CF%81%CE%B1%CF%83%CE%B9%CF%82
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Gibet (2009) presented three different approaches in motor control; the motor program,
the biomechanical approach, and the non-linear dynamics approach. The former ap-
proach in musical terms is referred in the bibliography as the timekeeper model (Repp,
2005). This approach considers an internal clocking mechanism in each individual that
is responsible for sensorimotor synchronization. Questions arouse to whether or not this
approach lays on an open loop or a closed loop (Gibet, 2009). The second approach stems
from the equilibruim point hypothesis and considers that movement arise from perturba-
tions around the equilibruim. The later approach considers that movement results from
dynamic interaction with the environment, and it is in the focus of the present study.

2.1.3 Embodiment in Music Performance

The current study is designed from the first-, second-, and third-person perspective
(Leman, 2008); that is the subjective level of experience, the social interaction, and the
objective level of movement measures respectively. Leman (2008) argues that music does
not always have a referential point. In that respect corporeal understanding accounts for
recognition of expressiveness with no need for reference, whereas cerebral understanding,
or cognition, often accounts for something that is imitated. This view suggests that corpo-
real imitation along with motor resonance may account for the perception of expression.

2.2 Music Perception

A pioneer of music perception was Aristoxenos, as he was likely the first person who
realized that musical pitch is a perceptual phenomenon. Perception, just like knowledge,
is an extrinsic property. In plain language that means that each individual is a unique
perceiver. If we make an analogy from physics, mass is a intrinsic property of a body, but
weight is an extrinsic as it depends on gravitational acceleration.

Music perception is neither purely mental, neither purely physiological phenomenon (Palmer,
1997). Perceptual studies are used as ground truth knowledge in order to evaluate intu-
itions and insights about phenomena. The perception of music performance suggests that
the interpretation of performers and listeners is affected by structural elements of the
musical composition. That might be a trade off that we have to overcome, as we did not
performed any structural analysis over the musical composition, but our intuition is that
this will have a minor effect as we are not investigating any metrical levels and we have
segmented our melodic parts into musical closures (ie. complete musical phrases).
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2.2.1 The Role of Vision

Abstract visual representations of biological motion using the point-light technique has
been demonstrated that provide adequate information in order to recognize different activ-
ities, such as running, walking, or playing a musical instrument (Johansson, 1973). Visual
cues have primary importance for the perception of expressive intentions (Davidson, 1993).
Davidson studied solo pianists and showed that the visual channel dominates our music
perception. Visual information seems adequate to recognize nominal emotional qualities,
such as happy, sad, anger (Dahl & Friberg, 2007), and it has been used to recognize
expressive conductors’ gestures (Luck, Toiviainen, & Thompson, 2010). Furthermore,
the importance of appreciation of music is enhanced using audio-visual stimuli (Platz &
Kopiez, 2012), and several reports have shown crossmodal interactions between vision and
sound (Chapados & Levitin, 2008; Vuoskoski et al., 2016).

2.3 Music Interaction

Representation is how we conceptualize phenomena in order to facilitate our understand-
ing, whereas interaction is the way that our experience is being shaped by them. In-
teraction in musical terms is multifaceted and it may refer to different aspects of the
musical realm, from instrument-performer and human-computer interaction, to performer-
audience, performer-performer and teacher-learner interaction. As we have noted in the
section 2.1.3 the current study explored the aspect of social interaction within dyadic per-
formance. In that respect we investigated music interaction in the context of performer-
performer interaction.

It is prerequisite that both individuals are aware that they are sharing a common experi-
ence in order to achieve a collaborative action (Tomasello & Carpenter, 2007). Gestures
are considered as having a primitive role compared to that of concepts (Gill, 2015), and it
has been noted that they may served as a prelinguistic form of communication (Sebanz et
al., 2006). The evolution of language is of particular importance in the human evolution,
as it enabled the flourish of art and science (Daniels & Bright, 1996, p. 265).

2.4 Musical Gestures

Music and movement are tightly bind with each other. Nonverbal cues have a catalytic
role in music performance. We move our bodies in response to music, and we are being
moved from musicians expressive intentions. In that respect musical gestures play an
important role in the perception and appreciation of music by the audience. Musical
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gestures have been conceptualized as having two interacting layers, the first is the focus
on extension or physical movement, and the secondary focus is on intention, which is
related to expressivity and meaning in music performance (Leman & Godøy, 2010).

2.4.1 Gestures in Music Performance

The physical anatomy of the musician is important, as smaller limbs like fingers are
capable for performing fast movements with high dexterity, whereas the torso is related
to slower and more rigid movement patterns. Expert performers use more repetition in
the gestures than novices, due to the concept of motor equivalence and to the principle of
least energy. Ancillary gestures carry significant information for identifying performers’
expressive intentions (M. R. Thompson & Luck, 2012), and they may account for sound
production as the level of expressivity increases. They may also referred to as non-obvious
performer gestures (Wanderley, 2001).

Bowing gestures are more expressive because they involve more precise control of timbral
features and duration of the notes. Anatomical differences in bowing movements are
reflected in variation in the wristl and elbow of performers, and variations decrease as the
tempo increases (Dahl et al., 2009). An interesting metaphor between speech and bowing
is that vowels are the sustained part and consonants the strokes (Galamian & Thomas,
2013). This description constucts “diphones” out of bow strokes, which can be seen as
a starting point for segmentation of bowing gestures. Gestures in electronic instruments
differ because often there is no direct physical control of the produced sound. In that way
electronic instruments are more closely to conductor’s gestures (Dahl et al., 2009).



3 METHOD

3.1 Dyadic Violin Performance and Motion Capture

The current experiment is part of a study which focused on the effect of tempo and vision
on interpersonal coordination (M. Thompson, Diapoulis, Johnson, Kwan, & Himberg,
2015). The expressive conditions that are explored in the current thesis were added as an
extra part at the end of the aforementioned experiment.

3.1.1 Participants and Procedure

Three violin dyads participated in this study (6 musicians total; 4 females; age: M =
24.1, SD = 1.7). The violinists were recruited from student populations at the University
of Jyväskylä and the Jyväskylä University of Applied Science. Musicians had received on
average 15.8 (SD = 2.3) years of instrumental training on the violin.

The dyads performed a short piece arranged for two violins: “De Kleinste”, composed by
J. Beltjens (16 bars, 6/8 time signature). The score is available in the Figure 12. The
selection of this song was done with a view to be unfamiliar to the performers. After a
short rehearsal period, each dyad performed the piece nine times in a 3 × 3 task design:
three expressive intentions (deadpan, normal, exaggerated) performed using three timing
conditions (60-BPM, 90-BPM, free tempo). In the current study we ignored the effect of
tempo, as a factor that might affect the overall perception of expressivity and interaction
of the music performance.

The score of the song is in the Appendix (see section 7.2). We would like to thank Susan
Johnson and Pui Yin Kwan for the selection and arrangement of the song.

3.1.2 Experimental Apparatus

Audio of the experimental trials was recorded using two AKG C417 L wireless micro-
phones. The microphones were positioned around each violinist’s right ear lobe and
secured with adhesive tape. The recording sampling rate was 48 kHz, and recording
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performed using ProTools digital audio workstation.

Optical motion capture data was produced using 8 Qualisys Oqus infrared cameras at
120 Hz sampling rate. Twenty-six markers were placed on the joints of each musician,
and five markers were placed on the violin (2 on the bow, and 3 on the violin itself; see
section 7.1). The data was labeled within Qualisys’ Track Manager software and analyzed
in MATLAB using functions within the MoCap Toolbox (Toiviainen & Burger, 2010).

3.2 Perceptual Experiment

A perceptual experiment is a deductive approach. From laws and theories we make pre-
dictions to explain certain phenomena. Following to the performance conditions that we
assigned to musicians, we conducted the perceptual experiment to evaluate our hypoth-
esis about the perception of expressive intentions. No explicit meaning was given to the
participants for the concepts of expressivity, interaction, and synchronization.

For the development of the perceptual experiment we had two main directions. The first
was to use short duration stimuli (5-10 seconds) in order to avoid continuous response
ratings (Luck et al., 2010), and the second to include three types of stimuli: audio-visual
(AV), visual-only (VO), and audio-only (AO). The study of mutlimodal perception is a
“standard paradigm” in music research (Davidson, 1993; Juslin & Timmers, 2010; Vines
et al., 2006; Vuoskoski et al., 2014). We performed two experiments, a pilot and the
proper perceptual test.

The stimuli were based on stick figures, in order to avoid any biases from performers’
appearance. We exported the video segments from the raw tsv files using MoCap Toolbox.
We rendered the stimuli using REAPER digital audio workstation, and we segmented the
stimuli and annotated the start and end position of each segment. We segmented the
score on four parts (the score is available in section 7.2). The first segment was from
the beginning of the score up to the end of the fourth meter, in the corona. The second
segment started from the beginning of the fifth meter and ended on the next corona in the
8th meter. The third segment started from the following notes next to the aforementioned
corona and ended on the next corona in the 12th meter, and the remaining part up to
the end of the score was the fourth segment.

We ignored the effect of mental rotation1 in our stimuli. We observed that there was no
1https://en.wikipedia.org/wiki/Mental_rotation

https://en.wikipedia.org/wiki/Mental_rotation
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depth perception in the video segments, consequently our visual perception constructs a
symmetrical representation of the two violinists. In fact both performers are right handed,
and in that manner we see the posterior view of the performer on the right side (see Figure
1).

FIGURE 1. Snapshot from the stimuli of the preceptual test.

3.2.1 Pilot Perceptual Experiment Design

We performed a pilot perceptual experiment to assess our main hypothesis, which is that
different levels of expressivity can be perceived in a dyadic context. Our aim was the
experiment to be as sort as possible. In that respect we included 27 stimuli following a
3×3×3 design for three expressive intentions, three types of modalities, and three dyads.
We announced the experiment during the “Music, mind and technology” colloquium and
we made announcements in mailing lists of the University of Jyväskylä. Because the web
platform did not provide stimuli randomization we made a pseudo-randomization theme
based on the season that the participants born2.

In the pilot test the participants were asked to rate in an elevel-point Likert scale on two
questions:

· In this segment, how expressive is the performance?
2http://users.jyu.fi/~gediapou/pilot/test.html

http://users.jyu.fi/~gediapou/pilot/test.html
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· In this segment, how interactive are the musicians to each other?

3.2.2 Perceptual Experiment Proper Design

For the proper experiment we segmented the musical composition in four phrases based on
the score, and we followed a 2×3×3×4 design, in order to take into account exhaustively all
possible combinations of two expressive conditions, three types of modalities, three dyads,
and four melodic segments. We included only the deadpan and exaggerated expressive
conditions with a view to reduce the average completion time of the experiment. That
was done because we did not provided any incentives to the participants. The experiment
was online for a period of two months.

The complete test had 72 stimuli, and for each stimulus we asked three questions:

· In this segment, how expressive is the performance overall?
· In this segment, how interactive are the musicians to each other?
· In this segment, how synchronized are the musicians to each other?

We used a low cost web-based platform to conduct the survey. Our view was to use very
few instructions, in order to make to experiment user friendly for the participants. After
the introduction page the participants watched one stimuli from each modality, that is an
AV stimuli, a VO stimuli, and an AO stimuli. Next to that, the experiment started. The
stimuli were presented in randomized order. At the end of the experiment we asked the
participants to provide their age, sex and if they are musicians.

The videos were uploaded in an online streaming service and we didn’t make use of the
autoplay option. Each stimuli had three seconds of black screen (silence) in the beginning
of the video. The participants had the opportunity to save their responses and continue
later. A nine-point Likert scale was used for the ratings of expressivity, interaction, and
synchronization, which is also known as stanine, for standard nine (Likert, 1932).

Design of the Stimuli

Table 1 shows the number of stimuli for each different category. We designed the ex-
periment by making all the combinations of intentions, modalities, dyads, and melodic
segments in an exhaustive manner. That is 2 × 3 × 3 × 4 equals 72 unique stimuli. Each
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column represents the total number of the stimuli, that is 72 stimuli.

TABLE 1. Design of the stimuli for the perceptual proper.

Number of stimuli Dyads Intentions Modalities Segments
Dyad 1 24
Dyad 2 24
Dyad 3 24
Deadpan 36
Exaggerated 36
Audio-visual 24
Visual-only 24
Audio-only 24
Segment 1 18
Segment 2 18
Segment 3 18
Segment 4 18
Total number of stimuli 72 72 72 72

3.3 Movement Computations

Our aim was to extract low-level kinematic features with a view describe high-level kine-
matic features that account for expressive music performance. In that respect we com-
puted the velocities of the four markers that are not related to obvious sound-producing
gestures, particularly the head, the root, and the left & right shoulder (M. R. Thompson
& Luck, 2012; Wanderley, 1999), and we performed dimension reduction techniques in
order to identify the eigenmovements of violin performance (Toiviainen, Luck, & Thomp-
son, 2010). More specifically, we applied principal component analysis (PCA) on the
motion capture timeseries and we extracted global descriptors (standard deviation and
kurtosis) that we used as predictors in regression models and as feature vectors in linear
discriminant analysis (LDA).

3.3.1 Preprocessing of Movement Data

The total number of markers were 31 markers per performer, 26 on the human body and
three markers on the violin body and two markers on the bow. The markers’ labels as they
were labeled in Qualisys software, their position over the body, and their relationship with
the Dempster model are shown in Table 8. For the Dempster model we were using the
markers’ enumeration as documented in MoCap Toolbox Manual (Toiviainen & Burger,
2010).



13

Dempster Model

Dempster studied the properties of body segments using empirical measurements on the
human body, and presented a model for applications in ergonomics and music research
among others (Dempster & Gaughran, 1967). From this model we are able to find the
center of mass for example, and to estimate kinetic features of human movement. In
Figure 2 we see a snapshot from the experiment based on the Dempster model. We
reduced the total number of the 26 markers for each performer to 20 joints, by averaging
the position as shown in Table 8.

FIGURE 2. The Dempster model. This is posterior view of the performer, on the left hand side
is the left side of the musician.

3.3.2 Movement Dynamics

Movement dynamics refer to kinematic and kinetic features of body movement. For
the kinematic feature extraction we relied on the motion capture timeseries data and
we extracted higher order derivatives of position data, and following to that we applied
dimension reduction techniques. The main point was to reduce the complexity of the high
dimensionality of human movement.



14

We standardized the motion capture timeseries data using local coordinate system for
each performer. For that purpose we used the MoCap Toolbox function mc2frontal to
assign anterior view for each performer using as a reference the left and right hips and by
applying the function mccenter which calculates the centroid of all markers over time.
We performed concatenation across the different segments that we used as stimuli in the
perceptual test and we computed the first derivative of the position data, in order to
estimate instantaneous velocities. For that purpose we focused on markers that are not
related to obvious sound producing gestures (Wanderley, 1999, 2001). Specifically we
focused on four joints of the Dempster model: head, root, left shoulder, right shoulder
(M. R. Thompson & Luck, 2012). Afterwards we concatenated the timeseries data of
the perceptual stimuli and we applied joint principal component analysis (PCA) on the
velocity data (Toiviainen et al., 2010; Burger, Saarikallio, Luck, Thompson, & Toiviainen,
2012). The first five principal components (PCs) explained more than 95% of the vari-
ance. The final step was to calculate global descriptors for each PC in order to use them
as predictors in the regression model. We calculated standard deviation and kurtosis for
each PC, which are the second and fourth order of the statistical moment of the proba-
bility distribution (Glowinski, Camurri, Volpe, Dael, & Scherer, 2008). We ignored the
mean value of the velocities because deviates around zero. The standard deviation shows
the deviation of the velocities from the mean. Kurtosis is a measure which describes if
the distribution of the velocities is narrow or widespread. Figure 3 shows step-by-step
the procedure of the kinematic feature extraction. On the last step we applied LDA
(Pedregosa et al., 2011) to predict classes of expressive intentions and performing pairs
of violinists.

3.4 Statistical Learning

The statistical reasoning that we have relied is that of Bayesian statistics. In that respect
we didn’t follow any sophisticated falsificationism accounts (Chalmers, 2013). The main
purpose of this study was to predict perceptual ratings from movement computations.
We were looking for the most likely outcome, and we were not trying to reject any null
hypothesis in order to empower our research hypothesis (Duda, Hart, & Stork, 2001).

3.4.1 Regression

Linear regression is a statistical technique to make predictions, that is a deductive ap-
proach. Multiple linear regression has more than one inputs as independent variables, the
predictors, and predicts a single value, the response or dependent variable. Our predictors
were the standard deviation and kurtosis of the first five PCs. Furthermore, we were us-
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FIGURE 3. Analytical procedure of the kinematic feature extraction using MoCap Toolbox in
MATLAB, and scikit-learn library in python (only in step 10).
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ing cross-validation which is a method for estimating precision error (Hastie, Tibshirani,
Friedman, & Franklin, 2005). Multiple linear regression can be described in mathemat-
ical language as the following equation 1, where yi are the responses, β0 the intercept,
β1, β2 the regression coefficients, wi and xi the predictors, and εi the residuals. This is
the simplest case of multiple linear regression using only two predictors.

yi = β0 + β1wi + β2xi + εi (1)

3.4.2 Dimension Reduction Techniques and Classification

Dimension reduction is used in feature extraction techniques in order to reduce random-
ness of variability within the data set. The main approach is to make a new dataset in
which the new synthetic dimensions minimize the correlation of the variables. For exam-
ple PCA is a linear tranformation which make a new coordinate system of components
that are ordered based on the percent of explained variance. Dimensionality reduction is
useful in regression models and classification.

Whereas regression is used to predict quantitative responses, classification is used to
predict qualitative responses (Hastie et al., 2005). For example, in the Iris dataset, R.
Fisher (1936) classified the three different species of Iris, Virginica, Setosa and Versicolor,
using four features, petal length and petal width, and sepal length and sepal width. In
this discrimination example Fischer introduced the method of Linear Discriminant, which
was generalized later to Linear Discriminant Analysis (LDA).

PCA & LDA

Similar to PCA, LDA is another technique for dimension reduction. The aforementioned
techniques are both linear transformations, which are fully reversible. PCA can be de-
scribed as an unsupervised technique which maximizes the variance in the dataset, whereas
LDA is a supevised technique which maximizes the distance between the classes in order
to perform the discrimination. We applied PCA on the motion capture timeseries data
and we extracted global measures, or global descriptors, for each perceptual segment. We
used the global measures as predictors in the regression model. Then we applied LDA on
the global predictors in order to predict the classes.



4 RESULTS

4.1 Perceptual Experiment Analysis

We conducted two perceptual experiments, a pilot study and the perceptual proper. We
briefly report the main results from the pilot experiment and we continue to the proper
experiment.

4.1.1 Pilot Perceptual Experiment

The pilot experiment was a web-based test which had in total 27 stimuli. We recruited
26 participants (age: M = 32.03, SD = 7.32, 50% female). The average completion time
was 13 minutes, and the average duration of the stimuli was 7.71 seconds. For more
information see section 3.2.1.

The stimuli design was 3×3×3 for each dyad, each modality, and each expressive condition.
We standardized the perceptual ratings for each participant in order to remove perceptual
biases. Mean ratings for the expressive ratings were M = 5.11, and the standard deviation
of the means SD = .91. Mean ratings for the interactive ratings were M = 5.45 and SD
= .77 respectively. Table 2 shows the mean ratings for each pair of musicians.

TABLE 2. Mean perceptual ratings per dyad

Mean ratings Dyad1 Dyad2 Dyad3
Expressive 4.89 5.19 5.28
Interactive 5.31 5.55 5.54

4.1.2 Perceptual Experiment Proper

We remind the reader that the perceptual experiment was a web-based survey. The ex-
periment was available online for a period of two months and we recruited 51 participants
(N = 51, Female = 61.1%, musicians = 47.2%, age: M = 32.68, SD = 5.97), 36 provided
complete responses and 15 were partial responses, which correspond to 28% of the length
of the experiment. Our threshold for taking into account partial responses was 20 stimuli,
which corresponds to duration of approximately 10 minutes of perceptual effort.
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Mean Ratings

Figure 4 shows the mean expressive ratings for all the participants. The average of the
means for the expressive, interactive and synchronization ratings are shown in Table 3.
It is interesting to notice that the Pearson correlation of the mean perceptual ratings was
greater than 99% between the unstandardized responses and the responses after we applied
standard score transformation (zscore). The table below shows the non standardized
responses, but for the regression model (see section 4.3.1) and the ANOVAs (see section
4.1.2) we reported standardized perceptual ratings using zscore.

TABLE 3. The average of the mean ratings per participant for each question.

Expressive Interactive Synchronization
Average of means 5.10 5.26 5.78

FIGURE 4. The mean ratings per participant for the expressive question.

Skewness and Kurtosis

We calculated skewness and kurtosis for every participant. The average mean skewness
and kurtosis are shown in Table 4.
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TABLE 4. Mean values for skewness and kurtosis.

Expressive Interactive Synchronization
Skewness -.13 -.26 -.43
Kurtosis -.36 .19 .26

Cronbach’s Alpha of Perceptual Ratings

The Cronbach’s Alpha (α) is a measure to validate the reliability of psychometric tests
(Cronbach, 1951). The estimates for each category of questions are shown in Table 5. α
estimates if random samples are correlated, and it depends on the length of the test.

TABLE 5. Cronbach’s Alpha for each category of ratings.

Expressive Interactive Synchronization
Cronbach’s Alpha .91 .88 .85

Mean Ratings per Category

Figure 5 shows the mean ratings for each different category of perceptual responses (ex-
pressivity, interaction, synchronization), that were grouped using a different subset of
stimuli (see Table 1 for the number of stimuli per cluster). Whereas the figure shows

FIGURE 5. Mean ratings for all categories and clusters.
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the average of the means for each participant, intuitively it is clear that the three differ-
ent questions are strongly correlated to each other. The Pearson correlation coefficient
between expressivity and interaction questions were r = .96, for expressivity and synchro-
nization r = .69, and for interaction and synchronization r = .77. This might be due
to demand characteristics, as the first question in the perceptual experiment was about
expressivity, or it might be related to the fact that we did not provide explicit description
for the concepts of expressivity, interactivity and synchronization.

Analysis of Variance between Groups

We performed one-way multivariate analysis of variance (MANOVA) to examine possi-
ble interactions between different modalities and intentions for ratings of expressivity,
interaction and synchronization responses. For dependent variables (DV) we used the
performance conditions and the modalities. For independent variables (IV) we used the
ratings for expression, interaction and synchronization.

We estimated significant effects between interaction and synchronization ratings for the
expressive intentions F (1, 71) = 17.33, p < .001, also between expression and synchro-
nization F (1, 71) = 13.95, p < .001, and between expression and interaction F (1, 71) =

10.22, p < .01. Furthermore, using as DV the modalities and IV the ratings of expres-
sivity, interaction and synchronization we estimated effects for the intersection of AV
and AO modalities F (1, 47) = 10.96, p < .001, and between VO and AO F (1, 47) =

22.95, p < .001. No significant effect was found between AV and VO modalities. Us-
ing as DV all the modalities we estimated significant effects between expressivity and
interaction F (2, 71) = 13.07, p < .001, and between expressivity and synchronization
F (2, 71) = 8.71, p < .001, but no effect between interaction and synchronization. Also,
significant effects were estimated between responses about expressivity and interaction.
For the intersection of VO and AO we estimated F (1, 47) = 21.36, p < .001, for VO and
AV F (1, 47) = 5.75, p < .05, and for AV and AO F (1, 47) = 10.83, p < .001. Also, sig-
nificant effects were estimated between responses about expressivity and synchronization
for the intersection between VO and AO F (2, 47) = 8.71, p < .001. No significant effect
found between VO and AV, and AO and AV. No significant effect was found between
interaction and synchronization for the different modalities.
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4.2 Movement Analysis

Preliminary movement analysis showed that the musicians performed with greater amounts
of kinetic energy in the more exaggerated expressive conditions. The mean instantaneous
kinetic energy for all dyads per expressive condition was .27, .78, 1.15 Joules for dead-
pan, normal and exaggerated respectively. This fact was an evidence that the musicians
embodied the different levels of expressivity. The mean kinetic instantaneous energy per
dyad was .34, .98, and 1.03 Joules for Dyad 1, 2 & 3 respectively.

4.2.1 PCA on the Movement Timeseries

For the kinematic feature extraction, the study focused on markers that are not related
to obvious sound producing gestures. Instantaneous velocity was estimated and principal
component analysis was applied on the motion capture timeseries data to reduce the num-
ber of predictors that were used in multiple linear regression. Higher order derivatives
over the position data, such as acceleration, failed to explained any variance in the PC
loadings. As a result we focused on the velocity space, and particularly on the markers of
head, root, left and right shoulder. Following to the procedure in Figure 3 we projected
back to three-dimensional space the velocity data of the PCs (see Figure 6). The projec-
tions showed the amount of variation of the velocities for each marker for the first five PCs
(see online video1). For example the greater velocities appeared on swaying as showed
from the projection of PC1. While it might be a bit arbitrary to project the velocities
back to the position data, we found that useful as velocities are the rate of change of the
position, thus they maintain orientation across the different axis.

Table 6 shows the percent of explained variance for each PC. We put as threshold the
95% of the explained variance and we took into account the first five PCs that explained
95.7% of the variance.

TABLE 6. Percent of explained variance of the first five PCs, that explained more than 95% of
variance.

PC1 PC2 PC3 PC4 PC5
Explained variance (%) 55.6 20.8 11.3 4.6 3.3

1https://youtu.be/QVaGYQasVhU

https://youtu.be/QVaGYQasVhU
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FIGURE 6. Projections of the first five PCs on the position data for both performers. The stick-
figures have anterior view. The green spot is the axis origin (0,0,0) and represents
the local coordinate system based on mccenter function. The marker names and
numbers are: root (1,21), head (12,32), left shoulder (13,33), right shoulder (17,37).
The first row represents the first PC (PC1) and so forth. The left column corresponds
to view settings az = 0, el = 0 in MoCap Toolbox, and the right column to az = 60,
el = 20 (where az: azimuth, el: elevation). Video available: https://youtu.be/
QVaGYQasVhU

https://youtu.be/QVaGYQasVhU
https://youtu.be/QVaGYQasVhU
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Principal Component Loadings Matrix

The PC loadings matrix is a visual representation of the contribution of the features on
each PC (Alluri et al., 2012). Figure 7 shows the PC loadings matrix, based on varimax
rotation. The first PC (PC1) showed that the major contribution was from mediolateral

FIGURE 7. Principal component loadings matrix of the movement analysis based on varimax
rotation.

movement, especially of the head and right shoulder. Our interpretation is that PC1 is the
“swaying” component, and it is associated with durations on the meter level (Toiviainen
et al., 2010). PC2 is related with performers’ movement on the vertical axis, thus it is
associated with the durations on the beat level and serve as a “beatkeeper”. PC3 was
an interesting component as it involves movements on different axes, that is mediolateral
sway of the root marker and anterior-posterior movement of the right shoulder. The right
shoulder had the biggest contribution in the production of sound, because all musicians
were performing bowing gestures with their right hand. Our interpretation is that it is
a sound-facilitating bending gesture (Jensenius et al., 2009) that support the musician
to perform pousse and tire bowing movements (upbow, downbow). PC4 had major con-
tribution from the non-bowing shoulder. Respectively it is associated with performers’
movements on the neck of the violin (Dahl et al., 2009). Finally, we interpreted PC5 as
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the “entrained” component, as it involved anteroposterior movement of the head. Our
interpretation for the PCs 1-5 is below:

· PC1: swaying (mediolateral movement)
· PC2: beatkeeper (vertical movement)
· PC3: torso bend (sound-facilitating torso movements)
· PC4: fret movements (sound-facilitating fret movements)
· PC5: entrained nodding (sound-facilitating entrained gestures)

PCA based on Distance Between Markers

We examined as well the potential of the distance between markers. This approach is really
effective for reducing the high dimensionality of the data. The drawback of this approach
is that it looses any phase information about the gestural control. In that respect it is
more meaningful feature for dance studies, where the performers are constantly changing
their position. Furthermore, distance cannot be a measure of synchronization as long as
there is no phase information, in that respect it remains unclear whether or not it can be
used as a measure of synchrony (Glowinski, Mancini, Cowie, & Camurri, 2013).

4.3 Predictions of Perceptual Ratings

We applied multiple linear regression using the builtin function in MATLAB and k-fold
crossvalidation. Our predictors were the global descriptors of kurtosis and standard devi-
ation of the PCs. We ordered the predictors based on the PCs (ie. the two first predictors
were the standard deviation and kurtosis of the PC1 and so forth).

4.3.1 Multiple Linear Regression

We applied multiple linear regression for the 72 stimuli for the expressive intentions. The
regressor’s scatterplot is shown in Figure 8. In order to find the optimal prediction for our
regression model we added one predictor at a time. The R2 and RMSE values are shown
on the right and left panel of Figure 9 respectively. The R2 values represent percentage
from 0 to 1, and RMSE values were calculated with respect to the standardized perceptual
mean ratings of the nine-point Likert scale. The maximum value of R2, and the minimum
for RMSE respectively, appear for the third predictor.
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FIGURE 8. Multiple linear regression for expressive intentions. Left panel shows all perceptual
segments (N=72). Right panel shows the exaggerated condition (N=36).

FIGURE 9. R-square and RMSE for the number of predictors.

From each motion capture timeseries, that corresponds to a perceptual stimuli, we ex-
tracted global descriptors of kurtosis and standard deviation for each PC. We did that for
the first five principal components. The global descriptors were the low-level kinematic
features that we used as predictors for the regression model, and as feature vectors in the
LDA (see section 4.4).

Table 7 shows the R2 and RMSE values for all different categories of stimuli. The last
column of the table cvpartition refers to the MATLAB’s function for cross-validation.
Thus these columns show the number of stimuli that were used in the cross-validation
model. For all computations we used 6-fold cross-validation. The Table 7 presents the re-
sults for the expressive ratings only. Each cvpartition with equal number of observations
refers to same partition of data.
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TABLE 7. R-square and RMSE values for all the groups of stimuli for the expressive ratings.

Expressive ratings R2 RMSE cvpartition Number of predictors
All stimuli .55 .37 72 3
Deadpan 0 - 36 -
Exaggerated .68 .28 36 9
Audio-visual .62 .37 24 2
Visual-only .83 .24 24 10
Audio-only .38 .28 24 6
Dyad 1 0 - 24 -
Dyad 2 .71 .28 24 2
Dyad 3 .43 .43 24 2
Segment 1 .39 .39 18 2
Segment 2 .72 .30 18 2
Segment 3 .65 .31 18 2
Segment 4 .44 .47 18 4

4.4 Linear Discriminant Analysis

The feature vectors that we used for the LDA were the predictors of the regression (ie.
global descriptors of standard deviation and kurtosis of the PCs for each perceptual seg-
ment). We applied linear discriminant analysis in python, using scikit-learn library and
singular value decomposition as solver. The results for the expressive intentions are shown
in Figure 10. On the left panel is shown the LDA for the expressive conditions for all

FIGURE 10. Linear discriminant analysis using the global descriptors (kurtosis, std) of the first
5 PCs.

dyads, with classification accuracy 94.44% and explained variance LD1 = 100%, LD2
= 0%, and on the right panel is shown the LDA for the three pairs of violinists, with
classification accuracy 100%, and explained variance LD1 = 61.33%, LD2 = 38.67%.



5 DISCUSSION

5.1 Perceptual Experiment

Perceptual experiments are expensive. This fact applies both for financial matters and for
perceivers’ cognitive load. We conducted two web-based perceptual experiments, a pilot
and the proper. The results for the perceptual proper showed valuable insights about the
perception of expressivity, interaction and synchronization. Furthermore, the experiment
was examined by Cronbach’s α and the expressive responses were highly reliable.

We hypothesized that expressivity can be quantified using one dimensional scale. The
fact that we did not provide any explicit interpretation for the concepts of expressivity,
interaction and synchronization might be reflected in the ratings for interaction between
the performers. In that respect our interpretation is that the perceivers were unclear
how to rate intersubjective aspects without explicit interpretation. Furthermore, more
than half of the perceivers were not musicians, and in that respect it is reasonable to
assume that interaction has different meaning for a physicist and a musician. Analysis of
variance identified interesting effects between the perceptual ratings, which support that
a closer investigation will reveal valuable insights about the ratings for the perception of
interactivity across different modalities.

5.2 Interpretation of Movement Analysis

The PC loadings matrix in Table 6 showed that swaying accounts for 56% of explained
variance in violin performance. In dance studies swaying showed to be not an easy task to
synchronize to music (Burger, Thompson, Luck, Saarikallio, & Toiviainen, 2014). Swaying
showed to differ considerably from vertical movement, as the later responds to beat level
whereas the former to the meter level (Toiviainen et al., 2010).

From Figure 9 we can see that the first three predictors of the dataset performed the
highest accuracy, which is R2 = 55%. Whereas 55% accounts for approximately the 30%
of the standard deviation explained (Nau, 2016), we believe that with a bigger sample of
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movement data we could have performed much better predictions. The regression analysis
showed that we can predict quite accurately the exaggerated expressive intention (R2 =
68%), but we cannot predict at all the deadpan performing condition. That was probably
the consequence of the fact that Dyad 1 was an outlier. The kinetic analysis showed
that Dyad 1 performed with less than the one third of the kinetic energy of Dyad 3.
We can acknowledged that from the performance experiment. That is reflected in every
part of the analysis, though we decided to take into account all the dyads as the sample
was already small. An advice for future research is that the musicians should have the
same musical skill level. From the regression analysis our view was that the musicians
should not be virtuosos, but skilled student musicians, as Dyad 2 was predicted with R2

= 71%. For the VO set of stimuli we achieved the highest prediction (R2 = 83%), which is
in agreement with research in solo performance (Davidson, 1993). Furthermore, the first
and last segment achieved the lowest scores, which suggests that intro and outro segments
should not be used in perceptual experiments.

The movement timeseries data for the expressive conditions showed that the standard
deviation was smaller for the deadpan condition across all the PCs. This measure showed
that the deviation of the velocities from the mean was larger in the exaggerated condition,
which sounds reasonable as the performers were performing with greater amounts of
kinetic energy in the exaggerated expressive condition. On the other hand, kurtosis
followed the reverse pattern for the PC2, PC3, PC4, and PC5, but there was no clear
trend for PC1. This suggest that the musicians were performing using a broad spectrum of
different velocities in the deadpan condition, which show that the musicians were unclear
how to embody this expressive manner.

5.3 Levels of Motion Processing

The crux of the current study was to make inference about high-level kinematics, that
is expressive intentions in music performance, from low-level kinematic features, such as
velocity of the upper torso. Figure 11 shows the levels of motion processing in music
information retrieval (Godøy & Jensenius, 2009) and it is based on the model of the levels
of music processing by Toiviainen (2015). The model that we present below is incomplete,
but it serves as an approach to conceptualize the different steps in computational process-
ing for movement feature extraction. This hierarchical diagram cannot account for our
visual perception, as the model by P. Toiviainen which presents the levels of processing
of the auditory system.
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FIGURE 11. Levels of motion processing, based on the model about the “Levels of Music Pro-
cessing” by P. Toiviainen.

In the present thesis we explored the lower level features of velocity, distance and position.
Velocity was our best option to achieve our goal. Distance is an interesting feature, but
it cannot describe efficiently fine grained gestural control in music performance. That’s
because it does not carry any phase information. We examined different local coordinate
systems and we concluded that the most valid local coordinate system was to center the
performers’ position across all frames and over time. The reason for that is that our
performers were situated in a certain “performance space”, as such the axis origin that we
extracted can describe pretty good the position of the performer. In that respect, this
local coordinate system is a valid option only for music performance studies. For other
types of studies that the subject is moving in space to a greater extend other options
should be taken into account to standardize the motion capture timeseries data.

From the aforementioned low level kinematic features, we were able to formulate mid-level
kinematic features based on the PC loadings matrix (see Figure 7). Further research is
required to identify which components contribute to the first two linear discriminants. In



30

order to move from mid-level to high level movement features we performed the perceptual
experiment to acquire ground truth knowledge, which we validated using multiple linear
regression with predictors kinematic features from the upper torso.

5.4 Future Work

Further research involves the projection of the LDs on cartesian coordinates in order to
identify which kinematic features had the larger contribution in the classification. Future
work should focus on feature selection in order to identify which specific markers are
better predictors. It is also interesting to compare feature selection with PCA to examine
if they are in agreement or not.



6 CONCLUSION

The movement analysis showed that the musicians embodied the different expressive in-
tentions with greater amounts of kinetic energy in the more exaggerated expressive condi-
tions. Our study contributes quantitative results which describe idiosyncratic movements
of expressive gestures in violin performance (Wanderley, 2001). Mediolateral swaying
appeared to have major effect along with movement on the vertical axis. The former
factor is associated to the meter level, whereas the later with movement on the beat level
(Toiviainen et al., 2010). The regression analysis showed that the first two PCs were
adequate for the regression analysis, and we predicted the mean perceptual ratings with
R2 = 55%. That might be an indicator that rhythmic structures have primary impor-
tance in the perception of expressivity. Furthermore, visual-only stimuli were predicted
with the highest accuracy (R2 = 83%). The kinematic feature of kurtosis showed that the
musicians used a broad range of different velocities in the deadpan condition, which sug-
gest that the musicians were unclear how to embody this expressive manner. More close
investigation is required to validate interactions across different modalities and between
the perception of expressivity, interaction and synchronization.



7 APPENDIX

7.1 Appendix A

TABLE 8. Labels of the markers for Player 1. The leftmost column shows the original markers
labels during the recording, the rightmost shows the joints (combinations of markers)
for adjusting the skeletons to the Dempster’s model.

Marker Label Body Position Dempster Model
1 P1Head_FL Head front-left Head (12)
2 P1Head_FR Head front-right Head (12)
3 P1Head_BL Head back-left Head (12)
4 P1Head_BR Head back-right Head (12)
5 P1Shoulder_L Left shoulder Left shoulder (10, 11 & 13)
6 P1Shoulder_R Right shoulder Right shoulder (10, 11 & 17)
7 P1C7 Chest Chest (10)
8 P1Shoulder_BR Asymmetrical marker -
9 P1Elbow_L Left elbow Left elbow (14)
10 P1Elbow_R Right elbow Right elbow (18)
11 P1Wrist_L Left wrist Left wrist (15)
12 P1Wrist_R Right wrist Right wrist (19)
13 P1Finger_L Left finger Left finger (16)
14 P1Finger_R Right finger Right finger (20)
15 P1Hip_FL Front-left hip Left hip (1, 2 & 10)
16 P1Hip_FR Front-right hip Right hip (1, 6 & 10)
17 P1Hip_BL Back-left hip Left hip (1, 2 & 10)
18 P1Hip_BR Back-right hip Right hip (1, 6 & 10)
19 P1Knee_L Left knee Left knee (3)
20 P1Knee_R Right knee Right knee (7)
21 P1Ankle_L Left ankle Left ankle (4)
22 P1Ankle_R Right ankle Right ankle (8)
23 P1Heel_L Left heel Left ankle (4)
24 P1Heel_R Right heel Right ankle (8)
25 P1Toe_L Left toe Left sole (5)
26 P1Toe_R Right toe Right sole (9)
27 P1Bow_up Bow upper end -
28 P1Bow_down Bow lower end -
29 P1Vio_up Violin head -
30 P1Vio_down Violin body -
31 P1Curl Violin body -
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7.2 Appendix B

FIGURE 12. The score of the song De Kleinste composed by J. Beltjens; arrangement by Susan
Johnson and Pui Yin Kwan.
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