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ABSTRACT

Mokaev, Timur
Localization and dimension estimation of attractors in the Glukhovsky-Dolzhan-
sky system
Jyväskylä: University of Jyväskylä, 2016, 50 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 1456-5390; 240)
ISBN 978-951-39-6689-8 (nid.)
ISBN 978-951-39-6690-4 (PDF)
Finnish summary
Diss.

This thesis studies chaotic attractors in a Glukhovsky-Dolzhansky (GD) system,
which describes fluid convection inside an ellipsoidal cavity, under the influence
of external heating. In contrast to the Lorenz system, which describes convective
fluid flows in 2D, the suggested GD system describes convective fluid flows in
3D. The GD system can be viewed as an approximate model to the Earth’s ocean
or atmosphere.

Computationally, these attractors can be classified according to their basin
of attraction in the phase space. An attractor is called a self-excited attractor if its
basin-of-attraction intersects with small equilibria neighborhoods of a dynamical
system; otherwise, the attractor is called a hidden attractor. Self-excited attractors
can be localized with little computational effort: after determining all equilib-
ria states of the system, a trajectory is computed via integration starting from a
point in an unstable equilibrium neighborhood, using numerical methods. After
a transient process, the computed trajectory will reach the attractor and visualize
the attractor. The aforementioned procedure will not work for finding hidden
attractors, hidden attractors being difficult to localize.

So far, only self-excited attractors have been found in Lorenz systems. This
thesis demonstrates the existence and localization of hidden chaotic attractors in
a GD system. The demonstration is done via numerical methods which were
developed in this thesis.

In addition to the numerical methods developed, this thesis proves the Eden
conjecture for GD systems that is defining the maximum Lyapunov dimension on
an attractor in an equilibrium point.

Keywords: Glukhovsky-Dolzhansky system, Lorenz-like system, chaotic attrac-
tor, hidden attractor, Lyapunov dimension, Lyapunov exponents



Author Timur Mokaev
Department of Mathematical Information Technology,
University of Jyväskylä, Finland,
Faculty of Mathematics and Mechanics,
St. Petersburg State University, Russia

Supervisors Professor Pekka Neittaanmäki
Department of Mathematical Information Technology,
University of Jyväskylä, Finland

Professor Nikolay V. Kuznetsov
Department of Mathematical Information Technology,
University of Jyväskylä, Finland,
Faculty of Mathematics and Mechanics,
St. Petersburg State University, Russia

Professor Gennady A. Leonov
Faculty of Mathematics and Mechanics,
St. Petersburg State University, Russia

Reviewers Professor Sergei Abramovich
School of Education and Professional Studies,
State University of New York at Potsdam, USA

Professor Marius-F. Danca
Department of Mathematics and Computer Science,
Avram Iancu University, Cluj-Napoca, Romania,
Romanian Institute of Science and Technology,
Cluj-Napoca, Romania

Opponent Professor Ivan Zelinka
Department of Computer Science,
VŠB - Technical University of Ostrava, Czech Republic



ACKNOWLEDGEMENTS

This thesis was completed in the Doctoral School of the Department of Mathe-
matical Information Technology, University of Jyväskylä.

I would like to express my sincere gratitude to my supervisors Prof. Pekka
Neittaanmäki, Prof. Nikolay V. Kuznetsov and Prof. Gennady A. Leonov for
their guidance and continuous support. I am also very grateful to the reviewers
of the thesis, Prof. Sergei Abramovich and Prof. Marius-F. Danca, for their valu-
able comments. I sincerely thank Prof. Tiihonen for the fruitful discussions and
additional comments.

I am very much obliged to Steve Legrand and Billy Braithwaite for their
improvements of English and Finnish languages and grammars, as well as for
some helpful remarks.

This work would not have been possible without support from the Faculty
of Information Technology and Academy of Finland, COMAS doctoral program
and support from the Russian Science Foundation (project 14-21-00041).

I would like to extend my deepest gratitude to my parents Ludmila Mokaeva
and Nazir Mokaev and to my brother Ruslan Mokaev for their love and endless
support for everything I do.



LIST OF FIGURES

FIGURE 1 Structure of the chapters and their connection with included
articles. ................................................................................ 15

FIGURE 2 Illustration of the problem. .................................................... 18
FIGURE 3 Numerical visualization of the self-excited attractor in the Glukhov-

sky-Dolzhansky system with r = 17, σ = 4, b = 1, a = 0.0052
by using the trajectories that start in small neighborhoods of
the unstable equilibria, S0,1,2. ................................................ 24

(a) Initial data near equilibrium S0. . . . . . . . . . . . . . . . . . 24
(b) Initial data near equilibrium S1. . . . . . . . . . . . . . . . . . 24
(c) Initial data near equilibrium S2. . . . . . . . . . . . . . . . . . 24

FIGURE 4 Paths [P0, P1] and [P2, P3] in the plane of parameters {a, r} used
in the continuation procedure. ............................................... 25

FIGURE 5 Chain of transformation in the continuation procedure............. 25
FIGURE 6 Attractors localization for a Lorenz-like system........................ 26

LIST OF TABLES

TABLE 1 Numerical justification of the Eden conjecture for a Lorenz-
like system. .......................................................................... 27



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES AND TABLES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION AND STRUCTURE OF THE WORK ....................... 11
1.1 Introduction............................................................................. 11
1.2 Structure of the work ................................................................ 14
1.3 Included articles and author’s contribution................................. 16

2 PROBLEM STATEMENT AND MAIN RESULTS ................................. 17
2.1 Glukhovsky-Dolzhansky system describing fluid convection mo-

tion in the rotating cavity .......................................................... 17
2.2 Attractors in the Glukhovsky-Dolzhansky system ....................... 22

2.2.1 Self-excited and hidden attractors ................................... 22
2.2.2 Self-excited attractor localization in the Glukhovsky-Dolzhan-

sky system .................................................................... 23
2.2.3 Hidden attractor localization in the Glukhovsky-Dolzhan-

sky system .................................................................... 24
2.3 Formula of the Lyapunov dimension of attractor for the Glukhov-

sky-Dolzhansky system............................................................. 26

3 CONCLUSION ................................................................................ 28

YHTEENVETO (FINNISH SUMMARY) ..................................................... 29

REFERENCES.......................................................................................... 30

APPENDIX 1 ESTIMATION OF LYAPUNOV DIMENSION VIA THE LEONOV
METHOD ........................................................................ 38

1.1 Hausdorff and Lyapunov dimensions......................................... 38
1.2 Leonov method ........................................................................ 40

APPENDIX 2 IMPLEMENTATIONS OF ALGORITHMS FOR NUMERICAL
CALCULATION OF THE LYAPUNOV DIMENSION OF
ATTRACTORS.................................................................. 41

2.1 Benettin algorithm implementation ............................................ 41
2.2 Stewart algorithm implementation ............................................. 42

APPENDIX 3 IMPLEMENTATION OF ALGORITHM FOR HIDDEN ATTRAC-
TOR LOCALIZATION IN THE GLUKHOVSKY-DOLZHAN-
SKY SYSTEM.................................................................... 48



INCLUDED ARTICLES



LIST OF INCLUDED ARTICLES

PI N. V. Kuznetsov, T. N. Mokaev, P. A. Vasilyev. Numerical justification of
Leonov conjecture on Lyapunov dimension of Rossler attractor. Communi-
cations in Nonlinear Science and Numerical Simulation, Vol. 19, No. 4, pp. 1027–
1034, doi:10.1016/j.cnsns.2013.07.026, 2014.

PII G. A. Leonov, N. V. Kuznetsov, T. N. Mokaev. Homoclinic orbit and hidden
attractor in the Lorenz-like system describing the fluid convection motion
in the rotating cavity. Communications in Nonlinear Science and Numerical
Simulation, Vol. 28, No. 1, pp. 166–174, doi:10.1016/j.cnsns.2015.04.007, 2015.

PIII G. A. Leonov, N. V. Kuznetsov, T. N. Mokaev. Homoclinic orbits,
and self-excited and hidden attractors in a Lorenz-like system describ-
ing convective fluid motion. The European Physical Journal Special Top-
ics, Multistability: Uncovering Hidden Attractors, Vol. 224, pp. 1421–1458,
doi:10.1140/epjst/e2015-02470-3, 2015.

PIV N. V. Kuznetsov, G. A. Leonov, T. N. Mokaev. The Lyapunov
dimension formula of self-excited and hidden attractors in the
Glukhovsky-Dolzhansky system. arXiv preprint arXiv:1509.09161,
http://arxiv.org/pdf/1509.09161v1.pdf, 2015.

PV G. A. Leonov, T. N. Mokaev. Formula of the Lyapunov dimension of attrac-
tor of the Glukhovsky-Dolzhansky system. Doklady Mathematics, Vol. 93,
No. 1, pp. 42–45. doi:10.7868/S0869565216030063, 2016.



1 INTRODUCTION AND STRUCTURE OF THE

WORK

1.1 Introduction

Theoretical investigations of various hydrodynamic phenomena are typically per-
formed with the help of hydrodynamic models defined by the Euler or Navier-
Stokes equations with an infinite number of degrees of freedom. An important
problem has proved to be the problem of turbulence, i.e., random motion of the
medium accompanied by chaotic property changes. The problem arose in the
middle of the 20th century when there were many gaps between theoretical hy-
drodynamics and applied problems of fluid dynamics (Reynolds, 1883). In or-
der to fill these gaps, various theories of turbulence (e.g., (Richardson, 1922; Kol-
mogorov, 1941)) and onset of turbulence (e.g., (Landau, 1944; Hopf, 1948)) were
developed, but they turned out to be insufficient. A breath of fresh air in the
study of the onset of turbulence was the discovery by Ruelle, Takens (Ruelle and
Takens, 1971), and Smale (Smale, 1967) of strange attractor, i.e., a chaotic attractive
set in the phase space of a dynamical system, which consists of unstable trajec-
tories with a complex behavior. According to this notion, a strange attractor is a
mathematical prototype of stochastic oscillations and turbulence in the system.

Nevertheless, no general theory of turbulence has yet been developed. This
is caused by the inability to obtain general solutions for the Navier-Stokes equa-
tions1 and, as a consequence, to the necessity of reducing them to simpler equa-
tions based on the observations and physical concepts of the studied phenom-
ena. For this reason, individual sections of hydrodynamics, e.g., aerodynamics,

1 A great advance in the study of hydrodynamic systems, defined by the Navier-Stokes equa-
tions, was made by Olga Ladyzhenskaya. In the common case for initial boundary-value
problems, she proved the unique solvability for small enough time, as well as the global
unique solvability for small enough data, and, in the two-dimensional case, she proved the
global unique solvability (Ladyzhenskaya, 1969). Later she investigated the case when the
two-dimensional Navier-Stokes equation generates a dynamical system (Ladyzhenskaya,
1972) and proved the finite-dimensionality of its attractor (Ladyzhenskaya, 1982).
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magnetohydrodynamics and sound theory, now form separate sciences. For par-
ticular interest in all these sciences is geophysical hydrodynamics that studies
fluid (or other medium) rotation and covers a wide range of phenomena, e.g.,
ocean and atmosphere of the Earth and atmospheres of other planets. Within this
branch of hydrodynamics, Edward Lorenz suggested a crude three-dimensional
mathematical model for atmospheric convection (Lorenz, 1963). The obtained
model describes a two-dimensional Rayleigh-Bénard convective flow (Getling,
1998). Later, in 1980, Glukhovsky and Dolzhansky suggested a three-mode math-
ematical model that allowed investigating the process of fluid convection con-
tained within a rotating ellipsoidal cavity under a horizontal exterior heating
(Glukhovskii and Dolzhanskii, 1980). Unlike the Lorenz model, it describes a
three-dimensional convective flow and can be interpreted as an approximate model
of the World Ocean or Earth atmosphere. Both Lorenz and Glukhovsky-Dolzhan-
sky systems were obtained using the Galerkin method for reduction of initial
hydrodynamic systems with infinite degrees of freedom to corresponding finite-
dimensional autonomous dissipative nonlinear systems. The main idea of this
method is to expand the fluid dynamical fields into infinite series of time-inde-
pendent basis functions. The series are then truncated and substituted into initial
PDEs, yielding a system of ODEs describing time evolution of the truncated ex-
pansion coefficients. In some cases, the obtained ODEs properly describe the be-
havior of original models and possess similar fundamental properties. Note that
there also exist non-autonomous ocean models (see, e.g., (Pierini et al., 2016)).

The key feature of the Lorenz discovery is that for certain parameter val-
ues, the suggested simple convection model possesses a chaotic attractor (Lorenz,
1963; Stewart, 2000). This attractor can be obtained numerically if, for a trajec-
tory that describes system’s behavior, one chooses the initial point on an unstable
manifold in a neighborhood of an unstable equilibrium. After a transient process,
this trajectory reaches the attractor, visualizing it. In general, for numerical local-
ization of attractor, it is necessary to explore its basin of attraction and choose an
initial point in it. If for a particular attractor its basin of attraction is connected
with the unstable manifold of unstable equilibrium, then the localization proce-
dure is quite simple. From this perspective, the following classification of attrac-
tors is suggested (Leonov and Kuznetsov, 2009; Kuznetsov et al., 2010; Leonov et
al., 2011, 2012; Leonov and Kuznetsov, 2013; PIII; Kuznetsov, 2016,a): an attrac-
tor is called a self-excited attractor if its basin of attraction intersects with any open
neighborhood of equilibrium; otherwise, it is called a hidden attractor. Numeri-
cal localization of hidden attractors is much more challenging and requires the
development of special methods (Zelinka, 2015, 2016).

The problem of hidden attractors is connected with the second part of Hilbert’s
16th problem that arose in 1900 and is related to the question of the number and
possible mutual disposition of limit cycles in two-dimensional polynomial sys-
tems (Hilbert, 1901-1902). Later, this problem came up in engineering tasks: in
the investigation of widely known Markus-Yamabe’s (Markus and Yamabe, 1960),
Aizerman’s (Aizerman, 1949) and Kalman’s conjectures (Kalman, 1957) on abso-
lute stability of automatic control systems, where a unique stable equilibrium
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can co-exist with a stable periodic solution (see (Pliss, 1958; Fitts, 1966; Bara-
banov, 1988; Bernat and Llibre, 1996; Bragin et al., 2011; Leonov and Kuznetsov,
2011a,b; Kuznetsov et al., 2011); the corresponding discrete examples were con-
sidered in (Alli-Oke et al., 2012)), in the problem of simulation of phase-locked loops
(Kuznetsov et al., 2014, 2015). At the end of the 20th century, the problem of the
numerical analysis of hidden oscillations arose in simulations of aircraft control
systems (Leonov et al., 2012; Andrievsky et al., 2013b,a, 2015), and in simulations
of drilling systems (Kiseleva et al., 2012; Leonov et al., 2014). Existence of such vi-
brations in systems with external perturbation determines, in addition to the ex-
pected stable solution corresponding to the desired system behavior, other stable
and unstable solutions, which correspond to undesirable and dangerous behav-
iors, often leading to a system crash. Another stimulus to study hidden oscilla-
tions was the discovery, in 2010, of the chaotic hidden attractor in the Chua circuit
— a simple electric circuit with nonlinear feedback (Leonov and Kuznetsov, 2009;
Kuznetsov et al., 2010, 2011; Leonov et al., 2011; Kuznetsov et al., 2011; Leonov et
al., 2012; Kuznetsov et al., 2013). Until that moment, only self-excited attractors
had been detected in the Chua circuit (Chua, 1992).

Today, the concept of hidden attractors has become widespread. Let us re-
member that in 2016 "Localization of hidden Chuas attractors" (Leonov et al., 2011)
became the most cited Physics Letters A article published since 20112; "Hidden
attractor in smooth Chua systems" made the list of the most cited Physica D: Nonlin-
ear Phenomena articles published since 20113; and "Hidden Attractors in Dynamical
Systems. From Hidden Oscillations in Hilbert-Kolmogorov, Aizerman and Kalman Prob-
lems to Hidden Chaotic Attractors in Chua Circuits" (Leonov and Kuznetsov, 2013)
was the most read and one of the most cited International Journal of Bifurcation
and Chaos articles4. A special edition of The European Physical Journal Special Top-
ics: Multistability: Uncovering Hidden Attractors was published in 2015. It includes
the recent results in this area obtained by scientists from 14 countries all over the
world (see (Shahzad et al., 2015; Brezetskyi et al., 2015; Jafari et al., 2015; Zhusub-
aliyev et al., 2015; Saha et al., 2015; Semenov et al., 2015; Feng and Wei, 2015;
Li et al., 2015; Feng et al., 2015; Sprott, 2015; Pham et al., 2015; Vaidyanathan et
al., 2015)). Also, in 2015, plenary lectures devoted to the topic of hidden attrac-
tors were presented at 4th IFAC Conference on Analysis and Control of Chaotic
Systems (Japan, 2015) by Guanrong Chen (Chen, 2015) and at International Con-
ference on Advanced Engineering Theory and Applications 2015 (Vietnam, 2015)
by Nikolay Kuznetsov (Kuznetsov, 2016). In 2016, a review article, "Hidden At-
tractors in Dynamical Systems", was accepted for publication in the leading in-
ternational scientific journal "Physics Reports" (JCR 2015 Impact Factor 20.033)
(Dudkowski et al., 2016).

All known chaotic attractors in the Lorenz system are self-excited. In the
case when all three equilibria are unstable, the attractor is self-excited with re-
spect to three equilibria. In the case when only zero equilibrium is unstable, it is

2 http://www.journals.elsevier.com/physics-letters-a/most-cited-articles/
3 http://www.journals.elsevier.com/physica-d-nonlinear-phenomena/most-cited-articles/
4 http://www.worldscientific.com/worldscinet/ijbc?null=&&journalTabs=cited
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self-excited with respect to that one equilibrium. The existence of a hidden attrac-
tor in the Lorenz system is still an open question. The Glukhovsky-Dolzhansky
system, which in comparison with the Lorenz system has one additional non-
linear term, also possesses a self-excited attractor (Glukhovskii and Dolzhanskii,
1980). This work also studies the possible existence of hidden attractors in the
Glukhovsky-Dolzhansky system. A numerical procedure of hidden attractor lo-
calization for the Glukhovsky-Dolzhansky system is presented in Section 2.2 (see
also PII; PIII).

One of the main characteristics of the system’s chaotic behavior is the Lya-
punov dimension of its attractor (see, e.g., (Farmer et al., 1983; Frederickson et
al., 1983; Kuznetsov, 2016b)). The concept of Lyapunov dimension was intro-
duced by Kaplan and Yorke (Kaplan and Yorke, 1979) and was further developed
in (Constantin and Foias, 1985; Eden, 1989, 1990; Eden et al., 1991). Along with
commonly used numerical methods for estimating and computing the Lyapunov
dimension (see, e.g., MATLAB realizations of methods based on QR and SVD de-
compositions in (PI; PIII)), there is an effective analytical approach proposed by
Gennady Leonov in 1991 (Leonov, 1991) (see also (Leonov and Boichenko, 1992;
Boichenko et al., 2005; Leonov, 2008; Leonov et al., 2015; Kuznetsov, 2016b)). It is
based on the invariance of dimensions with respect to diffeomorphisms and the
direct Lyapunov method. The advantage of this method is that it allows one to
estimate the Lyapunov dimension of an invariant set without localization of the
set in the phase space. In the past two decades, the application of this method
has helped obtain the upper estimate of dimension of attractors for the Rössler,
Hénon, Chirikov, Lorenz and Shimizu-Morioka systems (Leonov, 2012; Leonov
and Kuznetsov, 2015; Leonov et al., 2015, 2016). For some of these systems, fol-
lowing the Eden ideas (Eden, 1990), this method allows one to prove the con-
jecture of achieving the maximum Lyapunov dimension at the equilibrium and,
thereby, to obtain the exact formula of the Lyapunov dimension of the B-attractor.

In this work, using the Leonov method, the upper estimate of the Lyapunov
dimension of its attractor for the Lorenz-like system was obtained and, in the spe-
cial case when this system coincides with the Glukhovsky-Dolzhansky system,
the Eden conjecture was proved, and the exact formula of the Lyapunov dimen-
sion of corresponding attractor was obtained (PIII; PIV; PV). This analytical result
was justified with the help of the numerical procedure described in PI.

1.2 Structure of the work

This work consists of an introduction, a chapter that presents the problem state-
ment and the main results of the work, a conclusion, a list of references, three
appendices, and included articles (Figure 1). The first section of the main chapter
is based on (Dolzhansky et al., 1974; Glukhovskii and Dolzhanskii, 1980; Gledzer
et al., 1981), and is devoted to the statement of the physical problem and to obtain-
ing a corresponding mathematical model. The second and third sections present
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the main results of the thesis. The second section presents a localization of the
hidden attractor in the considered Glukhovsky-Dolzhansky system (PII; PIII). In
the third section for the Lorenz-like system, the upper estimate of the Lyapunov
dimension of its attractor is obtained and, in the special case when the Lorenz-
like system can be transformed to the Glukhovsky-Dolzhansky system, the exact
formula of Lyapunov dimension is obtained (PIII; PIV; PV). The first appendix is
based on (Leonov, 1991; Kuznetsov, 2016b) and describes the Leonov method for
estimation of Lyapunov dimension. The second and third appendices give the
MATLAB implementations of algorithms for numerical approximation of Lya-
punov exponents, for numerical justification of the Eden conjecture and for hid-
den attractor localization in the Lorenz-like system.
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1.3 Included articles and author’s contribution

The main results were published in the five included articles. In article PI, the
author developed the algorithm of numerical justification of the Eden conjecture
and implemented this algorithm for two of the three Rössler systems. In articles
(PII; PIII), the algorithm for hidden attractor localization in the Lorenz-like sys-
tem is implemented by the author. In articles (PIII; PIV; PV), the theorems about
the Lyapunov dimension of attractors are due to the author.

The results of this study were also reported at the Seventh International
Conference on Differential and Functional Differential Equations" (Russia, 2014)
and the 13th International Conference of Numerical Analysis and Applied Math-
ematics (Greece, 2015).



2 PROBLEM STATEMENT AND MAIN RESULTS

2.1 Glukhovsky-Dolzhansky system describing fluid convection
motion in the rotating cavity

In this section, following (Dolzhansky et al., 1974; Glukhovskii and Dolzhanskii,
1980; Gledzer et al., 1981), let us consider the physical problem of fluid convection
inside an ellipsoidal cavity under external heating and present a rigorous deriva-
tion of the Lorenz-like system for this problem. In general form, the statement of
the physical problem is as follows. Viscous incompressible fluid bounded by an
ellipsoid surface

S(x1, x2, x3) ≡
(

x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

− 1 = 0, a1 > a2 > a3 > 0,

is under the condition of stationary inhomogeneous external heating. We assume
that the ellipsoid as well as the heat sources rotate with constant velocity Ω0
around the axis that crosses its center of mass and have a constant angle, α, with
gravity vector g. Vector g is stationary with respect to the ellipsoid motion. The
value of Ω0 is assumed to be such that the centrifugal forces can be neglected in
comparison with the influence of the gravitational field.

Behavior of this hydrodynamic system can be described by Navier-Stokes
equations under the Boussinesq approximation (Dolzhansky et al. (1974)):

∂v

∂τ
+ (v · ∇)v + 2Ω0 × v = −1

ρ
∇p − βgT + f,

∂T
∂τ

+ (v · ∇)T =
κ

cp
, ∇ · v = 0 (1)

with the following border condition

(v · ∇)S = 0, if S = 0, (2)

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) — fluid velocity vector field,
x = (x1, x2, x3), ρ — average density, β — coefficient of volume expansion of
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x1

x2

x3

g

l0

Ω0

ΔT̂α

FIGURE 2 Illustration of the problem.

the liquid, T = T(x, t) — temperature deviation from a certain constant value T0
that is defined by the specific conditions of the problem; hence, term βgT defines
the resultant of the Archimedes and gravity forces, f — internal viscous forces for
which ∇× f �= 0, κ — heat transfer per unit mass of liquid caused by the external
heating and thermal conductivity, κ supposed to be a linear function of the spa-
tial coordinates (x1, x2, x3), cp — specific heat at a constant pressure, ∇ — nabla
operator, τ — time. The energy flux from external sources to fluid is defined by
the Newton-Richman’s law (Kays and Crawford (1993))

κ

cp
= μ(T̂ − T),

where μ is the heat-transfer coefficient and 1/μ defines a characteristic damping
time in a stationary medium for deviations from steady-state temperature T̂. The
latter is assumed to be a linear function of the spatial coordinates.

Using the Galerkin method (Thompson, 1961; Monin, 1972), the solution of
system (1) can be reduced to the solution of a finite system of ordinary differential
equations. Under certain conditions, the motion of a real fluid can be described by
a spatially linear velocity and temperature fields: therefore, the solution of initial
system (1) is sought in the class of functions satisfying the following conditions

∂2vi

∂xj∂xk
= 0,

∂2T
∂xj∂xk

= 0. (3)

As reference fields in the Galerkin method the following three solenoidal linear
vector fields were used:

w1 = − a2

a3
x3 j +

a3

a2
x2 k, w2 = − a3

a1
x1 k +

a1

a3
x3 i, w3 = − a1

a2
x2 i +

a2

a1
x1 j,

satisfying the boundary condition, (wi · ∇)S = 0, on surfaces S = const. These
fields are orthogonal in the following sense:∫

V
wi · wk d3x = 0 for i �= k.
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Here V denotes the volume bounded by the ellipsoid. Let us write velocity field
v and temperature field T in the following form

v(x, t) = ω1(t)w1(x) + ω2(t)w2(x) + ω3(t)w3(x), (4)

T(x, t) = x · ∇T = x1
∂T
∂x1

+ x2
∂T
∂x2

+ x3
∂T
∂x3

, ∇T = ∇T(t), T(0, t) = 0, (5)

where Poincare parameters ω1(t), ω2(t), ω3(t) have the following relation with
the components of vorticity vector Ω ≡ ∇× v

ω1 =
a2a3

a2
2 + a2

3
Ω1, ω2 =

a1a3

a2
1 + a2

3
Ω2, ω3 =

a1a2

a2
1 + a2

2
Ω3.

Multiplying both sides of system (1) by wi and using conditions (3), expan-
sions (4), (5), and orthogonality of wi, system (1) can be transformed (Dolzhansky
et al., 1974) to the following simplified fluid convection system:

dM

dτ
= ω × (M + 2M0) + gβ(l0 × q)− λM,

dq

dτ
= ω × q + μ(q̂ − q), (6)

where λ — effective coefficient of viscosity, ω = (ω1, ω2, ω3), vector M has the
following components Mi = ∑3

k=1 Iikωk, {Iik}i,k=1,2,3 — diagonal matrix with the
following elements

I11 = a2
2 + a2

3, I22 = a2
1 + a2

3, I33 = a2
1 + a2

2.

The components M0i = ∑3
k=1 Iikω0s of vector M0 can be expressed via compo-

nents of Ω0

ω01 =
a2a3

a2
2 + a2

3
Ω01, ω02 =

a1a3

a2 + a2
3

Ω02, ω03 =
a1a2

a2 + a2
2

Ω03.

Components of vectors q and q̂ denote temperature differences and steady-state
temperature differences along the principal axis of the ellipsoid, respectively

q =

(
a1

∂T
∂x1

, a2
∂T
∂x2

, a3
∂T
∂x3

)
, q̂ =

(
a1

∂T̂
∂x1

, a2
∂T̂
∂x2

, a3
∂T̂
∂x3

)
.

Vector l0 = (a1 cos γ1, a2 cos γ2, a3 cos γ3) determines the orientation of the ellip-
soid and has the same direction as g, the gravity vector. Here cos γi — direction
cosines of the gravity vector.

Term 2ω × M0 in the first equation of (6) represents the Coriolis force in the
considered velocity fields class. For initial system (1), this force is represented by
term 2Ω0 × v in its left hand side (see, e.g., (Greenspan, 1968)).

Consider the case when the rotation of the ellipsoid occurs about the x3
axis and vector g is placed in plane x1x3 and steady-state temperature difference
ΔT̂ = (q0, 0, 0) is generated along the x1 axis (Figure 2). Then

l0 = (a1 sin α, 0, −a3 cos α), Ω0 = (0, 0, Ω0),
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and equations (6) written in the coordinate form are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dω1
dτ = I−1

11 [(I33 − I22)ω2ω3 + 2a3a2Ω0ω2 + gβa3 cos αq2]− λω1,
dω2
dτ = I−1

22 [(I11 − I33)ω1ω3 − 2a1a2Ω0ω1 − gβa3 cos αq1 − gβa1 sin αq3]− λω2,
dω3
dτ = I−1

33 [(I22 − I11)ω1ω2 + gβa1 sin αq2]− λω3,
dq1
dτ = ω2q3 − ω3q2 + μ(q0 − q1),
dq2
dτ = ω3q1 − ω1q3 − μq2,
dq3
dτ = ω1q2 − ω2q1 − μq3.

(7)
Let

E =
1
2

ω · M + gβ l0 · q

denotes the full energy of the system.
In order to simplify system (7) in the study of geophysical flows, the co-

called geostrophic wind relation is often used (Obukhov, 1949; Lorenz, 1967;
Greenspan, 1968). It sets the approximate balance (geostrophic balance) between
the Coriolis forces and the pressure gradient. Here, after expansion in the small

parameter ε = ω̄/Ω0, where ω̄ =
√

E/(a2
1 + a2

2 + a3
3), for equations (6), we get

the following relations up to terms of order ε (Glukhovskii and Dolzhanskii, 1980)

2(ω × M0) + gβ(l0 × q) = 0,

or

ω1 = − gβa3

2a1a2Ω0
cos αq1 − gβa1

2a1a2Ω0
sin αq3, ω2 = − gβa3

2a1a2Ω0
cos αq2, (8)

expressing geostrophic balance for the considered model. After substitution of
expressions (8) into equations (7), we obtain the geostrophic model, which has
the following equations of motion⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX
dt =AYZ − BZU + CZ + DU − σX,
dY
dt =−XZ + Ra − Y,
dZ
dt =XY + PU2 − Z,
dU
dt =−PZU − U,

(9)

in dimensionless variables

X = μ−1
(

ω3 +
gβa3 cos α

2a1a2Ω0
q3

)
, Y =

gβa3

2a1a2λμ
q1, Z =

gβa3

2a1a2λμ
q2, U =

gβa3

2a1a2λμ
q3.

Here derivatives are taken with respect to dimensionless time t = μτ, the param-
eters being:

A =
a2

1 − a2
2

a2
1 + a2

2
cos2 αT−1

a , B =
a1a2

a3(a2
1 + a2

2)
sin 2αT−1

a , C =
2a2

1a2

a3(a2
1 + a2

2)
σ sin α,

D = (σ − 1) cos αT−1/2
a , P =

a1

a3
T−1/2

a sin α,
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and the following numbers

σ =
λ

μ
, Ta =

Ω2
0

λ2 , Ra =
gβa3q0

2a1a2λμ

are external parameters, which are naturally interpreted as Prandtl, Rayleigh and
Taylor numbers, respectively.

According to the numerical experiments (Glukhovskii and Dolzhanskii, 1980),
the invariant surface U = 0 (the case, when q3 ≡ 0) is an attractor of system (9).
On this surface, the motion of system (9) is described by the following equations:

⎧⎪⎨
⎪⎩

Ẋ = −σX + CZ + AYZ,
Ẏ = Ra − Y − XZ,
Ż = −Z + XY.

(10)

From the physical point of view, this corresponds to an indifferent vertical strati-
fication.

The following affine change of coordinates

X → x, Y → C−1y, Z → C−1z

transforms system (10) to the Glukhovsky-Dolzhansky system

⎧⎪⎨
⎪⎩

ẋ = −σx + z + Acyz,
ẏ = Rc − y − xz,
ż = −z + xy.

(11)

where

Rc = RaC > 0, Ac =
A
C2 > 0.

Consider the following three-dimensional Lorenz-like system

⎧⎪⎨
⎪⎩

ẋ = −σx + σy − ayz
ẏ = rx − y − xz
ż = −bz + xy.

(12)

This system with r, σ, b > 0 was first introduced in (Rabinovich, 1978), and for
a = 0 it coincides with the classical Lorenz system (Lorenz, 1963).

Now let us consider the connection between system (11) and system (12).
Suppose that

σ > ar. (13)

Then after the following affine change of coordinates

x → x, y → 1
σ − ar

z, z → r − 1
σ − ar

y (14)
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system (12) can be transformed to system (11) with the following parameters:

Rc = r(σ − ar) > 0, Ac =
a

(σ − ar)2 > 0, b = 1. (15)

Let us note that if the following relations

a =
Acσ2

(AcRc + 1)2 , r =
Rc

σ
(AcRc + 1). (16)

hold, then the inverse transformation has the following form:

x → x, y → Rc − σ

AcRc + 1
z, z → σ

AcRc + 1
y (17)

Our particular interest to systems (12) and (11) is connected with the exis-
tence of chaotic attractors in their phase spaces.

2.2 Attractors in the Glukhovsky-Dolzhansky system

2.2.1 Self-excited and hidden attractors

Following (Milnor, 1985; Ott, 2002; Leonov and Kuznetsov, 2013; PIII), from the
computational perspective one can consider the following non-rigorous defini-
tion of attractor (rigorous definition are discussed, e.g., in PIII). An oscillation can
generally be easily numerically localized if the initial data from its open neigh-
borhood in the phase space (with the exception of a minor set of points) lead to a
long-term behavior that approaches the oscillation. Such an oscillation (or set of
oscillations) is called an attractor, and its attracting set is called the basin of attrac-
tion (i.e., a set of initial data from which the trajectories tend to the attractor).

The study of an autonomous system typically begins with an analysis of
the equilibria, which are easily found numerically or analytically. Therefore,
from a computational perspective, it is natural to suggest the following classi-
fication of attractors (Kuznetsov et al., 2010; Leonov et al., 2011, 2012; Leonov
and Kuznetsov, 2013), which is based on the simplicity of finding their basins of
attraction in the phase space:

Definition 1. (Kuznetsov et al., 2010; Leonov et al., 2011, 2012; Leonov and Kuznetsov,
2013) An attractor is called a self-excited attractor if its basin of attraction intersects
with any open neighborhood of a stationary state (an equilibrium), otherwise it is called a
hidden attractor.

The basin of attraction for a hidden attractor is not connected with any
equilibrium. For example, hidden attractors are attractors in systems with no
equilibria or with only one stable equilibrium (a special case of multistability:
coexistence of attractors in multistable systems). Note that multistability can be
inconvenient in various practical applications (see, for example, discussions on
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problems related to the synchronization of coupled multistable systems in (Kap-
itaniak, 1992, 1996; Pisarchik and Feudel, 2014; Kuznetsov and Leonov, 2014)).
Coexisting self-excited attractors can be found with the help of a standard compu-
tational procedure, whereas there is no standard way of predicting the existence
or coexistence of hidden attractors in a system.

2.2.2 Self-excited attractor localization in the Glukhovsky-Dolzhansky system

It can be shown (Leonov and Boichenko, 1992) that for positive parameters, if
r < 1, system (12) has a unique equilibrium S0 = (0, 0, 0), which is globally
asymptotically Lyapunov stable. If r > 1, then (12) possesses three equilibria: a
saddle S0 = (0, 0, 0) and symmetric (with respect to z = 0) equilibria

S1,2 = (±x1,±y1, z1), (18)

where

x1 =
σ
√

ξ

σ + aξ
, y1 =

√
ξ, z1 =

σξ

σ1 + aξ
,

and

ξ =
σ

2a2

[
a(r − 2)− σ +

√
(σ − ar)2 + 4aσ

]
.

Following (Glukhovskii and Dolzhanskii, 1980), let us take σ = 4 and define
the stability domain of equilibria S1,2. Using the Routh-Hurwitz criterion, we can
obtain the following (see PIII):

Lemma 1. The equilibria S1,2 are stable if

8a2r3 + a(7a − 64)r2 + (288a + 128)r + 256a − 2048 < 0. (19)

Consider the following parameters for system (12)

σ = 4, a = 0.0052.

According to Lemma 1, if r1 ≈ 16.4961242... < r < r2 ≈ 690.6735024, the
equilibria S1,2 of system (12) become (unstable) saddle-focuses. For example, if
r = 17, the eigenvalues of the equilibria of system (12) are the following

S0 : 5.8815, −1, −10.8815
S1,2 : 0.0084 ± 4.5643i, −6.0168

and there is a self-excited chaotic attractor in the phase space of system (12). We
can easily visualize this attractor (Figure 3) using the standard computational
procedure with initial data in the vicinity of one of the equilibria, S0,1,2, on the
corresponding unstable manifolds. To improve the approximation of the attrac-
tor, one can consider its neighborhood and compute trajectories from a grid of
points in this neighborhood.
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(a) Initial data near equilib-
rium S0.

(b) Initial data near equilib-
rium S1.

(c) Initial data near equilib-
rium S2.

FIGURE 3 Numerical visualization of the self-excited attractor in the Glukhovsky-
Dolzhansky system with r = 17, σ = 4, b = 1, a = 0.0052 by using the
trajectories that start in small neighborhoods of the unstable equilibria, S0,1,2.

2.2.3 Hidden attractor localization in the Glukhovsky-Dolzhansky system

Following (Leonov et al., 2011; Leonov and Kuznetsov, 2013; PIII), we apply a
special analytical-numerical procedure for localization of the hidden attractor of
system (12). The main idea of this procedure is to construct a sequence of similar
systems such that the initial data for numerical localization of the starting attrac-
tor for the first (starting) system can be obtained rather simply. For example, in
some cases it is possible to consider a starting system with a self-excited starting
attractor. Then we numerically track the transformation of the starting attractor
while passing between systems.

Let us construct a line segment on the plane (a, r) that intersects a boundary
of the stability domain of equilibria S1,2 (see Figure 4). We choose point P1(r =
700, a = 0.0052) as the end point of the line segment. The eigenvalues for the
equilibria of system (12) that correspond to parameters P1 are the following:

S0 : 50.4741, −1, −55.4741,
S1,2 : −0.1087 ± 10.4543i, −5.7826.

This means that equilibria S1,2 become stable focus-nodes. Now we choose point
P0(r = 687.5, a = 0.0052) as the initial point of the line segment. This point corre-
sponds to the parameters for which system (12) has a self-excited attractor, which
can be computed using the standard computational procedure. Then we choose
a sufficiently small partition step for the line segment and compute a chaotic at-
tractor in the phase space of system (12) at each iteration of the procedure1. The
last computed point at each step is used as the initial point for the computation
at the next step (the computation time must be sufficiently large).

In our experiment, the length of the path was 3.25 and there were 3 itera-
tions. Here, for the selected path and partition, we can visualize a hidden attrac-
tor of system (12) (see Figure 5). The results of a continuation procedure are given
in (PII; PIII).
1 Here, for system (12) we use the so-called stability of the basin of attraction (see, e.g., (Menck

et al., 2013)) with respect to variable parameter r.
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FIGURE 4 Paths [P0, P1] and [P2, P3] in the plane of parameters {a, r} used in the contin-
uation procedure.

FIGURE 5 Chain of transformation in the continuation procedure.

Note that the choice of path and its partitions in the continuation proce-
dure are not trivial. For example, a similar procedure does not lead to a hidden
attractor for the following path on the plane (a, r). Consider r = 33.51541181,
a = 0.04735056... (the rightmost point on the stability domain) and take a starting
point P2: r = 33.51541181, a = 0.046 near it (Fig. 4). If we use partition step 0.001,
then there are no hidden attractors after crossing the boundary of the stability
domain. For example, if the end point is P3: r = 33.51541181, a = 0.048, there is
no chaotic attractor but only trivial attractors (equilibria S1,2).
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Also, let us note that a hidden attractor was localized in system (12) in the
case when a < 0, σ = −ar (Kuznetsov et al., 2015). For these parameters, system
(12) coincides with the famous Rabinovich system that describes the interaction
of waves in plasma (Rabinovich, 1978; Pikovski et al., 1978).

2.3 Formula of the Lyapunov dimension of attractor for the Glukhov-
sky-Dolzhansky system

One of the main characteristics of chaos in system is the Lyapunov dimension
of its attractor. The concept of Lyapunov dimension was introduced by Kaplan
and Yorke (Kaplan and Yorke, 1979). Their rigorous definitions are discussed in
Appendix 1.
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FIGURE 6 Attractors localization for a Lorenz-like system.

Using the Leonov method2 (Leonov, 1991; Kuznetsov, 2016b), the assertion
concerning the Lyapunov dimension dimL K of attractor K of system (12) can be
formulated:

Theorem 1. Suppose that either inequality b < 1 or inequalities b � 1, σ > b are valid.
If (

r +
σ

a

)2
<

(b + 1)(b + σ)

a
, (20)

then any solution of system (12), bounded on [0,+∞), tends to an equilibrium as t →
+∞.
If (

r +
σ

a

)2
>

(b + 1)(b + σ)

a
, (21)

2 see a detailed discussion in Appendix 1.
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then
dimL K � 3 − 2(σ + b + 1)

σ + 1 +
√
(σ − 1)2 + a

(
σ
a + r

)2
. (22)

Proof is presented in PIV.

For the numerical computation of the Lyapunov dimension of attractor K,
it is possible to use the following procedure3. For numerical integration of the
system that possesses K, we consider a sufficiently large time T and choose a suf-
ficiently dense grid of points Kgrid on the attractor as the initial datum. For each
grid point and obtained trajectory we compute the local Lyapunov dimension by
the corresponding Kaplan-Yorke formula and then find the maximum over the
computed values. It is also interesting to numerically check the Eden conjecture4

(Eden, 1990) claiming that the maximum of the local Lyapunov dimension on the
attractor is achieved in the equilibrium. Using this procedure with parameters
h = 0.5, k = 400, abs_tol = rel_tol = 10−8, we obtain the following results (see
Table 1) for the Lorenz-like system (12) that numerically justify the Eden conjec-
ture:

TABLE 1 Numerical justification of the Eden conjecture for a Lorenz-like system.

Syst. Grid Step max
x∈grid

dimL x

(Benettin alg.)

max
x∈grid

dimL x

(Stewart alg.)

dimL S0 (22)

(12) 1
2

(
x2 + y2 + (a + 1)×

×
(

z − σ + r
a + 1

)2
)

≤ η

0.5 2.1466 2.1501 2.8917 2.8955

In the special case, when b = 1 and the Lorenz-like system (12) coincides
with the Glukhovsky-Dolzhansky system (11) we can obtain another upper es-
timation which coincides with the local Lyapunov dimension of the zero equi-
librium and analytically proves the Eden conjecture (see PV). This result is ex-
pressed by the following:

Theorem 2. Let b = 1, r > 2 and the following relations hold⎧⎨
⎩

σ > −3+2
√

3
3 ar, if 2 < r ≤ 4

σ ∈
(

−3+2
√

3
3 ar, 3r+2

√
r(2r+1)

r−4 ar
)

, if r > 4.
(23)

Then
dimL K = 3 − 2(σ + 2)

σ + 1 +
√
(σ − 1)2 + 4σr

. (24)

Proof is presented in (PIII; PV).

Note that this exact formula coincides with the formula for the classical
Lorenz system (Leonov and Lyashko, 1993; Leonov, 2012; Leonov et al., 2016).
3 see a description of the procedure in (PI) and MATLAB implementation in Appendix 2.
4 see a detailed discussion in (PIII; Kuznetsov, 2016b).



3 CONCLUSION

This work studies the Glukhovsky-Dolzhansky system, which provides a math-
ematical model of the fluid convection in a rotating ellipsoid cavity under a hor-
izontal external heating. An analytical-numerical procedure for localization of
the hidden attractors is developed and implemented for this system. Using the
Leonov method, the Eden conjecture on achieveness of maximum Lyapunov di-
mension on the attractor at the equilibrium is proved for this system and, thereby,
an exact formula of the Lyapunov dimension of this attractor is obtained. By
means of special procedure developed in this work, this analytical result is checked
and justified numerically. Also we obtain the upper estimate of Lyapunov di-
mension of attractor for a Lorenz-like system, providing a generalization of the
Glukhovsky-Dolzhansky system.

Further investigations are planned on the Lorenz-like system and on pos-
sible existence of hidden attractors in its phase space. An attempt to obtain the
exact formula of the Lyapunov dimension of Lorenz-like system’s attractors will
be undertaken as well.

Also a deeper look at the correspondence of chaotic behavior of the Glukhov-
sky-Dolzhansky system to a hydrodynamic and atmospheric phenomena will be
taken. Of a particular interest will be the studying of the connection between
the chaos in this system and the El Niño Southern Oscillation phenomenon. It is
known (Garay and Indig, 2015) that in some cases the Vallis’ model for El Niño
(Vallis, 1986, 1988) can be transformed to the Lorenz system.
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YHTEENVETO (FINNISH SUMMARY)

Attraktoreiden lokalisointi ja dimension estimointi Glykhovsky-Dolzhansky-

järjestelmässä

Tässä väitöstyössä tutkitaan kaaottisia attraktoreita Glukhovsky-Dolzhansky (GD)
-järjestelmässä. GD-järjestelmä kuvaa nesteen lämmön virtausta soikion muo-
toisessa onkalossa, missä lämpö on ulkopuolinen vaikuttaja. Verrattuna Lorenz-
järjestelmään, GD-järjestelmä kuvaa nesteen lämmön virtausta kolmiulotteisessa
avaruudessa, ja järjestelmää voidaan käyttää esimerkiksi valtamerien tai ilmake-
hän mallintamiseen.

Attraktorit voidaan laskennallisesti luokitella kahteen luokkaan, riippuen
attraktoreiden vetovoima-alan faasiavaruudesta. Jos attraktorin vetovoima-ala leik-
kaa dynaamisen järjestelmän tasapainopisteiden pienympäristöjä, attraktori luo-
kitellaan itsekiihtyväksi attraktoriksi dynaamisessa järjestelmässä. Muissa tapauk-
sissa attraktoria kutsutaan piileväksi attraktoriksi. Laskennallisesti itsekiihtyvien
attraktoreiden lokalisointi on helppoa. Riittää kun määritellään kaikki tasapain-
opisteet järjestelmässä ja sitten numeerisia menetelmiä käyttäen integroidaan tra-
jektori aloittaen jostain epävakaan tasapainoympäristön pisteestä. Piilevien att-
raktoreiden kohdalla edellä mainittu tapa ei onnistu, koska piilevien attraktorei-
den lokalisointi on vaikeaa.

Lorenz-järjestelmissä on havaittu ainoastaan itsekiihtyviä attraktoreita. Täs-
sä työssä osoitamme piilevien kaaottisten attraktoreiden olemassaolon GD-järjes-
telmissä. Näiden piilevien kaaottisten attraktoreiden lokaalisoinniksi kehiteltiin
numeerisia menetelmiä, ja nämä numeeriset menetelmät ovat tämän työn kontri-
buutio.

Tässä työssä myös todistetaan Eden-konjektuuri GD-järjestelmissä, eli to-
distetaan ja määritellään attraktorin maksimaalinen Lyapunov-dimensio järjes-
telmän tasapainopisteessä.
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APPENDIX 1 ESTIMATION OF LYAPUNOV DIMENSION
VIA THE LEONOV METHOD

In this section, following (Leonov, 1991; Kuznetsov, 2016b), the notions of the
Hausdorff and Lyapunov dimensions are given, and the Leonov method for their
upper estimation is described.

APPENDIX 1.1 Hausdorff and Lyapunov dimensions

Consider a compact metric space (X, ρ), subset E ⊂ X and the following numbers
d ≥ 0, ε > 0. Consider covering of set E by open balls with a radius rj < ε and
consider the following notion:

μH(E, d, ε) = inf ∑
j

rd
j ,

where the infimum is taken over all ε-coverings of E. It is clear, that μH(E, d, ε)
does not decrease while ε decreasing. Therefore, there is a limit (possibly infinite)

μH(E, d) = lim
ε→0

μH(E, d, ε).

Definition 2. Function μH(·, d) is called the Hausdorff d-measure.

For a fixed set E, function μH(E, ·) has the following properties: there exist
number dkp ∈ [0, ∞], such that μH(E, d) = ∞, ∀d < dkp and μH(E, d) = 0, ∀d >
dkp; if X ⊂ Rn, then dkp ≤ n.

Definition 3. The number

dimH E = dkp = inf {d | μH(E, d) = 0}

is called the Hausdorff dimension of set E.

Consider an autonomous differential equation

ẋ = f (x), f : U ⊆ Rn → Rn, (25)

where f is a continuously differentiable vector-function and U is an open set.
Define by x(t, x0) a solution of (25) such that x(0, x0) = x0 ∈ U, and consider
evolutionary operator ϕt(x0) = x(t, x0). Assume the uniqueness and existence of
solutions of (25) for t ∈ [0,+∞). Then system (25) generates dynamical system
{ϕt}t≥0. Let nonempty set K ⊂ U ⊆ Rn be invariant with respect to {ϕt}t≥0,
i.e., ϕt(K) = K for all t > 0. Consider the linearization of system (25) along the
solution ϕt(x):

ẏ = J(ϕt(x))y, J(x) = D f (x), (26)



39

where J(x) is the n × n Jacobian matrix, which elements are continuous func-
tions of x. Suppose that det J(x) �= 0 ∀x ∈ U. Consider a fundamental ma-
trix of linearized system (26) Dϕt(x) such that Dϕ0(x) = I, where I is a unit
n × n matrix. Let σi(t, x) = σi(Dϕt(x)), i = 1, 2, ..., n, be the singular values of
Dϕt(x) (i.e. σi(t, x) > 0 and σi(t, x)2 are the eigenvalues of the symmetric ma-
trix Dϕt(x)∗Dϕt(x) with respect to their algebraic multiplicity)1 ordered so that
σ1(t, x) ≥ ... ≥ σn(t, x) > 0 for any x and t ≥ 0. The singular value function of
order d ∈ [0, n] at x ∈ x is defined as

ωd(Dϕt(x)) = σ1(t, x) · · · σ�d�(t, x)σ�d�+1(t, x)d−�d�, d ∈ [0, n), (27)

ωn(Dϕt(x)) = σ1(t, x) · · · σn(t, x),

where �d� is the largest integer less than or equal to d.
The concept of the Lyapunov dimension was suggested in the seminal paper

by Kaplan and Yorke (Kaplan and Yorke, 1979), and later it was developed in
a number of papers. The following definitions are considered in (Kuznetsov,
2016b) and inspirited by Douady-Oesterlé (Douady and Oesterle, 1980). The local
Lyapunov dimension of map ϕt at point x ∈ Rn is defined as

dimL(ϕt, x) = max{d ∈ [0, n] : ωd(Dϕt(x)) ≥ 1}
and the Lyapunov dimension of map ϕt with respect to invariant set K is defined
as

dimL(ϕt, K) = sup
x∈K

dimL(ϕt, x) = sup
x∈K

max{d ∈ [0, n] : ωd(Dϕt(x)) ≥ 1}.

In the paper of (Douady and Oesterle, 1980), it is rigorously proved that the Lya-
punov dimension of map ϕt with respect to compact invariant set K is an upper
estimate of the Hausdorff dimension of set K. Thus we have

dimH K ≤ inf
t≥0

dimL(ϕt, K).

Here inft≥0 dimL(ϕt, K) is called the Lyapunov dimension of dynamical system {ϕt}t≥0
with respect to invariant set K. For computations, it is important that (see, e.g.,
(Kuznetsov, 2016b))

inf
t≥0

dimL(ϕt, K) = lim inf
t→+∞

dimL(ϕt, K). (28)

Consider the finite-time Lyapunov exponents at point x:

LEi(t, x) =
1
t

ln σi(t, x), i = 1, 2, ..., n, t > 0.

If n > dimL(ϕt, x) > 1, j(t, x) = �dimL(ϕt, x)�, s(t, x) = dimL(ϕt, x)−�dimL(ϕt, x)�
then 0 = 1

t ln(ωj(t,x)+s(t,x)(Dϕt(x))) = ∑
j(t,x)
i=1 LEi(t, x) + s(t, x)LEj(t,x)+1(t, x). The

following representation

dimL(ϕt, x) = j(t, x) +
LE1(t, x) + · · ·+ LEj(t,x)(t, x)

|LEj(t,x)+1(t, x)| (29)

1 ∗ denotes matrix transposition.
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corresponds to the Kaplan-Yorke formula (Kaplan and Yorke, 1979) with respect
to the finite-time Lyapunov exponents. Remark that here j(t, x) = max{m :
∑m

i=1 LEi(t, x) ≥ 0} and LEj(t,x)+1(t, x) < 0 for j(t, x) < n.

APPENDIX 1.2 Leonov method

In 1991 Leonov proposed an effective analytical method (Leonov, 1991) which
allows one to estimate the Lyapunov dimension of invariant sets without local-
ization of the set in the phase space. This method is based on the following theo-
rems.

Consider a nonsingular n × n matrix, S. Let λi(x0, S), i = 1, 2, ..., n, be the
eigenvalues of the symmetrized Jacobian matrix

1
2

(
SJ(x(t, x0))S−1 + (SJ(x(t, x0))S−1)∗

)
, (30)

ordered so that λ1(x0, S) ≥ · · · ≥ λn(x0, S) for any x0.

Theorem 3. Let d = (j + s) ∈ [1, n], where integer j = �d� ∈ {1, . . . , n} and real
s = (d − �d�) ∈ [0, 1). If there are a differentiable scalar function V : U ⊆ Rn → R1

and a nonsingular n × n matrix S such that

sup
x∈K

(
λ1(x, S) + · · ·+ λj(x, S) + sλj+1(x, S) + V̇(x)

)
< 0, (31)

where V̇(x) = (grad(V))∗ f (x), then for sufficiently large T > 0 we have

dimL(ϕT, K) ≤ j + s.

A proof of this theorem, based on the invariance of Lyapunov dimension
with respect to diffeomorphisms, is given in (Kuznetsov, 2016b) (see also (Leonov
et al., 2015; Kuznetsov et al., 2016)).

Corollary 1. If for d = j + s defined in Theorem 3 at equilibrium point xcr
eq ≡ ϕt(xcr

eq)
the equality

dimL({ϕt}t≥0, xcr
eq) = j + s

holds, then for any invariant set K � xcr
eq we get the formula of exact Lyapunov dimension

dimH K ≤ inf
t≥0

dimL(ϕt, K) = dimL({ϕt}t≥0, xcr
eq) = j + s.

For the study of continuous time dynamical system in R3, the following
result is useful. Consider a certain open set, Kε ⊂ Rn, which is diffeomorphic to
a ball, whose boundary ∂Kε is transversal to vectors f (x), x ∈ ∂Kε. Let set Kε be a
positively invariant for the solutions of system (25).

Theorem 4 (see (Leonov, 1991, 2008)). Suppose, a continuously differentiable function
V : U ⊆ Rn → R1 and a non-degenerate matrix S exist such that

λ1(x, S) + λ2(x, S) + V̇(x) < 0, ∀ x ∈ Kε. (32)

Then any solution of system (25) with the initial data x0 ∈ Kε tends to the stationary set
as t → +∞.



APPENDIX 2 IMPLEMENTATIONS OF ALGORITHMS FOR
NUMERICAL CALCULATION OF THE
LYAPUNOV DIMENSION OF ATTRACTORS

APPENDIX 2.1 Benettin algorithm implementation

Let us briefly describe the algorithm for Lyapunov dimension calculation based
on the classical Benettin algorithm (Benettin et al., 1980a,b) for numerical ap-
proximation of the Lyapunov exponents. For a certain initial point, x0, let us
integrate initial system (25) along with its variational equation. Let orthogonal
(n × n)-matrix Q0 be the initial matrix for variational equation (usually, Q0 = I).
On the k-th iteration of the numerical procedure system (25) and its variational
equation are numerically integrated on the small time interval [0, h] with ini-
tial data {xk−1, Qk−1}. This yields a new trajectory point, xk ≡ x(hk, x0), and
Xk ≡ Dϕhk(x0) — fundamental matrix of the linearized system (26) at point xk.

Here the unique QR-decomposion of the obtained matrix, Xk, is considered:
Xk = QkRk, where Qk — orthogonal matrix that will be taken as an initial datum
for the variational equation on the next iteration, Rk — upper-triangular matrix
with positive diagonal entries.

The described numerical procedure has k iterations (k — sufficiently large).
Thus, the approximation of the finite-time Lyapunov exponents can be obtained
1 from

LEi(t, x0) ≈
1
kh

k

∑
j=1

ln(Rj(i, i)), i = 1, 2, ..., n.

LISTING 2.1 computeLCEs.m – computation of the Lyapunov characteristic exponents
1 function [t, trajectory, LCEs] = computeLCEs(extOde, initPoint, tBegin, ...
2 tStep, iterNum, odeSolverOptions)
3
4 % For the given extended system represented by system ODEs and corresponding
5 % variational equation the function returns array of LCEs.
6 %
7 % Parameters:
8 % extOde - extended system (ODE system + var. eq.);
9 % initPoint - initial point;

10 % tBegin - initial time value;
11 % t_step - time-step in the reorthogonalization procedure;
12 % tStep - number of iterations in the reorthogonalization procedure;
13 % odeSolverOptions - options for ode45 MATLAB solver;
14
15 % Dimension of the ODE :
16 dimOde = length(initPoint);
17
18 % Dimension of the extended ODE (ODE + Var. Eq.):
19 dimExtOde = dimOde * (dimOde + 1);
20
21 tBegin = 0; tEnd = tStep;
22 tSpan = [tBegin, tEnd];
23 initFundMatrix = eye(dimOde);
24 initCond = [initPoint(:); initFundMatrix(:)];
25
26 % Array of norms of vectors of fundamental matrix :
27 norms = zeros(1, dimOde);
28
29 % Array of sums of logarithms of norms :

1 see also the corresponding discussion in (Kuznetsov et al., 2016; Kuznetsov, 2016b).
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30 logSum = zeros(1, dimOde);
31
32 % Array of lyapunov exponents :
33 currLCEs = zeros(1, dimOde);
34
35 % Preallocations for output values :
36 LCEs = zeros(iterNum, dimOde);
37
38 % Main loop:
39 for iIteration = 1 : iterNum
40
41 % Solving extended system :
42 [currTime, extOdeSolution] = ode45(extOde, tSpan, initCond, odeSolverOptions);
43
44 % Fundamental matrix X at the moment iIteration * tStep :
45 X = reshape(extOdeSolution(end, (dimOde + 1) : dimExtOde), ...
46 dimOde, dimOde);
47
48 % QR factorization of X :
49 [Q, R] = qr(X);
50
51 for = iCoord : dimOde
52 if R(iCoord, iCoord) < 0
53 R(iCoord, iCoord) = (-1) * R(iCoord, iCoord);
54 Q(:, iCoord) = (-1) * Q(:, iCoord);
55 end
56 end
57
58 % Computing Lyapunov exponents at moment iIteration * tStep :
59 for iCoord = 1 : dimOde
60 norms(iCoord) = R(iCoord, iCoord);
61 logSum(iCoord) = logSum(iCoord) + log( norms(iCoord) );
62 currLCEs(iCoord) = logSum(iCoord) / (iIteration * tStep);
63 end
64
65 % Saving computations :
66 t = [t; currTime(:)];
67 trajectory = [trajectory; extOdeSolution(:, 1 : dimOde)];
68 LCEs(iIteration, :) = currLCEs;
69
70 % Updating :
71 currInitPoint = extOdeSolution(end, 1 : dimOde);
72 currInitFundMatrix = reshape(Q, 1, []);;
73
74 tBegin = tBegin + tStep;
75 tEnd = tEnd + tStep;
76 tSpan = [tBegin, tEnd];
77 initCond = [currInitPoint(:); currInitFundMatrix(:)];
78
79 end
80 end

APPENDIX 2.2 Stewart algorithm implementation

Singular value decomposition (SVD) of fundamental matrix X(t) has the follow-
ing form

X(t) = U(t)Σ(t)V∗(t) : U(t)∗U(t) ≡ I ≡ V(t)∗V(t),

where U, V — orthogonal matrices, consist of left and right singular vectors, re-
spectively, Σ(t) = diag{σ1(t), ..., σn(t)} — diagonal matrix with the positive di-
agonal elements equal to singular values. Singular values are the square roots of
the eigenvalues of matrix X(t)∗X(t) (Horn and Johnson, 1994).

Let us describe the Stewart algorithm (Stewart, 1997; Dieci and Elia, 2008)
for the computation of the Lyapunov exponents based on the computation of the
SVD decomposition for the large product of matrices.

Our setup is similar to that in the previous method. We want to calculate
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the singular value decomposition of fundamental matrix X(tk), where tk = hk,
X(0) ≡ I. For sufficiently small h, it is possible to write

X(tk) = X(tk, tk−1) · · · X(t1, t0),

where X(tk, tk−1) is the solution at tk of variational equation

Ẋ(t, tk−1) = J(t)X(t, tk−1), X(tk−1, tk−1) = I.

The task is to compute the SVD of X(tk) without forming the product explicitly in
order to avoid overflows and numerical dependency of the columns. The solution
suggested in (Stewart, 1997) is based on the Rutishauser’s LRCH algorithm for
computing the eigenvalues of a symmetric positive semi-definite matrix, B ≡ B1
(Rutishauser and Schwarz, 1963):

for i := 1, 2, . . . do

Bi = LiL∗
i [Cholesky factorization]

Bi+1 ← L∗
i Li

end for

Here Li is a lower triangular matrix with positive diagonal entries. It is
known that the limit matrix exists and has the eigenvalues of B on the diagonal.

Since computing the singular values of matrix A is equivalent to computing
the square roots of the eigenvalues of matrix B = A∗A, one can use the LRCH
algorithm for this purpose:

for i := 1, 2, . . . do

Ai = QiR∗
i [QR factorization]

Ai+1 ← R∗
i

end for

If A = A1 · A2 · · · Ak, then its QR factorization can be computed without
forming the product of matrices:

Qk+1 ← I
for j := k, k − 1, . . . , 1 do

C ← AjQj+1

C = QjRj [QR factorization]
end for

It is easy to see, that A = Q1 · R1 · · · Rk.
Thus, for the computation of the SVD factorization of X(tk) one should cal-

culate all Xk−j+1
1 = X(tj, tj−1), j = 1, . . . , k and then use the following algorithm:

U1 ← I; V1 ← I
for i := 1, 2, . . . do

Qk+1
i ← I
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for j := k, k − 1, . . . , 1 do

C ← Xj
i Q

j+1

C = Qj
i R

j
i [QR factorization]

end for

if i odd then

Ui+1 = UiQ1
i

else

Vi+1 = ViQ1
i

end if

for j := 1, 2, . . . , k do

Xj
i+1 ← (Rk−j+1

i )∗
end for

end for

As the initial LRCH procedure, this procedure also converges (Stewart, 1997;
Dieci and Elia, 2008). Denote by Uk and Vk the obtained approximations to the
limits of Ui and Vi, and by Rj the corresponding limits of Rj

i , j = 1, . . . , k. The
product SVD factorization of X(tk) is given by

X(tk) ≈ UkΣk(Vk)∗, Σk = R1 · R2 · · · Rk

and the approximation of the finite-time Lyapunov exponents can be obtained
from

LEi(t, x0) ≈
1
tk

k

∑
j=1

ln(Rj(i, i)), i = 1, 2, ..., n.

LISTING 2.2 productSVD.m – computation of the SVD decomposition for the product
of matrices

1 function [U, R, V] = productSVD(initFactorization, nIterations)
2 % Parameters:
3 % initFactorization - array containing factor matrices of the
4 % fundamental matrix X, such that:
5 % X = initFactorization(:,:,1) * ... * initFactorization(:,:,end);
6 % nIterations - number of iterations in the product SVD algorithm.
7
8 % dimOde - dimension of the ODEs, nFactors - number of factor matrices
9 [~, dimOde, nFactors] = size(initFactorization);

10
11 % A - 2D array of matrices storing the factor matrices at each iteration
12 A = zeros(dimOde, dimOde, nFactors, nIterations);
13 A(:, :, :, 1) = initFactorization;
14
15 % Q - array of matrices storing orhogonal matrices of the QR decomposition
16 Q = zeros(dimOde, dimOde, nFactors+1);
17
18 % U, V - orthogonal matrices in the SVD decomposition
19 U = eye(dimOde); V = eye(dimOde);
20
21 % R - array of upper triangular factor matrices, such that after
22 % the last iteration \Sigma = R(:,:,1) * ... * R(:,:,end)
23 R = zeros(dimOde, dimOde, nFactors);
24
25 % Main loop
26 for iIteration = 1 : nIterations
27 Q(:, :, nFactors + 1) = eye(dimOde, dimOde);
28 for jFactor = nFactors : -1 : 1
29 C = A(:, :, jFactor, iIteration) * Q(:, :, jFactor+1);
30 [Q(:, :, jFactor), R(:, :, jFactor)] = qr(C);
31 for kCoord = 1 : dimOde
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32 if R(kCoord, kCoord, jFactor) < 0
33 R(kCoord, :, jFactor) = -1 * R(kCoord, :, jFactor);
34 Q(:, kCoord, jFactor) = -1 * Q(:, kCoord, jFactor);
35 end;
36 end;
37 end;
38
39 if mod(iIteration, 2) == 1
40 U = U * Q(:, :, 1);
41 else
42 V = V * Q(:, :, 1);
43 end
44
45 for jFactor = 1 : nFactors
46 A(:, :, jFactor, iIteration + 1) = R(:, :, nFactors-jFactor+1)’;
47 end
48 end
49
50 end

LISTING 2.3 computeLEs.m – Lyapunov exponents computation
1 function LEs = computeLEs(extOde, initPoint, tStep, ...
2 nFactors, nSvdIterations, odeSolverOptions)
3 % Parameters:
4 % extOde - extended ODE system (system of ODEs + var. eq.);
5 % initPoint - initial point;
6 % tStep - time-step in the factorization procedure;
7 % nFactors - number of factor matrices in the factorization procedure;
8 % nSvdIterations - number of iterations in the product SVD algoritm;
9 % odeSolverOptions - solver options (sover = ode45);

10
11 % Dimension of the ODE :
12 dimOde = length(initPoint);
13
14 % Dimension of the extended ODE (ODE + Var. Eq.):
15 dimExtOde = dimOde * (dimOde + 1);
16
17 tBegin = 0; tEnd = tStep;
18 tSpan = [tBegin, tEnd];
19 initFundMatrix = eye(dimOde);
20 initCond = [initPoint(:); initFundMatrix(:)];
21
22 X = zeros(dimOde, dimOde, nFactors);
23
24 % Main loop : factorization of the fundamental matrix
25 for iFactor = 1 : nFactors
26 [~, extOdeSolution] = ode45(extOde, tSpan, initCond, odeSolverOptions);
27
28 X(:, :, iFactor) = reshape(...
29 extOdeSolution(end, (dimOde + 1) : dimExtOde), ...
30 dimOde, dimOde);
31 currInitPoint = extOdeSolution(end, 1 : dimOde);
32 currInitFundMatrix = eye(dimOde);
33
34 tBegin = tBegin + tStep;
35 tEnd = tEnd + tStep;
36 tSpan = [tBegin, tEnd];
37 initCond = [currInitPoint(:); currInitFundMatrix(:)];
38 end
39
40 % Product SVD of factorization X of the fundamental matrix
41 [~, R, ~] = productSVD(X, nSvdIterations);
42
43 % Computation of the Lyapunov exponents
44 LEs = zeros(1, dimOde);
45 for jFactor = 1 : nFactors
46 LEs = LEs + log(diag(R(:, :, jFactor))’);
47 end;
48 finalTime = tStep * nFactors;
49 LEs = LEs / finalTime;
50
51 end

LISTING 2.4 lyapunovDim.m – Local Lyapunov dimension computation
1 function LD = lyapunovDim( LEs )
2 % For the given array of Lyapunov exponents of a point the function
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3 % compute local Lyapunov dimention of this point.
4
5 % Parameters:
6 % LEs - array of Lyapunov exponents.
7
8 % Initialization of the local Lyupunov dimention :
9 LD = 0;

10
11 % Number of LCEs :
12 nLEs = length(LEs);
13
14 % Sorted LCEs :
15 sortedLEs = sort(LEs, ’descend’);
16
17 % Main loop :
18 leSum = sortedLEs(1);
19 if ( sortedLEs(1) > 0 )
20 for i = 1 : nLEs-1
21 if sortedLEs(i+1) ~= 0
22 LD = i + leSum / abs( sortedLEs(i+1) );
23 leSum = leSum + sortedLEs(i+1);
24 if leSum < 0
25 break;
26 end
27 end
28 end
29 end
30 end

LISTING 2.5 rosslerSyst1.m – Rössler system
1 function OUT = rosslerSyst1(t, x, a, b)
2
3 % Rossler system with parameters: a b
4
5 % Output vector that represents combined system :
6 OUT = zeros(12,1);
7
8 % Rossler equation:
9 OUT(1) = - x(2) - x(3);

10 OUT(2) = x(1);
11 OUT(3) = -b*x(3) + a*(x(2) - x(2)*x(2));
12
13 % Jacobian at the point [x(1), x(2), x(3)]
14 J = [-sigma, sigma-a*x(3), -a*x(2);
15 r-x(3), -1, -x(1);
16 x(2), x(1), -b];
17
18 X = [x(4), x(7), x(10);
19 x(5), x(8), x(11);
20 x(6), x(9), x(12)];
21
22 % Variational equation:
23 OUT(4:12) = J * X;

LISTING 2.6 main.m – numerical justification of the Lyapunov dimension hypothesis
for the Rössler attractor

1 function main
2
3 % The procedure computes local lyapunov dimention of the fixed point and local Lyapunov dimentions
4 % of the points on the grid for the 1st Rossler attractor.
5
6 % Values of parameters :
7 a = 0.386; b = 0.2;
8
9 % T - time-step in iterative procedure :

10 T = 0.5;
11
12 % K - number of iterations of iterative procedure :
13 K = 400;
14
15 acc = 1e-8; RelTol = acc; AbsTol = acc; InitialStep = acc/10;
16 odeSolverOptions = odeset(’RelTol’, RelTol, ’AbsTol’, AbsTol, ...
17 ’InitialStep’, InitialStep, ’NormControl’, ’on’);
18
19 % eps - step on the grid :
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20 eps = 1e-1;
21
22 % Equilibrium :
23 equilibrium = [0 0 0];
24
25 % Attractor is located in cube :
26 xBegin = -1; xEnd = 1.3; % x \in [-1; 1.3];
27 yBegin = -0.7; yEnd = 1.8; % y \in [-0.7; 1.8];
28 zBegin = -1.1; zEnd = 0; % z \in [-1.1; 0];
29
30 xIterations = (xEnd - xBegin) / eps + 1;
31 yIterations = (yEnd - yBegin) / eps + 1;
32 zIterations = (zEnd - zBegin) / eps + 1;
33
34 % Infinity factor: if trajectory leaves cube with side ’infinity_factor’,
35 % then we conclude, that trajectory will leave basin of attraction :
36 infinityFactor = 10;
37
38 % Result array :
39 gridResults = zeros(xIterations*yIterations*zIterations, 7);
40 iRes = 1;
41
42 % Computing local lyapunov dimentions of the grid points :
43 for i = 1 : xIterations
44 for j = 1 : yIterations
45 for k = 1 : zIterations
46
47 currPoint = [xBegin+(i-1)*eps yBegin+(j-1)*eps zBegin+(k-1)*eps];
48 [~, trajectory, LCEs] = computeLCEs(@(t, x) rosslerSyst1(t, x, a, b), ...
49 currPoint, 0, T, K, odeSolverOptions);
50
51 if (abs(trajectory(end, 1)) < infinityFactor ...
52 && abs(trajectory(end, 2)) < infinityFactor ...
53 && abs(trajectory(end, 3)) < infinityFactor)
54
55 % Saving results for current point :
56 gridResults(iRes, :) = [currPoint lyapunovDim(LCEs(end, : )) ...
57 LCEs(end, : )];
58 iRes = iRes + 1;
59 end
60 end
61 end
62 end
63
64 % Computing local Lyapunov dimention of the equilibrium :
65 [~, ~, LCEs] = computeLCEs(@(t, x) rosslerSyst1(t, x, a, b), equilibrium, 0, T, K, ...
66 odeSolverOptions);
67 equilibLCEs = LCEs(end, : );
68
69 % Saving results in file :
70 fid = fopen(’hypothesis_roessler_1.txt’);
71 fprintf(fid, ’%4s %4s %4s %10s %10s %10s %10s\r\n’,...
72 ’x’, ’y’, ’z’, ’dim_L’, ’LCE1’, ’LCE2’, ’LCE3’);
73 fprintf(fid, ’%.2f, %.2f, %.2f, %.8f, %.8f, %.8f, %.8f\r\n’, gridResults);
74 fprintf(fid, ’\r\nLyapunov dimension in equilibrium:\r\n’);
75 fprintf(fid, ’%.2f, %.2f, %.2f, %.8f, %.8f, %.8f, %.8f\r\n’, ...
76 [x0 lyapunovDim(equilibLCEs) equilibLCEs]);
77 fclose(fid);
78 end



APPENDIX 3 IMPLEMENTATION OF ALGORITHM FOR
HIDDEN ATTRACTOR LOCALIZATION IN
THE GLUKHOVSKY-DOLZHANSKY SYSTEM

As it was mentioned in Section 2.1, if conditions

σ > ar, b = 1

hold, then using the following affine change of coordinates

x → x, y → 1
σ − ar

z, z → r − 1
σ − ar

y.

the Lorenz-like system (12) can be transformed to the Glukhovsky-Dolzhansky
system (11). Thus, in numerical experiments system (12) as well as system (11)
can be simulated (if the corresponding conditions on parameters are satisfied).

LISTING 3.1 LorenzLikeSyst.m – Lorenz-like system (12) combined with variational
equation

1 function OUT = LorenzLikeSyst(t, x, r, sigma, b, a)
2
3 % Lorenz-like system with parameters: r sigma b a
4
5 OUT(1) = sigma*(x(2) - x(1)) - a*x(2)*x(3);
6 OUT(2) = r*x(1) - x(2) - x(1)*x(3);
7 OUT(3) = -b*x(3) + x(1)*x(2);
8
9 % Jacobian at the point [x(1), x(2), x(3)]

10 J = [-sigma, sigma-a*x(3), -a*x(2);
11 r-x(3), -1, -x(1);
12 x(2), x(1), -b];
13
14 X = [x(4), x(7), x(10);
15 x(5), x(8), x(11);
16 x(6), x(9), x(12)];
17
18 % Variational equation
19 OUT(4:12) = J*X;

LISTING 3.2 continuation.m – continuation procedure for localization of the hidden
attractor in the Glukhovsky-Dolzhansky system

1 function out = continuation(ode, initPoint, tEnd, parameters, outDir)
2
3 % ODE solver parameters
4 acc = 1e-8;
5 RelTol = acc; AbsTol = acc; InitialStep = acc/10;
6 odeSolverOptions = odeset(’RelTol’, RelTol, ’AbsTol’, AbsTol, ...
7 ’InitialStep’, InitialStep, ’NormControl’, ’on’);
8
9 % Current initial point

10 currInitPoint = initPoint;
11
12 numIter = size(parameters, 1);
13 out = zeros(numIter, 5);
14
15 % 1st equilibrium
16 S0 = [0 0 0];
17
18 % Create working directories
19 if ~exist(outDir, ’dir’)
20 mkdir(outDir);
21 end
22
23 % Routing the paths for plot directories
24 currProjDir = [outDir ’/proj’];
25 if ~exist(currProjDir, ’dir’)
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26 mkdir(currProjDir);
27 end
28
29 curr3dDir = [outDir ’/3D’];
30 if ~exist(curr3dDir, ’dir’)
31 mkdir(curr3dDir);
32 end
33
34 % Main cycle
35 for iIteration = 1 : numIter
36
37 % currParameters = [a sigma b r]
38 currParameters = parameters(iIteration, :);
39
40 a = currParameters(1);
41 sigma = currParameters(2);
42 b = currParameters(3);
43 r = currParameters(4);
44
45 XSI = (sigma*b)/(2*a^2)*(a*(r-2)-sigma + sqrt((a*r-sigma)^2+4*a*sigma));
46 X1 = (sigma*b*sqrt(XSI))/(sigma*b + a*XSI);
47 Y1 = sqrt(XSI);
48 Z1 = (sigma*XSI)/(sigma*b + a*XSI);
49
50
51 % 2nd and 3d equilibria
52 S1 = [X1 Y1 Z1];
53 S2 = [-X1 -Y1 Z1];
54
55 % Trajectory defining attractor
56 [~,odeSolution] = ode45(ode, [0 tEnd], currInitPoint, odeSolverOptions);
57
58 % Save starting point
59 out(iIteration,:) = [currParameters(1) currParameters(4) currInitPoint];
60
61 % Make a plot
62 h = figure(’Visible’, ’off’);
63 % Plot equilibria
64 plot3(S0(1), S0(2), S0(3), ’.’, ’markersize’, 15, ’Color’, ’red’);
65 text(S0(1), S0(2), S0(3),’S_0’,’fontsize’, 18);
66 hold on;
67 plot3(S1(1), S1(2), S1(3), ’.’, ’markersize’, 15, ’Color’, ’red’);
68 text(S1(1), S1(2), S1(3),’S_1’,’fontsize’, 18);
69 hold on;
70 plot3(S2(1), S2(2), S2(3), ’.’, ’markersize’, 15, ’Color’, ’red’);
71 text(S2(1), S2(2), S2(3),’S_2’,’fontsize’, 18);
72 hold on;
73 % Plot attractor
74 plot3(odeSolution(:,1), odeSolution(:,2), odeSolution(:,3));
75 axis auto;
76 grid on;
77 xlabel(’X’);
78 ylabel(’Y’);
79 zlabel(’Z’);
80
81 % Save current plot in different projections
82 % set(h, ’Visible’, ’on’);
83 view(0,90), title(’X-Y’)
84 saveas(h, [currProjDir ’/’ int2str(iIteration-1) ’ - [’ ...
85 num2str(a,’%.6g’) ’ ’ num2str(r,’%.6g’) ’]_XY.eps’],’epsc’);
86
87 view(0,0), title(’X-Z’)
88 saveas(h, [currProjDir ’/’ int2str(iIteration-1) ’ - [’ ...
89 num2str(a,’%.6g’) ’ ’ num2str(r,’%.6g’) ’]_XZ.eps’],’epsc’);
90
91 view(90,0), title(’Y-Z’)
92 saveas(h, [currProjDir ’/’ int2str(iIteration-1) ’ - [’ ...
93 num2str(a,’%.6g’) ’ ’ num2str(r,’%.6g’) ’]_YZ.eps’],’epsc’);
94
95 view([30,24]);
96 saveas(h, [curr3dDir ’/’ int2str(iIteration-1) ’ - [’ ...
97 num2str(a,’%.6g’) ’ ’ num2str(r,’%.6g’) ’].eps’],’epsc’);
98 % set(h, ’Visible’, ’off’);
99

100 % Update starting point
101 currInitPoint = odeSolution(end, : );
102
103 end
104
105 end
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LISTING 3.3 main.m – start of the continuation procedure for the Glukhovsky-
Dolzhansky system with specific parameters

1 function main
2
3 % Constant parameters:
4 sigma = 4; b = 1; a = 0.0052;
5
6 % Varying parameters:
7 rBegin = 687.5; rEnd = 700;
8
9 % Step number in continuation procedure

10 numSteps = 5;
11 stepSize = 1 / numSteps;
12
13 % Construct matrix of parameters
14 for i = 1 : numSteps
15 rCurr = rBegin + i * stepSize * (rEnd - rBegin);
16 rList = [rList rCurr];
17 end
18
19 paramMatrix = [repmat(a, numSteps+1, 1), ...
20 repmat(sigma, numSteps+1, 1), ...
21 repmat(b, numSteps+1, 1), ...
22 rList’];
23
24 % Set initial data corresponding to a self-excited attractor
25 function OUT = J(X)
26 OUT = [-sigma, sigma, -a * X(3) - a * X(2); ...
27 rBegin - X(3), -1, -X(1); ...
28 X(2), X(1), -b];
29 end
30
31 S0 = [0 0 0];
32 [V0, D0] = eig(J(S0));
33 [~, IX0] = sort(diag(D0), ’descend’);
34 rEps0 = 0.1;
35
36 x0 = S0 + rEps0 * V0(:, IX0(1))’;
37
38 % Set solver integration time
39 tEnd = 500;
40
41 % Set output directory
42 outDir = [’./OUT/A=’ num2str(A_end, ’%.4g’) ’, r=’ num2str(rEnd, ’%.4g’)];
43
44 % Start continaution procedure
45 results = continuetion(@(t, x) LorenzLikeSyst(t, x, rBegin, sigma, b, a), ...
46 x0, tEnd, paramMatrix, outDir);
47
48 % Save results
49 resFileName = [’./OUT/a=’ num2str(a, ’%.4g’) ...
50 ’, r=’ num2str(rEnd, ’%.4g’) ’.txt’];
51
52 save(resFileName, ’results’, ’-ascii’,’-double’);
53
54 % Print results on screen
55 type(resFileName)
56
57 end
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a b s t r a c t

Exact Lyapunov dimension of attractors of many classical chaotic systems (such as Lorenz,
Henon, and Chirikov systems) is obtained. While exact Lyapunov dimension for Rössler
system is not known, Leonov formulated the following conjecture: Lyapunov dimension of
Rössler attractor is equal to local Lyapunov dimension in one of its stationary points. In the
present work Leonov’s conjecture on Lyapunov dimension of various Rössler systems with
standard parameters is checked numerically.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lyapunov exponents (LEs) play an important role in the description of dynamical systems behavior. They were introduced
by Lyapunov [1] for the analysis of stability by the first approximation for regular time-varying linearizations, where the neg-
ativeness of the largest Lyapunov exponent indicates stability. Much later, in 1940s, Chetaev tried to prove that for regular
time-varying linearizations, a positive Lyapunov exponent indicates instability in the sense of Lyapunov, but a gap in his
proof was revealed and filled recently for more weak definition of instability [2]). Since there are no general methods for
checking regularity of linearization and there are known Perron effects [3–5,2] of sign inversion of the largest Lyapunov
exponent for nonregular time-varying linearizations, the computation of Lyapunov exponents for linearization of nonlinear
autonomous system along nonstationary trajectories is widely used for investigation of chaos. In this case the positiveness of
the largest Lyapunov exponent is often regarded as the indication of chaotic behavior in the considered nonlinear system.
The various methods, used for the numerical computation of Lyapunov exponents, are described, e.g., in [6–9].

Nowadays various characteristics of attractors of dynamical systems (information dimension, metric entropy etc.) are
studied based on Lyapunov exponents computation. In particular, Kaplan and Yorke defined a quantity they called Lyapunov
dimension and conjectured that it was equal to information dimension [10].

In the work [11] Leonov considered exact formulas of Lyapunov dimension of Lorenz, Henon, and Chirikov attractors. By
analogy with the results for these attractors he conjectured that Lyapunov dimension of Rössler attractor1 is determined by a
stationary point embedded in this attractor.

1007-5704/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cnsns.2013.07.026

⇑ Corresponding author at: Department ofMathematical Information Technology, 40014 Jyväskylä, University of Jyväskylä, Finland. Tel.: +358 40 550 7005.
E-mail address: nkuznetsov239@gmail.com (N.V. Kuznetsov).

1 Following [12,13], an attractor is a bounded, closed, invariant, attracting subset of phase space of dynamical system. Since for the considered Rössler
systems there are no analytical estimations of localization of their attractors, it is not feasible to check their boundness and closedness. Usually by Rössler
attractor one means an attracting set obtained as a result of numerical experiments [14,15].
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In the present paper Leonov’s conjecture is checked numerically and it is demonstrated that this conjecture is true for
three different types of Rössler systems. These three-dimensional systems are simplest and, in a sense, minimal models
for continuous-time chaos. They have only a single nonlinear quadratic term and they generate chaotic attractors with a sin-
gle ‘‘leaf’’ (in contrast to Lorenz attractor). Rössler systems arose as simplified prototypes of some chemical reactions while
Otto Rössler researched different types of chaos in chemical kinetics.

2. Problem statement

2.1. Rössler systems

Consider the following three-dimensional Rössler systems [14,15]

ð1:1Þ
_u ¼ �y� z
_y ¼ u
_z ¼ aðy� y2Þ � bz

8><
>: ð1:2Þ

_u ¼ �y� z
_y ¼ uþ ay
_z ¼ b� czþ uz

8><
>: ð1:3Þ

_u ¼ �y� z
_y ¼ uþ ay
_z ¼ bu� czþ uz

8><
>: ð1Þ

with the corresponding standard parameters

ð1:1Þ : a ¼ 0;386; b ¼ 0;2;
ð1:2Þ : a ¼ 0;2; b ¼ 0;2; c ¼ 5;7;
ð1:3Þ : a ¼ 0;36; b ¼ 0;4; c ¼ 4;5:

ð2Þ

In the phase spaces of these systems, for parameters (2) there exist chaotic attractors and the corresponding stationary
points

x0 ¼ ð0;0;0Þ for systems ð1:1Þ and ð1:3Þ;

x0 ¼ c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p

2
;� c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p

2a
;
c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p

2a

 !
for systemð1:2Þ ð3Þ

are embedded in these attractors [14,15].

2.2. Lyapunov dimension

Consider a topological characteristic — a local Lyapunov dimension of the point x0 in the phase space U of dynamical sys-
tem, which is associated with the Lyapunov spectrum k1ðx0Þ P . . . P knðx0Þ and is defined by formula

dimLx0 ¼ jþ k1ðx0Þ þ � � � þ kjðx0Þ
jkjþ1ðx0Þj : ð4Þ

Here j 2 ½1;n� is the smallest natural number m such that

k1ðx0Þ þ � � � þ kmþ1ðx0Þ < 0; kmþ1ðx0Þ < 0;
k1ðx0Þ þ � � � þ kmðx0Þ

jkmþ1ðx0Þj < 1:

Lyapunov dimension of invariant set B � U of dynamical system is defined by the relation

dimLB ¼ sup
x2B

dimLx: ð5Þ

The properties of Lyapunov dimension are considered in details in the works [16–18]. In particular, it is proved that
Lyapunov dimension is an upper bound for Hausdorff and fractal dimensions.

2.3. Leonov’s conjecture

For Lorenz, Henon, and Chirikov systems a problem of computation of Lyapunov dimension of their attractors is solved in
[19–24]. In theseworks it is obtainedanalytically exact Lyapunovdimensionof attractors of these systemsand in [11] it is given
estimates of Lyapunov dimension of attractor of Rössler system (1.1). Based on these results, Leonov formulated the following.

Conjecture. If a stationary point x0 is embedded in attractor A of Rössler systems (1), then

dimLA ¼ dimLx0:

In order to verify this conjecture for attractors of systems (1) with parameters (2) and stationary points (3), in the present
work it is developed a special numerical procedure described below. Note that this procedure can be applied similarly to
various modifications of Rössler system of higher orders (see, e.g., [15,25,26]).
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3. Numerical justification of Leonov’s conjecture

3.1. Lyapunov spectrum computation algorithm
To verify the conjecture, it is used an approach to the computation of Lyapunov spectrum, suggested in the works [6,7]. In

[9] this approach was adapted to computer realization. This method is an iterative process and is a variation of standard QR
algorithm for computation of eigenvalues and eigenvectors [27]. It is based on the following definitions and statements.

Consider system (1) in general form
_x ¼ FðxÞ; ð6Þ

where xðtÞ 2 Rn for any t 2 R, F : U ! Rn is Cr-smooth function (r P 1) on the open set U � Rn.

Denote by AðtÞ ¼ TxF f ðt; x0Þð Þ the Jacobian matrix of system (6), where f ðt; x0Þ is a solution of system (6).
Consider two close points x0 and ðx0 þ u0Þ in the phase space U, where u0 is a small disturbance of the point x0. Then the

evolution of vector uðtÞ ¼ f ðt; x0 þ u0Þ � f ðt; x0Þ can be studied [28] by the following linearized system
_u ¼ AðtÞu: ð7Þ

The solution of equation (7) can be represented as uðtÞ ¼ UðtÞu0, where UðtÞ ¼ Tx0 f ðt; x0Þ is a fundamental matrix of sys-
tem (7). The exponential rate of divergence (or convergence) of nearby trajectories is given by formula

kðx0;u0Þ¼def limt!1
1
t
ln

kuðtÞk
ku0k ¼ limt!1

1
t
ln kUðtÞu0k: ð8Þ

This value is called Lyapunov exponent of order 1 (or, simply, Lyapunov exponent).
It can be considered a generalization of Lyapunov exponent of order 1 to the case of order p, 1 6 p 6 n. Let Ep

0 be the p-
dimensional subspace of tangent space E0 and U0 be the open parallelepiped generated by p linearly independent vectors
e1; . . . ; ep of Ep

0. Then Lyapunov exponent of order p is defined [6] as

kpðx0; Ep
0Þ¼def limt!1

1
t
lnVolpðTx0 f ðt;U0ÞÞ ¼ limt!1

1
t
lnVolp½UðtÞe1; . . . ;UðtÞep�; ð9Þ

where Volp means p-dimensional volume induced in tangent space by scalar product.
If in (8) and (9) limt!1 can be replaced by limt!1, then it is said that exact Lyapunov exponent exists.

It is known [1,29,6] that for regular linear systems there exist exact Lyapunov exponents2 of order p; 1 6 p 6 n and in the
tangent space E0 at the point x0 it can be chosen p linearly independent vectors e1; . . . ; ep such that

kpðx0; Ep
0Þ ¼ k1ðx0Þ þ � � � þ kpðx0Þ; ð10Þ

where kiðx0Þdef¼
kðx0; eiÞ; i ¼ 1 . . . p, and k1ðx0Þ P � � � P kpðx0Þ. That is, each Lyapunov exponent of order p is equal to the sum

of p largest Lyapunov exponents of order 1.
In order to calculate all tangent vectors one can solve system (6) together with thematrix-valued variational equation [28]

_Utðx0Þ ¼ AðtÞUtðx0Þ; U0ðx0Þ ¼ I; ð11Þ
where Utðx0Þ ¼ Tx0 f ðt; x0Þ and I is identity matrix.

In this case one can go directly to the description of computation procedure. Choose the initial point x0 and ðn� nÞmatrix
of orthonormal vectors Q0 ¼ ½q0

1; . . . ; q
0
n�. During the kth iteration, original system (6) is integrated together with variational

equation (11) with the initial data fxk�1;Qk�1g over the chosen small time interval h for obtaining xk ¼ f ðhk; x0Þ and
Uk ¼ ½uk

1; . . . ;u
k
n� ¼ Uhkðx0Þ:

Then the matrix Uk is QR decomposed, i.e. Uk ¼ QkRk, where Qk is orthogonal matrix and Rk is upper triangular matrix. The
p-dimensional volume, defined in (9), increases by the multiplier Rkð1;1Þ . . .Rkðp; pÞ since Vpfuk

1; . . . ;u
k
pg ¼ Rkð1;1Þ . . .Rkðp; pÞ,

where Rkði; iÞ is a norm of the vector uk
i ; i ¼ 1 . . . p. The matrix Qk is taken as the initial datum for variational equation at the

following iteration.
So, formula (9) can be expressed as

kpðx0;U0Þ ¼ lim
k!1

1
kh

Xk
i¼1

lnðRið1;1Þ . . .Riðp; pÞÞ; 1 6 p 6 n:

One repeats this iteration procedureK times. Subtracting kp�1 from kp andusing formula (10), one obtains approximate values
of pth Lyapunov exponent of order 1 for the chosen trajectory. By formula (4) a local Lyapunov dimension can also be computed.

3.2. Discussion and results

The algorithm, described in the previous section, is used in the process of justification of Leonov’s conjecture. The entire
computational procedure is implemented in MATLAB. For the orthogonalization of fundamental matrix it is used MATLAB
library function qr, which implements a factorization procedure by using the Householder transformation since a classical
Gram–Schmidt algorithm is numerically unstable and its modified version requires more execution time.

2 The opposite is not true: in the general case the existence of exact Lyapunov exponents does not imply regularity of the system [2].
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For nonlinear systems (1) there are no exact formulas, describing the solutions of these systems in general form. In this
case it is considered approximated solutions, obtained by numerical integration of this systems, which is based on various
finite-difference and more complex methods [30,31]. For Rössler system (1.2) the problem of analysis of its analytical and
numerical solutions is considered in [32].

In this paper for the integration of systems (1) it is used MATLAB realization (solver ode45) of Runge–Kutta finite-differ-
ence schemes of order 4–5 with an adaptive step. The absolute and relative tolerance are chosen equal to 10�8 since smaller
values strongly influence a time of evaluation procedure. The parameter of procedure h, which determines integration time at
each iteration, is chosen sufficiently small for the columns of fundamental matrix to be remained linearly independent. The
parameter K – a number of iterations – must be sufficiently large in order that the trajectory, with the initial point in the
neighborhood of attractor, covered this attractor. For the chosen parameters it was made the following: the number of iter-
ations was increased by 2 times and a step was decreased by 2 times, in which case the result was qualitatively the same.

Since for Rössler systems (1) there are no analytical estimations of localization of their attractors, for estimation it is used
computer experiments [33,34]. For the considered systems (1) their attractors are numerically localized in cubes (Fig. 1) by
standard computational procedure3. On each cube it is chosen a grid with a certain step and at each grid point it is started the
algorithm of computation of local Lyapunov dimension4. The obtained values are compared with a local Lyapunov dimension at
stationary point. Then it is considered the grid points having the values of Lyapunov dimension, which are most close to a value
at stationary point. Around each of these grid points it is considered a grid with a smaller step and at the points of this grid it is
computed local Lyapunov dimensions. These values are also compared with a value at stationary point.

4. Conclusion

In this work Leonov’s conjecture on Lyapunov dimension of various Rössler systems with standard parameters is verified
numerically. While the data, given in Table (1), numerically confirm Leonov’s conjecture, analytical proof of Leonov’s con-
jecture is still an open problem.
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Appendix A. Computation of Lyapunov exponents and Lyapunov dimension in MATLAB

Here it is given the main parts of program, written in MATLAB, which implements the described above algorithm for the
computation of Lyapunov dimension of three-dimensional dynamical system (f.e. it is considered Rössler system (1.1)).

Fig. 1. Localization of attractors of systems (1).

Table 1
The results of justification for the following parameters: h ¼ 1, K ¼ 200, abs tol ¼ rel tol ¼ 10�8.

Rössler system Cube Grid step maxx2griddimLx dimLx0

(1.1) ½�1;1;3� � ½�0;7;1;8� � ½�1;05;�0; 03� 0,1 2,4205 2,6042
(1.2) ½�9;12� � ½�11;8� � ½�0;1;23;9� 0,5 2,0296 2,0341
(1.3) ½�5;7� � ½�7;4� � ½�0;2;9;8� 0,5 2,0340 2,0620

3 From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors [35–38]. Self-excited
attractors can be localized numerically by standard computational procedure, in which after a transient process a trajectory, started from a point of unstable manifold
in a neighborhood of equilibrium, reaches a state of oscillation and therefore it can easily be identified. In contrast, for a hidden attractor, its basin of attraction does not
intersect with small neighborhoods of equilibria. While many classical attractors are self-exited attractors and therefore can be obtained numerically by standard
computational procedure, for localization of hidden attractors it is necessary to develop special procedures since there are no similar transient processes
leading to such attractors.

4 Since numerical localization of attractors is considered and there is no effective way to prove ergodicity rigourously, one has to consider a mesh of initial
conditions for investigation of Lyapunov exponents.
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Listing 1: Computation of Lyapunov exponents

function [t, lces, trajectory] = lyapunov_exp(ode, x_start, t_start, ...
                                                   t_step, k_iter, rel_tol, abs_tol)

% For the given combined system represented by system of differential 
% equations and variational equation this function returns array of
% LCEs for the point x_start.
%
% Parameters:
%   ode - combined system (system of ODEs + var. eq.);
%   x_start -  initial point;
%   t_start - initial time value;
%   t_step - time-step in the reorthogonalization procedure;
%   k_iter - number of iterations in the reorthogonalization procedure;
%   rel_tol - relative error in Runge-Kutta 45 method;
%   abs_tol - absolute error in Runge-Kutta 45 method.

% n1 - size of the system of ODEs :
[~,n1] = size(x_start);

% n2 - size of the combined system :
n2 = n1*(n1+1);

% y - initial value for the combined system :
y = zeros(n2,1);

% Initializing y :
y(1:n1) = x_start(:);

for i = 1:n1
    y((n1+1)*i) = 1.0;
end

% norms - array of norms of vectors in Jacobi matrix :
norms = zeros(1,n1);

% log_sum - array of sums of logarithms of norms :
log_sum = zeros(1,n1);

% l_exp - array of lyapunov exponents :
lexp = zeros(1,n1);

% t_curr - current moment of time :
t_curr = t_start;

% tr_len - current index in the trajectory array :
tr_len = 1;

% Preallocations for output values :
t = zeros(k_iter,1);
lces = zeros(k_iter,3);

% Set options for MATLAB solver :
options = odeset('RelTol', rel_tol, 'AbsTol', abs_tol);

% Main loop:
for i = 1 : k_iter

    % Solving combined system :
    sol = ode45(ode, [t_curr t_curr+t_step], y, options);
    % i_last - the last moment :
    i_last = numel(sol.x);

    % Getting Jacobi matrix PhiT at the moment T
    % from vector Y :
    Y = transpose(sol.y);
    PhiT = reshape( Y(i_last, n1+1 : n2 ), n1, n1);

    % QR factorization of PhiT :
    [V, R] = qr(PhiT);

    for j = 1 : n1
        if R(j,j) < 0
            R(j,j) = (-1) * R(j,j);
            V(:,j) = (-1) * V(:,j);
        end
    end

    % Updating  y and t_curr :
    t_curr = t_curr + t_step;
    y( 1 : n1 ) = Y( i_last, 1:n1 );
    y( n1+1 : n2 ) = reshape(V, 1, []);

    % Computing lyapunov exponents (in moment t_curr) :
    for k = 1 : n1
        norms(k) = R(k,k);
        log_sum(k) = log_sum(k) + log( norms(k) );
        lexp(k) = log_sum(k) / (t_curr-t_start);
    end

    % Saving computations in corresponding vectors :
    t(i) = t_curr;
    lces(i, :) = lexp;

    for j = 1 : i_last
        trajectory(tr_len, :) = [sol.x(j) sol.y(1:n1, j)'];
        tr_len = tr_len + 1;
    end
end
end
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Listing 2: Computation of Lyapunov dimension

Listing 3: Rössler system (1.1)

function ld = lyapunov_dim(lces)
% For the given array of lyapunov exponents of some point this function
% compute local lyapunov dimention of this point.

% Parameters:
%   lces - array of lyapunov exponents.

% ld - local lyupunov dimention :
ld = 0;

% n - number of LCEs :
[~,n] = size(lces);

% lambda - sorted array of LCEs :
lambda = sort(lces, 'descend');

% Main loop :
le_sum = lambda(1);
if ( lambda(1) > 0 )
    for i = 1 : n-1
       if lambda(i+1) ~= 0
          ld = i + le_sum / abs( lambda(i+1) );
          le_sum = le_sum + lambda(i+1);
          if le_sum < 0
             break;
          end
       end
   end

end
end

function OUT = rossler_syst_1(t, X)

% Parameters:
global a b

% Output vector that represents combined system :
OUT = zeros(12,1);

% Rossler equation:
OUT(1) = - X(2) - X(3);
OUT(2) = X(1);
OUT(3) = -b*X(3) + a*(X(2) - X(2)*X(2));

% Variational equation:
OUT(4:12) = [0 -1 -1; 1 0 0; 0 a*(1-2*X(2)) -b] ...

* [X(4) X(7) X(10); X(5) X(8) X(11); X(6) X(9) X(12)];
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Listing 4: Numerical procedure for Rössler system (1.1)
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function run_rossler1

% This procedure computes local lyapunov dimention of the fixed point
% and local lyapunov dimentions of the points on the grid for 
% the 1st Rossler attractor.

% Parameters :
global a b

% Values of parameters :
a = 0.386; b = 0.2;

% T - time-step in iterative procedure :
T = 1.0;

% K - number of iterations of iterative procedure :
K = 200;

% Relative and absolute errors for Runge-Kutta 45 method :
rel_tol = 1e-8;
abs_tol = 1e-8;

% eps - step on the grid :
eps = 1e-1;

% Fixed point :
x0 = [0 0 0];

% Attractor is located in cube :
x_begin = -1;    x_end = 1.3;  % x \in [-1; 1.3];
y_begin = -0.7;  y_end = 1.8;  % y \in [-0.7; 1.8];
z_begin = -1.1;  z_end = 0;    % z \in [-1.1; 0];

x_iterations = (x_end - x_begin) / eps + 1;
y_iterations = (y_end - y_begin) / eps + 1;
z_iterations = (z_end - z_begin) / eps + 1;

% Infinity factor: if trajectory leaves cube with side 'infinity_factor',
% then we conclude, that trajectory will leave basin of attraction :
infinity_factor = 10;

% Result array :
grid_results = zeros(x_iterations*y_iterations*z_iterations, 7);
i_res = 1;

% Computing local lyapunov dimentions of the grid points :
for i = 1 : x_iterations
    for j = 1 : y_iterations
        for k = 1 : z_iterations

            % Main logic :
            curr_point = [x_begin+(i-1)*eps y_begin+(j-1)*eps z_begin+(k-1)*eps];
            [~, lces, trajectory] = lyapunov_exp(@rossler_syst_1, curr_point, 0, ...
                                                            T, K, rel_tol, abs_tol);
            len = size(trajectory, 1);
      
            if (abs(trajectory(len, 2)) < infinity_factor ...
               && abs(trajectory(len, 3)) < infinity_factor ...
                             && abs(trajectory(len, 4)) < infinity_factor)

   % Saving results for current point :
   grid_results(i_res, :) = [curr_point lyapunov_dim(lces(end, : )) ...
                  lces(end, : )];
   i_res = i_res + 1;
            end
        end
    end
end

% Computing local lyapunov dimention of6 the fixed point :
[~, lces, ~] = lyapunov_exp(@rossler_syst_1, x0, 0, T, K, rel_tol, abs_tol);
LCEs = lces(end, : );

% Saving results in file :
fid = fopen('hypothesis_roessler_1.txt');
fprintf(fid, '%4s %4s %4s %10s %10s %10s %10s\r\n',...
                                    'x', 'y', 'z', 'dim_L', 'lce1', 'lce3', 'lce3');
fprintf(fid, '%.2f, %.2f, %.2f, %.8f, %.8f, %.8f, %.8f\r\n', grid_results);
fprintf(fid, '\r\nLyapunov dimension in fixed point:\r\n');
fprintf(fid, '%.2f, %.2f, %.2f, %.8f, %.8f, %.8f, %.8f\r\n', ...
               [x0 lyapunov_dim(LCEs) LCEs]);
fclose(fid);

end
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Jyväskylä, Finland

Received 17 March 2015 / Received in final form 20 May 2015

Published online 27 July 2015

Abstract. In this paper, we discuss self-excited and hidden attrac-
tors for systems of differential equations. We considered the exam-
ple of a Lorenz-like system derived from the well-known Glukhovsky–
Dolghansky and Rabinovich systems, to demonstrate the analysis of
self-excited and hidden attractors and their characteristics. We applied
the fishing principle to demonstrate the existence of a homoclinic or-
bit, proved the dissipativity and completeness of the system, and found
absorbing and positively invariant sets. We have shown that this system
has a self-excited attractor and a hidden attractor for certain parame-
ters. The upper estimates of the Lyapunov dimension of self-excited
and hidden attractors were obtained analytically.

1 Introduction: Self-excited and hidden attractors

When the theories of dynamical systems and oscillations were first developed (see,
e.g., the fundamental works of Poincare and Lyapunov), researchers mainly focused
on analyzing equilibria stability and the birth of periodic oscillations. The structures
of many applied systems (see, e.g., the Rayleigh [148], Duffing [41], van der Pol [144],
Tricomi [162], and Beluosov-Zhabotinsky [13] systems) are such that it is almost obvi-
ous that periodic oscillations exist, because the oscillations are excited by an unstable
equilibrium. This meant that scientists of that time could compute such oscillations
(called self-excited oscillations) by constructing a solution using initial data from a
small neighborhood of the equilibrium, observing how it is attracted, and visualizing
the oscillation (standard computational procedure). In this procedure, computational
methods and the engineering notion of a transient process were combined to study
oscillations.

a e-mail: nkuznetsov239@gmail.com



1422 The European Physical Journal Special Topics

−20 −10 0 10 20 −50

0

50

0

10

20

30

40

50

Y

S1

X

S0

S2

Z

−20 −10 0 10 20 −50

0

50

0

10

20

30

40

50

Y

S1

X

S0

S2

Z

−20 −10 0 10 20 −50

0

50

0

10

20

30

40

50

Y

S1

X

S0

S2

Z

Fig. 1. Numerical visualization of the classical, self-excited, chaotic attractor in the Lorenz
system ẋ = 10(y − x), ẏ = 28x − y − xz, ż = −8/3z + xy by the trajectories that start in
small neighborhoods of the unstable equilibria S0,1,2. Here the separation of the trajectory
into transition process (green) and approximation of attractor (blue) is rough.

At the end of the 19th century Poincare considered Newtonian dynamics of the
three body problem, and revealed the possibility of more complicated behaviors of
orbits “so tangled that I cannot even begin to draw them”. He arrived at the conclu-
sion that “it may happen that small differences in the initial positions may lead to
enormous differences in the final phenomena”. Further analyses and visualizations of
such complicated “chaotic” systems became possible in the middle of the 20th century
after the appearance of powerful computational tools.
An oscillation can generally be easily numerically localized if the initial data from

its open neighborhood in the phase space (with the exception of a minor set of points)
lead to a long-term behavior that approaches the oscillation. From a computational
perspective, such an oscillation (or set of oscillations) is called an attractor, and its
attracting set is called the basin of attraction (i.e., a set of initial data for which the
trajectories tend to the attractor).
The first well-known example of a visualization of chaotic behavior in a dynamical

system is from the work of Lorenz [122]. It corresponds to the excitation of chaotic
oscillations from unstable equilibria, and could have been found using the standard
computational procedure (see Fig. 1). Later, various self-excited chaotic attractors
were discovered in many continuous and discrete systems (see, e.g., [23,26,31,50,123,
150,156]).
The study of an autonomous (unperturbed) system typically begins with an analy-

sis of the equilibria, which are easily found numerically or analytically. Therefore, from
a computational perspective, it is natural to suggest the following classification of at-
tractors [80,108,111,112], which is based on the simplicity of finding their basins of
attraction in the phase space:

Definition 1. [80,108,111,112] An attractor is called a self-excited attractor if its
basin of attraction intersects with any open neighborhood of a stationary state (an
equilibrium), otherwise it is called a hidden attractor.

The basin of attraction for a hidden attractor is not connected with any equi-
librium. For example, hidden attractors are attractors in systems with no equilibria
or with only one stable equilibrium (a special case of the multistability: coexistence
of attractors in multistable systems). Note that multistability can be inconvenient
in various practical applications (see, for example, discussions on problems related
to the synchronization of coupled multistable systems in [60,61,70,142]). Coexisting
self-excited attractors can be found using the standard computational procedure1,

1 We have not discussed possible computational difficulties such as Wada and riddled
basins.
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Fig. 2. Visualization of four limit cycles (green represents stable and red represents unstable)
in a two-dimensional polynomial quadratic system ẋ = −(a1x2+b1xy+c1y2+α1x+β1y), ẏ =
−(a2x2 + b2xy + c2y2 + α2x + β2y), for the coefficients a1 = b1 = β1 = −1, c1 = α1 = 0,
b2 = −2.2, and c2 = −0.7, a2 = 10, α2 = 72.7778, and β2 = −0.0015. Localization of three
nested limit cycles around the stable zero point (green dot) and one limit cycle to the left
of the straight line x = −1.

whereas there is no standard way of predicting the existence or coexistence of hidden
attractors in a system.
Hidden attractors arise in connection with various fundamental problems and

applied models. The problem of analyzing hidden periodic oscillations first arose in
the second part of Hilbert’s 16th problem (1900), which considered the number and
mutual disposition of limit cycles in two-dimensional polynomial systems [51]. The
first nontrivial results were obtained by Bautin (see, e.g., [12]), which were devoted
to the theoretical construction of three nested limit cycles around one equilibrium
in quadratic systems. Bautin’s method can only be used to construct nested, small-
amplitude limit cycles, which can hardly be visualized. However, recently an analytical
approach has been developed, which can be used to effectively visualize nested, normal
amplitude limit cycles in quadratic systems [75,108,113].
Later, in the 1950s–1960s, studies of the well-known Markus-Yamabe’s [125],

Aizerman’s [2], and Kalman’s [59] conjectures on absolute stability led to the dis-
covery of the possible coexistence of a hidden periodic oscillation and a unique stable
stationary point in automatic control systems (see [10,15,20,45,79,104,105,143]; the
corresponding discrete examples were considered in [4]).
The Rabinovich system [146] and the Glukhovsky-Dolghansky system [48] are

among the first known chaotic systems that have hidden chaotic attractors [72,91].
The first one describes the interaction of plasma waves and was considered in 1978 by
Rabinovich [140,146] Another is a model of convective fluid motion and was consid-
ered in 1980 by Glukhovsky and Dolghansky [48] (which we consider in the remainder
of this paper).
Hidden oscillations appear naturally in systems without equilibria, describing var-

ious mechanical and electromechanical models with rotation, and electrical circuits
with cylindrical phase space. One of the first examples is from a 1902 paper [154]
in which Zommerfield analyzed the vibrations caused by a motor driving an un-
balanced weight and discovered the so-called Zommerfield effect (see, e.g., [18,42]).
Another well-known chaotic system without equilibria is the Nosè–Hoover oscillator
[53,130] (see also the corresponding Sprott system, which was discovered indepen-
dently [156,157]). In 2001, a hidden chaotic attractor was reported in a power system
with no equilibria [165] (and references within).
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After the idea of a “hidden attractor” was introduced and the first hidden Chua
attractor was discovered [69,73,76,80,103,111,112], hidden attractors have received
much attention. Results on the study of hidden attractors were presented in a num-
ber of invited survey and plenary lectures at various international conferences2. In
2012, an invited comprehensive survey on hidden attractors was prepared for the
International Journal of Bifurcation and Chaos [108].
Many researchers are currently studying hidden attractors. Hidden periodic os-

cillations and hidden chaotic attractors have been studied in models such as phase-
locked loops [68,71], Costas loops [16], drilling systems [65,110], DC-DC converters
[176], aircraft control systems [5], launcher stabilization systems [6], plasma waves
interaction [72], convective fluid motion [91], and many others models (see, e.g.,
[21,24,27,28,38,57,58,63,67,84,118–120,129,134–139,152,158,166–170,175]).
Similar to autonomous systems, when analyzing and visualizing chaotic behaviors

of nonautonomous systems, we can consider the extended phase space and introduce
various notions of attractors (see, e.g., [25,66]). Alternatively, we can regard time t as
a phase space variable that obeys the equation ṫ = 1. For systems that are periodic
in time, we can also introduce a cylindrical phase space and consider the behavior of
trajectories on a Poincare section.
The consideration of system equilibria and the notions of self-excited and hidden

attractors are natural for autonomous systems, because their equilibria can be easily
found analytically or numerically. However, we may use other objects to construct
transient processes that lead to the discovery of chaotic sets. These objects can be
constructed for the considered system or its modifications (i.e., instead of analyzing
the scenario of the system transiting into chaos, we can synthesis a new transition
scenario). For example, we can use perpetual points [145] or the equilibria of the com-
plexified system [134]. A periodic solution or homoclinic trajectory can be used in a
similar way (some examples of theoretical studies can be found in [22,117,127,153];
however the presence of chaotic behavior in the considered examples may not imply
the existence of a chaotic attractor, which can be numerically visualized using the
standard computational procedure).
For nonautonomous systems, depending on the physical problem statement, the

notion of self-excited and hidden attractors can be introduced with respect to either
the stationary states (x(t) ≡ x0 ∀t) of the considered nonautonomous system, the
stationary points of the system at fixed initial time t = t0, or the corresponding
system without time-varying excitations. If the discrete dynamics of the system are
considered on a Poincare section, then we can also use stationary or periodic points
on the section that corresponds to a periodic orbit of the system (the consideration
of periodic orbits is also natural for discrete systems).
In the following, we consider an example of a nonautonomous system (a forced

Duffing oscillator), so that we can visualize the chaotic behavior. The classical example
of a self-excited chaotic attractor (Fig. 3) in a Duffing system ẍ+0.05ẋ+x3 = 7.5 cos(t)
was numerically constructed by Ueda in 1961, but it become well-known much later
[163]. To construct a self-excited chaotic attractor in this system, we use a tran-
sient process from the zero equilibrium of the unperturbed autonomous system (i.e.,
without cos(t)) to the attractor (Fig. 3) in the forced system.

2 X Int. Workshop on Stability and Oscillations of Nonlinear Control Systems (Russia,
2008), Physics and Control [103] (Italy, 2009), 3rd International Conference on Dynamics,
Vibration and Control (Hangzhou, China, 2010), IFAC 18th World Congress [105] (Italy,
2011), IEEE 5th Int. Workshop on Chaos-Fractals Theories and Applications [106] (Dalian,
China, 2012), International Conference on Dynamical Systems and Applications (Ukraine,
2012), Nostradamus (Czech Republic, 2013) [107] and others.
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Fig. 3. Forced Duffing oscillator: ẍ+0.05ẋ+x3 = 7.5 cos (t). The (x, ẋ) plane is mapped into
itself by following the trajectory for time 0 ≤ t ≤ 2π. After a transition process a trajectory
from the vicinity of the zero stationary point of the unperturbed Duffing oscillator (without
7.5 cos(t)) visualizes a self-excited chaotic attractor in the forced oscillator.

Note that if the attracting domain is the whole state space, then the attractor can
be visualized by any trajectory and the only difference between computations is the
timing of the transient process.

2 A Lorenz-like system

Consider a three-dimensional Lorenz-like system⎧⎨
⎩
ẋ = −σ(x− y)− ayz
ẏ = rx− y − xz
ż = −bz + xy

(1)

For a = 0, system (1) coincides with the classical Lorenz system [122]. For σ > ar
and b = 1 after a linear change of variables [99]

x→ x, y → C

σ − ar z, z → r −
C

σ − ary (2)

system (1) takes the following form

ẋ = −σx+ Cz +Ayz
ẏ = Ra − y − xz
ż = −z + xy

(3)

with

C > 0, Ra =
r(σ − ar)
C

> 0, A =
C2a

(σ − ar)2 > 0. (4)

System (3) was suggested by Glukhovsky and Dolghansky [48], and describes convec-
tive fluid motion in an ellipsoidal rotating cavity, which can be interpreted as one of
the models of ocean flows (see Appendix A for a description of this problem).
In [99], system (1) was obtained as a linear transformation of the Rabinovich sys-

tem [146]. It describes interactions between waves in plasma [140,146]. Additionally,
system (1) describes the following physical processes [99]: a rigid body rotation in a
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resisting medium, the forced motion of a gyrostat, a convective motion in harmon-
ically oscillating horizontal fluid layer, and Kolmogorov flow. Systems (1) and (3)
are interesting because of the discovery of chaotic attractors in their phase spaces.
Moreover, system (1) was used to describe the specific mechanism of transition to
chaos in low-dimensional dynamical systems (gluing bifurcations) [3].
For system (1) with σ = ±ar, [44] contains a detailed analysis of equilibria sta-

bility and the asymptotic behavior of trajectories, and a derivation of the parameter
values for which the system is integrable. Other researchers have also considered the
analytical and numerical analysis of some extensions of system (1) [121,133].
Further, following [48], we consider system (1) with

b = 1, a > 0, r > 0, σ > ar.

2.1 Classical scenario of the transition to chaos

For the Lorenz system [155], the following classical scenario of transition to chaos
is known. Suppose that σ and b are fixed (let us consider the classical parameters
σ = 10, b = 8/3), and that r varies. Then, as r increases, the phase space of the
Lorenz system is subject to the following sequence of bifurcations. For 0 < r < 1,
there is globally asymptotically stable zero equilibrium S0. For r > 1, equilibrium S0
is a saddle, and a pair of symmetric equilibria S1,2 appears. For 1 < r < rh ≈ 13.9, the
separatrices Γ1,2 of equilibria S0 are attracted to the equilibria S1,2. For r = rh ≈ 13.9,
the separatrices Γ1,2 form two homoclinic trajectories of equilibria S0 (homoclinic
butterfly). For rh < r < rc ≈ 24.06, the separatrices Γ1 and Γ2 tend to S2 and S1,
respectively. For rc < r, the separatrices Γ1,2 are attracted to a self-excited attractor
(see, e.g., [155,174]). For r > ra, the equilibria S1,2 become unstable. Finally, r = 28
corresponds to the classical self-excited Lorenz attractor (see Fig. (1)).
Furthermore, it has been shown that system (1) follows a similar scenario of

transition to chaos. However, a substantial distinction of this scenario is the presence
of hidden chaotic attractor in the phase space of system (1) for certain parameters
values [91].
Let us determine the stationary points of system (1). We can show that for pos-

itive parameters, if r < 1, system (1) has a unique equilibrium S0 = (0, 0, 0), which
is globally asymptotically Lyapunov stable [19]. If r > 1, then (1) possesses three
equilibria: a saddle S0 = (0, 0, 0) and symmetric (with respect to z = 0) equilibria

S1,2 = (±x1,±y1, z1), (5)

where

x1 =
σ
√
ξ

σ + aξ
, y1 =

√
ξ, z1 =

σξ

σ1 + aξ
,

and

ξ =
σ

2a2

[
a(r − 2)− σ +

√
(σ − ar)2 + 4aσ

]
.

The characteristic polynomial of the Jacobian matrix of system (1) at the point
(x, y, z) has the form

χ(x, y, z) = λ3 + p1(x, y, z)λ
2 + p2(x, y, z)λ+ p3(x, y, z),

where

p1(x, y, z) = σ + 2, p2(x, y, z) = x
2 + ay2 − az2 + (σ + ar)z − rσ + 2σ + 1,

p3(x, y, z) = σx
2 + ay2 − az2 − 2axyz + (σ + ar)xy + (σ + ar)z − rσ + σ.
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Fig. 4. The stability domain of equilibria S1,2 for σ = 4.

Following [48], we let σ = 4 and define the stability domain of equilibria S1,2. Using
the Routh-Hurwitz criterion we can obtain the following (see Appendix B).

Proposition 1. The equilibria S1,2 are stable if

8a2r3 + a(7a− 64)r2 + (288a+ 128)r + 256a− 2048 < 0. (6)

The discriminant of the left-hand side of (6) has only one positive real root, a∗ ≈
0.04735. So the roots of the polynomial in (6) are as follows. For 0 < a < a∗, there
are three real roots r1(a) > r2(a) > r3(a); for a = a

∗, there are two real roots: r1(a)
and r2(a) = r3(a); for a > a

∗, there is one real root r1(a). Thus, for 0 < a < a∗, the
equilibria S1,2 are stable for r < r3(a) and for r2(a) < r < r1(a); and for a > a

∗ the
equilibria S1,2 are stable for r < r1(a) (see Fig. 4).
Consider the problem of the existence of a homoclinic orbit, which is important

in bifurcation theory and in scenarios of transition to chaos (see, e.g., [1]). For (1)
and (3), we can prove the existence of homoclinic trajectories for the zero saddle
equilibrium S0 using the fishing principle [87,96,98,109]. The fishing principle is based
on the construction of a special two-dimensional manifold such that a separatrix of
a saddle point intersects or does not intersect the manifold for two different system
parameter values. Continuity implies the existence of some intermediate parameter
value for which the separatrix touches the manifold. According to the construction,
the separatrix must touch a saddle point, so we can numerically localize the birth of
a homoclinic orbit. A rigorous description is given in Appendix E.
For σ = 4, a = 0.0052, and r ≈ 7.443 we numerically obtain a homoclinic trajec-

tory (see Fig. 5).
We come now to the study of the limit behaviors of trajectories and attractors.

We introduce some rigorous notions of a dynamical system and attractor and dis-
cuss the connection with the notions of self-excited and hidden attractors from a
computational perspective.

3 Definitions of attractors

3.1 Dynamical systems and ordinary differential equations

Consider an autonomous system of the differential equations

ẋ = f(x), t ∈ R, x ∈ Rn, (7)
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Fig. 5. Separatrices of the saddle S0 = (0, 0, 0) of system (1) for σ = 4, a = 0.0052..., and
r ≈ 7.443.

where f : Rn → Rn is a continuous vector-function that satisfies a local Lipschitz
condition in Rn. The Picard theorem (see, e.g., [35,49]) for a local Lipschitz condition
on the function f implies that, for any x0 ∈ Rn, there exists a unique solution x(t, x0)
to differential Eq. (7) with the initial data x(t0, x0) = x0, which is given on a certain
finite time interval: t ∈ I ⊂ R. The theorem regarding the continuous dependence on
initial data [35,49]3 implies that the solution x(t, x0) continuously depends on x0.

To study the limit behavior of trajectories and compute the limit values, charac-
terizing trajectories, we consider the solutions of (7) for t → +∞ or t → ±∞. For
arbitrary quadratic systems, the existence of solutions for t ∈ [t0, +∞) does not gener-
ally imply the existence of solutions for t ∈ (−∞, t0] (see the classical one-dimensional
example ẋ = x2 or multidimensional examples from the work on the completeness of
quadratic polynomial systems [47]). It is known that if f is continuously differentiable
(f ∈ C1), then f is locally Lipschitz continuous in Rn (see, e.g., [52]). Additionally, if
f is locally Lipschitz continuous, then for any x0 ∈ Rn the solution x(·, x0) : I → Rn
exists on maximal time interval I = (t−, t+) ∈ R, where −∞ ≤ t− < t+ ≤ +∞. If
t+ < +∞, then ||x(t, x0)|| → ∞ for t → t+, and if t− > −∞, then ||x(t, x0)|| → ∞
for t → t− (see, e.g., [161]). This implies that a solution of (7) is continuous if it
remains bounded. For convenience, we introduce a set of time values T ∈ {R,R+}.
The existence and uniqueness of solutions of (1) for all t ∈ T can be provided, for
example, by a global Lipschitz condition.

Another effective method for studying the boundedness of solutions for all t ∈ T
is to construct a Lyapunov function.

If the existence and uniqueness conditions for all t ∈ T are satisfied, then: 1) the
solution of (7) satisfies the group property ([35,49])

x(t+ s, x0) = x(t, x(s, x0)), ∀ t, s ∈ T, (8)

3 Similar theorems on the existence, unicity, and continuous dependence on the initial data
for solutions of system with the discontinuous right-hand side are considered in [64,172].
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and 2) x(·, ·) : T×Rn → Rn is a continuous mapping according to the theorem of the
continuous dependence of the solution on the initial data. Thus, if the solutions of (7)
exist and satisfy (8) for all t ∈ T, the system generates a dynamical system [17] on the
phase space (Rn, ||·||). Here ||x|| =√x21 + · · ·+ x2n is an Euclidean norm of the vector
x = (x1, . . . , xn) ∈ Rn, which generates a metric on Rn. We abbreviate “dynamical
system generated by a differential equation” to “dynamical system”. Because the
initial time is not important for dynamical systems, without loss of generality we
consider

x(t, x0) : x(0, x0) = x0.

Consider system (1). Its right-hand side is continuously differentiable in Rn, which
means that it is locally Lipschitz continuous in Rn (but not globally Lipschitz contin-
uous). Analogous with the results for the Lorenz system [36,126], we can prove that
the solutions of (1) exist for all t ∈ R, i.e. system (1) is invertible. For this purpose,
we can use the Lyapunov function (Appendix C)

V (x, y, z) =
1

2

(
x2 + y2 + (a+ 1)

(
z − σ + r
a+ 1

)2)
≥ 0. (9)

Then, system (1) generates a dynamical system and we can study its limit behavior
and attractors.

3.2 Classical definitions of attractors

The notion of an attractor is connected with investigations of the limit behavior of
the trajectories of dynamical systems. We define attractors as follows [9,19,32,34,82,
83,95,160].

Definition 2. A set K is said to be positively invariant for a dynamical system if

x(t,K) ⊂ K, ∀t ≥ 0,
and to be invariant if

x(t,K) = K, ∀t ≥ 0,
where x(t,K) = {x(t, x0) | x0 ∈ K, t ≥ 0}.
Property 1. Invariant set K is said to be locally attractive for a dynamical system if,
for a certain ε-neighborhood K(ε) of set K,

lim
t→+∞ ρ(K, x(t, x0)) = 0, ∀ x0 ∈ K(ε).

Here ρ(K, x) is a distance from the point x to the set K, defined as

ρ(K, x) = inf
z∈K
||z− x||,

and K(ε) is a set of points x for which ρ(K, x) < ε.

Property 2. Invariant set K is said to be globally attractive for dynamical system if

lim
t→+∞ ρ(K, x(t, x0)) = 0, ∀ x0 ∈ R

n.



1430 The European Physical Journal Special Topics

Property 3. Invariant set K is said to be uniformly locally attractive for a dynamical
system if for a certain ε-neighborhood K(ε), any number δ > 0, and any bounded set
B, there exists a number t(δ,B) > 0 such that

x(t, B ∩K(ε)) ⊂ K(δ), ∀ t ≥ t(δ,B).
Here

x(t, B ∩K(ε)) = {x(t, x0) | x0 ∈ B ∩K(ε)} .
Property 4. Invariant set K is said to be uniformly globally attractive for a dynamical
system if, for any number δ > 0 and any bounded set B ⊂ Rn, there exists a number
t(δ,B) > 0 such that

x(t, B) ⊂ K(δ), ∀ t ≥ t(δ,B).
Definition 3. For a dynamical system, a bounded closed invariant set K is:

(1) an attractor if it is a locally attractive set (i.e., it satisfies Property 1);
(2) a global attractor if it is a globally attractive set (i.e., it satisfies Property 2);
(3) a B-attractor if it is a uniformly locally attractive set (i.e., it satisfies
Property 3); or

(4) a global B-attractor if it is a uniformly globally attractive set (i.e., it satisfies
Property 4).

Remark 1. In the definition of an attractor we assume closeness for the sake of unique-
ness. This is because the closure of a locally attractive invariant set K is also a locally
attractive invariant set (for example, consider an attractor with excluded one of the
embedded unstable periodic orbits). The closeness property is sometimes omitted
from the attractor definition (see, e.g., [8]). Additionally, the boundedness property
is sometimes omitted (see, e.g., [29]). For example, a global attractor in a system de-
scribing a pendulum motion is not bounded in the phase space R2 (but it is bounded in
the cylindrical phase space). Unbounded attractors are considered for nonautonomous
systems in the extended phase space. Note that if a dynamical system is defined for
t ∈ R, then a locally attractive invariant set only contains the whole trajectories, i.e.
if x0 ∈ K, then x(t, x0) ∈ K for ∀t ∈ R (see [32]).
Remark 2. The definition considered here implies that a global B-attractor is also
a global attractor. Consequently, it is rational to introduce the notion of a minimal
global attractor (or minimal attractor) [32,34]. This is the smallest bounded closed
invariant set that possesses Property 2 (or Property 1). Further, the attractors (global
attractors) will be interpreted as minimal attractors (minimal global attractors).

Definition 4. For an attractor K, the basin of attraction is a set B(K) ⊂ Rn such
that

lim
t→+∞ ρ(K, x(t, x0)) = 0, ∀ x0 ∈ B(K).

Remark 3. From a computational perspective, it is not feasible to numerically check
Property 1 for all initial states of the phase space of a dynamical system. A natural
generalization of the notion of an attractor is consideration of the weaker attrac-
tion requirements: almost everywhere or on a set of the positive Lebesgue measure
(see, e.g., [128]). See also trajectory attractors [30,33,151]. To distinguish an artificial
computer generated chaos from a real behavior of the system one can consider the
shadowing property of the system (see, e.g., the survey in [141]).
We can typically see an attractor (or global attractor) in numerical experiments.

The notion of a B-attractor is mostly used in the theory of dimensions, where we con-
sider invariant sets covered by balls. The uniform attraction requirement in Property 3
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Fig. 6. Self-excited attractor of system (1) for r = 17, σ = 4, and a = 0.0052, computed
from different initial points.

implies that a global B-attractor involves a set of stationary points (S) and the corre-
sponding unstable manifolds Wu(S) = {x0 ∈ Rn | limt→−∞ ρ(S, x(t, x0)) = 0} (see,
e.g., [32,34]). The same is true for B-attractor if the considered neighborhood K(ε)
in Property 3 contains some of the stationary points from S. From a computational
perspective, numerically checking Property 3 is also difficult. Therefore if the basin
of attraction involves unstable manifolds of equilibria, then computing the minimal
attractor and the unstable manifolds that are attracted to it may be regarded as an
approximation of B-attractor. For example, consider the visualization of the classical
Lorenz attractor from the neighborhood of the zero saddle equilibria. Note that a
minimal global attractor involves the set S and its basin of attraction involves the
set Wu(S). Various analytical-numerical methods for computing attractors and their
basins of attraction can be found in, for example, [7,39,46,132,164,177].

4 Self-excited attractor localization

In [48] system (3) with σ = 4 was studied. Consider the following parameters for
system (1)

σ = 4, a = 0.0052.

According to Proposition 1, if r1 ≈ 16.4961242... < r < r2 ≈ 690.6735024, the
equilibria S1,2 of system (1) become (unstable) saddle-focuses. For example, if r = 17,
the eigenvalues of the equilibria of system (1) are the following

S0: 5.8815, −1, −10.8815
S1,2: 0.0084± 4.5643i, −6.0168

and there is a self-excited chaotic attractor in the phase space of system (1). We
can easily visualize this attractor (Fig. 6) using the standard computational pro-
cedure with initial data in the vicinity of one of the equilibria S0,1,2 on the cor-
responding unstable manifolds. To improve the approximation of the attractor one
can consider its neighborhood and compute trajectories from a grid of points in this
neighborhood.

5 Hidden attractor localization

We need a special numerical method to localize the hidden attractor of system (1),
because the basin of attraction does not intersect the small neighborhoods of the



1432 The European Physical Journal Special Topics

−60
−40

−20
0

20
40

60 −1000

−500

0

500

1000

0

500

1000

1500

Y

S1

S0

X

S2

Z

−60
−40

−20
0

20
40

60 −1000

−500

0

500

1000

0

500

1000

1500

Y

S1

S0

X

S2

Z

−60
−40

−20
0

20
40

60 −1000

−500

0

500

1000

0

500

1000

1500

Y

S1

S0

X

S2

Z

Fig. 7. B-attractor of system (1) for fixed σ = 4, a = 0.0052, and various r.

unstable manifolds of the equilibria. One effective method for the numerical local-
ization of hidden attractors is based on a homotopy and numerical continuation. We
construct a sequence of similar systems such that the initial data for numerically
computing the oscillating solution (starting oscillation) can be obtained analytically
for the first (starting) system. For example, it is often possible to consider a starting
system with a self-excited starting oscillation. Then we numerically track the trans-
formation of the starting oscillation while passing between systems.
In a scenario of transition to chaos in dynamical system there is typically a

parameter λ ∈ [a1, a2], the variation of which gives the scenario. We can also arti-
ficially introduce the parameter λ, let it vary in the interval [a1, a2] (where λ = a2
corresponds to the initial system), and choose a parameter a1 such that we can an-
alytically or computationally find a certain nontrivial attractor when λ = a1 (often
this attractor has a simple form, e.g., periodic). That is, instead of analyzing the
scenario of a transition into chaos, we can synthesize it. Further, we consider the
sequence λj , λ1 = a1, λm = a2, λj ∈ [a1, a2] such that the distance between λj and
λj+1 is sufficiently small. Then we numerically investigate changes to the shape of the
attractor obtained for λ1 = a1. If the change in λ (from λj to λj+1) does not cause
a loss of the stability bifurcation of the considered attractor, then the attractor for
λm = a2 (at the end of procedure) is localized.
Let us construct a line segment on the plane (a, r) that intersects a boundary

of the stability domain of the equilibria S1,2 (see Fig. 8). We choose the point
P1(r = 700, a = 0.0052) as the end point of the line segment. The eigenvalues for
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the equilibria of system (1) that correspond to the parameters P1 are the following:

S0: 50.4741, −1, −55.4741,
S1,2: −0.1087± 10.4543i, −5.7826.

This means that the equilibria S1,2 become stable focus-nodes. Now we choose the
point P0(r = 687.5, a = 0.0052) as the initial point of the line segment. This point
corresponds to the parameters for which system (1) has a self-excited attractor, which
can be computed using the standard computational procedure. Then we choose a
sufficiently small partition step for the line segment and compute a chaotic attractor
in the phase space of system (1) at each iteration of the procedure. The last computed
point at each step is used as the initial point for the computation at the next step
(the computation time must be sufficiently large).

In our experiment the length of the path was 2.5 and there were 6 iterations. Here
for the selected path and partition, we can visualize a hidden attractor of system (1)
(see Fig. 9). The results of continuation procedure are given in [91].
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Note that the choice of path and its partitions in the continuation procedure is
not trivial. For example, a similar procedure does not lead to a hidden attractor for
the following path on the plane (a, r). Consider r = 33.51541181, a = 0.04735056...
(the rightmost point on the stability domain), and take a starting point P2: r =
33.51541181, a = 0.046 near it (Fig. 8). If we use the partition step 0.001, then
there are no hidden attractors after crossing the boundary of the stability domain.
For example, if the end point is P3: r = 33.51541181, a = 0.048, there is no chaotic
attractor but only trivial attractors (the equilibria S1,2).

6 Analytical localization of global attractor via Lyapunov functions

In the previous sections, we considered the numerical localization of various self-
excited and hidden attractors of system (1). It is natural to question if these attrac-
tors (or the union of attractors) are global (in the sense of Definition 3) or if other
coexisting attractors can be found.
The dissipativity property is important when proving the existence of a bounded

global attractor for a dynamical system and gives an analytical localization of the
global attractor in the phase space. The dissipativity of a system, on one hand, proves
that there are no trajectories that tend to infinity as t→ +∞ in the phase space and,
on the other hand, can be used one to determine the boundaries of the domain that
all trajectories enter within a finite time.

Definition 5. A set B0 ⊂ Rn is said to be absorbing for dynamical system (7) if for
any x0 ∈ Rn there exists T = T (x0) such that x(t, x0) ∈ B0 for any t ≥ T .

Note that the trajectory x(t, x0) with x0 ∈ B0 may leave B0 for only a finite time
before it returns and stays inside for t ≥ T .

Remark 4. In [116] the ball BR = {x ∈ Rn : |x| < R} was regarded as an absorbing
set. In this case, if there exists R > 0 such that

lim sup
t→∞

|x(t, x0)| < R, for any x0 ∈ Rn,

then it is said that a dynamical system is dissipative in the sense of Levinson . R is
called a radius of dissipativity4.

Definition 6 ([32,34]). Dynamical system (7) is called (pointwise) dissipative5 if
it possesses a bounded absorbing set.

Theorem 1 ([32,34]). If dynamical system (7) is dissipative, then it possesses a
global B-attractor.

We can effectively prove dissipativity by constructing the Lyapunov function
[92,173]. Consider a sufficient condition of dissipativity for system (7).

4 Because any greater radius also satisfies the definition, the minimal R is of interest for
the problems of attractor localization and definition of ultimate bound.
5 Together with the notions of an absorbing set and dissipative system, [19,83] also con-
sidered the definitions of a B-absorbing set and a B-dissipative system (uniform convergence
of trajectories to the corresponding B-absorbing set). It is known [19] that if a dynamical
system given on (Rn, || · ||) is dissipative, then it is also B-dissipative.
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Fig. 10. Absorbing sets for system (1).

Theorem 2 ([149,171]). Suppose that there exists continuously differentiable func-
tion V (x) : Rn → R, possessing the following properties.
(1) lim|x|→∞ V (x) = +∞, and
(2) there exist numbers R and κ such that for any solution x(t, x0) of system (7),

the condition |x(t, x0)| > R implies that V̇ (x(t, x0)) ≤ −κ.
Then

(a) any solution x(t, x0) to (7) exists at least on [0,+∞), so system (7) generates
a dynamical system for any t ≥ 0 and x0 ∈ Rn; and

(b) if η > 0 is such that B0 = {x ∈ Rn | V (x) ≤ η} ⊃ {x ∈ Rn | ||x|| < R}, then
B0 is a compact absorbing set of dynamical system (7).

More general theorems, connected with the application of the Lyapunov functions to
the proof of dissipativity for dynamical systems can be found in [101,147].
It is known that the Lorenz system is dissipative (it is sufficient to choose the

Lyapunov function V (x, y, z) = 1
2 (x

2 + y2 + (z − r − σ)2)). However, for example,
one of the Rossler systems is not dissipative in the sense of Levinson [115] because
the outgoing separatrix is unbounded. In the general case, there is an art in the
construction of Lyapunov functions which prove dissipativity.

Lemma 1. Dynamical system (1) is dissipative.

The proof is based on Lyapunov function V from (9) (see Appendix C). If R, η are
chosen as in the proof of Theorem 1, Appendix C, then dynamical system (1) has a
compact absorbing set

B0 =

{
(x, y, z) : V (x, y, z) =

1

2

(
x2 + y2 + (a+ 1)

(
z − σ + r
a+ 1

)2)
≤ η
}
·

For example, for σ > 1, r > 1, a < 1 we can choose R =
σ + r

a+ 1
and η = 2(a +

1)R2 (see Fig. 10). Note that for system (1) the ellipsoidal absorbing set B0 can be
improved using special additional transformations and Yudovich’s theorem (see, e.g.,
[14]), similarly to [93] for the Lorenz system.
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There is also a cylindrical positively invariant set for system (1) [87],

C = {|x| ≤ r + 2a
σ
r2, y2 + (z − r)2 ≤ r2}, (10)

because

(y2 + (z − r)2)• ≤ −(y2 + (z − r)2) + r2 < 0 ∀x, |y| > r or |z| > 2r
and

|x|• ≤ −σ|x|+ σ|y|+ a|y||z| < 0 |y| ≤ r, |z| ≤ 2r, |x| > r + 2ar2/σ.
Thus, as for the Lorenz system [100], we obtain three different estimates of the at-
tractor: the ball BR, ellipse B0, and cylinder C.

7 Upper estimate of the Lyapunov dimension of attractor

7.1 Lyapunov exponents and Lyapunov dimension

Suppose that the right-hand side of system (7) is sufficiently smooth, and consider a
linearized system along a solution x(t, x0). We have

u̇ = J(x(t, x0)) u, u ∈ Rn, t ∈ R+, (11)

where

J(x(t, x0)) =

[
∂fi(x)

∂xj

∣∣
x=x(t,x0)

]

is the (n × n) Jacobian matrix evaluated along the trajectory x(t, x0) of system (7).
A fundamental matrix X(t, x0) of linearized system (11) is defined by the variational
equation

Ẋ(t, x0) = J(x(t, x0))X(t, x0). (12)

We typically set X(0, x0) = In, where In is the identity matrix. Then u(t,u0) =
X(t, x0)u0. In the general case, u(t,u0) = X(t, x0)X

−1(0, x0)u0. Note that if a solution
of nonlinear system (7) is known, then we have

X(t, x0) =
∂x(t, x0)

∂x0
·

Two well-known definitions of Lyapunov exponents are the upper bounds of the expo-
nential growth rate of the norms of linearized system solutions (LCEs) [124] and the
upper bounds of the exponential growth rate of the singular values of fundamental
matrix of linearized system (LEs) [131].
Let σ1(X(t, x0)) ≥ · · · ≥ σn(X(t, x0)) > 0 denote the singular values of a

fundamental matrix X(t, x0) (the square roots of the eigenvalues of the matrix
X(t, x0)

∗X(t, x0) are reordered for each t).

Definition 7. The Lyapunov exponents (LEs) at the point x0 are the numbers (or
the symbols ±∞) defined by

LEi(x0) = lim sup
t→∞

1

t
lnσi(X(t, x0)). (13)
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LEs are commonly used6 in the theories of dynamical systems and attractor di-
mensions [11,19,43,55,85,160].

Remark 5. The LEs are independent of the choice of fundamental matrix at the point
x0 [74] unlike the Lyapunov characteristic exponents (LCEs, see [124]). To determine
all possible values of LCEs, we must consider a normal fundamental matrix.

We now define a Lyapunov dimension [62]

Definition 8. A local Lyapunov dimension of a point x0 in the phase space of a
dynamical system is as follows: dimL x0 = 0 if LE1(x0) ≤ 0 and dimL x0 = n if∑n
i=1 LE

o
i (x0) ≥ 0, otherwise

dimL x0 = j(x0) +
LE1(x0) + . . .+ LEj(x0)

|LEj+1(x0)| , (14)

where LE1(x0) ≥ . . . ≥ LEn(x0) are ordered LEs and j(x0) ∈ [1, n] is the smallest
natural number m such that

LE1(x0) + . . .+ LEm(x0) > 0, LEm+1(x0) < 0,
LE1(x0) + . . .+ LEm(x0)

|LEm+1(x0)| < 1.

The Lyapunov dimension of invariant set K of a dynamical system is defined as

dimLK = sup
x0∈K

dimL x0. (15)

Note that, from an applications perspective, an important property of the Lyapunov
dimension is the chain of inequalities [19,55,56]

dimT K � dimH K � dimF K � dimLK. (16)

Here dimT K,dimH K, and dimF K are the topological, Hausdorff, and fractal dimen-
sions of K, respectively.
Along with commonly used numerical methods for estimating and computing the

Lyapunov dimension, there is an analytical approach that was proposed by Leonov
[19,94,95,97,99,109]. It is based on the direct Lyapunov method and uses Lyapunov-
like functions.

6 The LCEs [124] and LEs [131] are “often” equal, e.g., for a “typical” system
that satisfies the conditions of Oseledec theorem [131]. However, there are no effec-
tive methods for checking Oseledec conditions for a given system: “Oseledec proof
is important mathematics, but the method is not helpful in elucidating dynamics”
[37, p.118]). For a particular system, LCEs and LEs may be different. For exam-

ple, for the fundamental matrix X(t) =

(
1 g(t)− g−1(t)
0 1

)
we have the following

ordered values: LCE1 = max
(
lim sup
t→+∞

X [g(t)], lim sup
t→+∞

X [g−1(t)]),LCE2 = 0; LE1,2 =

max,min
(
lim sup
t→+∞

X [g(t)], lim sup
t→+∞

X [g−1(t)]), where X (·) = 1
t
log | · |. Thus, in general, the

Kaplan-Yorke (Lyapunov) dimensions based on LEs and LCEs may be different. Note also
that positive largest LCE or LE, computed via the linearization of the system along a trajec-
tory, do not necessary imply instability or chaos, because for non-regular linearization there
are well-known Perron effects of Lyapunov exponent sign reversal [77,78,102]. Therefore for
the computation of the Lyapunov dimension of an attractor one has to consider a grid of
points on the attractor and corresponding local Lyapunov dimensions [81]. More detailed
discussion and examples can be found in [74,102].



1438 The European Physical Journal Special Topics

LEs and the Lyapunov dimension are invariant under linear changes of variables
(see, e.g., [74]). Therefore we can apply the linear variable change y = Sx with a
nonsingular n× n-matrix S. Then system (7) is transformed into

ẏ = S ẋ = S f(S−1y) = f̃(y).

Consider the linearization along corresponding solution y(t, y0) = Sx(t, S
−1x0), that

is,
v̇ = J̃(y(t, y0)) v, v ∈ Rn. (17)

Here the Jacobian matrix is as follows

J̃(y(t, y0)) = S J(x(t, x0))S
−1 (18)

and the corresponding fundamental matrix satisfies Y (t, y0) = SX(t, x0).
For simplicity, let J(x) = J(x(t, x0)). Suppose that λ1(x, S) � · · · � λn(x, S) are

eigenvalues of the symmetrized Jacobian matrix (18)

1

2

(
SJ(x)S−1 + (SJ(x)S−1)∗

)
. (19)

Theorem 3 ([86,97]). Given an integer j ∈ [1, n] and s ∈ [0, 1], suppose that there
are a continuously differentiable scalar function ϑ : Rn → R and a nonsingular matrix
S such that

λ1(x, S) + · · ·+ λj(x, S) + sλj+1(x, S) + ϑ̇(x) < 0, ∀ x ∈ K. (20)

Then dimLK � j + s.
Here ϑ̇ is the derivative of ϑ with respect to the vector field f:

ϑ̇(x) = (grad(ϑ))∗f(x).

The introduction of the matrix S can be regarded as a change of the space metric.

Theorem 4 ([19,94,97,99]). Assume that there are a continuously differentiable
scalar function ϑ and a nonsingular matrix S such that

λ1(x, S) + λ2(x, S) + ϑ̇(x) < 0, ∀ x ∈ Rn. (21)

Then any solution of system (7) bounded on [0,+∞) tends to an equilibrium as
t→ +∞.
Thus, if (21) holds, then the global attractor of system (7) coincides with its stationary
set.
Theorems 3 and 4 give the following results for system (1).

Theorem 5. Suppose that σ > 1.

If (
r +
σ

a

)2
<
2(σ + 1)

a
, (22)

then any solution of system (1) bounded on [0,+∞) tends to an equilibrium as
t→ +∞.
If (

r +
σ

a

)2
>
2(σ + 1)

a
, (23)

then

dimLK � 3− 2(σ + 2)

σ + 1 +

√
(σ − 1)2 + a (σ

a
+ r
)2 . (24)
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Proof. We use the matrix

S =

⎛
⎝−a− 12 0 00 1 0

0 0 1

⎞
⎠ .

Then the eigenvalues of the corresponding matrix (19) are the following

λ2 = −1,

λ1,3 = −σ + 1
2
± 1
2

[
(σ − 1)2 + a

(
2z − σ + ar

a

)2] 12
.

To check property (20) of Theorem 3 and property (21) of Theorem 4, we can consider
the Lyapunov-like function

ϑ(x, y, z) =
2(1− s)V (x, y, z)[

(σ − 1)2 + a (σ
a
+ r
)2] 12 ,

where

V (x, y, z) =
γ

σ
x2 + γy2 + γ

(
1 +
a

σ

)
z2 − 2γ(r − 1)z, γ = σ + ar

2(r − 1) ·

Finally, for system (1) with given S and ϑ, if condition (23) is satisfied and

s >
−(σ + 3) +

√
(σ − 1)2 + a (σ

a
+ r
)2

σ + 1 +

√
(σ − 1)2 + a (σ

a
+ r
)2 ,

then Theorem 3 gives (24). If condition (22) is valid and s = 0, then the conditions of
Theorem 4 are satisfied and any solution bounded on [0,+∞) tends to an equilibrium
as t→ +∞. ��
Note that for σ = 4, r = 687.5, and a = 0.0052 the analytical estimate of the

Lyapunov dimension of the corresponding self-excited attractor is as follows

dimLK < 2.890997461...

and the values of the local Lyapunov dimension at equilibria are

dimL S0 = 2.890833450..., dimL S1,2 = 2.009763700....

Numerically, by an algorithm in Appendix D, the Lyapunov dimension of the self-
excited attractor is LD = 2.1405.
The analytical estimate of the Lyapunov dimension of the hidden attractor for

σ = 4, r = 700, and a = 0.0052 is as follows

dimLK < 2.891882349...,

and the local Lyapunov dimension at the stationary points are the following

dimL S0 = 2.891767634..., dimL S1,2 = 1.966483617...

Numerically, the Lyapunov dimension of the hidden attractor is LD = 2.1322.
Thus, the Lyapunov dimensions of B-attractor (which involve equilibrium S0) and

the global attractor are very close to the analytical estimate.
In the general case the coincidence of the analytical upper estimate with the local

Lyapunov dimension at a stationary point gives the exact value of the Lyapunov
dimension of the global attractor (see, e.g., studies of various Lorenz-like systems
[90,94,97,99,109,114]).
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x1

x2

x3

g

l0

Ω0

ΔT̂α

Fig. 11. Illustration of the problem.

Appendix

A Description of the physical problem

Consider the convection of viscous incompressible fluid motion inside the ellipsoid(
x1

a1

)2
+

(
x2

a2

)2
+

(
x3

a3

)2
= 1, a1 > a2 > a3 > 0

under the condition of stationary inhomogeneous external heating. We assume that
the ellipsoid and heat sources rotate with constant velocity Ω0 around the axis.
Vector l0 determines the orientation of the ellipsoid and has the same direction
as the gravity vector g. Vector g is stationary with respect to the ellipsoid mo-
tion. The value Ω0 is assumed to be such that the centrifugal forces can be ne-
glected when compared with the influence of the gravitational field. Consider the
case when the ellipsoid rotates around the axis x3 that has a constant angle α
with gravity vector g (|g| = g). The vector g is placed in the plane x1x3. Then,
Ω0 = (0, 0, Ω0) and l0 = (a1 sinα, 0, −a3 cosα). Let the steady-state temperature
difference ΔT̂ = (q0, 0, 0) be generated along the axis x1 (Fig. 11). The corresponding
mathematical model (three-mode model of convection) was obtained by Glukhovsky
and Dolzhansky [48] in the form (see (3))⎧⎨

⎩
ẋ = −σx+ Cz +Ayz,
ẏ = Ra − y − xz,
ż = −z + xy.

Here

σ =
λ

μ
, Ta =

Ω20
λ2
, Ra =

gβa3q0

2a1a2λμ
,

A =
a21 − a22
a21 + a

2
2

cos2 αT−1a , C =
2a21a2

a3(a21 + a
2
2)
σ sinα,

x(t) = μ−1
(
ω3(t) +

gβa3 cosα

2a1a2Ω0
q3(t)

)
, y(t) =

gβa3

2a1a2λμ
q1(t),

z(t) =
gβa3

2a1a2λμ
q2(t),

and λ, μ, β are the coefficients of viscosity, heat conduction, and volume expansion,
respectively; q1(t), q2(t), and q3(t) (q3(t) ≡ 0) are temperature differences on the
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principal axes of the ellipsoid; ω1(t), ω2(t), and ω3(t) are the projections of the vectors
of fluid angular velocities on the axes x1, x2, and x3, respectively. Here

ω1(t) = − gβa3

2a1a2Ω0
cosα q1(t), ω2(t) = − gβa3

2a1a2Ω0
cosα q2(t).

The parameters σ, Ta, and Ra are the Prandtl, Taylor, and Rayleigh numbers, re-
spectively.
The linear change of variables [48]

x→ x, y → C−1y, z → C−1z,
transforms system (3) into the system⎧⎨

⎩
ẋ = −σx+ z +Acyz,
ẏ = Rc − y − xz,
ż = −z + xy.

(25)

with

Rc = RaC, Ac =
A

C2
·

After the linear transformation (see, e.g., [99]):

x→ x, y → Rc − σ

RcAc + 1
z, z → σ

RcAc + 1
y, (26)

system (25) takes the form of (1) with

a =
Acσ

2

(RcAc + 1)2
, r =

Rc

σ
(RcAc + 1). (27)

B Proof of Proposition 1

For system (1) the characteristic polynomial of the Jacobian matrix of the right-hand
side at the point x0 = (x0, y0, z0) ∈ R3 has the form

χ(x0) = λ
3 + p1(x0)λ

2 + p2(x0)λ+ p3(x0),

where

p1(x0) = σ + 2,

p2(x0) = x
2
0 + ay

2
0 − az20 + (σ + ar)z0 − rσ + 2σ + 1,

p3(x0) = σx
2
0 + ay

2
0 − az20 − 2ax0y0z0 + (σ + ar)x0y0 + (σ + ar)z0 − rσ + σ.

Applying the Hurwitz criterion, the necessary and sufficient stability conditions for
stationary point x0 are the following

p1(x0) > 0, (28)

p2(x0) > 0, (29)

p3(x0) > 0, and (30)

p1(x0)p2(x0)− p3(x0) > 0. (31)
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Equilibria S1,2 exist for r > 1, and we can check that χ(S1) = χ(S2). For further
analysis we can introduce

D = a
(√
(σ − ar)2 + 4σa− (σ − ar)

)
> 0. (32)

Then for stationary points (5), condition (29) takes the form

p2(S1,2) =
2

D

(
C1
√
(σ − ar)2 + 4σa− C1(σ − ar)− 2σ2a(σ − ar)

)
> 0, (33)

where

C1 = σ(σ − ar)2 + a2r + aσ2 > 0.
Because σ > ar > 0, we have

C1
√
(σ − ar)2 + 4σa > C1(σ − ar) + 2σ2a(σ − ar) iff

(σ − ar)2 + 4σa >

(
(σ − ar) + 2σ

2a(σ − ar)
C1

)2
iff

4σa >
4σ2a(σ − ar)2

C1
+
4σ4a2(σ − ar)2

C21
iff

C21 > σ(σ − ar)2C1 + σ3a(σ − ar)2.
The last inequality is satisfied because

1

a

(
C21 − σ(σ − ar)2C1 − σ3a(σ − ar)2

)
= σar(σ − ar)2 + a(σ2 + ar)2 > 0.

This implies (33).
Condition (30) for S1,2 takes the form

p3(S1,2) =
2σ

D

(√
(σ − ar)2 + 4σa− (σ − ar + 2a)

)
·

·
(
(σ − ar)2 + 4σa− (σ − ar)

√
(σ − ar)2 + 4σa)

)
> 0. (34)

Since

(σ − ar)2 + 4σa− (σ − ar + 2a)2 = 4a2(r − 1) > 0
and

(σ − ar)2 + 4σa > (σ − ar)
√
(σ − ar)2 + 4σa iff

√
(σ − ar)2 + 4σa > (σ − ar),

condition (34) is also satisfied.
Condition (31) for stationary points S1,2 is as follows

p1(S1,2)p2(S1,2)− p3(S1,2) = 2
D

(
C2
√
(σ − ar)2 + 4σa−

−C2(σ − ar)− 2σ2a(σ(σ − ar)− 4a)
)
> 0, (35)

where

C2 =
(
(σ(σ − ar)− a)2 + a2(rσ + 2r − 1) + aσ2(σ − 2)) .
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If σ > 2, then C2 > 0 and we can derive a chain of inequalities for (35):

C2
√
(σ − ar)2 + 4σa > C2(σ − ar) + 2σ2a(σ(σ − ar)− 4a) iff

(σ − ar)2 + 4σa >
(
(σ − ar) + 2σ

2a(σ(σ − ar)− 4a)
C2

)2
iff

4σa >
4σ2a(σ − ar)(σ(σ − ar)− 4a)

C2
+
4σ4a2(σ(σ − ar)− 4a)2

C22
iff

C22 > σ(σ − ar)(σ(σ − ar)− 4a)C2 + σ3a(σ(σ − ar)− 4a)2.
We can divide the last inequality by

(−a2) and rewrite it in the form of polynomial
a2σ2(σ − 2)r3 − a (2σ4 − 4σ3 − 3aσ2 + 4aσ + 4a) r2 + σ2 (σ3 + 2(3a− 1)σ2−

−8aσ + 8a) r − σ3 (σ3 + 4σ2 − 16a) < 0.
This inequality corresponds to the stability condition for the equilibria S1,2.
�

C Proofs of Lemma 1 and the completeness of system (1)

Suppose that the Lyapunov function has the form

V (x, y, z) =
1

2

[
x2 + y2 + (a+ 1)

(
z − σ + r
a+ 1

)2]
. (36)

Here V (x, y, z) → ∞ as |(x, y, z)| → ∞. For an arbitrary solution x(t) =
(x(t), y(t), z(t)) of system (1) we have

V̇ (x, y, z) = x(−σx+ σy − ayz) + y(rx− y − xz) + ((a+ 1)z − (σ + r))(−z + xy)
= −σx2 − y2 − (a+ 1)z2 + (σ + r)z.

Suppose that ε ∈ (0, (a+ 1)) and c = min {σ, 1, (a+ 1)− ε} > 0. Then
V̇ (x, y, z) = −σx2 − y2 − ((a+ 1)− ε)z2 − εz2 + (σ + r)z

= −σx2 − y2 − ((a+ 1)− ε)z2 −
(√
εz − (σ + r)

2
√
ε

)2
+
(σ + r)2

4ε

≤ −c(x2 + y2 + z2) + (σ + r)
2

4ε
·

Suppose that x2 + y2 + z2 ≥ R2. Then a positive κ exists such that

V̇ (x, y, z) ≤ −cR2 + (σ + r)
2

4ε
< −κ for R2 >

1

c

(σ + r)2

4ε
·

We choose a number η > 0 such that

{(x, y, z) | V (x, y, z) ≤ η} ⊃ {(x, y, z) | x2 + y2 + z2 ≤ R2} ,
i.e., the relation x2 + y2 + z2 ≤ R2 implies that

x2 + y2 + (a+ 1)

(
z − σ + r
a+ 1

)2
= x2 + y2 + z2 + az2 − 2(σ + r)z + (σ + r)

2

a+ 1
≤ 2η.
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Since

−2(σ + r)z ≤ 2(σ + r)|z| ≤ 2(σ + r)R,
it is sufficient to choose η > 0 such that

(a+ 1)R2 + 2(σ + r)R+
(σ + r)2

a+ 1
≤ 2η, i.e. η ≥ 1

2
(a+ 1)

(
R+

σ + r

a+ 1

)2
·

Further, we can apply Theorem 2, which implies the Lemma.
Using Lyapunov function (36), we can prove the boundedness of solutions of sys-

tem (1) for t ≤ 0. Note that
(
2

(
z − σ + r
a+ 1

)2
+
(σ + r)2

2(a+ 1)2

)
−
(
z − σ + r

2(a+ 1)

)2
=

(
z − 3(σ + r)
2(a+ 1)

)2
≥ 0,

so the inequality

(
z − σ + r

2(a+ 1)

)2
≤
(
2

(
z − σ + r
a+ 1

)2
+
(σ + r)2

2(a+ 1)2

)

is satisfied. This implies that

V̇ ≥ 2σ
(
−1
2
x2
)
+ 2

(
−1
2
y2
)
− 2(a+ 1)

[(
z − σ + r
a+ 1

)2
+
(σ + r)2

4(a+ 1)2

]
+
1

4

(σ + r)2

a+ 1

= 2σ

(
−1
2
x2
)
+ 2

(
−1
2
y2
)
+ 4

(
−1
2
(a+ 1)

(
z − σ + r
a+ 1

)2)
− 1
4

(σ + r)2

a+ 1

≥ 2σ(−V ) + 2(−V ) + 4(−V )− 1
4

(σ + r)2

a+ 1
·

Suppose that k = 2σ + 2 + 4, and m = 1
4
(σ+r)2

a+1 . Then

V̇ + kV ≥ −m.

This implies that

d

dt
(ektV ) = ektV̇ + kektV ≥ −ektm.

Thus for t ≤ 0 we have

V (0)− ektV (t) ≥ (mekt −m)/k



Multistability: Uncovering Hidden Attractors 1445

or

V (t) ≤ e−ktV (0) + (me−kt −m)/k.
This implies that V does not tend to infinity in a finite negative time. Therefore, any
solution (x(t), y(t), z(t)) of system (1) does not tend to infinity in a finite negative
time. Thus, differential Eq. (1) generates a dynamical system for t ∈ R.

D Computation of Lyapunov exponents and Lyapunov dimension
using MATLAB

The singular value decomposition (SVD) of a fundamental matrix X(t) has the from

X(t) = U(t)Σ(t)VT (t): U(t)TU(t) ≡ I ≡ V(t)TV(t),
where Σ(t) = diag{σ1(t), ..., σn(t)} is a diagonal matrix with positive real diagonal
entries known as singular values. The singular values are the square roots of the
eigenvalues of the matrix X(t)∗X(t) (see [54]). Lyapunov exponents are defined as the
upper bounds of the exponential growth rate of the singular values of the fundamental
matrix of linearized system (see Eq. (13)).
We now give a MATLAB implementation of the discrete SVD method for com-

puting Lyapunov exponents based on the product SVD algorithm (see, e.g., [40,159]).

Listing 1: productsSVD.m – product SVD algorithm.
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Listing 2: computeLEs.m – computation of the Lyapunov exponents.

Listing 3: lyapunovDim.m – computation of the Lyapunov dimension.
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Listing 4: genLorenzSyst.m – generalized Lorenz system (1) along with the
variational equation.

Listing 5: main.m – computation of the Lyapunov exponents and local Lya-
punov dimension for the hidden attractor of generalized Lorenz system (1).

E Fishing principle and the existence of a homoclinic orbit in the
Glukhovsky–Dolghansky system

E.1 Fishing Principle

Consider autonomous system of differential equations (1) with the parameter

ẋ = f(x, q), t ∈ R, x ∈ Rn, q ∈ Rm. (37)

Let γ(s), s ∈ [0, 1] be a smooth path in the space of the parameter {q} = Rm. Consider
the following Tricomi problem [162]: Is there a point q0 ∈ γ(s) for which system (37)
with q0 has a homoclinic trajectory?
Consider system (37) with q = γ(s), and introduce the following notions. Let

x(t, s)+ be an outgoing separatrix of the saddle point x0 (i.e. lim
t→−∞ x(t, s)

+ = x0) with
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x(t,s)+

x (s)+

x0

x(t,s )+0

x0

Fig. 12. Separatrix x(t, s)+, where s ∈ [0, s0].

a one-dimensional unstable manifold. Define by xΩ(s)
+ the point of the first crossing

of separatrix x(t, s)+ with the closed set Ω:

x(t, s)+ ∈Ω, t ∈ (−∞, T ),
x(T, s)+ = xΩ(s)

+ ∈ Ω.
If there is no such crossing, we assume that xΩ(s)

+ = ∅ (the empty set).
Theorem 6 (Fishing Principle [87,96,98]). Suppose that for the path γ(s) there
is an (n− 1)-dimensional bounded manifold Ω with a piecewise-smooth edge ∂Ω that
possesses the following properties.

1. For any x ∈ Ω \ ∂Ω and s ∈ [0, 1], the vector f(x, γ(s)) is transversal to the
manifold Ω \ ∂Ω,

2. for any s ∈ [0, 1], f(x0, γ(s)) = 0, the point x0 ∈ ∂Ω is a saddle;
3. for s = 0 the inclusion xΩ(0)

+ ∈ Ω \ ∂Ω is valid (Fig. 12a),
4. for s = 1 the relation xΩ(1)

+ = ∅ is valid (i.e. xΩ(1)+ is an empty set),
5. for any s ∈ [0, 1] and y ∈ ∂Ω \ x0 there exists a neighborhood U(y, δ) = {x| |x−
y| < δ} such that xΩ(s)+ ∈U(y, δ).

If conditions 1)–5) are satisfied, then there exists s0 ∈ [0, 1] such that x(t, s0)+ is a
homoclinic trajectory of the saddle point x0 (Fig. 12b).

The fishing principle can be interpreted as follows. Figure 12a shows a fisherman
at the point x0 with a fishing rod x(t, s)

+. The manifold Ω is a lake surface and
∂Ω is a shore line. When s = 0, a fish has been caught by the fishing rod. Then,
x(t, s)+, s ∈ [0, s0) is a path taken by the fishing rod when it brings the fish to
the shore. Assumption 5) implies that the fish cannot be taken to the shore ∂Ω\x0,
because ∂Ω\x0 is a forbidden zone. Therefore, only the situation shown in Fig. 12b
is possible (i.e., at s = s0 the fisherman has caught a fish). This corresponds to a
homoclinic orbit.
Now let us describe the numerical procedure for defining the point Γ on the path

γ(s), which corresponds to a homoclinic trajectory. Here we assume that conditions



Multistability: Uncovering Hidden Attractors 1449

1), 2), and 5) of the fishing Principle are satisfied. Consider a sequence of paths
γj(s) ⊂ {γj−1(s), s ∈ [0, 1]} ⊂ {γ(s), s ∈ [0, 1]}, ∀s ∈ [0, 1] such that the length
{γj(s)} tends to zero as j → +∞. Condition 3) is satisfied for γj(0) and condition
4) is satisfied for γj(1). This sequence can be obtained if the paths γ and γj are
sequentially divided into two paths of the same length and we choose the path such
that for its end points condition 3) is satisfied and condition 4) is not satisfied (or
vice versa). Obviously, the sequence γj(s), s ∈ [0, 1] is contracted to the point Γ ∈
{γj(s), s ∈ [0, 1]}, ∀j. This point corresponds to a homoclinic trajectory of system
(37).
Now, consider the conditions of the non-existence of a homoclinic orbit. Consider

the Jacobian matrix of system (37)

J(x, s) =
∂f

∂x
(x, γ(s)).

Let λ1(x, s, S) � · · · � λn(x, s, S) denote the eigenvalues of the symmetrized matrix
1

2

(
SJ(x, s)S−1 + (SJ(x, s)S−1)∗

)
,

where S is a nonsingular matrix.
Suppose system (37) has a saddle point x0 ≡ x0(s), ∀s ∈ [0, 1], the point x0 belongs

to a positively invariant bounded set K, and J(x0, s) has only real eigenvalues.

Theorem 7 ([87]). Assume that there are a continuously differentiable scalar func-
tion ϑ(x, s) and a nonsingular matrix S such that for system (37) with q = γ(s), the
inequality

λ1(x, S) + λ2(x, S) + ϑ̇(x) < 0, ∀ x ∈ K, ∀s ∈ [0, 1] (38)

is satisfied. Then system (37) has no homoclinic trajectories for all s ∈ [0, 1] such
that

lim
t→−∞ x(t) = lim

t→+∞ x(t) = x0. (39)

E.2 Existence of a homoclinic trajectories in the Glukhovsky-Dolzhansky system

Consider the separatrix x+(t), y+(t), z+(t) of the zero saddle point of system (1),
where x(t)+ > 0, ∀t ∈ (−∞, τ), τ is a number, and lim

t→−∞x(t)
+ = 0 (i.e. positive

outgoing separatrix is considered).
Define the manifold Ω as

Ω = {x = 0, y ≤ 0, y(σ − az) ≤ 0, y2 + z2 ≤ 2r2}.
Check condition 1).
Inside the set Ω\∂Ω we have

ẋ = y(σ − az) < 0.
Check condition 5).

a) On B1 = {x = 0, y = 0, −
√
2r ≤ z ≤ σ/a} system (1) has the solution

x(t) ≡ y(t) ≡ 0, z(t) = z(0) exp(−t).
b) On B2 = {x = 0, y < 0, z = σ/a, y2 + z2 ≤ 2r2} we have

ẍ = σy.
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Fig. 13. Manifold Ω.
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Fig. 14. Local behavior of the trajectories of system (1) in the neighborhood of set B2
(σ = 4, a = 0.52, r = 105).

Therefore the local behavior of trajectories in the neighborhood of B2 is shown in
Fig. 14.
c) The set B3 = {x = 0, y < 0, −

√
2r ≤ z ≤ σ/a, y2 + z2 = 2r2} is located

outside of the positively invariant cylinder C (see Eq. (10)). Thus, the separatrices of
the zero saddle point (which belongs to C) can not reach the set B3.

Check condition 3).
Consider the development of the asymptotic integration of system (1) [88]. Assume

that

ar = c− λε+O(ε2), (40)

where c and λ are some numbers and ε = 1/
√
r is a small parameter.

Lemma 2. For any σ > c, σ > 1 there exists a time T > 0 such that for sufficiently
large r, (x+(T ), y+(T ), z+(T )) ∈ Ω \ ∂Ω (i.e. condition 3) of the fishing principle is
valid).

Proof (sketch). Using the transformation

t→ t√
r
, x→ √rx, y → ry, z → rz, (41)
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we can obtain

ẋ = σy − εσx− (c− λε+O(ε2))yz
ẏ = x− εy − xz (42)

ż = −εz + xy.
a) Consider the zero approximation of system (42) (system (42) without λε and

ε = 0) and its solution (x0(t), y0(t), z0(t)). There are two independent integrals

V (x0(t), y0(t), z0(t)) = (σ − c)z0(t)2 + σy0(t)2 − x0(t)2 = C1,
W = y0(t)

2 + z0(t)
2 − 2z0(t) = C2.

Thus, the positive outgoing separatrix x+0 (t), y
+
0 (t), z

+
0 (t) of the saddle point (x = y =

z = 0) of zero approximation of system (42) belongs to the intersection of surfaces
V = 0 and W = 0, i.e.

V (x+0 (t), y
+
0 (t), z

+
0 (t)) = 0 =W (x

+
0 (t), y

+
0 (t), z

+
0 (t)),∀t ∈ (−∞,+∞). (43)

From (43) it follows that x+0 (t) �= 0, ∀t ∈ Rn and

lim
t→+∞x

+
0 (t) = lim

t→+∞ y
+
0 (t) = lim

t→+∞ z
+
0 (t) = 0.

b) Consider the first approximation of system (42) (system (42) without
O(ε2)). For the small values of ε the outgoing separatrix (x+1 (t), y

+
1 (t), z

+
1 (t))

of the zero saddle point of the first approximation of system (42) is close to
(x+0 (t), y

+
0 (t), z

+
0 (t)) on (−∞, τ). Therefore for sufficiently small ε and some τ the

separatrix (x+1 (t), y
+
1 (t), z

+
1 (t)) reaches δ-vicinity of the zero saddle. Then there ex-

ists finite τ = τ(ε, δ) such that

|x+1 (τ(ε, δ))| < δ, |y+1 (τ(ε, δ))| < δ, |z+1 (τ(ε, δ))| < δ.
Consider two functions

Vε(x, y, z) = (σ − c+ λε)z2 + σy2 − x2, W = y2 + z2 − 2z. (44)

For the derivatives of (44) along the positive outgoing separatrix we have

d

dt
Vε(t) ≡ d

dt
Vε(x

+
1 (t), y

+
1 (t), z

+
1 (t)) = −2εVε(x+1 (t), y+1 (t), z+1 (t)) + 2ε(σ − 1)x+1 (t)2,

d

dt
W (t) ≡ d

dt
W (x+1 (t), y

+
1 (t), z

+
1 (t)) = −2εW (x+1 (t), y+1 (t), z+1 (t))− 2εz+1 (t).

(45)

Integrating (45) from −∞ to τ and taking into account
lim

τ0→−∞
Vε(τ0) = lim

τ0→−∞
W (τ0) = 0,

we obtain

Vε(τ) = 2ε(σ − 1)
τ∫

−∞
e−2ε(τ−s)(x+1 (t))

2 dt = 2ε(σ − 1)M0 + o(ε), (46)
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Fig. 15. σ = 2.3445, a = 0.0065, r = 300, c = 2, λ = 1.

W (τ) = −2ε
τ∫

−∞
e−2ε(τ−s)(z+1 (s))

2 ds = −2εN0 + o(ε), (47)

where M0 and N0 are some positive numbers. If z1 and z2 satisfy

Vε(0, 0, z1) = 2ε(σ − 1)M0, W (0, 0, z2) = −2εN0, (48)

then

z1 =
√
ε

√
2M0(σ − 1)
σ − c+ λε , z2 = ε

2N0

1 +
√
1− 2N0ε

. (49)

Hence the situation shown in Fig. 15b occurs in the neighborhood of the saddle point
(x = y = z = 0) for the surfaces

Vε(x, y, z) = 2ε(σ − 1)M0, W (x, y, z) = 2εN0. (50)

The separatrix (x+1 (τ), y
+
1 (τ), z

+
1 (τ) has to be near the surfaces Vε(x, y, z) and

W (x, y, z). From the mutual disposition of surfaces (50) and different order of small-
ness in (49) it follows that if x+1 (τ) > 0, then y

+
1 (τ) < 0 and ẋ

+
1 (τ) < 0 for sufficiently

small ε. Moreover, ẋ+1 (t) < 0 for t > τ and x
+
1 (t) ≤ 0. This implies the existence of

T > τ such that x+1 (T ) = 0. We can obtain similar results for the case x
−
1 (τ) < 0

(then y−1 (τ) > 0). The behavior of separatrix (x
+(τ), y+(τ), z+(τ) is consistent with

the behavior of (x+1 (τ), y
+
1 (τ), z

+
1 (τ).

Check condition 4). We now check condition 4) for system (1) with parameters
(27). For this system it was proved [19, pp. 276–277, 269–272] that if

Rc <
4(σ + 1)

1 +
√
1 + 8Ac(σ + 1)

, (51)

then condition (38) of Theorem 7 is satisfied for S = I, V (x, s) ≡ 0.
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Now we can show that if (51) holds, then condition 4) for system (1) is also
satisfied. Consider the path

Rc(s), Ac(s), σ(s) ≡ σ,
Ac(0) = 0, Ac(1) = Ac,

Rc(s) ∈
(

2σ

1 +
√
1 + 4Ac(s)σ

,
4(σ + 1)

1 +
√
1 + 8Ac(s)(σ + 1)

)
,

Rc(0) = σ(1 + δ), (52)

where δ is a small positive number.
For s = 0 condition 4) is satisfied (see, e.g., [89,96]). If for some s1 ∈ [0, 1] condition

4) is not satisfied, then condition 3) is satisfied for s1. In this case Theorem 6 implies
that there exists s2 ∈ [0, s1] for which a homoclinic trajectory exists. But Rc(s) is
chosen in such a way that conditions of Theorem 7 are valid and hence the homoclinic
trajectories do not exist. This contradiction proves the fulfillment of condition 4) of
Theorem 6 for all s ∈ [0, 1]. Condition 6) is checked.
Check condition 2). From (52) it is obvious that condition 2 is satisfied.

Remark 6. For c = σ Lemma 2 is not valid since a positive outgoing separatrix of the
zero approximation of system (42) follows a heteroclitic orbit

lim
t→+∞x

0
0(t) = lim

t→+∞ y
0
0(t) = lim

t→+∞ z
0
0(t) = 2.

In this case we may consider a sequence of systems close to (1). For example, instead

of (27) we can consider a = a(βk) =
Acσ(σ−βk)
(RcAc+1)2

, where βk are a small positive numbers

and lim
k→+∞

βk = 0, such that path (52) satisfies condition 4) of the fishing principle.

Then, using Lemma 2 and the fishing principle, we get the sequences of rhk and
corresponding homoclinic orbits. Choosing a convergent subsequence from rhk and
using Arzela–Ascoli theorem, we can justify the existence of a homoclinic orbit in the
initial system with a(0).
Note also that since a and r are varying in the asymptotic integration, ∂Ω is also

varying.

Finally we get the following

Theorem 8. For any fixed Ac > 0, σ > 1 there exists a number

Rc ∈
(

2σ

1 +
√
1 + 4Acσ

,+∞
)

such that system (1) with parameters (27) has a homoclinic trajectory of the zero
saddle point.

This work was supported by Russian Scientific Foundation (project 14-21-00041) and Saint-
Petersburg State University.
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ures and hidden oscillations. In: IEEE 4th International Conference on Nonlinear
Science and Complexity, NSC 2012 – Proceedings (2012), p. 109

66. P. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems (American
Mathematical Society, 2011)

67. A. Kuznetsov, S. Kuznetsov, E. Mosekilde, N. Stankevich, J. Phys. A: Math. Theor.
48, 125 (2015)

68. N. Kuznetsov, O. Kuznetsova, G. Leonov, P. Neittaanmaki, M. Yuldashev, R.
Yuldashev, Limitations of the classical phase-locked loop analysis, International
Symposium on Circuits and Systems (ISCAS), IEEE (2015) (accepted)

69. N. Kuznetsov, O. Kuznetsova, G. Leonov, V. Vagaitsev, Informatics in Control,
Automation and Robotics, Lecture Notes in Electrical Engineering, Vol. 174, Part 4,
chap. Analytical-numerical localization of hidden attractor in electrical Chua’s circuit
(Springer, 2013), p. 149

70. N. Kuznetsov, G. Leonov, IFAC World Cong. 19, 5445 (2014)
71. N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev, IFAC Proc. Vol. (IFAC-
PapersOnline) 19, 8253 (2014)

72. N. Kuznetsov, G.A. Leonov, T.N. Mokaev, Hidden attractor in the Rabinovich system
[arXiv:1504.04723v1] (2015)



1456 The European Physical Journal Special Topics

73. N. Kuznetsov, V. Vagaitsev, G. Leonov, S. Seledzhi, Localization of hidden attractors
in smooth Chua’s systems, International Conference on Applied and Computational
Mathematics (2011), p. 26

74. N.V. Kuznetsov, T. Alexeeva, G.A. Leonov, Invariance of Lyapunov characteristic ex-
ponents, Lyapunov exponents, and Lyapunov dimension for regular and non-regular
linearizations [arXiv:1410.2016v2] (2014)

75. N.V. Kuznetsov, O.A. Kuznetsova, G.A. Leonov, Diff. Eq. Dyn. Syst. 21, 29 (2013)
76. N.V. Kuznetsov, O.A. Kuznetsova, G.A. Leonov, V.I. Vagaytsev, Automat. Robot. 1,
279 (2011)

77. N.V. Kuznetsov, G.A. Leonov, Izv. RAEN, Diff. Uravn. 5, 71 (2001)
78. N.V. Kuznetsov, G.A. Leonov, On stability by the first approximation for discrete
systems, 2005 International Conference on Physics and Control, PhysCon 2005,
Proceedings Vol. 2005 (IEEE, 2005), p. 596

79. N.V. Kuznetsov, G.A. Leonov, S.M. Seledzhi, Proc. Vol. (IFAC-PapersOnline) 18, 2506
(2011)

80. N.V. Kuznetsov, G.A. Leonov, V.I. Vagaitsev, IFAC Proc. Vol. (IFAC-PapersOnline)
4, 29 (2010)

81. N.V. Kuznetsov, T.N. Mokaev, P.A. Vasilyev, Commun. Nonlinear Sci. Numer. Simul.
19, 1027 (2014)

82. O. Ladyzhenskaya, Russian Math. Surv. 42, 25 (1987)
83. O.A. Ladyzhenskaya, Attractors for semi-groups and evolution equations (Cambridge
University Press, 1991)

84. S.K. Lao, Y. Shekofteh, S. Jafari, J. Sprott, Int. J. Bifurcat. Chaos 24 (2014), Art.
num. 1450010

85. F. Ledrappier, Comm. Math. Phys. 81, 229 (1981)
86. G. Leonov, St. Petersburg Math. J. 13, 453 (2002)
87. G. Leonov, Nonlinear Dyn. 78, 2751 (2014)
88. G. Leonov, Doklady Math. 462, 1 (2015)
89. G. Leonov, Phys. Lett. A 379, 524 (2015)
90. G. Leonov, N. Kuznetsov, N. Korzhemanova, D. Kusakin, Estimation of Lyapunov
dimension for the Chen and Lu systems [arXiv:1504.04726v1] (2015)

91. G. Leonov, N. Kuznetsov, T. Mokaev, Homoclinic orbit and hidden attractor in
the Lorenz-like system describing the fluid convection motion in the rotating cavity,
Commun. Nonlinear Sci. Numer. Simul., doi:10.1016/j.cnsns.2015.04.007 (2015)

92. G. Leonov, V. Reitman, Attraktoreingrenzung fur nichtlineare Systeme (Teubner,
Leipzig, 1987)

93. G.A. Leonov, J. Appl. Math. Mechan. 47, 861 (1983)
94. G.A. Leonov, Vestnik St. Petersburg Univ. Math. 24, 41 (1991)
95. G.A. Leonov, St. Petersburg Univ. Press, St. Petersburg (2008)
96. G.A. Leonov, Phys. Lett. A 376, 3045 (2012)
97. G.A. Leonov, J. Appl. Math. Mechan. 76(2), 129 (2012)
98. G.A. Leonov, Shilnikov chaos in Lorenz-like systems. Int. J. Bifurcat. Chaos 23 (2013),
Art. num. 1350058

99. G.A. Leonov, V.A. Boichenko, Acta Applicandae Math. 26, 1 (1992)
100. G.A. Leonov, A.I. Bunin, N. Koksch, ZAMM - J. Appl. Math. and Mechanics / Z. Ang.

Math. Mechanik 67, 649 (1987)
101. G.A. Leonov, I.M. Burkin, A.I., Shepelyavy, Frequency Methods in Oscillation Theory

(Kluwer, Dordretch, 1996)
102. G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurcat. Chaos 17, 1079 (2007)
103. G.A. Leonov, N.V. Kuznetsov, Localization of hidden oscillations in dynamical

systems (plenary lecture), In: 4th International Scientific Conference on Physics and
Control (2009). http://www.math.spbu.ru/user/leonov/publications/2009-Phys-
Con-Leonov-plenary-hidden-oscillations.pdf

104. G.A. Leonov, N.V. Kuznetsov, Doklady Math. 84, 475 (2011)
105. G.A. Leonov, N.V. Kuznetsov IFAC Proc. Vol. (IFAC-PapersOnline) 18, 2494 (2011)



Multistability: Uncovering Hidden Attractors 1457

106. G.A. Leonov, N.V. Kuznetsov, IWCFTA2012 Keynote speech I – Hidden attrac-
tors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman
and Kalman problems to hidden chaotic attractor in Chua circuits, In: IEEE 2012
Fifth International Workshop on Chaos-Fractals Theories and Applications (IWCFTA)
(2012), p. XV

107. G.A. Leonov, N.V. Kuznetsov, Advances in Intelligent Systems and Computing,
Vol. 210 AISC, Chap. Prediction of hidden oscillations existence in nonlinear dynamical
systems: analytics and simulation (Springer, 2013), p. 5

108. G.A. Leonov, N.V. Kuznetsov, J. Bifurcat. Chaos 23 (2013)
109. G.A. Leonov, N.V. Kuznetsov, App. Math. Comp. 256, 334 (2015)
110. G.A. Leonov, N.V. Kuznetsov, M.A. Kiseleva, E.P. Solovyeva, A.M. Zaretskiy,

Nonlinear Dyn. 77, 277 (2014)
111. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Phys. Lett. A 375, 2230 (2011)
112. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Physica D: Nonlinear Phenomena 241,

1482 (2012)
113. G.A. Leonov, O.A. Kuznetsova, Regul. Chaotic Dyn. 15, 354 (2010)
114. G.A. Leonov, A.Y. Pogromsky, K.E. Starkov, Phys. Lett. A 375, 1179 (2011)
115. G.A. Leonov, V. Reitmann, Math. Nachri. 129, 31 (1986)
116. N. Levinson, Ann. Math., 723 (1944)
117. N. Levinson, Ann. Math. 50, 127 (1949)
118. C. Li, J. Sprott, Phys. Lett. A 378, 178 (2014)
119. C. Li, J.C. Sprott, Coexisting hidden attractors in a 4-D simplified Lorenz system, Int.

J. Bifurcat. Chaos 24 (2014) Art. num. 1450034
120. Q. Li, H. Zeng, X.S. Yang, Nonlinear Dyn. 77, 255 (2014)
121. B. Liao, Y.Y. Tang, L. An, Int. J. Wavelets, Multiresol. Inf. Proc. 8, 293 (2010)
122. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)
123. J. Lu, G. Chen, Int. J. Bifurcat. Chaos 12, 1789 (2002)
124. A.M. Lyapunov, The General Problem of the Stability of Motion, Kharkov (1892)
125. L. Markus, H. Yamabe, Osaka Math. J. 12, 305 (1960)
126. G.H. Meisters, Polynomial flows on Rn, In: Proceedings of the Semester on Dynamical

Systems, Autumn 1986, at the Stefan Banach International Mathematics Center. ul.
Mokotowska, 25 (Warszawa, Poland, 1989)

127. V. Melnikov, Trans. Moscow Math. Soc. 12, 1 (1963)
128. J. Milnor, Attractor. Scholarpedia 1 (2006)
129. M. Molaie, S. Jafari, J. Sprott, S. Golpayegani Int. J. Bifurcat. Chaos 23 (2013), Art.

num. 1350188
130. S. Nose, Molecular Phys. 52, 255 (1984)
131. V. Oseledec, Multiplicative ergodic theorem: Characteristic Lyapunov exponents of

dynamical systems, Transactions of the Moscow Mathematical Society 19, 179 (1968)
132. G. Osipenko, Banach Center Publ. 47, 173 (1999)
133. S. Panchev, T. Spassova, N.K. Vitanov, Chaos, Solitons Fractals 33, 1658 (2007)
134. V.T. Pham, S. Jafari, C. Volos, X. Wang, S. Golpayegani, Int. J. Bifurcat. Chaos 24,

(2014)
135. V.T. Pham, F. Rahma, M. Frasca, L. Fortuna, Int. J. Bifurcat. Chaos 24 (2014)
136. V.T. Pham, C. Volos, S. Jafari, X. Wang, Optoelectronics Adv. Mater. Rapid Comm.

8, 535 (2014)
137. V.T. Pham, C. Volos, S. Jafari, X. Wang, S. Vaidyanathan, Optoelectronics Adv. Mater.

Rapid Comm. 8, 1157 (2014)
138. V.T. Pham, C. Volos, S. Jafari, Z. Wei, X. Wang, Int. J. Bifurcat. Chaos 24, 1450073

(2014)
139. V.T. Pham, C. Volos, S. Vaidyanathan, T. Le, V. Vu, J. Eng. Sci. Tech. Rev. 2, 205

(2015)
140. A.S. Pikovski, M.I. Rabinovich, V.Y. Trakhtengerts, Sov. Phys. JETP 47, 715 (1978)
141. S. Pilyugin, Differential Equ. 47, 1929 (2011)
142. A. Pisarchik, U. Feudel, Phys. Reports 540, 167 (2014)



1458 The European Physical Journal Special Topics

143. V.A. Pliss, Some Problems in the Theory of the Stability of Motion. Izd LGU,
Leningrad (in Russian) (1958)

144. B. van der Pol, Philosophical Mag. J. Sci. 7, 978 (1926)
145. A. Prasad, Int. J. Bifurcat. Chaos 25 (2015)
146. M. Rabinovich, Uspehi Physicheskih Nauk [in Russian] 125, 123 (1978)
147. V. Rasvan, Three lectures on dissipativeness, In: Automation, Quality and Testing,

Robotics, 2006 IEEE International Conference on, Vol. 1 (IEEE, 2006), p. 167
148. J.W.S. Rayleigh, The theory of sound (Macmillan, London 1877)
149. V. Reitmann, Dynamical systems, attractors and there dimension estimates (Saint

Petersburg State University Press, Saint Petersburg, 2013)
150. O.E. Rossler, Phys. Lett. A 57, 397 (1976)
151. G.R. Sell, J. Dyn. Differential Equ. 8, 1 (1996)
152. P. Sharma, M. Shrimali, A. Prasad, N.V. Kuznetsov, G.A. Leonov, Int. J. Bifurcat.

Chaos 25 (2015)
153. L. Shilnikov, Sov. Math. Dokl. 6, 163 (1965)
154. A. Sommerfeld, Z. Vereins Deutscher Ingenieure 46, 391 (1902)
155. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors,

Applied Mathematical Sciences (Springer, New York, 1982)
156. J. Sprott, Phys. Rev. E 50, R647 (1994)
157. J. Sprott, W. Hoover, C. Hoover, Phys. Rev. E 89 (2014)
158. J. Sprott, X. Wang, G. Chen, Int. J. Bifurcat. Chaos 23 (2013)
159. D.E. Stewart, Electr. Trans. Numer. Anal. 5, 29 (1997)
160. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd

edn. (Springer-Verlag, New York, 1997)
161. G. Teschl, Graduate Studies in Mathematics, Vol. 140 (American Mathematical Soc.,

2012)
162. F. Tricomi, Annali della R. Shcuola Normale Superiore di Pisa 2, 1 (1933)
163. Y. Ueda, N. Akamatsu, C. Hayashi, Trans. IEICE Japan 56A, 218 (1973)
164. A. Vannelli, M. Vidyasagar, Automatica 21, 69 (1985)
165. V. Venkatasubramanian, Stable operation of a simple power system with no equilibrium

points, In: Proceedings of the 40th IEEE Conference on Decision and Control, Vol. 3
(2001), p. 2201

166. X. Wang, G. Chen, Nonlinear Dyn. 71, 429 (2013)
167. Z. Wei, I. Moroz, A. Liu, Turkish J. Math. 38, 672 (2014)
168. Z. Wei, R. Wang, A. Liu, Math. Comp. Simul. 100, 13 (2014)
169. Z. Wei, W. Zhang, Int. J. Bifurcat. Chaos 24 (2014)
170. Z. Wei, W. Zhang, Z. Wang, M. Yao, Int. J. Bifurcat. Chaos 25, 1550 (2015)
171. V.A. Yakubovich, Avtomation Remore Cont. 25, 905 (1964)
172. V.A. Yakubovich, G.A. Leonov, A.K. Gelig, Stability of Stationary Sets in Control

Systems with Discontinuous Nonlinearities (World Scientific, Singapure, 2004)
173. T. Yoshizawa, Stability theory by Liapunov’s second method, Math. Soc. Japan (1966)
174. P. Yu, G. Chen, Int. J. Bifurcat. Chaos 14, 1683 (2004)
175. H. Zhao, Y. Lin, Y. Dai, Int. J. Bifurcat. Chaos 24 (2014)
176. Z. Zhusubaliyev, E. Mosekilde, Math. Comp. Simul. 109, 32 (2015)
177. V.I. Zubov, L.F. Boron, Methods of A.M. Lyapunov and their application (Noordhoff

Groningen, 1964)



PIV

THE LYAPUNOV DIMENSION FORMULA OF SELF-EXCITED
AND HIDDEN ATTRACTORS IN THE

GLUKHOVSKY-DOLZHANSKY SYSTEM

by

N. V. Kuznetsov, G. A. Leonov, T. N. Mokaev 2015

arXiv preprint arXiv:1509.09161, http://arxiv.org/pdf/1509.09161v1.pdf



The Lyapunov dimension formula

of self-excited and hidden attractors

in the Glukhovsky-Dolzhansky system

G.A. Leonov, N.V. Kuznetsov, T.N. Mokaev

aFaculty of Mathematics and Mechanics, St. Petersburg State University, 198504
Peterhof, St. Petersburg, Russia

bDepartment of Mathematical Information Technology, University of Jyväskylä,
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Abstract

In the past two decades Lyapunov functions are used for the estimation of
attractor dimensions. By means of these functions the upper estimate of Lya-
punov dimension for Rössler attractor and the exact formulas of Lyapunov
dimension for Hénon, Chirikov, and Lorenz attractors are obtained.

In this report the simplest model, suggested by Glukhovsky and Dolzhan-
sky, which describes a convection process in rotating fluid, is considered. A
system of differential equations for this model is a generalization of Lorenz
system. For the Lyapunov dimension of attractor of the model, the upper
estimate is obtained.

Keywords: chaos, chaotic attractor, generalized Lorenz system, Lyapunov
dimension, Lyapunov function, fluid convection

1. Introduction

In the present paper the simplest three-dimensional system, describing the
convection of fluid within an ellipsoidal rotating cavity, is considered. This
system, suggested by Glukhovsky and Dolghansky [4], is as follows⎧⎪⎨

⎪⎩
ẋ = −σx+ z + a0yz

ẏ = R− y − xz

ż = −z + xy,

(1)

where σ, R, a0 are positive numbers.
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After the change of variables

x → x, y → R− σ

a0R + 1
z, z → σ

a0R + 1
y (2)

system (1) takes the form⎧⎪⎨
⎪⎩
ẋ = −σx+ σy − Ayz

ẏ = rx− y − xz

ż = −bz + xy,

(3)

where

b = 1, A =
a0σ

2

(a0R + 1)2
, r =

R

σ
(a0R + 1). (4)

This system is a generalization of a classical Lorenz system [20].
System (3) with the parameters r, σ, b > 0 is mentioned first in [23] and

after the corresponding change of variables [14] can be transformed to the
Rabinovich system of waves interaction in plasma [22, 6].

Consider system (3) under the assumption that r, σ, b, A are positive.
In this case by [14] one obtains the following: if r < 1, then (3) has a unique
equilibrium S0 = (0, 0, 0) (the trivial case). If r > 1, then (3) has three
equilibria: S0 = (0, 0, 0) and S1,2 = (±x1, ±y1, z1), where

x1 =
σb

√
ξ

σb+ Aξ
, y1 =

√
ξ, z1 =

σξ

σb+ Aξ
,

and the real number ξ is defined as

ξ =
σb

2A2

[
A(r − 2)− σ +

√
(Ar − σ)2 + 4Aσ

]
.

2. Lyapunov functions in the dimension theory

Consider a differential equation

dx

dt
= f(x), x ∈ R

n (5)

with a continuously differentiable vector function f(x). Assume that for
any initial value x0 there exists a unique solution of (5) x(t, x0), defined for

2



t ∈ [0,+∞). Here x(0, x0) = x0. Let K be an invariant set, i.e. x(t,K) = K
for all t ∈ [0,+∞).

Suppose J(x) is the Jacobian matrix of f(x)

J(x) =
∂f(x)

∂x
.

Consider a nonsingular (n× n)-matrix S. Suppose that λ1(x, S) � · · · �
λn(x, S) are eigenvalues of the matrix

1

2

(
SJ(x)S−1 + (SJ(x)S−1)∗

)
. (6)

Here * denotes a matrix transposition.

Theorem 1. [8, 13] Given an integer j ∈ [1, n] and s ∈ [0, 1), there is a
continuously differentiable scalar function ϑ : Rn → R and a nonsingular
matrix S such that

λ1(x, S) + · · ·+ λj(x, S) + sλj+1(x, S) + ϑ̇(x) < 0, ∀x ∈ R
n. (7)

In this case the Lyapunov dimension of the compact set K is estimated as
follows

dimL K � j + s.

Here ϑ̇ is a derivative of the function ϑ with respect to the vector field f :

ϑ̇(x) = (grad(ϑ))∗f(x).

Theorem 2. [12, 13] Suppose that there is a continuously differentiable
scalar function ϑ and a nonsingular matrix S such that

λ1(x, S) + λ2(x, S) + ϑ̇(x) < 0, ∀x ∈ R
n. (8)

Then any solution of system (5), bounded on [0,+∞), tends to an equilibrium
as t → +∞.

Thus, if condition (8) holds, then an attractor of system (5) coincides
with its stationary set.
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3. Estimation of Lyapunov dimension

In [14] it is proved that system (3) is dissipative, i.e. it possesses a
bounded absorbing set and, thus, has an attractor.

By Theorems 1 and 2 it can be formulated the assertion, concerning the
Lyapunov dimension of an attractor (denote it by K) of system (3). This
assertion is a generalization of the result obtained in [11] for b = 1.

Theorem 3. Suppose that either the inequality b < 1 or the inequalities
b � 1, σ > b are valid.
If (

r +
σ

A

)2

<
(b+ 1)(b+ σ)

A
, (9)

then any solution of system (3), bounded on [0,+∞), tends to an equilibrium
as t → +∞.
If (

r +
σ

A

)2

>
(b+ 1)(b+ σ)

A
, (10)

then

dimL K � 3− 2(σ + b+ 1)

σ + 1 +
√

(σ − 1)2 + A
(
σ
A
+ r

)2 . (11)

Sketch of the proof. We use the matrix

S =

⎛
⎝ −A− 1

2 0 0
0 1 0
0 0 1

⎞
⎠ .

Then the eigenvalues of the corresponding matrix (6) are the following

λ2 = −b,

λ1,3 = −σ + 1

2
± 1

2

[
(σ − 1)2 + A

(
2z − σ + Ar

A

)2
] 1

2

.

The goal is to obtain a Lyapunov-like function that allows one to check
property (7) of Theorem 1 and property (8) of Theorem 2.

4



For considered eigenvalues one can obtain the following relation

2(λ1 + λ2 + sλ3) � −(σ + 1 + 2b)− s(σ + 1) + (1− s)

[
(σ − 1)2 + A

( σ

A
+ r

)2
] 1

2

+

+
2(1− s)[

(σ − 1)2 + A
(
σ
A
+ r

)2] 1
2

ω(x, y, z),

where
ω(x, y, z) = −(σ + Ar)z + Az2.

Using the following Lyapunov-like function

ϑ(x, y, z) =
2(1− s)V (x, y, z)[

(σ − 1)2 + A
(
σ
A
+ r

)2] 1
2

,

where

V (x, y, z) =
γ

σ
x2 + γy2 + γ

(
1 +

A

σ

)
z2 − 2γ(r − 1)z, γ =

σ + Ar

2b(r − 1)
,

one obtains that

V̇ (x, y, z) + ω(x, y, z) < 0, ∀ x, y, z ∈ K.

Therefore, if condition (10) is satisfied and

s >
−(σ + 1 + 2b) +

√
(σ − 1)2 + A

(
σ
A
+ r

)2
σ + 1 +

√
(σ − 1)2 + A

(
σ
A
+ r

)2 ,

then for system (3) with the given S and ϑ Theorem 1 gives estimation (11).
If condition (9) is valid and s = 0, then the conditions of Theorem 2 are
satisfied and any solution bounded on [0,+∞) tends to an equilibrium as
t → +∞.

For system (3) with b = 1 we can obtain another upper estimation [18].

Theorem 4. Let b = 1, r > 2 and the following relations hold⎧⎨
⎩
σ > −3+2

√
3

3
Ar, if 2 < r ≤ 4

σ ∈
(

−3+2
√
3

3
Ar,

3r+2
√

r(2r+1)

r−4
Ar

)
, if r > 4.

(12)
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Then

dimL K ≤ 3− 2(σ + 2)

σ + 1 +
√

(σ − 1)2 + 4σr
. (13)

Sketch of the proof. We use the same idea but choose the following matrix

S =

⎛
⎝ −√

r
σ

0 0
0 1 0
0 0 1

⎞
⎠

and the following Lyapunov-like function

ϑ(x, y, z) =
2(1− s)V (x, y, z)√

(σ − 1)2 + 4σr
,

where
V (x, y, z) = γ1x

2 + γ2y
2 + (Aγ1 + γ2) z

2 − (σ + Ar)z.

Further it is shown that under conditions of the theorem it is always possible
to choose the parameters γ1, γ2 such that

V̇ (x, y, z) + ω(x, y, z) < 0, ∀ x, y, z ∈ K,

where

ω(x, y, z) = −(σ + Ar)z +
(σ + Ar)2

4σr
z2 +

(σ − Ar)2

4σr
y2.

Hence, for the chosen S and ϑ the main inequality of Theorem 1

2(λ1+λ2+sλ3+ϑ̇) < −(σ+3)−s(σ+1)+(1−s)
√
(σ − 1)2 + 4σr+

2(1− s)
(
ω + V̇

)
√
(σ − 1)2 + 4σr

< 0.

is satisfied and this completes the proof.

Corollary 1. If

1. σ = Ar, 4σr > (b+ 1)(b+ σ)
or

2. b = 1, r > 2 and⎧⎨
⎩
σ > −3+2

√
3

3
Ar, if 2 < r ≤ 4,

σ ∈
(

−3+2
√
3

3
Ar,

3r+2
√

r(2r+1)

r−4
Ar

)
, if r > 4,
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then the Lyapunov dimension of the zero equilibrium of system (3) with b = 1
or σ = Ar coincides with (13). Thus for K ⊃ (0, 0, 0) we have

dimL K = 3− 2(σ + 2)

σ + 1 +
√

(σ − 1)2 + 4σr
,

Note that this exact formula coincides with the formula for the classical
Lorenz system [13].

4. Convection of the rotating fluid

In this section the above results, concerning generalization of Lorenz sys-
tem (3), are applied to system (1), describing the convection of fluid within an
ellipsoidal rotating cavity. Nonsingular linear transformation (2), obviously,
does not change the Lyapunov dimension. In general case, it is known (see,
e.g. [7, 9]) the invariance of the Lyapunov dimension under a diffeomorphism.

It is known [4] that for system (1) if R < h, then there exists one equi-
librium S0 = (0, R, 0). It is stable if 0 < R < h or a0R

2 + R < σ. If R > h,

then there exist two additional equilibria S1,2 =
(
±
√

R−h
h

, h, ±√
(R− h)h

)
and they are stable if a0 � γ or a0 < γ, h < R < R0. Here

h =

√
1 + 4a0σ − 1

2a
, R0 =

σh(h+ 4)

σ − 2− σ2 + σh
, γ =

σ(σ − 2)

(σ2 − σ + 2)2
.

In [4] by means of numerical simulations for the case when parameter
σ = 4 it was found certain values of the parameters a0 and R for which in
system (1) it is observed either a periodic regime (i.e. there exists a limit
cycle) or a chaotic regime (and for system (1) there exists a chaotic attractor).

In [10, 11] for parameters

b = 1, σ = 4, A = 0.0052, r = 687.5 (14)

in the phase space of system (3) there was obtained a chaotic self-excited

7



attractor1 and for parameters

b = 1, σ = 4, A = 0.0052, r = 700 (15)

there was localized numerically a chaotic hidden attractor (Fig. 1). Using
linear transformation (2) and relation (4), one can obtain corresponding pa-
rameters for system (1) such that there exists self-excited or hidden attractor.
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Figure 1: Self-excited and hidden attractors of system (3).

By numerical methods [11] one can get the following values of Lyapunov
dimension for the local self-excited attractor of system (1):

dimL A = 2.1405

and for the local hidden attractor of system (1):

dimL Ahidden = 2.1322.

1 Recently a concept of self-excited and hidden attractors was suggested [16, 17, 15, 11]:
an attractor is called a self-excited attractor if its basin of attraction overlaps with neigh-
borhood of an equilibrium, otherwise it is called a hidden attractor. For example, hid-
den attractors are attractors in systems with no equilibria or with only one stable equi-
librium (a special case of multistability and coexistence of attractors). While coexist-
ing self-excited attractors can be found using the standard computational procedure,
there is no standard way of predicting the existence or coexistence of hidden attrac-
tors in a system. Recent examples of hidden attractors can be found in The European
Physical Journal Special Topics: Multistability: Uncovering Hidden Attractors, 2015 (see
[26, 1, 5, 29, 24, 25, 3, 19, 2, 27, 21, 28]).
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These values correspond to the values of Lyapunov dimension for the global
attractor K ⊃ (0, 0, 0) of system (1) obtained in Corollary 1. For (14) (self-
excited local attractor) we have

dimL K = dimL S0 = 2.8908.

and for (15) (hidden local attractor) we have

dimL K = dimL S0 = 2.8917.
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